WO2016037567A1 - In-process measurement of component surfaces under coolant condition - Google Patents

In-process measurement of component surfaces under coolant condition Download PDF

Info

Publication number
WO2016037567A1
WO2016037567A1 PCT/CN2015/089233 CN2015089233W WO2016037567A1 WO 2016037567 A1 WO2016037567 A1 WO 2016037567A1 CN 2015089233 W CN2015089233 W CN 2015089233W WO 2016037567 A1 WO2016037567 A1 WO 2016037567A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
coolant
applicator
sensor
workpiece
Prior art date
Application number
PCT/CN2015/089233
Other languages
French (fr)
Inventor
Yongsheng Gao
Ruipeng LI
Original Assignee
The Hong Kong University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong University Of Science And Technology filed Critical The Hong Kong University Of Science And Technology
Priority to CN201590001097.6U priority Critical patent/CN206967158U/en
Publication of WO2016037567A1 publication Critical patent/WO2016037567A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Definitions

  • Manufacturing processes typically generate massive heat and lots of chips or pieces.
  • the massive heat must be reduced in order to enhance a manufacturing machine’s precision, surface quality, and ultimately, tool life. Chips or flaws must be cleared in order to reduce damage to the machine’s workpiece surface.
  • the use of coolant, cooling fluid, cooling oil, or cooling mist, is the most common method to fulfill the two requirements. Using coolant in a manufacturing process typically results in the formation of an opaque barrier on a working component, since coolant may be ejected from any direction, splashing everywhere.
  • the splashing results in a working component being immersed in a coolant layer.
  • attempts to displace the coolant may result in bubble generation or explosion which would vibrate workpiece, causing measurement errors.
  • a system for measurement of workpiece surface topography includes: a sensor; a motion system, configured to move the sensor or a workpiece in x-, y-, and z-directions; and an applicator, configured to provide displacement of coolant away from one or more measurement points on the workpiece, wherein the displacement of the coolant provides the sensor with access to the one or more measurement points.
  • the sensor is configured to obtain a measurement from the one or more measurement points on the workpiece during a machining process where the workpiece is under coolant condition based on the coolant being displaced away from the one or more measurement points by the applicator.
  • FIG. 1 depicts a schematic diagram of a measurement system
  • FIG. 1A depicts several modifications to the measurement system of FIG. 1;
  • FIG. 2A-2B depict an applicator model
  • FIG. 3 depicts the working principle of the applicator model
  • FIG. 4 depicts a top view of the applicator model
  • FIG. 5 depicts a front view of the applicator model
  • FIG. 6 depicts a cross sectional view of the applicator model
  • FIG. 7 depicts a bottom view of the applicator model
  • FIG. 8 depicts another bottom view of the applicator model
  • FIG. 9 depicts a view of a sensor
  • FIG. 10 depicts a side view of a measurement system
  • FIG. 11 depicts a front view of the measurement system
  • FIG. 12 depicts a z axis encoder system contained in the measurement system
  • FIG. 13 depicts an x axis encoder system contained in the measurement system
  • FIG. 14 depicts an applicator adjustment system
  • FIG. 15 depicts a back applicator cover
  • FIG. 16 depicts a front applicator cover
  • FIG. 17 depicts a sample workpiece
  • FIG. 18 depicts a surface of the workpiece
  • FIG. 19 depicts a sample graphical depiction of workpiece surface roughness
  • FIG. 20 depicts a coolant tank
  • FIG. 21 depicts the workpiece placed in the coolant tank
  • FIG. 22 depicts a coolant nozzle
  • FIG. 23 depicts a coolant tank filled with coolant
  • FIG. 24 depicts a front view of t c testing without coolant
  • FIG. 25 depicts a side view of t c testing without coolant
  • FIG. 26 depicts a front view of t c testing with coolant
  • FIG. 27 depicts a side view of t c testing with coolant
  • FIG. 28 depicts a view of the back applicator cover under working condition with coolant
  • FIG. 29 depicts a view of the front applicator cover under working condition with coolant
  • FIG. 30 depicts a front view of coolant from the front direction
  • FIG. 31 depicts a side view of coolant from the front direction
  • FIG. 32 depicts a side view of coolant from the back direction
  • FIG. 33 depicts a front view of coolant from the side direction
  • FIG. 34 depicts a side view of coolant from the side direction
  • FIG. 35 is a flow diagram of a measurement system and testing system according to certain embodiments.
  • FIG. 36A-H are exemplary screenshots of a data collection software
  • FIG. 37 depicts a data processing GUI interface of the data collection software
  • FIG. 38 depicts a data processing GUI help interface of the data collection software
  • FIG. 39 is a graph showing residual random error assessment of x-axis positive direction
  • FIG. 40 is a graph showing residual random error assessment of x-axis negative direction
  • FIG. 41 is a graph showing residual random error assessment of z-axis positive direction
  • FIG. 42 is a graph showing residual systematic error of each point of x-axis positive direction
  • FIG. 43 is a graph showing residual systematic error of each point of x-axis negative direction
  • FIG. 44 is a graph showing residual systematic error of each point of z-axis positive direction
  • FIG. 45A-D show several measurement results of two wafers, Wafer 1 and Wafer 2;
  • FIG. 46A-B show measurement results of an aluminum workpiece
  • FIG. 47A is an illustration of an applicator for a workpiece with a cylindrical surface
  • FIG. 47B is an illustration of an applicator for a workpiece with a spherical surface
  • IG. 48A-C are illustrations of several exemplary views of an applicator showing exemplary size information.
  • Non-contact measurements have no sensing part in contact with a workpiece.
  • Examples of non-contact measurement methods include optical, electromagnetic, electrical, ultrasonic, and pneumatic methods.
  • Non-contact measurements provide the advantage of leaving no damage to workpiece surface. Further, non-contact optical sensors are able to provide non-contact measurements with high accuracy and efficiency.
  • the coolant may be ejected from any direction resulting in coolant splashing everywhere and coating a workpiece.
  • An exemplary embodiment provides a non-contact measurement sensor to precisely measure a workpiece under coolant condition, which is the condition where coolant is used in the manufacturing process and may result in the workpiece being immersed in coolant.
  • Measurement methods may be divided into three types: in-process measurement, post-process measurement, and in-situ measurement.
  • In-process measurements are measurements performed while the workpiece is being machined without interruption to the machining process. Certain embodiments of the disclosure will provide a means for in-process measurements, permitting improved product quality and productivity.
  • a measurement system capable of in-process optical measurement of workpiece surface topography z (x, y) or y (x, z) under coolant condition is provided.
  • the expression z (x, y) is typically used in a stand-alone metrology lab test.
  • the expression y (x, z) is typically used in a machining process.
  • the expression y (x, z) will be used to refer to workpiece surface topography.
  • Exemplary embodiments of the measurement system provide a precision sensor capable of high precision measurements for y. Additionally, these embodiments may provide a 3D motion system, typically realized by 3 precision tables, to move the sensor or workpiece in x and z directions and to move the sensor or workpiece in y direction for sensor position adjustment in y direction, since precision sensors of the type typically have a limited measurement range in y. For example, some sensors can only measure features below 300 ⁇ m. For measurements that exceed this range, the sensors will not work. Therefore, the proposed design of utilizing a y table can solve the range problem.
  • Exemplary embodiments of the measurement system may further be equipped with specially designed applicator (s) to deal with certain coolant issues.
  • the design of the applicator (s) may include various features, including, for example: (1) an air beam cone or structure; (2) only filling a small, closed space with air; (3) an air escape code or structure; and (4) measurement paths. These features are discussed in further detail as follows:
  • Air beam cone or structure Multiple air beams may be generated by air beam generators and evenly distributed along a cone surface as depicted in FIGS. 1-7.
  • the nozzles or tips of the air beams are on an air beam ring with diameter ⁇ ar at the bottom of the applicator.
  • Each air beam nozzle ⁇ a is inclined and has an angle ⁇ a relative to the workpiece surface to allow displacement of coolant away from a measurement point (x, z) .
  • the chosen design structure enables the creation of a transparent window, the size of it is A t , that allows precise optical measurements to obtain y (x, z) with only a minimum amount of kinetic energy possessed by the air beams.
  • the angle, diameter, and size of the air beam and the air beam ring may be optimized for particular machining processes.
  • exemplary embodiments are able to displace coolant flow from any direction, which is a valuable quality for an in-process optical measurement system.
  • the transparent window A t also permits precise optical measurements of multiple measurement points to obtain values of y at a number of points (x 1 ⁇ x ⁇ x n , z 1 ⁇ z ⁇ z n ) within the transparent window A t .
  • the applicator is set close to the workpiece surface at h a .
  • the space between the applicator bottom and the workpiece surface and inside the air beam ring is closed and is very small but sufficient to conduct measurement at the point (x, z) .
  • the space is formed by pressurized air which continuously flows in and out as depicted in FIG. 1.
  • the space is filled with air which is optically transparent, and the pressurized air also serves as the walls of the chamber, keeping coolant away from the measurement point by moving radially from the center area to the outer area.
  • the center is the measurement point (x, z) .
  • a transparent or an optically clean measurement window is established permitting in-process, precise optical measurement of workpiece surface y (x, z) under coolant condition.
  • These exemplary embodiments may help minimize consumption of compressed air and also avoid the use of high speed air stream, which could affect measurement precision.
  • a cone shaped passage channel for example, as depicted in FIGS. 1-7, is designed to allow used air to escape easily along a cone passage through the applicator body. Used air escapes internally through the applicator body and not around the applicator body externally. If there is space limitation, a combination of cylinder 58 (FIG. 3) and cone 60 (FIG. 3) may be utilized, instead of a pure cone passage. A pure cone passage would make the applicator much larger than the current design by widening the separation between air escape cones 45 and 46 of FIG. 3. For comparison, FIG. 1 provides a pure cone air escape structure, and FIG. 3 illustrates a cone and cylinder air escape structure. FIG.
  • the escape ring ⁇ ae (FIG. 7) is the opening at the bottom of the applicator that allows the used air to escape.
  • the air escape cone or structure eliminates coolant bubble generation and explosion around the applicator, and more importantly, bubble generation and explosion near the workpiece to avoid workpiece vibration.
  • the air escape cone or structure’s sizes are bigger than the air beam cone or structure’s sizes in order to facilitate the collection of all used air and the passage of that air out through the coneor structurefor the purpose to generate one or more transparent windows.
  • the bigger end of the air escape cone is at the top (See air escape cones 45, 46, 60 in FIG. 3) .
  • the air escape cone size described by the air escape ring diameter ⁇ ae and air escape ring thickness t ae , and air escape angle ⁇ ae, may be optimized for particular machining processes.
  • exemplary embodiments which utilize an air escape cone or structure are able to avoid or reduce applicator and workpiece vibration (which can be a significant source of measurement error) . This allows for enhanced measurement precision.
  • the air escape cone or structure’s sizes may be equal to or smaller than the air beam cone or structure’s sizes in order to generate one or more transparent windows.
  • Measurement paths Hollow long tubular or rectangular structures, for example as depicted in FIGS. 1-7, are provided to allow light beams direct access to a workpiece surface for precision measurement in order to read workpiece surface y (x, z) at the point (x, z) . Measurement paths are provided inside the air beam cone. Used air may partially escape from the measurement paths 48 (FIGS. 5-6) or hollow structures. This design allows a single medium for light transmission, thereby eliminating challenges associated with a refraction between two media in the light transmission. Thus, exemplary embodiments which provide such measurement paths allow light path stability to be achieved. This provides high measurement precision, as the light path will not be affected even when the applicator is subject to vibration.
  • the aforementioned features when incorporated with certain embodiments of a measurement system as depicted in exemplary FIGS. 1-16, provide for using air to displace coolant, cooling fluid, cooling mist, or cooling oil, and to create an optical clean zone between the applicator bottom and workpiece surface.
  • This clean zone is also known as transparent window and the size of it is A t .
  • the resultant structure permits precision measurement of the workpiece surface in order to obtain y (x, z) under coolant condition, which is a typical machining process condition.
  • the optical clean zone is full of air. Therefore, it has no adverse effect stemming from refraction difference.
  • the aforementioned features thus enable the measuring of workpiece topography y (x, z) when the workpiece is under coolant condition.
  • Certain embodiments utilize multiple air beams or nozzles arranged circularly.
  • the air nozzles eject air beams outwards with a specific angle to workpiece surface as exemplified in FIG. 3 and FIGS. 7-8.
  • Such arranged air beams can provide resistance to coolant flow from any direction, thereby restricting the coolant flow pattern and preventing an unpredictable coolant flow pattern.
  • a circular arrangement for the nozzles is provided here as an example, but other arrangements with other geometric shapes like elliptical arrangements are possible.
  • an adjustment component referred to as “an adjustment component, ” as depicted in exemplary FIGS. 10-14, which can be used to control the gap distance, h a , between applicator bottom surface and workpiece surface. Decreasing the size of the gap to provide a small gap can effectively reduce the amount of coolant that the air beam (s) need to resist. Thus, using the adjustment component to decrease the gap size can provide air consumption savings when working with a thick coolant layer. This also allows the applicator to work when workpiece is deeply immersed in coolant.
  • Certain embodiments utilize air escape structures (which can be called “escape rings” or “escape cones” ) that collect used air.
  • escape rings or “escape cones”
  • bubbles will be generated in the escape passage channel and will eventually burst when inside or on the way out of the applicator through the escape cone (e.g., as depicted in exemplary FIG. 5) . Therefore, the bursting bubbles only vibrate the applicator instead of workpiece. This allows the measurement system to avoid bubbles being generated at the edge of the applicator where they would contact the workpiece surface (which could cause vibration of the workpiece and induce measurement error) .
  • Certain embodiments utilize an accessory component referred to as a “front/back applicator cover, ” as depicted in exemplary FIGS. 14-16.
  • the front/back applicator cover protects a non-contact optical sensor from coolant contaminate in the event that coolant bubbles explode after exiting the applicator.
  • Exemplary embodiments of the measurement system described herein thus provide several advantages.
  • in-process non-contact measurement is provided, which avoids potential scratch damage on precision surfaces and at the same time allows the measurement to be performed without stopping the machining process.
  • the optical non-contact sensor in exemplary embodiments are able to access the workpiece surface regardless of coolant flow direction above the workpiece surface, the optical non-contact sensor is able to access the workpiece surface even under coolant immersion conditions, and applicator (s) can be configured to collect used air to avoid bubble generation that would negatively impact measurement.
  • FIG. 10 and FIG. 11 An exemplary system for in-process measurement of component surfaces under coolant condition according is depicted in FIG. 10 and FIG. 11.
  • the applicator 35 is shown from various perspectives, for example, in FIGS. 1-8, 10-11, and 14-16.
  • Applicator 35 is mounted between a left vertical holder 26 (FIG. 15) , and a right vertical holder 27 (FIG. 14-15) .
  • Applicator 35 is mounted to these holders by two applicator screw bars 36 and four applicator nuts 37 (FIG. 14-16) .
  • the applicator 35 can slide along z-axis in the slots of left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIG. 14-16) to find a suitable position to cooperate with optical sensor 34 (FIGS.
  • the applicator 35 (FIGS. 1-8, 10-11, 14-16) can also move vertically by adjust y-axis manual table 24 (FIG. 14; Table 5) to control the value of h a which is defined as the distance between applicator bottom surface and workpiece 39 surface (FIGS. 3, 17-18, 21, 24-34) .
  • the basic working principle of applicator 35 is to utilize air beams to create an optical clean zone 38 (FIG. 3) between applicator bottom surface and workpiece surface (FIG. 3) for laser beam 40 (FIG. 3) to access the workpiece surface.
  • the applicator 35 utilizes the air beams to stop coolant 41 (FIGS. 22-23, 26-34) flow inside the measurement path 48 (FIGS. 3-8) .
  • the applicator includes bottom 42 (FIGS. 1-3) , applicator grip 43 (FIGS. 1-2, 4-8) , mounting hole 44 (FIGS. 1-3) , air escape cone 45 (FIGS. 1-7) , air escape cone 46 (FIGS. 1-5) , measurement path extrusion 47 (FIGS. 1-6) , measurement path 48 (FIGS. 3-8) , air beam ring 49 (FIG. 3, 7-8) , air beam cone 50 (FIG. 3) , internal air passage 51-55 (FIG. 3) , inlet mounting hole 56 (FIG. 3) , inlet nozzle 57 (FIG. 2, 4, 8) , used air escape passage 58 (FIG. 3, 7-8) , escape ring rib 59 (FIGS. 7-8) and internal escape passage cone 60 (FIG. 3, 5) .
  • the air is injected into applicator 35 (FIGS. 1-8, 10-11, 14-16) through inlet nozzle 57 (FIG. 2, 4, 8) .
  • the inlet nozzle 57 (FIG. 2, 4, 8) is mounted in inlet mounting hole 56 (FIG. 3) .
  • the air flow then passes through internal air passage 55 (FIG. 3) and splits into three air flows –flow into internal air passage 54 (FIG. 3) , internal air passage 53 (FIG. 3, 6) and internal air passage 52 (FIG. 3) , respectively.
  • the air flow that does not pass through internal air passage 53 (FIG. 3, 6) flows into an air beam cone 50 (FIG. 3) , is ejected out through air beam ring 49 (FIG.
  • the air beam ring 49 may have multiple openings, for example, ten openings.
  • the air nozzle diameter is ⁇ a
  • the ten air beam ring 49 (FIG. 3, 7-8) are arranged circularly with a diameter ⁇ ar .
  • the optical clean zone 38 (FIG. 3) will be larger than the measurement window size A m . Therefore, the laser beam provided by the optical sensor can access the workpiece surface through the measurement path 48 (FIGS. 3-8) without contacting coolant.
  • the measurement path 48 (FIGS. 3-8) is isolated from all other channels 50-52, 54-56, and 60 as shown in FIG. 3.
  • the bottom 42 (FIGS. 1-3) is used to reduce the thickness of coolant layer which the applicator 35 (FIGS. 1-8, 10-11, 14-16) needs to resist.
  • the applicator grip 43 (FIGS. 1-2, 4-8) and mounting hole 44 (FIGS. 1-3) are used to mount applicator 35 (FIGS. 1-8, 10-11, 14-16) on left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIGS. 14-15) of third layer.
  • the escape ring ribs 59 (FIGS. 7-8) are used to strengthen the applicator 35 (FIGS. 1-8, 10-11, 14-16) structure.
  • the measurement path extrusion 47 (FIGS. 1-6) is used to protect measurement path 48 (FIGS. 3-8) from occasional coolant drops on upper surface of applicator 35 (FIGS. 1-8, 10-11, 14-16) .
  • the measurement system (FIG. 10) has four layers, including: (1) First layer for support, (2) Second layer for z axis control, (3) Third layer for x axis control, and (4) Fourth layer for y axis control.
  • First layer for support (2) Second layer for z axis control
  • Third layer for x axis control (3) Third layer for x axis control
  • Fourth layer for y axis control The following provides details regarding these layers.
  • the first layer (FIG. 10) is used to support the second, third and fourth layers (FIG. 10) .
  • the first layer (FIG. 10) includes four feet 1 (FIGS. 10-12) , four feet adjustment parts 2 (FIGS. 10-12) , four feet nuts 3 (FIGS. 10-12) and one base board 4 (FIGS. 10-12) .
  • the height of the four feet 1 is about 65mm, and this height can be changed by replacing the base with other types of feet base.
  • the feet adjustment part 2 (FIGS. 10-12) and feet nut 3 (FIGS. 10-12) are used to adjust the distance between bottom surface of base board 4 (FIGS. 10-12) and bottom surface of feet 1 (FIGS. 10-12) .
  • the feet adjustment part 2 (FIGS. 10-12) may also be used to adjust the horizontal level of the measurement system.
  • the base board is used to hold the z-axis table 7 (FIG. 10; Table 1) .
  • the second layer is used to control the motion of third and fourth layers along z-axis (FIG. 10) .
  • the second layer includes z-axis motor 5 (FIG. 10; Table 2) , z-axis wire collector 6 (FIG. 10) , z-axis table 7 (FIG. 10, 12; Table 1) , z-axis encoder plastic base 8 (FIG. 12) , z-axis encoder tape 9 (FIG. 12; Table 3) , z-axis encoder 10 (FIG. 12; Table 4) , z-axis encoder adjustment part 11 (FIG. 12) , z-axis encoder inserter 12 (FIG. 12) , and z-axis inserter 13 (FIG. 12) .
  • the z-axis motor 5 (FIG. 10; Table 2) is used to control the motion of z-axis table 7 (FIG. 10, 12; Table 1) .
  • Z-axis wire collector 6 (FIG. 10) is used to fix the position of wires of measurement system.
  • Z-axis table 7 (FIG. 10, 12; Table 1) is used to move third layer and fourth layer along z-axis direction. In some embodiments, the nominal movement range is ⁇ 12.5 mm while the actual movement range is ⁇ 20mm.
  • Z-axis encoder plastic base 8 (FIG. 12) is used as a flat plate for z-axis encoder tape 9 (FIG. 12; Table 3) to stick on. The size of z-axis encoder tape 9 (FIG.
  • Z-axis encoder 10 (FIG. 12; Table 4) is mounted below z-axis encoder adjustment part 11 (FIG. 12) , and works with z-axis encoder tape 9 (FIG. 12; Table 3) to record z-axis table 7 (FIG. 10, 12; Table 1) position.
  • Z-axis encoder inserter 12 (FIG. 12) and z-axis inserter 13 (FIG. 12) are used to leave a space between second layer and third layer, therefore offer a mounting position for z-axis encoder adjustment part 11 (FIG. 12) .
  • the third layer is used to control the motion of the fourth layer along x-axis (FIG. 10) .
  • the third layer includes x-axis motor 14 (FIGS. 10-11; Table 2) , x-axis table 15 (FIG. 10, 13; Table 1) , x-axis encoder plastic base 16 (FIG. 13) , x-axis encoder tape 17 (FIG. 13; Table 3) , x-axis encoder 18 (FIG. 13; Table 4) , x-axis encoder adjustment part 19 (FIG. 13) , x-axis encoder inserter 20 (FIG. 13) , x-axis inserter 21 (FIG.
  • the x-axis motor 14 (FIGS. 10-11; Table 2) is used to control the motion of x-axis table 15 (FIG. 10, 13; Table 1) .
  • X-axis table 15 (FIG. 10, 13; Table 1) is used to move the fourth layer along x-axis direction. In some embodiments, the nominal movement range is ⁇ 12.5 mm while the actual movement range is ⁇ 20 mm.
  • X-axis encoder plastic base 16 (FIG. 13) is used as a flat plate for x-axis encoder tape 17 (FIG. 13; Table 3) to stick on. The size of x-axis encoder tape 17 (FIG. 13; Table 3) is 0.2 ⁇ 6 ⁇ 75mm.
  • X-axis encoder 18 (FIG.
  • x-axis encoder adjustment part 19 (FIG. 13) , and work with x-axis encoder tape 17 (FIG. 13; Table 3) to record x-axis table 15 (FIG. 10, 13; Table 1) movement position.
  • X-axis base holder 22 (FIG. 10) and x-axis horizontal base holder 23 (FIG. 10 and FIG. 14) are used to support y-axis manual table 24 (FIG.
  • Y-axis manual table 24 (FIG. 14; Table 5) has a limited vertical range of about 10mm.
  • X-axis upper horizontal holders 25 (FIG. 14) are mounted on y-axis manual table 24 (FIG. 14; Table 5) , and are used to support left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIGS. 14-15) .
  • Left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIGS. 14-15) are used to mount applicator 35 (FIGS. 1-8, 10-11, 14-16) .
  • Back applicator cover 28 (FIG.
  • the fourth layer is used to precisely control the vertical position of optical sensor 34 (FIGS. 9-11and Table 6) .
  • the fourth layer includes y-axis motor 30 (FIG. 10 and Table 2) , y-axis table 31 (FIG. 10 and Table 7) , y-axis horizontal holders 32 (FIGS. 10-11) , T-shape vertical holder 33 (FIGS. 10-11) and optical sensor 34 (FIGS. 9-11and Table 6) .
  • the y-axis motor 30 (FIG. 10 and Table 2) is used to control the motion of y-axis table 31 (FIG. 10 and Table 7) .
  • the y-axis table 31 (FIG. 10 and Table 7) has a vertical movement range about ⁇ 7 mm.
  • the y-axis horizontal holders 32 (FIGS. 10-11) are used to connect y-axis table 31 (FIG. 10 and Table 7) and T-shape vertical holder 33 (FIGS. 10-11) .
  • the T-shape vertical holder 33 (FIGS. 10-11) is used to mount optical sensor 34 (FIGS. 9-11and Table 6) .
  • testing was performed with respect to coolant thickness.
  • a workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, and FIGS. 24-34) was polished by a commercial metal polish, e.g., BRASSO metal polish.
  • the workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) after polishing had surface roughness R a 48 nm .
  • the coolant to water ratio c c in certain embodiments may be 1: 9.
  • the workpiece 39 (FIG.
  • FIGS. 17-18, FIG. 21, FIGS. 24-34 was mounted in a special designed coolant tank 61 (FIGS. 20-29) .
  • the depth of coolant tank 61 (FIGS. 20-29) is 59 mm and the height of workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) is 44 mm.
  • the stand-off of optical sensor 34 (FIGS. 9-11 and Table 6) is 17mm (stand-off value is the distance between DRS triangulation laser sensor bottom point to reference plan) .
  • the thickness of coolant t c is 15 mm (FIG. 27) .
  • Table 8 Exemplary measurement condition of t c testing without coolant
  • the thickness of coolant t c is 15 mm, and the coolant upper surface is only 2 mm away from optical sensor 34 (FIGS. 9-11 and Table 6) .
  • the back applicator cover 28 (FIG. 15, FIG. 25, FIGS. 27-28, FIGS. 31-32 and FIG. 34) is used to stop bursting bubble from contaminating z-axis table 7 (FIG. 10, FIG. 12 and Table 1) and x-axis table 15 (FIG. 10, FIG. 13 and Table 1)
  • the front applicator cover 29 (FIG. 16, FIGS. 25-27 and FIGS. 29-34) is used to stop bursting bubble from contaminating optical sensor 34 (FIGS. 9-11 and Table 6) .
  • n r times of repeated measurements under coolant condition should be conducted in order to reduce the effects of random noise (FIGS. 26-29 and Table 9) .
  • the measurement results shows that, the PV value without coolant condition is 4.06 ⁇ m, and the PV value with 15 mm coolant layer condition is 4.24 ⁇ m.
  • the average value of the measurement error induced by 15 mm coolant layer is only 0.16 ⁇ m (Table 10) .
  • the PV value is only 0.18 ⁇ m lower when compared with the result under coolant condition.
  • the 15 mm coolant layer condition could generally bring 0.16 ⁇ m extra error when comparing the result under coolant condition with the one with no coolant condition.
  • testing may also be performed on multi-direction coolant flow displacement as will be provided in details as follows:
  • the applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) is not deeply immersed under the coolant 41 (FIGS. 22-23, and FIGS. 26-34) .
  • the applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) needs to resist a coolant flow from unpredictable direction. Therefore, at least three experiments may be designed to test the applicator performance under coolant flow from different directions.
  • a workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, and FIGS. 24-34) may be first polished by a commercial metal polish, e.g., BRASSO metal polish.
  • the workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) surface roughness R a is 48 nm after being polished.
  • the coolant to water ratio c c may be 1: 9.
  • the coolant is ejected out from coolant nozzle 62 (FIGS. 22-23, FIGS. 25-27 and FIGS. 29-33) with a certain speed and direction.
  • the three experiments correspond to the coolant ejected from front direction (FIGS. 30-31) , back direction (FIG. 32) , and side direction (FIGS. 33-34) , respectively.
  • the coolant and workpiece contact position has a certain distance (in some embodiments, about 50-70 mm) away from measurement channel (FIGS. 3-8) .
  • Three different coolant flow directions are tested in order.
  • the measurement system scans along z-direction from starting point without coolant condition (Table 11) .
  • the measurement system scans along z-direction from same starting point with coolant condition (Table 12) .
  • a PV value and the average value of the measurement error (Table 13) are obtained.
  • the comparison method and data processing are all the same as introduced later.
  • the measurement results shows that the PV value without coolant condition is 3.82 ⁇ m.
  • the PV value with front direction coolant flow is 3.64 ⁇ m.
  • the PV value is only 0.18 ⁇ m smaller when comparing the result under coolant condition with the one with no coolant condition.
  • the average value of the measurement error induced by front direction coolant flow is 0.23 ⁇ m (Table 13) . Therefore, for certain embodiments of the proposed new applicator, 5 mm front direction coolant flow could generally bring 0.23 ⁇ m extra error when comparing the result under coolant condition with the one with no coolant condition.
  • the PV value with back direction coolant flow is 4.14 ⁇ m, the PV value is only 0.32 ⁇ m larger when comparing the result under coolant condition with the one with no coolant condition.
  • the average value of the measurement error induced by front direction coolant flow is 0.27 ⁇ m (Table 13) . Therefore, for certain embodiments of the proposed new applicator, 5 mm back direction coolant flow could generally bring 0.27 ⁇ m extra error when comparing the result under coolant condition with the one with no coolant condition.
  • the PV value with side direction coolant flow is 3.54 ⁇ m, the PV value is only 0.28 ⁇ m smaller when comparing the result under coolant condition with the one with no coolant condition.
  • the average value of the measurement error induced by front direction coolant flow is 0.26 ⁇ m (Table 13) . Therefore, for certain embodiments of the proposed new applicator, 5 mm side direction coolant flow could generally bring 0.26 ⁇ m extra error when comparing the result under coolant condition with the one with no coolant condition.
  • the air flow in clean zone is laminar flow with Reynolds number smaller than 2300 (Table 12) . Therefore the air flow has limited influence to non-contact optical measurement sensor, and hence this influence can be ignored.
  • coolant thickness t c test results show that for certain embodiments utilizing the new method, the coolant thickness t c can be up to, e.g., 15 mm, a much larger number than prior methods. Additionally, the new applicator can work when the coolant flow direction is unpredictable in any direction. Therefore, the experiments above show that the proposed measurement system can satisfy the requirements to measure y (x, z) under coolant condition.
  • the testing system (FIG. 35) is used to simulate coolant condition.
  • Testing system includes: a tank, a holding plate, a coolant ejection piece, a valve, a coolant container and a pump.
  • the pump delivers coolant out of coolant container and transport coolant into coolant ejection piece.
  • the nozzle of coolant ejection piece can adjust coolant ejection position, coolant impinging angle and coolant ejection direction.
  • the valve can adjust coolant ejection speed.
  • the data collection software may be programmed by Visual C++ and packaged as a Microsoft Foundation Classes (MFC) exe file.
  • MFC Microsoft Foundation Classes
  • the collected data is stored in a txt file.
  • the data collection software only collects data, while the movement of profiler is controlled by control box.
  • the input parameters of control box are determined by data collection software, but the parameters must be inputted manually.
  • the data processing GUI is programmed with software. It is a GUI file which can view measured surface and measurement information.
  • the main function of GUI is to transfer collected data (txt format) into surface matrix (mat format) .
  • the surface matrix is easier to handle with software.
  • the GUI also can reduce measurement noise, reduce measurement systematic error and tilt surface.
  • the data collection process may require both measurement system and data collection software (FIG. 36A-H) to work together.
  • the measurement system may control the movement of a profiler to follow a certain route.
  • the DRS laser sensor can only measure a single point one time. To get the 3D surface information, the DRS laser sensor should move along both x-axis and z-axis.
  • the scanning route may be formed by repeating a basic shape: (i) The profiler scan along x-positive direction with x-axis length l x ; (ii) The profiler scan along z-axis positive direction with z-axis interval ⁇ z; (iii) The profiler scan along x-negative direction with x-axis length l x ; (iv) The profiler scan along z-axis positive direction with z-axis interval ⁇ z; (v) Repeat steps (i) - (iv) by repeating number n r .
  • the parameters to enter into the control box include: x-axis length l x , z-axis interval ⁇ z and repeating numbers n r .
  • the table velocity v t is also a necessary parameter. All these four parameters are calculated by data collection software, the calculation is based on ‘measurement parameters’ : x-axis length l x , z-axis length l z , x-axis interval ⁇ x, z-axis interval ⁇ z and table velocity v t .
  • the user may enter ‘measurement parameters’ into data collection software and get ‘control box parameters’ .
  • the data collection software is developed by MFC program. This software may provide four basic functions: (i) Measurement procedure introduction; (ii) Monitoring height information of laser sensor; (iii) Data collection; and (iv) Saving measurement data.
  • the data collection software system may have, in total, five independent dialogs: interface dialog, about dialog, introduction dialog, confirmation dialog and collection dialog (FIG. 36) .
  • the interface dialog is the basic dialog. It contains: a laser sensor information window, a height value box, a ‘Laser On’ button, a note box, an ‘About’ button, an ‘Instruction’ button, a ‘Start’ button and an ‘Exit’ button.
  • the DRS triangulation sensor receives laser beam with a linear decoder.
  • the laser sensor information window can show laser intensity of every pixel of linear decoder.
  • the interface shows the height value in height value box.
  • the ‘Laser On’ button can light on laser beam and keep its output power maximum; this will help to detect the laser beam position on workpiece surface with naked eyes.
  • the note box gives several tips for the measurement procedure.
  • the ‘About’ button links to a new dialog which gives specification of portable profiler.
  • the ‘Instruction’ button links to instruction dialog which helps a user understand the measurement procedures of the portable profiler.
  • the ‘Parameters’ dialog has a group of edit box named ‘Measurement parameters’ , a group of text box named ‘Control box parameters’ , a group of text box named ‘Est. Measurement information’ , a ‘Back button, a ‘Accept’ button and a ‘Next’ button.
  • the ‘Measurement parameters’ dialog allow user to input measurement parameters including: x-axis length, z-axis length, x-axis interval, z-axis interval and table velocity.
  • the x-axis length and z-axis length represent the measurement lateral range of target area on workpiece surface.
  • the x-axis interval and z-axis interval represent the measurement interval between two adjacent measured points.
  • the table velocity represents the moving speed of portable profiler table on both x-axis and z-axis.
  • the ‘Control box parameters’ box helps a user calculate the parameters needed to be inputted on control box panel.
  • the ‘Est. Measurement information’ dialog shows: measurement range, total estimated time and total estimated data points.
  • the ‘Back’ button links back to interface dialog.
  • the ‘Accept’ button is used to: (i) Check whether the input parameters in ‘Measurement parameter’ box is reasonable; (ii) Start to calculate control box parameter and show them in ‘Control box parameters’ box; (iii) Start to calculate measurement information and show them in ‘Est. Measurement parameter’ box; (iv) Enable ‘Next’ button if the input parameters are reasonable.
  • the software will prepare DRS sensor and ready to start measurement.
  • the ‘Profiling’ dialog contains a group of text box named ‘Measurement information’ , a measurement progress bar, a ‘Start ‘button, a ‘Stop’ button, a ‘Save’ button and an ‘Exit’ button. Clicking ‘Start’ button will activate software, the software will keep tracking profiler x-axis and z-axis position by receiving interferometer encoder data. Then clicking ‘Start’ button on control panel of control box, the profiler will start to move and begin to scan workpiece surface. In certain embodiments, the measurement information will refresh in real time.
  • the measurement information include: x-axis value, y-axis value, z-axis value, data points collected so far, total estimated data points and measurement progress value.
  • the ‘Save’ and ‘Exit’ buttons are disabled. If the user encounters an emergency, the user may click ‘Stop’ button to stop the measurement process. When the measurement is stopped, the ‘Start’ button, ‘Stop’ button and ‘Save’ button are disabled and the user will need to start a new measurement by clicking ‘Exit’ button to link back to ‘Parameter’ dialog. When the measurement process is finished, the software will pump out a message box to let user confirm results. After confirmation, the user may save collected data into a specific folder.
  • the measurement data of the current set will also be found in the same folder where software executed file exists, but this measurement data will be erased when a new measurement begins.
  • the user may click ‘Exit’ and then go back to ‘Parameter’ dialog.
  • the data processing GUI may be programmed in The main function of GUI is to transfer collected data (txt format) into surface matrix (mat format) .
  • the GUI interface may also incorporate several useful functions: (i) Read surface information such as: x-axis range, z-axis range, x-axis interval, x-axis interval, z-axis interval, table velocity, sampling frequency and total points; (ii) Process noise filter to smoothen surface and reduce interrupt height change; (iii) Reduce systematic error caused by portable profiler; (iv) Tilt surface into horizontal position; (v) Show surface roughness information such as: R a , R q , R t , cutoff length, profile peak and profile valley; (vi) Preview measured surface; (vii) Show preview in new figure dialog of (viii) Save surface data in mat format; and (ix) Save GUI interface state.
  • a matrix that represents a surface profile may be obtained. This matrix may be used to rebuild the measured surface. It may also be able to get a surface measured by a portable profiler with coolant condition, and compare it with surface measured by a microscope, e.g., Bruker NPFLEX 3D Optical Microscope. After comparison, the measurement error and working performance of portable and applicator with coolant condition may be determined.
  • FIGS. 39-44 Exemplary level of errors obtained with experiments utilizing sample values provided in certain embodiments of the disclosure are provided in FIGS. 39-44. The data will be used as reference in the comparative study for performance assessment.
  • the measurement error of wafer 1 induced by multi air beam technique can be as small as 0.08 ⁇ m.
  • the testing performed on wafer 2 shows the measurement error induced by multi air beam technique is 0.26 ⁇ m. This may be caused by the small bottom area which influences multi air beam technique performance.
  • the applicator may be modified to fit the surface of the workpiece.
  • the applicator may be designed for optimal performance with the curved surface of the workpiece.
  • Certain embodiments of the multi air beam technique provided are mainly used for in-process measurement on flat surface grinding. There exists a market and research need involving other shapes. For example, there exists a need for cylinder grinding and spherical grinding, such as shaft and optical lens; therefore, an applicator capable of working with these curved surfaces is sought.
  • the basic working principle of multi air beam technique is to utilize multiple air nozzles and close space to create a clean zone. If the measured target surface is not a flat surface, the height of applicator value h a will be changed. The change of h a will severely influence the applicator performance. When the height of applicator h a changes, the volume fraction of coolant increases tremendously. If the height of applicator h a relative to the curved surface can be the maintained, it is possible to utilize multi air beam technique on curved surface. Therefore, it is possible to increase the ability of multi air beam technique and enable it to perform on cylinder surface and spherical surface as provided in exemplary embodiments of FIGS. 47A-B.
  • FIGS. 48A-C provide exemplary views of an applicator with sizes of various parts of the applicator.
  • the sizes provided are exemplary and may be modified based on workpiece to be measured, type of sensor used, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A system for measurement of workpiece surface topography includes: a sensor; a motion system, configured to move the sensor or a workpiece in x-, y-, and z-directions; and an applicator, configured to provide displacement of coolant away from a measurement point or multiple measurement points on the workpiece, wherein the displacement of the coolant provides the sensor with access to the measurement point (s). The sensor is configured to obtain a measurement from the measurement point (s) on the workpiece during a machining process where the workpiece is under coolant condition based on the coolant being displaced away from the measurement point (s) by the applicator.

Description

IN-PROCESS MEASUREMENT OF COMPONENT SURFACES UNDER COOLANT CONDITION
CROSS-REFERENCE TO RELATED APPLICATIONS
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/070,900, filed September 9, 2014, which is incorporated by reference herein in its entirety.
BACKGROUND
Manufacturing processes typically generate massive heat and lots of chips or pieces. The massive heat must be reduced in order to enhance a manufacturing machine’s precision, surface quality, and ultimately, tool life. Chips or flaws must be cleared in order to reduce damage to the machine’s workpiece surface. The use of coolant, cooling fluid, cooling oil, or cooling mist, is the most common method to fulfill the two requirements. Using coolant in a manufacturing process typically results in the formation of an opaque barrier on a working component, since coolant may be ejected from any direction, splashing everywhere.
Further, in many cases, the splashing results in a working component being immersed in a coolant layer. When this occurs, attempts to displace the coolant may result in bubble generation or explosion which would vibrate workpiece, causing measurement errors.
SUMMARY
In an exemplary embodiment, a system for measurement of workpiece surface topography is provided. The system includes: a sensor; a motion system, configured to move the sensor or a workpiece in x-, y-, and z-directions; and an applicator, configured to provide displacement of coolant away from one or more measurement points on the workpiece, wherein the displacement of the coolant provides the sensor with access to the one or more measurement points. The sensor is configured to obtain a measurement from the one or more measurement points on the workpiece during a machining process where the workpiece is under coolant condition based on the coolant being displaced away from the one or more measurement points by the applicator.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:
FIG. 1 depicts a schematic diagram of a measurement system;
FIG. 1A depicts several modifications to the measurement system of FIG. 1;
FIG. 2A-2B depict an applicator model;
FIG. 3 depicts the working principle of the applicator model;
FIG. 4 depicts a top view of the applicator model;
FIG. 5 depicts a front view of the applicator model;
FIG. 6 depicts a cross sectional view of the applicator model;
FIG. 7 depicts a bottom view of the applicator model;
FIG. 8 depicts another bottom view of the applicator model;
FIG. 9 depicts a view of a sensor;
FIG. 10 depicts a side view of a measurement system;
FIG. 11 depicts a front view of the measurement system;
FIG. 12 depicts a z axis encoder system contained in the measurement system;
FIG. 13 depicts an x axis encoder system contained in the measurement system;
FIG. 14 depicts an applicator adjustment system;
FIG. 15 depicts a back applicator cover;
FIG. 16 depicts a front applicator cover;
FIG. 17 depicts a sample workpiece;
FIG. 18 depicts a surface of the workpiece;
FIG. 19 depicts a sample graphical depiction of workpiece surface roughness;
FIG. 20 depicts a coolant tank;
FIG. 21 depicts the workpiece placed in the coolant tank;
FIG. 22 depicts a coolant nozzle;
FIG. 23 depicts a coolant tank filled with coolant;
FIG. 24 depicts a front view of tc testing without coolant;
FIG. 25 depicts a side view of tc testing without coolant;
FIG. 26 depicts a front view of tc testing with coolant;
FIG. 27 depicts a side view of tc testing with coolant;
FIG. 28 depicts a view of the back applicator cover under working condition with coolant;
FIG. 29 depicts a view of the front applicator cover under working condition with coolant;
FIG. 30 depicts a front view of coolant from the front direction;
FIG. 31 depicts a side view of coolant from the front direction;
FIG. 32 depicts a side view of coolant from the back direction;
FIG. 33 depicts a front view of coolant from the side direction;
FIG. 34 depicts a side view of coolant from the side direction;
FIG. 35 is a flow diagram of a measurement system and testing system according to certain embodiments;
FIG. 36A-H are exemplary screenshots of a data collection software;
FIG. 37 depicts a data processing GUI interface of the data collection software;
FIG. 38 depicts a data processing GUI help interface of the data collection software;
FIG. 39 is a graph showing residual random error assessment of x-axis positive direction;
FIG. 40 is a graph showing residual random error assessment of x-axis negative direction;
FIG. 41 is a graph showing residual random error assessment of z-axis positive direction;
FIG. 42 is a graph showing residual systematic error of each point of x-axis positive direction;
FIG. 43 is a graph showing residual systematic error of each point of x-axis negative direction;
FIG. 44 is a graph showing residual systematic error of each point of z-axis positive direction;
FIG. 45A-D show several measurement results of two wafers, Wafer 1 and Wafer 2;
FIG. 46A-B show measurement results of an aluminum workpiece;
FIG. 47A is an illustration of an applicator for a workpiece with a cylindrical surface;
FIG. 47B is an illustration of an applicator for a workpiece with a spherical surface; and
IG. 48A-C are illustrations of several exemplary views of an applicator showing exemplary size information.
DETAILED DESCRIPTION
Various embodiments of the measurement system described herein enable non-contact optical measurement under coolant condition during manufacturing processes. Non-contact measurements have no sensing part in contact with a workpiece. Examples of non-contact measurement methods include optical, electromagnetic, electrical, ultrasonic, and pneumatic methods. Non-contact measurements provide the advantage of leaving no damage to workpiece surface. Further, non-contact optical sensors are able to provide non-contact measurements with high accuracy and efficiency.
In a manufacturing process relying on coolant, the coolant may be ejected from any direction resulting in coolant splashing everywhere and coating a workpiece. An exemplary embodiment provides a non-contact measurement sensor to precisely measure a workpiece under coolant condition, which is the condition where coolant is used in the manufacturing process and may result in the workpiece being immersed in coolant.
Measurement methods may be divided into three types: in-process measurement, post-process measurement, and in-situ measurement. In-process measurements are measurements performed while the workpiece is being machined without interruption to the machining process. Certain embodiments of the disclosure will provide a means for in-process measurements, permitting improved product quality and productivity.
In an exemplary embodiment, a measurement system capable of in-process optical measurement of workpiece surface topography z (x, y) or y (x, z) under coolant condition is  provided. The expression z (x, y) is typically used in a stand-alone metrology lab test. The expression y (x, z) is typically used in a machining process. For simplicity in description, the expression y (x, z) will be used to refer to workpiece surface topography.
Exemplary embodiments of the measurement system provide a precision sensor capable of high precision measurements for y. Additionally, these embodiments may provide a 3D motion system, typically realized by 3 precision tables, to move the sensor or workpiece in x and z directions and to move the sensor or workpiece in y direction for sensor position adjustment in y direction, since precision sensors of the type typically have a limited measurement range in y. For example, some sensors can only measure features below 300 μm. For measurements that exceed this range, the sensors will not work. Therefore, the proposed design of utilizing a y table can solve the range problem.
Exemplary embodiments of the measurement system may further be equipped with specially designed applicator (s) to deal with certain coolant issues. The design of the applicator (s) may include various features, including, for example: (1) an air beam cone or structure; (2) only filling a small, closed space with air; (3) an air escape code or structure; and (4) measurement paths. These features are discussed in further detail as follows:
(1) Air beam cone or structure. Multiple air beams may be generated by air beam generators and evenly distributed along a cone surface as depicted in FIGS. 1-7. The nozzles or tips of the air beams are on an air beam ring with diameter φar at the bottom of the applicator. Each air beam nozzle φa is inclined and has an angle αa relative to the workpiece surface to allow displacement of coolant away from a measurement point (x, z) . The chosen design structure enables the creation of a transparent window, the size of it is At, that allows precise optical measurements to obtain y (x, z) with only a minimum amount of kinetic energy possessed by the air beams. The angle, diameter, and size of the air beam and the air beam ring may be optimized for particular machining processes. Thus, exemplary embodiments are able to displace coolant flow from any direction, which is a valuable quality for an in-process optical measurement system. It is noted that the transparent window At also permits precise optical measurements of multiple measurement points to obtain values of y at a number of points (x1≤x≤xn, z1≤z≤zn) within the transparent window At.
(2) Only a small, closed space is filled with air. In exemplary embodiments utilizing this feature, the applicator is set close to the workpiece surface at ha. The space between the applicator bottom and the workpiece surface and inside the air beam ring is closed and is very small but sufficient to conduct measurement at the point (x, z) . The space is formed by pressurized air which continuously flows in and out as depicted in FIG. 1. The space is filled with air which is optically transparent, and the pressurized air also serves as the walls of the chamber, keeping coolant away from the measurement point by moving radially from the center area to the outer area. The center is the measurement point (x, z) . As such, a transparent or an optically clean measurement window is established permitting in-process, precise optical measurement of workpiece surface y (x, z) under coolant condition. These exemplary embodiments may help minimize consumption of compressed air and also avoid the use of high speed air stream, which could affect measurement precision.
(3) Air escape cone or structure. A cone shaped passage channel, for example, as depicted in FIGS. 1-7, is designed to allow used air to escape easily along a cone passage through the applicator body. Used air escapes internally through the applicator body and not around the applicator body externally. If there is space limitation, a combination of cylinder 58 (FIG. 3) and cone 60 (FIG. 3) may be utilized, instead of a pure cone passage. A pure cone passage would make the applicator much larger than the current design by widening the separation between  air escape cones  45 and 46 of FIG. 3. For comparison, FIG. 1 provides a pure cone air escape structure, and FIG. 3 illustrates a cone and cylinder air escape structure. FIG. 1A illustrates the difference and changes between the cone shape design of FIG. 1 and the cone and cylinder design of FIG. 3. The escape ring φae (FIG. 7) is the opening at the bottom of the applicator that allows the used air to escape. The air escape cone or structure eliminates coolant bubble generation and explosion around the applicator, and more importantly, bubble generation and explosion near the workpiece to avoid workpiece vibration. In certain exemplary embodiments, the air escape cone or structure’s sizesare bigger than the air beam cone or structure’s sizes in order to facilitate the collection of all used air and the passage of that air out through the coneor structurefor the purpose to generate one or more transparent windows. The bigger end of the air escape cone is at the top (See  air escape cones  45, 46, 60 in FIG. 3) . In certain exemplary embodiment, the air escape cone size, described by the air escape ring  diameter φae and air escape ring thickness tae, and air escape angle αae, may be optimized for particular machining processes. Thus, exemplary embodiments which utilize an air escape cone or structure are able to avoid or reduce applicator and workpiece vibration (which can be a significant source of measurement error) . This allows for enhanced measurement precision. In other exemplary embodiments, the air escape cone or structure’s sizes may be equal to or smaller than the air beam cone or structure’s sizes in order to generate one or more transparent windows.
(4) Measurement paths. Hollow long tubular or rectangular structures, for example as depicted in FIGS. 1-7, are provided to allow light beams direct access to a workpiece surface for precision measurement in order to read workpiece surface y (x, z) at the point (x, z) . Measurement paths are provided inside the air beam cone. Used air may partially escape from the measurement paths 48 (FIGS. 5-6) or hollow structures. This design allows a single medium for light transmission, thereby eliminating challenges associated with a refraction between two media in the light transmission. Thus, exemplary embodiments which provide such measurement paths allow light path stability to be achieved. This provides high measurement precision, as the light path will not be affected even when the applicator is subject to vibration.
The aforementioned features, when incorporated with certain embodiments of a measurement system as depicted in exemplary FIGS. 1-16, provide for using air to displace coolant, cooling fluid, cooling mist, or cooling oil, and to create an optical clean zone between the applicator bottom and workpiece surface. This clean zone is also known as transparent window and the size of it is At. The resultant structure permits precision measurement of the workpiece surface in order to obtain y (x, z) under coolant condition, which is a typical machining process condition. The optical clean zone is full of air. Therefore, it has no adverse effect stemming from refraction difference. The aforementioned features thus enable the measuring of workpiece topography y (x, z) when the workpiece is under coolant condition.
Certain embodiments utilize multiple air beams or nozzles arranged circularly. The air nozzles eject air beams outwards with a specific angle to workpiece surface as exemplified in FIG. 3 and FIGS. 7-8. Such arranged air beams can provide resistance to coolant flow from any direction, thereby restricting the coolant flow pattern and preventing an unpredictable coolant flow pattern. A circular arrangement for the nozzles is provided here as an example, but other arrangements with other geometric shapes like elliptical arrangements are possible.
Certain embodiments utilize an accessory component referred to as “an adjustment component, ” as depicted in exemplary FIGS. 10-14, which can be used to control the gap distance, ha, between applicator bottom surface and workpiece surface. Decreasing the size of the gap to provide a small gap can effectively reduce the amount of coolant that the air beam (s) need to resist. Thus, using the adjustment component to decrease the gap size can provide air consumption savings when working with a thick coolant layer. This also allows the applicator to work when workpiece is deeply immersed in coolant.
Certain embodiments utilize air escape structures (which can be called “escape rings” or “escape cones” ) that collect used air. By incorporating these structures, bubbles will be generated in the escape passage channel and will eventually burst when inside or on the way out of the applicator through the escape cone (e.g., as depicted in exemplary FIG. 5) . Therefore, the bursting bubbles only vibrate the applicator instead of workpiece. This allows the measurement system to avoid bubbles being generated at the edge of the applicator where they would contact the workpiece surface (which could cause vibration of the workpiece and induce measurement error) .
Certain embodiments utilize an accessory component referred to as a “front/back applicator cover, ” as depicted in exemplary FIGS. 14-16. The front/back applicator cover protects a non-contact optical sensor from coolant contaminate in the event that coolant bubbles explode after exiting the applicator.
Exemplary embodiments of the measurement system described herein thus provide several advantages. For example, in-process non-contact measurement is provided, which avoids potential scratch damage on precision surfaces and at the same time allows the measurement to be performed without stopping the machining process. Additionally, the optical non-contact sensor in exemplary embodiments are able to access the workpiece surface regardless of coolant flow direction above the workpiece surface, the optical non-contact sensor is able to access the workpiece surface even under coolant immersion conditions, and applicator (s) can be configured to collect used air to avoid bubble generation that would negatively impact measurement.
The following discussion will provide more detail, enabling certain embodiments of the disclosure. It will be appreciated that references to the Figures and Tables in the following description, including those marked in parentheses, are exemplary.
An exemplary system for in-process measurement of component surfaces under coolant condition according is depicted in FIG. 10 and FIG. 11. The applicator 35 is shown from various perspectives, for example, in FIGS. 1-8, 10-11, and 14-16. Applicator 35 is mounted between a left vertical holder 26 (FIG. 15) , and a right vertical holder 27 (FIG. 14-15) . Applicator 35 is mounted to these holders by two applicator screw bars 36 and four applicator nuts 37 (FIG. 14-16) . The applicator 35 can slide along z-axis in the slots of left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIG. 14-16) to find a suitable position to cooperate with optical sensor 34 (FIGS. 9-11; Table 6) . The applicator 35 (FIGS. 1-8, 10-11, 14-16) can also move vertically by adjust y-axis manual table 24 (FIG. 14; Table 5) to control the value of ha which is defined as the distance between applicator bottom surface and workpiece 39 surface (FIGS. 3, 17-18, 21, 24-34) .
The basic working principle of applicator 35 (FIGS. 1-8, 10-11, 14-16) is to utilize air beams to create an optical clean zone 38 (FIG. 3) between applicator bottom surface and workpiece surface (FIG. 3) for laser beam 40 (FIG. 3) to access the workpiece surface. In addition, the applicator 35 utilizes the air beams to stop coolant 41 (FIGS. 22-23, 26-34) flow inside the measurement path 48 (FIGS. 3-8) .
The applicator includes bottom 42 (FIGS. 1-3) , applicator grip 43 (FIGS. 1-2, 4-8) , mounting hole 44 (FIGS. 1-3) , air escape cone 45 (FIGS. 1-7) , air escape cone 46 (FIGS. 1-5) , measurement path extrusion 47 (FIGS. 1-6) , measurement path 48 (FIGS. 3-8) , air beam ring 49 (FIG. 3, 7-8) , air beam cone 50 (FIG. 3) , internal air passage 51-55 (FIG. 3) , inlet mounting hole 56 (FIG. 3) , inlet nozzle 57 (FIG. 2, 4, 8) , used air escape passage 58 (FIG. 3, 7-8) , escape ring rib 59 (FIGS. 7-8) and internal escape passage cone 60 (FIG. 3, 5) .
Under working condition, the air is injected into applicator 35 (FIGS. 1-8, 10-11, 14-16) through inlet nozzle 57 (FIG. 2, 4, 8) . The inlet nozzle 57 (FIG. 2, 4, 8) is mounted in inlet mounting hole 56 (FIG. 3) . The air flow then passes through internal air passage 55 (FIG. 3) and splits into three air flows –flow into internal air passage 54 (FIG. 3) , internal air passage 53 (FIG. 3, 6) and internal air passage 52 (FIG. 3) , respectively. The air flow that does not pass through internal air passage 53 (FIG. 3, 6) flows into an air beam cone 50 (FIG. 3) , is ejected out through air beam ring 49 (FIG. 3, 7-8) , and makes contact with the surface of workpiece 39 (FIG. 3, 17-18, 21, 24-34) . In order for this to occur, the air flow passes through internal air  passage 54 (FIG. 3) and internal air passage 52 (FIG. 3) and flows into internal air passage 51 (FIG. 3) . Internal air passage 51 (FIG. 3) connects with an air beam cone 50 (FIG. 3) . As provided in FIG. 3, the air beam cone 50 (FIG. 3) has a certain angle αa with applicator bottom surface. The air flow is finally ejected out from an air beam ring 49 (FIGS. 3, 7-8) with a speed va. In certain embodiments, the air beam ring 49 may have multiple openings, for example, ten openings. The air nozzle diameter is φa, and the ten air beam ring 49 (FIG. 3, 7-8) are arranged circularly with a diameter φar. When the air beams contact with workpiece 39 (FIG. 3, 17-18, 21, 24-34) surface, little air flow from internal air passage 53 (FIG. 3, 6) flows back to measurement path 48 (FIGS. 3-8) , and all the rest of the air flows flow into the close space between applicator bottom surface and workpiece surface. The gap distance between applicator bottom surface and workpiece surface is ha. The air flow between applicator bottom surface and workpiece surface will help push coolant 41 (FIGS. 22-23, 26-34) away and create an optical clean zone 38 (FIG. 3) . Afterwards, the air flow will flow into used air escape passage 58 (FIG. 3, 7-8) and be redirected into internal escape passage cone 60 (FIG. 3, 5) . The inner diameter of used air escape passage 58 (FIG. 3, 7-8) is φae, the width of the slot is tae and the air escape angle is αae. Finally, the air flow is directed into air escape cone 45, 46 (FIGS. 1-5) and out of the applicator 35 (FIGS. 1-8, 10-11, 14-16) . Bubbles generated by the air flow would explode inside the applicator or after leaving the applicator. The bubbles would not contact the workpiece surface, thereby avoiding exploding bubbles vibrating the workpiece and influencing measurements.
When the applicator 35 (FIGS. 1-8, 10-11, 14-16) is in working condition, the optical clean zone 38 (FIG. 3) will be larger than the measurement window size Am. Therefore, the laser beam provided by the optical sensor can access the workpiece surface through the measurement path 48 (FIGS. 3-8) without contacting coolant. The measurement path 48 (FIGS. 3-8) is isolated from all other channels 50-52, 54-56, and 60 as shown in FIG. 3.
The bottom 42 (FIGS. 1-3) is used to reduce the thickness of coolant layer which the applicator 35 (FIGS. 1-8, 10-11, 14-16) needs to resist. The applicator grip 43 (FIGS. 1-2, 4-8) and mounting hole 44 (FIGS. 1-3) are used to mount applicator 35 (FIGS. 1-8, 10-11, 14-16) on left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIGS. 14-15) of third layer. The escape ring ribs 59 (FIGS. 7-8) are used to strengthen the applicator 35 (FIGS. 1-8, 10-11, 14-16) structure. The measurement path extrusion 47 (FIGS. 1-6) is used to protect measurement path  48 (FIGS. 3-8) from occasional coolant drops on upper surface of applicator 35 (FIGS. 1-8, 10-11, 14-16) .
In an exemplary embodiment, the measurement system (FIG. 10) has four layers, including: (1) First layer for support, (2) Second layer for z axis control, (3) Third layer for x axis control, and (4) Fourth layer for y axis control. The following provides details regarding these layers.
First layer –support. The first layer (FIG. 10) is used to support the second, third and fourth layers (FIG. 10) . The first layer (FIG. 10) includes four feet 1 (FIGS. 10-12) , four feet adjustment parts 2 (FIGS. 10-12) , four feet nuts 3 (FIGS. 10-12) and one base board 4 (FIGS. 10-12) .
In certain embodiments, the height of the four feet 1 (FIGS. 10-12) is about 65mm, and this height can be changed by replacing the base with other types of feet base. In certain embodiments, the feet adjustment part 2 (FIGS. 10-12) and feet nut 3 (FIGS. 10-12) are used to adjust the distance between bottom surface of base board 4 (FIGS. 10-12) and bottom surface of feet 1 (FIGS. 10-12) . The feet adjustment part 2 (FIGS. 10-12) may also be used to adjust the horizontal level of the measurement system. The base board is used to hold the z-axis table 7 (FIG. 10; Table 1) .
Table 1-Exemplary specification for x/z-axis table
Table size 100 mm×100 mm
Motion range ±12.5 mm
Resolution 0.5 μm
Maximum speed 5 mm/s
Repeatability ≤±0.2 μm
Second layer–z axis. The second layer is used to control the motion of third and fourth layers along z-axis (FIG. 10) . The second layer includes z-axis motor 5 (FIG. 10; Table 2) , z-axis wire collector 6 (FIG. 10) , z-axis table 7 (FIG. 10, 12; Table 1) , z-axis encoder plastic base 8 (FIG. 12) , z-axis encoder tape 9 (FIG. 12; Table 3) , z-axis encoder 10 (FIG. 12; Table 4) , z-axis encoder adjustment part 11 (FIG. 12) , z-axis encoder inserter 12 (FIG. 12) , and z-axis inserter 13 (FIG. 12) .
Table 2-Exemplary specification for x/y/z-axis motor
Current/Phase 0.4 A
Voltage/Phase 12 V
Resistance/Phase 30 Ω
Inductance/Phase 37 mH
Holding torque 2600 g·cm
Rotor inertia 34 g·cm2
Step angle 1.8°
Table 3–Exemplary specification for x/z-axis encoder tape
Tape size 0.2 mm×6 mm×75 mm
Scale pitch
20 μm
Linearity ±3 μm/m
Table 4–Exemplary specification for x/z-axis encoder
Resolution 0.5 μm
Maximum speed 3 m/s
Acceleration 500 m/s2
The z-axis motor 5 (FIG. 10; Table 2) is used to control the motion of z-axis table 7 (FIG. 10, 12; Table 1) . Z-axis wire collector 6 (FIG. 10) is used to fix the position of wires of measurement system. Z-axis table 7 (FIG. 10, 12; Table 1) is used to move third layer and fourth layer along z-axis direction. In some embodiments, the nominal movement range is±12.5 mm while the actual movement range is±20mm. Z-axis encoder plastic base 8 (FIG. 12) is used as a flat plate for z-axis encoder tape 9 (FIG. 12; Table 3) to stick on. The size of z-axis encoder tape 9 (FIG. 12; Table 3) is 0.2×6×75mm. Z-axis encoder 10 (FIG. 12; Table 4) is mounted below z-axis encoder adjustment part 11 (FIG. 12) , and works with z-axis encoder tape 9 (FIG. 12; Table 3) to record z-axis table 7 (FIG. 10, 12; Table 1) position. Z-axis encoder inserter 12 (FIG. 12) and z-axis inserter 13 (FIG. 12) are used to leave a space between second layer and third layer, therefore offer a mounting position for z-axis encoder adjustment part 11 (FIG. 12) .
Third layer–x axis. The third layer is used to control the motion of the fourth layer along x-axis (FIG. 10) . The third layer includes x-axis motor 14 (FIGS. 10-11; Table 2) , x-axis table 15 (FIG. 10, 13; Table 1) , x-axis encoder plastic base 16 (FIG. 13) , x-axis encoder tape 17 (FIG. 13; Table 3) , x-axis encoder 18 (FIG. 13; Table 4) , x-axis encoder adjustment part 19 (FIG. 13) , x-axis encoder inserter 20 (FIG. 13) , x-axis inserter 21 (FIG. 13) , x-axis base holder 22 (FIG. 10) , x-axis horizontal base holder 23 (FIG. 10; FIG. 14) , y-axis manual table 24 (FIG. 14; Table 5) , x-axis upper horizontal holder 25 (FIG. 14) , left vertical holder 26 (FIG. 15) , right vertical holder 27 (FIGS. 14-15) , back applicator cover 28 (FIG. 15, 25, 27-28, 31-32, 34) and front applicator cover 29 (FIG. 16, 25-27, 29-34) .
The x-axis motor 14 (FIGS. 10-11; Table 2) is used to control the motion of x-axis table 15 (FIG. 10, 13; Table 1) . X-axis table 15 (FIG. 10, 13; Table 1) is used to move the fourth layer along x-axis direction. In some embodiments, the nominal movement range is±12.5 mm while the actual movement range is±20 mm. X-axis encoder plastic base 16 (FIG. 13) is used as a flat plate for x-axis encoder tape 17 (FIG. 13; Table 3) to stick on. The size of x-axis encoder tape 17 (FIG. 13; Table 3) is 0.2×6×75mm. X-axis encoder 18 (FIG. 13; Table 4) is mounted on x-axis encoder adjustment part 19 (FIG. 13) , and work with x-axis encoder tape 17 (FIG. 13; Table 3) to record x-axis table 15 (FIG. 10, 13; Table 1) movement position. X-axis encoder inserter 20 (FIG. 13) and x-axis inserter 21 (FIG. 13) are used to leave a space between second layer and third layer, also offer a mounting position for x-axis encoder adjustment part 19 (FIG. 13) . X-axis base holder 22 (FIG. 10) and x-axis horizontal base holder 23 (FIG. 10 and FIG. 14) are used to support y-axis manual table 24 (FIG. 14 and Table 5) . In some embodiments, Y-axis manual table 24 (FIG. 14; Table 5) has a limited vertical range of about 10mm. X-axis upper horizontal holders 25 (FIG. 14) are mounted on y-axis manual table 24 (FIG. 14; Table 5) , and are used to support left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIGS. 14-15) . Left vertical holder 26 (FIG. 15) and right vertical holder 27 (FIGS. 14-15) are used to mount applicator 35 (FIGS. 1-8, 10-11, 14-16) . Back applicator cover 28 (FIG. 15, 25, 27-28, 31-32, 34) is used to stop bursting bubbles from contaminating z-axis table 7 (FIG. 10, 12; Table 1) and x-axis table 15 (FIG. 10, 13; Table 1) . The front applicator cover 29 (FIG. 16, 25-27, 29-34) is used to stop bursting bubbles from contaminating optical sensor 34 (FIGS. 9-11; Table 6) .
Table 5–Exemplary specification of y-axis manual table
Table size 40 mm×40 mm
Motion range 10 mm
Resolution
10 μm
Table 6–Exemplary specification of DRS (Digital Range Sensor) triangulation sensor
Resolution 0.05 μm
Working range
300 μm
Stand-off 17 mm
Accuracy 1.0 μm
Maximum sampling frequency 1000 Hz
Spot size 7-12 μm
Triangulation angle
70°
Type Specular
Laser wavelength 670 nm
Fourth layer –y axis. The fourth layer is used to precisely control the vertical position of optical sensor 34 (FIGS. 9-11and Table 6) . In certain embodiments, the fourth layer includes y-axis motor 30 (FIG. 10 and Table 2) , y-axis table 31 (FIG. 10 and Table 7) , y-axis horizontal holders 32 (FIGS. 10-11) , T-shape vertical holder 33 (FIGS. 10-11) and optical sensor 34 (FIGS. 9-11and Table 6) . 
The y-axis motor 30 (FIG. 10 and Table 2) is used to control the motion of y-axis table 31 (FIG. 10 and Table 7) . In certain embodiments, the y-axis table 31 (FIG. 10 and Table 7) has a vertical movement range about±7 mm. The y-axis horizontal holders 32 (FIGS. 10-11) are used to connect y-axis table 31 (FIG. 10 and Table 7) and T-shape vertical holder 33 (FIGS. 10-11) . The T-shape vertical holder 33 (FIGS. 10-11) is used to mount optical sensor 34 (FIGS. 9-11and Table 6) .
Table 7 Exemplary Specification of y-axis table
Table size 100 mm×100 mm
Motion range ±7 mm
Resolution 0.25 μm
Maximum speed 2.5 mm/s
Repeatability ≤±0.5 μm
Although the foregoing exemplary embodiments are described with respect to an optical sensor, it will be appreciated that embodiments of the measurement system described herein may also be used with other types of sensors, such as electrical sensors, ultrasonic sensors, and pneumatic sensors.
EXEMPLARY RESULTS
Using certain exemplary embodiments of the measurement system described herein, testing was performed with respect to coolant thickness.
Testing on thickness of coolant tc.
(a) Preparation –The maximum thickness of coolant tc above workpiece surface is determined by an experiment. For certain embodiments, the experiment shows the measurement system and applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) can work when tc=15 mm. A workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, and FIGS. 24-34) was polished by a commercial metal polish, e.g., BRASSO metal polish. The workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) after polishing had surface roughness Ra=48 nm . The coolant to water ratio cc in certain embodiments may be 1: 9. The workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) was mounted in a special designed coolant tank 61 (FIGS. 20-29) . In certain embodiments, the depth of coolant tank 61 (FIGS. 20-29) is 59 mm and the height of workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) is 44 mm. The stand-off of optical sensor 34 (FIGS. 9-11 and Table 6) is 17mm (stand-off value is the distance between DRS triangulation laser sensor bottom point to reference plan) . When the coolant tank 61 (FIGS. 20-29) is full of coolant, the thickness of coolant tc is 15 mm (FIG. 27) .
Table 8 Exemplary measurement condition of tc testing without coolant
Table velocity vt 0.5 mm/s
Sampling interval Δz 5 μm
Measurement length l z 10 mm
Sampling points N z 2000
Sampling frequency f s 100 Hz
Table 9 Exemplary measurement condition of tc testing with coolant
Table velocity vt 0.5 mm/s
Sampling interval Δz 5 μm
Measurement length l z 10 mm
Sampling points N z 2000
Sampling frequency f s 100 Hz
Air impinging angle α a 55°
Air velocity va 38 m/s
Air nozzle diameter φa 0.5 mm
Air nozzle ring diameter φar 10 mm
Height of applicator ha 0.2 mm
Air escape ring diameter φae 24 mm
Air escape slot width t ae 5 mm
Air escape angle αae 90°
Measurement window size Am 1.5 mm×3 mm
Thickness of coolant t c 15 mm
Coolant concentration c c 10%
Volume flow rate of air Qa 5 L/min
Volume flow rate of coolant Qc 650 L/h
Coolant nozzle diameter φc 3.5 mm
Reynolds number in clean zone ≤1211.73
(b) Experiment – (i) Firstly, nr times of repeated measurements without coolant condition should be conducted in order to reduce the effects of random noise (FIGS. 24-25 and Table 8) . The measurement system scanned along z-axis with a certain speed vt, and the encoder system recoded the z-axis position of optical sensor 34 (FIGS. 9-11 and Table 6) as [zi, i=1, 2, …, Nz] , where i is the sampling number in the z-direction and Nz is the total number of sampling points in the z direction over the measurement length lz. The result is a series of measurements  for the same surface profile point as [ymI0 (ziim, im=1, 2, …, nr] . (ii) Secondly, air is pumped into applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) , and the coolant valve is opened. The air flow rate is Qa. After filling the coolant tank 61 (FIGS. 20-29) with coolant 41 (FIGS. 22-23, FIGS. 26-34) , the workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) is deeply immersed in coolant 41 (FIGS. 22-23, and FIGS. 26-34) . In certain embodiments, the thickness of coolant tc is 15 mm, and the coolant upper surface is only 2 mm away from optical sensor 34 (FIGS. 9-11 and Table 6) . The back applicator cover 28 (FIG. 15, FIG. 25, FIGS. 27-28, FIGS. 31-32 and FIG. 34) is used to stop bursting bubble from contaminating z-axis table 7 (FIG. 10, FIG. 12 and Table 1) and x-axis table 15 (FIG. 10, FIG. 13 and Table 1) , and the front applicator cover 29 (FIG. 16, FIGS. 25-27 and FIGS. 29-34) is used to stop bursting bubble from contaminating optical sensor 34 (FIGS. 9-11 and Table 6) . (iii) Thirdly, nr times of repeated measurements under coolant condition should be conducted in order to reduce the effects of random noise (FIGS. 26-29 and Table 9) . The measurement system scanned along z-axis with a certain speed vt from the same starting point, and the encoder system recoded the z-axis position of optical sensor 34 (FIGS. 9-11 and Table 6) as [zi, i=1, 2, …, Nz] . Therefore, the resultant will be a series of measurement results for the same surface profile point as [ymIc (ziim, im=1, 2, …, nr] . (iv) Finally, measurement error emIc induced by 15 mm coolant layer may be obtained by applying data process on [ymI0 (ziim, im=1, 2, …, nr, i=1, 2, …, Nz] and [ymIc (ziim, im=1, 2, …, nr, i=1, 2, …, Nz] . Because of the nr repetitive measurement, the effect of random error of measurement system may be significantly reduced and as so these will be ignored. Therefore,
Figure PCTCN2015089233-appb-000001
Figure PCTCN2015089233-appb-000002
The PV value of workpiece surface without coolant condition is
Figure PCTCN2015089233-appb-000003
Figure PCTCN2015089233-appb-000004
and the PV value of workpiece surface with coolant condition is
Figure PCTCN2015089233-appb-000005
Figure PCTCN2015089233-appb-000006
Subtracting Eq. (1) from Eq. (2) ,
Figure PCTCN2015089233-appb-000007
represents the measurement error emIc (zi) induced by 15 mm coolant layer for each point [zi, i=1, 2, …, Nz ] . For simplification, an average value of the measurement error
Figure PCTCN2015089233-appb-000008
may be used as
Figure PCTCN2015089233-appb-000009
Table 10 Measurement result of tc testing according to certain embodiments
Figure PCTCN2015089233-appb-000010
Results. Using the testing procedure provided with sample values in accordance with certain embodiments of the disclosure, the measurement results shows that, the PV value without coolant condition is 4.06 μm, and the PV value with 15 mm coolant layer condition is 4.24 μm. The average value of the measurement error induced by 15 mm coolant layer is only 0.16 μm (Table 10) . For proposed new applicator, the PV value is only 0.18 μm lower when compared with the result under coolant condition. The 15 mm coolant layer condition could generally bring 0.16 μm extra error when comparing the result under coolant condition with the one with no coolant condition.
The air flow in clean zone is laminar flow with Reynolds number smaller than 2300 (Table 9) . Therefore the air flow has limited influence to non-contact optical measurement sensor, and this influence can be ignored. It is noted that the result of tc=15 mm is limited by this particular sensor stand off value of 17 mm. The tc value could be even higher if such sensor limitation is removed.
In accordance to certain embodiments, testing may also be performed on multi-direction coolant flow displacement as will be provided in details as follows:
Preparation. In some cases, the applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) is not deeply immersed under the coolant 41 (FIGS. 22-23, and FIGS. 26-34) . The applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) needs to resist a coolant flow from unpredictable direction. Therefore, at least three experiments may be designed to test the applicator performance under coolant flow from different directions.
A workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, and FIGS. 24-34) may be first polished by a commercial metal polish, e.g., BRASSO metal polish. In certain embodiments, the workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) surface roughness Ra is 48 nm after  being polished. The coolant to water ratio cc may be 1: 9. After polishing, the coolant is ejected out from coolant nozzle 62 (FIGS. 22-23, FIGS. 25-27 and FIGS. 29-33) with a certain speed and direction. In certain embodiments, the three experiments correspond to the coolant ejected from front direction (FIGS. 30-31) , back direction (FIG. 32) , and side direction (FIGS. 33-34) , respectively.
Experiment. Firstly, air is pumped into the applicator 35 (FIGS. 1-8, FIGS. 10-11 and FIGS. 14-16) with air flow rate at Qa. Then the coolant nozzle 62 (FIGS. 22-23, FIGS. 25-27 and FIGS. 29-33) ejects coolant 41 (FIGS. 22-23, FIGS. 26-34) out and directs the coolant onto the surface of workpiece 39 (FIG. 3, FIGS. 17-18, FIG. 21, FIGS. 24-34) . The coolant nozzle 62 (FIGS. 22-23, FIGS. 25-27 and FIGS. 29-33) diameter is φc and the coolant flow rate is Qc. The coolant and workpiece contact position has a certain distance (in some embodiments, about 50-70 mm) away from measurement channel (FIGS. 3-8) . Three different coolant flow directions are tested in order. The measurement system scans along z-direction from starting point without coolant condition (Table 11) . Then for each single experiment, the measurement system scans along z-direction from same starting point with coolant condition (Table 12) . After data processing, a PV value and the average value of the measurement error
Figure PCTCN2015089233-appb-000011
 (Table 13) are obtained. The comparison method and data processing are all the same as introduced later.
Table 11 Exemplary measurement condition of coolant directiontesting without coolant
Table velocity vt 0.5 mm/s
Sampling interval Δz 5 μm
Measurement length l z 10 mm
Sampling points N z 2000
Sampling frequency f s 100 Hz
Table 12 Exemplary measurement condition of coolant direction testing with coolant
Table velocity vt 0.5 mm/s
Sampling interval Δz 5 μm
Measurement length l z 10 mm
Sampling points N z 2000
Sampling frequency f s 100 Hz
Air impinging angle α a 55°
Air velocity va 38 m/s
Air nozzle diameter φa 0.5 mm
Air nozzle ring diameter φar 10 mm
Height of applicator ha 0.2 mm
Air escape ring diameter φae 24 mm
Air escape slot width t ae 5 mm
Air escape angle αae 90°
Measurement window size Am 1.5 mm×3 mm
Thickness of coolant t c 5 mm
Coolant concentration c c 10%
Volume flow rate of air Qa 5 L/min
Volume flow rate of coolant Qc 650 L/h
Coolant nozzle diameter φc 3.5 mm
Reynolds number in clean zone ≤1211.73
Table 13 Measurement result of coolant direction testing according to certain embodiments
Figure PCTCN2015089233-appb-000012
Results. In certain embodiments with the example setup values provided, the measurement results shows that the PV value without coolant condition is 3.82 μm. The PV value with front direction coolant flow is 3.64 μm. The PV value is only 0.18 μm smaller when comparing the result under coolant condition with the one with no coolant condition. The average value of the measurement error induced by front direction coolant flow is 0.23 μm (Table 13) . Therefore, for certain embodiments of the proposed new applicator, 5 mm front direction coolant flow could generally bring 0.23 μm extra error when comparing the result under coolant condition with the one with no coolant condition.
The PV value with back direction coolant flow is 4.14 μm, the PV value is only 0.32 μm larger when comparing the result under coolant condition with the one with no coolant condition. The average value of the measurement error induced by front direction coolant flow is 0.27 μm (Table 13) . Therefore, for certain embodiments of the proposed new applicator, 5 mm back direction coolant flow could generally bring 0.27 μm extra error when comparing the result under coolant condition with the one with no coolant condition.
The PV value with side direction coolant flow is 3.54 μm, the PV value is only 0.28 μm smaller when comparing the result under coolant condition with the one with no coolant condition. The average value of the measurement error induced by front direction coolant flow is 0.26 μm (Table 13) . Therefore, for certain embodiments of the proposed new applicator, 5 mm side direction coolant flow could generally bring 0.26 μm extra error when comparing the result under coolant condition with the one with no coolant condition.
The air flow in clean zone is laminar flow with Reynolds number smaller than 2300 (Table 12) . Therefore the air flow has limited influence to non-contact optical measurement sensor, and hence this influence can be ignored.
From the previously described experiments, coolant thickness tc test results show that for certain embodiments utilizing the new method, the coolant thickness tc can be up to, e.g., 15 mm, a much larger number than prior methods. Additionally, the new applicator can work when the coolant flow direction is unpredictable in any direction. Therefore, the experiments above show that the proposed measurement system can satisfy the requirements to measure y (x, z) under coolant condition.
Experimental.
To test the multi air beam applicator performance with coolant condition. A measurement system, a testing system, a data collection software and a data processing GUI is developed. Certain embodiments of these components will be described herein. This section will introduce these hardware and software systems.
(a) Testing System. The testing system (FIG. 35) is used to simulate coolant condition. Testing system includes: a tank, a holding plate, a coolant ejection piece, a valve, a coolant container and a pump. The pump delivers coolant out of coolant container and transport coolant into coolant ejection piece. The nozzle of coolant ejection piece can adjust coolant ejection position, coolant impinging angle and coolant ejection direction. The valve can adjust coolant ejection speed.
(b) Software and Control Systems. The data collection software may be programmed by Visual C++ and packaged as a Microsoft Foundation Classes (MFC) exe file. In certain embodiments, the collected data is stored in a txt file. The data collection software only collects data, while the movement of profiler is controlled by control box. The input parameters of control box are determined by data collection software, but the parameters must be inputted manually. In certain embodiments, the data processing GUI is programmed with
Figure PCTCN2015089233-appb-000013
software. It is a GUI file which can view measured surface and measurement information. The main function of GUI is to transfer collected data (txt format) into surface matrix (mat format) . The surface matrix is easier to handle with
Figure PCTCN2015089233-appb-000014
software. The GUI also can reduce measurement noise, reduce measurement systematic error and tilt surface.
(b1) Data Collection System. In some embodiments, the data collection process may require both measurement system and data collection software (FIG. 36A-H) to work together. The measurement system may control the movement of a profiler to follow a certain route. The DRS laser sensor can only measure a single point one time. To get the 3D surface information, the DRS laser sensor should move along both x-axis and z-axis. The scanning route may be formed by repeating a basic shape: (i) The profiler scan along x-positive direction with x-axis length lx; (ii) The profiler scan along z-axis positive direction with z-axis interval Δz; (iii) The profiler scan along x-negative direction with x-axis length lx; (iv) The profiler scan along z-axis positive direction with z-axis interval Δz; (v) Repeat steps (i) - (iv) by repeating number nr.
(b2) Control System. The parameters to enter into the control box, which are provided by the software system, include: x-axis length lx, z-axis interval Δz and repeating numbers nr. To control the profiler table, the table velocity vt is also a necessary parameter. All these four parameters are calculated by data collection software, the calculation is based on ‘measurement parameters’ : x-axis length lx, z-axis length lz, x-axis interval Δx, z-axis interval Δz and table velocity vt. In certain embodiments, to start a measurement, the user may enter ‘measurement parameters’ into data collection software and get ‘control box parameters’ . Then the user may enter ‘control box parameters’ into control box manually. After clicking start button of data collection software, the user needs to press start button on control box panel and start profiler movement. The data collection process then commences. The data collection software is developed by MFC program. This software may provide four basic functions: (i) Measurement procedure introduction; (ii) Monitoring height information of laser sensor; (iii) Data collection; and (iv) Saving measurement data.
The data collection software system may have, in total, five independent dialogs: interface dialog, about dialog, introduction dialog, confirmation dialog and collection dialog (FIG. 36) . The interface dialog is the basic dialog. It contains: a laser sensor information window, a height value box, a ‘Laser On’ button, a note box, an ‘About’ button, an ‘Instruction’ button, a ‘Start’ button and an ‘Exit’ button.
The DRS triangulation sensor receives laser beam with a linear decoder. The laser sensor information window can show laser intensity of every pixel of linear decoder. Based on the intensity distribution and built-in algorithm, the interface shows the height value in height value box. The ‘Laser On’ button can light on laser beam and keep its output power maximum; this will help to detect the laser beam position on workpiece surface with naked eyes. The note box gives several tips for the measurement procedure. The ‘About’ button links to a new dialog which gives specification of portable profiler. The ‘Instruction’ button links to instruction dialog which helps a user understand the measurement procedures of the portable profiler.
Clicking ‘Start’ button will start measurement by opening a new dialog named ‘Parameters’ . The ‘Parameters’ dialog has a group of edit box named ‘Measurement parameters’ , a group of text box named ‘Control box parameters’ , a group of text box named ‘Est. Measurement information’ , a ‘Back button, a ‘Accept’ button and a ‘Next’ button. The  ‘Measurement parameters’ dialog allow user to input measurement parameters including: x-axis length, z-axis length, x-axis interval, z-axis interval and table velocity. The x-axis length and z-axis length represent the measurement lateral range of target area on workpiece surface. The x-axis interval and z-axis interval represent the measurement interval between two adjacent measured points. The table velocity represents the moving speed of portable profiler table on both x-axis and z-axis. The ‘Control box parameters’ box helps a user calculate the parameters needed to be inputted on control box panel. The ‘Est. Measurement information’ dialog shows: measurement range, total estimated time and total estimated data points. The ‘Back’ button links back to interface dialog. The ‘Accept’ button is used to: (i) Check whether the input parameters in ‘Measurement parameter’ box is reasonable; (ii) Start to calculate control box parameter and show them in ‘Control box parameters’ box; (iii) Start to calculate measurement information and show them in ‘Est. Measurement parameter’ box; (iv) Enable ‘Next’ button if the input parameters are reasonable.
Clicking ‘Next’ button on ‘Parameters’ dialog will open the ‘Profiling’ dialog. The software will prepare DRS sensor and ready to start measurement. The ‘Profiling’ dialog contains a group of text box named ‘Measurement information’ , a measurement progress bar, a ‘Start ‘button, a ‘Stop’ button, a ‘Save’ button and an ‘Exit’ button. Clicking ‘Start’ button will activate software, the software will keep tracking profiler x-axis and z-axis position by receiving interferometer encoder data. Then clicking ‘Start’ button on control panel of control box, the profiler will start to move and begin to scan workpiece surface. In certain embodiments, the measurement information will refresh in real time. The measurement information include: x-axis value, y-axis value, z-axis value, data points collected so far, total estimated data points and measurement progress value. In certain embodiments, when the profiler starts measurement, the ‘Save’ and ‘Exit’ buttons are disabled. If the user encounters an emergency, the user may click ‘Stop’ button to stop the measurement process. When the measurement is stopped, the ‘Start’ button, ‘Stop’ button and ‘Save’ button are disabled and the user will need to start a new measurement by clicking ‘Exit’ button to link back to ‘Parameter’ dialog. When the measurement process is finished, the software will pump out a message box to let user confirm results. After confirmation, the user may save collected data into a specific folder. In certain embodiments, the measurement data of the current set will also be found in the same folder  where software executed file exists, but this measurement data will be erased when a new measurement begins. In certain embodiments, to start a new measurement, the user may click ‘Exit’ and then go back to ‘Parameter’ dialog.
(b3) Data processing GUI. In certain embodiments, the data processing GUI (FIGS. 37-38) may be programmed in
Figure PCTCN2015089233-appb-000015
The main function of GUI is to transfer collected data (txt format) into surface matrix (mat format) . The GUI interface may also incorporate several useful functions: (i) Read surface information such as: x-axis range, z-axis range, x-axis interval, x-axis interval, z-axis interval, table velocity, sampling frequency and total points; (ii) Process noise filter to smoothen surface and reduce interrupt height change; (iii) Reduce systematic error caused by portable profiler; (iv) Tilt surface into horizontal position; (v) Show surface roughness information such as: Ra, Rq, Rt, cutoff length, profile peak and profile valley; (vi) Preview measured surface; (vii) Show preview in new figure dialog of
Figure PCTCN2015089233-appb-000016
 (viii) Save surface data in mat format; and (ix) Save GUI interface state.
After processing collected data through the data processing GUI, a matrix that represents a surface profile may be obtained. This matrix may be used to rebuild the measured surface. It may also be able to get a surface measured by a portable profiler with coolant condition, and compare it with surface measured by a microscope, e.g., Bruker NPFLEX 3D Optical Microscope. After comparison, the measurement error and working performance of portable and applicator with coolant condition may be determined.
Error studies.
Exemplary level of errors obtained with experiments utilizing sample values provided in certain embodiments of the disclosure are provided in FIGS. 39-44. The data will be used as reference in the comparative study for performance assessment.
Performance.
(a) Silicon surface with steps.
From Table 14, Table 15, and FIGS. 45A-D, it is shown that when the coolant thickness is 5 mm and flow velocity is 0.7 m/s, the measurement error of wafer 1 induced by multi air beam technique can be as small as 0.08 μm. The testing performed on wafer 2 shows the measurement error induced by multi air beam technique is 0.26 μm. This may be caused by the small bottom area which influences multi air beam technique performance.
Table 14 Measurement error of wafer 1 testing with and without coolant condition according to certain embodiments
Stepping No. hmBw1 (μm) hmIw10 (μm) hmIw1c (μm) emIw10 (μm) emIw1c (μm) ΔemIw1c (μm)
1 108.7664 110.0864 109.8876 1.32 1.1212 0.1988
2 109.2297 109.4119 109.3545 0.1822 0.1248 0.0574
3 109.7439 111.1957 110.9778 1.4518 1.2339 0.2179
4 110.2409 111.7348 111.6548 1.4939 1.4139 0.08
Table 15 Measurement error of wafer 2 testing with and without coolant condition
hmBw2 (μm) hmIw20 (μm) hmIw2c (μm) emIw20 (μm) emIw2c (μm) ΔemIw2c (μm)
109.9282 109.8857 109.6214 0.0425 0.3068 0.2643
(b) Al workpiece of surface roughness Ra=80nm.
In Table 16 and Fig. 46A-B, it is shown that when the coolant thickness is 5 mm and flow velocity is 0.7 m/s, the measurement error of aluminum workpiece induced by multi air beam technique is 0.44μm. The induced measurement error is larger than the testing result of wafer 1 and wafer2. This larger error may be caused by the surface matching program. 
Table 16 Measurement error of aluminum workpiece testing with and without coolant condition
emIw30 (μm) emIw3c (μm) ΔemIw3c (μm)
1.4690 1.9092 0.4402
In certain embodiments, the applicator may be modified to fit the surface of the workpiece. For example, if the surface of the workpiece is a curved surface, the applicator may be designed for optimal performance with the curved surface of the workpiece. Certain embodiments of the multi air beam technique provided are mainly used for in-process measurement on flat surface grinding. There exists a market and research need involving other shapes. For example, there exists a need for cylinder grinding and spherical grinding, such as  shaft and optical lens; therefore, an applicator capable of working with these curved surfaces is sought.
The basic working principle of multi air beam technique is to utilize multiple air nozzles and close space to create a clean zone. If the measured target surface is not a flat surface, the height of applicator value ha will be changed. The change of ha will severely influence the applicator performance. When the height of applicator ha changes, the volume fraction of coolant increases tremendously. If the height of applicator ha relative to the curved surface can be the maintained, it is possible to utilize multi air beam technique on curved surface. Therefore, it is possible to increase the ability of multi air beam technique and enable it to perform on cylinder surface and spherical surface as provided in exemplary embodiments of FIGS. 47A-B.
FIGS. 48A-C provide exemplary views of an applicator with sizes of various parts of the applicator. The sizes provided are exemplary and may be modified based on workpiece to be measured, type of sensor used, etc.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B” ) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (Aand B) , unless otherwise indicated herein or clearly contradicted by context. The terms “comprising, ” “having, ” “including, ” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to, ” ) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary  language (e.g., “such as” ) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (21)

  1. A system for measurement of workpiece surface topography, the system comprising:
    a sensor;
    a motion system, configured to move the sensor or a workpiece in x-, y-, and z-directions; and
    an applicator, configured to provide displacement of coolant away from one or more measurement points on the workpiece, wherein the displacement of the coolant provides the sensor with access to the one or more measurement points;
    wherein the sensor is configured to obtain a measurement from the one or more measurement points on the workpiece during a machining process where the workpiece is under coolant condition based on the coolant being displaced away from the one or more measurement points by the applicator.
  2. The system of claim 1, wherein the applicator comprises multiple air beam generators arranged around the one or more measurement points, wherein the multiple air beam generators are configured to provide displacement of the coolant in multiple directions away from the one or more measurement points.
  3. The system of claim 1, wherein the applicator is disposed proximate to the workpiece surface such that a closed air space is formed between the applicator and the workpiece surface.
  4. The system of claim 1, wherein the applicator comprises a channel for used air to escape through the applicator body.
  5. The system of claim 4, wherein the channel is cone shaped.
  6. The system of claim 5, wherein the application comprises a second channel for used air to escape through the applicator body, and wherein the second channel is cylindrical.
  7. The system of claim 1, wherein the applicator comprises tubular structures configured to provide one or more paths between the one or more measurement points on the workpiece and the sensor.
  8. The system of claim 1, wherein the applicator is configured to displace a cooling fluid, a cooling mist, and/or a cooling oil.
  9. The system of claim 1, wherein the applicator comprises a bottom surface that substantially matches a surface of the workpiece.
  10. The system of claim 1, further comprising:
    a memory, having instructions stored thereon for receiving measurement settings, receiving measurement values, and displaying measurement results.
  11. The system of claim 1, wherein the sensor is an optical sensor, an electromagnetic sensor, an electrical sensor, an ultrasonic sensor, or a pneumatic sensor.
  12. An apparatus for a measurement system, the apparatus comprising:
    one or more internal air inlet channels, configured to receive air flow into the apparatus;
    multiple air beam generators arranged around one or more measurement points, the multiple air beam generators being configured to provide the received air flow to the workpiece surface;
    one or more internal air escape passages, configured to collect air flowing across the workpiece surface; and
    one or more measurement paths, configured to provide a sensor of the measurement system with direct access to a workpiece surface.
  13. The apparatus of claim 12, further comprising:
    a bottom surface that substantially matches the workpiece surface.
  14. The apparatus of claim 13, wherein the bottom surface is a flat surface, a spherical surface, or a cylindrical surface.
  15. The apparatus of claim 12, wherein the multiple air beam generators are configured to displace a cooling fluid, a cooling mist, a cooling oil, and/or a coolant.
  16. The apparatus of claim 12, wherein the one or more internal air escape passages have a cylinder passage shape, a cone passage shape, or a cylinder and cone passage shape.
  17. The apparatus of claim 12, wherein the one or more measurement paths are tubular structures.
  18. The apparatus of claim 12, wherein sizes of each of the one or more air escape passages are larger than sizes of each of the multiple air beam generators.
  19. The apparatus of claim 12, wherein sizes of each of the one or more air escape passages are smaller than or equal to sizes of each of the multiple air beam generators.
  20. The apparatus of claim 12, wherein the multiple air beam generators are arranged in a manner that generates one or more transparent windows or optical clean zones.
  21. The apparatus of claim 12, wherein the sensor of the measurement system is an optical sensor, an electromagnetic sensor, an electrical sensor, an ultrasonic sensor, or a pneumatic sensor.
PCT/CN2015/089233 2014-09-09 2015-09-09 In-process measurement of component surfaces under coolant condition WO2016037567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590001097.6U CN206967158U (en) 2014-09-09 2015-09-09 A kind of system of measuring surface form for workpiece, the device for measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462070900P 2014-09-09 2014-09-09
US62/070,900 2014-09-09

Publications (1)

Publication Number Publication Date
WO2016037567A1 true WO2016037567A1 (en) 2016-03-17

Family

ID=55458353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089233 WO2016037567A1 (en) 2014-09-09 2015-09-09 In-process measurement of component surfaces under coolant condition

Country Status (2)

Country Link
CN (1) CN206967158U (en)
WO (1) WO2016037567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794805A (en) * 2019-01-22 2019-05-24 西安精雕软件科技有限公司 A kind of cone hole machine bus deviation automatic detection device and its detection method
TWI778544B (en) * 2021-03-12 2022-09-21 彭炘烽 Anti-collision device for on-line processing and measurement of processing machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113000401A (en) * 2019-12-20 2021-06-22 重庆西偌帕斯光电科技有限责任公司 Categorised strorage device of full automated inspection of optical lens piece for making a video recording
CN111693647B (en) * 2020-05-12 2022-12-20 香港科技大学 Transparent window generating device with multiple air rings and multiple escape channels and online measuring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059341A (en) * 1999-12-30 2001-07-06 이계안 Coolant system
CN101758420A (en) * 2008-12-08 2010-06-30 香港科技大学 System, apparatus and method for providing cooling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059341A (en) * 1999-12-30 2001-07-06 이계안 Coolant system
CN101758420A (en) * 2008-12-08 2010-06-30 香港科技大学 System, apparatus and method for providing cooling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHAO, BIN ET AL.: "On-Line Optic Measurement for Grinder By Pushing Away the Coolant", PRACTICAL MEASUREMENT TECHNOLOGY, vol. 25, no. 5, 30 September 1997 (1997-09-30), pages 10 - 13,33 *
ZHAO, BIN ET AL.: "On-Line Optic Measurement Using Water to Push Away the Coolant", J.HUAZHONG UNIV. OF SCI. &TECH., vol. 25, no. 7, 31 July 1997 (1997-07-31), pages 53 - 54 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794805A (en) * 2019-01-22 2019-05-24 西安精雕软件科技有限公司 A kind of cone hole machine bus deviation automatic detection device and its detection method
TWI778544B (en) * 2021-03-12 2022-09-21 彭炘烽 Anti-collision device for on-line processing and measurement of processing machine

Also Published As

Publication number Publication date
CN206967158U (en) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2016037567A1 (en) In-process measurement of component surfaces under coolant condition
CN101877305B (en) Substrate processing apparatus
JP4719675B2 (en) Polishing tool using hydrodynamic radial flux for cutting and polishing optical product surface and semiconductor surface
Yu et al. Ultraprecision machining of micro-structured functional surfaces on brittle materials
US20130203320A1 (en) Methods and Systems for Sensor-Based Deburring
KR20110058890A (en) Machine and method for machining a part by micro-electrical discharge machining
JP6000643B2 (en) Workpiece processing method, and optical element, mold, and semiconductor substrate processed by the processing method
Walker et al. New results from the Precessions polishing process scaled to larger sizes
JP2011189476A (en) Method for polishing
Guo et al. Analysis on a deformed removal profile in FJP under high removal rates to achieve deterministic form figuring
US6147764A (en) Optical interference profiler having shadow compensation
Qiu et al. Investigation of diamond cutting tool lapping system based on on-machine image measurement
KR102386609B1 (en) Double-sided grinding device and double-sided grinding method for workpieces
KR20110135401A (en) Method for the material-removing machining of very thin work pieces in a double side grinding machine
JP6124135B2 (en) Vibration barrel polishing polishing jig and vibration barrel polishing method
JP2010131747A (en) Tool cleaning method and device
JP6262593B2 (en) Grinding equipment
Fonda et al. The application of diamond-based electrodes for efficient EDMing of silicon wafers for freeform MEMS device fabrication
JP6344730B2 (en) EEM processing method
Booij et al. Jules Verne: a new polishing technique related to FJP
Lalehpour Modelling, inspection, and post-processing of layer-based additive manufacturing surfaces to maintain product quality
Kim et al. Development of machining technology for micropatterns with large surface area
US20080248729A1 (en) Method and Apparatus for Manufacturing Optical Elements
Zhao et al. based solely on examination of the thesis
Zhao Areal artefact manufacturing using SPDT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839411

Country of ref document: EP

Kind code of ref document: A1