JP2010036180A5 - - Google Patents

Download PDF

Info

Publication number
JP2010036180A5
JP2010036180A5 JP2008226485A JP2008226485A JP2010036180A5 JP 2010036180 A5 JP2010036180 A5 JP 2010036180A5 JP 2008226485 A JP2008226485 A JP 2008226485A JP 2008226485 A JP2008226485 A JP 2008226485A JP 2010036180 A5 JP2010036180 A5 JP 2010036180A5
Authority
JP
Japan
Prior art keywords
tank
water
treated
iron
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008226485A
Other languages
Japanese (ja)
Other versions
JP5257591B2 (en
JP2010036180A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008226485A priority Critical patent/JP5257591B2/en
Priority claimed from JP2008226485A external-priority patent/JP5257591B2/en
Publication of JP2010036180A publication Critical patent/JP2010036180A/en
Publication of JP2010036180A5 publication Critical patent/JP2010036180A5/ja
Application granted granted Critical
Publication of JP5257591B2 publication Critical patent/JP5257591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

水処理方法Water treatment method

本発明は、表流水、湖沼水、ダム貯水、湧水、地下水等の原水中に含まれる被酸化性成分、シリカ及び無機有害物質等の水中微量成分を除去する水の処理方法に関する。   The present invention relates to a water treatment method for removing trace components in water such as oxidizable components, silica and inorganic harmful substances contained in raw water such as surface water, lake water, dam water, spring water, and groundwater.

表流水、湖沼水、ダム貯水、湧水、地下水等の原水を処理して、水道法に基づく水質基準(以下、「水道水質基準」、「水質基準」ともいう)を満たす飲料水(水道水)を製造する、いわゆる水道浄水技術は100年以上の歴史を有するが、依然として水道浄水技術の基本は凝集、沈殿及び砂ろ過である。   Drinking water (tap water) that treats raw water such as surface water, lake water, dam water, spring water, groundwater, etc., and meets water quality standards (hereinafter also referred to as “tap water quality standards”, “water quality standards”) So-called water purification technology has a history of more than 100 years, but the basis of water purification technology is still coagulation, sedimentation and sand filtration.

近年、分析技術の高度化による微量有害成分の検出精度の向上、原水の汚染が深刻な水道後進国での水道施設建設の必要性、地球環境の悪化による水質汚染への対処の必要性等に伴い、水道原水に含まれる鉄、マンガン、シリカ、ヒ素等の成分(水中微量成分)の更なる除去の必要性が高まっている。 In recent years, with the advancement of analytical technology, the detection accuracy of trace harmful components has been improved, the need for construction of water supply facilities in underdeveloped countries where raw water contamination is serious, and the need to deal with water pollution due to the deterioration of the global environment. Along with this, there is a growing need for further removal of components (trace components in water) such as iron, manganese, silica , and arsenic contained in raw tap water.

このような水中微量成分を除去する方法としては、これまでに多くの方法が提案されている。例えば、鉄及びマンガンの除去方法としては、鉄及びマンガンを酸化し、酸化物微結晶を生成させ、ろ過する方法が知られている。しかし、この方法では、砂ろ過を使用するため、広い設置面積を必要とする嫌いがある。   Many methods have been proposed for removing such trace elements in water. For example, as a method for removing iron and manganese, a method is known in which iron and manganese are oxidized to produce oxide microcrystals and filtered. However, since this method uses sand filtration, there is a dislike for requiring a large installation area.

また、シリカの除去方法として、イオンレベルでのシリカの除去が可能な逆浸透膜(RO膜)を用いた方法が提案されている。しかし、この方法によるとRO膜の目詰まりが発生しやすく、最近の技術開発の焦点として分散剤の使用による目詰まり防止方法が多く併用されるが、実用上処理が煩雑となる。一方、シリカの膜分離(膜ろ過)による単独処理として、他に限外ろ過膜(UF膜)による膜ろ過も検討されているが、この場合にはファウリング(いわゆる膜閉塞)による処理能率の急激な低下が生じるため、特殊な場合を除き、シリカの除去対策として採用し難い。
更に、シリカの他の除去方法として、ポリ塩化アルミニウムや硫酸アルミニウム等の凝集剤でコロイドシリカを粗大化させた後、凝集分離させる方法が行われている。しかし、この方法によっても、除去対象がシリカに限定されており、ワーキングレンジが狭く、また、凝集と分離を別工程で行うため、処理装置の建設費が高くなり、設置面積も大きくなる等の問題が指摘されている。
As a method for removing silica, a method using a reverse osmosis membrane (RO membrane) capable of removing silica at an ion level has been proposed. However, RO membranes clogging tends to occur in accordance with this method, but clogging prevention method such by the use of dispersing agent is often used in combination as the focus of recent technological development, practical process becomes complicated. On the other hand, as a single treatment by membrane separation (membrane filtration) of silica, membrane filtration by an ultrafiltration membrane (UF membrane) is also being studied. In this case, the treatment efficiency by fouling (so-called membrane clogging) is considered. Because of a sharp drop, it is difficult to adopt as a silica removal measure except in special cases.
Further, as another method for removing silica, a method is used in which the colloidal silica is coarsened with a flocculant such as polyaluminum chloride or aluminum sulfate and then agglomerated and separated. However, even with this method, the removal target is limited to silica, the working range is narrow, and because aggregation and separation are performed in separate processes, the construction cost of the processing apparatus increases, and the installation area also increases. Problems have been pointed out.

また、ヒ素の除去方法については、鉄化合物、或いは、鉄包接化合物、低結晶性鉄化合物による吸着除去が提案されているが、この方法では、特殊な吸着剤が必要であり、また、吸着分離操作も煩雑となり好ましくない(例えば特許文献3参照)。   As for the removal method of arsenic, adsorption removal by iron compound, iron clathrate compound or low crystalline iron compound has been proposed, but this method requires a special adsorbent, and adsorption The separation operation is also complicated and is not preferable (see, for example, Patent Document 3).

以上に記載した通り、吸着、凝集による微量成分を個別に除去する方法は多々提案されているが、いずれの方法に於いても多くの課題が残されている。その上、上述した方法では、鉄及びマンガンの同時除去以外は、いずれも水中微量成分を個別に除去対象としているため、各水中微量成分の除去にそれぞれ別の処理工程(処理装置)を必要とする。そのため、水処理システム全体に要する建設費、運転費が高くなり、結果として大きな設置面積が必要となり、プラント建設の障害となっていた。   As described above, many methods for individually removing trace components due to adsorption and aggregation have been proposed, but many problems remain in either method. In addition, in the above-described method, except for the simultaneous removal of iron and manganese, all of the trace components in the water are individually targeted for removal, and therefore separate processing steps (treatment devices) are required for the removal of each trace component in the water. To do. Therefore, the construction cost and operation cost required for the entire water treatment system are increased, resulting in a large installation area, which has been an obstacle to plant construction.

一方、飲料水化に使用できる化学薬品は、最終的に水道法に基づく水質基準(以下、水道水質基準ともいう)を満たすという条件から制約が多く、コスト等の点を考慮するとさらに制限されるという問題も起こる。   On the other hand, chemicals that can be used for drinking water are often restricted by the condition that they finally meet the water quality standards (hereinafter also referred to as tap water quality standards) based on the Water Supply Law, and are further restricted in consideration of costs and other factors. The problem also occurs.

水道浄水処理においては、凝集剤・凝集助剤は広く使用されており、実績も多くあるが、元来、凝集剤、凝集助剤の使用対象は、濁質成分、有機物、色度異臭味等の処理を主体とするものであった。従って、凝集剤、凝集助剤によるシリカ、ヒ素等の処理については、十分な検討がされておらず、上記のような、各水中微量成分に応じた高度な処理技術の必要性が望まれるところであった。
特許第3672855号公報 特開2003−225680号公報 特開2008−43921号公報
In tap water treatment, flocculants and coagulant aids are widely used and have many achievements. Originally, flocculants and coagulant aids are mainly used for turbid components, organic substances, odors of chromaticity, etc. Was the main process. Accordingly, the treatment of silica , arsenic and the like with a flocculant, a coagulant aid, etc. has not been sufficiently studied, and the need for advanced treatment techniques according to each trace component in water is desired. By the way.
Japanese Patent No. 3672855 JP 2003-225680 A JP 2008-43921 A

以上述べたように水道浄水における水中微量成分の除去は、一般に鉄・マンガンの同時除去を除いては個別に処理する場合が多く、工程が煩雑でコストが過大になるケースが多かった。したがって、地下水等の原水を処理して水道水質基準を満たす飲料水を得るに際し、原水に含まれる鉄、マンガン、シリカ、ヒ素等の水中微量成分を簡単かつ安価に除去する技術の出現が期待されている。 As described above, the removal of trace components in water in tap water is generally carried out individually except for the simultaneous removal of iron and manganese, and there are many cases where the process is complicated and the cost is excessive. Therefore, when drinking raw water such as groundwater to obtain drinking water that meets tap water quality standards, the emergence of technology that easily and inexpensively removes trace water components such as iron, manganese, silica , and arsenic contained in raw water is expected. ing.

本発明は、このような事情に因み鋭意検討されたものであり、本発明の目的は、薬品の使用を最低限に抑え、簡単な処理工程で鉄、マンガン、シリカ、ヒ素等の複数の水中微量成分を一挙に除去することが可能な水処理方法を提供することにある。 The present invention has been intensively studied in view of such circumstances, and the object of the present invention is to minimize the use of chemicals, and in a simple process, a plurality of iron, manganese, silica , arsenic, and the like . An object of the present invention is to provide a water treatment method capable of removing trace components in water at once.

上記課題を解決するために、本発明者らは研究を行った結果、被酸化性成分、シリカ及び無機系有害成分を含む被処理原水中に、硫酸アルミニウム及び酸化剤を導入し、分離膜フィルターによる膜ろ過処理を行うことで、被酸化性成分、シリカ及び無機系有害成分を同時に除去することが可能であることを見出し、本発明を完成するに至った。
すなわち、水道浄水の凝集剤として一般的に使用される凝集剤としては、例えば、硫酸アルミニウム(硫酸バンドともいう。一般式:Al(SO・nHO)、PAC(ポリ塩化アルミニウム、一般式:Aln(OH)Cl3n−m)、ポリシリカ鉄、アルギン酸ナトリウム、有機高分子凝集剤等を使用することができ、また、凝集助剤としてはアルギン酸ナトリウム、ベントナイト、粉末活性炭、活性珪酸等を用いることができる。
In order to solve the above-mentioned problems, the present inventors have conducted research. As a result, aluminum sulfate and an oxidizing agent were introduced into raw water to be treated containing oxidizable components, silica and inorganic harmful components, and a separation membrane filter was obtained. It has been found that by performing a membrane filtration treatment with the above, it is possible to simultaneously remove oxidizable components, silica and inorganic harmful components, and the present invention has been completed.
That is, as a flocculant generally used as a flocculant for water purification, for example, aluminum sulfate (also referred to as a sulfate band, general formula: Al 2 (SO 4 ) 3 · nH 2 O), PAC (polyaluminum chloride) , General formula: Aln (OH) m Cl 3n-m ), polysilica iron, sodium alginate, organic polymer flocculant, etc., and as agglomeration aid, sodium alginate, bentonite, powdered activated carbon, activity Silicic acid or the like can be used.

しかしながら、硫酸アルミニウム以外の凝集剤及び/又は凝集助剤では、たとえ硫酸アルミニウムと同じアルミニウム系凝集剤であるPAC(ポリ塩化アルミニウム)を使用しても、上記被酸化性成分、シリカ及び無機系有害成分を、硫酸アルミニウムと酸化剤とを組み合わせて用いた時のような高い除去率で一括除去し得るという優れた効果を得ることはできなかった。また、勿論、酸化剤単独、或いは凝集剤単独でもこのような効果を得ることはできなかった。 However, with flocculating agents and / or flocculating aids other than aluminum sulfate, even if PAC (polyaluminum chloride), which is the same aluminum-based flocculant as aluminum sulfate, is used, the above oxidizable components, silica and inorganic harmful substances are used. It was not possible to obtain an excellent effect that the components could be removed at a high removal rate as in the case of using a combination of aluminum sulfate and an oxidizing agent. Of course, such an effect could not be obtained with an oxidizing agent alone or a flocculant alone.

したがって、本発明の要旨とするところは、被酸化性成分、シリカ及び無機系有害成分を含む被処理原水を、酸化剤及び硫酸アルミニウムで処理した後、生じた固形物を分離膜フィルターにより固液分離することで、上記被酸化性成分、シリカ及び無機系有害成分を一括除去する水処理方法を提供することにある。   Therefore, the gist of the present invention is that raw water to be treated containing an oxidizable component, silica and inorganic harmful components is treated with an oxidizing agent and aluminum sulfate, and the resulting solid matter is solid-liquid separated by a separation membrane filter. By separating, it is providing the water treatment method which removes the said oxidizable component, a silica, and an inorganic type harmful component collectively.

また、本発明の他の態様に係る水処理方法は、被酸化性成分、シリカ及び無機系有害成分を含む被処理原水を貯留した槽内に浸漬した分離膜フィルターで膜ろ過を行い、処理水を得る水処理方法であって、上記被処理原水を酸化剤及び硫酸アルミニウムで処理した後、生じた固形物を上記槽内の上記分離膜フィルターにより固液分離することで、上記被酸化性成分、シリカ及び無機系有害成分を一括除去することを特徴としている。   Moreover, the water treatment method according to another aspect of the present invention includes membrane filtration using a separation membrane filter immersed in a tank in which raw water to be treated containing an oxidizable component, silica, and inorganic harmful components is stored. The raw water to be treated is treated with an oxidant and aluminum sulfate, and then the solids produced are separated into solid and liquid by the separation membrane filter in the tank, whereby the oxidizable component is obtained. It is characterized by removing silica and inorganic harmful components at once.

上記被酸化性成分が鉄及び/又はマンガンであり、鉄及び/又はマンガンが被処理原水中に0.5mg/L以上含まれていることが好ましい。
上記無機系有害成分は、例えば、ヒ素である
Preferably, the oxidizable component is iron and / or manganese, and iron and / or manganese is contained in the raw water to be treated in an amount of 0.5 mg / L or more.
The inorganic harmful component is, for example , arsenic .

上記被酸化性成分が鉄及びマンガンであり、上記無機系有害成分がヒ素であり、上記処理水中の鉄、マンガン、ヒ素の濃度が水道法の水質基準に適合することが好ましい。すなわち、上記処理水中の鉄の濃度を0.3mg/L以下、マンガンの濃度を0.05mg/L以下、ヒ素の濃度を0.01mg/L以下とすることが好ましい。 It is preferable that the oxidizable component is iron and manganese, the inorganic harmful component is arsenic, and the concentration of iron, manganese , and arsenic in the treated water conforms to the water quality standards of the Waterworks Law. That is, the iron concentration in the treated water is preferably 0.3 mg / L or less, the manganese concentration is 0.05 mg / L or less , and the arsenic concentration is 0.01 mg / L or less .

上記酸化剤として次亜塩素酸ナトリウムを用い、上記槽内における残留塩素濃度を0.1mg/L以上1.0mg/L以下とすることが好ましい。
上記酸化剤として、次亜塩素酸ナトリウムと空気とを併用し、空気を上記分離膜フィルターの下方に設置した散気手段より供給することが好ましい。
上記槽における被処理原水のHRTが5分以上であることが好ましい。
It is preferable that sodium hypochlorite is used as the oxidant and the residual chlorine concentration in the tank is 0.1 mg / L or more and 1.0 mg / L or less.
It is preferable that sodium hypochlorite and air are used in combination as the oxidizing agent, and air is supplied from an air diffuser installed below the separation membrane filter.
The HRT of the raw water to be treated in the tank is preferably 5 minutes or more.

本発明の他の態様に係る水処理方法は、ヒ素の無機系有害成分と、鉄及び/又はマンガンと、シリカとを含み、鉄及び/又はマンガンの濃度が0.5mg/L以上である被処理原水を貯留した槽内に、次亜塩素酸ナトリウム及び硫酸アルミニウムを注入した後、生じた固形物を当該槽内に浸漬した分離膜フィルターにより分離し、処理水を得る水処理方法であって、上記槽内の残留塩素濃度が0.1mg/L以上1.0mg/L以下となるように次亜塩素酸ナトリウムの注入量を制御すると共に、上記分離膜フィルターの下方に設けられた散気手段により、酸化性ガスを散気することで、酸化性ガスの散気時には、該槽内の酸化反応を補助すると同時に、上記分離膜フィルターの膜表面に沿って上昇する上昇流を生じさせ、上記分離膜フィルターの膜表面を洗浄し、かつ、鉄及び/又はマンガンと次亜塩素酸ナトリウム及び/又は上記酸化性ガスとの反応により生じた酸化鉄及び/又は酸化マンガンを槽内にほぼ均等に存在せしめ、上記槽内の酸化、結晶析出、及び/又は凝集を促進させ、酸化性ガスの停止時には、上記槽内に生じた固形物の少なくとも一部が槽底部に沈降するのを促進し、該槽内に浮遊する固形物の量を調節することで、無機系有害成分と、鉄及び/又はマンガンと、シリカとを一括除去することを特徴としている。 The water treatment method according to another aspect of the present invention includes an inorganic harmful component of arsenic , iron and / or manganese, and silica, and the concentration of iron and / or manganese is 0.5 mg / L or more. After injecting sodium hypochlorite and aluminum sulfate into a tank in which raw water for treatment is stored, the resulting solid matter is separated by a separation membrane filter immersed in the tank to obtain treated water. The amount of sodium hypochlorite injected is controlled so that the residual chlorine concentration in the tank is 0.1 mg / L or more and 1.0 mg / L or less, and the aeration provided below the separation membrane filter By diffusing the oxidizing gas by the means, at the time of the diffusing of the oxidizing gas, it assists the oxidation reaction in the tank, and at the same time generates an upward flow that rises along the membrane surface of the separation membrane filter, Separation membrane fill The surface of the film is cleaned, and iron oxide and / or manganese oxide produced by the reaction of iron and / or manganese with sodium hypochlorite and / or the oxidizing gas is present in the tank almost evenly. Accelerating oxidation, crystal precipitation and / or aggregation in the tank, and at the time of stopping the oxidizing gas, at least a part of the solid matter generated in the tank is promoted to settle at the bottom of the tank, It is characterized in that inorganic harmful components, iron and / or manganese, and silica are collectively removed by adjusting the amount of solid matter floating inside.

本発明によれば、除去対象となる各微量成分ごとに処理装置を設けなくてもよい。また、分離膜フィルターを浸漬する槽内に酸化剤及び硫酸アルミニウムを注入する場合には、同一槽内で膜分離処理を行うので、別途酸化剤を注入し、反応させるための薬液処理槽や、硫酸アルミニウムを注入し、固液分離を行うための沈殿分離槽等といった処理槽を設ける必要がない。よって、本発明の水処理方法に用いられる装置の小型化を図ることが可能となり、設置面積を減らし、建設費用及び装置駆動時の電力費を低減することができる。
また、膜ろ過処理を組み合わせることで、使用する薬剤を酸化剤と硫酸アルミニウムといった必要最小限の薬剤に留めている。
According to the present invention, it is not necessary to provide a processing apparatus for each trace component to be removed. In addition, when injecting the oxidizing agent and aluminum sulfate into the tank in which the separation membrane filter is immersed, since the membrane separation process is performed in the same tank, a chemical processing tank for injecting and reacting separately with the oxidizing agent, There is no need to provide a treatment tank such as a precipitation separation tank for injecting aluminum sulfate and performing solid-liquid separation. Therefore, it is possible to reduce the size of the apparatus used in the water treatment method of the present invention, reduce the installation area, and reduce the construction cost and the power cost for driving the apparatus.
Further, by combining membrane filtration treatment, the chemicals used are kept to the minimum necessary chemicals such as an oxidizing agent and aluminum sulfate.

したがって、本発明によれば、多数の薬品を使用せずに単純な装置で、安全かつ安価に、水道原水にイオンレベルで微量に含まれるヒ素の無機系有害成分及びシリカを、水道原水中に共存する鉄、マンガンの被酸化性成分と共に一挙に除去することが可能となる。 Therefore, according to the present invention, an inorganic harmful component of arsenic and silica contained in a trace amount at an ionic level in raw water supply can be safely and inexpensively used in a simple water supply without using many chemicals. It can be removed together with oxidizable components such as iron and manganese.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の水処理方法は、被処理原水を貯留した槽(処理槽、反応槽ともいう)内の分離膜フィルターで膜ろ過を行い、処理水を得るに際し、該処理槽内に酸化剤を供給し、該処理槽内を酸化雰囲気とすると共に、硫酸アルミニウムを供給し、被処理原水を処理した後、生じた析出物、凝集体の固形分を膜ろ過することで、被酸化性成分、シリカ及び無機系有害成分を一括除去する。 The water treatment method of the present invention performs membrane filtration with a separation membrane filter in a tank (also referred to as a treatment tank or a reaction tank) in which raw water to be treated is stored, and supplies oxidant into the treatment tank when obtaining treated water. Then, the inside of the treatment tank is made an oxidizing atmosphere, and after supplying the aluminum sulfate and treating the raw water to be treated, the solid matter such as precipitates and agglomerates produced is filtered through a membrane to obtain an oxidizable component, Remove silica and inorganic harmful components at once.

本発明で用いられる被処理原水(水道用原水)は、分離対象成分(除去対象成分)として、被酸化性成分、シリカ及び無機系有害成分を含むものであれば、特に限定されず、例えば、表流水、湖沼水、ダム貯水、湧水、地下水等を本発明の水処理の対象とできる。   The treated raw water (raw water for water supply) used in the present invention is not particularly limited as long as it contains an oxidizable component, silica and an inorganic harmful component as a separation target component (removal target component). Surface water, lake water, dam reservoir water, spring water, groundwater, and the like can be the targets of the water treatment of the present invention.

分離対象成分となる被酸化性成分としては、例えば、鉄、マンガン等の被酸化性の金属成分、特に被酸化性の遷移金属成分が挙げられる。被酸化性成分は、被処理原水中に少なくとも1種含まれていればよいが、2種以上含まれていてもよい。被酸化性の金属成分が酸化され、金属酸化物(例:酸化鉄、酸化マンガン等)となることで、例えば、新たな鉄及びマンガンの被酸化性成分の酸化反応の触媒、シリカの析出促進剤(シリカ析出の際のシーズ[種])等として働き、処理槽内での酸化、析出、及び/又は凝集(沈降)等の反応を促進すると考えられる。 Examples of the oxidizable component to be separated include oxidizable metal components such as iron and manganese, particularly oxidizable transition metal components. The oxidizable component may be contained in at least one kind of raw water to be treated, but may be contained in two or more kinds. Oxidizing metal components are oxidized to form metal oxides (eg, iron oxide, manganese oxide, etc.). For example, new catalysts for oxidation reaction of oxidizable components such as iron and manganese, silica, etc. It is considered to act as a precipitation accelerator ( seeds [seed] during silica precipitation) and promote reactions such as oxidation, precipitation, and / or aggregation (sedimentation) in the treatment tank.

被処理原水中における被酸化性金属成分の含有量は0.5mg/L以上であることが好ましい。なお、被酸化性金属成分が2種以上含まれている場合は、少なくとも1つの被酸化性金属成分について0.5mg/L以上含まれていればよいが、各被酸化性金属成分が各々0.5mg/L以上含まれていることが好ましい。原水中に含まれる被酸化性金属成分の量が0.5mg/Lに満たない場合には、シリカ及び無機系有害成分が効果的に除去できず、被酸化性の金属成分を追加するために、新たな薬剤の投入が必要となるが、0.5mg/L以上であれば、新たな薬剤を追加せずに、最小限の薬剤(例えば、次亜塩素酸ナトリウム及び硫酸アルミニウム)のみで水中微量成分(例えば、鉄、マンガン、シリカ、ヒ素)の一括除去が可能となる。 The content of the oxidizable metal component in the raw water to be treated is preferably 0.5 mg / L or more. In addition, when two or more kinds of oxidizable metal components are contained, it is sufficient that at least one oxidizable metal component is contained in an amount of 0.5 mg / L or more. 0.5 mg / L or more is preferable. When the amount of the oxidizable metal component contained in the raw water is less than 0.5 mg / L, silica and inorganic harmful components cannot be removed effectively, and the oxidizable metal component is added. However, if it is 0.5 mg / L or more, it is necessary to add a minimum amount of drugs (for example, sodium hypochlorite and aluminum sulfate) in water without adding a new drug. Trace components (for example, iron, manganese, silica, arsenic) can be removed all at once.

なお、原水中の被酸化性金属成分の量が0.5mg/Lに満たず、一方でヒ素の無機系有害成分及びシリカの含有量が多く、除去を必要とする場合には、被酸化性金属成分の量が0.5mg/L以上となるように、原水中に比較的酸化され易い金属成分を加えるとよい。このような酸化され易い金属成分としては、鉄イオンが取り扱い上最も好ましい。具体的には、例えば塩化第二鉄を被処理原水に添加することができる。 In addition, when the amount of the oxidizable metal component in the raw water is less than 0.5 mg / L and the content of the inorganic harmful component of arsenic and silica is large and needs to be removed, the oxidant A metal component that is relatively easily oxidized may be added to the raw water so that the amount of the metal component is 0.5 mg / L or more. As such a metal component that is easily oxidized, iron ions are most preferable in terms of handling. Specifically, for example, ferric chloride can be added to the raw water to be treated.

また、槽内に沈降した被酸化性金属成分の酸化物を含む固形物を槽内の底部から排出した後、再び処理槽内に返送してもよい。被酸化性金属成分の酸化物を含む固形物を循環させることで、固形物中に含まれる、例えば酸化鉄、酸化マンガン等の金属酸化物が酸化触媒として働き、更なる鉄、マンガン等の被酸化性金属成分の酸化促進させることが可能となる。 Moreover, after discharging | emitting the solid substance containing the oxide of the oxidizable metal component settled in the tank from the bottom part in a tank, you may return in a processing tank again. By circulating solids containing oxides of oxidizable metal components, metal oxides such as iron oxide and manganese oxide contained in the solids act as an oxidation catalyst, and further iron, manganese, etc. It becomes possible to promote the oxidation of the oxidizing metal component.

無機系有害成分としては、例えば、ヒ素の水道水質基準に定められる成分が挙げられる。無機系有害成分は、1種又は2種以上含まれていてもよい。 Examples of the inorganic harmful components include components defined in arsenic tap water quality standards. One or more inorganic harmful components may be contained.

被処理原水中に含まれる分離対象成分は、イオン、又は化合物のいずれの状態で存在していてもよい。したがって、イオンの状態で水中に溶解していてもよく、また溶解性又は不溶性の化合物として存在していてもよい。例えば、鉄の場合、被処理原水中に鉄イオンとして存在していてもよく、また酸化鉄、水酸化鉄の化合物の状態で存在していてもよい。マンガン、シリカ、ヒ素等の他の成分についても同様である。なお、鉄やマンガンは通常、鉄イオン、マンガンイオンの状態で水道用原水中に存在していることが多い。 The component to be separated contained in the raw water to be treated may be present in any state such as ions or compounds. Therefore, it may be dissolved in water in an ionic state, or may exist as a soluble or insoluble compound. For example, in the case of iron, it may exist as iron ions in the raw water to be treated, or may exist in the state of a compound such as iron oxide or iron hydroxide. The same applies to other components such as manganese, silica , and arsenic . In addition, iron and manganese are usually present in tap water in the form of iron ions and manganese ions.

本発明で用いられる酸化剤としては、例えば、塩素、次亜塩素酸ナトリウム、二酸化塩素の塩素系酸化剤、オゾンガス、過酸化水素等、空気、酸素の酸素系酸化剤、過マンガン酸カリウム、及び過マンガン酸ナトリウム等の如何なる物であっても良い。また、酸化剤は、固体、液体、及び気体(酸化性ガス)のいずれであってもよい。酸化剤は、一種単独で使用してもよく、2種以上を組み合わせて用いてもよい。このような酸化剤の中でも、取り扱い容易性、経済性、また、鉄を3価の酸化物とし、マンガンを4価の酸化物とすることが可能等の点から、次亜塩素酸ナトリウムを用いることが好ましい。 The oxidizing agent used in the present invention, for example, chlorine, sodium hypochlorite, chlorine-based oxidizing agent such as chlorine dioxide, ozone, hydrogen peroxide, air, oxygen-based oxidizing agent such as oxygen, potassium permanganate And any material such as sodium permanganate. Further, the oxidizing agent may be any of solid, liquid, and gas (oxidizing gas). An oxidizing agent may be used individually by 1 type, and may be used in combination of 2 or more type. Among these oxidizing agents, sodium hypochlorite is used from the viewpoints of ease of handling , economy, and the ability to make iron a trivalent oxide and manganese a tetravalent oxide. It is preferable.

酸化剤の導入量は、原水中の被酸化性成分の濃度、酸化剤の種類、酸化剤が溶液等の場合は酸化剤の濃度、HRT(水理学的滞留時間)、及び処理槽の大きさ等によって適切な量を決定するため、特に限定されるものではない。   The amount of oxidant introduced is the concentration of the oxidizable component in the raw water, the type of oxidant, the concentration of the oxidant when the oxidant is a solution, HRT (hydraulic residence time), and the size of the treatment tank. Since an appropriate amount is determined by, for example, it is not particularly limited.

例えば、酸化剤として次亜塩素酸ナトリウムを用いて、被酸化性分として鉄及びマンガンを酸化する場合には、槽内の残留塩素濃度が0.05mg/L以上5.0mg/L以下、好ましくは0.1mg/L以上1.0mg/L以下となるように、次亜塩素酸ナトリウムの導入量を決定することが好ましい。   For example, when sodium hypochlorite is used as an oxidizing agent and iron and manganese are oxidized as oxidizable components, the residual chlorine concentration in the tank is 0.05 mg / L or more and 5.0 mg / L or less, preferably It is preferable to determine the amount of sodium hypochlorite introduced so that is 0.1 mg / L or more and 1.0 mg / L or less.

残留塩素濃度が下限値未満であると、被酸化性成分の濃度の如何によらず、酸化の進行が遅くなり、酸化処理に長時間要する(HRTを長くせざるを得なくなる)傾向にある。また、残留塩素濃度が下限値未満の場合、被酸化性の鉄、マンガン等の金属成分が水酸化第二鉄Fe(OH)や水酸化マンガンMn(OH)のような水酸化物の形態となり、分離膜に付着してファウリングを形成しやすくなる等の傾向にある。唯、残塩濃度を上記下限値以上とすることで、被酸化性の鉄、マンガン等の金属成分を、例えば酸化第二鉄Fe・nHOや二酸化マンガンMnOのような完全な酸化状態(酸化物の状態)にすることが可能となるため、ファウリングが生じ難くなる。また一方で、残留塩素濃度が上記上限値を超えると、HRTを小さくすることはできるが処理槽の環境管理が難しくなる傾向にある。 If the residual chlorine concentration is less than the lower limit value, the progress of the oxidation is delayed regardless of the concentration of the oxidizable component, and the oxidation treatment tends to take a long time (HRT must be lengthened). Further, when the residual chlorine concentration is less than the lower limit value, the metal component such as oxidizable iron or manganese is a hydroxide such as ferric hydroxide Fe (OH) 3 or manganese hydroxide Mn (OH) 2. It tends to be in the form of a fouling that adheres to the separation membrane. However, by setting the residual salt concentration to be equal to or higher than the above lower limit value, metal components such as oxidizable iron and manganese can be completely converted into, for example, ferric oxide Fe 2 O 3 .nH 2 O and manganese dioxide MnO 2. Since it becomes possible to be in an oxidized state (oxide state), fouling is difficult to occur. On the other hand, if the residual chlorine concentration exceeds the above upper limit, the HRT can be reduced, but environmental management of the treatment tank tends to be difficult.

酸化剤として、液状又は固形状の酸化剤と酸化性ガスとを組み合わせて使用する場合には、最適な液状又は固形状の酸化剤の添加量は、ガスの吹き込み方法及び量等を勘案して決定する。例えば、次亜塩素酸ナトリウムと空気吹込みを併用する場合には、添加する次亜塩素酸ナトリウムの量は、空気吹き込みの方法及び量に応じて低減することが可能となる。 When using a combination of a liquid or solid oxidant and an oxidizing gas as the oxidant, the optimum amount of liquid or solid oxidant added is determined in consideration of the gas blowing method and amount. decide. For example, when sodium hypochlorite and air blowing are used in combination, the amount of sodium hypochlorite to be added can be reduced according to the method and amount of air blowing.

本発明では分離膜フィルターとして浸漬型の膜を利用しており、膜分離効率を向上させる等の観点から、分離膜フィルターの下方に散気管(散気手段)を設置し、分離膜フィルターを揺動させるよう、バブリング(散気)を行ってもよい。
また、このバブリングにより、攪拌器を新たに設けなくても、処理槽内の被処理原水を攪拌することができ、槽内に導入する酸化剤や硫酸アルミニウムといった薬剤を略均一に行き渡らせることが可能となり、これらの薬剤導入に伴い生じる金属酸化物を含む固形物も、被処理原水中に略均一分散することができ、酸化、析出、凝集反応も処理槽内で略均一に行うことが可能となる。この際、バブリングガスとして空気等の酸化作用を有するガス(酸化性ガス)を吹込むと、処理槽内の酸化反応を補助することが可能となり、他の酸化剤を用いている場合には、その酸化剤の添加量を減らすことが可能となるため好ましい。
In the present invention, a submerged membrane is used as a separation membrane filter. From the viewpoint of improving membrane separation efficiency, an aeration tube (aeration means) is installed below the separation membrane filter, and the separation membrane filter is shaken. Bubbling (aeration) may be performed so that it moves.
Moreover, this bubbling can stir the raw water to be treated in the treatment tank without newly providing a stirrer, and can spread the chemicals such as the oxidizing agent and aluminum sulfate introduced into the tank almost uniformly. It is possible to disperse solid substances containing metal oxides generated by introducing these chemicals in the raw water to be treated, and the oxidation, precipitation and agglomeration reactions can be carried out substantially uniformly in the treatment tank. It becomes. At this time, if a gas having an oxidizing action such as air (oxidizing gas) is blown as a bubbling gas, it becomes possible to assist the oxidation reaction in the treatment tank, and when other oxidizing agents are used, This is preferable because the amount of the oxidizing agent added can be reduced.

散気管は、散気管より発生する気体により生じる気体と液体とが混合した上昇流(気液混合上昇流)が分離膜間を満遍なく通過し、分離膜フィルターの表面に沿って上昇し、膜表面の付着物を洗浄し得るよう配置する事が望ましい。バブリングは、連続的に行っても間欠的に行ってもよいが、バブリングを間欠的に行うと、バブリングの休止時に、酸化、析出及び/又は凝集によって処理槽内に生じた固形物のうち、少なくとも一部を、膜ろ過によらず、処理槽下部へ沈降させ、分離することができ、膜の負担を軽減することが可能となるので好ましい。
また、バブリングの間隔を調整することで、処理槽内の鉄及び/又はマンガンの酸化物の浮遊量を調節することも可能となる。バブリングの間隔は、処理槽中の固形物の量、膜差圧の回復程度等によって決定され、特に限定されるものではない。例えば、膜閉塞の防止効果と処理槽内の反応を促進させる酸化物の浮遊量とのバランスが良好となる等の観点からは、5〜60分間散気、1〜10分間停止の間隔、更に云えば8〜10分間散気、1〜2分間停止の間隔で行うことが好ましい。また、吸引ろ過についても吸引−停止の間隔をバブリングの間隔に合わせて行うのが好ましいがこれは特に本発明を限定するものではない。
In the diffuser, the upward flow (gas-liquid mixed upward flow), which is a mixture of gas and liquid generated by the gas generated from the diffuser, passes evenly between the separation membranes and rises along the surface of the separation membrane filter. It is desirable to arrange it so that the deposits can be cleaned. Bubbling may be performed continuously or intermittently. However, if bubbling is performed intermittently, the solids produced in the treatment tank due to oxidation, precipitation, and / or agglomeration, etc. when the bubbling is suspended At least a part can be settled and separated in the lower part of the treatment tank without using membrane filtration, and the burden on the membrane can be reduced, which is preferable.
In addition, by adjusting the bubbling interval, it is possible to adjust the floating amount of oxides such as iron and / or manganese in the treatment tank. The interval of bubbling is determined by the amount of solids in the treatment tank , the degree of recovery of the film differential pressure, etc., and is not particularly limited. For example, from the standpoint that the balance between the effect of preventing membrane clogging and the amount of floating oxide that promotes the reaction in the treatment tank is good, the air diffuses for 5 to 60 minutes, the interval between the stops for 10 minutes, In other words, it is preferably performed at intervals of aeration for 8 to 10 minutes and stop for 1 to 2 minutes. Further, the suction filtration is preferably performed by adjusting the suction-stop interval to the bubbling interval, but this does not particularly limit the present invention.

更に、散気管の下方に傾斜板を設けると、固形物の処理槽下部への沈降を促進させることができ、一旦沈降した固形物が浮上するのを防止することも可能となるので有効である。   Furthermore, if an inclined plate is provided below the diffuser tube, it is effective because it is possible to promote the sedimentation of the solid matter to the lower part of the treatment tank and to prevent the solid matter that has once settled from rising. .

処理槽における被処理原水のHRTは、酸化等の反応を十分に促進させる等の観点から、5分以上であることが望ましい。また、処理効率、経済性等の観点から、HRTは30分以下であることが望ましい。   The HRT of the raw water to be treated in the treatment tank is desirably 5 minutes or more from the viewpoint of sufficiently promoting a reaction such as oxidation. Further, from the viewpoint of processing efficiency, economy, etc., the HRT is desirably 30 minutes or less.

酸化剤の導入量の制御方法は、特に限定されず、如何なる方法によっても良い。一例を挙げると、例えば、酸化剤として次亜塩素酸ナトリウムを使用する場合には、処理槽内に残留塩素計(残留塩素センサ)を設置し、その残留塩素濃度を連続的に検出し、検出された残塩濃度に応じて次亜塩素酸ナトリウムの注入量をコントロールしてもよい。また、分離膜フィルターの二次側(処理水側)の配管中に残留塩素計を設置し、検出された残塩濃度に応じて所定量の次亜塩素酸ナトリウムを注入するよう制御してもよい。   The method for controlling the amount of oxidant introduced is not particularly limited, and any method may be used. For example, when sodium hypochlorite is used as an oxidant, a residual chlorine meter (residual chlorine sensor) is installed in the treatment tank, and the residual chlorine concentration is continuously detected and detected. The amount of sodium hypochlorite injected may be controlled according to the residual salt concentration. In addition, a residual chlorine meter is installed in the secondary side (treated water side) pipe of the separation membrane filter, and control is performed so as to inject a predetermined amount of sodium hypochlorite according to the detected residual salt concentration. Good.

本発明で用いられる硫酸アルミニウムは、一般に水道浄水の凝集剤として使用されるものを用いることができる。硫酸アルミニウムの添加量は、原水に含まれる被酸化性成分の濃度のみならず、ヒ素等の無機系有害成分及びシリカの含有量等によっても調整される。分離対象成分の濃度と硫酸アルミニウム添加量の関係は、特に限定するものではなく、例えば、分離対象成分の濃度10〜70mg/Lに対し、硫酸アルミニウムをAlに換算した値(以下、Al換算値という)で5〜100mg/L、好ましくは10〜50mg/Lを添加すると効果的である。
なお、ここで分離対象成分濃度とは、除去対象とする全ての水中微量成分の合計(例えば、被酸化性成分、シリカ及びヒ素を除去対象とする場合には、これら全体の合計)の濃度をいう。
As the aluminum sulfate used in the present invention, those generally used as a flocculant for tap water can be used. The amount of aluminum sulfate added is adjusted not only by the concentration of oxidizable components contained in the raw water, but also by the content of inorganic harmful components such as arsenic and silica. The relationship between the concentration of the component to be separated and the amount of aluminum sulfate added is not particularly limited. For example, for the concentration of the component to be separated of 10 to 70 mg / L, a value obtained by converting aluminum sulfate to Al 2 O 3 (hereinafter, It is effective to add 5 to 100 mg / L, preferably 10 to 50 mg / L in terms of Al 2 O 3 equivalent value.
Here, the concentration of components to be separated is the total concentration of all trace components in water to be removed (for example, the total of these components when oxidizable components, silica and arsenic are to be removed). Say.

硫酸アルミニウムの添加量の制御方法としては、例えば、被処理原水の処理量に比例して硫酸アルミニウムを注入する比例制御(所定の注入率で注入量を制御)、又は、被処理原水の処理量を一定にした上で原水処理量に対し定量的に注入する定量注入等が挙げられるが、後者の方が設備コストが安価で済み、好ましい。   As a method for controlling the amount of aluminum sulfate added, for example, proportional control in which aluminum sulfate is injected in proportion to the amount of raw water to be treated (injection amount is controlled at a predetermined injection rate), or the amount of raw water to be treated is treated. However, the latter is preferable because the equipment cost is low and the latter is preferable.

本発明では、分離膜フィルターの一次側に供給された被処理水を分離膜フィルターを通して二次側に透過させることで処理水(ろ過水)を得る。具体的には、分離膜フィルターの一次側となる処理槽に分離膜フィルターを浸漬して、分離膜フィルターの二次側にある処理水出口を減圧状態としてろ過処理を行う浸漬型の膜ろ過(分離膜浸漬型ろ過)を基本とし、膜分離は膜壁の外側(一次側)から内側(二次側)に向かって被処理水が通過する際にろ過処理が行われる。
分離膜フィルターの孔径(膜孔径)は、特に限定するものではないが、被酸化性成分の酸化により生じた酸化物微粒子の粒径、及び、該酸化物微粒子又は他の水中微量成分を含む凝集体の大きさ等を考慮すると、0.0001μm以上1.0μm以下、好ましくは0.005μm以上0.5μm以下であることが望ましい。膜孔径が上記範囲内にあると、透水能力、処理効率、凝集体の透過阻止能力のバランスに優れる傾向にある。
In the present invention, treated water (filtrated water) is obtained by allowing the treated water supplied to the primary side of the separation membrane filter to pass through the separation membrane filter to the secondary side. Specifically, a submerged membrane filter is used in which the separation membrane filter is immersed in a treatment tank on the primary side of the separation membrane filter, and the treatment water outlet on the secondary side of the separation membrane filter is subjected to filtration treatment under reduced pressure. Based on separation membrane immersion type filtration), membrane separation is performed when water to be treated passes from the outside (primary side) to the inside (secondary side) of the membrane wall.
The pore size (membrane pore size) of the separation membrane filter is not particularly limited, but the particle size of the oxide fine particles produced by oxidation of the oxidizable component and the aggregate containing the oxide fine particles or other trace components in water. In consideration of the size of the aggregate, it is desirable that it is 0.0001 μm to 1.0 μm, preferably 0.005 μm to 0.5 μm. When the membrane pore diameter is within the above range, the balance of water permeability, treatment efficiency, and aggregate permeation prevention tends to be excellent.

分離膜フィルターの素材は、有機素材であっても無機素材であってもよく、特に限定されない。
有機素材を用いた分離膜フィルターの例としては、例えば、ポリスルホン、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリ塩化ビニル、PTFE、又はPVDFの有機素材から構成される中空糸膜、平膜又は管状膜等が用いられる。
また、無機素材を用いた分離膜フィルターの例としては、例えばセラミックの無機素材で構成される管状膜又はモノリス膜等を用いることができる。単独又は複数の分離膜フィルターよりなる浸漬膜モジュールの形状としては、分離膜フィルターの開口部の全てを集水管に直結させた形状のものが用いられる。
The material of the separation membrane filter may be an organic material or an inorganic material, and is not particularly limited.
Examples of separation membrane filters using organic materials include, for example, hollow fiber membranes, flat membranes or tubular membranes made of organic materials such as polysulfone, polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, PTFE, or PVDF Is used.
Moreover, as an example of the separation membrane filter using an inorganic material, for example, a tubular membrane or a monolith membrane made of an inorganic material such as ceramic can be used. As the shape of the submerged membrane module including a single or a plurality of separation membrane filters, a shape in which all of the openings of the separation membrane filter are directly connected to the water collecting pipe is used.

ろ過に必要な膜ろ過差圧は、いかなる方法により得られてもよいが、例えば、水位差から生じる水頭圧を利用した自然流下で得るもの、真空ポンプ等のポンプによる吸引によるもの、又はこれらの併用が挙げられる。吸引による場合は、例えば上記分離膜フィルターの開口部に連結された集水管の他端部が処理水出口となるので、この処理水出口を真空ポンプ等で吸引し、減圧状態とすることによりろ過を行うことができる。   The membrane filtration differential pressure necessary for the filtration may be obtained by any method, for example, obtained by natural flow using the water head pressure resulting from the water level difference, by suction by a pump such as a vacuum pump, or these Combined use is mentioned. In the case of suction, for example, the other end of the water collecting pipe connected to the opening of the separation membrane filter serves as a treated water outlet. It can be performed.

次に、本発明に用いられる水処理装置について、図1を参照しながら説明する。なお、図1の装置は、一典型例であり、本発明はこれに限定されるものではない。したがって、図1に記載の装置の構成要素のうち、本発明の本質的部分ではない構成要素については置換又は省略することができる。   Next, the water treatment apparatus used in the present invention will be described with reference to FIG. The apparatus shown in FIG. 1 is a typical example, and the present invention is not limited to this. Accordingly, among the components of the apparatus shown in FIG. 1, components that are not essential parts of the present invention can be replaced or omitted.

図1は、本発明の水処理方法に用いられる水処理装置の一態様を示す概略図である。図1に示すように、本実施形態の水処理装置は、被処理原水を貯留する処理槽1、処理槽1に配置される浸漬膜モジュール2、ブロワ3から送られるバブリングガスを散気する散気管4、処理槽1に被処理原水を導入する被処理原水導入手段、処理槽1に酸化剤を導入する酸化剤導入手段、処理槽1に硫酸アルミニウムを導入する硫酸アルミニウム導入手段、及び浸漬膜モジュール2から処理水を吸引する吸引手段としての処理水ポンプ10から主に構成されている。なお、酸化剤導入手段は、図示しない酸化剤タンク、酸化剤タンクと処理槽1とを繋ぐ酸化剤導入配管7、及び定量ポンプから主に構成される。また、硫酸アルミニウム導入手段は、図示しない硫酸アルミニウムタンク、硫酸アルミニウムタンクと処理槽1とを繋ぐ硫酸アルミニウム導入配管8、及び定量ポンプから主に構成される。   FIG. 1 is a schematic view showing an embodiment of a water treatment apparatus used in the water treatment method of the present invention. As shown in FIG. 1, the water treatment apparatus of the present embodiment diffuses a bubbling gas sent from a treatment tank 1 storing raw water to be treated, a submerged membrane module 2 disposed in the treatment tank 1, and a blower 3. The trachea 4, the raw water to be treated to be introduced into the treatment tank 1, the oxidant introduction means for introducing the oxidant into the treatment tank 1, the aluminum sulfate introduction means for introducing aluminum sulfate into the treatment tank 1, and the immersion membrane It is mainly composed of a treated water pump 10 as a suction means for sucking treated water from the module 2. The oxidant introduction means mainly includes an oxidant tank (not shown), an oxidant introduction pipe 7 connecting the oxidant tank and the processing tank 1, and a metering pump. The aluminum sulfate introduction means is mainly composed of an aluminum sulfate tank (not shown), an aluminum sulfate introduction pipe 8 connecting the aluminum sulfate tank and the treatment tank 1, and a metering pump.

本実施形態では、被処理原水として、ヒ素といった無機系有害成分と、鉄と、マンガンと、シリカとを含み、かつ、鉄成分の濃度が0.5mg/L以上である原水を用い、酸化剤として次亜塩素酸ナトリウムの水溶液を用い、バブリングガスとして空気を用い、かつ、被処理原水を連続処理する例について説明する。
鉄、マンガン、シリカ及び無機系有害成分を含む被処理原水は、被処理原水導入手段としての被処理原水導入配管6を介して図示しない定量ポンプにより処理槽1内に導入される。
In the present embodiment, raw water containing inorganic harmful components such as arsenic, iron, manganese, and silica and having an iron component concentration of 0.5 mg / L or more is used as the raw water to be treated. An example in which an aqueous solution of sodium hypochlorite is used, air is used as the bubbling gas, and the raw water to be treated is continuously treated will be described.
The raw water to be treated containing iron, manganese, silica and inorganic harmful components is introduced into the treatment tank 1 by a metering pump (not shown) through the raw water introduction pipe 6 to be treated as means for introducing the raw water to be treated.

本実施形態では、処理槽1は、原水貯留槽(原水槽)を兼ねている。このように処理槽1が原水槽を兼ねることにより、原水槽の設置にかかる面積、費用等を低減することが可能となる。ここで、原水槽とは、処理前の原水を一時的に貯留しておくための水槽(タンク)を指し、例えば地下水を処理する場合、或いは浄水場等において表流水を処理する場合等に、処理前の原水(例えば、地下水や表流水)を貯留するいわゆる原水タンクをいう。   In the present embodiment, the processing tank 1 also serves as a raw water storage tank (raw water tank). Thus, it becomes possible to reduce the area concerning the installation of a raw | natural water tank, expense, etc., when the processing tank 1 serves as a raw | natural water tank. Here, the raw water tank refers to a water tank (tank) for temporarily storing raw water before treatment, for example, when processing groundwater or when processing surface water at a water purification plant, A so-called raw water tank for storing raw water (for example, groundwater or surface water) before treatment.

処理槽1内には、複数の分離膜フィルターから構成される浸漬膜モジュール2が設置されている。浸漬膜モジュール2の下方には、散気管4が配置されており、ブロワ3から連続的又は間欠的に送られた空気が散気管4より気泡5として放出され、分離膜フィルターの間を通り上昇する。その際、この気泡5により気液混合上昇流が生じ、浸漬膜モジュール2を揺動させ、分離膜フィルター間に被処理原水中に浮遊する固形物(析出物、凝集体)13が滞留したり、分離膜フィルターの表面に固形物13が付着するのを抑制し、また、付着した固形物13を除去することが可能となるので、膜分離効率を向上させることができる。   In the treatment tank 1, an immersion membrane module 2 composed of a plurality of separation membrane filters is installed. A diffuser tube 4 is arranged below the submerged membrane module 2, and air sent continuously or intermittently from the blower 3 is released as bubbles 5 from the diffuser tube 4 and rises through the separation membrane filter. To do. At this time, a gas-liquid mixed upward flow is generated by the bubbles 5 and the submerged membrane module 2 is swung, so that solids (precipitates and aggregates) 13 floating in the raw water to be treated are retained between the separation membrane filters. Further, it is possible to suppress the solid matter 13 from adhering to the surface of the separation membrane filter and to remove the attached solid matter 13, so that the membrane separation efficiency can be improved.

次に、処理槽1に次亜塩素酸ナトリウム及び硫酸アルミニウムが、それぞれ酸化剤導入配管7及び硫酸アルミニウム導入配管8を介して定量ポンプにより導入される。処理槽1内では、前述のように散気管4より供給される空気により気液混合上昇流が生じており、処理槽1内がこの上昇流により攪拌されるため、処理槽1内に導入された次亜塩素酸ナトリウム及び硫酸アルミニウムを処理槽1全体に行き渡らせることができる。このため、鉄及び/又はマンガンの酸化反応が処理槽1内で略均一に行われることになる。
また、この酸化反応により生じた、触媒及び/又は析出促進剤等として働くことが可能な、鉄及び/又はマンガンの酸化物を、処理槽1内に略均一に分散することが可能となるので、処理槽1内で生じる酸化、析出、及び/又は凝集等の各種反応を略均一に行うことが可能となる。したがって、酸化反応の一層の促進、或いはシリカ等の微量成分の凝集(沈降)の一層の促進を図ることが可能となると考えられる。
Next, sodium hypochlorite and aluminum sulfate are introduced into the treatment tank 1 by a metering pump through an oxidant introduction pipe 7 and an aluminum sulfate introduction pipe 8, respectively. In the processing tank 1, as described above, a gas-liquid mixed upward flow is generated by the air supplied from the diffuser pipe 4, and the inside of the processing tank 1 is stirred by this upward flow, so that it is introduced into the processing tank 1. Further, sodium hypochlorite and aluminum sulfate can be distributed throughout the treatment tank 1. For this reason, the oxidation reaction of iron and / or manganese is performed substantially uniformly in the treatment tank 1.
In addition, it becomes possible to disperse the oxide of iron and / or manganese generated by this oxidation reaction, which can act as a catalyst and / or a precipitation accelerator, etc., in the treatment tank 1 substantially uniformly. Various reactions such as oxidation, precipitation, and / or aggregation occurring in the treatment tank 1 can be performed substantially uniformly. Therefore, it is considered possible to further promote the oxidation reaction or further promote the aggregation (precipitation) of trace components such as silica.

次亜塩素酸ナトリウムの導入量は、処理槽内の残留塩素濃度が0.05mg/L以上5.0mg/L以下、好ましくは0.1mg/L以上1.0mg/L以下となるように調節される。具体的には、処理槽1内には残留塩素センサ15が設置されており、処理槽1内の残留塩素濃度が測定される。残留塩素濃度の測定値は、図示しない制御部に送られ、制御部において予め設定された設定範囲と比較される。
制御部は、残留塩素濃度の測定値が残留塩素濃度の設定範囲の下限値より低いと判断した場合には、次亜塩素酸ナトリウムの導入量を現在供給されている量より増加するように、酸化剤導入手段を構成する定量ポンプに指示を与え、残留塩素濃度の測定値が設定範囲に収まった時に次亜塩素酸ナトリウムの導入量をそのまま固定するよう指示を送る。
また、制御部が残留塩素濃度の測定値が残留塩素濃度の設定範囲の上限値より高いと判断した場合には、現在供給されている量を減少させるように定量ポンプに指示し、残留塩素濃度の測定値が設定範囲に収まった時に次亜塩素酸ナトリウムの導入量をそのまま固定するよう指示を送る。これらの制御は、連続的に行われる。
The amount of sodium hypochlorite introduced is adjusted so that the residual chlorine concentration in the treatment tank is 0.05 mg / L or more and 5.0 mg / L or less, preferably 0.1 mg / L or more and 1.0 mg / L or less. Is done. Specifically, a residual chlorine sensor 15 is installed in the processing tank 1 and the residual chlorine concentration in the processing tank 1 is measured. The measured value of the residual chlorine concentration is sent to a control unit (not shown) and compared with a preset range set in the control unit.
When the control unit determines that the measured value of the residual chlorine concentration is lower than the lower limit value of the residual chlorine concentration setting range, the amount of sodium hypochlorite introduced is increased so as to be greater than the amount currently supplied. An instruction is given to a metering pump constituting the oxidant introduction means, and an instruction is sent to fix the amount of sodium hypochlorite introduced as it is when the measured value of residual chlorine concentration falls within the set range.
If the control unit determines that the measured value of residual chlorine concentration is higher than the upper limit of the residual chlorine concentration setting range, it instructs the metering pump to reduce the amount currently supplied, and the residual chlorine concentration When the measured value falls within the set range, an instruction is sent to fix the amount of sodium hypochlorite introduced as it is. These controls are performed continuously.

硫酸アルミニウムについては、被処理原水中に含まれる分離対象成分の濃度を測定し、分離対象成分の濃度10〜70mg/Lに対し、硫酸アルミニウムをAlに換算した値(以下、Al換算値という)で5〜100mg/L、好ましくは10〜50mg/Lとなるように、処理槽1内に導入する。 The aluminum sulfate, to measure the concentration of the separation target substances contained in the processed raw water, to a concentration 10 to 70 mg / L to be separated component, the value obtained by converting the aluminum sulphate Al 2 O 3 (hereinafter, Al 2 O 3 as converted value) 5 to 100 mg / L, preferably such that 10 to 50 mg / L, is introduced into the treatment vessel 1.

なお、本実施形態の水処理装置には、必要に応じて、金属成分添加手段(金属成分添加装置)を設けてもよい。金属成分添加手段は、図示しない金属成分タンク、金属成分と処理槽1を繋ぐ金属成分導入配管9及び定量ポンプより主に構成される。原水中に含まれる被酸化性金属成分の量が0.5mg/Lに満たない場合には、被酸化性金属成分の量が0.5mg/L以上となるように、鉄イオン等の比較的酸化され易い金属成分を、金属成分導入配管9を介して定量ポンプにより処理槽1内の被処理原水に加えられる。   In addition, you may provide the metal component addition means (metal component addition apparatus) in the water treatment apparatus of this embodiment as needed. The metal component addition means is mainly composed of a metal component tank (not shown), a metal component introduction pipe 9 connecting the metal component and the processing tank 1, and a metering pump. When the amount of the oxidizable metal component contained in the raw water is less than 0.5 mg / L, the amount of the oxidizable metal component is relatively low such as iron ions so that the amount of the oxidizable metal component is 0.5 mg / L or more. A metal component which is easily oxidized is added to the raw water to be treated in the treatment tank 1 by a metering pump through the metal component introduction pipe 9.

散気管4の下方には、傾斜板12が配置されている。酸化剤及び硫酸アルミニウムの導入により処理槽1内で生じた固形物13の少なくとも一部は、傾斜板12を経て、処理槽1の下部に集積される。傾斜板12は、固形物13が処理槽1の下部へ沈降するのを促すと共に、再び浮上するのを防止する役割を果たす。集積された固形物13は処理槽1の下部に配置したバルブ14を開閉して外部へ適宜排出される。これにより、過剰の固形物が被処理原水中に浮遊することによる膜閉塞を防止すること等が可能となる。   An inclined plate 12 is disposed below the diffuser tube 4. At least a part of the solid material 13 generated in the processing tank 1 by the introduction of the oxidizing agent and aluminum sulfate is accumulated in the lower part of the processing tank 1 through the inclined plate 12. The inclined plate 12 serves to prevent the solid matter 13 from sinking to the lower portion of the processing tank 1 and to prevent it from rising again. The accumulated solid matter 13 is appropriately discharged to the outside by opening and closing the valve 14 disposed at the lower part of the processing tank 1. This makes it possible to prevent membrane clogging caused by excessive solids floating in the raw water to be treated.

処理槽1内で酸化剤及び硫酸アルミニウムで処理された被処理原水は、分離膜フィルターを介して処理水ポンプ10により吸引することにより、固形物がろ別され、清澄な処理水が取り出され、処理水配管11を介して図示しない貯水タンク等に送られる。   The raw water to be treated that has been treated with the oxidizing agent and aluminum sulfate in the treatment tank 1 is sucked by the treated water pump 10 through the separation membrane filter, so that solids are filtered out and clear treated water is taken out, It is sent to a water storage tank (not shown) through the treated water pipe 11.

本実施形態では、得られる処理水は、水道法に基づく水質基準に定められた値の範囲内、即ち、鉄分の濃度が0.3mg/L以下、マンガンの濃度が0.05mg/L以下、ヒ素の濃度が0.01mg/L以下となることを目指すが、より好ましくは各々の濃度が各々の濃度の半分程度以下になることが望ましい。 In the present embodiment, the treated water obtained is within the range of values determined by the water quality standard based on the Water Supply Law, that is, the iron concentration is 0.3 mg / L or less, the manganese concentration is 0.05 mg / L or less , The concentration of arsenic is aimed at 0.01 mg / L or less, but it is more preferable that each concentration is about half or less of each concentration.

なお、上記実施形態では、処理槽1下部より排出された固形物13は、外部へ排出することとしたが、少なくとも一部の固形物13を図示しない返送ライン(配管)を介して処理槽1内に返送してもよい。また、上記実施形態では、被処理原水を連続処理する例について説明したが、バッチ処理とすることを妨げるものではない。また、上記実施形態では、処理槽1が原水槽を兼ねる例について説明したが、処理槽1の前に原水槽を別途設けてもよい。   In the embodiment described above, the solid matter 13 discharged from the lower part of the processing tank 1 is discharged to the outside. However, at least a part of the solid matter 13 is processed via a return line (pipe) (not shown). You may return it within. Moreover, although the said embodiment demonstrated the example which carries out the continuous process of to-be-processed raw water, it does not prevent making it a batch process. Moreover, in the said embodiment, although the processing tank 1 demonstrated the example which serves as a raw | natural water tank, you may provide a raw | natural water tank separately before the processing tank 1. FIG.

地下水を原水として原水槽に流入し、酸化剤として次亜塩素酸ナトリウムを、原水槽内の残留塩素濃度が0.2mg/Lになるようにコントロールして注入した。また別に、硫酸アルミニウムを、原水槽内濃度で20mg/L(Al換算値)となるよう添加した。原水槽内には分画0.01μmのPVDF製浸漬型UF中空糸膜フィルターモジュールを配置し、吸引ポンプによってOUT−IN方式で30KPaのろ過差圧の下、10分吸引1分停止の間隔で膜ろ過線流速約1m/m/日で連続的にろ過処理を行った。HRTは30分であった。
浸漬膜モジュールの下方には散気管を配置し、酸化の補助と膜のファウリング防止を兼ねてフィルターモジュールの底部面積あたり20Nm/m/時で空気バブリングを行った。散気管の下方に傾斜板があり、酸化・析出・凝集体は、順次、錐形の原水槽底部に堆積したので様子を見て原水槽底部のバルブを開いて排出した。
Groundwater was flowed into the raw water tank as raw water, and sodium hypochlorite as an oxidant was injected in a controlled manner so that the residual chlorine concentration in the raw water tank was 0.2 mg / L. Separately, aluminum sulfate was added so that the concentration in the raw water tank was 20 mg / L (Al 2 O 3 equivalent value). An immersion UF hollow fiber membrane filter module made of PVDF with a fraction of 0.01 μm is placed in the raw water tank, and the suction pump pumps out for 10 minutes under a differential pressure of 30 KPa with an OUT-IN method at intervals of 10 minutes. The membrane was continuously filtered at a flow rate of about 1 m 3 / m 2 / day. HRT was 30 minutes.
A diffuser tube was placed below the submerged membrane module, and air bubbling was performed at 20 Nm 3 / m 2 / hour per bottom area of the filter module, both for assisting oxidation and preventing fouling of the membrane. There was an inclined plate below the air diffuser, and oxidation, precipitation, and aggregates were sequentially deposited on the bottom of the cone-shaped raw water tank.

比較例として硫酸アルミニウムを添加しない系(比較例1)、硫酸アルミニウムに替えてPAC(ポリ塩化アルミニウム)を添加した系(比較例2)を用い、実施例1と同様の条件で試行した。   As a comparative example, a system in which aluminum sulfate was not added (Comparative Example 1) and a system in which PAC (polyaluminum chloride) was added instead of aluminum sulfate (Comparative Example 2) were used and the same conditions as in Example 1 were tried.

実施例1、比較例1、及び比較例2の結果を、第1表に示す。   The results of Example 1, Comparative Example 1, and Comparative Example 2 are shown in Table 1.

Figure 2010036180
Figure 2010036180

第1表に示すように、実施例1、比較例1及び比較例2のいずれでも、鉄及びマンガン成分はいずれの場合も99%近くの高い除去率で除去された。したがって、原水を酸化剤で処理し、膜分離することにより鉄及びマンガンは高い除去率で除去されると考えられる。これに対し、シリカ、ヒ素成分は、原水を酸化剤及び硫酸アルミニウムを用いて処理した場合には、90%以上の除去率が達成されたのに対し(実施例1)、硫酸アルミニウムを添加しない系(比較例1)及び同じアルミ系凝集剤のPACを添加した系(比較例2)ではシリカ、ヒ素成分は殆ど除去されなかった。 As shown in Table 1, in any of Example 1, Comparative Example 1 and Comparative Example 2, the iron and manganese components were removed at a high removal rate of nearly 99% in any case. Therefore, it is considered that iron and manganese are removed at a high removal rate by treating raw water with an oxidizing agent and performing membrane separation. In contrast, when the raw water was treated with an oxidizing agent and aluminum sulfate, the removal rate of 90% or more was achieved for silica and arsenic components (Example 1), but no aluminum sulfate was added. In the system (Comparative Example 1) and the system (Comparative Example 2) to which the same aluminum-based flocculant PAC was added, silica and arsenic components were hardly removed.

鉄及びマンガン成分の含有量が少ない地下水を原水として原水槽に流入し、これに鉄成分として塩化第二鉄水溶液を原水槽に注入し、鉄の含有量が0.6mg/Lになるように調整した。酸化剤として原水槽での残留塩素濃度が0.2mg/Lにコントロールして次亜塩素酸ナトリウムを注入した。
また別に、硫酸アルミニウムを原水槽内濃度で20mg/L(Al換算値)となるよう添加した。原水槽内には分画0.01μmのPVDF製浸漬型UF中空糸膜フィルターモジュールを配置し、吸引ポンプによってOUT−IN方式で30KPaのろ過差圧の下、10分吸引1分停止の間隔で膜ろ過線流速約1m/m/日で連続的にろ過処理を行った。HRTは30分であった。
浸漬膜モジュールの下方には散気管を配置し、酸化の補助と膜ろ過ファウリングの防止を兼ねてフィルターモジュールの底部面積あたり20Nm/m/時で空気バブリングを行った。散気管の下方には傾斜板を配置し、酸化・析出・凝集体は、順次、錐形の原水槽底部に堆積したので様子を見て原水槽底部のバルブを開いて排出した。
The groundwater with a low content of iron and manganese components flows into the raw water tank as raw water, and an aqueous ferric chloride solution is injected into the raw water tank as an iron component so that the iron content becomes 0.6 mg / L. It was adjusted. Residual chlorine concentration in the raw water tank was controlled to 0.2 mg / L as an oxidizing agent, and sodium hypochlorite was injected.
Separately, aluminum sulfate was added so that the concentration in the raw water tank was 20 mg / L (Al 2 O 3 equivalent value). An immersion UF hollow fiber membrane filter module made of PVDF with a fraction of 0.01 μm is placed in the raw water tank, and the suction pump pumps out for 10 minutes under a differential pressure of 30 KPa with an OUT-IN method at intervals of 10 minutes. The membrane was continuously filtered at a flow rate of about 1 m 3 / m 2 / day. HRT was 30 minutes.
A diffuser tube was placed below the submerged membrane module, and air bubbling was performed at 20 Nm 3 / m 2 / hour per bottom area of the filter module, both for assisting oxidation and preventing membrane filtration fouling. An inclined plate was placed below the air diffuser, and oxidation, precipitation, and aggregates were sequentially deposited on the bottom of the cone-shaped raw water tank.

比較例として、鉄の含有量が0.4mg/Lになるように塩化第二鉄水溶液を原水槽に注入した系(比較例3)と塩化第二鉄水溶液を原水槽に注入しない系(比較例4)を用いて、実施例2と同様の条件で実験を行った。   As a comparative example, a system in which an aqueous ferric chloride solution was injected into the raw water tank so that the iron content was 0.4 mg / L (Comparative Example 3) and a system in which an aqueous ferric chloride solution was not injected into the raw water tank (comparison) Using Example 4), the experiment was conducted under the same conditions as in Example 2.

実施例2、比較例3、及び比較例4の結果を、第2表に示す。   The results of Example 2, Comparative Example 3, and Comparative Example 4 are shown in Table 2.

Figure 2010036180
Figure 2010036180

第2表に示すように、被酸化性成分の鉄が0.5mg/L以上原水中に含まれる系では、酸化剤及び硫酸アルミニウムによる処理により、鉄は勿論、シリカ、ヒ素成分は90%以上除去されたのに対し(実施例2)、原水中に含まれる被酸化性成分の鉄が0.5mg/L未満の系(比較例3及び4)ではシリカ、ヒ素成分は殆ど除去されなかった。 As shown in Table 2, in the system in which iron as an oxidizable component is contained in raw water of 0.5 mg / L or more, 90% or more of silica and arsenic components as well as iron by treatment with an oxidizing agent and aluminum sulfate. In contrast to the removal (Example 2), silica and arsenic components were hardly removed in the system (Comparative Examples 3 and 4) in which the oxidizable component iron contained in the raw water was less than 0.5 mg / L. .

近年、地球環境の悪化等に伴う水道原水汚染の進行への対処、水道後進国での水道施設建設需要の急増、省エネルギー、省資源等を達成するために、水道浄水技術の革新が必要となっている。本発明は、簡単な設備で効率良く複数の水中微量成分を同時に除去することが可能であり、小規模施設等での飲料水(水道水)の製造に好適に適用できる。   In recent years, it has become necessary to innovate water purification technology in order to cope with the progress of raw water supply pollution due to the deterioration of the global environment, rapid increase in demand for construction of water supply facilities in less developed countries, energy saving, resource saving, etc. ing. The present invention can efficiently remove a plurality of trace water components simultaneously with simple equipment and can be suitably applied to the production of drinking water (tap water) in a small-scale facility or the like.

図1は、本発明の水処理方法に用いられる水処理装置の一態様を示す概略図である。FIG. 1 is a schematic view showing an embodiment of a water treatment apparatus used in the water treatment method of the present invention.

1 処理槽(原水槽)
2 浸漬膜モジュール
3 ブロワ
4 散気管
5 気泡
6 被処理原水導入配管
7 酸化剤導入配管
8 硫酸アルミニウム導入配管
9 金属成分導入配管
10 処理水ポンプ
11 処理水配管
12 傾斜板
13 固形物
14 バルブ
15 残留塩素センサ
1 treatment tank (raw water tank)
2 Submerged membrane module 3 Blower 4 Aeration pipe 5 Air bubbles 6 Raw water introduction pipe to be treated 7 Oxidant introduction pipe 8 Aluminum sulfate introduction pipe 9 Metal component introduction pipe 10 Treated water pump 11 Treated water pipe 12 Inclined plate 13 Solid 14 Valve 15 Residual Chlorine sensor

Claims (9)

被酸化性成分、シリカ及び無機系有害成分を含む被処理原水を貯留した槽内に浸漬した分離膜フィルターで膜ろ過を行い、処理水を得る水処理方法であって、
前記被処理原水を酸化剤及び硫酸アルミニウムで処理した後、生じた固形物を前記槽内の前記分離膜フィルターにより固液分離することで、前記被酸化性成分、シリカ及び無機系有害成分を一括除去することを特徴とする水処理方法。
A water treatment method for obtaining treated water by performing membrane filtration with a separation membrane filter immersed in a tank storing raw water to be treated containing oxidizable components, silica and inorganic harmful components,
After the raw water to be treated is treated with an oxidant and aluminum sulfate, the resulting solid matter is solid-liquid separated by the separation membrane filter in the tank, so that the oxidizable component, silica and inorganic harmful components are collected at once. A water treatment method comprising removing the water.
前記被酸化性成分が鉄及び/又はマンガンであり、鉄及び/又はマンガンが被処理原水中に0.5mg/L以上含まれていることを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the oxidizable component is iron and / or manganese, and iron and / or manganese is contained in the raw water to be treated in an amount of 0.5 mg / L or more. 前記無機系有害成分が、ヒ素であることを特徴とする請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein the inorganic harmful component is arsenic . 前記被酸化性成分が鉄及びマンガンであり、前記無機系有害成分がヒ素であり、前記処理水中の鉄の濃度を0.3mg/L以下、マンガンの濃度を0.05mg/L以下、ヒ素の濃度を0.01mg/L以下とすることを特徴とする請求項1乃至3のいずれかに記載の水処理方法。 It said oxidizable components are iron and manganese, wherein an inorganic-based harmful components arsenic, the concentration of iron in the treated water 0.3 mg / L or less, the concentration of manganese 0.05 mg / L or less, arsenic The water treatment method according to any one of claims 1 to 3, wherein the concentration is 0.01 mg / L or less . 前記酸化剤として次亜塩素酸ナトリウムを用い、前記槽内における残留塩素濃度を0.1mg/L以上1.0mg/L以下とすることを特徴とする請求項1乃至4のいずれかに記載の水処理方法。   The sodium hypochlorite is used as the oxidizing agent, and the residual chlorine concentration in the tank is set to 0.1 mg / L or more and 1.0 mg / L or less, according to any one of claims 1 to 4. Water treatment method. 前記酸化剤として、次亜塩素酸ナトリウムと空気とを併用し、空気を前記分離膜フィルターの下方に設置した散気手段により供給することを特徴とする請求項1乃至5のいずれかに記載の水処理方法。   The sodium chlorite and air are used in combination as the oxidant, and air is supplied by an air diffuser installed below the separation membrane filter. Water treatment method. 前記槽における被処理原水のHRTが5分以上であることを特徴とする請求項1乃至6のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 6, wherein the raw water to be treated in the tank has an HRT of 5 minutes or more. 被酸化性成分、シリカ及び無機系有害成分を含む被処理原水を、酸化剤及び硫酸アルミニウムで処理した後、生じた固形物を分離膜フィルターにより固液分離することで、前記被酸化性成分、シリカ及び無機系有害成分を一括除去することを特徴とする水処理方法。   The treated raw water containing the oxidizable component, silica and inorganic harmful components is treated with an oxidant and aluminum sulfate, and then the resulting solid matter is solid-liquid separated by a separation membrane filter, whereby the oxidizable component, A water treatment method characterized by collectively removing silica and inorganic harmful components. ヒ素の無機系有害成分と、鉄及び/又はマンガンと、シリカとを含み、鉄及び/又はマンガンの濃度が0.5mg/L以上である被処理原水を貯留した槽内に、次亜塩素酸ナトリウム及び硫酸アルミニウムを注入した後、生じた固形物を当該槽内に浸漬した分離膜フィルターにより分離し、処理水を得る水処理方法であって、
前記槽内の残留塩素濃度が0.1mg/L以上1.0mg/L以下となるように次亜塩素酸ナトリウムの注入量を制御すると共に、前記分離膜フィルターの下方に設けられた散気手段により、酸化性ガスを散気することで、酸化性ガスの散気時には、該槽内の酸化反応を補助すると同時に、前記分離膜フィルターの膜表面に沿って上昇する上昇流を生じさせ、前記分離膜フィルターの膜表面を洗浄し、かつ、鉄及び/又はマンガンと次亜塩素酸ナトリウム及び/又は前記酸化性ガスとの反応により生じた酸化鉄及び/又は酸化マンガンを槽内にほぼ均等に存在せしめ、前記槽内の酸化、結晶析出、及び/又は凝集を促進させ、酸化性ガスの停止時には、前記槽内に生じた固形物の少なくとも一部が槽底部に沈降するのを促進し、該槽内に浮遊する固形物の量を調節することで、無機系有害成分と、鉄及び/又はマンガンと、シリカとを一括除去することを特徴とする水処理方法。
Hypochlorous acid is contained in a tank storing raw water to be treated, which contains inorganic harmful components of arsenic , iron and / or manganese, and silica, and the concentration of iron and / or manganese is 0.5 mg / L or more. After injecting sodium and aluminum sulfate, the produced solid matter is separated by a separation membrane filter immersed in the tank, and a water treatment method for obtaining treated water,
Aeration means provided below the separation membrane filter while controlling the injection amount of sodium hypochlorite so that the residual chlorine concentration in the tank is 0.1 mg / L or more and 1.0 mg / L or less. By diffusing the oxidizing gas, when the oxidizing gas is diffused, the oxidation reaction in the tank is assisted, and at the same time, an upward flow rising along the membrane surface of the separation membrane filter is generated, The membrane surface of the separation membrane filter is washed, and iron oxide and / or manganese oxide generated by the reaction of iron and / or manganese with sodium hypochlorite and / or the oxidizing gas is almost evenly contained in the tank. To promote oxidation, crystal precipitation, and / or aggregation in the tank, and at the time of stopping the oxidizing gas, promote at least a part of the solid matter generated in the tank to settle to the bottom of the tank, Floating in the tank That amount of solids by adjusting the, and inorganic toxic substances, and iron and / or manganese, water treatment method characterized in that collectively remove the silica.
JP2008226485A 2008-08-07 2008-08-07 Water treatment method Active JP5257591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226485A JP5257591B2 (en) 2008-08-07 2008-08-07 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226485A JP5257591B2 (en) 2008-08-07 2008-08-07 Water treatment method

Publications (3)

Publication Number Publication Date
JP2010036180A JP2010036180A (en) 2010-02-18
JP2010036180A5 true JP2010036180A5 (en) 2011-09-15
JP5257591B2 JP5257591B2 (en) 2013-08-07

Family

ID=42009266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226485A Active JP5257591B2 (en) 2008-08-07 2008-08-07 Water treatment method

Country Status (1)

Country Link
JP (1) JP5257591B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331186B2 (en) * 2011-01-20 2018-05-30 三菱ケミカル株式会社 Waste water treatment apparatus, treatment method, and waste water treatment system
WO2012111431A1 (en) * 2011-02-18 2012-08-23 水ing株式会社 Method and device for treating waste liquid
JP5974489B2 (en) * 2012-01-11 2016-08-23 マツダ株式会社 Method for extending the life of phosphate coating solution
EP2837687B1 (en) 2012-03-30 2017-02-22 Toray Industries, Inc. Method for producing chemical by means of continuous fermentation and continuous fermentation device
JP6088360B2 (en) * 2013-06-03 2017-03-01 パナソニック株式会社 Filtration device
JP2016168530A (en) * 2015-03-12 2016-09-23 三井・デュポンフロロケミカル株式会社 Method of separating fluorine-containing solvent, method of removing fluorine-containing solvent contaminant, and device
JP6005224B1 (en) * 2015-08-19 2016-10-12 株式会社ヤマト Filtration method and filtration device
CN115108656A (en) * 2022-06-22 2022-09-27 晋江市华天市政工程有限公司 Combined technology treatment method for water pollution treatment
CN115259250B (en) * 2022-06-22 2024-01-19 晋江市华天市政工程有限公司 Combined technical treatment method for water pollution treatment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493103A (en) * 1977-12-29 1979-07-24 Sanyo Kokusaku Pulp Co Treatment of peroxide bleaching waste solution
JPH07232197A (en) * 1994-02-23 1995-09-05 Kubota Corp Advanced treatment of water and its device
JP2005000875A (en) * 2003-06-13 2005-01-06 Kanazawa Univ Tlo Inc Method for recycling acidic waste water component and acidic waste water treatment system
JP2005186047A (en) * 2003-12-25 2005-07-14 Uerushii:Kk Method for cleaning arsenic-containing raw water

Similar Documents

Publication Publication Date Title
JP5257591B2 (en) Water treatment method
JP2010036180A5 (en)
JP5843071B2 (en) Water treatment equipment
CN105384316B (en) A kind of processing method of the fluorine-containing nitrogen-containing wastewater of electronics industry
CN102040294B (en) Treatment method for circulating water sewerage and reverse osmosis concentrated water
JP5142660B2 (en) Wastewater recovery device
CN206352096U (en) Desulfurization wastewater zero-discharge treatment system is carried out using flue evaporative crystallization
CN105948351A (en) Water treatment system and method
JP5210787B2 (en) Water treatment apparatus and water treatment method
WO2012146324A1 (en) Method for treatment of sludge from water and wastewater treatment plants with chemical treatment
JP2009072769A (en) Sewage treatment system
JP5818148B2 (en) Outside tank type membrane separation activated sludge method and activated sludge treatment equipment
CN111635033A (en) Method and device for treating thallium and arsenic-containing waste acid
JP6061024B2 (en) Method and apparatus for treating wastewater containing heavy metals
JP2014168729A (en) Water treatment method and water treatment apparatus
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP6164941B2 (en) Muddy water treatment system and muddy water treatment method
JP5954687B2 (en) Waste water treatment apparatus and waste water treatment method
JP2005052723A (en) Heavy metal removal method, and apparatus therefor
TW201912588A (en) Water treatment method and water treatment device excellent in treatment efficiency and capable of facilitating a reduction reaction of ferric ions in water treatment using a Fenton reaction involving a reduction reaction of ferric ions
JP4166881B2 (en) Wastewater treatment method and apparatus
CN104556372B (en) Method for adsorption separation of organic matters by residual sludge
WO2021175795A1 (en) Liquid treatment product and method with a gas-producing compound
CN209065586U (en) A kind of waste water circulation treating device producing soda ash based on BDO
JP4041977B2 (en) Method and apparatus for processing solution containing selenium