WO2016038996A1 - Seawater desalination system - Google Patents

Seawater desalination system Download PDF

Info

Publication number
WO2016038996A1
WO2016038996A1 PCT/JP2015/069379 JP2015069379W WO2016038996A1 WO 2016038996 A1 WO2016038996 A1 WO 2016038996A1 JP 2015069379 W JP2015069379 W JP 2015069379W WO 2016038996 A1 WO2016038996 A1 WO 2016038996A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
pipe
aggregate
flocculant
desalination system
Prior art date
Application number
PCT/JP2015/069379
Other languages
French (fr)
Japanese (ja)
Inventor
聡之 石井
吉川 慎一
浩樹 宮川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016038996A1 publication Critical patent/WO2016038996A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a seawater desalination system.
  • seawater is dechlorinated using, for example, a reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • the seawater usually contains foreign matters such as dust and dirt. Therefore, from the viewpoint of preventing clogging due to fouling in the reverse osmosis membrane, foreign matters in the seawater are often removed before the seawater is supplied to the reverse osmosis membrane.
  • Patent Document 1 describes an impurity aggregation method for removing impurities such as suspended substances in raw water. Specifically, Patent Document 1 describes the use of two types of flocculant A and flocculant B, and flocculant A controls the flocculant conditions according to the concentration index of the suspended solids in raw water, It is described that the coagulant B controls the coagulation conditions according to a water quality index different from the concentration index of the suspended substance.
  • the flocculant is, for example, an inorganic flocculant or an organic flocculant.
  • the added flocculant is sufficiently agglomerated together with the foreign substances and sufficiently removed before the reverse osmosis membrane treatment. Therefore, after adding the flocculant, it is preferable to secure a sufficient time for causing the flocculant to aggregate.
  • the flocculant is added to the seawater stored in the tank, and the flocculant is aggregated in the tank, or the flocculant is added to the seawater flowing through the pipe.
  • an in-line method in which aggregation is performed.
  • an inline method may be adopted from the viewpoint of space saving of installation area and reduction of equipment cost.
  • the aggregation conditions such as the concentration of the flocculant to be added and the stirring speed are controlled in accordance with the concentration index of the suspended matter in the raw water.
  • the control of the aggregation conditions is complicated. Accordingly, there is a need for a system that can sufficiently remove the flocculant by a simple method.
  • the present invention has been made in view of these problems, and the problem to be solved by the present invention is to provide a seawater desalination system capable of sufficiently removing the coagulant together with foreign substances by a simple method.
  • the present inventors have intensively studied to solve the above problems. As a result, it has been found that the above-mentioned problem can be solved by setting the shape of the pipe through which the seawater to which the flocculant is added flows to a “current pipe” that combines a straight pipe and a curved pipe.
  • FIG. 1 is a system diagram of a seawater desalination system 100 of the present embodiment.
  • the seawater desalination system 100 foreign substances in the seawater are aggregated and removed by the inorganic flocculant and the organic flocculant added to the seawater. And the seawater after a foreign material was removed is dechlorinated by a reverse osmosis membrane (RO membrane), and fresh water is obtained.
  • RO membrane reverse osmosis membrane
  • the seawater desalination system 100 includes a pump 1, a static mixer 2, a static mixer 3, an aggregate growth device 4, a sand filtration device 5, a pump 6, and an RO membrane 7.
  • the seawater desalination system 100 includes an inorganic flocculant tank and a supply pump (inorganic flocculant addition device) for supplying the inorganic flocculant to the seawater in the pipe, although none of them is shown. Further, the seawater desalination system 100 is provided with an organic flocculant tank and a supply pump (an organic flocculant adding device) for supplying the organic flocculant to the seawater in the pipe, although none is shown.
  • the pump 1 is for passing seawater through the pipe.
  • the pump 1 is inverter controlled.
  • the frequency of the inverter is kept constant, so that seawater flows through the pipe at a constant flow rate.
  • the static mixer 2 is a line mixer that does not include a drive unit.
  • An inorganic flocculant is added to the seawater upstream of the static mixer 2. And in the static mixer 2, seawater and an inorganic flocculant are fully stirred and mixed.
  • the inorganic flocculant used is, for example, iron (III) chloride.
  • the static mixer 3 is a line mixer that does not include a drive unit, like the static mixer 2.
  • An organic flocculant is added upstream of the static mixer 3 to the seawater (including the inorganic flocculant) stirred and mixed in the static mixer 2.
  • the said inorganic flocculent, seawater, and an organic flocculant are fully stirred and mixed. Thereby, aggregates, such as a foreign material contained in seawater, begin to arise.
  • the organic flocculant used is, for example, a polycarboxylic acid polymer.
  • the agglomerate growth apparatus 4 promotes the growth of agglomerates that have started to be generated in the static mixer 3. That is, in the seawater desalination system 100, aggregates grow in-line. Seawater (including agglomerates) treated by the static mixer 3 flows into the agglomerate growth apparatus 4 from the inlet A in FIG. And the seawater containing the aggregate which grew up is discharged
  • the agglomerate growth apparatus 4 is configured by connecting a straight pipe having a predetermined length and having no bent portion and a bent pipe bent at a predetermined angle. And the seawater containing a flocculant flows through these piping, The aggregate containing a foreign material will produce
  • the sand filtration device 5 removes the agglomerates generated in the agglomerate growth device 4 from the seawater. By filtering the seawater containing agglomerates which are solids, the agglomerates remain on the sand and clear seawater is obtained.
  • the pump 6 is a pump for permeating the clear seawater obtained by the sand filtration device 5 through the RO membrane 7 in the subsequent stage.
  • the RO membrane 7 is for dechlorinating seawater to obtain fresh water.
  • the obtained fresh water is used for purposes such as waterworks and waterworks.
  • transmit the RO membrane 7 are discharged
  • FIG. 2 is a diagram showing a pipe shape of the aggregate growth apparatus 4 provided in the seawater desalination system 100 of the present embodiment.
  • the aggregate growth mechanism 4 is the same as the straight pipe 10a except that the straight pipe 10a (unit pipe), the curved pipe 10b (unit pipe), and the straight pipe 10a have different arrangement directions.
  • a straight pipe 10c (10a) is connected. That is, in this embodiment, the straight pipe arranged in the horizontal direction is referred to as “straight pipe 10a”.
  • the straight pipe arranged in the vertical direction has the same shape as the straight pipe 10a. For convenience of explanation, this straight pipe is referred to as “straight pipe 10c”.
  • FIG. 3 shows the shape of a unit pipe constituting the pipe of the agglomerate growing apparatus 4 provided in the seawater desalination system 100 of the present embodiment, where (a) shows the shape of the straight pipe 10a and (b) shows the bent pipe 10b. It is the shape.
  • the straight pipe 10a is a cylindrical pipe having a predetermined length.
  • the curved pipe 10b is a pipe (elbow) bent at a predetermined angle (90 ° in the present embodiment). By using the curved pipe 10b, the flow direction of the seawater is changed.
  • the aggregate growth apparatus 4 includes eight straight pipes 10a arranged in the horizontal direction, one straight pipe 10c arranged in the vertical direction, and fourteen bent pipes 10b connecting them. Are connected. Specifically, in the agglomerate growing apparatus 4, the straight pipe 10a (including the straight pipe 10c) and the curved pipe 10b are connected so that the horizontal flow of seawater changes every predetermined distance. Such a pipe connected so that the flow direction changes every predetermined distance may be referred to as a “current pipe”.
  • seawater that flows in from the inlet A first flows horizontally in the right direction on the paper for a predetermined distance (the horizontal length of the first straight pipe 10a). And the flowing seawater changes a flow direction by the two curved pipes 10b, and then flows horizontally in the left direction on the paper.
  • the seawater that has flowed through the straight pipe 10a that is the lowest in the vertical direction flows in the vertical direction (upward) by the straight pipe 10c that is arranged in the vertical direction.
  • the seawater which flowed is discharged
  • the straight pipe 10a is connected so that the flow of seawater reciprocates in the horizontal direction.
  • the curved pipe 10b is connected at every predetermined distance.
  • the flow pipe is configured so that the flow reciprocates in the left-right direction (horizontal direction), so this pipe is a left-right flow pipe. That is, in FIG. 2, the seawater from the inlet A first flows through the straight pipe 10a in the right direction (forward direction) of the drawing. Next, the flow direction is changed by the two curved pipes 10b, and seawater flows through the second straight pipe 10a in the left direction (return direction) in the drawing. Thus, in FIG. 2, seawater reciprocates in the left-right direction.
  • the pressure loss in the piping is as small as possible.
  • the agglomerate growing apparatus 4 is designed so that the pressure loss in the piping constituting the agglomerate growing apparatus 4 is increased.
  • the pressure energy lost in the pipe is used for the growth of agglomerates by the aggregating agent. Therefore, the generation of aggregates from seawater is promoted by increasing the pressure loss. As a result, large agglomerates are easily generated even in-line, and the aggregating agent can be sufficiently removed easily.
  • the magnitude of the pressure loss in the aggregate growth apparatus 4 is not particularly limited.
  • the magnitude (Hf / T) of pressure loss per unit time (unit residence time) from the first curved pipe 10b in the aggregate growth apparatus 4 to the last curved pipe 10b in the aggregate growth apparatus 4 Is preferably 1 ⁇ 10 ⁇ 2 mAq / s or more, preferably 4 ⁇ 10 ⁇ 1 mAq / s or more, and the upper limit is preferably 9 ⁇ 10 ⁇ 1 mAq / s or less, 7 ⁇ 10 ⁇ 1 mAq / s or less is more preferable.
  • the magnitude of the pressure loss per unit time is in this range, the aggregate removal efficiency can be further increased. Further, fouling to the RO membrane 7 can be sufficiently suppressed.
  • size (Hf / T) [mAq / s] of the pressure loss per unit time is computable with the following formula
  • Hf / T P / ( ⁇ ⁇ g) (1)
  • P represents the work amount per unit time (J) by seawater per unit volume
  • represents the density of seawater (kg / m 3 )
  • g represents the acceleration of gravity (m / s 2 ).
  • 1 mAq 0.1 kgf / cm 2 .
  • the residence time of the seawater in the pipe from the first curved pipe 10b in the aggregate growing apparatus 4 to the last curved pipe 10b in the aggregate growing apparatus 4 is not particularly limited.
  • the residence time of seawater between these is preferably 13 seconds or more, more preferably 14 seconds or more, and the upper limit thereof is preferably 260 seconds or less, more preferably 25 seconds or less.
  • the “residence time” as used herein refers to a part of the seawater flowing through the pipe, when a part of the seawater flows through the first bent pipe 10b in the agglomerate growing apparatus 4 when the part is focused on. This is the time required to flow to the last curved pipe 10b in the growth apparatus 4.
  • the vertical position of the seawater outlet B is higher than the position of the inlet A as shown in FIG.
  • the potential energy of the outlet B becomes larger than the potential energy of the inlet A. Accordingly, since the potential energy increases in the process from the inlet A to the outlet B, the amount of energy used for aggregation until the outlet B is reduced. Therefore, it is possible to sufficiently suppress the decomposition of the aggregate that may occur due to an excessive amount of energy used for aggregation, and to form a larger aggregate.
  • a pipe 10c that generates a vertical flow is disposed in the vicinity of the outlet B (immediately in the present embodiment). ing. Therefore, there is a vertical flow at the final stage of the aggregate growth, and the sea level rises in the pipe, so that the residence time can be secured, and the aggregate growth is further promoted.
  • the in-line agglomeration process is performed as described above. Therefore, it is possible to simplify equipment, reduce the installation area, and reduce power by not installing the agglomeration tank. Moreover, since there is no drive part, it is possible to simplify equipment, reduce operating costs, and improve reliability.
  • the seawater desalination system 100 has been described above with reference to FIGS. 1 to 3, but the seawater desalination system of the present embodiment is not limited to the above example.
  • the piping configuration of the agglomerate growing apparatus 4 is not limited to the example of FIG.
  • the piping configuration of the agglomerate growing apparatus 4 can be the configurations shown in FIGS.
  • FIG. 4 is a first modified example of the shape of the pipe constituting the aggregate growth apparatus 4.
  • the piping is configured to reciprocate the seawater three times, but in the flocculant growth apparatus 4 illustrated in FIG. 4, the piping is configured to reciprocate the seawater two times. Yes.
  • FIG. 2 from the viewpoint of increasing the pressure loss as much as possible, it is preferable to perform more reciprocations, but a sufficiently good effect can be obtained even with two reciprocating pipes as shown in FIG. .
  • FIG. 5 is a second modified example of the shape of the pipe constituting the aggregate growth apparatus 4.
  • the vertical height of the outlet B is higher than the vertical height of the inlet A, but in the aggregate growth apparatus 4 shown in FIG. 5, These are the same height.
  • the length of the pipe 10c arranged in the vertical direction is preferably long from the viewpoint of increasing the potential energy as much as possible, but is long enough for the inlet A and the outlet B to be the same height. Even with the straight pipe 10c, a sufficiently good effect can be obtained.
  • FIG. 6 is a third modified example of the shape of the pipe constituting the aggregate growth apparatus 4.
  • the vertical height of the outlet B is higher than the vertical height of the inlet A by the straight pipe 10c arranged in the vertical direction.
  • a plurality of straight pipes 10a arranged in the same vertical plane are connected by a curved pipe 10b. Even in such a connection mode, a sufficiently good effect can be obtained.
  • FIG. 7 is a fourth modified example of the shape of the pipe constituting the aggregate growth apparatus 4.
  • the straight pipe 10 a is arranged in the horizontal direction and is a reciprocating flow in the horizontal direction.
  • FIG. 8 is a fifth modified example of the shape of the pipe constituting the aggregate growth apparatus 4.
  • the straight pipe 10a and the curved pipe 10b are connected in the same vertical plane (including the X axis and the Y axis), but the flocculant growth shown in FIG.
  • the straight pipe 10 a and the curved pipe 10 b are connected in three dimensions in the X direction, the Y direction, and the Z direction. That is, the swirl-like flow pipe is configured so as to reciprocate in the vertical and horizontal directions so that the seawater swirls. Even in such a connection mode, a sufficiently good effect can be obtained.
  • FIG. 9 is a sixth modified example of the shape of the pipes constituting the aggregate growth apparatus 4.
  • the straight pipe 10a and the curved pipe 10b are connected so that the reciprocating flow of seawater occurs in the same vertical plane, but the flocculant growth apparatus 4 shown in FIG.
  • the straight pipe 10a and the curved pipe 10b are connected so that the reciprocating flow of seawater occurs in the same horizontal plane (in the plane including the X axis and the Z axis). That is, a flow pipe that runs on the ground is configured so that seawater is parallel to the ground (not shown). Even in such a connection mode, a sufficiently good effect can be obtained.
  • FIG. 10 is a seventh modified example of the shape of the pipes constituting the aggregate growth apparatus 4.
  • the reciprocating flow of seawater in the same plane in the vertical direction is performed by connecting the pipes 10a having the same length.
  • the lengths of the straight pipes 10a arranged in the same plane in the vertical direction are different. Specifically, the length of the straight pipe 10a becomes longer as it goes downward in the vertical direction. That is, in this connection form, the length of the straight pipe 10a is non-uniform, and a non-uniform flow pipe is configured. Even in such a connection mode, a sufficiently good effect can be obtained.
  • the length of the straight pipe 10a arranged on the lowermost side is the longest, it is possible to generate a sufficient pressure loss and grow to a size of agglomerates that can remove minute agglomerates. .
  • FIG. 11 shows an eighth modification of the shape of the pipes constituting the aggregate growth apparatus 4.
  • the piping is configured so that the seawater reciprocates three times.
  • the piping is configured so that the seawater reciprocates four times. Yes. Even in such a connection mode, a sufficiently good effect can be obtained.
  • the pipes constituting the agglomerate growing apparatus 4 have the same inner diameter in the above example, but the agglomerate growing apparatus 4 may be configured by combining pipes having different inner diameters. That is, the pipes constituting the agglomerate growing apparatus 4 do not have to have the same inner diameter in all portions, and may include portions having different inner diameters as appropriate.
  • two types of flocculants are used, but one type may be used, or three or more types may be used.
  • two static mixers 2 and 3 are provided as stirring and mixing devices, the number may be appropriately increased or decreased depending on the type of the flocculant.
  • a static stirring and mixing device (such as a static mixer) is preferable, but it is not limited thereto. Further, the static stirring and mixing device is not limited to a static mixer, and may be any device.
  • an agitation device that performs gentle agitation may be provided between the aggregate growth device 4 and the sand filtration device 5.
  • the further growth of the aggregate which grew in the aggregate growth mechanism 4 can be aimed at.
  • the sand filtration device 5 is provided as the aggregate filtration device, for example, a membrane filtration device such as an inexpensive microfiltration membrane or an ultrafiltration membrane may be used.
  • Example 1 The seawater desalination system 100 shown in FIG. 1 and the aggregate growth apparatus 4 shown in FIG. 2 were used to remove foreign matter in seawater as aggregates.
  • As the inorganic flocculant a 4% by mass aqueous solution of iron (III) chloride was used.
  • As an organic flocculant a 0.2% by mass polycarboxylic acid polymer aqueous solution was used.
  • the linear velocity of seawater flowing through the seawater desalination system 100 was 400 m / 1 day.
  • the internal diameter of piping (including piping which comprises the aggregate growth apparatus 4) which comprises the seawater desalination system 100 was 15 mm.
  • the seawater desalination system 100 was operated under these conditions.
  • the magnitude of the pressure loss per unit time (Hf / T) from the first curved pipe 10b in the aggregate growth apparatus 4 to the last curved pipe 10b in the aggregate growth apparatus 4 The calculated value was 7 ⁇ 10 ⁇ 1 mAq / s based on the formula (1).
  • the residence time from the first curved pipe 10b in the condensate growing apparatus 4 to the last curved pipe 10b in the aggregate growing apparatus 4 was 14 seconds.
  • Example 2 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the inner diameter was changed to 20 mm. As a result, the pressure loss per unit time was 4 ⁇ 10 ⁇ 1 mAq / s, and the residence time was 25 seconds.
  • Example 3 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 4 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 25 mm. As a result, the magnitude of the pressure loss per unit time was 7 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 14 seconds.
  • Example 4 A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 40 mm. As a result, the pressure loss per unit time was 5 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 18 seconds.
  • Example 5 A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 50 mm. As a result, the magnitude of the pressure loss per unit time was 4 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 28 seconds.
  • Example 6 A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 60 mm. As a result, the magnitude of the pressure loss per unit time was 2 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 40 seconds.
  • Example 7 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 5 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 5 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 17 seconds.
  • Example 8> A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 6 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 4 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 16 seconds.
  • Example 9 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 7 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 20 mm. As a result, the pressure loss per unit time was 4 ⁇ 10 ⁇ 1 mAq / s, and the residence time was 25 seconds.
  • Example 10 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 8 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 30 mm. As a result, the magnitude of the pressure loss per unit time was 1 ⁇ 10 ⁇ 1 mAq / s, and the residence time was 32 seconds.
  • Example 11 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 9 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the pressure loss per unit time was 5 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 18 seconds.
  • Example 12 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 10 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 5 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 16 seconds.
  • Example 13 A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 90 mm. As a result, the magnitude of the pressure loss per unit time was 1 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 260 seconds.
  • Example 14 A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 11 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 15 mm. As a result, the magnitude of the pressure loss per unit time was 9 ⁇ 10 ⁇ 1 mAq / s, and the residence time was 20 seconds.
  • Example 15 A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 20 mm. As a result, the magnitude of the pressure loss per unit time was 5 ⁇ 10 ⁇ 2 mAq / s, and the residence time was 13 seconds.
  • Example 1 A seawater desalination system was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 12 (consisting only of the straight pipe 10a) was used as the aggregate growth apparatus 4 and the inner diameter was changed to 30 mm. As a result, the magnitude of the pressure loss per unit time was 5 ⁇ 10 ⁇ 3 mAq / s, and the residence time was 60 seconds.
  • Example 3 A seawater desalination system was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 13 (consisting only of the bent tube 10b) was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 1 mAq / s, and the residence time was 25 seconds.
  • ⁇ Performance evaluation method> In each of the seawater desalination systems of Examples 1 to 15 and Comparative Examples 1 to 4, performance evaluation was performed. The performance evaluation was performed on two points: presence / absence of remaining unaggregated flocculant and foulant removal performance.
  • the presence / absence of unaggregated flocculant was determined for each of the inorganic flocculant and the organic flocculant. Specifically, first, the metal content and TOC (Total Organic Compound) in seawater before treatment by the seawater desalination system were measured. Furthermore, the metal content and TOC in the obtained fresh water were measured. And about each of metal content and TOC, the value measured by seawater and fresh water was compared, and it evaluated by how much metal content and TOC increased / decreased, respectively.
  • TOC Total Organic Compound
  • the foulant removal performance was evaluated by calculating the removal rate of acidic sugar, which is the main factor of foulants to the ROs membrane and the like. Specifically, first, the amount of acidic sugar in seawater before treatment by the seawater desalination system was measured. Further, the amount of acidic sugar in the obtained fresh water was measured. And the value measured by seawater and fresh water was compared, and how much acid sugar decreased was calculated. And when the calculated removal rate (reduction rate) is 90% or more, ⁇ , when the removal rate is 70% or more and less than 90%, ⁇ , when the removal rate is 50% or more and less than 70%, ⁇ , removal rate Of less than 50% was evaluated as x.
  • Example 1 As shown in Table 1, in Examples 1 to 15 (Table 1) provided with a flow pipe, the aggregation performance was good. In these Examples 1 to 15, Hf / T was in the range of 1 ⁇ 10 ⁇ 2 mAq / s to 90 ⁇ 10 ⁇ 2 mAq / s. On the other hand, as shown in Table 2, the flocculant remains only in the straight pipe 10a (Comparative Examples 1 and 2) or the curved pipe 10b (Comparative Examples 3 and 4). The aggregation performance was insufficient. From these facts, by using the agglomerate growing apparatus 4 provided with the flow pipe, the aggregating agent can be sufficiently agglomerated and removed, and the water quality can be improved. Thereby, it was found that the flocculant can be prevented from contacting the RO membrane.

Abstract

Provided is a seawater desalination system which can sufficiently remove the flocculants together with foreign matter in a simple manner. The system is equipped with: addition devices (not shown) for adding, to seawater, an inorganic flocculant and an organic flocculant which flocculate foreign matter contained in the seawater and render the foreign matter removable; static mixers (2, 3) with which the seawater to which the flocculants were added by the addition devices is stirred and mixed; a flocculate growth device (4) which comprises a meandering pipeline configured of straight pipes (10a) each having a given length and, connected thereto, bent pipes (10b) bent at a given angle and which causes, within the pipeline, flocculates to grow in the seawater that has been stirred and mixed with the flocculants by the static mixers (2,3); a sand filter device (5) in which the flocculates yielded in the flocculate growth device (4) are removed; and a reverse osmosis membrane (7) through which the seawater from which the flocculates have been removed in the sand filter device (5) is passed to obtain fresh water.

Description

海水淡水化システムSeawater desalination system
 本発明は、海水淡水化システムに関する。 The present invention relates to a seawater desalination system.
 海洋に囲まれ、淡水が不足する島等において、海水を淡水化する技術が利用されている。この技術においては、海水は、例えば逆浸透膜(RO膜)等を用いて脱塩化される。これにより、淡水が得られる。ここで、海水には、通常、塵やゴミ等の異物が含まれている。そこで、逆浸透膜でのファウリングによる閉塞防止の観点から、逆浸透膜に海水が供給される前に、海水中の異物が除去されることが多い。 The technology for desalinating seawater is used on islands that are surrounded by ocean and lack fresh water. In this technique, seawater is dechlorinated using, for example, a reverse osmosis membrane (RO membrane). Thereby, fresh water is obtained. Here, the seawater usually contains foreign matters such as dust and dirt. Therefore, from the viewpoint of preventing clogging due to fouling in the reverse osmosis membrane, foreign matters in the seawater are often removed before the seawater is supplied to the reverse osmosis membrane.
 海水から異物を除去する技術として、海水に凝集剤を添加して、凝集剤とともに異物を凝集させて除去する技術が知られている。このような技術に関連して、特許文献1には、原水中の懸濁物質等の不純物を除去する不純物の凝集方法が記載されている。具体的には、特許文献1には、二種の凝集剤A及び凝集剤Bを用いることが記載され、凝集剤Aは、原水の懸濁物質の濃度指標に応じて凝集条件を制御し、凝集剤Bは、前記懸濁物質の濃度指標とは異なる水質指標に応じて凝集条件を制御することが記載されている。 As a technique for removing foreign substances from seawater, a technique is known in which a flocculant is added to seawater and the foreign substances are aggregated and removed together with the flocculant. In relation to such a technique, Patent Document 1 describes an impurity aggregation method for removing impurities such as suspended substances in raw water. Specifically, Patent Document 1 describes the use of two types of flocculant A and flocculant B, and flocculant A controls the flocculant conditions according to the concentration index of the suspended solids in raw water, It is described that the coagulant B controls the coagulation conditions according to a water quality index different from the concentration index of the suspended substance.
特開2008-264723号公報JP 2008-264723 A
 凝集剤は、例えば無機凝集剤や有機凝集剤である。しかし、これらの凝集剤が逆浸透膜に接触すると、逆浸透膜の劣化が促進されることがある。そこで、添加した凝集剤は、異物とともに十分に凝集されて、逆浸透膜処理される前に十分に除去されることが好ましい。従って、凝集剤を添加した後には、凝集剤を凝集させるための十分な時間が確保されることが好ましい。 The flocculant is, for example, an inorganic flocculant or an organic flocculant. However, when these flocculants come into contact with the reverse osmosis membrane, the deterioration of the reverse osmosis membrane may be promoted. Therefore, it is preferable that the added flocculant is sufficiently agglomerated together with the foreign substances and sufficiently removed before the reverse osmosis membrane treatment. Therefore, after adding the flocculant, it is preferable to secure a sufficient time for causing the flocculant to aggregate.
 ここで、海水に凝集剤を添加する形態として、タンクに貯留された海水に凝集剤を添加し、タンク内で凝集を行うバッチ方式や、配管を通流する海水に凝集剤を添加し、配管内で凝集を行うインライン方式がある。これらのうち、設置面積の省スペース化や設備コスト削減の観点から、インライン法式が採用されることがある。 Here, as a form of adding the flocculant to the seawater, the flocculant is added to the seawater stored in the tank, and the flocculant is aggregated in the tank, or the flocculant is added to the seawater flowing through the pipe. There is an in-line method in which aggregation is performed. Among these, an inline method may be adopted from the viewpoint of space saving of installation area and reduction of equipment cost.
 しかし、インライン方式では、配管の長さや太さ、海水の流速等の各種条件によっては、凝集剤が添加された後の滞留時間を十分に確保することができないことがある。その結果、凝集剤が十分に凝集せず、過剰量の凝集剤が海水に残存することになる。そして、未凝集の凝集剤が逆浸透膜に接触し、逆浸透膜の劣化が促進されることがある。 However, in the in-line method, depending on various conditions such as the length and thickness of the pipe and the flow rate of seawater, it may not be possible to secure sufficient residence time after the flocculant is added. As a result, the flocculant does not aggregate sufficiently, and an excessive amount of the flocculant remains in the seawater. And an unaggregated flocculant may contact a reverse osmosis membrane and a deterioration of a reverse osmosis membrane may be accelerated | stimulated.
 また、特許文献1に記載の技術では、原水の懸濁物質の濃度指標に応じて、添加する凝集剤の濃度や撹拌速度等の凝集条件が制御されている。しかし、凝集条件の制御は煩雑である。従って、簡便な方法で、凝集剤を十分に除去可能なシステムが求められている。 Further, in the technique described in Patent Document 1, the aggregation conditions such as the concentration of the flocculant to be added and the stirring speed are controlled in accordance with the concentration index of the suspended matter in the raw water. However, the control of the aggregation conditions is complicated. Accordingly, there is a need for a system that can sufficiently remove the flocculant by a simple method.
 本発明はこれらの課題に鑑みてなされたものであり、本発明が解決しようとする課題は、異物とともに凝集剤を簡便な方法で十分に除去可能な海水淡水化システムを提供することである。 The present invention has been made in view of these problems, and the problem to be solved by the present invention is to provide a seawater desalination system capable of sufficiently removing the coagulant together with foreign substances by a simple method.
 本発明者らは前記課題を解決するために鋭意検討を行った。その結果、凝集剤が添加された海水が通流する配管の形状を、直管と曲管とを組み合わせた「う流配管」とすることで、前記課題を解決できることが見出された。 The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above-mentioned problem can be solved by setting the shape of the pipe through which the seawater to which the flocculant is added flows to a “current pipe” that combines a straight pipe and a curved pipe.
 本発明によれば、異物とともに凝集剤を簡便な方法で十分に除去可能な海水淡水化システムを提供することができる。 According to the present invention, it is possible to provide a seawater desalination system capable of sufficiently removing the coagulant together with foreign substances by a simple method.
本実施形態の海水淡水化システムの系統図である。It is a systematic diagram of the seawater desalination system of this embodiment. 本実施形態の海水淡水化システムに備えられる凝集物成長装置の配管形状を示す図である。It is a figure which shows the piping shape of the aggregate growth apparatus with which the seawater desalination system of this embodiment is equipped. 本実施形態の海水淡水化システムに備えられる凝集物成長装置の配管を構成する単位配管の形状であり、(a)は直管の形状、(b)は曲管の形状である。It is the shape of the unit piping which comprises the piping of the aggregate growth apparatus with which the seawater desalination system of this embodiment is equipped, (a) is the shape of a straight pipe, (b) is the shape of a curved pipe. 凝集物成長装置を構成する配管の形状についての第1変形例である。It is the 1st modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第2変形例である。It is the 2nd modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第3変形例である。It is a 3rd modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第4変形例である。It is a 4th modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第5変形例である。It is a 5th modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第6変形例である。It is a 6th modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第7変形例である。It is a 7th modification about the shape of piping which constitutes an aggregate growth device. 凝集物成長装置を構成する配管の形状についての第8変形例である。It is an 8th modification about the shape of piping which constitutes an aggregate growth device. 比較例1で用いた、凝集物成長装置を構成する配管の形状である。It is the shape of piping which comprises the aggregate growth apparatus used by the comparative example 1. FIG. 比較例2で用いた、凝集物成長装置を構成する配管の形状である。It is the shape of piping which comprises the aggregate growth apparatus used in the comparative example 2.
 以下、図面を参照しながら、本発明を実施するための形態(本実施形態)を説明する。 Hereinafter, embodiments for carrying out the present invention (this embodiment) will be described with reference to the drawings.
 図1は、本実施形態の海水淡水化システム100の系統図である。海水淡水化システム100では、海水中の異物が、海水に添加された無機凝集剤及び有機凝集剤によって凝集され、除去される。そして、異物が除去された後の海水が、逆浸透膜(RO膜)によって脱塩化され、淡水が得られる。 FIG. 1 is a system diagram of a seawater desalination system 100 of the present embodiment. In the seawater desalination system 100, foreign substances in the seawater are aggregated and removed by the inorganic flocculant and the organic flocculant added to the seawater. And the seawater after a foreign material was removed is dechlorinated by a reverse osmosis membrane (RO membrane), and fresh water is obtained.
 海水淡水化システム100は、ポンプ1と、スタティックミキサ2と、スタティックミキサ3と、凝集物成長装置4と、砂濾過装置5と、ポンプ6と、RO膜7とを備えている。また、海水淡水化システム100は、いずれも図示しないが、配管内の海水に無機凝集剤を供給するための無機凝集剤タンク及び供給ポンプ(無機凝集剤の添加装置)を備えている。さらに、海水淡水化システム100は、いずれも図示しないが、配管内の海水に有機凝集剤を供給するための有機凝集剤タンク及び供給ポンプ(有機凝集剤の添加装置)を備えている。 The seawater desalination system 100 includes a pump 1, a static mixer 2, a static mixer 3, an aggregate growth device 4, a sand filtration device 5, a pump 6, and an RO membrane 7. The seawater desalination system 100 includes an inorganic flocculant tank and a supply pump (inorganic flocculant addition device) for supplying the inorganic flocculant to the seawater in the pipe, although none of them is shown. Further, the seawater desalination system 100 is provided with an organic flocculant tank and a supply pump (an organic flocculant adding device) for supplying the organic flocculant to the seawater in the pipe, although none is shown.
 ポンプ1は、海水を配管内に通流させるためのものである。ポンプ1は、インバータ制御される。海水淡水化システム100では、当該インバータの周波数は一定に維持されており、これにより、配管内を一定流量で、海水が通流している。 The pump 1 is for passing seawater through the pipe. The pump 1 is inverter controlled. In the seawater desalination system 100, the frequency of the inverter is kept constant, so that seawater flows through the pipe at a constant flow rate.
 スタティックミキサ2は、駆動部を備えないラインミキサである。スタティックミキサ2の上流において、海水に無機凝集剤が添加される。そして、スタティックミキサ2では、海水と無機凝集剤とが十分に撹拌混合される。なお、用いられる無機凝集剤は、例えば塩化鉄(III)である。 The static mixer 2 is a line mixer that does not include a drive unit. An inorganic flocculant is added to the seawater upstream of the static mixer 2. And in the static mixer 2, seawater and an inorganic flocculant are fully stirred and mixed. The inorganic flocculant used is, for example, iron (III) chloride.
 スタティックミキサ3は、スタティックミキサ2と同様に、駆動部を備えないラインミキサである。前記のスタティックミキサ2において撹拌混合された海水(前記の無機凝集剤を含む)には、スタティックミキサ3の上流において、有機凝集剤が添加される。そして、スタティックミキサ3において、前記の無機凝集剤と、海水と、有機凝集剤とが十分に撹拌混合される。これにより、海水に含まれる異物等の凝集物が生じ始める。なお、用いられる有機系凝集剤は、例えばポリカルボン酸系高分子である。 The static mixer 3 is a line mixer that does not include a drive unit, like the static mixer 2. An organic flocculant is added upstream of the static mixer 3 to the seawater (including the inorganic flocculant) stirred and mixed in the static mixer 2. And in the static mixer 3, the said inorganic flocculent, seawater, and an organic flocculant are fully stirred and mixed. Thereby, aggregates, such as a foreign material contained in seawater, begin to arise. The organic flocculant used is, for example, a polycarboxylic acid polymer.
 凝集物成長装置4は、スタティックミキサ3において生成し始めた凝集物の成長を促進させるものである。即ち、海水淡水化システム100では、凝集物はインラインで成長することになる。スタティックミキサ3により処理された海水(凝集物を含む)は、図1中の流入口Aから凝集物成長装置4に流入する。そして、成長した凝集物を含む海水は、図1中の流出口Bから排出される。 The agglomerate growth apparatus 4 promotes the growth of agglomerates that have started to be generated in the static mixer 3. That is, in the seawater desalination system 100, aggregates grow in-line. Seawater (including agglomerates) treated by the static mixer 3 flows into the agglomerate growth apparatus 4 from the inlet A in FIG. And the seawater containing the aggregate which grew up is discharged | emitted from the outflow port B in FIG.
 凝集物成長装置4は、所定の長さを有し、曲がり部が無い直管と、所定角度で屈曲している曲管とが接続されて構成される。そして、これらの配管内を、凝集剤を含む海水が通流することで、異物を包含した凝集物が生成することになる。なお、生成した凝集物は、後段の砂濾過装置5(後記する)において除去される。凝集物成長装置4のより具体的な構成等については、図2及び図3等を参照しながら後記する。 The agglomerate growth apparatus 4 is configured by connecting a straight pipe having a predetermined length and having no bent portion and a bent pipe bent at a predetermined angle. And the seawater containing a flocculant flows through these piping, The aggregate containing a foreign material will produce | generate. In addition, the produced | generated aggregate is removed in the sand filtration apparatus 5 (after-mentioned) of a back | latter stage. A more specific configuration and the like of the aggregate growth apparatus 4 will be described later with reference to FIGS.
 砂濾過装置5は、凝集物成長装置4において生成した凝集物を、海水中から除去するものである。固形分である凝集物を含む海水が砂濾過されることで、凝集物は砂上に残るとともに、清澄な海水が得られる。 The sand filtration device 5 removes the agglomerates generated in the agglomerate growth device 4 from the seawater. By filtering the seawater containing agglomerates which are solids, the agglomerates remain on the sand and clear seawater is obtained.
 ポンプ6は、砂濾過装置5によって得られた清澄な海水を、後段のRO膜7を透過させるためのポンプである。また、RO膜7は、海水を脱塩化して淡水を得るためのものである。得られた淡水は、上水道や中水道等の用途に用いられる。また、RO膜7を透過しなかった塩等は、濃縮水として海洋等に排出される。 The pump 6 is a pump for permeating the clear seawater obtained by the sand filtration device 5 through the RO membrane 7 in the subsequent stage. Moreover, the RO membrane 7 is for dechlorinating seawater to obtain fresh water. The obtained fresh water is used for purposes such as waterworks and waterworks. Moreover, the salt etc. which did not permeate | transmit the RO membrane 7 are discharged | emitted by the ocean etc. as concentrated water.
 図2は、本実施形態の海水淡水化システム100に備えられる凝集物成長装置4の配管形状を示す図である。図2において、「A」及び「B」は、図1における「A」及び「B」に相当する。図2に示すように、凝集物成長機構4は、直管10a(単位配管)と、曲管10b(単位配管)と、直管10aとは配置の方向が異なる以外は直管10aと同様の直管10c(10a)とが接続されて構成される。即ち、本実施形態では、水平方向に配置される直管のことを「直管10a」と呼称するものとする。一方で、鉛直方向に配置される直管は、形状は直管10aと同様であるもの、説明の便宜上、この直管のことを「直管10c」と呼称するものとする。 FIG. 2 is a diagram showing a pipe shape of the aggregate growth apparatus 4 provided in the seawater desalination system 100 of the present embodiment. In FIG. 2, “A” and “B” correspond to “A” and “B” in FIG. As shown in FIG. 2, the aggregate growth mechanism 4 is the same as the straight pipe 10a except that the straight pipe 10a (unit pipe), the curved pipe 10b (unit pipe), and the straight pipe 10a have different arrangement directions. A straight pipe 10c (10a) is connected. That is, in this embodiment, the straight pipe arranged in the horizontal direction is referred to as “straight pipe 10a”. On the other hand, the straight pipe arranged in the vertical direction has the same shape as the straight pipe 10a. For convenience of explanation, this straight pipe is referred to as “straight pipe 10c”.
 まず、直管10a及び曲管10bについて説明する。
 図3は、本実施形態の海水淡水化システム100に備えられる凝集物成長装置4の配管を構成する単位配管の形状であり、(a)は直管10aの形状、(b)は曲管10bの形状である。図3に示すように、直管10aは、所定の長さを有する円筒形状の配管である。また、曲管10bは、所定角度(本実施形態では90°)に屈曲している配管(エルボ)である。曲管10bが用いられることで、海水の流れ方向が変化するようになっている。
First, the straight pipe 10a and the curved pipe 10b will be described.
FIG. 3 shows the shape of a unit pipe constituting the pipe of the agglomerate growing apparatus 4 provided in the seawater desalination system 100 of the present embodiment, where (a) shows the shape of the straight pipe 10a and (b) shows the bent pipe 10b. It is the shape. As shown in FIG. 3, the straight pipe 10a is a cylindrical pipe having a predetermined length. The curved pipe 10b is a pipe (elbow) bent at a predetermined angle (90 ° in the present embodiment). By using the curved pipe 10b, the flow direction of the seawater is changed.
 図2に戻って、凝集物成長装置4の説明を行う。
 凝集物成長装置4は、本実施形態では、水平方向に配置される8本の直管10aと、鉛直方向に配置される1本の直管10cと、これらを接続する14本の曲管10bと、が、接続されている。具体的には、凝集物成長装置4では、海水の水平方向の流れが、所定距離ごとに変化するように、直管10a(直管10cを含む)及び曲管10bが接続されている。このような、所定距離ごとに流れ方向が変化するように接続された配管は、「う流配管」と呼称されることがある。
Returning to FIG. 2, the aggregate growth apparatus 4 will be described.
In this embodiment, the aggregate growth apparatus 4 includes eight straight pipes 10a arranged in the horizontal direction, one straight pipe 10c arranged in the vertical direction, and fourteen bent pipes 10b connecting them. Are connected. Specifically, in the agglomerate growing apparatus 4, the straight pipe 10a (including the straight pipe 10c) and the curved pipe 10b are connected so that the horizontal flow of seawater changes every predetermined distance. Such a pipe connected so that the flow direction changes every predetermined distance may be referred to as a “current pipe”.
 凝集物成長装置4における海水の流れについて説明する。図2において流入口Aから流入した海水は、まず、所定距離(1本目の直管10aの水平方向長さ)だけ、水平に紙面右方向に流れることになる。そして、流れてきた海水は、2本の曲管10bにより流れ方向が変わり、次に、水平に紙面左方向に流れることになる。これらを繰り返して、鉛直方向で最も下部の直管10aを流れた海水は、鉛直方向に配置された直管10cにより、鉛直方向(上向き)に流れる。そして、流れてきた海水は、最後に、水平方向に配置された直管10aを通って、凝集物成長機構4の流出口Bから排出される。 The flow of seawater in the aggregate growth apparatus 4 will be described. In FIG. 2, seawater that flows in from the inlet A first flows horizontally in the right direction on the paper for a predetermined distance (the horizontal length of the first straight pipe 10a). And the flowing seawater changes a flow direction by the two curved pipes 10b, and then flows horizontally in the left direction on the paper. By repeating these operations, the seawater that has flowed through the straight pipe 10a that is the lowest in the vertical direction flows in the vertical direction (upward) by the straight pipe 10c that is arranged in the vertical direction. And the seawater which flowed is discharged | emitted from the outflow port B of the aggregate growth mechanism 4 finally through the straight pipe | tube 10a arrange | positioned in the horizontal direction.
 このように、凝集物成長装置4では、水平方向の異なる向きへの流れ(紙面右方向及び紙面左方向)が所定距離ごとに繰り返されている。即ち、海水の流れが水平方向に往復するように、直管10aが接続されている。流れ方向を変化させるため、所定距離ごとに、曲管10bが接続されている。 As described above, in the agglomerate growing apparatus 4, flows in different horizontal directions (the right direction on the paper surface and the left direction on the paper surface) are repeated every predetermined distance. That is, the straight pipe 10a is connected so that the flow of seawater reciprocates in the horizontal direction. In order to change the flow direction, the curved pipe 10b is connected at every predetermined distance.
 なお、図2では、流れが左右方向(水平方向)に往復するようにう流配管が構成されているから、この配管は左右う流配管である。即ち、図2では、流入口Aからの海水は、はじめに、直管10a内を紙面右方向(往方向)に通流する。次いで、2本の曲管10bによって通流方向が変化し、2本目の直管10a内を紙面左方向(復方向)に海水が通流する。このように、図2では、海水が左右方向に往復するようになっている。 In FIG. 2, the flow pipe is configured so that the flow reciprocates in the left-right direction (horizontal direction), so this pipe is a left-right flow pipe. That is, in FIG. 2, the seawater from the inlet A first flows through the straight pipe 10a in the right direction (forward direction) of the drawing. Next, the flow direction is changed by the two curved pipes 10b, and seawater flows through the second straight pipe 10a in the left direction (return direction) in the drawing. Thus, in FIG. 2, seawater reciprocates in the left-right direction.
 ここで、直管10aの内壁近傍では乱流が生じやすく、少なからず圧力損失が発生する。また、曲管10bの内部では、流れ方向が変わって渦が発生するため、大きな圧力損失が発生する。そのため、凝集物成長装置4では、直管10aのみで凝集物成長装置4を構成した場合や、曲管10bのみで凝集物成長装置4を構成した場合と比べて、大きな圧力損失が生じることになる。 Here, near the inner wall of the straight pipe 10a, turbulent flow is likely to occur, and pressure loss occurs not a little. In addition, a large pressure loss occurs in the bent pipe 10b because the flow direction changes and vortices are generated. Therefore, in the aggregate growth apparatus 4, compared with the case where the aggregate growth apparatus 4 is comprised only by the straight pipe 10a, or the case where the aggregate growth apparatus 4 is comprised only by the curved pipe 10b, a big pressure loss will arise. Become.
 ポンプ1(図1参照)等の駆動エネルギの観点からは、配管内の圧力損失はできるだけ小さいことが好ましい。しかし、本実施形態では、凝集物成長装置4を構成する配管内の圧力損失が敢えて大きくなるように、凝集物成長装置4が設計されている。配管内で失われた圧力エネルギは、凝集剤による凝集物の成長に用いられる。そのため、圧力損失を大きくすることで、海水からの凝集物の生成が促進される。これにより、インラインでも大きな凝集物が生成し易くなり、凝集剤を十分に除去し易くなる。また、凝集剤を十分に除去することで、未凝集の凝集剤がRO膜7に到達することを抑制することができ、RO膜7の劣化促進を抑制することができる。なお、凝集のために用いられるエネルギは大きければ大きいほどよいというわけではない。この点は後記する。 From the viewpoint of driving energy of the pump 1 (see FIG. 1), it is preferable that the pressure loss in the piping is as small as possible. However, in this embodiment, the agglomerate growing apparatus 4 is designed so that the pressure loss in the piping constituting the agglomerate growing apparatus 4 is increased. The pressure energy lost in the pipe is used for the growth of agglomerates by the aggregating agent. Therefore, the generation of aggregates from seawater is promoted by increasing the pressure loss. As a result, large agglomerates are easily generated even in-line, and the aggregating agent can be sufficiently removed easily. Further, by sufficiently removing the flocculant, it is possible to suppress the unaggregated flocculant from reaching the RO membrane 7 and to suppress the deterioration of the RO membrane 7. Note that the larger the energy used for agglomeration, the better. This point will be described later.
 凝集物成長装置4における圧力損失の大きさは、特に制限されるものではない。ただし、凝集物成長装置4内の最初の曲管10bから、凝集物成長装置4内の最後の曲管10bまでの、単位時間(単位滞留時間)あたりの圧力損失の大きさ(Hf/T)は、1×10-2mAq/s以上であることが好ましく、4×10-1mAq/s以上であることが好ましく、その上限は、9×10-1mAq/s以下が好ましく、7×10-1mAq/s以下がより好ましい。単位時間あたりの圧力損失の大きさがこの範囲にあることで、凝集物の除去効率をより高めることができる。また、RO膜7へのファウリングを十分に抑制することができる。
 なお、単位時間あたりの圧力損失の大きさ(Hf/T)[mAq/s]は、以下の式(1)により算出することができる。
The magnitude of the pressure loss in the aggregate growth apparatus 4 is not particularly limited. However, the magnitude (Hf / T) of pressure loss per unit time (unit residence time) from the first curved pipe 10b in the aggregate growth apparatus 4 to the last curved pipe 10b in the aggregate growth apparatus 4 Is preferably 1 × 10 −2 mAq / s or more, preferably 4 × 10 −1 mAq / s or more, and the upper limit is preferably 9 × 10 −1 mAq / s or less, 7 × 10 −1 mAq / s or less is more preferable. When the magnitude of the pressure loss per unit time is in this range, the aggregate removal efficiency can be further increased. Further, fouling to the RO membrane 7 can be sufficiently suppressed.
In addition, the magnitude | size (Hf / T) [mAq / s] of the pressure loss per unit time is computable with the following formula | equation (1).
Hf/T=P/(ρ×g) ・・・式(1)
 ただし、Pは、単位体積あたりの海水による、単位時間あたりの仕事量(J)、ρは、海水の密度(kg/m)、gは、重力加速度(m/s)を表す。また、1mAq=0.1kgf/cmである。
Hf / T = P / (ρ × g) (1)
However, P represents the work amount per unit time (J) by seawater per unit volume, ρ represents the density of seawater (kg / m 3 ), and g represents the acceleration of gravity (m / s 2 ). Further, 1 mAq = 0.1 kgf / cm 2 .
 また、凝集物成長装置4内の最初の曲管10bから、凝集物成長装置4内の最後の曲管10bまでの配管における海水の滞留時間も、特に制限されるものではない。ただし、これらの間の海水の滞留時間としては、13秒以上が好ましく、14秒以上がより好ましく、また、その上限は、260秒以下が好ましく、25秒以下がより好ましい。滞留時間がこの範囲にあることで、凝集を特に十分に促進でき、凝集物の除去効率をより高めることができる。
 なお、ここでいう「滞留時間」とは、配管を流れる海水のうち、任意の微小な一部分に着目したときに、その一部分が、凝集物成長装置4内の最初の曲管10bから、凝集物成長装置4内の最後の曲管10bまで流れるのに要する時間である。
In addition, the residence time of the seawater in the pipe from the first curved pipe 10b in the aggregate growing apparatus 4 to the last curved pipe 10b in the aggregate growing apparatus 4 is not particularly limited. However, the residence time of seawater between these is preferably 13 seconds or more, more preferably 14 seconds or more, and the upper limit thereof is preferably 260 seconds or less, more preferably 25 seconds or less. When the residence time is within this range, aggregation can be promoted particularly sufficiently, and the removal efficiency of the aggregate can be further increased.
The “residence time” as used herein refers to a part of the seawater flowing through the pipe, when a part of the seawater flows through the first bent pipe 10b in the agglomerate growing apparatus 4 when the part is focused on. This is the time required to flow to the last curved pipe 10b in the growth apparatus 4.
 さらに、凝集物成長装置4では、図2に示すように、海水の流出口Bの鉛直方向の位置は、流入口Aの位置よりも高くなっている。このようにすることで、流出口Bの位置エネルギが、流入口Aの位置エネルギよりも大きくなることになる。従って、流入口Aから流出口Bまでの過程で位置エネルギが増大するため、流出口Bに至るまでの凝集に用いられるエネルギ量が小さくなる。そのため、凝集に用いられるエネルギが過剰量のために生じ得る凝集物の分解を十分に抑制し、より大きな凝集物を形成させることができる。 Further, in the agglomerate growing apparatus 4, the vertical position of the seawater outlet B is higher than the position of the inlet A as shown in FIG. By doing in this way, the potential energy of the outlet B becomes larger than the potential energy of the inlet A. Accordingly, since the potential energy increases in the process from the inlet A to the outlet B, the amount of energy used for aggregation until the outlet B is reduced. Therefore, it is possible to sufficiently suppress the decomposition of the aggregate that may occur due to an excessive amount of energy used for aggregation, and to form a larger aggregate.
 特に、本実施形態の凝集物成長装置4では、流出口Bの位置を高くするために、流出口Bの近傍(本実施形態では直前)において、鉛直方向の流れを生じさせる配管10cが配置されている。そのため、凝集物成長の最終段階で鉛直方向の流れがあり、海水面が配管内で上昇するため滞留時間を確保することができ、凝集物の成長がよりいっそう促進される。 In particular, in the aggregate growth apparatus 4 of the present embodiment, in order to increase the position of the outlet B, a pipe 10c that generates a vertical flow is disposed in the vicinity of the outlet B (immediately in the present embodiment). ing. Therefore, there is a vertical flow at the final stage of the aggregate growth, and the sea level rises in the pipe, so that the residence time can be secured, and the aggregate growth is further promoted.
 さらに、スタティックミキサ2,3及び凝集物成長装置4では、前記のように、インラインでの凝集処理が行われている。そのため、凝集タンクを設置しないことによる設備の簡略化や設置面積の削減、動力低減が可能になる。また、駆動部が無いため、設備の簡略化や、運転コストの削減、信頼性を高めることができる。 Furthermore, in the static mixers 2 and 3 and the agglomerate growing apparatus 4, the in-line agglomeration process is performed as described above. Therefore, it is possible to simplify equipment, reduce the installation area, and reduce power by not installing the agglomeration tank. Moreover, since there is no drive part, it is possible to simplify equipment, reduce operating costs, and improve reliability.
 以上、図1~図3を参照しながら、海水淡水化システム100を説明したが、本実施形態の海水淡水化システムは、前記の例になんら限定されるものではない。特に、凝集物成長装置4の配管構成は、図2の例に限定されるものではない。例えば、凝集物成長装置4の配管構成は、図4~図11に示す各構成とすることができる。 The seawater desalination system 100 has been described above with reference to FIGS. 1 to 3, but the seawater desalination system of the present embodiment is not limited to the above example. In particular, the piping configuration of the agglomerate growing apparatus 4 is not limited to the example of FIG. For example, the piping configuration of the agglomerate growing apparatus 4 can be the configurations shown in FIGS.
 図4は、凝集物成長装置4を構成する配管の形状についての第1変形例である。図2に示した凝集剤成長装置4では、海水は3往復するように配管が構成されていたが、図4に示す凝集剤成長装置4では、海水が2往復するように配管が構成されている。図2と同様に、圧力損失をできるだけ大きくする観点からは、より多くの往復を行うことが好ましいが、図4に示すような2往復の配管であっても、十分に良好な効果が得られる。 FIG. 4 is a first modified example of the shape of the pipe constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the piping is configured to reciprocate the seawater three times, but in the flocculant growth apparatus 4 illustrated in FIG. 4, the piping is configured to reciprocate the seawater two times. Yes. As in FIG. 2, from the viewpoint of increasing the pressure loss as much as possible, it is preferable to perform more reciprocations, but a sufficiently good effect can be obtained even with two reciprocating pipes as shown in FIG. .
 図5は、凝集物成長装置4を構成する配管の形状についての第2変形例である。図2に示した凝集剤成長装置4では、流出口Bの鉛直方向の高さが、流入口Aの鉛直方向の高さよりも高くなっていたが、図5に示す凝集物成長装置4では、これらは同じ高さになっている。前記のように、鉛直方向に配置される配管10cの長さは、できるだけ位置エネルギを大きくする観点からは長いことが好ましいものの、流入口Aと流出口Bとが同じ高さになるような長さの直管10cであっても、十分に良好な効果が得られる。 FIG. 5 is a second modified example of the shape of the pipe constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the vertical height of the outlet B is higher than the vertical height of the inlet A, but in the aggregate growth apparatus 4 shown in FIG. 5, These are the same height. As described above, the length of the pipe 10c arranged in the vertical direction is preferably long from the viewpoint of increasing the potential energy as much as possible, but is long enough for the inlet A and the outlet B to be the same height. Even with the straight pipe 10c, a sufficiently good effect can be obtained.
 図6は、凝集物成長装置4を構成する配管の形状についての第3変形例である。図2に示した凝集剤成長装置4では、鉛直方向に配置される直管10cにより、流出口Bの鉛直方向の高さが流入口Aの鉛直方向の高さよりも高くしていたが、図6に示す凝集物成長装置4では、同一の鉛直面内に配置される複数の直管10aが曲管10bによって接続されている。このような接続の形態としても、十分に良好な効果が得られる。 FIG. 6 is a third modified example of the shape of the pipe constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the vertical height of the outlet B is higher than the vertical height of the inlet A by the straight pipe 10c arranged in the vertical direction. In the aggregate growth apparatus 4 shown in FIG. 6, a plurality of straight pipes 10a arranged in the same vertical plane are connected by a curved pipe 10b. Even in such a connection mode, a sufficiently good effect can be obtained.
 図7は、凝集物成長装置4を構成する配管の形状についての第4変形例である。図2に示した凝集剤成長装置4では、直管10aが水平方向に配置され、水平方向の往復流れとしていたが、図7に示す凝集剤成長装置4では、複数の直管10cが鉛直方向に配置されている。即ち、海水が上下方向に往復するように、上下う流配管が構成されている。このような接続の形態としても、十分に良好な効果が得られる。 FIG. 7 is a fourth modified example of the shape of the pipe constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the straight pipe 10 a is arranged in the horizontal direction and is a reciprocating flow in the horizontal direction. However, in the flocculant growth apparatus 4 shown in FIG. Is arranged. That is, the up and down flow pipe is configured so that the seawater reciprocates in the up and down direction. Even in such a connection mode, a sufficiently good effect can be obtained.
 図8は、凝集物成長装置4を構成する配管の形状についての第5変形例である。図2に示した凝集剤成長装置4では、鉛直方向の同一面内(X軸及びY軸を含む面)で直管10a及び曲管10bが接続されていたが、図8に示す凝集剤成長装置4では、X方向、Y方向及びZ方向の3方向に立体的に、直管10a及び曲管10bが接続されている。即ち、海水が渦を巻くように上下左右方向を往復するように、渦巻様う流配管が構成されている。このような接続の形態としても、十分に良好な効果が得られる。 FIG. 8 is a fifth modified example of the shape of the pipe constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the straight pipe 10a and the curved pipe 10b are connected in the same vertical plane (including the X axis and the Y axis), but the flocculant growth shown in FIG. In the apparatus 4, the straight pipe 10 a and the curved pipe 10 b are connected in three dimensions in the X direction, the Y direction, and the Z direction. That is, the swirl-like flow pipe is configured so as to reciprocate in the vertical and horizontal directions so that the seawater swirls. Even in such a connection mode, a sufficiently good effect can be obtained.
 図9は、凝集物成長装置4を構成する配管の形状についての第6変形例である。図2に示した凝集剤成長装置4では、鉛直方向の同一面内で海水の往復流れが生じるように直管10a及び曲管10bが接続されていたが、図9に示す凝集剤成長装置4では、水平方向の同一面内(X軸及びZ軸を含む面内)で海水の往復流れが生じるように、直管10a及び曲管10bが接続されている。即ち、海水が地面(図示しない)に対して並行になるように、地面並行う流配管が構成されている。このような接続の形態としても、十分に良好な効果が得られる。 FIG. 9 is a sixth modified example of the shape of the pipes constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the straight pipe 10a and the curved pipe 10b are connected so that the reciprocating flow of seawater occurs in the same vertical plane, but the flocculant growth apparatus 4 shown in FIG. Then, the straight pipe 10a and the curved pipe 10b are connected so that the reciprocating flow of seawater occurs in the same horizontal plane (in the plane including the X axis and the Z axis). That is, a flow pipe that runs on the ground is configured so that seawater is parallel to the ground (not shown). Even in such a connection mode, a sufficiently good effect can be obtained.
 図10は、凝集物成長装置4を構成する配管の形状についての第7変形例である。図2に示した凝集剤成長装置4では、鉛直方向の同一面内での海水の往復流れは、全て同じ長さの配管10aが接続されることで行われた。しかし、図10に示す凝集剤成長装置4では、鉛直方向の同一面内に配置される直管10aの長さが異なっている。具体的には、鉛直方向に下側に向かうにつれて、直管10aの長さが長くなっている。即ち、この接続形態では、直管10aの長さが不均一になっており、不均一う流配管が構成されている。このような接続の形態としても、十分に良好な効果が得られる。特に、最も下側に配置された直管10aの長さが最も長いため、より十分な圧力損失を発生させて、微小な凝集物を除去可能な大きさの凝集物にまで成長させることができる。 FIG. 10 is a seventh modified example of the shape of the pipes constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the reciprocating flow of seawater in the same plane in the vertical direction is performed by connecting the pipes 10a having the same length. However, in the flocculant growth apparatus 4 shown in FIG. 10, the lengths of the straight pipes 10a arranged in the same plane in the vertical direction are different. Specifically, the length of the straight pipe 10a becomes longer as it goes downward in the vertical direction. That is, in this connection form, the length of the straight pipe 10a is non-uniform, and a non-uniform flow pipe is configured. Even in such a connection mode, a sufficiently good effect can be obtained. In particular, since the length of the straight pipe 10a arranged on the lowermost side is the longest, it is possible to generate a sufficient pressure loss and grow to a size of agglomerates that can remove minute agglomerates. .
 図11は、凝集物成長装置4を構成する配管の形状についての第8変形例である。図2に示した凝集剤成長装置4では、海水は3往復するように配管が構成されていたが、図11に示す凝集剤成長装置4では、海水が4往復するように配管が構成されている。このような接続の形態としても、十分に良好な効果が得られる。 FIG. 11 shows an eighth modification of the shape of the pipes constituting the aggregate growth apparatus 4. In the flocculant growth apparatus 4 shown in FIG. 2, the piping is configured so that the seawater reciprocates three times. However, in the flocculant growth apparatus 4 illustrated in FIG. 11, the piping is configured so that the seawater reciprocates four times. Yes. Even in such a connection mode, a sufficiently good effect can be obtained.
 以上、図4~図11を参照しながら凝集物成長装置4の変形例を説明したが、これ以外にも、様々な変形が可能である。 The modification examples of the aggregate growth apparatus 4 have been described above with reference to FIGS. 4 to 11. However, various modifications are possible in addition to this.
 例えば、凝集物成長装置4を構成する配管は、前記の例では同一の内径としたが、異なる内径の配管を組み合わせて凝集物成長装置4を構成してもよい。即ち、凝集物成長装置4を構成する配管は、全ての部分で同じ内径である必要はなく、適宜異なる内径の部分を含んでいてもよい。 For example, the pipes constituting the agglomerate growing apparatus 4 have the same inner diameter in the above example, but the agglomerate growing apparatus 4 may be configured by combining pipes having different inner diameters. That is, the pipes constituting the agglomerate growing apparatus 4 do not have to have the same inner diameter in all portions, and may include portions having different inner diameters as appropriate.
 さらに、例えば、本実施形態では、凝集剤は2種類使用されているが、1種類でもよく、3種類以上であってもよい。また、撹拌混合装置としてのスタティックミキサ2,3を2つ設けているが、凝集剤の種類によって、適宜増減してもよい。 Furthermore, for example, in this embodiment, two types of flocculants are used, but one type may be used, or three or more types may be used. In addition, although two static mixers 2 and 3 are provided as stirring and mixing devices, the number may be appropriately increased or decreased depending on the type of the flocculant.
 また、撹拌混合装置としては、静的な撹拌混合装置(スタティックミキサ等)が好ましいが、これに限られるものではない。また、静的な撹拌混合装置としても、スタティックミキサに限られず、どのようなものであってもよい。 Further, as the stirring and mixing device, a static stirring and mixing device (such as a static mixer) is preferable, but it is not limited thereto. Further, the static stirring and mixing device is not limited to a static mixer, and may be any device.
 さらに、例えば、凝集物成長装置4と砂濾過装置5との間に、緩やかな撹拌を行う撹拌装置を設けてもよい。これにより、凝集物成長機構4において成長した凝集物のさらなる成長を図ることができる。 Furthermore, for example, an agitation device that performs gentle agitation may be provided between the aggregate growth device 4 and the sand filtration device 5. Thereby, the further growth of the aggregate which grew in the aggregate growth mechanism 4 can be aimed at.
 また、凝集物濾過装置として砂濾過装置5を設けたが、例えば、安価な精密濾過膜や限外濾過膜等の膜濾過装置等であってもよい。 Moreover, although the sand filtration device 5 is provided as the aggregate filtration device, for example, a membrane filtration device such as an inexpensive microfiltration membrane or an ultrafiltration membrane may be used.
 以下、具体的な実施例を挙げて、本実施形態を説明する。 Hereinafter, the present embodiment will be described with specific examples.
<実施例1>
 図1に示す海水淡水化システム100と、図2に示す凝集物成長装置4とを用いて、海水中の異物を凝集物として除去させることを行った。無機凝集剤として、塩化鉄(III)の4質量%水溶液を用いた。有機凝集剤として、0.2質量%のポリカルボン酸系高分子水溶液を用いた。海水淡水化システム100内を通流する海水の線速度は、400m/1日とした。また、海水淡水化システム100を構成する配管(凝集物成長装置4を構成する配管を含む)の内径は、15mmとした。
<Example 1>
The seawater desalination system 100 shown in FIG. 1 and the aggregate growth apparatus 4 shown in FIG. 2 were used to remove foreign matter in seawater as aggregates. As the inorganic flocculant, a 4% by mass aqueous solution of iron (III) chloride was used. As an organic flocculant, a 0.2% by mass polycarboxylic acid polymer aqueous solution was used. The linear velocity of seawater flowing through the seawater desalination system 100 was 400 m / 1 day. Moreover, the internal diameter of piping (including piping which comprises the aggregate growth apparatus 4) which comprises the seawater desalination system 100 was 15 mm.
 これらの条件で海水淡水化システム100の運転を行った。その結果、図2において、凝集物成長装置4内の最初の曲管10bから、凝集物成長装置4内の最後の曲管10bまでの、単位時間あたりの圧力損失の大きさ(Hf/T)は、前記式(1)に基づいて算出したところ、7×10-1mAq/sであった。さらに、集物成長装置4内の最初の曲管10bから、凝集物成長装置4内の最後の曲管10bまでの滞留時間は14秒であった。 The seawater desalination system 100 was operated under these conditions. As a result, in FIG. 2, the magnitude of the pressure loss per unit time (Hf / T) from the first curved pipe 10b in the aggregate growth apparatus 4 to the last curved pipe 10b in the aggregate growth apparatus 4 The calculated value was 7 × 10 −1 mAq / s based on the formula (1). Furthermore, the residence time from the first curved pipe 10b in the condensate growing apparatus 4 to the last curved pipe 10b in the aggregate growing apparatus 4 was 14 seconds.
<実施例2>
 内径を20mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは4×10-1mAq/s、滞留時間は25秒であった。
<Example 2>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the inner diameter was changed to 20 mm. As a result, the pressure loss per unit time was 4 × 10 −1 mAq / s, and the residence time was 25 seconds.
<実施例3>
 凝集物成長装置4として図4に示す装置を用い、内径を25mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは7×10-2mAq/s、滞留時間は14秒であった。
<Example 3>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 4 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 25 mm. As a result, the magnitude of the pressure loss per unit time was 7 × 10 −2 mAq / s, and the residence time was 14 seconds.
<実施例4>
 内径を40mmに変更したこと以外は実施例3と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは5×10-2mAq/s、滞留時間は18秒であった。
<Example 4>
A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 40 mm. As a result, the pressure loss per unit time was 5 × 10 −2 mAq / s, and the residence time was 18 seconds.
<実施例5>
 内径を50mmに変更したこと以外は実施例3と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは4×10-2mAq/s、滞留時間は28秒であった。
<Example 5>
A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 50 mm. As a result, the magnitude of the pressure loss per unit time was 4 × 10 −2 mAq / s, and the residence time was 28 seconds.
<実施例6>
 内径を60mmに変更したこと以外は実施例3と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは2×10-2mAq/s、滞留時間は40秒であった。
<Example 6>
A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 60 mm. As a result, the magnitude of the pressure loss per unit time was 2 × 10 −2 mAq / s, and the residence time was 40 seconds.
<実施例7>
 凝集物成長装置4として図5に示す装置を用い、内径を40mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは5×10-2mAq/s、滞留時間は17秒であった。
<Example 7>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 5 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 5 × 10 −2 mAq / s, and the residence time was 17 seconds.
<実施例8>
 凝集物成長装置4として図6に示す装置を用い、内径を40mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは4×10-2mAq/s、滞留時間は16秒であった。
<Example 8>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 6 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 4 × 10 −2 mAq / s, and the residence time was 16 seconds.
<実施例9>
 凝集物成長装置4として図7に示す装置を用い、内径を20mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは4×10-1mAq/s、滞留時間は25秒であった。
<Example 9>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 7 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 20 mm. As a result, the pressure loss per unit time was 4 × 10 −1 mAq / s, and the residence time was 25 seconds.
<実施例10>
 凝集物成長装置4として図8に示す装置を用い、内径を30mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは1×10-1mAq/s、滞留時間は32秒であった。
<Example 10>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 8 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 30 mm. As a result, the magnitude of the pressure loss per unit time was 1 × 10 −1 mAq / s, and the residence time was 32 seconds.
<実施例11>
 凝集物成長装置4として図9に示す装置を用い、内径を40mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは5×10-2mAq/s、滞留時間は18秒であった。
<Example 11>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 9 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the pressure loss per unit time was 5 × 10 −2 mAq / s, and the residence time was 18 seconds.
<実施例12>
 凝集物成長装置4として図10に示す装置を用い、内径を40mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは5×10-2mAq/s、滞留時間は16秒であった。
<Example 12>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 10 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 5 × 10 −2 mAq / s, and the residence time was 16 seconds.
<実施例13>
 内径を90mmに変更したこと以外は実施例3と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは1×10-2mAq/s、滞留時間は260秒であった。
<Example 13>
A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 90 mm. As a result, the magnitude of the pressure loss per unit time was 1 × 10 −2 mAq / s, and the residence time was 260 seconds.
<実施例14>
 凝集物成長装置4として図11に示す装置を用い、内径を15mmに変更したこと以外は実施例1と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは9×10-1mAq/s、滞留時間は20秒であった。
<Example 14>
A seawater desalination system 100 was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 11 was used as the aggregate growth apparatus 4 and the inner diameter was changed to 15 mm. As a result, the magnitude of the pressure loss per unit time was 9 × 10 −1 mAq / s, and the residence time was 20 seconds.
<実施例15>
 内径を20mmに変更したこと以外は実施例3と同様にして、海水淡水化システム100を構成した。その結果、単位時間あたりの圧力損失の大きさは5×10-2mAq/s、滞留時間は13秒であった。
<Example 15>
A seawater desalination system 100 was configured in the same manner as in Example 3 except that the inner diameter was changed to 20 mm. As a result, the magnitude of the pressure loss per unit time was 5 × 10 −2 mAq / s, and the residence time was 13 seconds.
<比較例1>
 凝集物成長装置4として図12に示す装置(直管10aのみからなる)を用い、内径を30mmに変更したこと以外は実施例1と同様にして、海水淡水化システムを構成した。その結果、単位時間あたりの圧力損失の大きさは5×10-3mAq/s、滞留時間は60秒であった。
<Comparative Example 1>
A seawater desalination system was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 12 (consisting only of the straight pipe 10a) was used as the aggregate growth apparatus 4 and the inner diameter was changed to 30 mm. As a result, the magnitude of the pressure loss per unit time was 5 × 10 −3 mAq / s, and the residence time was 60 seconds.
<比較例2>
 内径を20mmに変更したこと以外は比較例1と同様にして、海水淡水化システムを構成した。その結果、単位時間あたりの圧力損失の大きさは9×10-3mAq/s、滞留時間は300秒であった。
<Comparative example 2>
A seawater desalination system was configured in the same manner as in Comparative Example 1 except that the inner diameter was changed to 20 mm. As a result, the magnitude of the pressure loss per unit time was 9 × 10 −3 mAq / s, and the residence time was 300 seconds.
<比較例3>
 凝集物成長装置4として図13に示す装置(曲管10bのみからなる)を用い、内径を40mmに変更したこと以外は実施例1と同様にして、海水淡水化システムを構成した。その結果、単位時間あたりの圧力損失の大きさは1mAq/s、滞留時間は25秒であった。
<Comparative Example 3>
A seawater desalination system was configured in the same manner as in Example 1 except that the apparatus shown in FIG. 13 (consisting only of the bent tube 10b) was used as the aggregate growth apparatus 4 and the inner diameter was changed to 40 mm. As a result, the magnitude of the pressure loss per unit time was 1 mAq / s, and the residence time was 25 seconds.
<比較例4>
 内径を20mmに変更したこと以外は比較例3と同様にして、海水淡水化システムを構成した。その結果、単位時間あたりの圧力損失の大きさは3mAq/s、滞留時間は18秒であった。
<Comparative example 4>
A seawater desalination system was configured in the same manner as in Comparative Example 3 except that the inner diameter was changed to 20 mm. As a result, the magnitude of the pressure loss per unit time was 3 mAq / s, and the residence time was 18 seconds.
<性能評価方法>
 実施例1~15及び比較例1~4の各海水淡水化システムにおいて、性能評価を行った。性能評価は、未凝集の凝集剤の残存の有無と、ファウラント除去性能との二点について行った。
<Performance evaluation method>
In each of the seawater desalination systems of Examples 1 to 15 and Comparative Examples 1 to 4, performance evaluation was performed. The performance evaluation was performed on two points: presence / absence of remaining unaggregated flocculant and foulant removal performance.
 未凝集の凝集剤の残存の有無は、無機凝集剤及び有機凝集剤のそれぞれについて行った。具体的には、まず、海水淡水化システムにより処理する前の海水中の、金属含有量とTOC(Total Organic Compound)とを測定した。さらに、得られた淡水中の、金属含有量とTOCとを測定した。そして、金属含有量及びTOCのそれぞれについて、海水と淡水とで測定された値同士を比較して、金属含有量及びTOCがそれぞれどの程度増減したかで評価した。 The presence / absence of unaggregated flocculant was determined for each of the inorganic flocculant and the organic flocculant. Specifically, first, the metal content and TOC (Total Organic Compound) in seawater before treatment by the seawater desalination system were measured. Furthermore, the metal content and TOC in the obtained fresh water were measured. And about each of metal content and TOC, the value measured by seawater and fresh water was compared, and it evaluated by how much metal content and TOC increased / decreased, respectively.
 また、ファウラント除去性能は、ROs膜等へのファウラントの主要因とされる酸性糖の除去率を算出することで評価した。具体的には、まず、海水淡水化システムにより処理する前の海水中の酸性糖の量を測定した。さらに、得られた淡水中の酸性糖の量を測定した。そして、海水と淡水とで測定された値同士を比較して、酸性糖がどの程度減少したかを算出した。そして、算出された除去率(減少率)が90%以上のものを◎、除去率が70%以上90%未満のものを○、除去率が50%以上70%未満のものを△、除去率が50%未満のものを×として評価した。 Also, the foulant removal performance was evaluated by calculating the removal rate of acidic sugar, which is the main factor of foulants to the ROs membrane and the like. Specifically, first, the amount of acidic sugar in seawater before treatment by the seawater desalination system was measured. Further, the amount of acidic sugar in the obtained fresh water was measured. And the value measured by seawater and fresh water was compared, and how much acid sugar decreased was calculated. And when the calculated removal rate (reduction rate) is 90% or more, ◎, when the removal rate is 70% or more and less than 90%, ○, when the removal rate is 50% or more and less than 70%, Δ, removal rate Of less than 50% was evaluated as x.
<評価結果>
 評価した二つの項目の結果について、各海水淡水化システムの条件とともに、以下の表1(実施例1~15)及び表2(比較例1~4)に示す。
<Evaluation results>
The results of the two items evaluated are shown in the following Table 1 (Examples 1 to 15) and Table 2 (Comparative Examples 1 to 4) together with the conditions of each seawater desalination system.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、う流配管を備える実施例1~15(表1)では、凝集性能はいずれも良好であった。これらの実施例1~15においては、Hf/Tは、1×10-2mAq/s~90×10-2mAq/sの範囲であった。一方で、表2に示すように、う流配管を備えない、即ち直管10aのみ(比較例1及び2)や曲管10bのみ(比較例3及び4)では、凝集剤が残存しており、凝集性能が不十分であった。これらのことから、う流配管を備える凝集物成長装置4とすることで、凝集剤を十分に凝集させて除去でき、水質の向上を図ることができた。これにより、凝集剤がRO膜に接触することを抑制できることがわかった。 As shown in Table 1, in Examples 1 to 15 (Table 1) provided with a flow pipe, the aggregation performance was good. In these Examples 1 to 15, Hf / T was in the range of 1 × 10 −2 mAq / s to 90 × 10 −2 mAq / s. On the other hand, as shown in Table 2, the flocculant remains only in the straight pipe 10a (Comparative Examples 1 and 2) or the curved pipe 10b (Comparative Examples 3 and 4). The aggregation performance was insufficient. From these facts, by using the agglomerate growing apparatus 4 provided with the flow pipe, the aggregating agent can be sufficiently agglomerated and removed, and the water quality can be improved. Thereby, it was found that the flocculant can be prevented from contacting the RO membrane.
 また、ファウラント除去性能についても、う流配管を備える実施例1~15(表1)では、いずれも良好な結果が得られた。中でも、水平方向への往復運動が行われるう流配管を用いるとともに、単位時間当たりの圧力損失(Hf/T)が40×10-2mAq/s~70×10-2mAq/sのときに、特に良好な性能が示された(実施例1及び2)。一方で、う流配管を備えない比較例1~4(表2)では、単位時間あたりの圧力損失が過度に小さくなったり、過度に大きくなったりして、ファウラント除去性能は不良であった。これらのことより、凝集物成長装置4がう流配管によって構成することで圧力損失を適度なものとすることができ、良好なファウラント除去性能が得られる。 As for the foulant removal performance, good results were obtained in all of Examples 1 to 15 (Table 1) provided with the flow pipe. In particular, when a flow pipe that reciprocates in the horizontal direction is used and the pressure loss per unit time (Hf / T) is 40 × 10 −2 mAq / s to 70 × 10 −2 mAq / s Especially good performance was shown (Examples 1 and 2). On the other hand, in Comparative Examples 1 to 4 (Table 2) that did not have a flow pipe, the pressure loss per unit time was excessively small or excessively large, and the foulant removal performance was poor. From these things, pressure loss can be made moderate by comprising the agglomerate growth apparatus 4 with a flow pipe, and favorable foulant removal performance is obtained.
 さらに、これらの結果は、配管の内径に依存しないこともわかった。即ち、例えば実施例2と比較例2を比較した場合、配管の内径は同じものの(20mm)、凝集性能及びファウラント除去性能のいずれも全く異なる結果になった。従って、大流量で海水を処理したい場合は長径にし、小流量で足りる場合には短径にしたりする等、任意の内径が設定可能となる。 Furthermore, it was also found that these results do not depend on the inner diameter of the pipe. That is, when Example 2 and Comparative Example 2 were compared, for example, the inner diameter of the pipe was the same (20 mm), but both the aggregation performance and the foulant removal performance were completely different. Therefore, it is possible to set an arbitrary inner diameter, such as a long diameter when processing seawater with a large flow rate and a short diameter when a small flow rate is sufficient.
2,3 スタティックミキサ(撹拌混合装置)
4 凝集物成長装置
5 砂濾過装置(凝集物除去装置)
7 RO膜(逆浸透膜)
10a 水平方向の直管
10b 曲管
10c 鉛直方向の直管
10d 斜め方向の直管
100 海水淡水化システム
A 流入口
B 流出口
2,3 Static mixer
4 Aggregate growth device 5 Sand filtration device (aggregate removal device)
7 RO membrane (reverse osmosis membrane)
10a Horizontal straight pipe 10b Curved pipe 10c Vertical straight pipe 10d Diagonal straight pipe 100 Seawater desalination system A Inlet B Outlet

Claims (6)

  1.  海水を逆浸透膜に透過させることで淡水を得る海水淡水化システムにおいて、
     海水に対し、海水中の異物を凝集させて除去可能にする凝集剤を添加する凝集剤添加装置と、
     前記凝集剤添加装置によって凝集剤が添加された海水を撹拌混合する撹拌混合装置と、
     前記撹拌混合装置において凝集剤と撹拌混合された海水からインラインで凝集物を成長させるとともに、所定の長さを有する直管と所定の角度で屈曲している曲管とが接続されることで構成されたう流配管を備えてなる凝集物成長装置と、
     前記凝集物成長装置において生成した凝集物を除去する凝集物除去装置と、
     前記凝集物除去装置において凝集物が除去された海水を透過させて淡水を得る逆浸透膜とを備えることを特徴とする、海水淡水化システム。
    In a seawater desalination system that obtains fresh water by passing seawater through a reverse osmosis membrane,
    A flocculant addition device that adds a flocculant that aggregates and removes foreign matter in the seawater,
    A stirring and mixing device for stirring and mixing the seawater to which the flocculant has been added by the flocculant adding device;
    In the stirring and mixing apparatus, the aggregate is grown in-line from the seawater stirred and mixed with the flocculant, and a straight pipe having a predetermined length and a bent pipe bent at a predetermined angle are connected. An agglomerate growth apparatus provided with a flowing pipe;
    An agglomerate removing device for removing the agglomerates generated in the agglomerate growing device;
    A seawater desalination system comprising: a reverse osmosis membrane that obtains fresh water by transmitting seawater from which aggregates have been removed in the aggregate removal apparatus.
  2.  前記凝集物成長装置からの海水の流出口は、前記凝集物成長装置への海水の流入口よりも鉛直方向に高い位置にあることを特徴とする、請求項1に記載の海水淡水化システム。 The seawater desalination system according to claim 1, wherein the seawater outlet from the agglomerate growing apparatus is located at a position higher in the vertical direction than the seawater inlet to the agglomerate growing apparatus.
  3.  前記凝集物成長装置に備えられる配管のうち、海水の流出口近傍には、鉛直方向に延在する直管が配置されていることを特徴とする、請求項1又は2に記載の海水淡水化システム。 3. The seawater desalination according to claim 1, wherein a straight pipe extending in a vertical direction is disposed in the vicinity of an outlet of seawater among pipes provided in the aggregate growth apparatus. system.
  4.  前記凝集物成長装置は、少なくとも二本の曲管を備え、
     前記凝集物成長装置内の最初の曲管から、前記凝集物成長装置内の最後の曲管までの、単位時間あたりの圧力損失が、1×10-2mAq/s以上9×10-1mAq/s以下であることを特徴とする、請求項1又は2に記載の海水淡水化システム。
    The agglomerate growing apparatus comprises at least two bent tubes,
    The pressure loss per unit time from the first curved pipe in the aggregate growth apparatus to the last curved pipe in the aggregate growth apparatus is 1 × 10 −2 mAq / s or more and 9 × 10 −1 mAq. The seawater desalination system according to claim 1 or 2, characterized by being / s or less.
  5.  前記凝集物成長装置は、少なくとも二本の曲管を備え、
     前記凝集物成長装置内の最初の曲管から、前記凝集物成長装置内の最後の曲管までの配管における海水の滞留時間は、13秒以上260秒以下であることを特徴とする、請求項1又は2に記載の海水淡水化システム。
    The agglomerate growing apparatus comprises at least two bent tubes,
    The residence time of seawater in a pipe from the first curved pipe in the aggregate growing apparatus to the last curved pipe in the aggregate growing apparatus is 13 seconds or more and 260 seconds or less. The seawater desalination system according to 1 or 2.
  6.  前記凝集物成長装置は、少なくとも二本の直管と、少なくとも二本の曲管とを備え、
     前記凝集物成長装置において海水が水平方向に往復して流れるように、前記少なくとも二本の直管と前記少なくとも二本の曲管とが接続されて前記う流配管を構成していることを特徴とする、請求項1又は2に記載の海水淡水化システム。
    The aggregate growth apparatus includes at least two straight pipes and at least two bent pipes,
    In the aggregate growth apparatus, the at least two straight pipes and the at least two bent pipes are connected so that seawater flows in a reciprocating manner in the horizontal direction to constitute the flow pipe. The seawater desalination system according to claim 1 or 2.
PCT/JP2015/069379 2014-09-11 2015-07-06 Seawater desalination system WO2016038996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-185284 2014-09-11
JP2014185284A JP2016055270A (en) 2014-09-11 2014-09-11 Seawater desalination system

Publications (1)

Publication Number Publication Date
WO2016038996A1 true WO2016038996A1 (en) 2016-03-17

Family

ID=55458758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069379 WO2016038996A1 (en) 2014-09-11 2015-07-06 Seawater desalination system

Country Status (2)

Country Link
JP (1) JP2016055270A (en)
WO (1) WO2016038996A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125288A (en) * 1983-12-09 1985-07-04 Yks Co Ltd Sewage purifying apparatus
JPS61291012A (en) * 1985-06-19 1986-12-20 Chiba Sanken Kk Water purifying apparatus
JPH07163998A (en) * 1993-12-14 1995-06-27 Sato Kogyo Co Ltd Treatment of muddy water and device therefor
JPH10272475A (en) * 1997-03-31 1998-10-13 Hitachi Ltd Magnetic separation device
JP2008173534A (en) * 2007-01-16 2008-07-31 Toray Ind Inc Water treatment method and water treatment apparatus
JP2009291778A (en) * 2008-05-09 2009-12-17 Ik Shoji Kk Treatment system of sewage such as washing water for perishables
JP2013137279A (en) * 2011-12-28 2013-07-11 Hitachi Plant Technologies Ltd Water quality evaluation method, control method for water treatment system, and water treatment system
JP2014008469A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Water treatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125288A (en) * 1983-12-09 1985-07-04 Yks Co Ltd Sewage purifying apparatus
JPS61291012A (en) * 1985-06-19 1986-12-20 Chiba Sanken Kk Water purifying apparatus
JPH07163998A (en) * 1993-12-14 1995-06-27 Sato Kogyo Co Ltd Treatment of muddy water and device therefor
JPH10272475A (en) * 1997-03-31 1998-10-13 Hitachi Ltd Magnetic separation device
JP2008173534A (en) * 2007-01-16 2008-07-31 Toray Ind Inc Water treatment method and water treatment apparatus
JP2009291778A (en) * 2008-05-09 2009-12-17 Ik Shoji Kk Treatment system of sewage such as washing water for perishables
JP2013137279A (en) * 2011-12-28 2013-07-11 Hitachi Plant Technologies Ltd Water quality evaluation method, control method for water treatment system, and water treatment system
JP2014008469A (en) * 2012-06-29 2014-01-20 Hitachi Ltd Water treatment system

Also Published As

Publication number Publication date
JP2016055270A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5843071B2 (en) Water treatment equipment
CN102985373A (en) Fresh water producing apparatus and method for operating same
JP5257591B2 (en) Water treatment method
JP2010036180A5 (en)
JP5817166B2 (en) Method for separating and collecting microalgae
JP6738492B2 (en) Water treatment method and water treatment device
JP6993838B2 (en) Coagulation sedimentation device and coagulation sedimentation treatment method
KR102358590B1 (en) Fluid treatment system
JP2014128746A (en) Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination
WO2016038996A1 (en) Seawater desalination system
JP2016131937A (en) Seawater desalination system and method
JP6164941B2 (en) Muddy water treatment system and muddy water treatment method
JP6603624B2 (en) Water treatment apparatus and water treatment method
WO2014126156A1 (en) Membrane separation treatment method and membrane separation treatment system
JP5821218B2 (en) Method for separating and collecting microalgae
JP5466864B2 (en) Water treatment apparatus and water treatment method
JP2014004508A (en) Water treatment apparatus and method for forming flocculate
CN110526477A (en) The method for handling machine tool cutting liquid flushing liquor
JP6603623B2 (en) Water treatment apparatus and water treatment method
JP2014046235A (en) Fresh water generating method
JP2016159241A (en) Membrane filtration system
JP6965025B2 (en) Membrane filtration device and membrane filtration method
JP2008150244A (en) Method for producing calcium nitrate aqueous solution
JP2005246157A (en) Water treatment method and water treatment apparatus
CN110526456A (en) The method for handling waste water of steel plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840357

Country of ref document: EP

Kind code of ref document: A1