WO2016038696A1 - 超音波照射装置 - Google Patents
超音波照射装置 Download PDFInfo
- Publication number
- WO2016038696A1 WO2016038696A1 PCT/JP2014/073851 JP2014073851W WO2016038696A1 WO 2016038696 A1 WO2016038696 A1 WO 2016038696A1 JP 2014073851 W JP2014073851 W JP 2014073851W WO 2016038696 A1 WO2016038696 A1 WO 2016038696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- irradiation
- ultrasonic irradiation
- acoustic signal
- unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
Definitions
- the present invention relates to an ultrasonic irradiation apparatus that irradiates an object with ultrasonic waves.
- the present invention relates to a technique for irradiating a living cell, a bacterium, a living tissue, or the like while observing damage to the irradiation object.
- Non-Patent Document 1 A technique using cavitation as disclosed in Non-Patent Document 1 has been proposed as a technique for disrupting a membrane surrounding cells by ultrasonic irradiation. In this method, bubbles generated by the negative pressure of the ultrasonic waves are crushed, and a remarkable high pressure, a temperature rise and a strong shock wave are generated, thereby damaging the membrane surrounding the cell.
- Non-Patent Document 1 discloses a method of making a hole in a cell membrane by the effect of cavitation using bubbles of several microns size (microbubble contrast agent) in which a gas is stabilized with a surfactant.
- Non-Patent Document 1 damage to an object due to cavitation cannot be controlled to a size according to the purpose, and not only a membrane surrounding a cell but also a substance intended for extraction such as nucleic acid There are problems such as damaging them and killing cells that they want to keep alive in gene therapy.
- an object of the present invention is to accurately control the intensity and range of damage given to an irradiation target according to the purpose when the irradiation target is damaged by ultrasonic irradiation.
- the foaming of the medicine in the irradiation target is performed based on the ultrasonic irradiation unit and the acoustic signal received from the irradiation target that has been subjected to the ultrasonic irradiation.
- a control unit that determines whether or not at least one of the cavitations is generated and controls an ultrasonic irradiation condition in the ultrasonic irradiation unit based on the determination result.
- the intensity and range of damage to the object can be accurately controlled according to the purpose.
- generated with the ultrasonic irradiation apparatus of this invention The schematic diagram showing an example of the mechanism of the cell irritation
- the block block diagram which shows the structural example of the ultrasonic irradiation apparatus in Example 2 of this invention.
- an ultrasonic irradiation apparatus that can be used as a sample processing apparatus for pretreatment for an in vitro test for cultured cells, bacterial cells, biological samples such as blood and human waste, etc.
- a sample the object to be processed is referred to as a sample.
- a solid sample such as a tissue piece or food
- the ultrasonic irradiation apparatus 100 includes a cell processing unit 13 including a stirring unit 10, a processing unit 11, and a collection unit 12, an ultrasonic irradiation unit 16, an acoustic signal detection unit 18, an acoustic signal analysis unit 19, A sound wave irradiation condition setting unit 17 and a memory unit 21 are provided, and a cell solution port 9, an aerated drug insertion port 15, a console 20, and a display unit 22 are provided outside thereof.
- the cell solution insertion port 9 is a mechanism for the operator to insert various samples such as tissue pieces, cultured cells, cells, blood, human waste, food, and the like.
- this mechanism may be an autosampler having a form in which a plurality of samples are stored and inserted into the apparatus one by one.
- the aerated drug insertion port 15 is a mechanism for the operator to arbitrarily insert the aerated drug.
- the bubbling agent is preliminarily encapsulated in a superheated low-boiling poorly water-soluble liquid in an overheated state, and is vaporized by resolving the original boiling point of the liquid by eliminating superheat at the target site.
- bubble formation means a phase change phenomenon in which a liquid phase or solid phase body changes to a gas phase.
- the aerated agent can be any agent that does not itself have significant cytotoxicity.
- the aerated drug insertion port 15 includes, for example, a storage unit that stores the aerated drug to be used, and has a configuration in which an arbitrary amount is sent to the stirring unit 10 for each test.
- the cell solution insertion port 9, the bubbling agent insertion port 15, and the cell processing unit 13 are connected by a liquid feeding system, and although not shown, the sample moves through each mechanism by the liquid feeding mechanism. Moreover, mixing between samples is avoided by cleaning between samples by a cleaning mechanism (not shown).
- the stirring unit 10 is a mechanism that stirs the sample and the foaming agent.
- the stirring method is not particularly limited, and any stirring method may be used.
- the processing unit 11 is a container, a liquid tank, or the like in which a sample is exposed to an ultrasonic sound field by the ultrasonic irradiation unit 16. It is configured to transmit ultrasonic waves from the ultrasonic irradiation unit, and preferably a mechanism for generating and detecting ultrasonic waves of the ultrasonic irradiation unit 16 and the acoustic signal detection unit 18 exists in the processing unit 11 or on the wall surface. It is desirable to do.
- the collection unit 12 is a mechanism for collecting a sample that has been processed by the processing unit 11.
- the collection method in the collection unit 12 may be any mechanism that allows the operator to collect the sample, but preferably has a configuration in which a desired substance is selected and collected.
- the ultrasonic irradiation unit 16 is a mechanism for irradiating the sample in the processing unit 11 with ultrasonic waves.
- the ultrasonic irradiation unit 16 includes a sound source such as a piezoelectric element that can irradiate the ultrasonic intensity, frequency, and wave length required for bubbling of the bubbling agent, and the ultrasonic irradiation condition setting unit 17 sets the supersonic wave. Ultrasonic irradiation is performed based on the sound wave irradiation conditions.
- the acoustic signal detection unit 18 is a mechanism that receives acoustic signals such as a bubble generation signal and a cavitation signal generated in the processing unit 11 in accordance with the ultrasonic irradiation from the ultrasonic irradiation unit 16.
- the acoustic signal means a pressure wave generated by the bubble formation phenomenon / cavitation state caused by ultrasonic irradiation, such as a bubble formation signal and a cavitation signal.
- a sensor such as a piezoelectric element is provided, and it is preferable that the sensor has a receiving band that can detect at least half the frequency irradiated by the ultrasonic irradiation unit 16 to three times the frequency with a sensitivity of about 6 dB.
- the acoustic signal analysis unit 19 is an arithmetic mechanism that processes the acoustic signal obtained by the acoustic signal detection unit 18 by calculation and detects an aeration signal and a cavitation signal.
- cavitation means a physical phenomenon in which bubbles are generated and disappear in a short time due to a pressure change caused by ultrasonic irradiation.
- the acoustic signal analysis unit 19 transmits the detection result to the ultrasonic irradiation condition setting unit 17 and the display unit 22.
- Arithmetic processing performed in the acoustic signal analysis unit includes filter processing, Fourier transform, and the like, and includes a CPU having a calculation capability for performing this calculation.
- the console 20 is a user interface mechanism for an operator to instruct start / stop of processing, and to input initial setting conditions, modification conditions, and the like.
- the display unit 22 has a function of presenting processing details and apparatus processing status to the surgeon.
- a specific example is a display or the like that displays information related to the detection result based on the signal received from the acoustic signal analysis unit 19.
- the ultrasonic irradiation condition setting unit 17 is configured so that the ultrasonic irradiation unit 16 is based on a preset initial setting condition, a modification condition based on feedback from the acoustic signal analysis unit 19, or a modification condition input from the console 20. This is a mechanism for setting ultrasonic irradiation conditions such as the intensity of ultrasonic waves to be irradiated, the wave length, and the pulse repetition frequency.
- the memory unit 21 is a storage unit that stores ultrasonic irradiation conditions set by the ultrasonic irradiation condition setting unit 17.
- the ultrasonic irradiation condition setting unit 17 reads the conditions stored in the memory unit 21 and sets the ultrasonic irradiation conditions in the ultrasonic irradiation unit 16.
- the table shown in FIG. 8 is an example of ultrasonic irradiation conditions stored in the memory unit 21.
- the ultrasonic condition setting unit 17 determines the irradiation condition based on this condition.
- the frequency 801 defines the basic ultrasonic wave number of the bubble forming ultrasonic wave to be irradiated.
- the repetition frequency 802 defines the period for irradiating the bubbled pulse.
- the pulse intensity 803 defines the maximum intensity of the bubbling pulse.
- the number of pulse cycles 804 defines the wavelength of the bubbling pulse.
- the irradiation time 805 defines the processing time.
- the continuous wave intensity 806 defines the intensity of the continuous wave ultrasonic wave to be emitted between the bubble forming ultrasonic wave irradiations when it is desired to generate cavitation predominantly, and is 0 when only normal bubble generation is generated.
- the ultrasonic irradiation apparatus 100 starts the apparatus operation when it receives the operation start signal input from the console 20 (401). At this time, an aerated drug is set in advance in the aerated drug insertion port 15 and a sample such as a cell solution is inserted from the cell solution insertion port 9.
- the stirring unit 10 automatically stirs the sample (402). When the stirring is completed, the stirring unit 10 sends the sample to the processing unit 11 (403).
- the ultrasonic irradiation unit 16 starts the ultrasonic processing on the processing unit 11 when the liquid feeding of the sample to the processing unit 11 is completed (404).
- the ultrasonic irradiation unit 16 may start the ultrasonic processing based on the ultrasonic processing start signal input from the console 20, and the ultrasonic irradiation condition is predetermined from the start (401) of the apparatus operation. It may be set in advance to start sonication after the time.
- the processing unit 11 may have a configuration for detecting the completion of liquid feeding of the sample, and ultrasonic processing may be started based on the detection signal.
- the ultrasonic irradiation unit 16 transmits an aeration pulse to the processing unit 11 when starting the ultrasonic processing (405).
- the acoustic signal detection unit 18 detects the acoustic signal generated by the bubble generation pulse (detection pulse reception) (406). Based on the acoustic signal detected by the acoustic signal detection unit 18, the acoustic signal analysis unit 19 determines whether or not bubble generation and cavitation have occurred in the processing unit 11 (407).
- the acoustic signal analysis unit 19 determines whether or not the bubble generation has occurred based on whether or not the bubble generation signal generated by the bubble generation is detected (4071). If an aeration signal is detected, it is determined that aeration has occurred, and the setting contents are maintained without changing the ultrasonic condition, and the determination process is terminated (4072).
- an aeration pulse is not detected, it is next determined whether or not cavitation has occurred based on the cavitation signal (4073).
- a cavitation signal is detected, it is determined that cavitation has occurred, and an ultrasonic irradiation condition setting modification signal is transmitted to the ultrasonic irradiation condition setting unit 17 so that an aeration pulse is generated.
- the bubble generation pulse transmitted by the unit 16 is modified (4074). As a result, bubbles of the aerated drug generated after cavitation are bubbled.
- the acoustic signal analysis unit 19 returns to Step 4071 again to determine whether or not bubble formation has occurred.
- the acoustic signal analysis unit 19 transmits an error processing notification signal to the display unit 22 to display an alarm indicating the error processing on the display unit 22 and the ultrasonic irradiation condition setting unit 17
- the modification signal of the sonic wave irradiation condition setting is sent, the ultrasonic wave irradiation is stopped halfway, and the determination process is finished (4075).
- the determination processing in step 407 may be performed a plurality of times during the ultrasonic processing.
- the determination processing may be performed at a predetermined cycle from the start of the ultrasonic processing (404), or via the console 20.
- a configuration in which the user appropriately performs start processing may be employed.
- the setting maintenance 4072 or the bubble change pulse modification 4074 may be controlled to determine the setting maintenance 4072 or the bubble change pulse modification 4074 without confirming the occurrence of cavitation in step 4073.
- the setting of the ultrasonic setting condition is modified until the cavitation signal is received in step 4073 without performing the determination (4071) of the occurrence of bubble formation. It is also possible. For example, setting modification such as increasing the intensity at continuous wave intensity 806 as in setting B described in FIG. 8 is possible.
- FIG. 7 shows an ultrasonic image obtained by imaging bubble generation when the ultrasonic irradiation is repeatedly performed in this manner. It can be seen that bubbles that did not exist before the ultrasonic irradiation were generated by the irradiation of the ultrasonic pulse and disappeared after 13 ms. When the pulse is irradiated for the second time, bubbles are generated in the same manner, and it can be seen that the bubble formation phenomenon is repeatedly generated.
- the processing unit 11 sends the sample to the recovery unit 12 (409), transmits a processing end notification to the display unit 22, and displays on the display unit 22 the end of processing. (410).
- FIG. 5 shows a detection result (detection result 501 relating to bubble formation, a detection result 503 relating to cavitation) and a frequency analysis result (analysis relating to bubble formation) of an acoustic signal (bubble formation signal) caused by bubble formation and an acoustic signal (cavitation signal) caused by cavitation.
- An example of a result 502 and an analysis result 504) related to cavitation is shown.
- the bubbling signal 505 generated by bubbling has a characteristic that it is an impulse signal of a shock wave generated at a speed of about 0.5 ⁇ m to 100 ⁇ s.
- the frequency characteristic 507 has a very wide band with respect to the fundamental frequency 506 of the irradiated ultrasonic wave.
- the frequency characteristic 504 of the cavitation signal 508 has a large number of subharmonic waves 509 and harmonic components 511 of n / 2 (n is an integer of 1 or more) with respect to the irradiated fundamental frequency 510.
- one suitable detection process of the bubble generation signal by the acoustic signal analysis unit 19 in step 4071 described in FIG. 4B is as follows.
- the acoustic signal analysis unit 19 filters the acoustic signal to remove quantization noise and other high-frequency noises, and then n times the wavelength of the bubbled pulse set by the ultrasonic irradiation condition setting unit 17 (n Is an optimal integer that is arbitrarily set to 2 or more), and when the sign of the slope of the acoustic signal is not inverted, it is determined that the signal is a bubbling signal.
- the acoustic signal analysis unit 19 performs differential processing after the above-described filter processing, and calculates the slope of the code based on the time when the zero intersection is detected.
- another suitable detection process of the bubble generation signal by the acoustic signal analysis unit 19 in Step 4071 described in FIG. 4B is a process using an intensity threshold value.
- the theoretical maximum intensity of the signal from the processing unit 18 detected by the acoustic signal detection unit 18 is the intensity of the bubbling ultrasonic waves emitted from the ultrasonic irradiation unit to existing bubbles or reflectors. Reflected, propagated through water and attenuated.
- the volume fluctuation itself associated with the bubble formation becomes a sound source, and a signal having a higher intensity than the signal intensity of the ultrasonic wave irradiated from the ultrasonic irradiation unit is obtained.
- the acoustic signal detection unit 18 when the maximum signal width of the acoustic signal exceeds the value of the maximum signal intensity of the ultrasonic wave irradiated from the ultrasonic irradiation unit, it is determined that the bubbling signal has been detected.
- one preferred method for detecting the cavitation signal by the acoustic signal analysis unit 19 in step 4073 described in FIG. 4B is as follows. Since the cavitation signal includes the subharmonic wave and the harmonic wave as described above, the subharmonic component (f 1/2 ) 509 with respect to the fundamental frequency (f 1 ) 510 signal strength in the frequency component of the signal, The definition is made according to the signal intensity of the higher-order subharmonic component (f 3/2, f 5/2 ) 511.
- the acoustic signal analysis unit 19 calculates the acoustic signal obtained by the acoustic signal detection unit 18 by converting it into a frequency space using a technique such as Fourier transform.
- the fundamental frequency uses the frequency value of the bubble generation pulse, and the subharmonic wave and the higher-order subharmonic wave are calculated from the frequency of the bubble generation pulse, and the signal intensity at each frequency is applied to Equation 1 for calculation.
- a subharmonic component and a harmonic component with respect to the fundamental frequency irradiated from the ultrasonic irradiation unit 16 are detected, it is determined that a cavitation signal is detected.
- the droplet-like aerated drug 1 is bubbled by the aerated pulse 3 which is irradiated from the ultrasonic irradiation unit 16 and itself is a short ultrasonic pulse that does not act on the cell 2.
- the volume fluctuation due to bubbling is about a thousand times depending on the type of liquid to be contained, but a shock wave is generated by the volume fluctuation and a large pressure change is caused around. This action generates local damage to objects such as cell membranes and tissues existing around.
- an aeration signal 5 which is an acoustic signal is generated.
- the bubbled medicine 1 returns to a droplet state over time. Therefore, the object can be damaged any number of times by repeatedly applying pulsed ultrasonic waves.
- the transition to cavitation may be partly caused by the irradiation of the bubbling pulse 3 although the frequency is very low compared to the case where the bubbles are irradiated with the continuous ultrasonic wave 7.
- the droplet-like aerated contrast agent 1 that is the core of aeration is sufficiently present in the liquid and the formation of aeration is dominant, the influence of cavitation is sufficiently low.
- the aeration signal 5 that is an acoustic signal generated during the aeration is detected, and the damage received by the cell is monitored. It is possible to always give a constant stimulus to the cell membrane by feeding back to the output of ultrasonic irradiation and returning it to an appropriate value. .
- the priority level of powerful cell disruption is higher than that of nucleic acid damage control, it is possible to maintain the ultrasonic irradiation state under the condition that the cavitation signal 8 is generated preferentially.
- FIG. 6 illustrates an example of an electrophoresis result of nucleic acid extracted from cells subjected to processing in the cell processing unit 13 of the ultrasonic irradiation apparatus 100.
- the results in all lanes are obtained by treating the same cells under different ultrasonic irradiation conditions and then treating the nucleic acids present in the solution using electrophoresis.
- Lanes 1 to 4 show the result of continuing irradiation while receiving only the bubble generation signal 5
- Lane 5 shows the result of continuing irradiation while the bubble generation signal and the cavitation signal 8 are detected.
- the sizes of the extracted nucleic acids are unified, whereas in lane 5, the sizes of the extracted nucleic acids are diverse.
- only the aeration pulse 3 is irradiated by ultrasonic treatment as described with reference to FIG. 4A, only the cell membrane is selectively damaged, but it can be confirmed that the damage cannot be controlled when cavitation is generated.
- an ultrasonic pulse is irradiated to the affected area of the patient who has been administered the aerated drug, and the aerated drug is bubbled in the affected area irradiated with the pulse, and the cells present in the affected area are To do temporary damage.
- the description of the configuration common to the ultrasonic irradiation apparatus 100 that is the sample processing apparatus described in the first embodiment is omitted, and only the configuration different from the ultrasonic irradiation apparatus 100 of the first embodiment is described. It shall be. Therefore, unless otherwise specified, the features of the configuration of the therapeutic ultrasonic irradiation apparatus in the present embodiment are the same as those of the ultrasonic irradiation apparatus 100 of the first embodiment.
- the therapeutic ultrasound irradiation apparatus 200 includes an ultrasound probe 24, a main body device 25, a console 20, and a display unit 22.
- the ultrasonic probe 24 is a device responsible for transmission / reception of an ultrasonic signal to / from a subject, and includes an ultrasonic irradiation unit 16 and an acoustic signal detection unit 18. In addition, it is not essential that the acoustic signal detection unit 18 and the ultrasonic irradiation unit 16 are both included in a single ultrasonic probe. In some cases, a plurality of probes may be used according to their purposes. You may combine. Moreover, although it is not essential, what is necessary is just a transmission / reception part which can obtain a normal tissue tomographic image.
- the main body device 25 includes an ultrasonic signal analysis unit 19, an ultrasonic irradiation condition setting unit 17, and a memory unit 21.
- the ultrasonic irradiation condition setting unit 17 sets the ultrasonic intensity, wave length, and pulse repetition frequency based on the initial setting condition, the modification condition by feedback from the acoustic signal analysis unit 19 or the modification condition from the console 20, This is a mechanism for instructing the ultrasonic irradiation unit 16.
- the memory unit 21 has a mechanism for storing these independent parameters that can be set as initial conditions and storing modified settings, and calling up the same conditions at the next use.
- the patient 23 is preliminarily administered with an aerated drug before treatment, and the ultrasonic irradiation unit 16 performs ultrasonic irradiation on the affected part to which the administration is performed.
- the aerated contrast agent has a property of accumulating in the affected area, and ultrasonic irradiation to the affected area is started after a certain time has elapsed after intravenous administration.
- a target molecule such as an antibody, peptide, sugar chain or polymer
- an aerated drug is locally administered directly in the vicinity of an affected area.
- an aerated drug is intravenously administered and distributed throughout the body.
- bubble generation is generated only at a specific site, and a localized effect is generated.
- the therapeutic ultrasound irradiation apparatus 200 monitors the aeration state of the aerated drug and the occurrence of cavitation, and feeds back to the pulse irradiation condition, so that specific cells existing in the body of the patient can be obtained. It is possible to apply an impact while controlling the amount of damage. Thus, for example, in treatment such as genetic manipulation of a disease site, it is possible to make a hole in the cell membrane with high accuracy, and improvement in treatment accuracy can be realized.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
Abstract
本発明の一態様として、超音波照射部と、超音波照射を行った照射対象から受信する音響信号に基づいて、照射対象における薬剤の気泡化及びキャビテーションの少なくとも何れか一方の発生有無を判定し、判定結果に基づいて超音波照射部における超音波の照射条件を制御する制御部と、を備える超音波照射装置として構成される。これにより、超音波照射により対象物にダメージを与える際に、目的に応じて、当該対象物に与えるダメージの強度、範囲を精度よく制御することが可能となる。
Description
本発明は、超音波を対象物に照射する超音波照射装置に関する。特に、生体細胞・菌・生体組織等を超音波の照射対象とし、照射対象に与えるダメージをモニタリングしながら照射を行う技術に関する。
近年、テーラーメード医療の拡大に伴い、診断・治療における遺伝情報の重要性が高まっている。このような中で、診断においてDNA、RNA等の簡便・迅速な抽出技術が求められている。また、治療の分野においても遺伝子治療の普及に伴い、遺伝子を任意の細胞に効果的に挿入する手法へのニーズが高まっている。
このような細胞での遺伝子、核酸等の出し入れを行う為には、細胞膜や細胞壁といった細胞を取り囲む膜を破ることが必要となる。その手法として、ビーズなどで物理的に破砕する手法、レーザーなどのエネルギーの熱作用を用いて遠隔的に破砕する手法、界面活性剤などにより科学的に融解させる手法、酵素やウィルスベクターなどを用いて生物的にアプローチをかける手法など、多岐にわたる。そして、その一つとして超音波の利用が検討されている。
超音波照射により細胞を取り囲む膜を破砕する手法として、非特許文献1に開示されるようなキャビテーションを用いる手法が提案されている。当該手法では、超音波の負圧によって生成した気泡が圧壊して、著しい高圧、温度上昇と強い衝撃波が生じることで、細胞を取り囲む膜にダメージを加える。非特許文献1には、気体を界面活性剤で安定化させた数ミクロンサイズの気泡(マイクロバブル造影剤)を用い、キャビテーションの効果によって細胞膜に穴をあける手法が開示されている。
Yu,H. and Zu, Liang., J. Controlled Release,174 (2014) 151-160.
超音波によるキャビテーションの発生条件は、対象物の状態や、媒質中の酸素・二酸化炭素等の溶存酸素量や微粒子等に大きく左右される。更に、キャビテーションは、いったん発生するとラジカル生成反応等が連続的に進行するため、規模の制御が困難である。
そのため、非特許文献1に開示されるような従来の手法では、キャビテーションによる対象物へのダメージを目的に応じた大きさに制御できず、細胞を取り囲む膜だけでなく核酸等の抽出目的の物質までも傷つけてしまったり、遺伝子治療において生かしておきたい細胞を死滅させてしまったりするという問題があった。
本発明では、上述の問題点に鑑み、超音波照射により照射対象にダメージを与える際に、目的に応じて、当該照射対象に与えるダメージの強度、範囲を精度よく制御することを目的とする。
上述した課題の少なくとも一の課題を解決するための本発明の一態様として、超音波照射部と、超音波照射を行った照射対象から受信する音響信号に基づいて、照射対象における薬剤の気泡化及びキャビテーションの少なくとも何れか一方の発生有無を判定し、判定結果に基づいて超音波照射部における超音波の照射条件を制御する制御部と、を備える超音波照射装置として構成される。
本発明によって、超音波照射により対象物にダメージを与える際に、目的に応じて、当該対象物に与えるダメージの強度、範囲を精度よく制御することが可能となる。
以下、本発明の実施形態について、図面を用いた説明により例示する。ただし、本実施形態は本発明を実現するための一例に過ぎず、本発明を限定するものではない。
本発明の実施形態の一例として、培養細胞や菌体、血液・し尿などの生体サンプルなどを対象とした体外検査用の前処理の為のサンプル処理装置として利用可能な超音波照射装置について説明する。以下、本実施例においては上記の処理対象となる物を試料と称す。なお、組織片や食物など固形の試料の場合、液中に均質に分散される程度に処理を予め行っていることが望ましい。
まず、図3を用いて、本実施例における超音波照射装置の構成例について説明する。超音波照射装置100は、本体14中に、撹拌部10、処理部11、回収部12からなる細胞処理部13と、超音波照射部16、音響信号検出部18、音響信号解析部19、超音波照射条件設定部17、メモリ部21と、を備え、その外部に細胞溶液口9、気泡化薬剤挿入口15、コンソール20、表示部22を備えている。
細胞溶液挿入口9は、組織片、培養細胞、菌体、血液、し尿、食物、等の様々な試料を操作者が挿入する機構である。本実施例では試験ごとに試料を挿入する形態を有するが、本機構は、例えば、複数試料を格納し、一つずつ装置に挿入する形態を持つオートサンプラであってもよい。
気泡化薬剤挿入口15は、操作者が任意に気泡化薬剤を挿入するための機構である。ここで、気泡化薬剤は、予め低沸点の難水溶性液体を過熱状態でカプセル化し、目的部位において過熱を超音波エネルギーにより解消させ該液体本来の沸点を回復させることで気化させ、気泡化するタイプの薬剤である。ここで気泡化とは、液相もしくは固相の物体が気相に変化する相変化現象を意味する。気泡化薬剤は、それ自身が顕著な細胞毒性を及ぼすものでなければ、いかなる薬剤でもよい。代表的な例として、フッ化炭素化合物であるパーフルオロペンタン、パーフルオロブタン、パーフルオロヘキサンなどをフッ素系界面活性剤、リン脂質、タンパク質などで安定化させた薬剤が挙げられる。気泡化薬剤挿入口15は、例えば、使用する気泡化薬剤を格納する格納部を備え、試験ごとに任意の量を撹拌部10に送液するような構成を有している。
細胞溶液挿入口9、気泡化薬剤挿入口15、および細胞処理部13は送液系で繋がっており、図示はされていないが送液機構により各機構を試料は移動する。また試料間では図示されていない洗浄機構によって洗浄することに依り、試料間の混合を避ける。
撹拌部10は、試料と気泡化薬剤を撹拌する機構である。撹拌の方式については特に限定せず、いずれの撹拌方式であっても構わない。
処理部11は超音波照射部16による超音波音場に試料が暴露される容器や液槽等である。超音波照射部からの超音波を伝える構成となっており、好適には超音波照射部16と音響信号検出部18の超音波発生・検知を行う機構が処理部11の中、もしくは壁面に存在することが望ましい。
回収部12は、処理部11での処理が完了した試料を回収する機構である。回収部12での回収方法は、試料を操作者が回収しうる機構あればよいが、好適には所望する物質を選別して回収する構成となっている。
超音波照射部16は、処理部11内の試料に超音波の照射を行う機構である。超音波照射部16は、気泡化薬剤の気泡化に必要となる超音波強度・周波数・波連長が照射できる圧電素子などの音源を備えており、超音波照射条件設定部17が設定した超音波の照射条件に基づいて超音波の照射を行う。
音響信号検出部18は、超音波照射部16からの超音波照射に伴い、処理部11内で生成する気泡化信号、キャビテーション信号等の音響信号を受信する機構である。ここで、音響信号とは、気泡化信号、キャビテーション信号、等の、超音波照射に伴って生じた気泡化現象・キャビテーション現状によって生じた圧力波を意味する。圧電素子などのセンサを備えており、好適には、超音波照射部16で照射する周波数の少なくとも半分の周波数から3倍の周波数までを6dB程度の感度で検出できる受信帯域を持つことが望ましい。
音響信号解析部19は、音響信号検出部18によって得られた音響信号を演算によって処理し、気泡化信号、キャビテーション信号を検出する演算機構である。ここで、キャビテーションとは、超音照射による圧力変化により短時間に泡の発生と消失が起きる物理現象を意味する。音響信号解析部19は、検出結果を超音波照射条件設定部17及び表示部22へと送信する。音響信号解析部で行われる演算処理は、フィルタ処理、フーリエ変換、などであり、本演算を行う演算能力を持つCPUを備えている。
コンソール20は、術者が処理開始・停止を指示したり、初期設定条件、改変条件などを入力するためのユーザインターフェイス機構である。
表示部22は、処理内容および装置処理状況を術者に提示する機能を備えている。具体的な例として、音響信号解析部19から受信した信号に基づいて検出結果に関する情報を表示するディスプレイ等である。
超音波照射条件設定部17は、予め設定された初期設定条件、もしくは音響信号解析部19からのフィードバックによる改変条件、もしくはコンソール20から入力される改変条件、に基づいて、超音波照射部16が照射する超音波の強度、波連長、パルス繰り返し周波数等の超音波照射条件の設定を行う機構である。
メモリ部21は、超音波照射条件設定部17が設定する超音波照射条件の格納を行う記憶部である。超音波照射部16が超音波の照射を行う際に、超音波照射条件設定部17はメモリ部21に格納された条件を読み出して超音波照射部16における超音波の照射条件を設定する。
ここで、図8を用いて、超音波照射条件設定部17が設定する超音波照射条件について説明する。図8に示すテーブルは、メモリ部21に格納される超音波照射条件の一例である。超音波条件設定部17は本条件に基づき照射条件を決定する。周波数801は照射する気泡化用超音波の基本超音波数を規定する。繰り返し周波数802は気泡化パルスを照射する周期を規定する。パルス強度803は気泡化パルスの最大強度を規定する。パルスサイクル数804は気泡化パルスの波長を規定する。照射時間805は処理時間を規定する。連続波強度806は、キャビテーションを優位に生成させたい場合に、気泡化用超音波照射の合間に照射する連続波超音波の強度を規定し、通常気泡化のみを生成させる場合は0である。
次に、図4A、図4Bを用いて、超音波照射装置100が行う超音波照射の動作フローについて説明する。
超音波照射装置100は、コンソール20から入力される動作開始信号を受信すると装置動作をスタートさせる(401)。この際、気泡化薬剤挿入口15に気泡化薬剤が予めセットされ、細胞溶液挿入口9から細胞溶液などの試料が挿入された状態である。装置動作がスタートすると、撹拌部10は自動的に試料を撹拌する(402)。撹拌が完了すると、撹拌部10は試料を処理部11へ送液する(403)。
超音波照射部16は、処理部11への試料の送液が完了すると、処理部11に対する超音波処理を開始する(404)。ここで、超音波照射部16は、コンソール20から入力される超音波処理の開始信号に基づいて超音波処理を開始してもよいし、超音波照射条件として装置動作のスタート(401)から所定時間後に超音波処理を開始するように予め設定されていてもよい。また、例えば、処理部11が試料の送液完了を検出する構成を備えており、当該検出信号に基づいて超音波処理を開始してもよい。
超音波照射部16は、超音波処理を開始すると処理部11に対して気泡化パルスの送信を行う(405)。また、気泡化パルスの送信と並行して、音響信号検出部18は、気泡化パルスによって生成する音響信号の検出(検出パルス受信)を行う(406)。音響信号解析部19は、音響信号検出部18が検出した音響信号に基づいて、処理部11における気泡化、キャビテーションの発生の有無の判定を行う(407)。
ここで、図4Bを用いて、ステップ407における、音響信号解析部19が行う気泡化、キャビテーションの生成有無の判定処理の一例について説明する。
まず、音響信号解析部19は、気泡化によって生じる気泡化信号を検出するか否かに基づいて気泡化の発生有無を判定する(4071)。気泡化信号を検出した場合、気泡化が発生しているとして超音波条件を変更せずに設定内容を維持して判定処理を終了する(4072)。
一方、もし気泡化パルスが検出されない場合、次にキャビテーション信号に基づくキャビテーション発生の有無の判定を行う(4073)。キャビテーション信号を検出した場合、キャビテーションが発生していると判定し、気泡化パルスが生成するように、超音波照射条件設定部17に超音波照射条件設定の改変信号を送信して、超音波照射部16が送信する気泡化パルスの改変を行う(4074)。これにより、キャビテーション後に生じた気泡化薬剤の液滴の気泡化を行う。ステップ4074におけるフィードバックによる超音波照射条件の改変後、音響信号解析部19は再度ステップ4071に戻り気泡化の発生有無を判定する。
一方、音響信号解析部19はキャビテーション信号も検出できない場合、誤処理通知信号を表示部22に送信して表示部22に誤処理を示すアラームを表示するとともに、超音波照射条件設定部17に超音波照射条件設定の改変信号を送付して超音波照射を途中停止して判定処理を終了する(4075)。
なお、ステップ407の判定処理は、超音波処理の中で複数回行ってもよく、例えば、超音波処理開始(404)から所定の周期で行う構成であってもよいし、コンソール20を介してユーザが適宜開始処理を行う構成であってもよい。
また、気泡化の確認のみを行いたい場合は、ステップ4073のキャビテーション発生の確認を行わずに、設定維持4072か気泡化パルスの改変4074の判定を行う制御としてもよい。
さらに、操作者の判断においてキャビテーションを優位に生成したい場合には、気泡化の発生有無の判定(4071)を行わずに、ステップ4073においてキャビテーション信号を受信するまで超音波設定条件の設定を改変することも可能である。例えば、図8で述べた設定Bのように連続波強度806における強度を高くする等の設定改変が可能である。
超音波処理は操作者の任意の設定時間もしくは超音波照射条件設定部17に設定された時間に渡り繰り返し行われ、超音波処理を終了する(408)。図7に示すのは、このように繰り返し超音波照射を行った際の気泡生成を撮像した超音波撮像画像である。超音波照射前には存在しなかった気泡が超音波パルスの照射によって生成し、13ms後に消失している様子がわかる。2回目にパルスを照射すると同様に気泡が生成することから、気泡化の現象が繰り返し生成することがわかる。
超音波処理(404乃至408)の終了後、処理部11は、回収部12に試料を送液し(409)、処理終了通知を表示部22に送信して表示部22に処理終了を示す表示を行う(410)。
以下では、図5を用いて、気泡化信号およびキャビテーション信号の特性、およびこれらの特性に基づく音響信号解析部19による気泡化信号およびキャビテーション信号の検出処理について述べる。
図5は気泡化によって生じる音響信号(気泡化信号)とキャビテーションによって生じる音響信号(キャビテーション信号)の検出結果(気泡化に関する検出結果501、キャビテーションに関する検出結果503)および周波数解析結果(気泡化に関する解析結果502、キャビテーションに関する解析結果504)の一例を表したものである。気泡化によって生成する気泡化信号505はおおむね0.5 - 100 μsの速さで生じる衝撃波のインパルス信号である特徴をもつ。周波数解析結果502によれば、照射した超音波の基本周波数506に対し、非常に広帯域な周波数特性507を有する。これに対して、キャビテーション信号508の周波数特性504は、照射している基本周波数510に対してn/2(nは1以上の整数)の分調波509、高調波成分511を多く有することを特徴とする。
これらの特徴に基づく、図4Bで述べたステップ4071における音響信号解析部19による気泡化信号の一つの好適な検出処理は、以下のとおりである。音響信号解析部19は、音響信号にフィルタ処理を行い量子化ノイズ、他の高周波ノイズを取り除いたのち、超音波照射条件設定部17で設定した気泡化パルスの波長に対してn倍時間(nは2以上の任意に設定される最適な整数)の時間、音響信号の傾きの符号が反転しない場合、信号は気泡化信号であると判定する。これは気泡化が起きていないときは照射超音波の周波数帯域が支配的な信号が検出されるのに対し、気泡化が生成したときは基本周波数以上の波長を有する気泡化信号が支配的に検出されるためである。音響信号解析部19では上述のフィルタ処理後、微分処理を行いゼロの交点の検出される時間をもとに符号の傾きを算出する。
また、図4Bで述べたステップ4071における音響信号解析部19による気泡化信号のもう一つの好適な検出処理は強度閾値を用いた処理である。気泡が生成しない場合、音響信号検出部18で検出する処理部18からの信号の原理的な最大強度は超音波照射部から照射される気泡化用超音波の強度が既存の気泡や反射体に反射され、水中を伝搬し減衰した値である。しかし気泡が生成した場合、気泡化に伴う体積変動それ自体が音源となり、超音波照射部から照射される超音波の信号強度よりも強度が高い信号が得られる。そのため、音響信号検出部18において、音響信号の最大信号幅が、超音波照射部から照射される超音波の最大信号強度の値を超えていた場合、気泡化信号が検出されたと判定する。
一方、図4Bで述べたステップ4073における音響信号解析部19によるキャビテーション信号の一つの好適な検出方法は以下のとおりである。キャビテーション信号は前述のように分調波および高調波を含むことを特徴とするため、信号の周波数成分における、基本周波数(f1)510信号強度に対する分調波成分(f1/2)509、高次分調波成分(f3/2, f5/2)511の信号強度の高さよって定義を行い、例えば数1のように定義を行う。
以下では、図1、図2を用いて、超音波照射装置100の超音波照射によって気泡化薬剤が起こす試料への作用について、細胞試料を例としてより詳細に説明する。
液滴状の気泡化薬剤1は、超音波照射部16から照射される、それ自身は細胞2に作用しない短い超音波パルスである気泡化パルス3により気泡化する。気泡化による体積変動は内包する液体の種類にもよるが千倍程度であり、体積変動によって衝撃波を生成し周囲に大きな圧変化をもたらす。本作用により、周囲に存在する細胞膜や組織等の対象物に局所的なダメージを生成する。そして、それに伴い音響信号である気泡化信号5を生成する。図7で上述したように、本気泡化は瞬時に生成するので、図1に示すように、気泡化した薬剤1は時間が経つと液滴の状態に戻る。そのため、繰り返しパルス超音波を照射すれば何回でも対象物にダメージを与えることができる。
一方、図8の連続波強度806について述べたような連続超音波7をいったん生成した気泡に超音波照射装置100から照射すれば、図2に示すようにマイクロバブルによるキャビテーションが発生する。気泡化に際して生成するダメージはキャビテーションによって生成するダメージと異なり局所的であるのに対し、キャビテーションでのダメージは強く、より広範囲に影響を与える。
なお、キャビテーションへの移行は、連続超音波7を気泡に照射した場合に比較し頻度は非常に低いものの、気泡化パルス3の照射によっても一部生じる可能性がある。しかしながら、気泡化の核となる液滴状の気泡化造影剤1が液中に十分存在し、気泡化が優位に生成している状態であれば、キャビテーションによる影響は十分に低い。
そこで、本実施例における超音波照射装置100では、上述のように、気泡化に際し発する音響信号である気泡化信号5を検出し、細胞が受けるダメージをモニタリングし、不適切な場合(気泡化が起こっていない、もしくは気泡化のみではなくキャビテーションが優位に生成している)は超音波照射の出力にフィードバックし、適切な値に戻すことで、常に一定の刺激を細胞膜に与えることを可能とする。一方、核酸のダメージ制御より強力な細胞破砕の優先順位が高い場合、キャビテーション信号8が優位に生成する条件の超音波照射状態を維持することも可能である。
図6に超音波照射装置100の細胞処理部13における処理を加えた細胞からの抽出核酸の電気泳動結果の一例について説明する。すべてのレーンの結果は、同じ細胞を、異なる超音波照射条件で処理したのち、溶液中に存在した核酸を電気泳動を用いて処理したものである。レーン1から4は気泡化信号5のみを受信した状態で照射を続けた結果であり、レーン5は気泡化信号とキャビテーション信号8が検出された状態で照射を続けた結果である。レーン1から4では抽出核酸の大きさがそれぞれ統一されているのに対し、レーン5では抽出された核酸の大きさが多岐にわたっている。図4Aで述べて超音波処理により気泡化パルス3のみを照射した場合、細胞膜のみに選択的にダメージを与えているのに対し、キャビテーションが生成するとダメージが制御できていないことが確認できる。
本発明の超音波照射装置の実施形態の他の一例として、気泡化薬剤を投与した患者を対象とした超音波治療に用いる治療用超音波照射装置について説明する。
本実施例における治療用超音波照射装置では、気泡化薬剤を投与した患者の患部に超音波パルスを照射し、パルスが照射された患部において気泡化薬剤が気泡化し、患部に存在する細胞に対して一時的なダメージを加えるものである。
なお、本実施例では、実施例1で説明したサンプル処理装置である超音波照射装置100と共通する構成については説明を割愛し、実施例1の超音波照射装置100とは異なる構成についてのみ説明するものとする。よって、特段の説明が無い場合は、本実施例における治療用超音波照射装置が備える構成の特徴は実施例1の超音波照射装置100と共通するものである。
図9を用いて、本実施例における超音波照射装置である治療用超音波照射装置200の構成例について説明する。治療用超音波照射装置200は、超音波探触子24、本体装置25、コンソール20、表示部22を備える。
超音波探触子24は、被検体との間で超音波信号の送受信を担うデバイスであり、超音波照射部16、音響信号検出部18を備えている。また、音響信号検出部18および超音波照射部16は単一の超音波探触子に双方が含まれていることは必須ではなく、場合によっては複数の探触子をそれぞれの目的に応じて組み合わせてもよい。また、必須ではないが、通常の組織断層画像を得られる送受部があればよい。また、本体装置25は、超音響信号解析部19、超音波照射条件設定部17、メモリ部21を備える。
超音波照射条件設定部17は初期設定条件、もしくは音響信号解析部19からのフィードバックによる改変条件やコンソール20からの改変条件にもとづいて超音波の強度、波連長、パルス繰り返し周波数について設定し、超音波照射部16に指示を行う機構である。
メモリ部21では初期条件として設定可能なこれらの独立パラメータの格納、および改変設定の格納を行い、次回使用時に同様の条件を呼び出せる機構を備える。
患者23には処理前にあらかじめ気泡化薬剤を投与されており、超音波照射部16は当該投与がされている患部に超音波の照射を行う。
気泡化薬剤の投与の一例としては、気泡化造影剤が患部に集積する特性有しており、静脈投与後一定時間が経過したのちに患部への超音波照射を開始する。患部に集積する特性の一例として、気泡化薬剤の表面に抗体、ペプチド、糖鎖やポリマーなどの標的分子を結合した形態がある。また、投与の形態の他の例として、気泡化薬剤を患部付近に直接局所投与する例がある。
さらに、投与の形態の他の例として、気泡化薬剤を静脈投与し、全身に分布させる例がある。超音波の照射領域を特定の組織に絞ることで、特定の部位でのみ気泡化を生成し、限局的に効果を生成する。
本実施例によれば、治療用超音波照射装置200によって、気泡化薬剤の気泡化、キャビテーションの発生状況をモニタリングしてパルス照射条件にフィードバックすることで、患者の体内に存在する特定の細胞に、ダメージの大きさをコントロールしつつ衝撃を加えることが可能になる。これにより、例えば疾患部位の遺伝子操作を行うなどの治療において、高精度に細胞膜に穴をあけることが可能となり、治療精度の向上を実現できる。
1…気泡化薬剤、2…細胞、4…気泡、5…気泡化信号、8…キャビテーション信号、11…処理部、14…本体、16…超音波照射部、17…超音波照射条件設定部、18…音響信号検出部、19…音響信号解析部、21…メモリ部、22…表示部、24…探触子、25…本体、100…超音波照射装置、200…治療用超音波照射装置
Claims (10)
- 超音波を照射する超音波照射部と、
前記照射を行った照射対象から音響信号を受信する音響信号検出部と、
前記音響信号に基づいて、前記照射対象における薬剤の気泡化及びキャビテーションの少なくとも何れか一方の発生有無を判定する音響信号解析部と、
前記音響信号解析部による判定結果に基づいて、前記超音波の照射条件を制御する照射条件設定部と、を備える、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記超音波照射部は、
前記超音波として、超音波パルスを、前記照射条件に基づく所定の照射間隔で繰り返し照射する、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記音響信号解析部は、
前記気泡化の発生有無を判定し、前記気泡化の発生が無いと判定した場合に、前記照射条件の改変信号を前記照射条件設定部に送信し、
前記照射条件設定部は、
前記改変信号に基づいて前記照射条件を前記気泡化を発生させる照射条件に改変する、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記音響信号解析部は、
前記キャビテーションの発生有無を判定し、前記キャビテーションの発生が有ると判定した場合に、前記照射条件の改変信号を前記照射条件設定部に送信し、
前記照射条件設定部は、
前記改変信号に基づいて前記照射条件を前記気泡化を発生させる条件に改変する、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記音響信号解析部は、
前記音響信号の傾きの符号が所定時間内に反転しない場合に、前記気泡化の発生が有ると判定する、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記音響信号解析部は、
前記音響信号の最大信号強度が、前記超音波照射部から照射した超音波の最大信号強度より高い場合に、前記気泡化の発生が有ると判定する、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記音響信号解析部は、
前記音響信号から、前記超音波照射部から照射した基本周波数に対する分調波成分と高調波成分を検出した場合に、前記キャビテーションの発生が有ると判定する、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
生体由来の物質を含む液体試料を前記照射対象として保持し、前記超音波照射部が照射する超音波及び前記照射対象からの前記音響信号を伝導可能な試料保持部を更に備える、
ことを特徴とする超音波照射装置。 - 請求項1に記載の超音波照射装置であって、
前記超音波照射部と前記音響信号検出部は、
薬剤があらかじめ投与された患部に対して前記超音波を送受信する超音波探触子内に設けられる、ことを特徴とする超音波照射装置。 - 気泡化薬剤が注入された患部に向けて超音波の照射を行い、前記患部から音響信号を受信する超音波探触子と、
前記音響信号に基づいて前記照射対象における薬剤の気泡化及びキャビテーションの少なくとも何れか一方の発生有無を判定し、前記判定の結果に基づいて前記超音波の照射条件を制御する本体装置と、を備える、
ことを特徴とする超音波照射装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/073851 WO2016038696A1 (ja) | 2014-09-10 | 2014-09-10 | 超音波照射装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/073851 WO2016038696A1 (ja) | 2014-09-10 | 2014-09-10 | 超音波照射装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016038696A1 true WO2016038696A1 (ja) | 2016-03-17 |
Family
ID=55458485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/073851 WO2016038696A1 (ja) | 2014-09-10 | 2014-09-10 | 超音波照射装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016038696A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11506636A (ja) * | 1995-06-06 | 1999-06-15 | イマアーレクス・フアーマシユーチカル・コーポレーシヨン | 超音波診断及び超音波治療を同時に実行する方法及び装置 |
WO2005094701A1 (ja) * | 2004-03-31 | 2005-10-13 | Toudai Tlo, Ltd. | 超音波照射方法及び超音波照射装置 |
JP2009508649A (ja) * | 2005-09-22 | 2009-03-05 | ザ リージェンツ オブ ザ ユニバーシティー オブ ミシガン | パルス・キャビテーション超音波療法 |
JP2012507320A (ja) * | 2008-11-05 | 2012-03-29 | アイシス イノベーション リミテッド | キャビテーション活動のマッピング及び特性評価 |
-
2014
- 2014-09-10 WO PCT/JP2014/073851 patent/WO2016038696A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11506636A (ja) * | 1995-06-06 | 1999-06-15 | イマアーレクス・フアーマシユーチカル・コーポレーシヨン | 超音波診断及び超音波治療を同時に実行する方法及び装置 |
WO2005094701A1 (ja) * | 2004-03-31 | 2005-10-13 | Toudai Tlo, Ltd. | 超音波照射方法及び超音波照射装置 |
JP2009508649A (ja) * | 2005-09-22 | 2009-03-05 | ザ リージェンツ オブ ザ ユニバーシティー オブ ミシガン | パルス・キャビテーション超音波療法 |
JP2012507320A (ja) * | 2008-11-05 | 2012-03-29 | アイシス イノベーション リミテッド | キャビテーション活動のマッピング及び特性評価 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bader et al. | For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy | |
Wang et al. | An efficient treatment strategy for histotripsy by removing cavitation memory | |
Li et al. | Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors | |
Arnal et al. | Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure thresholds | |
JP4369907B2 (ja) | 音響化学治療装置 | |
CN102834068B (zh) | 超声波诊断治疗装置 | |
US9642634B2 (en) | Pulsed cavitational ultrasound therapy | |
Helfield et al. | Fluid viscosity affects the fragmentation and inertial cavitation threshold of lipid-encapsulated microbubbles | |
JP2009508649A (ja) | パルス・キャビテーション超音波療法 | |
Somaglino et al. | Validation of an acoustic cavitation dose with hydroxyl radical production generated by inertial cavitation in pulsed mode: Application to in vitro drug release from liposomes | |
Hasanzadeh et al. | Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis | |
Xu et al. | Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution | |
JP4724827B2 (ja) | 攪拌処理装置及びカテーテル | |
Keller et al. | Ultrasound imaging of microbubble activity during sonoporation pulse sequences | |
Gateau et al. | Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study | |
Lee et al. | Effect of surfactants on inertial cavitation activity in a pulsed acoustic field | |
WO2000053263A9 (en) | Dual transducer ultrasound lysis method and apparatus | |
Mondou et al. | State of the art on microbubble cavitation monitoring and feedback control for blood-brain-barrier opening using focused ultrasound | |
Frank et al. | Bubble proliferation or dissolution of cavitation nuclei in the beam path of a shock-wave lithotripter | |
WO2016038696A1 (ja) | 超音波照射装置 | |
JP4648983B1 (ja) | 超音波診断・治療装置 | |
Lundt et al. | Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering | |
Xu et al. | Size distribution estimation of cavitation bubble cloud via bubbles dissolution using an ultrasound wide-beam method | |
Smith et al. | Characterisation of Gas Vesicles as Cavitation Nuclei for Ultrasound Therapy using Passive Acoustic Mapping | |
Miller et al. | Photodisruptive laser nucleation of ultrasonic cavitation for biomedical applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14901743 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14901743 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |