WO2016038986A1 - Image pickup device - Google Patents

Image pickup device Download PDF

Info

Publication number
WO2016038986A1
WO2016038986A1 PCT/JP2015/068690 JP2015068690W WO2016038986A1 WO 2016038986 A1 WO2016038986 A1 WO 2016038986A1 JP 2015068690 W JP2015068690 W JP 2015068690W WO 2016038986 A1 WO2016038986 A1 WO 2016038986A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification transistor
transistor
imaging device
imaging apparatus
semiconductor
Prior art date
Application number
PCT/JP2015/068690
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 東
鈴木 正道
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016038986A1 publication Critical patent/WO2016038986A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • Embodiments described herein relate generally to an imaging apparatus.
  • CMOS Complementary Metal Oxide Semiconductor
  • the pixel area is reduced in order to improve the resolution.
  • the size of the transistor included in the pixel is also reduced, but this increases the noise of the transistor.
  • Embodiments provide an imaging apparatus capable of reducing noise.
  • the imaging device includes a photoelectric conversion element and an amplification transistor that amplifies a signal from the photoelectric conversion element.
  • the amplification transistor has a buried channel structure and a structure capable of adjusting a threshold value.
  • FIG. 1 is a block diagram of an imaging apparatus according to a first embodiment.
  • FIG. 2 is a circuit diagram of the pixel shown in FIG. 1.
  • FIG. 2 is a cross-sectional view of the pixel shown in FIG. 1.
  • FIG. 5 is a schematic diagram illustrating a writing operation of an amplification transistor. The graph explaining the threshold value change of an amplification transistor.
  • 6 is a flowchart for explaining the operation of the imaging apparatus according to the first embodiment.
  • 9 is a flowchart for explaining the operation of the imaging apparatus according to the second embodiment.
  • 9 is a flowchart for explaining the operation of an imaging apparatus according to a third embodiment.
  • FIG. 1 is a block diagram of an imaging device 10 according to the first embodiment.
  • the imaging device 10 includes a pixel array unit 12, a row selection circuit 13, a plurality of signal processing circuits 14, a column selection circuit 16, an output circuit 17, a voltage generation circuit 18, and a control circuit 19.
  • the pixel array unit 12 includes a plurality of pixels 11 arranged in a matrix. Each pixel 11 includes a photoelectric conversion element. A specific configuration of the pixel 11 will be described later.
  • a plurality of control signal line groups 20, a plurality of write line groups 21, and a plurality of vertical signal lines 22 are disposed.
  • the control signal line group 20 includes control signal lines that send a transfer signal TRA, a reset signal RES, and a selection signal SEL, which will be described later, to the pixel array unit 12.
  • the write line group 21 includes write lines that send write signals PG 1 and PG 2 to be described later to the pixel array unit 12.
  • the row selection circuit 13 sequentially scans the rows of the pixel array unit 12.
  • the row selection circuit 13 sends a control signal and a write signal to the selected row.
  • the plurality of signal processing circuits 14 are connected to the plurality of vertical signal lines 22, respectively. Each signal processing circuit 14 processes a signal read from the pixel.
  • the signal processing circuit 14 includes an AD converter 15 that converts an analog signal into a digital signal.
  • the signal processing circuit 14 includes a CDS (Correlated Sampling) circuit, a column selection switch, and the like.
  • the column selection circuit 16 selects a column of the pixel array unit 12 and sends a column selection signal to the signal processing circuit 14.
  • the output circuit 17 is connected to the plurality of signal processing circuits 14 via the horizontal signal line 23.
  • the output circuit 17 is composed of, for example, a buffer, and outputs the pixel signal sent from the signal processing circuit 14 to the outside.
  • the voltage generation circuit 18 generates a plurality of voltages necessary for various operations of the imaging device 10.
  • the control circuit 19 comprehensively controls the operation of the imaging device 10.
  • FIG. 2 is a circuit diagram of the pixel 11 shown in FIG.
  • the pixel 11 includes a photoelectric conversion element 30, a floating diffusion FD as a charge storage region, a transfer transistor 31, a reset transistor 32, an amplification transistor 33, a first selection transistor 34, a second selection transistor 35, a first write transistor 37, a second A write transistor 38 and a third write transistor 39 are provided.
  • the transistors 31 to 35 and 37 to 39 for example, N-channel MOS transistors are used.
  • the photoelectric conversion element 30 is composed of, for example, a photodiode.
  • the photodiode 30 converts incident light into electric charges (electrons) and accumulates them.
  • the anode of the photodiode 30 is grounded.
  • the transfer transistor 31 has one end of the current path connected to the cathode of the photodiode 30 and the other end of the current path connected to the floating diffusion FD.
  • the transfer signal TRA is supplied from the control circuit 19 to the gate of the transfer transistor 31 via the control signal line.
  • the transfer transistor 31 transfers the charge accumulated in the photodiode 30 to the floating diffusion FD when the transfer signal TRA is asserted.
  • the reset transistor 32 has one end of the current path connected to the power supply terminal Vdd and the other end of the current path connected to the floating diffusion FD.
  • a reset signal RES is supplied from the control circuit 19 to the gate of the reset transistor 32 via a control signal line.
  • the reset transistor 32 sets the voltage of the floating diffusion FD to the power supply voltage Vdd when the reset signal RES is asserted.
  • the amplification transistor 33 has one end (drain) of the current path connected to the power supply terminal Vdd via the first selection transistor 34, the other end (source) of the current path connected to the vertical signal line 22, and a gate connected to the floating diffusion FD. Connected to.
  • the vertical signal line 22 is connected to a constant current source 36 as a load element through a second selection transistor 35.
  • the amplification transistor 33 constitutes a source follower circuit, and the voltage of the vertical signal line 22 follows the voltage fluctuation of the floating diffusion FD. As a result, a voltage corresponding to the charge amount (signal) of the floating diffusion FD and determined by the gate voltage of the amplification transistor 33 appears on the vertical signal line 22.
  • the amplifying transistor 33 is composed of a buried channel transistor whose threshold (threshold voltage) can be adjusted. A specific structure of the amplification transistor 33 will be described later.
  • the selection signal SEL is supplied from the control circuit 19 to the gate of the first selection transistor 34 via the control signal line.
  • the first selection transistor 34 applies the power supply voltage Vdd to the drain of the amplification transistor 33 when the selection signal SEL is asserted.
  • a selection signal SEL is supplied from the control circuit 19 to the gate of the second selection transistor 35 via a control signal line.
  • the second selection transistor 35 connects the constant current source 36 to the source of the amplification transistor 33 when the selection signal SEL is asserted.
  • the pixel 11 further includes a writing circuit.
  • the write circuit is for adjusting the threshold value of the amplification transistor 33, and includes a first write transistor 37, a second write transistor 38, and a third write transistor 39.
  • the transistors 37 to 39 function as switching elements.
  • the first write transistor 37 has one end of the current path connected to the power supply terminal Vpgm and the other end of the current path connected to the gate of the amplification transistor 33.
  • a write signal PG1 is supplied from the control circuit 19 to the gate of the first write transistor 37 via a write line.
  • the first write transistor 37 applies the write voltage Vpgm to the gate of the amplification transistor 33 when the write signal PG1 is asserted.
  • one end of the current path is connected to the power supply terminal Vdp, and the other end of the current path is connected to the drain of the amplification transistor 33.
  • a write signal PG2 is supplied from the control circuit 19 to the gate of the second write transistor 38 via a write line.
  • the second write transistor 38 applies the drain voltage Vdp to the drain of the amplification transistor 33 when the write signal PG2 is asserted.
  • the third write transistor 39 one end of the current path is connected to the source of the amplification transistor 33, and the other end of the current path is grounded.
  • a write signal PG ⁇ b> 2 is supplied from the control circuit 19 to the gate of the third write transistor 39 via the write line.
  • the third write transistor 39 applies the ground voltage Vss (0 V) to the source of the amplification transistor 33 when the write signal PG ⁇ b> 2 is asserted.
  • FIG. 3 is a cross-sectional view of the pixel 11 shown in FIG.
  • An element isolation insulating layer 42 is provided on a surface region of a semiconductor substrate as a semiconductor layer, for example, a P-type semiconductor substrate 41.
  • a photodiode 30 is provided in the P-type semiconductor substrate 41.
  • the photodiode 30 includes an N + type semiconductor region 30A and a P + type semiconductor region 30B. By forming the P + -type semiconductor region 30B on the N + -type semiconductor region 30A, the photodiode 30 can be embedded, and dark current generated on the substrate surface can be reduced.
  • the floating diffusion FD is composed of an N + type semiconductor region.
  • a transfer transistor 31 is provided between the photodiode 30 and the floating diffusion FD.
  • the transfer transistor 31 includes a gate insulating film 31A and a gate electrode 31B.
  • the amplification transistor 33 is composed of a buried channel transistor whose threshold value can be adjusted.
  • a memory transistor flash memory cell having a charge storage layer is used.
  • the amplifying transistor 33 includes a source region 33A and a drain region 33B that are provided separately in the semiconductor substrate 41, and a buried channel (channel dope region) 33C that is provided between the source region 33A and the drain region 33B. And a gate.
  • the buried channel 33C is provided in the surface region of the semiconductor substrate 41 and is in contact with the source region 33A and the drain region 33B.
  • the source region 33A and the drain region 33B are composed of N + type semiconductor regions, and the buried channel 33C is composed of an N ⁇ type semiconductor region.
  • the stacked gate of the amplification transistor 33 is configured by stacking a first insulating film 33D, a charge storage layer 33E, a second insulating film 33F, and a control gate electrode 33G.
  • the first insulating film 33D is called a tunnel insulating film.
  • the amplification transistor 33 may be any of a floating gate type, a MONOS (Metal-Oxide-Nitride-Silicon) type, and a SONOS (Silicon-Oxide-Nitride-Silicon) type.
  • the charge storage layer 33E is a floating gate electrode made of polycrystalline silicon or the like, and the second insulating film 33F is called an inter-gate insulating film.
  • the charge storage layer 33E is an insulating film made of silicon nitride or the like, and the second insulating film 33F is called a block insulating film.
  • An interlayer insulating layer 43 is provided on the semiconductor substrate 41, and a wiring layer (not shown) is provided on the interlayer insulating layer 43.
  • a color filter 44 is provided on the back side of the semiconductor substrate 41, and a condensing lens 45 is provided on the color filter 44. That is, the imaging apparatus of FIG.
  • FIG. 4 is a schematic diagram for explaining the write operation of the amplification transistor 33.
  • the threshold value of the amplification transistor 33 is adjusted by programming the amplification transistor 33.
  • the writing (programming) of the amplification transistor 33 is performed by hot carrier injection, for example.
  • the control circuit 19 asserts the write signal PG2, and thereby the second write transistor 38 and the third write transistor 39 are turned on.
  • the control circuit 19 asserts the write signal PG1, thereby turning on the first write transistor 37.
  • Vpgm for example, about 10 V
  • the control circuit 19 can perform control so that the transfer transistor 31 is turned off.
  • FIG. 5 is a graph for explaining a change in threshold value of the amplification transistor 33. Since the amplification transistor 33 is a buried channel transistor, it is a depletion type that is turned on when the gate voltage is 0V. That is, in the erased state where the amplification transistor 33 is not programmed, the threshold value of the amplification transistor 33 is relatively low. On the other hand, when the amplification transistor 33 is programmed, the threshold value of the amplification transistor 33 becomes relatively high, and the amplification transistor 33 can perform the same operation as the enhancement type.
  • the threshold value lowered by the buried channel can be increased, and the amplifying transistor 33 can be operated under a normal bias condition.
  • the erase operation of the amplification transistor 33 is performed as follows.
  • the erasing operation is performed by, for example, FN (Fowler-Nordheim) tunneling.
  • the second write transistor 38 and the third write transistor 39 are turned off. Subsequently, 0 V is applied to the semiconductor substrate 41 shown in FIG. 4 (or a well formed in the semiconductor substrate 41). Subsequently, the first write transistor 37 is turned on, and an erase voltage Vera is applied to the drain of the first write transistor 37 instead of Vpgm.
  • the erase voltage Vera is a negative voltage, for example, about ⁇ 20V.
  • FIG. 6 is a flowchart for explaining the operation of the imaging apparatus 10 according to the first example.
  • the imaging device 10 is manufactured as a semiconductor chip (step S100). Subsequently, the control circuit 19 performs a write operation for adjusting the threshold value of the amplification transistor 33 (step S101). This write operation is as described with reference to FIGS. Subsequently, the imaging device 10 is shipped from the factory (step S102).
  • the threshold value of the amplification transistor 33 may be adjusted before shipment from the factory.
  • the first embodiment is effective when the retention characteristic of the amplification transistor 33 is good.
  • FIG. 7 is a flowchart for explaining the operation of the imaging apparatus 10 according to the second embodiment.
  • the imaging device 10 is assumed to be mounted on a camera.
  • the control circuit 19 performs a verify operation for confirming the threshold value of the amplification transistor 33 (step S201).
  • the control circuit 19 executes a normal read mode, and further measures the source voltage of the amplification transistor 33 via the vertical signal line 22. Thereby, the threshold value of the amplification transistor 33 can be confirmed.
  • the control circuit 19 determines whether or not the threshold value confirmed in step S201 is within an allowable range (step S202).
  • the allowable range of the threshold can be arbitrarily set according to the specification of the imaging device 10, and is set to be equivalent to the characteristics of the N-channel MOS transistor included in the pixel, for example. If it is not within the allowable range in step S202, the control circuit 19 performs a write operation for adjusting the threshold value of the amplification transistor 33 (step S203). On the other hand, if it is within the allowable range in step S202, the write operation in step S203 is skipped.
  • control circuit 19 performs a normal operation according to the user's operation (step S204). Subsequently, the user turns off the camera (step S205).
  • the threshold value of the amplification transistor 33 may be adjusted each time the power supply of the imaging device 10 is turned on. According to the second embodiment, the threshold value of the amplification transistor 33 can be maintained at a desired value.
  • FIG. 8 is a flowchart for explaining the operation of the imaging apparatus 10 according to the third example.
  • the camera is turned on by the user (step S300). Subsequently, the control circuit 19 performs a normal operation according to the user's operation (step S301). Subsequently, the control circuit 19 receives a power-off signal from, for example, a controller of a camera on which the imaging device 10 is mounted (step S302).
  • control circuit 19 performs a verify operation for confirming the threshold value of the amplification transistor 33 (step S303). Subsequently, the control circuit 19 determines whether or not the threshold value confirmed in step S303 is within an allowable range (step S304). If it is not within the allowable range in step S304, the control circuit 19 performs a write operation for adjusting the threshold value of the amplification transistor 33 (step S305). On the other hand, if it is within the allowable range in step S304, the write operation in step S305 is skipped. Subsequently, the camera is turned off (step S306).
  • the threshold value of the amplification transistor 33 may be adjusted immediately before the power of the camera on which the imaging device 10 is mounted is turned off.
  • the pixel 11 includes the amplification transistor 33 that amplifies the charge of the photodiode 30.
  • the amplification transistor 33 has a buried channel structure and a structure capable of adjusting a threshold value.
  • the channel of the amplification transistor 33 can be separated from the interface state which is a noise source. Therefore, since the noise of the amplification transistor 33 can be reduced, the operating characteristics of the imaging device 10 can be improved. In addition, the size of the amplification transistor 33 can be further reduced, and the photodiode 30 can be configured to be larger by the reduction. As a result, the sensitivity of the pixel 11 can be improved.
  • the threshold value of the amplification transistor 33 can be set to an arbitrary value, the amplification transistor 33 can be operated under the same bias condition as that of a normal MOS transistor (surface channel transistor). This eliminates the need to change the operating voltage (bias condition) of the amplification transistor 33 in normal operation.
  • the threshold value of the transistor shifts to the negative side, and a current flows even when the voltage between the gate and the source is 0 V, which causes a problem in the operation of the imaging device.
  • the AD converter 15 shown in FIG. FIG. 9 is a circuit diagram of the comparator 50 included in the AD converter 15.
  • the comparator 50 includes P-channel MOS transistors 51, 52, and 57, N-channel MOS transistors 53 and 54, and constant current sources 55 and 58.
  • the transistors 53 and 54 are constituted by buried channel transistors whose thresholds can be adjusted.
  • the structure of the transistors 53 and 54 is the same as that of the amplification transistor 33 in FIG.
  • the semiconductor layer in which the transistors 53 and 54 are formed may be the same as or different from the semiconductor layer (P-type semiconductor substrate 41) in which the amplification transistor 33 is formed.
  • Transistors 51 and 52 constitute a current mirror circuit.
  • the transistor 51 has a source connected to the power supply terminal Vdd and a gate connected to the drain.
  • the transistor 52 has a source connected to the power supply terminal Vdd and a gate connected to the gate of the transistor 51.
  • the drain is connected to the drain of the transistor 51, the source is connected to the constant current source 55, and the input voltage Vin1 is input to the gate.
  • the drain is connected to the connection node 59 and the drain of the transistor 52, the source is connected to the constant current source 55, and the input voltage Vin2 is input to the gate.
  • the transistor 57 and the constant current source 58 constitute an output circuit.
  • the transistor 57 has a source connected to the power supply terminal Vdd, a gate connected to the connection node 59, and a drain connected to the output terminal 56 and the constant current source 58.
  • the comparator 50 configured as described above compares the input voltage Vin1 and the input voltage Vin2, and outputs the comparison result from the output terminal 56.
  • the noise of the transistors 53 and 54 included in the AD converter 15 can be reduced. Thereby, the operating characteristic of the imaging device 10 can be improved.
  • the size of the transistors 53 and 54 can be reduced while reducing the noise. Thereby, the size of the AD converter 15 can be reduced.
  • DESCRIPTION OF SYMBOLS 10 ... Imaging device, 11 ... Pixel, 12 ... Pixel array part, 13 ... Row selection circuit, 14 ... Signal processing circuit, 15 ... AD converter, 16 ... Column selection circuit, 17 ... Output circuit, 18 ... Voltage generation circuit, 19 DESCRIPTION OF SYMBOLS ... Control circuit, 20 ... Control signal line group, 21 ... Write line group, 22 ... Vertical signal line, 23 ... Horizontal signal line, 30 ... Photoelectric conversion element, 31 ... Transfer transistor, 32 ... Reset transistor, 33 ... Amplification transistor, 34 ... selection transistor, 35 ... selection transistor, 36 ... constant current source, 37-39 ... writing transistor, 41 ... semiconductor substrate, 42 ... element isolation insulating layer, 43 ... interlayer insulating layer, 44 ... color filter, 45 ... lens, 50: Comparator, 51, 52, 57: P channel MOS transistor, 53, 54: N channel MOS transistor, 55, 58 A constant current source, 56 ... output terminal.

Abstract

To provide an image pickup device whereby noise can be reduced. An image pickup device (10) includes a photoelectric conversion element (30), and an amplifying transistor (33) that amplifies signals transmitted from the photoelectric conversion element (30). The amplifying transistor (33) has an embedded channel structure wherein a threshold value can be adjusted.

Description

撮像装置Imaging device
 本発明の実施形態は、撮像装置に関する。 Embodiments described herein relate generally to an imaging apparatus.
 撮像装置として、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサーが知られている。CMOSイメージセンサーでは、解像度を向上させるために、例えば画素の面積が縮小される。画素の縮小に伴い、画素に含まれるトランジスタのサイズも縮小されるが、これにより、トランジスタのノイズが大きくなってしまう。 A CMOS (Complementary Metal Oxide Semiconductor) image sensor is known as an imaging device. In the CMOS image sensor, for example, the pixel area is reduced in order to improve the resolution. As the size of the pixel is reduced, the size of the transistor included in the pixel is also reduced, but this increases the noise of the transistor.
特開2008-166607号公報JP 2008-166607 A
 実施形態は、ノイズを低減することが可能な撮像装置を提供する。 Embodiments provide an imaging apparatus capable of reducing noise.
 実施形態に係る撮像装置は、光電変換素子と、前記光電変換素子からの信号を増幅する増幅トランジスタとを具備する。前記増幅トランジスタは、埋め込みチャネル構造を有し、かつ閾値の調整が可能な構造を有する。 The imaging device according to the embodiment includes a photoelectric conversion element and an amplification transistor that amplifies a signal from the photoelectric conversion element. The amplification transistor has a buried channel structure and a structure capable of adjusting a threshold value.
第1実施形態に係る撮像装置のブロック図。1 is a block diagram of an imaging apparatus according to a first embodiment. 図1に示した画素の回路図。FIG. 2 is a circuit diagram of the pixel shown in FIG. 1. 図1に示した画素の断面図。FIG. 2 is a cross-sectional view of the pixel shown in FIG. 1. 増幅トランジスタの書き込み動作を説明する模式図。FIG. 5 is a schematic diagram illustrating a writing operation of an amplification transistor. 増幅トランジスタの閾値変化を説明するグラフ。The graph explaining the threshold value change of an amplification transistor. 第1実施例に係る撮像装置の動作を説明するフローチャート。6 is a flowchart for explaining the operation of the imaging apparatus according to the first embodiment. 第2実施例に係る撮像装置の動作を説明するフローチャート。9 is a flowchart for explaining the operation of the imaging apparatus according to the second embodiment. 第3実施例に係る撮像装置の動作を説明するフローチャート。9 is a flowchart for explaining the operation of an imaging apparatus according to a third embodiment. ADコンバータに含まれるコンパレータの回路図。The circuit diagram of the comparator contained in an AD converter.
 以下、実施形態について図面を参照して説明する。ただし、図面は模式的または概念的なものであり、各図面の寸法および比率などは必ずしも現実のものと同一とは限らない。以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置などによって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については、同一符号を付し、重複説明は必要な場合にのみ行う。 Hereinafter, embodiments will be described with reference to the drawings. However, the drawings are schematic or conceptual, and the dimensions and ratios of the drawings are not necessarily the same as actual ones. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is specified by the shape, structure, arrangement, etc. of components. Is not to be done. In the following description, elements having the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
 [第1実施形態]
 [1]撮像装置の全体構成
 図1は、第1実施形態に係る撮像装置10のブロック図である。撮像装置10は、画素アレイ部12、行選択回路13、複数の信号処理回路14、列選択回路16、出力回路17、電圧発生回路18、及び制御回路19を備える。
[First Embodiment]
[1] Overall Configuration of Imaging Device FIG. 1 is a block diagram of an imaging device 10 according to the first embodiment. The imaging device 10 includes a pixel array unit 12, a row selection circuit 13, a plurality of signal processing circuits 14, a column selection circuit 16, an output circuit 17, a voltage generation circuit 18, and a control circuit 19.
 画素アレイ部12は、行列状に配置された複数の画素11を備える。各画素11は、光電変換素子を含む。画素11の具体的な構成については後述する。画素アレイ部12には、複数の制御信号線群20、複数の書き込み線群21、及び複数の垂直信号線22が配設される。制御信号線群20は、後述する転送信号TRA、リセット信号RES、及び選択信号SELを画素アレイ部12に送る制御信号線を備える。書き込み線群21は、後述する書き込み信号PG1、PG2を画素アレイ部12に送る書き込み線を備える。 The pixel array unit 12 includes a plurality of pixels 11 arranged in a matrix. Each pixel 11 includes a photoelectric conversion element. A specific configuration of the pixel 11 will be described later. In the pixel array unit 12, a plurality of control signal line groups 20, a plurality of write line groups 21, and a plurality of vertical signal lines 22 are disposed. The control signal line group 20 includes control signal lines that send a transfer signal TRA, a reset signal RES, and a selection signal SEL, which will be described later, to the pixel array unit 12. The write line group 21 includes write lines that send write signals PG 1 and PG 2 to be described later to the pixel array unit 12.
 行選択回路13は、画素アレイ部12の行(ロウ)を順次走査する。また、行選択回路13は、選択された行に、制御信号及び書き込み信号を送る。 The row selection circuit 13 sequentially scans the rows of the pixel array unit 12. The row selection circuit 13 sends a control signal and a write signal to the selected row.
 複数の信号処理回路14はそれぞれ、複数の垂直信号線22に接続される。各信号処理回路14は、画素から読み出された信号を処理する。信号処理回路14は、アナログ信号をデジタル信号に変換するADコンバータ15を含む。その他、信号処理回路14は、CDS(Correlated Double Sampling:相関二重サンプリング)回路、及びカラム選択スイッチなどを含む。 The plurality of signal processing circuits 14 are connected to the plurality of vertical signal lines 22, respectively. Each signal processing circuit 14 processes a signal read from the pixel. The signal processing circuit 14 includes an AD converter 15 that converts an analog signal into a digital signal. In addition, the signal processing circuit 14 includes a CDS (Correlated Sampling) circuit, a column selection switch, and the like.
 列選択回路16は、画素アレイ部12の列(カラム)を選択し、カラム選択信号を信号処理回路14に送る。出力回路17は、水平信号線23を介して、複数の信号処理回路14に接続される。出力回路17は、例えばバッファから構成され、信号処理回路14から送られる画素信号を外部へ出力する。 The column selection circuit 16 selects a column of the pixel array unit 12 and sends a column selection signal to the signal processing circuit 14. The output circuit 17 is connected to the plurality of signal processing circuits 14 via the horizontal signal line 23. The output circuit 17 is composed of, for example, a buffer, and outputs the pixel signal sent from the signal processing circuit 14 to the outside.
 電圧発生回路18は、撮像装置10の各種動作に必要な複数の電圧を生成する。制御回路19は、撮像装置10の動作を統括的に制御する。 The voltage generation circuit 18 generates a plurality of voltages necessary for various operations of the imaging device 10. The control circuit 19 comprehensively controls the operation of the imaging device 10.
 [1-1]画素11の回路構成
 次に、画素11の回路構成について説明する。図2は、図1に示した画素11の回路図である。画素11は、光電変換素子30、電荷蓄積領域としてのフローティングディフュージョンFD、転送トランジスタ31、リセットトランジスタ32、増幅トランジスタ33、第1選択トランジスタ34、第2選択トランジスタ35、第1書き込みトランジスタ37、第2書き込みトランジスタ38、及び第3書き込みトランジスタ39を備える。トランジスタ31~35、37~39としては、例えばNチャネルMOSトランジスタが用いられる。
[1-1] Circuit Configuration of Pixel 11 Next, the circuit configuration of the pixel 11 will be described. FIG. 2 is a circuit diagram of the pixel 11 shown in FIG. The pixel 11 includes a photoelectric conversion element 30, a floating diffusion FD as a charge storage region, a transfer transistor 31, a reset transistor 32, an amplification transistor 33, a first selection transistor 34, a second selection transistor 35, a first write transistor 37, a second A write transistor 38 and a third write transistor 39 are provided. As the transistors 31 to 35 and 37 to 39, for example, N-channel MOS transistors are used.
 光電変換素子30は、例えば、フォトダイオードから構成される。フォトダイオード30は、入射光を電荷(電子)に変換して蓄積する。フォトダイオード30のアノードは接地される。 The photoelectric conversion element 30 is composed of, for example, a photodiode. The photodiode 30 converts incident light into electric charges (electrons) and accumulates them. The anode of the photodiode 30 is grounded.
 転送トランジスタ31は、電流経路の一端がフォトダイオード30のカソードに接続され、電流経路の他端がフローティングディフュージョンFDに接続される。転送トランジスタ31のゲートには、制御回路19から、制御信号線を介して転送信号TRAが供給される。転送トランジスタ31は、転送信号TRAがアサートされた場合に、フォトダイオード30に蓄積された電荷を、フローティングディフュージョンFDに転送する。 The transfer transistor 31 has one end of the current path connected to the cathode of the photodiode 30 and the other end of the current path connected to the floating diffusion FD. The transfer signal TRA is supplied from the control circuit 19 to the gate of the transfer transistor 31 via the control signal line. The transfer transistor 31 transfers the charge accumulated in the photodiode 30 to the floating diffusion FD when the transfer signal TRA is asserted.
 リセットトランジスタ32は、電流経路の一端が電源端子Vddに接続され、電流経路の他端がフローティングディフュージョンFDに接続される。リセットトランジスタ32のゲートには、制御回路19から、制御信号線を介してリセット信号RESが供給される。リセットトランジスタ32は、リセット信号RESがアサートされた場合に、フローティングディフュージョンFDの電圧を電源電圧Vddに設定する。 The reset transistor 32 has one end of the current path connected to the power supply terminal Vdd and the other end of the current path connected to the floating diffusion FD. A reset signal RES is supplied from the control circuit 19 to the gate of the reset transistor 32 via a control signal line. The reset transistor 32 sets the voltage of the floating diffusion FD to the power supply voltage Vdd when the reset signal RES is asserted.
 増幅トランジスタ33は、電流経路の一端(ドレイン)が第1選択トランジスタ34を介して電源端子Vddに接続され、電流経路の他端(ソース)が垂直信号線22に接続され、ゲートがフローティングディフュージョンFDに接続される。垂直信号線22は、第2選択トランジスタ35を介して負荷素子としての定電流源36に接続される。 The amplification transistor 33 has one end (drain) of the current path connected to the power supply terminal Vdd via the first selection transistor 34, the other end (source) of the current path connected to the vertical signal line 22, and a gate connected to the floating diffusion FD. Connected to. The vertical signal line 22 is connected to a constant current source 36 as a load element through a second selection transistor 35.
 増幅トランジスタ33は、ソースフォロワ回路を構成し、垂直信号線22の電圧は、フローティングディフュージョンFDの電圧変動に追従する。これにより、垂直信号線22には、フローティングディフュージョンFDの電荷量(信号)に対応しかつ増幅トランジスタ33のゲート電圧で決まる電圧が現れる。また、本実施形態では、増幅トランジスタ33は、その閾値(閾値電圧)が調整可能な埋め込みチャネル型トランジスタから構成される。増幅トランジスタ33の具体的な構造については後述する。 The amplification transistor 33 constitutes a source follower circuit, and the voltage of the vertical signal line 22 follows the voltage fluctuation of the floating diffusion FD. As a result, a voltage corresponding to the charge amount (signal) of the floating diffusion FD and determined by the gate voltage of the amplification transistor 33 appears on the vertical signal line 22. In this embodiment, the amplifying transistor 33 is composed of a buried channel transistor whose threshold (threshold voltage) can be adjusted. A specific structure of the amplification transistor 33 will be described later.
 第1選択トランジスタ34のゲートには、制御回路19から、制御信号線を介して選択信号SELが供給される。第1選択トランジスタ34は、選択信号SELがアサートされた場合に、電源電圧Vddを増幅トランジスタ33のドレインに印加する。第2選択トランジスタ35のゲートには、制御回路19から、制御信号線を介して選択信号SELが供給される。第2選択トランジスタ35は、選択信号SELがアサートされた場合に、増幅トランジスタ33のソースに定電流源36を接続する。 The selection signal SEL is supplied from the control circuit 19 to the gate of the first selection transistor 34 via the control signal line. The first selection transistor 34 applies the power supply voltage Vdd to the drain of the amplification transistor 33 when the selection signal SEL is asserted. A selection signal SEL is supplied from the control circuit 19 to the gate of the second selection transistor 35 via a control signal line. The second selection transistor 35 connects the constant current source 36 to the source of the amplification transistor 33 when the selection signal SEL is asserted.
 上記説明した基本回路に加えて、画素11は、さらに書き込み回路を備える。書き込み回路は、増幅トランジスタ33の閾値を調整するためのものであり、第1書き込みトランジスタ37、第2書き込みトランジスタ38、及び第3書き込みトランジスタ39を備える。トランジスタ37~39は、スイッチング素子として機能する。 In addition to the basic circuit described above, the pixel 11 further includes a writing circuit. The write circuit is for adjusting the threshold value of the amplification transistor 33, and includes a first write transistor 37, a second write transistor 38, and a third write transistor 39. The transistors 37 to 39 function as switching elements.
 第1書き込みトランジスタ37は、電流経路の一端が電源端子Vpgmに接続され、電流経路の他端が増幅トランジスタ33のゲートに接続される。第1書き込みトランジスタ37のゲートには、制御回路19から、書き込み線を介して書き込み信号PG1が供給される。第1書き込みトランジスタ37は、書き込み信号PG1がアサートされた場合に、書き込み電圧Vpgmを増幅トランジスタ33のゲートに印加する。 The first write transistor 37 has one end of the current path connected to the power supply terminal Vpgm and the other end of the current path connected to the gate of the amplification transistor 33. A write signal PG1 is supplied from the control circuit 19 to the gate of the first write transistor 37 via a write line. The first write transistor 37 applies the write voltage Vpgm to the gate of the amplification transistor 33 when the write signal PG1 is asserted.
 第2書き込みトランジスタ38は、電流経路の一端が電源端子Vdpに接続され、電流経路の他端が増幅トランジスタ33のドレインに接続される。第2書き込みトランジスタ38のゲートには、制御回路19から、書き込み線を介して書き込み信号PG2が供給される。第2書き込みトランジスタ38は、書き込み信号PG2がアサートされた場合に、ドレイン電圧Vdpを増幅トランジスタ33のドレインに印加する。 In the second write transistor 38, one end of the current path is connected to the power supply terminal Vdp, and the other end of the current path is connected to the drain of the amplification transistor 33. A write signal PG2 is supplied from the control circuit 19 to the gate of the second write transistor 38 via a write line. The second write transistor 38 applies the drain voltage Vdp to the drain of the amplification transistor 33 when the write signal PG2 is asserted.
 第3書き込みトランジスタ39は、電流経路の一端が増幅トランジスタ33のソースに接続され、電流経路の他端が接地される。第3書き込みトランジスタ39のゲートには、制御回路19から、書き込み線を介して書き込み信号PG2が供給される。第3書き込みトランジスタ39は、書き込み信号PG2がアサートされた場合に、接地電圧Vss(0V)を増幅トランジスタ33のソースに印加する。 In the third write transistor 39, one end of the current path is connected to the source of the amplification transistor 33, and the other end of the current path is grounded. A write signal PG <b> 2 is supplied from the control circuit 19 to the gate of the third write transistor 39 via the write line. The third write transistor 39 applies the ground voltage Vss (0 V) to the source of the amplification transistor 33 when the write signal PG <b> 2 is asserted.
 [1-2]画素11の断面構造
 次に、画素11の断面構造について説明する。図3は、図1に示した画素11の断面図である。
[1-2] Cross-sectional Structure of Pixel 11 Next, the cross-sectional structure of the pixel 11 will be described. FIG. 3 is a cross-sectional view of the pixel 11 shown in FIG.
 半導体層としての半導体基板、例えばP型半導体基板41の表面領域には、素子分離絶縁層42が設けられる。P型半導体基板41内には、フォトダイオード30が設けられる。フォトダイオード30は、N型半導体領域30A及びP型半導体領域30Bを備える。N型半導体領域30A上にP型半導体領域30Bを形成することで、フォトダイオード30が埋め込み型とされ、基板表面で発生する暗電流を低減することができる。 An element isolation insulating layer 42 is provided on a surface region of a semiconductor substrate as a semiconductor layer, for example, a P-type semiconductor substrate 41. A photodiode 30 is provided in the P-type semiconductor substrate 41. The photodiode 30 includes an N + type semiconductor region 30A and a P + type semiconductor region 30B. By forming the P + -type semiconductor region 30B on the N + -type semiconductor region 30A, the photodiode 30 can be embedded, and dark current generated on the substrate surface can be reduced.
 フローティングディフュージョンFDは、N型半導体領域から構成される。フォトダイオード30とフローティングディフュージョンFDとの間には、転送トランジスタ31が設けられる。転送トランジスタ31は、ゲート絶縁膜31A及びゲート電極31Bを備える。 The floating diffusion FD is composed of an N + type semiconductor region. A transfer transistor 31 is provided between the photodiode 30 and the floating diffusion FD. The transfer transistor 31 includes a gate insulating film 31A and a gate electrode 31B.
 前述したように、増幅トランジスタ33は、閾値が調整可能な埋め込みチャネル型トランジスタから構成される。増幅トランジスタ33としては、例えば、電荷蓄積層を有するメモリトランジスタ(フラッシュメモリセル)が用いられる。増幅トランジスタ33は、半導体基板41内に離間して設けられたソース領域33A及びドレイン領域33Bと、ソース領域33A及びドレイン領域33Bとの間に設けられた埋め込みチャネル(チャネルドープ領域)33Cと、積層ゲートとを備える。埋め込みチャネル33Cは、半導体基板41の表面領域に設けられ、ソース領域33A及びドレイン領域33Bに接している。ソース領域33A及びドレイン領域33Bは、N型半導体領域から構成され、埋め込みチャネル33Cは、N型半導体領域から構成される。増幅トランジスタ33の積層ゲートは、第1絶縁膜33D、電荷蓄積層33E、第2絶縁膜33F、及び制御ゲート電極33Gが積層されて構成される。第1絶縁膜33Dは、トンネル絶縁膜と呼ばれる。 As described above, the amplification transistor 33 is composed of a buried channel transistor whose threshold value can be adjusted. As the amplification transistor 33, for example, a memory transistor (flash memory cell) having a charge storage layer is used. The amplifying transistor 33 includes a source region 33A and a drain region 33B that are provided separately in the semiconductor substrate 41, and a buried channel (channel dope region) 33C that is provided between the source region 33A and the drain region 33B. And a gate. The buried channel 33C is provided in the surface region of the semiconductor substrate 41 and is in contact with the source region 33A and the drain region 33B. The source region 33A and the drain region 33B are composed of N + type semiconductor regions, and the buried channel 33C is composed of an N type semiconductor region. The stacked gate of the amplification transistor 33 is configured by stacking a first insulating film 33D, a charge storage layer 33E, a second insulating film 33F, and a control gate electrode 33G. The first insulating film 33D is called a tunnel insulating film.
 増幅トランジスタ33は、フローティングゲート型、MONOS(Metal-Oxide-Nitride-Silicon)型、及びSONOS(Silicon-Oxide-Nitride-Silicon)型のいずれでも良い。フローティングゲート型である場合、電荷蓄積層33Eは、多結晶シリコンなどからなる浮遊ゲート電極であり、また、第2絶縁膜33Fは、ゲート間絶縁膜と呼ばれる。MONOS型である場合、電荷蓄積層33Eは、シリコン窒化物などからなる絶縁膜であり、また、第2絶縁膜33Fは、ブロック絶縁膜と呼ばれる。 The amplification transistor 33 may be any of a floating gate type, a MONOS (Metal-Oxide-Nitride-Silicon) type, and a SONOS (Silicon-Oxide-Nitride-Silicon) type. In the case of the floating gate type, the charge storage layer 33E is a floating gate electrode made of polycrystalline silicon or the like, and the second insulating film 33F is called an inter-gate insulating film. In the case of the MONOS type, the charge storage layer 33E is an insulating film made of silicon nitride or the like, and the second insulating film 33F is called a block insulating film.
 半導体基板41上には、層間絶縁層43が設けられ、層間絶縁層43上には、図示しない配線層が設けられる。半導体基板41の裏面側には、カラーフィルター44が設けられ、カラーフィルター44上には、集光用のレンズ45が設けられる。すなわち、図3の撮像装置は、裏面照射型の構成例である。 An interlayer insulating layer 43 is provided on the semiconductor substrate 41, and a wiring layer (not shown) is provided on the interlayer insulating layer 43. A color filter 44 is provided on the back side of the semiconductor substrate 41, and a condensing lens 45 is provided on the color filter 44. That is, the imaging apparatus of FIG.
 [2]増幅トランジスタ33の書き込み動作
 次に、上記のように構成された撮像装置10の動作について説明する。図4は、増幅トランジスタ33の書き込み動作を説明する模式図である。
[2] Write Operation of Amplifying Transistor 33 Next, the operation of the imaging device 10 configured as described above will be described. FIG. 4 is a schematic diagram for explaining the write operation of the amplification transistor 33.
 本実施形態では、増幅トランジスタ33をプログラムすることで、増幅トランジスタ33の閾値を調整する。増幅トランジスタ33の書き込み(プログラム)は、例えば、ホットキャリア注入により行われる。 In this embodiment, the threshold value of the amplification transistor 33 is adjusted by programming the amplification transistor 33. The writing (programming) of the amplification transistor 33 is performed by hot carrier injection, for example.
 図2を参照して、制御回路19は、書き込み信号PG2をアサートし、これにより、第2書き込みトランジスタ38及び第3書き込みトランジスタ39がオンする。この結果、増幅トランジスタ33のドレインにドレイン電圧Vd=Vdp(例えば4V程度)が印加され、増幅トランジスタ33のソースにソース電圧Vs=0Vが印加される。 Referring to FIG. 2, the control circuit 19 asserts the write signal PG2, and thereby the second write transistor 38 and the third write transistor 39 are turned on. As a result, the drain voltage Vd = Vdp (for example, about 4 V) is applied to the drain of the amplification transistor 33, and the source voltage Vs = 0 V is applied to the source of the amplification transistor 33.
 続いて、制御回路19は、書き込み信号PG1をアサートし、これにより、第1書き込みトランジスタ37がオンする。この結果、増幅トランジスタ33の制御ゲートにゲート電圧Vg=Vpgm(例えば10V程度)が印加される。これにより、増幅トランジスタ33の電荷蓄積層33Eに電子が注入され、増幅トランジスタ33の閾値が正側に変化する。ホットキャリア注入により書き込みを行うことで、電圧Vpgmを低く抑えつつ、高効率な書き込みが可能となる。なお、書き込み動作において、フォトダイオード30にVpgmが印加されないことが望ましく、この場合、制御回路19は転送トランジスタ31をOFF状態とするように制御を行うことができる。 Subsequently, the control circuit 19 asserts the write signal PG1, thereby turning on the first write transistor 37. As a result, the gate voltage Vg = Vpgm (for example, about 10 V) is applied to the control gate of the amplification transistor 33. As a result, electrons are injected into the charge storage layer 33E of the amplification transistor 33, and the threshold value of the amplification transistor 33 changes to the positive side. By performing writing by hot carrier injection, it is possible to perform highly efficient writing while keeping the voltage Vpgm low. In the write operation, it is desirable that Vpgm is not applied to the photodiode 30. In this case, the control circuit 19 can perform control so that the transfer transistor 31 is turned off.
 図5は、増幅トランジスタ33の閾値変化を説明するグラフである。増幅トランジスタ33は、埋め込みチャネル型トランジスタであるため、ゲート電圧が0Vでオン状態となるデプレッション型である。すなわち、増幅トランジスタ33をプログラムしていない消去状態では、増幅トランジスタ33の閾値が相対的に低い。一方、増幅トランジスタ33をプログラムした場合、増幅トランジスタ33の閾値が相対的に高くなり、増幅トランジスタ33がエンハンスメント型と同じ動作を行うことが可能である。 FIG. 5 is a graph for explaining a change in threshold value of the amplification transistor 33. Since the amplification transistor 33 is a buried channel transistor, it is a depletion type that is turned on when the gate voltage is 0V. That is, in the erased state where the amplification transistor 33 is not programmed, the threshold value of the amplification transistor 33 is relatively low. On the other hand, when the amplification transistor 33 is programmed, the threshold value of the amplification transistor 33 becomes relatively high, and the amplification transistor 33 can perform the same operation as the enhancement type.
 このように、増幅トランジスタ33をプログラムすることで、埋め込みチャネル化で低くなった閾値を高くでき、通常のバイアス条件下で増幅トランジスタ33を動作させることが可能となる。 Thus, by programming the amplifying transistor 33, the threshold value lowered by the buried channel can be increased, and the amplifying transistor 33 can be operated under a normal bias condition.
 なお、増幅トランジスタ33の消去動作は以下のように行われる。消去動作は、例えば、FN(Fowler-Nordheim)トンネリングにより行われる。 The erase operation of the amplification transistor 33 is performed as follows. The erasing operation is performed by, for example, FN (Fowler-Nordheim) tunneling.
 まず、第2書き込みトランジスタ38及び第3書き込みトランジスタ39は、オフされる。続いて、図4に示す半導体基板41(或いは、半導体基板41内に形成されたウェル)に0Vが印加される。続いて、第1書き込みトランジスタ37がオンされると共に、第1書き込みトランジスタ37のドレインには、Vpgmに代えて消去電圧Veraが印加される。消去電圧Veraは、負電圧であり、例えば-20V程度である。 First, the second write transistor 38 and the third write transistor 39 are turned off. Subsequently, 0 V is applied to the semiconductor substrate 41 shown in FIG. 4 (or a well formed in the semiconductor substrate 41). Subsequently, the first write transistor 37 is turned on, and an erase voltage Vera is applied to the drain of the first write transistor 37 instead of Vpgm. The erase voltage Vera is a negative voltage, for example, about −20V.
 このような電圧制御により、増幅トランジスタ33の電荷蓄積層33Eに蓄積された電子が半導体基板41に引き抜かれる。これにより、増幅トランジスタ33が消去される。 By such voltage control, electrons stored in the charge storage layer 33E of the amplification transistor 33 are extracted to the semiconductor substrate 41. As a result, the amplification transistor 33 is erased.
 [3]撮像装置10の全体動作
 次に、撮像装置10の全体動作について説明する。以下に、第1乃至第3実施例に係る撮像装置10の動作を説明する。
[3] Overall Operation of Imaging Device 10 Next, the overall operation of the imaging device 10 will be described. Hereinafter, the operation of the imaging apparatus 10 according to the first to third embodiments will be described.
 [3-1]第1実施例
 図6は、第1実施例に係る撮像装置10の動作を説明するフローチャートである。
[3-1] First Example FIG. 6 is a flowchart for explaining the operation of the imaging apparatus 10 according to the first example.
 まず、工場において、半導体チップとして撮像装置10が作製される(ステップS100)。続いて、制御回路19は、増幅トランジスタ33の閾値を調整するための書き込み動作を行う(ステップS101)。この書き込み動作は、図4及び図5を用いて説明した通りである。続いて、撮像装置10が工場から出荷される(ステップS102)。 First, in the factory, the imaging device 10 is manufactured as a semiconductor chip (step S100). Subsequently, the control circuit 19 performs a write operation for adjusting the threshold value of the amplification transistor 33 (step S101). This write operation is as described with reference to FIGS. Subsequently, the imaging device 10 is shipped from the factory (step S102).
 このように、工場出荷前に増幅トランジスタ33の閾値を調整するようにしても良い。第1実施例は、増幅トランジスタ33のリテンション特性が良好である場合に有効である。 Thus, the threshold value of the amplification transistor 33 may be adjusted before shipment from the factory. The first embodiment is effective when the retention characteristic of the amplification transistor 33 is good.
 [3-2]第2実施例
 図7は、第2実施例に係る撮像装置10の動作を説明するフローチャートである。撮像装置10は、カメラに搭載されているものとする。
[3-2] Second Embodiment FIG. 7 is a flowchart for explaining the operation of the imaging apparatus 10 according to the second embodiment. The imaging device 10 is assumed to be mounted on a camera.
 まず、ユーザによりカメラの電源がオンされる(ステップS200)。続いて、制御回路19は、増幅トランジスタ33の閾値を確認するためのベリファイ動作を行う(ステップS201)。このベリファイ動作では、制御回路19は、通常の読み出しモードを実行し、さらに、増幅トランジスタ33のソース電圧を垂直信号線22を介して測定する。これにより、増幅トランジスタ33の閾値を確認することができる。 First, the camera is turned on by the user (step S200). Subsequently, the control circuit 19 performs a verify operation for confirming the threshold value of the amplification transistor 33 (step S201). In this verify operation, the control circuit 19 executes a normal read mode, and further measures the source voltage of the amplification transistor 33 via the vertical signal line 22. Thereby, the threshold value of the amplification transistor 33 can be confirmed.
 続いて、制御回路19は、ステップS201で確認した閾値が許容範囲内であるか否かを判定する(ステップS202)。閾値の許容範囲は、撮像装置10の仕様に応じて任意に設定可能であり、例えば、画素に含まれるNチャネルMOSトランジスタの特性と同等になるように設定される。ステップS202において許容範囲内でない場合、制御回路19は、増幅トランジスタ33の閾値を調整するための書き込み動作を行う(ステップS203)。一方、ステップS202において許容範囲内である場合、ステップS203の書き込み動作がスキップされる。 Subsequently, the control circuit 19 determines whether or not the threshold value confirmed in step S201 is within an allowable range (step S202). The allowable range of the threshold can be arbitrarily set according to the specification of the imaging device 10, and is set to be equivalent to the characteristics of the N-channel MOS transistor included in the pixel, for example. If it is not within the allowable range in step S202, the control circuit 19 performs a write operation for adjusting the threshold value of the amplification transistor 33 (step S203). On the other hand, if it is within the allowable range in step S202, the write operation in step S203 is skipped.
 続いて、制御回路19は、ユーザの操作に応じた通常動作を行う(ステップS204)。続いて、ユーザによりカメラの電源がオフされる(ステップS205)。 Subsequently, the control circuit 19 performs a normal operation according to the user's operation (step S204). Subsequently, the user turns off the camera (step S205).
 第2実施例のように、撮像装置10の電源がオンされるごとに、増幅トランジスタ33の閾値を調整するようにしても良い。第2実施例によれば、増幅トランジスタ33の閾値を所望の値に維持することが可能である。 As in the second embodiment, the threshold value of the amplification transistor 33 may be adjusted each time the power supply of the imaging device 10 is turned on. According to the second embodiment, the threshold value of the amplification transistor 33 can be maintained at a desired value.
 [3-3]第3実施例
 図8は、第3実施例に係る撮像装置10の動作を説明するフローチャートである。
[3-3] Third Example FIG. 8 is a flowchart for explaining the operation of the imaging apparatus 10 according to the third example.
 まず、ユーザによりカメラの電源がオンされる(ステップS300)。続いて、制御回路19は、ユーザの操作に応じた通常動作を行う(ステップS301)。続いて、制御回路19は、例えば撮像装置10が搭載されたカメラのコントローラからパワーオフ信号を受信する(ステップS302)。 First, the camera is turned on by the user (step S300). Subsequently, the control circuit 19 performs a normal operation according to the user's operation (step S301). Subsequently, the control circuit 19 receives a power-off signal from, for example, a controller of a camera on which the imaging device 10 is mounted (step S302).
 続いて、制御回路19は、増幅トランジスタ33の閾値を確認するためのベリファイ動作を行う(ステップS303)。続いて、制御回路19は、ステップS303で確認した閾値が許容範囲内であるか否かを判定する(ステップS304)。ステップS304において許容範囲内でない場合、制御回路19は、増幅トランジスタ33の閾値を調整するための書き込み動作を行う(ステップS305)。一方、ステップS304において許容範囲内である場合、ステップS305の書き込み動作がスキップされる。続いて、カメラの電源がオフされる(ステップS306)。 Subsequently, the control circuit 19 performs a verify operation for confirming the threshold value of the amplification transistor 33 (step S303). Subsequently, the control circuit 19 determines whether or not the threshold value confirmed in step S303 is within an allowable range (step S304). If it is not within the allowable range in step S304, the control circuit 19 performs a write operation for adjusting the threshold value of the amplification transistor 33 (step S305). On the other hand, if it is within the allowable range in step S304, the write operation in step S305 is skipped. Subsequently, the camera is turned off (step S306).
 第3実施例のように、撮像装置10が搭載されたカメラの電源がオフされる直前に、増幅トランジスタ33の閾値を調整するようにしても良い。 As in the third embodiment, the threshold value of the amplification transistor 33 may be adjusted immediately before the power of the camera on which the imaging device 10 is mounted is turned off.
 [4]効果
 以上詳述したように第1実施形態では、画素11は、フォトダイオード30の電荷を増幅する増幅トランジスタ33を備える。増幅トランジスタ33は、埋め込みチャネル構造を有し、かつ閾値の調整が可能な構造を有する。
[4] Effect As described in detail above, in the first embodiment, the pixel 11 includes the amplification transistor 33 that amplifies the charge of the photodiode 30. The amplification transistor 33 has a buried channel structure and a structure capable of adjusting a threshold value.
 従って第1実施形態によれば、増幅トランジスタ33のチャネルをノイズ源である界面準位から離すことができる。これにより、増幅トランジスタ33のノイズを低減することができるため、撮像装置10の動作特性を向上させることができる。また、増幅トランジスタ33のサイズをより小さくすることが可能となり、その削減分だけフォトダイオード30を大きく構成することが可能となる。この結果、画素11の感度を向上させることが可能となる。 Therefore, according to the first embodiment, the channel of the amplification transistor 33 can be separated from the interface state which is a noise source. Thereby, since the noise of the amplification transistor 33 can be reduced, the operating characteristics of the imaging device 10 can be improved. In addition, the size of the amplification transistor 33 can be further reduced, and the photodiode 30 can be configured to be larger by the reduction. As a result, the sensitivity of the pixel 11 can be improved.
 また、増幅トランジスタ33の閾値を任意の値に設定できるため、通常のMOSトランジスタ(表面チャネル型トランジスタ)と同じバイアス条件で増幅トランジスタ33を動作させることができる。これにより、通常動作において、増幅トランジスタ33の動作電圧(バイアス条件)を変える必要がない。 Also, since the threshold value of the amplification transistor 33 can be set to an arbitrary value, the amplification transistor 33 can be operated under the same bias condition as that of a normal MOS transistor (surface channel transistor). This eliminates the need to change the operating voltage (bias condition) of the amplification transistor 33 in normal operation.
 一般的に、NチャネルMOSトランジスタを埋め込みチャネル構造にすると、トランジスタの閾値が負側にシフトしてしまい、ゲート及びソース間の電圧が0Vでも電流が流れる状態となり、撮像装置の動作上問題がある。しかしながら、本実施形態の構成を用いることで、増幅トランジスタ33のノイズを低減しつつ、増幅トランジスタ33の動作電圧を最適に設定することが可能である。 In general, when an N-channel MOS transistor has a buried channel structure, the threshold value of the transistor shifts to the negative side, and a current flows even when the voltage between the gate and the source is 0 V, which causes a problem in the operation of the imaging device. . However, by using the configuration of this embodiment, it is possible to optimally set the operating voltage of the amplification transistor 33 while reducing the noise of the amplification transistor 33.
 [第2実施形態]
 第2実施形態は、信号処理回路14内のADコンバータ15に含まれるトランジスタに、前述した増幅トランジスタ33と同様に、閾値が調整可能な埋め込みチャネル型トランジスタを用いるようにしている。
[Second Embodiment]
In the second embodiment, as a transistor included in the AD converter 15 in the signal processing circuit 14, a buried channel transistor whose threshold value can be adjusted is used as in the case of the amplification transistor 33 described above.
 図1に示したADコンバータ15は、コンパレータ50を備える。図9は、ADコンバータ15に含まれるコンパレータ50の回路図である。コンパレータ50は、PチャネルMOSトランジスタ51、52、57と、NチャネルMOSトランジスタ53、54と、定電流源55、58とを備える。また、トランジスタ53、54は、閾値が調整可能な埋め込みチャネル型トランジスタから構成される。 The AD converter 15 shown in FIG. FIG. 9 is a circuit diagram of the comparator 50 included in the AD converter 15. The comparator 50 includes P- channel MOS transistors 51, 52, and 57, N-channel MOS transistors 53 and 54, and constant current sources 55 and 58. The transistors 53 and 54 are constituted by buried channel transistors whose thresholds can be adjusted.
 トランジスタ53、54の構造は、図3の増幅トランジスタ33と同じである。トランジスタ53、54が形成される半導体層は、増幅トランジスタ33が形成される半導体層(P型半導体基板41)と同じであっても良いし、異なっていても良い。 The structure of the transistors 53 and 54 is the same as that of the amplification transistor 33 in FIG. The semiconductor layer in which the transistors 53 and 54 are formed may be the same as or different from the semiconductor layer (P-type semiconductor substrate 41) in which the amplification transistor 33 is formed.
 トランジスタ51、52は、カレントミラー回路を構成する。トランジスタ51は、ソースが電源端子Vddに接続され、ゲートがドレインに接続される。トランジスタ52は、ソースが電源端子Vddに接続され、ゲートがトランジスタ51のゲートに接続される。 Transistors 51 and 52 constitute a current mirror circuit. The transistor 51 has a source connected to the power supply terminal Vdd and a gate connected to the drain. The transistor 52 has a source connected to the power supply terminal Vdd and a gate connected to the gate of the transistor 51.
 トランジスタ53は、ドレインがトランジスタ51のドレインに接続され、ソースが定電流源55に接続され、ゲートには入力電圧Vin1が入力される。トランジスタ54は、ドレインが接続ノード59及びトランジスタ52のドレインに接続され、ソースが定電流源55に接続され、ゲートには入力電圧Vin2が入力される。 In the transistor 53, the drain is connected to the drain of the transistor 51, the source is connected to the constant current source 55, and the input voltage Vin1 is input to the gate. In the transistor 54, the drain is connected to the connection node 59 and the drain of the transistor 52, the source is connected to the constant current source 55, and the input voltage Vin2 is input to the gate.
 トランジスタ57、及び定電流源58は、出力回路を構成する。トランジスタ57は、ソースが電源端子Vddに接続され、ゲートが接続ノード59に接続され、ドレインが出力端子56及び定電流源58に接続される。 The transistor 57 and the constant current source 58 constitute an output circuit. The transistor 57 has a source connected to the power supply terminal Vdd, a gate connected to the connection node 59, and a drain connected to the output terminal 56 and the constant current source 58.
 上記のように構成されたコンパレータ50は、入力電圧Vin1と入力電圧Vin2とを比較し、比較結果を出力端子56から出力する。 The comparator 50 configured as described above compares the input voltage Vin1 and the input voltage Vin2, and outputs the comparison result from the output terminal 56.
 第2実施形態によれば、ADコンバータ15に含まれるトランジスタ53、54のノイズを低減することができる。これにより、撮像装置10の動作特性を向上させることができる。 According to the second embodiment, the noise of the transistors 53 and 54 included in the AD converter 15 can be reduced. Thereby, the operating characteristic of the imaging device 10 can be improved.
 また、トランジスタ53、54のノイズを低減しつつ、そのサイズを小さくすることができる。これにより、ADコンバータ15のサイズを小さくすることができる。 Moreover, the size of the transistors 53 and 54 can be reduced while reducing the noise. Thereby, the size of the AD converter 15 can be reduced.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 10…撮像装置、11…画素、12…画素アレイ部、13…行選択回路、14…信号処理回路、15…ADコンバータ、16…列選択回路、17…出力回路、18…電圧発生回路、19…制御回路、20…制御信号線群、21…書き込み線群、22…垂直信号線、23…水平信号線、30…光電変換素子、31…転送トランジスタ、32…リセットトランジスタ、33…増幅トランジスタ、34…選択トランジスタ、35…選択トランジスタ、36…定電流源、37~39…書き込みトランジスタ、41…半導体基板、42…素子分離絶縁層、43…層間絶縁層、44…カラーフィルター、45…レンズ、50…コンパレータ、51,52,57…PチャネルMOSトランジスタ、53,54…NチャネルMOSトランジスタ、55,58…定電流源、56…出力端子。 DESCRIPTION OF SYMBOLS 10 ... Imaging device, 11 ... Pixel, 12 ... Pixel array part, 13 ... Row selection circuit, 14 ... Signal processing circuit, 15 ... AD converter, 16 ... Column selection circuit, 17 ... Output circuit, 18 ... Voltage generation circuit, 19 DESCRIPTION OF SYMBOLS ... Control circuit, 20 ... Control signal line group, 21 ... Write line group, 22 ... Vertical signal line, 23 ... Horizontal signal line, 30 ... Photoelectric conversion element, 31 ... Transfer transistor, 32 ... Reset transistor, 33 ... Amplification transistor, 34 ... selection transistor, 35 ... selection transistor, 36 ... constant current source, 37-39 ... writing transistor, 41 ... semiconductor substrate, 42 ... element isolation insulating layer, 43 ... interlayer insulating layer, 44 ... color filter, 45 ... lens, 50: Comparator, 51, 52, 57: P channel MOS transistor, 53, 54: N channel MOS transistor, 55, 58 A constant current source, 56 ... output terminal.

Claims (16)

  1.  光電変換素子と、
     前記光電変換素子からの信号を増幅する増幅トランジスタと、
     を具備し、
     前記増幅トランジスタは、埋め込みチャネル構造を有し、かつ閾値の調整が可能な構造を有する撮像装置。
    A photoelectric conversion element;
    An amplification transistor for amplifying a signal from the photoelectric conversion element;
    Comprising
    The amplifying transistor has an embedded channel structure and a structure capable of adjusting a threshold value.
  2.  前記増幅トランジスタは、電荷蓄積層を有する請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the amplification transistor has a charge storage layer.
  3.  前記増幅トランジスタは、フローティングゲート型、MONOS型、及びSONOS型のいずれかである請求項1に記載の撮像装置。 2. The imaging apparatus according to claim 1, wherein the amplification transistor is one of a floating gate type, a MONOS type, and a SONOS type.
  4.  ホットキャリア注入により前記増幅トランジスタを書き込む制御回路をさらに具備する請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, further comprising a control circuit that writes the amplification transistor by hot carrier injection.
  5.  前記増幅トランジスタの電流経路の一端と、ドレイン電圧を供給するための第1端子との間に接続された第1スイッチング素子と、
     前記増幅トランジスタの電流経路の他端と、ソース電圧を供給するための第2端子との間に接続された第2スイッチング素子と、
     前記増幅トランジスタのゲートと、書き込み電圧を供給するための第3端子との間に接続された第3スイッチング素子と、
     をさらに具備する請求項1に記載の撮像装置。
    A first switching element connected between one end of the current path of the amplification transistor and a first terminal for supplying a drain voltage;
    A second switching element connected between the other end of the current path of the amplification transistor and a second terminal for supplying a source voltage;
    A third switching element connected between the gate of the amplification transistor and a third terminal for supplying a write voltage;
    The imaging apparatus according to claim 1, further comprising:
  6.  前記増幅トランジスタは、半導体基板内に離間して設けられたソース領域及びドレイン領域と、前記ソース領域及び前記ドレイン領域間に設けられ、前記ソース領域及び前記ドレイン領域と同じ導電型のチャネルとを含む請求項1に記載の撮像装置。 The amplification transistor includes a source region and a drain region that are provided separately in a semiconductor substrate, and a channel that is provided between the source region and the drain region and has the same conductivity type as the source region and the drain region. The imaging device according to claim 1.
  7.  前記増幅トランジスタは、消去状態においてデプレッション型である請求項1に記載の撮像装置。 2. The imaging device according to claim 1, wherein the amplification transistor is a depletion type in an erased state.
  8.  前記増幅トランジスタは、NチャネルMOSトランジスタであり、書き込み動作により閾値が正側に変化する請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the amplification transistor is an N-channel MOS transistor, and the threshold value is changed to a positive side by a writing operation.
  9.  前記増幅トランジスタにより読み出された信号をアナログ/デジタル変換するADコンバータをさらに具備し、
     前記ADコンバータは、埋め込みチャネル構造を有し、かつ閾値の調整が可能な構造を有するトランジスタを含む請求項1に記載の撮像装置。
    An AD converter for analog / digital conversion of the signal read by the amplification transistor;
    The imaging apparatus according to claim 1, wherein the AD converter includes a transistor having a buried channel structure and a structure capable of adjusting a threshold value.
  10.  光電変換素子と、
     前記光電変換素子からの信号を増幅する増幅トランジスタと、
     を具備し、
     前記増幅トランジスタは、
     第1半導体層に互いに離間して設けられた第1導電型の第1及び第2半導体領域と、
     前記第1及び第2半導体領域の間に設けられた第1導電型の第3半導体領域と、
     前記第3半導体領域上に設けられた第1ゲート電極と、
     前記第1ゲート電極と前記第3半導体領域との間に設けられた第1電荷蓄積層と、
     を備える撮像装置。
    A photoelectric conversion element;
    An amplification transistor for amplifying a signal from the photoelectric conversion element;
    Comprising
    The amplification transistor is
    First and second semiconductor regions of a first conductivity type provided in the first semiconductor layer spaced apart from each other;
    A third semiconductor region of a first conductivity type provided between the first and second semiconductor regions;
    A first gate electrode provided on the third semiconductor region;
    A first charge storage layer provided between the first gate electrode and the third semiconductor region;
    An imaging apparatus comprising:
  11.  前記増幅トランジスタは、フローティングゲート型、MONOS型、及びSONOS型のいずれかである請求項10に記載の撮像装置。 The imaging apparatus according to claim 10, wherein the amplification transistor is any one of a floating gate type, a MONOS type, and a SONOS type.
  12.  ホットキャリア注入により前記増幅トランジスタを書き込む制御回路をさらに具備する請求項10に記載の撮像装置。 The imaging apparatus according to claim 10, further comprising a control circuit that writes the amplification transistor by hot carrier injection.
  13.  前記増幅トランジスタの第1半導体領域に接続された第1スイッチング素子と、
     前記増幅トランジスタの第2半導体領域に接続された第2スイッチング素子と、
     前記増幅トランジスタの第1ゲート電極に接続された第3スイッチング素子と、
     をさらに具備する請求項10に記載の撮像装置。
    A first switching element connected to a first semiconductor region of the amplification transistor;
    A second switching element connected to a second semiconductor region of the amplification transistor;
    A third switching element connected to the first gate electrode of the amplification transistor;
    The imaging device according to claim 10, further comprising:
  14.  前記増幅トランジスタは、消去状態においてデプレッション型である請求項10に記載の撮像装置。 The imaging device according to claim 10, wherein the amplification transistor is a depletion type in an erased state.
  15.  前記増幅トランジスタは、NチャネルMOSトランジスタであり、書き込み動作により閾値が正側に変化する請求項10に記載の撮像装置。 The imaging device according to claim 10, wherein the amplification transistor is an N-channel MOS transistor, and the threshold value is changed to a positive side by a writing operation.
  16.  前記増幅トランジスタにより読み出された信号をアナログ/デジタル変換するADコンバータをさらに具備し、
     前記ADコンバータは、トランジスタを含み、
     前記トランジスタは、
     第2半導体層に互いに離間して設けられた第1導電型の第4及び第5半導体領域と、
     前記第4及び第5半導体領域の間に設けられた第1導電型の第6半導体領域と、
     前記第6半導体領域上に設けられた第2ゲート電極と、
     前記第2ゲート電極と前記第6半導体領域との間に設けられた第2電荷蓄積層と、
     を備える請求項10に記載の撮像装置。
    An AD converter for analog / digital conversion of the signal read by the amplification transistor;
    The AD converter includes a transistor,
    The transistor is
    Fourth and fifth semiconductor regions of the first conductivity type provided in the second semiconductor layer spaced apart from each other;
    A sixth semiconductor region of a first conductivity type provided between the fourth and fifth semiconductor regions;
    A second gate electrode provided on the sixth semiconductor region;
    A second charge storage layer provided between the second gate electrode and the sixth semiconductor region;
    An imaging apparatus according to claim 10.
PCT/JP2015/068690 2014-09-11 2015-06-29 Image pickup device WO2016038986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185403A JP2016058633A (en) 2014-09-11 2014-09-11 Imaging apparatus
JP2014-185403 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016038986A1 true WO2016038986A1 (en) 2016-03-17

Family

ID=55458748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068690 WO2016038986A1 (en) 2014-09-11 2015-06-29 Image pickup device

Country Status (2)

Country Link
JP (1) JP2016058633A (en)
WO (1) WO2016038986A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302005A (en) * 2016-04-05 2017-10-27 中芯国际集成电路制造(上海)有限公司 A kind of flash memories and preparation method, electronic installation with camera function
WO2020041651A1 (en) * 2018-08-23 2020-02-27 Raytheon Company Per-pixel detector bias control
US10880506B2 (en) 2017-03-29 2020-12-29 Sony Semiconductor Solutions Corporation Solid-state imaging device, electronic apparatus, and driving method
US11561132B2 (en) 2020-06-04 2023-01-24 Raytheon Company Per-pixel detector bias control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065587A1 (en) * 2019-10-04 2021-04-08 パナソニックIpマネジメント株式会社 Imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633503A (en) * 1986-06-23 1988-01-08 Seiko Instr & Electronics Ltd Differential amplifier circuit
JPH03214779A (en) * 1989-07-20 1991-09-19 Gemplus Card Internatl Sa Mos integrated circuit with adjustable threshold value
JPH0823039A (en) * 1994-07-05 1996-01-23 Sanyo Electric Co Ltd Insulated gate type transistor and solid-state image pickup element
JPH1028240A (en) * 1996-05-10 1998-01-27 Sony Corp Amplifier-type solid state image-pickup element and its fixed pattern noise correction method and correction value writing method
JP2002150786A (en) * 2001-09-14 2002-05-24 Toshiba Corp Non-volatile semiconductor memory
JP2003101005A (en) * 2001-09-27 2003-04-04 Citizen Watch Co Ltd Solid-state image pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633503A (en) * 1986-06-23 1988-01-08 Seiko Instr & Electronics Ltd Differential amplifier circuit
JPH03214779A (en) * 1989-07-20 1991-09-19 Gemplus Card Internatl Sa Mos integrated circuit with adjustable threshold value
JPH0823039A (en) * 1994-07-05 1996-01-23 Sanyo Electric Co Ltd Insulated gate type transistor and solid-state image pickup element
JPH1028240A (en) * 1996-05-10 1998-01-27 Sony Corp Amplifier-type solid state image-pickup element and its fixed pattern noise correction method and correction value writing method
JP2002150786A (en) * 2001-09-14 2002-05-24 Toshiba Corp Non-volatile semiconductor memory
JP2003101005A (en) * 2001-09-27 2003-04-04 Citizen Watch Co Ltd Solid-state image pickup device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302005A (en) * 2016-04-05 2017-10-27 中芯国际集成电路制造(上海)有限公司 A kind of flash memories and preparation method, electronic installation with camera function
US10880506B2 (en) 2017-03-29 2020-12-29 Sony Semiconductor Solutions Corporation Solid-state imaging device, electronic apparatus, and driving method
WO2020041651A1 (en) * 2018-08-23 2020-02-27 Raytheon Company Per-pixel detector bias control
US11626445B2 (en) 2018-08-23 2023-04-11 Raytheon Company Per-pixel detector bias control
US11561132B2 (en) 2020-06-04 2023-01-24 Raytheon Company Per-pixel detector bias control

Also Published As

Publication number Publication date
JP2016058633A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
KR102302596B1 (en) Binary cmos image sensor, method thereof, and image processing device having the binary cmos image sensor
TWI719801B (en) Solid-state imaging device, driving method for solid-state imaging device, and electronic device
JP5511541B2 (en) Solid-state imaging device and driving method of solid-state imaging device
WO2016038986A1 (en) Image pickup device
US8085330B2 (en) Image pickup apparatus
US9641783B2 (en) Solid-state image pickup device that performs optoelectronic conversion by accumulating an optical signal
WO2014083730A1 (en) Solid-state imaging device and method for driving same
US8599295B2 (en) Imaging element and imaging device with constant current source gate-to-source potential difference
US6914228B2 (en) Solid-state imaging device
US9881961B2 (en) Solid-state imaging device
US20190098242A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
WO2007099727A1 (en) Amplification type solid-state imaging device
US20110001860A1 (en) Solid-state imaging device
JP2009117613A (en) Semiconductor device
US8854521B2 (en) Solid-state image sensing device and control method of solid-state image sensing device
TWI487097B (en) Solid state camera device
JP6494207B2 (en) Photoelectric conversion device, photoelectric conversion system, and method for driving photoelectric conversion device
JP2012114772A (en) Solid state imaging apparatus
US9241119B2 (en) Image pickup apparatus, method of driving image pickup apparatus, and image pickup system
WO2012053127A1 (en) Solid-state imaging device, driving method therefor, and imaging device
US9177987B2 (en) Binary CMOS image sensors, methods of operating same, and image processing systems including same
US10447954B2 (en) Unit pixel apparatus and operation method thereof
US20080087925A1 (en) Solid-State Imaging Device and Method for Driving the Same
US7067860B2 (en) Solid-state imaging device
US7550706B2 (en) Solid state imaging device and output circuit thereof having a protecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839824

Country of ref document: EP

Kind code of ref document: A1