WO2016035850A1 - Layered film - Google Patents

Layered film Download PDF

Info

Publication number
WO2016035850A1
WO2016035850A1 PCT/JP2015/075061 JP2015075061W WO2016035850A1 WO 2016035850 A1 WO2016035850 A1 WO 2016035850A1 JP 2015075061 W JP2015075061 W JP 2015075061W WO 2016035850 A1 WO2016035850 A1 WO 2016035850A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
film
acid
polyester
layer
Prior art date
Application number
PCT/JP2015/075061
Other languages
French (fr)
Japanese (ja)
Inventor
麻莉 鎌田
昌文 二科
崇嗣 杉原
佑樹 永島
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to KR1020177005709A priority Critical patent/KR20170052580A/en
Priority to CN201580047172.7A priority patent/CN106660351A/en
Priority to JP2016546691A priority patent/JP6063612B2/en
Publication of WO2016035850A1 publication Critical patent/WO2016035850A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/137Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a laminated film suitable for electronic materials.
  • the biaxially oriented polyester film is used as a substrate in various fields such as optical applications because of its excellent stability and mechanical and electrical properties.
  • an adhesive modification layer (also known as an easy-adhesion layer) composed of various polymers, crosslinking agents, coupling agents, etc. is provided between the polyester film substrate and the coating layer. Providing).
  • Patent Document 1 discloses a polyester film provided with an easy adhesion layer containing an acrylic resin or a polyester resin.
  • Patent Document 2 In order to solve the above problems, studies have been made to sequentially laminate an oligomer prevention layer and an adhesive layer on a polyester film (Patent Document 2).
  • Patent Document 3 a laminated polyester film having three or more layers in which the amount of oligomer in the film substrate is reduced by forming a film using a polyester resin subjected to solid phase polymerization treatment has been conventionally known.
  • Patent Document 4 A technique for forming a resin film excellent in performance such as solvent resistance and heat resistance is disclosed (Patent Document 4). Also, a copolyester resin comprising a dicarboxylic acid component containing a specific amount of aromatic dicarboxylic acid and a glycol component containing a specific amount of tricyclodecane dimethanol, having a glass transition temperature of more than 30 ° C. and 70 ° C. or less. A technique for improving the hot adhesiveness and wet heat durability by using is disclosed (Patent Document 5).
  • Patent Document 3 a method using a polyester resin obtained by subjecting a polyester film to solid phase polymerization treatment is difficult to adopt because of its high cost.
  • the present invention is intended to solve the above problem, and is a polyester-based laminated film that is sufficiently excellent in adhesiveness with a coat layer such as a hard coat layer and that suppresses oligomer precipitation from the coat layer during heat treatment. Is to provide.
  • the present inventors have found that the above object can be achieved by providing a polyester resin layer having a specific monomer structure on a polyester film substrate. Reached.
  • the gist of the present invention is as follows.
  • the laminated film has a haze change amount of 1.0% or less when heat-treated at 150 ° C. for 1 hour.
  • the laminated film according to (2) wherein 3 to 8 mol% of the dicarboxylic acid component of the polyester resin constituting the polyester resin layer is a dicarboxylic acid component having a sulfonate group.
  • the polyester resin layer further contains a curing agent, and the content of the curing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the coating liquid containing the polyester resin is applied to a polyester film substrate, and then subjected to a heat drying treatment at a temperature of 180 ° C. or higher, (1) to (4), A method for producing a laminated film.
  • the polyester-based laminated film of the present invention can suppress oligomer precipitation from the surface of the coating layer during heat treatment, line contamination and film transparency reduction are suppressed. Therefore, even if it is incorporated as a member in a touch panel or a smartphone, the resolution of the optical element is not impaired.
  • the polyester-based laminated film of the present invention has a polyester resin layer containing a polyester resin containing a diol component having a tricyclodecane structure on the surface of the polyester film substrate.
  • the polyester resin used for the polyester film substrate is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate. You may copolymerize another component with a polyester resin as needed.
  • carboxylic acid components include carboxylic acid components, hydroxycarboxylic acid components, and alcohol components.
  • carboxylic acid component include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid , Maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, cyclohexanedicarboxylic acid, trimellitic acid, trimesic acid, and pyromellitic acid.
  • Examples of the hydroxycarboxylic acid component include 4-hydroxybenzoic acid, ⁇ -caprolactone, and lactic acid.
  • Examples of the alcohol component include ethylene glycol, diethylene glycol, 1,3-propanediol, neopentyl glycol, 1,6-hexanediol, cyclohexanedimethanol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and bisphenol.
  • Examples include ethylene oxide adducts of A and bisphenol S, trimethylolpropane, glycerin, and pentaerythritol. Two or more of these copolymer components may be used in combination.
  • the melting point of the polyester resin for the substrate is preferably 230 ° C. or higher from the viewpoint of imparting heat resistance.
  • Examples of the method for polymerizing the polyester resin for the substrate include known production methods such as a direct esterification method and a transesterification method.
  • Examples of the direct esterification method include a method in which a necessary monomer raw material is injected into a reaction vessel, an esterification reaction is performed, and then a polycondensation reaction is performed. In the esterification reaction, the reaction is performed by heating and melting at a temperature of 160 ° C. or higher for 4 hours or longer in a nitrogen atmosphere. At that time, oxides such as magnesium, manganese, zinc, calcium, lithium, titanium, and acetate may be used as the catalyst.
  • the polycondensation reaction proceeds under a reduced pressure of 130 Pa or less until a desired molecular weight is reached at a temperature of 220 to 280 ° C. At that time, an oxide such as antimony, titanium, germanium, or acetate may be used as a catalyst.
  • the polyester resin for the base material after polymerization contains monomers, oligomers, and by-products such as acetaldehyde and tetrahydrofuran, it was obtained by performing solid-state polymerization at a temperature of 200 ° C. or higher under reduced pressure or under an inert gas flow.
  • a polymer having a higher degree of polymerization may be used for the polyester film substrate.
  • an antioxidant When polymerizing the polyester resin for the substrate, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a slip agent, an antiblocking agent, etc. may be added as necessary.
  • the antioxidant include hindered phenol compounds and hindered amine compounds.
  • the heat stabilizer include phosphorus compounds.
  • the ultraviolet absorber include benzophenone compounds and benzotriazole compounds.
  • the antistatic material include antimony-doped tin oxide.
  • the slip agent include surfactants.
  • the antiblocking agent include silicon oxide.
  • the base material polyester film used in the present invention may be an unstretched film or a stretched film.
  • the unstretched film is supplied with a sufficiently dried polyester resin raw material to the extruder, melted at a temperature higher than the fluidity, and passed through a filter as necessary. It can be obtained by extruding onto a cooling drum whose temperature is adjusted below the point (Tg).
  • an unstretched film is stretched in a temperature range of Tg to (Tg + 50 ° C.) of the polyester resin so as to have a stretching ratio of about 2 to 6 times in the horizontal direction or the vertical direction.
  • the unstretched film is biaxially stretched in the temperature range of Tg to (Tg + 50 ° C.) of the polyester resin so that the stretching ratio is about 2 to 4 times in the transverse direction and the longitudinal direction.
  • pre-longitudinal stretching of about 1 to 1.2 times may be performed before guiding to the simultaneous biaxial stretching machine.
  • the unstretched film is heated with a roll, infrared rays, or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film.
  • Stretching preferably uses a difference in peripheral speed of two or more rolls and is 2.5 to 4.0 times in the temperature range of Tg to (Tg + 40 ° C.) of the polyester resin.
  • the longitudinally stretched film is continuously subjected to transverse stretching, heat setting, and thermal relaxation to form a biaxially stretched film.
  • the transverse stretching starts in the temperature range of Tg to (Tg + 40 ° C.) of the polyester resin, and the maximum temperature is preferably in the temperature range of (Tm-100 ° C.) to (Tm-40 ° C.) of the polyester resin (Tm Is the melting point of the polyester resin).
  • the transverse stretching ratio is adjusted depending on the required physical properties of the final film, but is preferably 3.5 times or more, more preferably 3.8 times or more, and 4.0 times or more. Is more preferable.
  • the film can be stretched in the machine direction and the transverse direction, and further stretched in the machine direction and / or the transverse direction to increase the elastic modulus and dimensional stability of the film. Following stretching, heat fixing treatment for several seconds in the temperature range (Tm-50 ° C.) to (Tm-10 ° C.) of the polyester resin, and relaxation of 1-10% in the transverse direction of the film simultaneously with the heat fixing treatment preferable.
  • particles may be added to the polyester film used for the substrate.
  • the type of particles to be blended in the substrate is not particularly limited, and specific examples include, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, Inorganic particles such as titanium oxide can be used. Moreover, you may use heat-resistant organic particles, such as a thermosetting urea resin, a thermosetting phenol resin, a thermosetting epoxy resin, and a benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
  • the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the average particle size of the particles used is usually in the range of 0.01 to 3 ⁇ m, preferably 0.01 to 1 ⁇ m.
  • the average particle diameter is less than 0.01 ⁇ m, the particles are likely to aggregate and dispersibility may be insufficient.
  • the average particle diameter exceeds 3 ⁇ m, the surface roughness of the film becomes too rough and There may be a problem when a release layer is applied in the process.
  • the particle content in the polyester film substrate is usually 5% by mass or less, preferably in the range of 0.005 to 3% by mass. If the particles are added in excess of 5% by mass, the transparency of the film may be insufficient.
  • the method for adding particles to the polyester film substrate is not particularly limited, and can be added at any stage of producing the polyester.
  • it is an esterification stage or a transesterification completion stage.
  • the substrate polyester film used in the present invention may have a single layer or multiple layers (for example, two types, two types, two types, three layers, three types, three layers). From the viewpoint of controlling the degree and improving handling properties such as winding property, a multilayer structure is preferable. Two types, two layers, and two types and three layers are particularly preferable.
  • the two-layer / two-layer structure is a two-layer structure manufactured using two kinds of layer forming materials, and these two layers have different compositions (for example, particle content).
  • the two-layer / three-layer configuration is a three-layer configuration manufactured using two types of layer-forming materials, and the two outermost layers and the intermediate layer have different compositions (for example, particle content). Yes.
  • the three-layer / three-layer structure is a three-layer structure manufactured using three kinds of layer forming materials, and these three layers have different compositions (for example, particle content).
  • the polyester film base material preferably has a multilayer structure having a layer containing particles in at least one outermost layer.
  • the thickness ratio in each layer of the multilayer is preferably the following ratio from the viewpoint of stability during production and transparency.
  • the thickness ratio of each layer is preferably 99: 1 to 1:99, more preferably 96: 4 to 4:96, and still more preferably 90:10 to 10:90.
  • the thickness of the intermediate layer is preferably 98 to 1%, more preferably 92 to 4%, and further preferably 80 to 10%.
  • the thicknesses of the outermost layer on one side and the other adjacent to the intermediate layer are each independently preferably 1 to 49.5%, more preferably 4 to 48%, and further preferably 10 to 45%.
  • a polyester film substrate having a multilayer structure can be produced, for example, by the following method; (1) A method in which two or more kinds of polyester resin compositions (layer forming materials) are separately melted, merged and laminated in layers, extruded from a multilayer die, laminated and fused before solidification, and then solidified; (2) A method of stretching and heat setting after the method of (1) above; (3) A method in which two or more kinds of polyester resin compositions (layer forming materials) are separately melted, extruded without being joined together to form a film, and then two or more kinds of films are laminated and fused; and ( 4) A method of laminating and fusing two or more kinds of stretched films after forming into a film and stretching in the method of (3) above.
  • the above-described methods (1) and (2) are preferably used in which a multi-layer die is used and laminated and fused before solidification, because of the simplicity of the process.
  • Examples of the method for forming the polyester resin layer on the polyester film substrate as described above include a method in which a coating liquid containing a polyester resin is applied on the substrate and then dried.
  • the application method of the coating liquid is not particularly limited, and examples thereof include a gravure roll method, a reverse roll method, an air knife method, a reverse gravure method, a Mayer bar method, an inverse roll method, or various coating methods based on a combination thereof. It is done. Various spraying methods can also be employed.
  • the coating thickness is such that the thickness after drying (especially the thickness after heat drying) falls within the following range from the viewpoints of further reduction of the precipitated oligomer, improvement of blocking resistance, prevention of coating defects and improvement of productivity. It is preferable to make it a small value.
  • the thickness after drying (particularly the thickness after heat drying) is preferably 0.01 to 2 ⁇ m, more preferably 0.03 to 1 ⁇ m, and further preferably 0.04 to 0.5 ⁇ m. 0.2 to 0.5 ⁇ m is most preferable.
  • the adhesiveness of a polyester resin layer and a coating layer for example, acrylic coating film
  • the adhesiveness is remarkably increased when the heat drying temperature of the polyester resin layer is 140 ° C. or higher, particularly 180 ° C. or higher.
  • the heat drying treatment temperature is preferably 140 to 250 ° C., preferably 160 to 230 ° C., particularly 180 to 230 ° C., from the viewpoint of further improving the adhesiveness and preventing thermal wrinkling and deformation of the polyester film substrate. Is more preferable.
  • the heat drying treatment time is preferably 5 to 60 seconds, more preferably 20 to 60 seconds.
  • the polyester resin layer can be formed by an inline coating method or a post coating method.
  • the in-line coating method is a method in which a coating liquid is applied to an unstretched film or a uniaxially stretched film and then stretched in at least one direction.
  • the stretching method may be determined according to the stretched state of the film before coating. For example, when the film before coating is an unstretched film, the stretching method after coating is a sequential biaxial stretching method or a simultaneous biaxial stretching method. For example, when the film before coating is a film that is uniaxially stretched in a predetermined direction (MD direction or TD direction), the stretching method after coating is uniaxially stretched in the unstretched direction (TD direction or MD direction). Stretching method.
  • the post-coating method is a method in which an unstretched film is converted into a biaxially stretched film by a sequential biaxial stretching method or a simultaneous biaxial stretching method, and a coating solution is applied to the biaxially stretched film.
  • the in-line coating method is more productive and economical than the post-coating method. Further, in the in-line coating method, since the coating liquid is applied to an unstretched film or a uniaxially stretched film, it can be heated at a high temperature. In the present invention, since the resin layer is preferably heat-dried at 140 to 250 ° C., an in-line coating method that can be heated at a high temperature is preferable. By employing the in-line coating method, it is possible to suppress thermal wrinkles that occur due to the shrinkage of the polyester film accompanying the heat drying treatment.
  • polyester resin (A) The polyester resin used in the polyester resin layer of the present invention (hereinafter referred to as polyester resin (A)) is mainly composed of a dicarboxylic acid component and a diol component. That the polyester resin (A) is mainly composed of a dicarboxylic acid component and a diol component is 35 to 50 mol%, preferably 45 to 50 mol%, more preferably among all monomer components constituting the polyester resin (A). Means that 48 to 50 mol% is the dicarboxylic acid component, and 35 to 50 mol%, preferably 45 to 50 mol%, more preferably 48 to 50% is the diol component. In the present specification, the content ratio of the monomer component of the polyester resin (A) is indicated by a value based on the amount of raw material used before polymerization.
  • Examples of the diol component having a tricyclodecane structure include a tricyclodecane compound represented by the following general formula (I).
  • X 1 and X 2 are groups having 1 to 4 carbon atoms and / or 1 to 4 moles of alkylene oxide added to the hydroxyalkylene group having 1 to 4 carbon atoms, They may be the same or different.
  • the hydroxyalkylene group is a group in which one hydrogen atom of an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms, is substituted with one hydroxyl group.
  • the alkyl group may be linear or branched, and is preferably linear.
  • the alkylene oxide is not particularly limited, but is preferably an alkylene oxide compound having 2 to 4 carbon atoms. Examples of the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide.
  • X 1 and X 2 usually only have to be bonded to different carbon atoms out of 10 carbon atoms constituting the three carbon 5-membered rings of the tricyclodecane structure, preferably different carbon 5-membered rings. It is bonded to the constituent carbon atoms, and more preferably X 1 and X 2 are bonded to the 6- and 2-positions of the tricyclodecane structure, respectively.
  • a carbon atom constituting the tricyclodecane structure may be substituted with a monovalent substituent.
  • the monovalent substituent is not particularly limited, and examples thereof include an alkyl group having 1 to 3 carbon atoms (specifically, a methyl group, an ethyl group, and a propyl group).
  • Most preferred X 1 and X 2 are hydroxyalkylene groups having 1 to 4 carbon atoms, particularly 1 to 2 carbon atoms, which may be the same or different.
  • the diol component having a tricyclodecane structure may be two or more compounds having different structures.
  • Examples of the compound represented by the general formula (I) include tricyclo [5.2.1.0 2,6 ] decandimethanol, 4,10-dimethyltricyclo [5.2.1.0 2,6 ]. Decandimethanol, 4,4,10,10-tetramethyltricyclo [5.2.1.0 2,6 ] decandimethanol, 1,2,3,4,5,6,7,8,9, An example is 10-decamethyltricyclo [5.2.1.0 2,6 ] decanedimethanol. Of these, tricyclo [5.2.1.0 2,6 ] decanedimethanol is preferred because of its high versatility and high adhesion between the coating and the acrylic coating. In addition, you may use these in mixture of 2 or more types.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, and 2-methyl-1 , 3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropane Aliphatic glycols such as diols, 1,4-cyclohexanedimethanol, 1,3-cyclobutanedimethanol, dimethanol decalin, dimethanol bicyclooctane and other alicyclic glycols, diethylene glycol, triethylene glycol, dipropylene glycol, polytetra Methylene glycol, polyethylene glycol And ether bond-containing glycols such as
  • one or more diol components selected from the group consisting of aliphatic glycols, particularly ethylene glycol, neopentyl glycol, and 1,2-propanediol, It is preferably used together with a diol component having a tricyclodecane structure.
  • the content of the aliphatic glycol is usually 95 mol% or less, particularly 30 mol% or more and 95 mol% or less with respect to 100 mol% of the diol component constituting the polyester resin (A). From the viewpoint of further improving the adhesion with (for example, an acrylic coating film) and further reducing the amount of precipitated oligomers, it is preferably 31 to 85 mol%, more preferably 50 to 85 mol%. The content is preferably 51 to 85 mol% from the viewpoints of further improvement of adhesiveness, further reduction of precipitated oligomers and improvement of blocking resistance.
  • the polyester resin (A) Since the polyester resin (A) has a dicarboxylic acid having a sulfonate group, it can be easily dispersed in water or a hydrophilic organic solvent. When the content of the dicarboxylic acid having a sulfonate group with respect to 100 mol% of the dicarboxylic acid component constituting the polyester resin (A) is 3 mol% or more, the stretchability of the polyester resin layer to the in-line coating is enhanced. On the other hand, the water resistance of the polyester resin layer is improved by setting it to 15 mol% or less, preferably 9 mol% or less, and particularly 8 mol% or less.
  • the viewpoint of water resistance it is preferable from the viewpoint of water resistance to contain 0.1 to 15 mol% of dicarboxylic acid having a sulfonate group with respect to 100 mol% of the dicarboxylic acid component constituting the polyester resin (A). From the viewpoint of improving the stretch followability (during in-line coating), it is more preferably 3 to 9 mol%, particularly 3 to 8 mol%.
  • the stretch following property is a property that even if the polyester resin layer is formed and then stretched, the polyester resin layer can be satisfactorily stretched following the polyester film substrate.
  • the water resistance is a property that can prevent appearance changes such as whitening and swelling occurring in the polyester resin layer even when the laminated film of the present invention is immersed in water.
  • the dicarboxylic acid having a sulfonate group is preferably sodium sulfophthalate, for example, 5-sodium sulfoisophthalic acid, 5-sodium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 5-potassium sulfoterephthalic acid, 5-lithium.
  • the dicarboxylic acid component other than the dicarboxylic acid having a sulfonate group is not particularly limited, and examples thereof include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, and 3-tert-butylisophthalic acid.
  • Aromatic dicarboxylic acids such as diphenic acid, oxalic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, aicosane diacid, hydrogenated dimer acid, etc.
  • Acid maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, dimer acid, and other unsaturated aliphatic dicarboxylic acids, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornene dicarbo Acid and its anhydrides, alicyclic dicarboxylic acids such as tetrahydrophthalic acid and its anhydride.
  • aromatic dicarboxylic acids particularly terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferred from the viewpoint of versatility, polymerizability, and resin properties.
  • the content of the aromatic dicarboxylic acid is usually 70 to 97 mol% with respect to 100 mol% of the dicarboxylic acid component constituting the polyester resin (A), and the polyester resin layer and the coating layer (for example, acrylic coating film) From the viewpoint of further improving the adhesiveness and further reducing the precipitated oligomer, it is preferably 80 to 95 mol%.
  • the polyester resin (A) may contain a hydroxycarboxylic acid component.
  • the hydroxycarboxylic acid include 2-hydroxysebacic acid, 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, citric acid, isocitric acid, malic acid, 2-methyl-2-hydroxysuccinic acid, tartaric acid, tetrahydroxyadipine
  • Examples thereof include alkylene oxide adducts of acid, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -valerolactone, lactic acid, ⁇ -hydroxybutyric acid, p-hydroxybenzoic acid, and 4-hydroxyphenyl stearic acid.
  • the content is preferably 50 mol% or less, more preferably 40 mol% or less, out of a total of 100 mol% of all monomer components constituting the polyester resin (A). Preferably, it is more preferably 30 mol% or less.
  • the polyester resin (A) may contain a monocarboxylic acid component or a monoalcohol component.
  • the monocarboxylic acid include benzoic acid, phenylacetic acid, lauric acid, palmitic acid, stearic acid, oleic acid and the like.
  • the monoalcohol include cetyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, octyl alcohol, and stearyl alcohol.
  • the polyester resin (A) may contain a trifunctional or higher functional carboxylic acid or a trifunctional or higher functional alcohol.
  • the content may be 5 mol% or less with respect to 100 mol% of the dicarboxylic acid component or dialcohol component, respectively.
  • it is 4 mol% or less, more preferably 3 mol% or less.
  • tri- or higher functional carboxylic acid examples include trimellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, trimesic acid, ethylene glycol bis (anhydrotrimethyl). And glycerol tris (anhydro trimellitate) and 1,2,3,4-butanetetracarboxylic acid.
  • trifunctional or higher functional alcohol examples include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • the glass transition temperature of the polyester resin (A) is not particularly limited, but from the viewpoint of improving blocking resistance and stretchability of the obtained polyester resin layer, it is 60 to 110 ° C., particularly more than 70 ° C. and 110 ° C. or less. It is preferable to be 80 to 110 ° C. from the viewpoint of further improving the blocking resistance.
  • a glass transition temperature becomes so high that there are many diol components which have a tricyclodecane structure among the diol components which comprise a polyester resin (A). In diol components other than the diol component having a tricyclodecane structure, the glass transition temperature increases as the amount of the above-described aliphatic glycol component increases.
  • the blocking resistance is a property that even if the laminated films of the present invention are stacked and stored at a high temperature, adhesion (blocking) does not occur between the films, and even if they occur, they can be easily peeled off.
  • the polyester resin (A) can be produced by a known method by combining the above monomers. For example, all the monomer components and / or low polymers thereof are reacted in an inert atmosphere to carry out an esterification reaction, followed by polycondensation reaction in the presence of a polycondensation catalyst under reduced pressure until the desired molecular weight is reached. A method of proceeding and a method of performing a depolymerization reaction by adding a tri- or higher functional carboxylic acid under an inert atmosphere after carrying out the method.
  • the reaction temperature is preferably 180 to 260 ° C.
  • the reaction time is preferably 2.5 to 10 hours, and more preferably 4 to 6 hours.
  • the reaction temperature is preferably 220 to 280 ° C.
  • the degree of vacuum is preferably 130 Pa or less. If the degree of vacuum is low, the polycondensation time may be long. It is preferable to gradually reduce the pressure over 60 to 180 minutes until it reaches 130 Pa or less from atmospheric pressure.
  • the polycondensation catalyst is not particularly limited, and examples thereof include known compounds such as zinc acetate, antimony trioxide, tetra-n-butyl titanate, and n-butylhydroxyoxotin.
  • the amount of the catalyst used is preferably 0.1 to 20 ⁇ 10 ⁇ 4 mol per 1 mol of the dicarboxylic acid component.
  • the reaction temperature is preferably 160 to 280 ° C.
  • the reaction time is preferably 0.5 to 5 hours.
  • a coating liquid (hereinafter referred to as a polyester resin coating liquid) used for forming a polyester resin layer will be described.
  • polyester resin coating liquid examples include an organic solution in which the polyester resin (A) is dissolved in an organic solvent, and a dispersion liquid in which the polyester resin (A) is dispersed in an organic solvent and / or water. These polyester resin coating liquids can form a polyester resin composition layer by coating on a substrate and drying.
  • the polyester resin coating solution of the present invention preferably contains no emulsifier.
  • the emulsifier referred to in the present invention includes a surfactant, a compound having a protective colloid action, a modified wax, an acid-modified product having a high acid value, a water-soluble polymer and the like.
  • Such an emulsifier may be contained in an amount less than 0.1 parts by mass with respect to 100 parts by mass of the polyester resin (A) component as long as the effects of the present invention are not impaired.
  • 0.1 mass part or more of an emulsifier is contained, it exists in the tendency for the water resistance of a film to fall.
  • Examples of a method for producing a polyester resin coating liquid as an aqueous dispersion include a self-emulsification method.
  • the self-emulsification method is a method for preparing a polyester resin aqueous dispersion containing an organic solvent by charging the polyester resin (A), water, and an organic solvent all at once and heating the system while stirring. If necessary, a basic compound may be added.
  • organic solvent examples include ketones such as acetone (boiling point: 56.2 ° C.), methyl ethyl ketone (boiling point: 79.6 ° C.), methyl isobutyl ketone (boiling point: 117 ° C.), and cyclohexanone (boiling point: 156 ° C.).
  • ketones such as acetone (boiling point: 56.2 ° C.), methyl ethyl ketone (boiling point: 79.6 ° C.), methyl isobutyl ketone (boiling point: 117 ° C.), and cyclohexanone (boiling point: 156 ° C.).
  • Organic solvents aromatic hydrocarbon organic solvents such as toluene (boiling point: 111 ° C.), xylene (boiling point: 140 ° C.); ethylene glycol monoethyl ether (boiling point: 136 ° C.), tetrahydrofuran (boiling point: 66.0 ° C.) Ether-based organic solvents such as 1,4-dioxane (boiling point: 101 ° C.); halogen-containing organic solvents; alcohols such as n-propanol (boiling point: 97.2 ° C.) and isopropanol (boiling point: 82.4 ° C.) Organic solvents; ester-based organic solvents such as ethyl acetate (boiling point: 77.1 ° C) and normal butyl acetate (boiling point: 126 ° C); Such systems an organic solvent. These may be used alone or in combination.
  • a step of removing the organic solvent may be further provided after the above dispersion step.
  • the content of the organic solvent after the desolvation step is preferably less than 1% by mass of the aqueous dispersion, more preferably less than 0.5% by mass, and further preferably less than 0.3% by mass. preferable.
  • the polyester resin coating solution as an organic solvent solution is produced by a method in which the polyester resin (A) is dissolved in an organic solvent.
  • the organic solvent for dissolving the polyester resin is not particularly limited as long as the polyester resin can be dissolved, but among the organic solvents, those having a boiling point of 180 ° C. or lower are preferable, those having a boiling point of 165 ° C. or lower are more preferable, and 150 Those having a temperature of 0 ° C. or lower are more preferable. If the boiling point of the organic solvent exceeds 180 ° C., it may be difficult to volatilize the organic solvent by drying during coating.
  • the polyester resin layer in the present invention preferably contains a curing agent from the viewpoint of further improving the adhesion of the polyester resin layer and improving water resistance.
  • Examples of the curing agent that can be used in the present invention include a polyfunctional epoxy compound; a polyfunctional isocyanate compound; a polyfunctional aziridine compound; a carbodiimide group-containing compound; an oxazoline group-containing compound; a phenol resin; and a urea resin, a melamine resin, and a benzoguanamine.
  • Examples thereof include amino resins such as resins. You may use 1 type of these, or may use 2 or more types together.
  • the polyester resin layer obtained improves a water resistance while improving the adhesiveness with a polyester base material and coat resin further.
  • Preferred curing agents are one or more curing agents selected from the group consisting of polyfunctional isocyanate compounds, carbodiimide group-containing compounds, oxazoline group-containing compounds, and melamine resins.
  • polyepoxy compound specifically, a polyepoxy compound, a diepoxy compound, or the like can be used.
  • the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane.
  • Polyglycidyl ether can be used.
  • diepoxy compound examples include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diester.
  • Glycidyl ether and polytetramethylene glycol diglycidyl ether can be used.
  • polyfunctional isocyanate compound examples include tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, metaxylylene diisocyanate, hexamethylene-1,6-diisocyanate, 1,6-diisocyanate hexane, tolylene diisocyanate and hexanetriol.
  • Adduct adduct of tolylene diisocyanate and trimethylolpropane, polyol-modified diphenylmethane-4,4'-diisocyanate, carbodiimide-modified diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, 3,3 ' -Vitrylene-4,4 'diisocyanate, 3,3' dimethyldiphenylmethane-4,4'-diisocyanate, metaphenylene diisocyanate, etc. It is possible to use.
  • Block isocyanate compounds in which these isocyanate groups are blocked with bisulfites and phenols containing sulfonic acid groups, alcohols, lactams, oximes and active methylene compounds may be used.
  • polyfunctional aziridine compound for example, N, N′-hexamethylene-1,6-bis- (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate can be used. is there.
  • the carbodiimide group-containing compound is not particularly limited as long as it has at least two carbodiimide groups in the molecule.
  • compounds having a carbodiimide group such as p-phenylene-bis (2,6-xylylcarbodiimide), tetramethylene-bis (t-butylcarbodiimide), cyclohexane-1,4-bis (methylene-t-butylcarbodiimide)
  • polycarbodiimide which is a polymer having a carbodiimide group, can be used. These 1 type (s) or 2 or more types can be used.
  • a polymer containing an oxazoline group can be used as the oxazoline group-containing compound.
  • a polymer can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like.
  • addition polymerizable oxazoline group-containing monomer one or a mixture of two or more of these can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer, for example, alkyl acrylate, alkyl methacrylate (the alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and
  • phenolic resins examples include resol type phenolic resins and / or novolac types prepared from alkylphenols such as phenol, bisphenol A, pt-butylphenol, octylphenol, p-cumylphenol, p-phenylphenol, cresol, etc. Phenolic resins can be used.
  • urea resin for example, dimethylol urea, dimethylol ethylene urea, dimethylol propylene urea, tetramethylol acetylene urea, 4-methoxy 5-dimethylpropylene urea dimethylol can be used.
  • a melamine resin is a compound having, for example, an imino group, a methylol group, and / or an alkoxymethyl group (for example, a methoxymethyl group or a butoxymethyl group) as a functional group in one molecule.
  • an imino group-type methylated melamine resin a methylol group-type melamine resin, a methylol group-type methylated melamine resin, a complete alkyl-type methylated melamine resin, or the like can be used. Of these, methylolated melamine resins are most preferred. Further, it is preferable to use an acidic catalyst such as p-toluenesulfonic acid in order to accelerate the thermosetting of the melamine resin.
  • benzoguanamine resin for example, trimethylol benzoguanamine, hexamethylol benzoguanamine, trismethoxymethylbenzoguanamine, hexakismethoxymethylbenzoguanamine and the like can be used.
  • the polyester resin layer may contain particles for imparting easy slipping and blocking resistance.
  • the particle diameter of the particles that can be blended is preferably 1 nm to 2 ⁇ m, and more preferably 2 nm to 1 ⁇ m.
  • the type of particles that can be blended is not particularly limited as long as it does not affect the adhesion and oligomer precipitation suppression effect.
  • Specific examples include silica, talc, mica, kaolin, swellable fluoromica, montmorillonite, hectorite, Examples thereof include calcium carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, sodium silicate, aluminum hydroxide, iron oxide, zirconium oxide, barium sulfate, titanium oxide, and carbon black.
  • silica, talc, mica, and kaolin are preferred because they are highly effective in exhibiting heat resistance and transparency of the resulting coating, and silica is most preferred because of excellent slipperiness.
  • organic particles examples include acrylic particles, silicone particles, polyimide particles, Teflon (registered trademark) particles, crosslinked polyester particles, crosslinked polystyrene particles, crosslinked polymer particles, and core-shell particles. These particles can be used alone or in combination.
  • Curing agents and particles can be blended at any stage of preparing the polyester resin coating solution.
  • a method of mixing and stirring a dispersion of a polyester resin (A), a dispersion of a curing agent, a dispersion of particles, and (2) a mixture of the polyester resin (A) and the curing agent in advance examples thereof include a method of adding a dispersion liquid of particles after adding or dispersing or dissolving in water or a solvent-based medium.
  • the blending amount thereof is 1 to 10 parts by mass with respect to 100 parts by mass of the polyester resin (A) from the viewpoint of gelation of the coating liquid and cracking of the coat when stretched. It is preferably 1 to 8 parts by mass, more preferably 1 to 5 parts by mass.
  • the polyester resin (A) + the curing agent, ⁇ polyester resin (A ) + Curing agent ⁇ / particles 99/1 to 70/30 (mass ratio), more preferably 99/1 to 80/20 (mass ratio), and 99/1 to 90/10. (Mass ratio) is more preferable.
  • the polyester resin coating solution may further contain other optional components.
  • optional components that can be blended include leveling agents, antifoaming agents, other thickeners, color pigments, water, alcohol, and the like.
  • the leveling agent examples include silicone-based and fluorine-based leveling agents, and silicone-based leveling agents are particularly preferred from the viewpoint of compatibility with the coating liquid, coating suitability, adhesiveness, and blocking resistance.
  • the silicone leveling agent examples include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane. By using a leveling agent, it is possible to improve the wettability during coating and to improve the smoothness of the coating.
  • the blending amount of the leveling agent is preferably 1 to 15% by mass in the polyester resin coating solution.
  • an acetylene glycol compound or an ethylene oxide adduct thereof is preferable. Specifically, 3,6-dimethyl-4-decyne-3,6-diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol and compounds obtained by adding ethylene oxide to these compounds Is effective.
  • an antifoaming agent generation of bubbles mixed in the dispersion during coating can be suppressed, and the smoothness and transparency of the resulting coating can be improved.
  • the blending amount of the antifoaming agent is preferably 1 to 10% by mass in the polyester resin coating solution.
  • the thickness of the polyester-based laminated film of the present invention is not particularly limited, but is preferably 15 to 150 ⁇ m. By setting the thickness to 15 to 150 ⁇ m, a film can be produced with high productivity.
  • the polyester film substrate is preferably stretched in at least one direction. By being stretched, the flatness and heat resistance of the film can be improved.
  • the polyester-based laminated film of the present invention oligomer precipitation from the base film during heat treatment is suppressed.
  • the haze change amount when heat-treated at 150 ° C. for 1 hour is 1.0% or less. Preferably, it is 0.5% or less. Further, as a more severe condition, even when heat treatment is performed at 180 ° C. for 30 minutes, the amount of change in haze is 1.5% or less, preferably 1.0% or less.
  • the amount of change in haze is based on a value measured according to JIS-K7136: 2000.
  • the polyester laminated film of the present invention has good adhesion to various coat layers, particularly acrylic hard coat resins, and oligomers that precipitate during heat treatment are reduced. For this reason, it can be suitably used as an easily adhesive film for optics such as a touch panel display.
  • Acrylic hard coat resin (Seika Beam PHC manufactured by Dainichi Seika Co., Ltd.) is applied onto the polyester resin layer of the laminated film using a desktop coating device, and a low-pressure mercury lamp UV cure device (Toshiba Lighting & Technology Corp., 40 mW / cm, one Curing was performed by a lamp type) to form a hard coat layer having a thickness of 3 ⁇ m.
  • This coating was checked for adhesion by a cross-cut method in accordance with JIS K-5600-5-6.
  • an adhesive tape (TF-12 manufactured by Nichiban Co., Ltd.) was applied to a film in which cuts were made to form a lattice pattern of 100 sections, and the tape was peeled off vigorously.
  • 100/100 is the best state with no separation at 100 sections, and “0/100” indicates the state where all 100 sections are peeled off and is not the best.
  • 100/100 to 90/100 is accepted, 100/100 to 95/100, particularly 100/100 to 98/100 is excellent, and 100/100 is the most excellent.
  • DSC differential scanning calorimeter
  • the laminated film is cut into a size of 50 mm ⁇ 50 mm, and the laminated film and a biaxially stretched polyethylene terephthalate (PET) film (S-50, manufactured by Unitika) are biaxially stretched with the coated surface (resin layer) of the laminated film.
  • PET polyethylene terephthalate
  • the layers were superposed so that they contacted the non-corona surface of the PET film, and left for 24 hours at 60 ° C. under a load of 10 kPa. After removing the load and cooling to room temperature, blocking resistance was evaluated by examining the adhesion between the resin layer and the PET film.
  • Adhesion is not recognized between the laminated films in contact.
  • polyester resins (P-2) to (P-) are the same as the polyester resin (P-1) except that the resin composition is changed so that the resin composition after polymerization is as described in Tables 1 to 5. 5) and (P-8) to (P-25) were obtained. The results are shown in Tables 1 to 5.
  • Preparation Example 7 A polyester resin (P-7) was obtained in the same manner as the polyester resin (P-6) except that the resin composition was changed so that the resin composition after polymerization was as described in Table 1. The results are shown in Table 1.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • SIP 5-sodium sulfoisophthalic acid
  • TMA trimellitic acid
  • EG ethylene glycol
  • TCD tricyclo [5.2.1.0 (2,6)] decanedimethanol
  • DEG diethylene glycol
  • NPG Neopentyl glycol PD: 1,2-propanediol
  • BAEO ethylene oxide adduct of bisphenol A
  • Production example 1 of polyester resin coating solution Using a jacketed cylindrical glass container (with an internal volume of 3 L) and a stirrer (manufactured by Tokyo Science Instruments Co., Ltd., “MAZELA NZ-1200”), 300 g of polyester resin (P-1) and 50 g of isopropanol Then, 650 g of distilled water was charged in each glass container, and the temperature was raised by passing hot water into the jacket while stirring while maintaining the rotation speed of the stirring blade at 70 rpm. When the internal temperature reached 80 ° C., the temperature was raised and stirring was continued for 90 minutes. During stirring, the internal temperature was kept at 72 ⁇ 2 ° C.
  • polyester resin dispersion 800 g of the obtained polyester resin dispersion was charged into a round bottom flask, 40 g of water was added, a mechanical stirrer and a Liebig condenser were installed, the flask was heated in an oil bath, and 40 g of an aqueous medium was distilled off at normal pressure. Thereafter, the mixture was cooled to room temperature, and further with stirring, ion-exchanged water was finally added so that the solid content concentration was 30% by mass to obtain a polyester resin dispersion.
  • This polyester resin dispersion and a curable aqueous dispersion (oxazoline group-containing compound, Epocros WS-700; manufactured by Nippon Shokubai Co., Ltd.) were blended so that the solid content mass ratio was 100/5, and mixed and stirred for coating.
  • a liquid (S-1) was obtained.
  • Coating liquid production examples 2-31 A polyester resin coating solution (S-2) was prepared in the same manner as in Production Example 1 except that the type of polyester resin and the type and addition amount of the curing agent were changed as described in Tables 1 to 5. ) To (S-31) were obtained.
  • Carbodilite V-02-L2 (Nisshinbo Co., Ltd.) was used as the carbodiimide group-containing compound.
  • Vasonate HW-100 (manufactured by BASF) was used as the polyfunctional isocyanate compound.
  • M-30WT (manufactured by ChangChun Plastics. Co. Ltd.) was used as the melamine resin.
  • Example A Comparative Example A (Production of Post Coat Film)
  • Example A1 On the corona-treated surface of a biaxially stretched polyethylene terephthalate (PET) film (S-50, manufactured by Unitika, thickness 50 ⁇ m, Hz 3.8%), a tabletop coating device (film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542) The coating liquid (S-1) was post-coated using an AB type and a bar coater) so that the resin layer thickness after the heat drying treatment was 0.24 ⁇ m. Then, the postcoat film was obtained by making it dry for 30 seconds in the hot air dryer set to 180 degreeC.
  • PET polyethylene terephthalate
  • Example A2 to A29 and Comparative Examples A1 to A5 The coating liquid to be used was changed as shown in Tables 1 to 5 except that the thickness of the base PET film, the thickness of the polyester resin layer, and the heat drying treatment temperature were changed as shown in Tables 6 to 10. The same operation as in Example A1 was performed to obtain a post coat film.
  • Example B Comparative Example B (production of in-line coated film)
  • the polyester resin used for the polyester film substrate As polyethylene terephthalate A, a polyethylene terephthalate resin in which 0.07% by mass of silica particles having a particle diameter of 2.3 ⁇ m was contained in polyethylene terephthalate B described later was used.
  • polyethylene terephthalate B a polyethylene terephthalate resin having a polymerization catalyst of antimony trioxide, an intrinsic viscosity of 0.67, a glass transition temperature of 78 ° C., and a melting point of 253 ° C. was used.
  • Example B1 Polyethylene terephthalate B was introduced into extruder I (screw diameter: 50 mm) and polyethylene terephthalate A was introduced into extruder II (screw diameter: 65 mm). After melting at 280 ° C., each melt was formed into a T-die of a multilayer die. Before reaching the outlet, the layer thickness ratio (II / I / II) was 6/38/6, and the three layers were joined and laminated so that the total thickness was 1000 ⁇ m. The laminated melt was extruded from a T-die outlet, and was brought into close contact with a cooling drum whose surface temperature was adjusted to 20 ° C. to rapidly cool and solidify to obtain an unstretched film.
  • a cooling drum whose surface temperature was adjusted to 20 ° C. to rapidly cool and solidify to obtain an unstretched film.
  • the longitudinal speed is changed 4.0 times by changing the peripheral speed between the drawing rolls whose temperature is adjusted to 90 ° C., thereby obtaining a 250 ⁇ m thick longitudinally stretched film. It was.
  • the longitudinally stretched film was coated in-line with the coating liquid (S-1) using a Mayer bar so that the resin layer thickness after the heat drying treatment was 0.19 ⁇ m. Thereafter, the inline-coated film is guided to a tenter type stretching machine, and is stretched 5 times at a preheating temperature of 90 ° C.
  • Example B2 to B20 and B25 to B30 and Comparative Examples B1 to B5 An inline coated film was obtained in the same manner as in Example B1, except that the coating liquid used was changed as shown in Tables 1 to 5.
  • the coating liquid (S-2) was prepared so that the ratio of the silica particles (particle diameter 200 nm) to the total amount of the polyester resin and the curing agent was the value shown in Table 9. Used in a dispersed manner.
  • Example B31 Polyethylene terephthalate B was introduced into Extruder I (screw diameter: 50 mm), and polyethylene terephthalate A was introduced into Extruder II (screw diameter: 65 mm). After melting at 280 ° C., each melt was introduced into the outlet of the T-die. Before reaching, the layer thickness ratio (I / II) was 33/17, and the two layers were joined and laminated so that the total thickness was 1000 ⁇ m. The laminated melt was extruded from the T-die outlet of a multi-layer die, brought into close contact with a cooling drum whose surface temperature was adjusted to 20 ° C., and rapidly cooled and solidified to obtain an unstretched film.
  • the longitudinal speed is changed 4.0 times by changing the peripheral speed between the drawing rolls whose temperature is adjusted to 90 ° C., thereby obtaining a 250 ⁇ m thick longitudinally stretched film. It was.
  • the longitudinally stretched film was coated in-line with the coating liquid (S-2) using a Mayer bar so that the resin layer thickness after the heat drying treatment was 0.19 ⁇ m. Thereafter, the inline-coated film is guided to a tenter type stretching machine, and is stretched 5 times at a preheating temperature of 90 ° C.
  • the coating liquid (S-2) was prepared so that the ratio of the silica particles (particle diameter 200 nm) to the total amount of the polyester resin and the curing agent was a value shown in Table 9. Used in a dispersed manner.
  • Example B32 Example B31 except that the ratio of silica particles (particle diameter 200 nm) to be blended with the coating liquid (S-2) was changed as shown in Table 9 with respect to the total amount of the polyester resin and the curing agent. The same operation was performed to obtain an inline coated film.
  • Example B33 Polyethylene terephthalate A is put into Extruder I (screw diameter: 50 mm), melted at 280 ° C., extruded from the T-die outlet so that the thickness becomes 1000 ⁇ m, and brought into close contact with a cooling drum whose surface temperature is adjusted to 20 ° C. And solidified rapidly to obtain an unstretched film. Subsequently, after preheating with a preheating roll group whose temperature is adjusted to 90 ° C., the longitudinal speed is changed 4.0 times by changing the peripheral speed between the drawing rolls whose temperature is adjusted to 90 ° C., thereby obtaining a 250 ⁇ m thick longitudinally stretched film. It was.
  • the longitudinally stretched film was coated in-line with the coating liquid (S-2) using a Mayer bar so that the resin layer thickness after the heat drying treatment was 0.19 ⁇ m.
  • the inline-coated film is guided to a tenter type stretching machine, and is stretched 5 times at a preheating temperature of 90 ° C. and a stretching temperature of 120 ° C., followed by a heat drying treatment at 230 ° C., followed by 3 in the transverse direction at 200 ° C. % Relaxation treatment.
  • the film coming out of the tenter was wound up at a film speed of 150 m / min.
  • a biaxially stretched polyester film having a thickness of 50 ⁇ m was obtained.
  • the coating liquid (S-2) was prepared with silica particles (particle diameter 200 nm) so that the ratio of the silica particles to the total amount of the polyester resin and the curing agent was the value shown in Table 9. Used in a dispersed manner.
  • Tables 6 to 10 show the laminated films obtained in Examples and Comparative Examples and their evaluation results.
  • the obtained coating liquid had good stability, and the polyester resin layer obtained from the coating liquid was excellent in adhesiveness, and haze value change ( ⁇ H) accompanying heat treatment was suppressed.
  • Examples A1 to A5, A8, A11 to A15, A18 to A25 and A27 to A29 and Examples B1 to B5, B8, B11 to B15, B18 to B20, B25 and B27 to B33 they are contained in the coating film. Both the amount of SIP and curing agent was more appropriate and therefore showed higher water resistance. In particular, in Example B described above, good stretchability was obtained.
  • the polyester resin was compared with Examples A1 to A5, A8 to A20, and A25 to A29 by heat drying treatment at a high temperature in the in-line process.
  • the adhesion of the layer was further improved.
  • Comparative Examples A2 and B2 Comparative Examples A3 and B3, and Comparative Examples A5 and B5 since the TCD component in the diol component of the polyester resin (A) was too small, the change in haze value ( ⁇ H) accompanying the heat treatment was significantly large. It was.
  • the laminated film of the present invention is useful as an electronic material, an optical material, or an electro-optical material.

Abstract

 The present invention provides a layered film that adheres sufficiently well to a coating layer such as a hard coating layer, and oligomer separation from the coating layer is suppressed during heat treatment. The present invention pertains to a layered film having a polyester resin layer on at least one surface of a polyester film substrate, wherein 5 to 70% (molar) of a diol component of the polyester resin constituting the polyester resin layer is a diol component having a tricyclodecane structure, and the degree of change in haze when the film is heat treated for one hour at 150°C is 1.0% or less.

Description

積層フィルムLaminated film
 本発明は、電子材料用途等に好適な積層フィルムに関するものである。 The present invention relates to a laminated film suitable for electronic materials.
 二軸配向ポリエステルフィルムはその優れた安定性と機械的、電気的特性から、光学用途等の様々な分野において基材として使用されている。 The biaxially oriented polyester film is used as a substrate in various fields such as optical applications because of its excellent stability and mechanical and electrical properties.
 ポリエステルフィルムは一般に各種コート層との接着性が低いため、ポリエステルフィルム基材とコート層との間には、各種ポリマーや架橋剤およびカップリング剤などからなる接着性改質層(易接着層ともいう)を設けることが行われている。 Since polyester film generally has low adhesion to various coating layers, an adhesive modification layer (also known as an easy-adhesion layer) composed of various polymers, crosslinking agents, coupling agents, etc. is provided between the polyester film substrate and the coating layer. Providing).
 例えば特許文献1には、アクリル系樹脂やポリエステル系樹脂を含有する易接着層を設けたポリエステルフィルムが開示されている。 For example, Patent Document 1 discloses a polyester film provided with an easy adhesion layer containing an acrylic resin or a polyester resin.
 近年では、ポリエステルフィルムの用途の多様化により、加工条件や使用環境の高温化が進んでいるが、それに伴い基材のポリエステルフィルムに含まれるオリゴマーが析出する可能性がある。この場合、析出したオリゴマーによるフィルムの透明性の低下、ラインの汚染、接着性の低下等の問題が生じる。 In recent years, due to the diversification of uses of polyester films, the processing conditions and the use environment have been raised to high temperatures, and accordingly, oligomers contained in the polyester film of the substrate may be precipitated. In this case, problems such as a decrease in transparency of the film due to the precipitated oligomer, contamination of the line, and a decrease in adhesiveness occur.
 前記のような問題に対して、ポリエステルフィルムにオリゴマー防止層と粘着層を順次積層させる検討がなされている(特許文献2)。 In order to solve the above problems, studies have been made to sequentially laminate an oligomer prevention layer and an adhesive layer on a polyester film (Patent Document 2).
 また、固相重合処理されたポリエステル樹脂を用いて製膜することで、フィルム基材中のオリゴマー量を低減させた3層以上の積層ポリエステルフィルムも従来から知られている(特許文献3)。 Also, a laminated polyester film having three or more layers in which the amount of oligomer in the film substrate is reduced by forming a film using a polyester resin subjected to solid phase polymerization treatment has been conventionally known (Patent Document 3).
 一方、ポリエステル樹脂を構成する酸成分およびアルコール成分として、それぞれ芳香族ジカルボン酸およびトリシクロデカンジメタノールを特定量で含有するポリエステル樹脂水性分散体を用いて、密着性、透明性、耐水性、耐溶剤性および耐熱性等の性能に優れた樹脂被膜を形成する技術が開示されている(特許文献4)。また芳香族ジカルボン酸を特定量で含有するジカルボン酸成分と、トリシクロデカンジメタノールを特定量で含有するグリコール成分とから構成され、ガラス転移温度が30℃を超え70℃以下の共重合ポリエステル樹脂を用いることにより、熱間接着性および湿熱耐久性を向上させる技術が開示されている(特許文献5)。 On the other hand, using an aqueous polyester resin dispersion containing specific amounts of aromatic dicarboxylic acid and tricyclodecane dimethanol as the acid component and alcohol component constituting the polyester resin, adhesion, transparency, water resistance, A technique for forming a resin film excellent in performance such as solvent resistance and heat resistance is disclosed (Patent Document 4). Also, a copolyester resin comprising a dicarboxylic acid component containing a specific amount of aromatic dicarboxylic acid and a glycol component containing a specific amount of tricyclodecane dimethanol, having a glass transition temperature of more than 30 ° C. and 70 ° C. or less. A technique for improving the hot adhesiveness and wet heat durability by using is disclosed (Patent Document 5).
特開2010-76439号公報JP 2010-76439 A 特開2012-92314号公報JP2012-92314A 特開2000-141570号公報JP 2000-141570 A 特開2011-137086号公報JP 2011-137086 A 特許第5466095号Japanese Patent No. 5466095
 しかしながら、特許文献2のようにポリエステルフィルムにオリゴマー防止層と粘着層とを順次積層させる方法では、オリゴマーの析出抑制効果は十分ではなかった。また、ポリエステルフィルム上に二層を順次積層するため、製造工程が複数となり、製品の歩留まりが低下し、製造コストが高くなる。 However, in the method of sequentially laminating an oligomer prevention layer and an adhesive layer on a polyester film as in Patent Document 2, the effect of suppressing oligomer precipitation was not sufficient. Moreover, since two layers are sequentially laminated on the polyester film, a plurality of manufacturing steps are required, the yield of the product is reduced, and the manufacturing cost is increased.
 また、特許文献3のように、ポリエステルフィルムに固相重合処理を行ったポリエステル樹脂を用いる方法はコストが高いため、採用が難しい。 Also, as disclosed in Patent Document 3, a method using a polyester resin obtained by subjecting a polyester film to solid phase polymerization treatment is difficult to adopt because of its high cost.
 さらに、ポリエステルフィルムとハードコート層などのコート層との間に、特許文献4に記載のポリエステル樹脂水性分散体を用いて樹脂被膜を形成すると、当該コート層の接着性が十分でなかった。特許文献5に記載のポリエステル樹脂を接着剤としてフィルムに塗布して積層した場合、耐ブロッキング性が十分でなく、ロール状に形成できない場合があった。 Furthermore, when a resin film was formed between the polyester film and a coat layer such as a hard coat layer using the polyester resin aqueous dispersion described in Patent Document 4, the adhesion of the coat layer was not sufficient. When the polyester resin described in Patent Document 5 is applied to a film as an adhesive and laminated, the blocking resistance is not sufficient, and it may not be formed into a roll.
 本発明は上記の問題を解決しようとするものであり、ハードコート層などのコート層との接着性に十分に優れるとともに、加熱処理時にコート層からのオリゴマーの析出が抑制されるポリエステル系積層フィルムを提供するものである。 The present invention is intended to solve the above problem, and is a polyester-based laminated film that is sufficiently excellent in adhesiveness with a coat layer such as a hard coat layer and that suppresses oligomer precipitation from the coat layer during heat treatment. Is to provide.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定のモノマー構成を有するポリエステル樹脂層をポリエステルフィルム基材上に設けることで、上記目的が達成されることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by providing a polyester resin layer having a specific monomer structure on a polyester film substrate. Reached.
 すなわち、本発明の要旨は、下記の通りである。
(1)ポリエステルフィルム基材の少なくとも片面にポリエステル樹脂層を有する積層フィルムであって、前記ポリエステル樹脂層を構成するポリエステル樹脂のジオール成分のうち5~70モル%がトリシクロデカン構造を有するジオール成分であり、150℃で1時間加熱処理した際のヘーズ変化量が1.0%以下である、積層フィルム。
(2)前記ポリエステル樹脂層を構成するポリエステル樹脂のジカルボン酸成分のうち、0.1~15モル%がスルホン酸塩基を有するジカルボン酸成分である、(1)に記載の積層フィルム。
(3)前記ポリエステル樹脂層を構成するポリエステル樹脂のジカルボン酸成分のうち、3~8モル%がスルホン酸塩基を有するジカルボン酸成分である、(2)に記載の積層フィルム。
(4)前記ポリエステル樹脂層が硬化剤をさらに含有し、該硬化剤の含有量が前記ポリエステル樹脂100質量部に対して1~10質量部である、(1)~(3)のいずれかに記載の積層フィルム。
(5)前記ポリエステル樹脂を含有する塗工液をポリエステルフィルム基材に塗布後、180℃以上の温度で熱乾燥処理を行うことを特徴とする、(1)~(4)のいずれかに記載の積層フィルムの製造方法。
(6)前記塗工液を塗布したポリエステルフィルム基材を、少なくとも一方向に延伸することを特徴とする(5)に記載のポリエステル系積層フィルムの製造方法。
That is, the gist of the present invention is as follows.
(1) A laminated film having a polyester resin layer on at least one surface of a polyester film substrate, wherein 5 to 70 mol% of a diol component of the polyester resin constituting the polyester resin layer has a tricyclodecane structure The laminated film has a haze change amount of 1.0% or less when heat-treated at 150 ° C. for 1 hour.
(2) The laminated film according to (1), wherein 0.1 to 15 mol% of the dicarboxylic acid component of the polyester resin constituting the polyester resin layer is a dicarboxylic acid component having a sulfonate group.
(3) The laminated film according to (2), wherein 3 to 8 mol% of the dicarboxylic acid component of the polyester resin constituting the polyester resin layer is a dicarboxylic acid component having a sulfonate group.
(4) The polyester resin layer further contains a curing agent, and the content of the curing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the polyester resin. The laminated film as described.
(5) The coating liquid containing the polyester resin is applied to a polyester film substrate, and then subjected to a heat drying treatment at a temperature of 180 ° C. or higher, (1) to (4), A method for producing a laminated film.
(6) The method for producing a polyester-based laminated film according to (5), wherein the polyester film substrate coated with the coating solution is stretched in at least one direction.
 本発明によれば、各種コート層との接着性に十分に優れるとともに、基材ポリエステルフィルムからのオリゴマーの析出が低減されたポリエステル系積層フィルムを提供することができる。本発明のポリエステル系積層フィルムは、熱処理時にコート層表面からオリゴマーの析出を抑制することができるので、ラインの汚染やフィルムの透明度低下が抑制される。従って、タッチパネルやスマートフォン等に部材として組み込んでも、光学素子の解像度を損なわない。 According to the present invention, it is possible to provide a polyester-based laminated film that is sufficiently excellent in adhesiveness with various coat layers and in which oligomer precipitation from the base polyester film is reduced. Since the polyester-based laminated film of the present invention can suppress oligomer precipitation from the surface of the coating layer during heat treatment, line contamination and film transparency reduction are suppressed. Therefore, even if it is incorporated as a member in a touch panel or a smartphone, the resolution of the optical element is not impaired.
 本発明のポリエステル系積層フィルムは、トリシクロデカン構造を有するジオール成分を含むポリエステル樹脂を含有したポリエステル樹脂層を、ポリエステルフィルム基材表面に有するものである。 The polyester-based laminated film of the present invention has a polyester resin layer containing a polyester resin containing a diol component having a tricyclodecane structure on the surface of the polyester film substrate.
 ポリエステルフィルム基材に用いられるポリエステル樹脂としては特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートが挙げられる。ポリエステル樹脂には、必要に応じて、他の成分を共重合してもよい。 The polyester resin used for the polyester film substrate is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate. You may copolymerize another component with a polyester resin as needed.
 他の成分としては、カルボン酸成分、ヒドロキシカルボン酸成分、アルコール成分が挙げられる。カルボン酸成分としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、ダイマー酸、無水マレイン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、シクロヘキサンジカルボン酸、トリメリット酸、トリメシン酸、ピロメリット酸が挙げられる。ヒドロキシカルボン酸成分としては、例えば、4-ヒドロキシ安息香酸、ε-カプロラクトン、乳酸が挙げられる。アルコール成分としては、例えば、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ビスフェノールAやビスフェノールSのエチレンオキシド付加体、トリメチロールプロパン、グリセリン、ペンタエリスリトールが挙げられる。これらの共重合成分は2種以上併用してもよい。 Other components include carboxylic acid components, hydroxycarboxylic acid components, and alcohol components. Examples of the carboxylic acid component include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid , Maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, cyclohexanedicarboxylic acid, trimellitic acid, trimesic acid, and pyromellitic acid. Examples of the hydroxycarboxylic acid component include 4-hydroxybenzoic acid, ε-caprolactone, and lactic acid. Examples of the alcohol component include ethylene glycol, diethylene glycol, 1,3-propanediol, neopentyl glycol, 1,6-hexanediol, cyclohexanedimethanol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and bisphenol. Examples include ethylene oxide adducts of A and bisphenol S, trimethylolpropane, glycerin, and pentaerythritol. Two or more of these copolymer components may be used in combination.
 基材用ポリエステル樹脂の融点は、耐熱性付与の観点から、230℃以上であることが好ましい。 The melting point of the polyester resin for the substrate is preferably 230 ° C. or higher from the viewpoint of imparting heat resistance.
 基材用ポリエステル樹脂の重合方法としては、例えば、直接エステル化法、エステル交換法等の公知の製造方法が挙げられる。直接エステル化法としては、例えば、必要なモノマー原料を反応缶内に注入し、エステル化反応をおこなった後、重縮合反応をおこなう方法が挙げられる。エステル化反応では、窒素雰囲気下、160℃以上の温度で4時間以上、加熱溶融して反応させる。その際、触媒として、マグネシウム、マンガン、亜鉛、カルシウム、リチウム、チタン等の酸化物、酢酸塩を用いてもよい。重縮合反応では、130Pa以下の減圧下で、220~280℃の温度で所望の分子量に達するまで重縮合反応を進める。その際、触媒として、アンチモン、チタン、ゲルマニウム等の酸化物、酢酸塩を用いてもよい。 Examples of the method for polymerizing the polyester resin for the substrate include known production methods such as a direct esterification method and a transesterification method. Examples of the direct esterification method include a method in which a necessary monomer raw material is injected into a reaction vessel, an esterification reaction is performed, and then a polycondensation reaction is performed. In the esterification reaction, the reaction is performed by heating and melting at a temperature of 160 ° C. or higher for 4 hours or longer in a nitrogen atmosphere. At that time, oxides such as magnesium, manganese, zinc, calcium, lithium, titanium, and acetate may be used as the catalyst. In the polycondensation reaction, the polycondensation reaction proceeds under a reduced pressure of 130 Pa or less until a desired molecular weight is reached at a temperature of 220 to 280 ° C. At that time, an oxide such as antimony, titanium, germanium, or acetate may be used as a catalyst.
 重合後の基材用ポリエステル樹脂は、モノマーやオリゴマー、アセトアルデヒドやテトラヒドロフラン等の副生成物を含んでいるため、減圧または不活性ガス流通下、200℃以上の温度で固相重合を行い得られた、より重合度の高いポリマーをポリエステルフィルム基材に用いてもよい。 Since the polyester resin for the base material after polymerization contains monomers, oligomers, and by-products such as acetaldehyde and tetrahydrofuran, it was obtained by performing solid-state polymerization at a temperature of 200 ° C. or higher under reduced pressure or under an inert gas flow. A polymer having a higher degree of polymerization may be used for the polyester film substrate.
 基材用ポリエステル樹脂を重合する際、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、スリップ剤、ブロッキング防止剤等を添加してもよい。酸化防止剤としては、例えば、ヒンダードフェノール系化合物、ヒンダードアミン系化合物が挙げられる。熱安定剤としては、例えば、リン系化合物が挙げられる。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物を挙げられる。帯電防止材としては、例えばアンチモンドープ酸化錫が挙げられる。スリップ剤としては、例えば界面活性剤が挙げられる。ブロッキング防止剤としては、例えばケイ素酸化物が挙げられる。 When polymerizing the polyester resin for the substrate, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a slip agent, an antiblocking agent, etc. may be added as necessary. Examples of the antioxidant include hindered phenol compounds and hindered amine compounds. Examples of the heat stabilizer include phosphorus compounds. Examples of the ultraviolet absorber include benzophenone compounds and benzotriazole compounds. Examples of the antistatic material include antimony-doped tin oxide. Examples of the slip agent include surfactants. Examples of the antiblocking agent include silicon oxide.
 本発明に用いる基材のポリエステルフィルムは、未延伸フィルムであっても、延伸フィルムであってもよい。未延伸フィルムは、十分に乾燥されたポリエステル樹脂原料を押出機に供給し、流動性を示す温度以上で溶融し、必要に応じてフィルターを通過させた後、Tダイから、ポリエステル樹脂のガラス転移点(Tg)以下に温度調節した冷却ドラム上に押出すことにより得ることができる。 The base material polyester film used in the present invention may be an unstretched film or a stretched film. The unstretched film is supplied with a sufficiently dried polyester resin raw material to the extruder, melted at a temperature higher than the fluidity, and passed through a filter as necessary. It can be obtained by extruding onto a cooling drum whose temperature is adjusted below the point (Tg).
 一軸延伸法では、未延伸フィルムをポリエステル樹脂のTg~(Tg+50℃)の温度範囲で、横方向または縦方向にそれぞれ2~6倍程度の延伸倍率となるように延伸する。また、同時二軸延伸法では、未延伸フィルムをポリエステル樹脂のTg~(Tg+50℃)の温度範囲で、横方向および縦方向にそれぞれ2~4倍程度の延伸倍率となるよう二軸延伸する。この場合、同時二軸延伸機に導く前に、1~1.2倍程度の予備縦延伸を施しておいてもよい。また、逐次二軸延伸法では、上記未延伸フィルムをロール、赤外線等で加熱し、縦方向に延伸して縦延伸フィルムを得る。延伸は2個以上のロール周速差を利用し、ポリエステル樹脂のTg~(Tg+40℃)の温度範囲で2.5~4.0倍とすることが好ましい。縦延伸フィルムは続いて連続的に、横延伸、熱固定、熱弛緩の処理を順次施して二軸延伸フィルムとする。横延伸は、ポリエステル樹脂のTg~(Tg+40℃)の温度範囲で開始し、最高温度は、ポリエステル樹脂の(Tm-100℃)~(Tm-40℃)の温度範囲であることが好ましい(Tmはポリエステル樹脂の融点)。横延伸の倍率は最終的なフィルムの要求物性に依存し調整されるが、3.5倍以上とすることが好ましく、3.8倍以上とするのがより好ましく、4.0倍以上とするのがさらに好ましい。縦方向と横方向に延伸後、さらに、縦方向および/または横方向に再延伸することにより、フィルムの弾性率を高めたり寸法安定性を高めたりすることができる。延伸に続き、ポリエステル樹脂の(Tm-50℃)~(Tm-10℃)の温度範囲で数秒間の熱固定処理と、熱固定処理と同時にフィルム横方向に1~10%の弛緩することが好ましい。 In the uniaxial stretching method, an unstretched film is stretched in a temperature range of Tg to (Tg + 50 ° C.) of the polyester resin so as to have a stretching ratio of about 2 to 6 times in the horizontal direction or the vertical direction. In the simultaneous biaxial stretching method, the unstretched film is biaxially stretched in the temperature range of Tg to (Tg + 50 ° C.) of the polyester resin so that the stretching ratio is about 2 to 4 times in the transverse direction and the longitudinal direction. In this case, pre-longitudinal stretching of about 1 to 1.2 times may be performed before guiding to the simultaneous biaxial stretching machine. In the sequential biaxial stretching method, the unstretched film is heated with a roll, infrared rays, or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. Stretching preferably uses a difference in peripheral speed of two or more rolls and is 2.5 to 4.0 times in the temperature range of Tg to (Tg + 40 ° C.) of the polyester resin. Subsequently, the longitudinally stretched film is continuously subjected to transverse stretching, heat setting, and thermal relaxation to form a biaxially stretched film. The transverse stretching starts in the temperature range of Tg to (Tg + 40 ° C.) of the polyester resin, and the maximum temperature is preferably in the temperature range of (Tm-100 ° C.) to (Tm-40 ° C.) of the polyester resin (Tm Is the melting point of the polyester resin). The transverse stretching ratio is adjusted depending on the required physical properties of the final film, but is preferably 3.5 times or more, more preferably 3.8 times or more, and 4.0 times or more. Is more preferable. The film can be stretched in the machine direction and the transverse direction, and further stretched in the machine direction and / or the transverse direction to increase the elastic modulus and dimensional stability of the film. Following stretching, heat fixing treatment for several seconds in the temperature range (Tm-50 ° C.) to (Tm-10 ° C.) of the polyester resin, and relaxation of 1-10% in the transverse direction of the film simultaneously with the heat fixing treatment preferable.
 フィルムの巻き取り性を改善するために、基材に用いるポリエステルフィルムに粒子を添加してもよい。 In order to improve the winding property of the film, particles may be added to the polyester film used for the substrate.
 基材に配合する粒子の種類は、特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子が挙げられる。また、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等の耐熱性有機粒子を用いてもよい。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。使用する粒子の形状は特に限定されず、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これらの粒子は、必要に応じて2種類以上を併用してもよい。 The type of particles to be blended in the substrate is not particularly limited, and specific examples include, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, Inorganic particles such as titanium oxide can be used. Moreover, you may use heat-resistant organic particles, such as a thermosetting urea resin, a thermosetting phenol resin, a thermosetting epoxy resin, and a benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used. The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular about the hardness, specific gravity, a color, etc. Two or more kinds of these particles may be used in combination as required.
 用いる粒子の平均粒径は、通常0.01~3μm、好ましくは0.01~1μmの範囲である。平均粒径が0.01μm未満の場合には、粒子が凝集しやすく、分散性が不十分な場合があり、一方、3μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程において離型層を塗設させる場合等に不具合が生じる場合がある。 The average particle size of the particles used is usually in the range of 0.01 to 3 μm, preferably 0.01 to 1 μm. When the average particle diameter is less than 0.01 μm, the particles are likely to aggregate and dispersibility may be insufficient. On the other hand, when the average particle diameter exceeds 3 μm, the surface roughness of the film becomes too rough and There may be a problem when a release layer is applied in the process.
 ポリエステルフィルム基材中の粒子含有量は、通常5質量%以下、好ましくは0.005~3質量%の範囲である。5質量%を超えて粒子を添加すると、フィルムの透明性が不十分となる場合がある。 The particle content in the polyester film substrate is usually 5% by mass or less, preferably in the range of 0.005 to 3% by mass. If the particles are added in excess of 5% by mass, the transparency of the film may be insufficient.
 ポリエステルフィルム基材中に粒子を添加する方法は、特に限定されるものではなく、ポリエステルを製造する任意の段階において添加することができる。例えば、エステル化段階、もしくはエステル交換反応終了段階である。 The method for adding particles to the polyester film substrate is not particularly limited, and can be added at any stage of producing the polyester. For example, it is an esterification stage or a transesterification completion stage.
 本発明に用いる基材のポリエステルフィルムは、単層または複層(例えば、二種二層、二種三層、三種三層)のいずれの層構成であってもよいが、片面ごとに表面粗度を制御でき、巻取り性などのハンドリング性を向上させることができる観点から、複層構成であることが好ましい。二種二層、二種三層の構成が特に好ましい。二種二層の構成とは、二種類の層形成用材料を用いて製造された二層構成のことであり、これらの二層は組成(例えば、粒子含有量)が異なっている。二種三層の構成とは、二種類の層形成用材料を用いて製造された三層構成のことであり、2つの最外層と中間層とは組成(例えば、粒子含有量)が異なっている。三種三層の構成とは、三種類の層形成用材料を用いて製造された三層構成のことであり、これらの三層は互いに組成(例えば、粒子含有量)が異なっている。 The substrate polyester film used in the present invention may have a single layer or multiple layers (for example, two types, two types, two types, three layers, three types, three layers). From the viewpoint of controlling the degree and improving handling properties such as winding property, a multilayer structure is preferable. Two types, two layers, and two types and three layers are particularly preferable. The two-layer / two-layer structure is a two-layer structure manufactured using two kinds of layer forming materials, and these two layers have different compositions (for example, particle content). The two-layer / three-layer configuration is a three-layer configuration manufactured using two types of layer-forming materials, and the two outermost layers and the intermediate layer have different compositions (for example, particle content). Yes. The three-layer / three-layer structure is a three-layer structure manufactured using three kinds of layer forming materials, and these three layers have different compositions (for example, particle content).
 ポリエステルフィルム基材は、粒子を含有する層を、少なくとも片面の最外層に有する複層構成が好ましい。 The polyester film base material preferably has a multilayer structure having a layer containing particles in at least one outermost layer.
 ポリエステルフィルム基材が複層構成を有する場合、複層の各層における厚み比は、生産時の安定性と透明性の観点から、以下の比率が好ましい。例えば、二種二層の場合、各層の厚みの比は99:1~1:99が好ましく、96:4~4:96がより好ましく、90:10~10:90がさらに好ましい。また例えば、二種三層の場合、各層の厚みの合計厚みを100%としたとき、中間層の厚みは98~1%が好ましく、92~4%がより好ましく、80~10%がさらに好ましい。このとき、中間層と隣接する一方および他方の最外層の厚みはそれぞれ独立して1~49.5%が好ましく、4~48%がより好ましく、10~45%がさらに好ましい。 When the polyester film substrate has a multilayer structure, the thickness ratio in each layer of the multilayer is preferably the following ratio from the viewpoint of stability during production and transparency. For example, in the case of two types and two layers, the thickness ratio of each layer is preferably 99: 1 to 1:99, more preferably 96: 4 to 4:96, and still more preferably 90:10 to 10:90. Further, for example, in the case of two types and three layers, when the total thickness of each layer is 100%, the thickness of the intermediate layer is preferably 98 to 1%, more preferably 92 to 4%, and further preferably 80 to 10%. . At this time, the thicknesses of the outermost layer on one side and the other adjacent to the intermediate layer are each independently preferably 1 to 49.5%, more preferably 4 to 48%, and further preferably 10 to 45%.
 複層構成を有するポリエステルフィルム基材は、例えば、以下の方法により製造することができる;
(1)二種以上のポリエステル樹脂組成物(層形成用材料)を別々に溶融し、層状に合流積層させ、複層ダイスより押出して固化前に積層融着させた後、固化させる方法;
(2)上記(1)の方法の後、延伸および熱固定する方法;
(3)二種以上のポリエステル樹脂組成物(層形成用材料)を別々に溶融し、合流させることなくそれぞれ押出して、フィルム化した後、二種以上のフィルムを積層融着させる方法;および
(4)上記(3)の方法において、フィルム化し、延伸した後、二種以上の延伸フィルムを積層融着させる方法。
A polyester film substrate having a multilayer structure can be produced, for example, by the following method;
(1) A method in which two or more kinds of polyester resin compositions (layer forming materials) are separately melted, merged and laminated in layers, extruded from a multilayer die, laminated and fused before solidification, and then solidified;
(2) A method of stretching and heat setting after the method of (1) above;
(3) A method in which two or more kinds of polyester resin compositions (layer forming materials) are separately melted, extruded without being joined together to form a film, and then two or more kinds of films are laminated and fused; and ( 4) A method of laminating and fusing two or more kinds of stretched films after forming into a film and stretching in the method of (3) above.
 ポリエステルフィルム基材は、プロセスの簡便性から、複層ダイスを用い、固化前に積層融着させる上記(1)および(2)の方法が好ましい。 For the polyester film substrate, the above-described methods (1) and (2) are preferably used in which a multi-layer die is used and laminated and fused before solidification, because of the simplicity of the process.
 上記のようなポリエステルフィルム基材にポリエステル樹脂層を形成する方法としては、基材上にポリエステル樹脂を含有する塗工液を塗布した後、乾燥する方法が挙げられる。 Examples of the method for forming the polyester resin layer on the polyester film substrate as described above include a method in which a coating liquid containing a polyester resin is applied on the substrate and then dried.
 塗工液の塗布方法としては、特に限定されないが、例えば、グラビアロール法、リバースロール法、エアーナイフ法、リバースグラビア法、マイヤーバー法、インバースロール法、またはこれらの組み合わせによる各種コート方式が挙げられる。また、各種噴霧方式も採用することができる。塗工厚みは、析出オリゴマーのさらなる低減、耐ブロッキング性の向上、コート欠陥の発生防止および生産性の向上の観点から、乾燥後の厚み(特に熱乾燥後の厚み)が以下の範囲となるような値にすることが好ましい。乾燥後の厚み(特に熱乾燥後の厚み)は、0.01~2μmとすることが好ましく、0.03~1μmとすることがより好ましく、0.04~0.5μmとすることがさらに好ましく、0.2~0.5μmとすることが最も好ましい。 The application method of the coating liquid is not particularly limited, and examples thereof include a gravure roll method, a reverse roll method, an air knife method, a reverse gravure method, a Mayer bar method, an inverse roll method, or various coating methods based on a combination thereof. It is done. Various spraying methods can also be employed. The coating thickness is such that the thickness after drying (especially the thickness after heat drying) falls within the following range from the viewpoints of further reduction of the precipitated oligomer, improvement of blocking resistance, prevention of coating defects and improvement of productivity. It is preferable to make it a small value. The thickness after drying (particularly the thickness after heat drying) is preferably 0.01 to 2 μm, more preferably 0.03 to 1 μm, and further preferably 0.04 to 0.5 μm. 0.2 to 0.5 μm is most preferable.
 乾燥方法としては、特に限定されないが、ポリエステル樹脂層とコート層(例えばアクリル塗膜)との接着性のさらなる向上の観点から、加熱して乾燥を行う熱乾燥処理法を採用することが好ましい。理由は定かではないが、ポリエステル樹脂層の熱乾燥処理温度が140℃以上、特に180℃以上になると、接着性が格段に高くなる。熱乾燥処理温度は、接着性のさらなる向上ならびにポリエステルフィルム基材の熱シワおよび変形の防止の観点から、140~250℃とすることが好ましく、160~230℃、特に180~230℃とすることがより好ましい。熱乾燥処理理時間は、5~60秒とすることが好ましく、20~60秒とすることがより好ましい。 Although it does not specifically limit as a drying method, From a viewpoint of the further improvement of the adhesiveness of a polyester resin layer and a coating layer (for example, acrylic coating film), it is preferable to employ | adopt the heat drying process method which heats and dries. Although the reason is not clear, the adhesiveness is remarkably increased when the heat drying temperature of the polyester resin layer is 140 ° C. or higher, particularly 180 ° C. or higher. The heat drying treatment temperature is preferably 140 to 250 ° C., preferably 160 to 230 ° C., particularly 180 to 230 ° C., from the viewpoint of further improving the adhesiveness and preventing thermal wrinkling and deformation of the polyester film substrate. Is more preferable. The heat drying treatment time is preferably 5 to 60 seconds, more preferably 20 to 60 seconds.
 ポリエステル樹脂層は、インラインコート法またはポストコート法により形成させることができる。インラインコート法とは、未延伸フィルムまたは一軸延伸されたフィルムに、塗工液を塗布した後、少なくとも一方向に延伸する方法である。延伸方法は、塗布前のフィルムの延伸状態に応じて決定されればよい。例えば、塗布前のフィルムが未延伸フィルムの場合、塗布後の延伸方法は逐次二軸延伸法または同時二軸延伸法である。また例えば、塗布前のフィルムが所定の一方向(MD方向またはTD方向)に一軸延伸されたフィルムの場合、塗布後の延伸方法は未延伸方向(TD方向またはMD方向)に一軸延伸を行う一軸延伸法である。一方、ポストコート法とは、未延伸フィルムを逐次二軸延伸法または同時二軸延伸法により二軸延伸フィルムとし、該二軸延伸フィルムに塗工液を塗布する方法である。 The polyester resin layer can be formed by an inline coating method or a post coating method. The in-line coating method is a method in which a coating liquid is applied to an unstretched film or a uniaxially stretched film and then stretched in at least one direction. The stretching method may be determined according to the stretched state of the film before coating. For example, when the film before coating is an unstretched film, the stretching method after coating is a sequential biaxial stretching method or a simultaneous biaxial stretching method. For example, when the film before coating is a film that is uniaxially stretched in a predetermined direction (MD direction or TD direction), the stretching method after coating is uniaxially stretched in the unstretched direction (TD direction or MD direction). Stretching method. On the other hand, the post-coating method is a method in which an unstretched film is converted into a biaxially stretched film by a sequential biaxial stretching method or a simultaneous biaxial stretching method, and a coating solution is applied to the biaxially stretched film.
 一般に、インラインコート法は、ポストコート法に比べて生産性が高く、経済性に優れている。また、インラインコート法では、未延伸フィルムまたは一軸延伸したフィルムに塗工液を塗布するため、高温で加熱することができる。本発明においては、樹脂層を140~250℃で熱乾燥処理することが好ましいことから、高温で加熱することができるインラインコート法が好ましい。インラインコート法を採用することにより、熱乾燥処理に伴うポリエステルフィルムの収縮により発生する熱シワを抑制することができる。 In general, the in-line coating method is more productive and economical than the post-coating method. Further, in the in-line coating method, since the coating liquid is applied to an unstretched film or a uniaxially stretched film, it can be heated at a high temperature. In the present invention, since the resin layer is preferably heat-dried at 140 to 250 ° C., an in-line coating method that can be heated at a high temperature is preferable. By employing the in-line coating method, it is possible to suppress thermal wrinkles that occur due to the shrinkage of the polyester film accompanying the heat drying treatment.
 本発明のポリエステル樹脂層に用いられるポリエステル樹脂(以下、ポリエステル樹脂(A)と呼ぶ。)は、主として、ジカルボン酸成分およびジオール成分から構成されるものである。ポリエステル樹脂(A)が主としてジカルボン酸成分およびジオール成分から構成されるとは、ポリエステル樹脂(A)を構成する全モノマー成分のうち、35~50モル%、好ましくは45~50モル%、より好ましくは48~50モル%がジカルボン酸成分であり、かつ35~50モル%、好ましくは45~50モル%、より好ましくは48~50%がジオール成分である、という意味である。本明細書中、ポリエステル樹脂(A)のモノマー成分の含有割合は、重合前の原料の使用量に基づく値で示すものとする。 The polyester resin used in the polyester resin layer of the present invention (hereinafter referred to as polyester resin (A)) is mainly composed of a dicarboxylic acid component and a diol component. That the polyester resin (A) is mainly composed of a dicarboxylic acid component and a diol component is 35 to 50 mol%, preferably 45 to 50 mol%, more preferably among all monomer components constituting the polyester resin (A). Means that 48 to 50 mol% is the dicarboxylic acid component, and 35 to 50 mol%, preferably 45 to 50 mol%, more preferably 48 to 50% is the diol component. In the present specification, the content ratio of the monomer component of the polyester resin (A) is indicated by a value based on the amount of raw material used before polymerization.
 ポリエステル樹脂(A)を構成するジオール成分100モル%に対し、トリシクロデカン構造を有するジオール成分を5~70モル%、特に5モル%以上70モル%未満、含有することが必要であり、ポリエステル樹脂層とコート層(例えばアクリル塗膜)との接着性のさらなる向上ならびに析出オリゴマーのさらなる低減の観点からは10~60モル%であることが好ましく、15~50モル%であることがより好ましい。トリシクロデカン構造を有するジオール成分の含有量が5モル%未満であると、熱処理に伴うオリゴマーの析出を抑制する効果が低い。一方、70モル%以上の場合、特に70モル%を超えた場合においては、形成されるポリエステル樹脂層とコート層(例えばアクリル塗膜)との接着性に劣ったものとなる。 It is necessary to contain 5 to 70 mol%, particularly 5 mol% or more and less than 70 mol% of a diol component having a tricyclodecane structure with respect to 100 mol% of the diol component constituting the polyester resin (A). From the viewpoint of further improving the adhesion between the resin layer and the coating layer (for example, acrylic coating film) and further reducing the amount of precipitated oligomer, it is preferably 10 to 60 mol%, more preferably 15 to 50 mol%. . When the content of the diol component having a tricyclodecane structure is less than 5 mol%, the effect of suppressing the precipitation of oligomers accompanying heat treatment is low. On the other hand, when it is 70 mol% or more, particularly when it exceeds 70 mol%, the adhesion between the formed polyester resin layer and the coating layer (for example, acrylic coating film) is poor.
 トリシクロデカン構造を有するジオール成分としては、例えば、下記一般式(I)で示されるトリシクロデカン化合物が挙げられる。 Examples of the diol component having a tricyclodecane structure include a tricyclodecane compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、XおよびXは、炭素数1~4のヒドロキシアルキレン基および/または該炭素数1~4のヒドロキシアルキレン基にアルキレンオキシドを1~4モル付加した基であり、同一であっても異なっていてもよい。ヒドロキシアルキレン基は、炭素数1~4、好ましくは1~2のアルキル基の水素原子1つをヒドロキシル基1つにより置換した基である。アルキル基は直鎖状または分枝鎖状であってよく、好ましくは直鎖状である。アルキレンオキシドは、特に限定されないが、好ましくは炭素数2~4のアルキレンオキシド化合物である。アルキレンオキシドとして、例えば、エチレンオキシド、プロピレンオキシドおよびブチレンオキシドが挙げられる。ヒドロキシアルキレン基へのアルキレンオキシドの付加により、ヒドロキシアルキレン基のヒドロキシル基に基づくエーテル結合が生成するとともに、アルキレンオキシドのエポキシ基に基づくヒドロキシル基が生成する。XおよびXは通常、トリシクロデカン構造が有する3つの炭素5員環を構成する10個の炭素原子のうち、異なる炭素原子に結合していればよく、好ましくは異なる炭素5員環を構成する炭素原子に結合しており、より好ましくはXおよびXはそれぞれトリシクロデカン構造の6位および2位に結合している。トリシクロデカン構造を構成する炭素原子には1価置換基が置換されていてもよい。1価置換基としては、特に限定されないが、例えば、炭素数1~3のアルキル基(具体的にはメチル基、エチル基、プロピル基)が挙げられる。最も好ましいXおよびXは、炭素数1~4、特に1~2のヒドロキシアルキレン基であり、同一であっても異なっていてもよい。トリシクロデカン構造を有するジオール成分は構造が異なる2種以上の化合物であってもよい。 In the general formula (I), X 1 and X 2 are groups having 1 to 4 carbon atoms and / or 1 to 4 moles of alkylene oxide added to the hydroxyalkylene group having 1 to 4 carbon atoms, They may be the same or different. The hydroxyalkylene group is a group in which one hydrogen atom of an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms, is substituted with one hydroxyl group. The alkyl group may be linear or branched, and is preferably linear. The alkylene oxide is not particularly limited, but is preferably an alkylene oxide compound having 2 to 4 carbon atoms. Examples of the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide. Addition of an alkylene oxide to a hydroxyalkylene group produces an ether bond based on the hydroxyl group of the hydroxyalkylene group and a hydroxyl group based on the epoxy group of the alkylene oxide. X 1 and X 2 usually only have to be bonded to different carbon atoms out of 10 carbon atoms constituting the three carbon 5-membered rings of the tricyclodecane structure, preferably different carbon 5-membered rings. It is bonded to the constituent carbon atoms, and more preferably X 1 and X 2 are bonded to the 6- and 2-positions of the tricyclodecane structure, respectively. A carbon atom constituting the tricyclodecane structure may be substituted with a monovalent substituent. The monovalent substituent is not particularly limited, and examples thereof include an alkyl group having 1 to 3 carbon atoms (specifically, a methyl group, an ethyl group, and a propyl group). Most preferred X 1 and X 2 are hydroxyalkylene groups having 1 to 4 carbon atoms, particularly 1 to 2 carbon atoms, which may be the same or different. The diol component having a tricyclodecane structure may be two or more compounds having different structures.
 一般式(I)で示される化合物としては、例えば、トリシクロ[5.2.1.02,6]デカンジメタノール、4,10-ジメチルトリシクロ[5.2.1.02,6]デカンジメタノール、4,4,10,10-テトラメチルトリシクロ[5.2.1.02,6]デカンジメタノール、1,2,3,4,5,6,7,8,9,10-デカメチルトリシクロ[5.2.1.02,6]デカンジメタノールが挙げられる。中でも汎用性が高く、被膜とアクリル塗膜との接着性が高い点で、トリシクロ[5.2.1.02,6]デカンジメタノールが好ましい。なお、これらは2種以上混合して用いてもよい。 Examples of the compound represented by the general formula (I) include tricyclo [5.2.1.0 2,6 ] decandimethanol, 4,10-dimethyltricyclo [5.2.1.0 2,6 ]. Decandimethanol, 4,4,10,10-tetramethyltricyclo [5.2.1.0 2,6 ] decandimethanol, 1,2,3,4,5,6,7,8,9, An example is 10-decamethyltricyclo [5.2.1.0 2,6 ] decanedimethanol. Of these, tricyclo [5.2.1.0 2,6 ] decanedimethanol is preferred because of its high versatility and high adhesion between the coating and the acrylic coating. In addition, you may use these in mixture of 2 or more types.
 一般式(I)で示される化合物と併用が可能なジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール等の脂肪族グリコール、1,4-シクロヘキサンジメタノール、1,3-シクロブタンジメタノール、ジメタノールデカリン、ジメタノールビシクロオクタン等の脂環族グリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のエーテル結合含有グリコール、2,2-ビス[4-(ヒドロキシエトキシ)フェニル]プロパンのアルキレンオキシド付加体、ビス[4-(ヒドロキシエトキシ)フェニル]スルホンのアルキレンオキシド付加体が挙げられる。中でも、汎用性、重合性および樹脂特性への影響の点で、脂肪族グリコール、特にエチレングリコール、ネオペンチルグリコール、1,2-プロパンジオールからなる群から選択される1種以上のジオール成分を、トリシクロデカン構造を有するジオール成分と共に用いることが好ましい。 Examples of the diol component that can be used in combination with the compound represented by the general formula (I) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, and 2-methyl-1 , 3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropane Aliphatic glycols such as diols, 1,4-cyclohexanedimethanol, 1,3-cyclobutanedimethanol, dimethanol decalin, dimethanol bicyclooctane and other alicyclic glycols, diethylene glycol, triethylene glycol, dipropylene glycol, polytetra Methylene glycol, polyethylene glycol And ether bond-containing glycols such as polypropylene glycol, alkylene oxide adducts of 2,2-bis [4- (hydroxyethoxy) phenyl] propane, and alkylene oxide adducts of bis [4- (hydroxyethoxy) phenyl] sulfone. It is done. Among them, in terms of influence on versatility, polymerizability and resin properties, one or more diol components selected from the group consisting of aliphatic glycols, particularly ethylene glycol, neopentyl glycol, and 1,2-propanediol, It is preferably used together with a diol component having a tricyclodecane structure.
 脂肪族グリコールの含有量は通常、ポリエステル樹脂(A)を構成するジオール成分100モル%に対して、95モル%以下、特に30モル%以上95モル%以下、であり、ポリエステル樹脂層とコート層(例えばアクリル塗膜)との接着性のさらなる向上ならびに析出オリゴマーのさらなる低減の観点からは31~85モル%であることが好ましく、50~85モル%であることがより好ましい。当該含有量は、接着性のさらなる向上、析出オリゴマーのさらなる低減および耐ブロッキング性の向上の観点からは51~85モル%であることが好ましい。 The content of the aliphatic glycol is usually 95 mol% or less, particularly 30 mol% or more and 95 mol% or less with respect to 100 mol% of the diol component constituting the polyester resin (A). From the viewpoint of further improving the adhesion with (for example, an acrylic coating film) and further reducing the amount of precipitated oligomers, it is preferably 31 to 85 mol%, more preferably 50 to 85 mol%. The content is preferably 51 to 85 mol% from the viewpoints of further improvement of adhesiveness, further reduction of precipitated oligomers and improvement of blocking resistance.
 ポリエステル樹脂(A)は、スルホン酸塩基を有するジカルボン酸を有することで水や親水性有機溶剤への分散化が容易になる。ポリエステル樹脂(A)を構成するジカルボン酸成分100モル%に対する、スルホン酸塩基を有するジカルボン酸の含有量を、3モル%以上とすることでポリエステル樹脂層のインラインコーティングに対する延伸追随性が高まる。一方、15モル%以下、好ましくは9モル%以下、特に8モル%以下とすることで、ポリエステル樹脂層の耐水性が向上する。従って、ポリエステル樹脂(A)を構成するジカルボン酸成分100モル%に対し、スルホン酸塩基を有するジカルボン酸を0.1~15モル%含有することが耐水性の観点から好ましく、耐水性のさらなる向上と延伸追随性(インラインコーティング時)の向上の観点からは3~9モル%、特に3~8モル%であることがより好ましい。延伸追随性とは、ポリエステル樹脂層を形成した後で延伸を行っても、ポリエステル樹脂層がポリエステルフィルム基材に追随して良好に延伸され得る特性のことである。耐水性とは、本発明の積層フィルムを水に浸漬しても、ポリエステル樹脂層に生じる白化および膨潤などの外観変化を防止し得る特性のことである。 Since the polyester resin (A) has a dicarboxylic acid having a sulfonate group, it can be easily dispersed in water or a hydrophilic organic solvent. When the content of the dicarboxylic acid having a sulfonate group with respect to 100 mol% of the dicarboxylic acid component constituting the polyester resin (A) is 3 mol% or more, the stretchability of the polyester resin layer to the in-line coating is enhanced. On the other hand, the water resistance of the polyester resin layer is improved by setting it to 15 mol% or less, preferably 9 mol% or less, and particularly 8 mol% or less. Therefore, it is preferable from the viewpoint of water resistance to contain 0.1 to 15 mol% of dicarboxylic acid having a sulfonate group with respect to 100 mol% of the dicarboxylic acid component constituting the polyester resin (A). From the viewpoint of improving the stretch followability (during in-line coating), it is more preferably 3 to 9 mol%, particularly 3 to 8 mol%. The stretch following property is a property that even if the polyester resin layer is formed and then stretched, the polyester resin layer can be satisfactorily stretched following the polyester film substrate. The water resistance is a property that can prevent appearance changes such as whitening and swelling occurring in the polyester resin layer even when the laminated film of the present invention is immersed in water.
 前記スルホン酸塩基を有するジカルボン酸としては、スルホフタル酸ナトリウムが好ましく、例えば、5-ナトリウムスルホイソフタル酸、5-ナトリウムスルホテレフタル酸、5-カリウムスルホイソフタル酸、5-カリウムスルホテレフタル酸、5-リチウムスルホイソフタル酸、5-リチウムスルホテレフタル酸、3,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸ナトリウム、2,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸ナトリウム、3,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸カリウム、3,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸リチウム、5-ナトリウムスルホイソフタル酸ジメチル、5-ナトリウムスルホテレフタル酸ジメチル、5-カリウムスルホイソフタル酸ジメチル、5-リチウムスルホイソフタル酸ジメチルが挙げられる。 The dicarboxylic acid having a sulfonate group is preferably sodium sulfophthalate, for example, 5-sodium sulfoisophthalic acid, 5-sodium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 5-potassium sulfoterephthalic acid, 5-lithium. Sulfoisophthalic acid, 5-lithium sulfoterephthalic acid, sodium 3,5-di (carbo-β-hydroxyethoxy) benzenesulfonate, sodium 2,5-di (carbo-β-hydroxyethoxy) benzenesulfonate, 3,5 -Potassium di (carbo-β-hydroxyethoxy) benzenesulfonate, lithium 3,5-di (carbo-β-hydroxyethoxy) benzenesulfonate, dimethyl 5-sodium sulfoisophthalate, dimethyl 5-sodium sulfoterephthalate, 5 Potassium sulfoisophthalic acid dimethyl, include 5 lithium sulfoisophthalic acid dimethyl.
 スルホン酸塩基を有するジカルボン酸以外のジカルボン酸成分としては、特に限定されないが、例えば、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、3-tert-ブチルイソフタル酸、ジフェン酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、アイコサン二酸、水添ダイマー酸等の飽和脂肪族ジカルボン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の不飽和脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸およびその無水物、テトラヒドロフタル酸およびその無水物等の脂環式ジカルボン酸が挙げられる。中でも、汎用性、重合性および樹脂特性への影響の点で、芳香族ジカルボン酸、特にテレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸が好ましい。 The dicarboxylic acid component other than the dicarboxylic acid having a sulfonate group is not particularly limited, and examples thereof include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, and 3-tert-butylisophthalic acid. , Aromatic dicarboxylic acids such as diphenic acid, oxalic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, aicosane diacid, hydrogenated dimer acid, etc. Acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, dimer acid, and other unsaturated aliphatic dicarboxylic acids, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornene dicarbo Acid and its anhydrides, alicyclic dicarboxylic acids such as tetrahydrophthalic acid and its anhydride. Of these, aromatic dicarboxylic acids, particularly terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferred from the viewpoint of versatility, polymerizability, and resin properties.
 芳香族ジカルボン酸の含有量は通常、ポリエステル樹脂(A)を構成するジカルボン酸成分100モル%に対して、70~97モル%であり、ポリエステル樹脂層とコート層(例えばアクリル塗膜)との接着性のさらなる向上ならびに析出オリゴマーのさらなる低減の観点からは80~95モル%であることが好ましい。 The content of the aromatic dicarboxylic acid is usually 70 to 97 mol% with respect to 100 mol% of the dicarboxylic acid component constituting the polyester resin (A), and the polyester resin layer and the coating layer (for example, acrylic coating film) From the viewpoint of further improving the adhesiveness and further reducing the precipitated oligomer, it is preferably 80 to 95 mol%.
 ポリエステル樹脂(A)には、ヒドロキシカルボン酸成分を含有させてもよい。ヒドロキシカルボン酸としては、例えば、2-ヒドロキシセバシン酸、5-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、クエン酸、イソクエン酸、リンゴ酸、2-メチル-2-ヒドロキシコハク酸、酒石酸、テトラヒドロキシアジピン酸、ε-カプロラクトン、δ-バレロラクトン、γ-バレロラクトン、乳酸、β-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、4-ヒドロキシフェニルステアリン酸のアルキレンオキシド付加体が挙げられる。ヒドロキシカルボン酸を用いる場合、その含有量は、ポリエステル樹脂(A)を構成する全モノマー成分の合計100モル%のうち、50モル%以下とすることが好ましく、40モル%以下とすることがより好ましく、30モル%以下とすることがさらに好ましい。 The polyester resin (A) may contain a hydroxycarboxylic acid component. Examples of the hydroxycarboxylic acid include 2-hydroxysebacic acid, 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, citric acid, isocitric acid, malic acid, 2-methyl-2-hydroxysuccinic acid, tartaric acid, tetrahydroxyadipine Examples thereof include alkylene oxide adducts of acid, ε-caprolactone, δ-valerolactone, γ-valerolactone, lactic acid, β-hydroxybutyric acid, p-hydroxybenzoic acid, and 4-hydroxyphenyl stearic acid. When using hydroxycarboxylic acid, the content is preferably 50 mol% or less, more preferably 40 mol% or less, out of a total of 100 mol% of all monomer components constituting the polyester resin (A). Preferably, it is more preferably 30 mol% or less.
 ポリエステル樹脂(A)には、モノカルボン酸成分やモノアルコール成分が含まれていてもよい。モノカルボン酸としては、例えば、安息香酸、フェニル酢酸、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸等が挙げられる。モノアルコールとしては、例えば、セチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、オクチルアルコール、ステアリルアルコールが挙げられる。 The polyester resin (A) may contain a monocarboxylic acid component or a monoalcohol component. Examples of the monocarboxylic acid include benzoic acid, phenylacetic acid, lauric acid, palmitic acid, stearic acid, oleic acid and the like. Examples of the monoalcohol include cetyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, octyl alcohol, and stearyl alcohol.
 ポリエステル樹脂(A)には、3官能以上のカルボン酸または3官能以上のアルコールを含有させてもよい。3官能以上のカルボン酸または3官能以上のアルコールをエステル化反応前に仕込む場合、その含有量は、それぞれ、ジカルボン酸成分またはジアルコール成分100モル%に対して、5モル%以下とすることが好ましく、4モル%以下とすることがより好ましく、3モル%以下とすることがさらに好ましい。 The polyester resin (A) may contain a trifunctional or higher functional carboxylic acid or a trifunctional or higher functional alcohol. When the trifunctional or higher functional carboxylic acid or the trifunctional or higher functional alcohol is charged before the esterification reaction, the content may be 5 mol% or less with respect to 100 mol% of the dicarboxylic acid component or dialcohol component, respectively. Preferably, it is 4 mol% or less, more preferably 3 mol% or less.
 3官能以上のカルボン酸としては、例えば、トリメリット酸、ベンゾフェノンテトラカルボン酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、1,2,3,4-ブタンテトラカルボン酸が挙げられる。3官能以上のアルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが挙げられる。 Examples of the tri- or higher functional carboxylic acid include trimellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, trimesic acid, ethylene glycol bis (anhydrotrimethyl). And glycerol tris (anhydro trimellitate) and 1,2,3,4-butanetetracarboxylic acid. Examples of the trifunctional or higher functional alcohol include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
 ポリエステル樹脂(A)のガラス転移温度は、特に制限はないが、得られるポリエステル樹脂層の耐ブロッキング性および延伸追随性の向上の観点から、60~110℃、特に70℃超110℃以下、であることが好ましく、耐ブロッキング性のさらなる向上の観点から80~110℃が好ましい。ガラス転移温度は、ポリエステル樹脂(A)を構成するジオール成分のうち、トリシクロデカン構造を有するジオール成分が多いほど高くなる。トリシクロデカン構造を有するジオール成分以外のジオール成分においては、上記した脂肪族グリコール成分が多いほど、ガラス転移温度は高くなる。耐ブロッキング性とは、本発明の積層フィルムを重ねて高温下で保管しても、フィルム間で密着(ブロッキング)が起こらず、起こったとしても簡単に剥がれ得る特性のことである。 The glass transition temperature of the polyester resin (A) is not particularly limited, but from the viewpoint of improving blocking resistance and stretchability of the obtained polyester resin layer, it is 60 to 110 ° C., particularly more than 70 ° C. and 110 ° C. or less. It is preferable to be 80 to 110 ° C. from the viewpoint of further improving the blocking resistance. A glass transition temperature becomes so high that there are many diol components which have a tricyclodecane structure among the diol components which comprise a polyester resin (A). In diol components other than the diol component having a tricyclodecane structure, the glass transition temperature increases as the amount of the above-described aliphatic glycol component increases. The blocking resistance is a property that even if the laminated films of the present invention are stacked and stored at a high temperature, adhesion (blocking) does not occur between the films, and even if they occur, they can be easily peeled off.
 次に、ポリエステル樹脂(A)の製造方法について説明する。 Next, a method for producing the polyester resin (A) will be described.
 ポリエステル樹脂(A)は、前記のモノマーを組み合わせて、公知の方法で製造することができる。例えば、全モノマー成分および/またはその低重合体を不活性雰囲気下で反応させてエステル化反応をおこない、引き続いて重縮合触媒の存在下、減圧下で、所望の分子量に達するまで重縮合反応を進める方法、および当該方法を実施した後、不活性雰囲気下、3官能以上のカルボン酸を添加して解重合反応をおこなう方法を挙げることができる。 The polyester resin (A) can be produced by a known method by combining the above monomers. For example, all the monomer components and / or low polymers thereof are reacted in an inert atmosphere to carry out an esterification reaction, followed by polycondensation reaction in the presence of a polycondensation catalyst under reduced pressure until the desired molecular weight is reached. A method of proceeding and a method of performing a depolymerization reaction by adding a tri- or higher functional carboxylic acid under an inert atmosphere after carrying out the method.
 エステル化反応において、反応温度は180~260℃とすることが好ましく、反応時間は2.5~10時間とすることが好ましく、4~6時間とすることがより好ましい。 In the esterification reaction, the reaction temperature is preferably 180 to 260 ° C., the reaction time is preferably 2.5 to 10 hours, and more preferably 4 to 6 hours.
 重縮合反応において、反応温度は、220~280℃とすることが好ましい。減圧度は、130Pa以下とすることが好ましい。減圧度が低いと、重縮合時間が長くなる場合がある。大気圧から130Pa以下に達するまで、60~180分かけて徐々に減圧することが好ましい。 In the polycondensation reaction, the reaction temperature is preferably 220 to 280 ° C. The degree of vacuum is preferably 130 Pa or less. If the degree of vacuum is low, the polycondensation time may be long. It is preferable to gradually reduce the pressure over 60 to 180 minutes until it reaches 130 Pa or less from atmospheric pressure.
 重縮合触媒としては、特に限定されないが、酢酸亜鉛、三酸化アンチモン、テトラ-n-ブチルチタネート、n-ブチルヒドロキシオキソスズ等の公知の化合物を挙げることができる。触媒の使用量は、ジカルボン酸成分1モルに対し、0.1~20×10-4モルとすることが好ましい。 The polycondensation catalyst is not particularly limited, and examples thereof include known compounds such as zinc acetate, antimony trioxide, tetra-n-butyl titanate, and n-butylhydroxyoxotin. The amount of the catalyst used is preferably 0.1 to 20 × 10 −4 mol per 1 mol of the dicarboxylic acid component.
 解重合において、反応温度は160~280℃とすることが好ましく、反応時間は、0.5~5時間とすることが好ましい。 In the depolymerization, the reaction temperature is preferably 160 to 280 ° C., and the reaction time is preferably 0.5 to 5 hours.
 次に、本発明において、ポリエステル樹脂層の形成に用いる塗工液(以下、ポリエステル樹脂塗工液と呼ぶ。)について説明する。 Next, in the present invention, a coating liquid (hereinafter referred to as a polyester resin coating liquid) used for forming a polyester resin layer will be described.
 ポリエステル樹脂塗工液としては、ポリエステル樹脂(A)を有機溶剤に溶解した有機溶液や、ポリエステル樹脂(A)を有機溶剤および/または水に分散した分散液などが挙げられる。これらのポリエステル樹脂塗工液は、基材に塗工、乾燥することでポリエステル樹脂組成物層を形成することができる。 Examples of the polyester resin coating liquid include an organic solution in which the polyester resin (A) is dissolved in an organic solvent, and a dispersion liquid in which the polyester resin (A) is dispersed in an organic solvent and / or water. These polyester resin coating liquids can form a polyester resin composition layer by coating on a substrate and drying.
 本発明のポリエステル樹脂塗工液は、乳化剤を含有しないものが好ましい。本発明でいう乳化剤には、界面活性剤、保護コロイド作用を有する化合物、変性ワックス類、高酸価の酸変性物、水溶性高分子等が含まれる。こうした乳化剤は、本発明の効果を損なわない範囲で、ポリエステル樹脂(A)成分100質量部に対して0.1質量部未満含まれていても差し支えない。乳化剤を0.1質量部以上含む場合は、被膜の耐水性が低下する傾向にある。 The polyester resin coating solution of the present invention preferably contains no emulsifier. The emulsifier referred to in the present invention includes a surfactant, a compound having a protective colloid action, a modified wax, an acid-modified product having a high acid value, a water-soluble polymer and the like. Such an emulsifier may be contained in an amount less than 0.1 parts by mass with respect to 100 parts by mass of the polyester resin (A) component as long as the effects of the present invention are not impaired. When 0.1 mass part or more of an emulsifier is contained, it exists in the tendency for the water resistance of a film to fall.
 水系分散液としてのポリエステル樹脂塗工液の製造方法としては、例えば、自己乳化法が挙げられる。自己乳化法とは、ポリエステル樹脂(A)、水、有機溶剤を一括で仕込み、系内を攪拌しながら加熱することで、有機溶剤を含有したポリエステル樹脂水性分散体を得る方法である。必要に応じて、塩基性化合物を加えてもよい。 Examples of a method for producing a polyester resin coating liquid as an aqueous dispersion include a self-emulsification method. The self-emulsification method is a method for preparing a polyester resin aqueous dispersion containing an organic solvent by charging the polyester resin (A), water, and an organic solvent all at once and heating the system while stirring. If necessary, a basic compound may be added.
 上記の有機溶剤としては、例えば、アセトン(沸点:56.2℃)、メチルエチルケトン(沸点:79.6℃)、メチルイソブチルケトン(沸点:117℃)、シクロヘキサノン(沸点:156℃)等のケトン系有機溶剤;トルエン(沸点:111℃)、キシレン(沸点:140℃)等の芳香族系炭化水素系有機溶剤;エチレングリコールモノエチルエーテル(沸点:136℃)、テトラヒドロフラン(沸点:66.0℃)、1,4-ジオキサン(沸点:101℃)等のエーテル系有機溶剤;含ハロゲン系有機溶剤;n-プロパノール(沸点:97.2℃)、イソプロパノール(沸点:82.4℃)等のアルコール系有機溶剤;酢酸エチル(沸点:77.1℃)、酢酸ノルマルブチル(沸点:126℃)等のエステル系有機溶剤;グリコール系有機溶剤などが挙げられる。これらは、単独で用いてもよいし、併用してもよい。 Examples of the organic solvent include ketones such as acetone (boiling point: 56.2 ° C.), methyl ethyl ketone (boiling point: 79.6 ° C.), methyl isobutyl ketone (boiling point: 117 ° C.), and cyclohexanone (boiling point: 156 ° C.). Organic solvents; aromatic hydrocarbon organic solvents such as toluene (boiling point: 111 ° C.), xylene (boiling point: 140 ° C.); ethylene glycol monoethyl ether (boiling point: 136 ° C.), tetrahydrofuran (boiling point: 66.0 ° C.) Ether-based organic solvents such as 1,4-dioxane (boiling point: 101 ° C.); halogen-containing organic solvents; alcohols such as n-propanol (boiling point: 97.2 ° C.) and isopropanol (boiling point: 82.4 ° C.) Organic solvents; ester-based organic solvents such as ethyl acetate (boiling point: 77.1 ° C) and normal butyl acetate (boiling point: 126 ° C); Such systems an organic solvent. These may be used alone or in combination.
 ポリエステル樹脂水性分散体の製造においては、上記の分散工程の後に、さらに、有機溶剤を除去する工程(脱溶剤工程)を設けてもよい。なお、脱溶剤工程後の有機溶剤含有量は水性分散体の1質量%未満とすることが好ましく、0.5質量%未満とすることがより好ましく、0.3質量%未満とすることがさらに好ましい。 In the production of the aqueous polyester resin dispersion, a step of removing the organic solvent (solvent removal step) may be further provided after the above dispersion step. The content of the organic solvent after the desolvation step is preferably less than 1% by mass of the aqueous dispersion, more preferably less than 0.5% by mass, and further preferably less than 0.3% by mass. preferable.
 有機溶剤溶液としてのポリエステル樹脂塗工液は、ポリエステル樹脂(A)を有機溶剤に溶解する方法により製造する。 The polyester resin coating solution as an organic solvent solution is produced by a method in which the polyester resin (A) is dissolved in an organic solvent.
 ポリエステル樹脂を溶解するための有機溶剤としては、ポリエステル樹脂を溶解可能な限り特に限定されないが、上記有機溶剤のうち、沸点が180℃以下のものが好ましく、165℃以下のものがより好ましく、150℃以下のものがさらに好ましい。有機溶剤の沸点が180℃を超えると、塗工時の乾燥によって有機溶剤を揮散させることが困難となる場合がある。 The organic solvent for dissolving the polyester resin is not particularly limited as long as the polyester resin can be dissolved, but among the organic solvents, those having a boiling point of 180 ° C. or lower are preferable, those having a boiling point of 165 ° C. or lower are more preferable, and 150 Those having a temperature of 0 ° C. or lower are more preferable. If the boiling point of the organic solvent exceeds 180 ° C., it may be difficult to volatilize the organic solvent by drying during coating.
 本発明におけるポリエステル樹脂層には、ポリエステル樹脂層の接着性のさらなる向上と耐水性の向上の観点から、硬化剤を含有することが好ましい。 The polyester resin layer in the present invention preferably contains a curing agent from the viewpoint of further improving the adhesion of the polyester resin layer and improving water resistance.
 本発明で用いることのできる硬化剤としては、例えば、多官能エポキシ化合物;多官能イソシアネート化合物;多官能アジリジン化合物;カルボジイミド基含有化合物;オキサゾリン基含有化合物;フェノール樹脂;および尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂等が挙げられる。これらのうちの1種類を使用しても2種類以上を併用してもよい。硬化剤を添加することで、得られるポリエステル樹脂層はポリエステル基材およびコート樹脂との接着性がさらに向上するとともに、耐水性も向上する。好ましい硬化剤は、多官能イソシアネート化合物、カルボジイミド基含有化合物、オキサゾリン基含有化合物、およびメラミン樹脂からなる群から選択される1種類以上の硬化剤である。 Examples of the curing agent that can be used in the present invention include a polyfunctional epoxy compound; a polyfunctional isocyanate compound; a polyfunctional aziridine compound; a carbodiimide group-containing compound; an oxazoline group-containing compound; a phenol resin; and a urea resin, a melamine resin, and a benzoguanamine. Examples thereof include amino resins such as resins. You may use 1 type of these, or may use 2 or more types together. By adding a hardening | curing agent, the polyester resin layer obtained improves a water resistance while improving the adhesiveness with a polyester base material and coat resin further. Preferred curing agents are one or more curing agents selected from the group consisting of polyfunctional isocyanate compounds, carbodiimide group-containing compounds, oxazoline group-containing compounds, and melamine resins.
 多官能エポキシ化合物としては、具体的にはポリエポキシ化合物、ジエポキシ化合物等を用いることができる。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルが使用可能である。ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテルが使用可能である。 As the polyfunctional epoxy compound, specifically, a polyepoxy compound, a diepoxy compound, or the like can be used. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Polyglycidyl ether can be used. Examples of the diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diester. Glycidyl ether and polytetramethylene glycol diglycidyl ether can be used.
 多官能イソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタン-4,4´-ジイソシアネート、メタキシリレンジイソシアネート、ヘキサメチレン-1,6-ジイソシアネート、1,6-ジイソシアネートヘキサン、トリレンジイソシアネートとヘキサントリオールの付加物、トリレンジイソシアネートとトリメチロールプロパンの付加物、ポリオール変性ジフェニルメタン-4,4´-ジイソシアネート、カルボジイミド変性ジフェニルメタン-4,4´-ジイソシアネート、イソホロンジイソシアネート、1,5-ナフタレンジイソシアネート、3,3´-ビトリレン-4,4´ジイソシアネート、3,3´ジメチルジフェニルメタン-4,4´-ジイソシアネート、メタフェニレンジイソシアネート等が使用可能である。これらのイソシアネート基を重亜硫酸塩類及びスルホン酸基を含有したフェノール類、アルコール類、ラクタム類、オキシム類及び活性メチレン化合物類等でブロックしたブロックイソシアネート化合物を用いてもよい。 Examples of the polyfunctional isocyanate compound include tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, metaxylylene diisocyanate, hexamethylene-1,6-diisocyanate, 1,6-diisocyanate hexane, tolylene diisocyanate and hexanetriol. Adduct, adduct of tolylene diisocyanate and trimethylolpropane, polyol-modified diphenylmethane-4,4'-diisocyanate, carbodiimide-modified diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, 3,3 ' -Vitrylene-4,4 'diisocyanate, 3,3' dimethyldiphenylmethane-4,4'-diisocyanate, metaphenylene diisocyanate, etc. It is possible to use. Block isocyanate compounds in which these isocyanate groups are blocked with bisulfites and phenols containing sulfonic acid groups, alcohols, lactams, oximes and active methylene compounds may be used.
 多官能アジリジン化合物としては、例えば、 N,N´-ヘキサメチレン-1,6-ビス-(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート等が使用可能である。 As the polyfunctional aziridine compound, for example, N, N′-hexamethylene-1,6-bis- (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate can be used. is there.
 カルボジイミド基含有化合物としては、分子中に少なくとも2つ以上のカルボジイミド基を有しているものであれば特に限定されるものではない。例えば、p-フェニレン-ビス(2,6-キシリルカルボジイミド)、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサン-1,4-ビス(メチレン-t-ブチルカルボジイミド)等のカルボジイミド基を有する化合物や、カルボジイミド基を有する重合体であるポリカルボジイミド等が使用可能である。これらの1種又は2種以上を用いることができる。 The carbodiimide group-containing compound is not particularly limited as long as it has at least two carbodiimide groups in the molecule. For example, compounds having a carbodiimide group such as p-phenylene-bis (2,6-xylylcarbodiimide), tetramethylene-bis (t-butylcarbodiimide), cyclohexane-1,4-bis (methylene-t-butylcarbodiimide) Alternatively, polycarbodiimide, which is a polymer having a carbodiimide group, can be used. These 1 type (s) or 2 or more types can be used.
 オキサゾリン基含有化合物としては、オキサゾリン基を含有する重合体が使用可能である。このような重合体は、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができる。付加重合性オキサゾリン基含有モノマーは、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリルアミド、メタクリルアミド、N-アルキルアクリルアミド、N-アルキルメタクリルアミド、N、N-ジアルキルアクリルアミド、N、N-ジアルキルメタクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα、β-不飽和脂肪族モノマー類;スチレン、α-メチルスチレン等のα、β-不飽和芳香族モノマー等を挙げることができる。他のモノマーは、これらの1種または2種以上のモノマーを使用することができる。 As the oxazoline group-containing compound, a polymer containing an oxazoline group can be used. Such a polymer can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like. As the addition polymerizable oxazoline group-containing monomer, one or a mixture of two or more of these can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer, for example, alkyl acrylate, alkyl methacrylate (the alkyl group includes methyl group, ethyl group, n-propyl group, isopropyl group, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide N-alkyl methacrylate N, N-dialkylacrylamide, N, N-dialkylmethacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl) Groups, cyclohexyl groups, etc.); vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; vinyl chloride and vinylidene chloride And halogen-containing α, β-unsaturated aliphatic monomers such as vinyl fluoride; α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene, and the like. As the other monomer, one or more of these monomers can be used.
 フェノール樹脂としては、 例えば、フェノールやビスフェノールA、p-t-ブチルフェノール、オクチルフェノール、p-クミルフェノール等のアルキルフェノール、p-フェニルフェノール、クレゾール等を原料として調製したレゾール型フェノール樹脂及び/又はノボラック型フェノール樹脂が使用可能である。 Examples of phenolic resins include resol type phenolic resins and / or novolac types prepared from alkylphenols such as phenol, bisphenol A, pt-butylphenol, octylphenol, p-cumylphenol, p-phenylphenol, cresol, etc. Phenolic resins can be used.
 尿素樹脂としては、 例えばジメチロール尿素、ジメチロールエチレン尿素、ジメチロールプロピレン尿素、テトラメチロールアセチレン尿素、4-メトキシ5-ジメチルプロピレン尿素ジメチロールが使用可能である。 As the urea resin, for example, dimethylol urea, dimethylol ethylene urea, dimethylol propylene urea, tetramethylol acetylene urea, 4-methoxy 5-dimethylpropylene urea dimethylol can be used.
 メラミン樹脂は、例えば官能基としてイミノ基、メチロール基、および/またはアルコキシメチル基(例えばメトキシメチル基、ブトキシメチル基)を1分子中に有する化合物である。メラミン樹脂としては、イミノ基型メチル化メラミン樹脂、メチロール基型メラミン樹脂、メチロール基型メチル化メラミン樹脂、完全アルキル型メチル化メラミン樹脂等が使用可能である。その中でもメチロール化メラミン樹脂が最も好ましい。更に、メラミン系樹脂の熱硬化を促進するため、例えばp-トルエンスルホン酸等の酸性触媒を用いることが好ましい。 A melamine resin is a compound having, for example, an imino group, a methylol group, and / or an alkoxymethyl group (for example, a methoxymethyl group or a butoxymethyl group) as a functional group in one molecule. As the melamine resin, an imino group-type methylated melamine resin, a methylol group-type melamine resin, a methylol group-type methylated melamine resin, a complete alkyl-type methylated melamine resin, or the like can be used. Of these, methylolated melamine resins are most preferred. Further, it is preferable to use an acidic catalyst such as p-toluenesulfonic acid in order to accelerate the thermosetting of the melamine resin.
 ベンゾグアナミン樹脂としては、 例えば、トリメチロールベンゾグアナミン、ヘキサメチロールベンゾグアナミン、トリスメトキシメチルベンゾグアナミン、ヘキサキスメトキシメチルベンゾグアナミン等が使用可能である。 As the benzoguanamine resin, for example, trimethylol benzoguanamine, hexamethylol benzoguanamine, trismethoxymethylbenzoguanamine, hexakismethoxymethylbenzoguanamine and the like can be used.
 ポリエステル樹脂層には、易滑性および耐ブロッキング性付与のために粒子が含有されてもよい。
 配合できる粒子の粒子径は1nm~2μmが好ましく、2nm~1μmがより好ましい。
The polyester resin layer may contain particles for imparting easy slipping and blocking resistance.
The particle diameter of the particles that can be blended is preferably 1 nm to 2 μm, and more preferably 2 nm to 1 μm.
 配合できる粒子の種類は接着性およびオリゴマー析出抑制効果に影響を及ぼさない限り特に限定されるものではなく、具体例としては、シリカ、タルク、マイカ、カオリン、膨潤性フッ素雲母、モンモリロナイト、ヘクトライト、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化亜鉛、酸化マグネシウム、ケイ酸ソーダ、水酸化アルミニウム、酸化鉄、酸化ジルコニウム、硫酸バリウム、酸化チタン、カーボンブラック等を挙げることができる。中でも、耐熱性、得られる被膜の透明性の効果を発現させる効果の高い点で、シリカ、タルク、マイカ、カオリンが好ましく、さらに易滑性にも優れる点で、シリカが最も好ましい。有機粒子としては、アクリル粒子、シリコーン粒子、ポリイミド粒子、テフロン(登録商標)粒子、架橋ポリエステル粒子、架橋ポリスチレン粒子、架橋重合体粒子、コアシェル粒子などが挙げられる。これらの粒子は単独もしくは複数をブレンドして用いることができる。 The type of particles that can be blended is not particularly limited as long as it does not affect the adhesion and oligomer precipitation suppression effect. Specific examples include silica, talc, mica, kaolin, swellable fluoromica, montmorillonite, hectorite, Examples thereof include calcium carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, sodium silicate, aluminum hydroxide, iron oxide, zirconium oxide, barium sulfate, titanium oxide, and carbon black. Of these, silica, talc, mica, and kaolin are preferred because they are highly effective in exhibiting heat resistance and transparency of the resulting coating, and silica is most preferred because of excellent slipperiness. Examples of the organic particles include acrylic particles, silicone particles, polyimide particles, Teflon (registered trademark) particles, crosslinked polyester particles, crosslinked polystyrene particles, crosslinked polymer particles, and core-shell particles. These particles can be used alone or in combination.
 硬化剤や粒子は、ポリエステル樹脂塗工液を調製する任意の段階で配合することができる。例えば、(1)ポリエステル樹脂(A)の分散体、硬化剤の分散体、粒子の分散体を混合攪拌する方法、(2)ポリエステル樹脂(A)と硬化剤を予め混合した後、一括して水もしくは溶剤性媒体に添加し分散もしくは溶解させた後に粒子の分散液を添加する方法などが挙げられる。 Curing agents and particles can be blended at any stage of preparing the polyester resin coating solution. For example, (1) a method of mixing and stirring a dispersion of a polyester resin (A), a dispersion of a curing agent, a dispersion of particles, and (2) a mixture of the polyester resin (A) and the curing agent in advance, Examples thereof include a method of adding a dispersion liquid of particles after adding or dispersing or dissolving in water or a solvent-based medium.
 硬化剤を用いる場合、その配合量は、塗工液のゲル化および延伸した際のコート割れの観点から、ポリエステル樹脂(A)100質量部に対して硬化剤が1~10質量部であることが好ましく、1~8質量部であることがより好ましく、1~5質量部であることがさらに好ましい。粒子を配合する場合には、塗膜の耐ブロッキング性および接着性の観点から、ポリエステル樹脂(A)と硬化剤の質量の合計ポリエステル樹脂(A)+硬化剤に対して、{ポリエステル樹脂(A)+硬化剤}/粒子=99/1~70/30(質量比)であることが好ましく、99/1~80/20(質量比)であることがより好ましく、99/1~90/10(質量比)であることがさらに好ましい。 When a curing agent is used, the blending amount thereof is 1 to 10 parts by mass with respect to 100 parts by mass of the polyester resin (A) from the viewpoint of gelation of the coating liquid and cracking of the coat when stretched. It is preferably 1 to 8 parts by mass, more preferably 1 to 5 parts by mass. When blending the particles, from the viewpoint of blocking resistance and adhesiveness of the coating film, the total mass of the polyester resin (A) and the curing agent, the polyester resin (A) + the curing agent, {polyester resin (A ) + Curing agent} / particles = 99/1 to 70/30 (mass ratio), more preferably 99/1 to 80/20 (mass ratio), and 99/1 to 90/10. (Mass ratio) is more preferable.
 ポリエステル樹脂塗工液には、さらに他の任意成分を配合することができる。配合可能な任意成分としては、例えば、レベリング剤、消泡剤、その他増粘剤、着色顔料、水、アルコール等を挙げることができる。 The polyester resin coating solution may further contain other optional components. Examples of optional components that can be blended include leveling agents, antifoaming agents, other thickeners, color pigments, water, alcohol, and the like.
 レベリング剤としては、例えば、シリコーン系、フッ素系のレベリング剤が挙げられ、特にシリコーン系レベリング剤が、塗工液との相溶性、塗工適性、接着性、耐ブロッキング性から好ましい。シリコーン系レベリング剤としては、例えば、反応性シリコーン、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン等が挙げられる。レベリング剤を用いることで塗工時のぬれ性の改善、被膜の平滑化の向上を図ることができる。レベリング剤の配合量としては、ポリエステル樹脂塗工液中に1~15質量%であることが好ましい。 Examples of the leveling agent include silicone-based and fluorine-based leveling agents, and silicone-based leveling agents are particularly preferred from the viewpoint of compatibility with the coating liquid, coating suitability, adhesiveness, and blocking resistance. Examples of the silicone leveling agent include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane. By using a leveling agent, it is possible to improve the wettability during coating and to improve the smoothness of the coating. The blending amount of the leveling agent is preferably 1 to 15% by mass in the polyester resin coating solution.
 消泡剤としては、例えば、アセチレングリコール系化合物やそのエチレンオキシド付加体が好ましい。具体的には、3,6-ジメチル-4-デシン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールおよびこれらにエチレンオキサイドを付加した化合物が有効である。消泡剤を用いることで塗工時に分散体中に混入する気泡発生を抑制、得られる被膜の平滑性、透明性を向上することができる。消泡剤の配合量としては、ポリエステル樹脂塗工液中に1~10質量%であることが好ましい。 As the antifoaming agent, for example, an acetylene glycol compound or an ethylene oxide adduct thereof is preferable. Specifically, 3,6-dimethyl-4-decyne-3,6-diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol and compounds obtained by adding ethylene oxide to these compounds Is effective. By using an antifoaming agent, generation of bubbles mixed in the dispersion during coating can be suppressed, and the smoothness and transparency of the resulting coating can be improved. The blending amount of the antifoaming agent is preferably 1 to 10% by mass in the polyester resin coating solution.
 本発明のポリエステル系積層フィルムの厚みは、特に限定されないが、15~150μmであることが好ましい。厚みを15~150μmとすることにより、生産性よくフィルムを作製することができる。 The thickness of the polyester-based laminated film of the present invention is not particularly limited, but is preferably 15 to 150 μm. By setting the thickness to 15 to 150 μm, a film can be produced with high productivity.
 本発明のポリエステル系積層フィルムは、そのポリエステルフィルム基材が少なくとも一方向に延伸されていることが好ましい。延伸されることにより、フィルムの平坦性や耐熱性を向上させることができる。 In the polyester-based laminated film of the present invention, the polyester film substrate is preferably stretched in at least one direction. By being stretched, the flatness and heat resistance of the film can be improved.
 本発明のポリエステル系積層フィルムは、熱処理した際の基材フィルムからのオリゴマーの析出が抑制されており、具体的には、150℃で1時間熱処理したときのヘーズ変化量が1.0%以下、好ましくは0.5%以下となる。また、さらに過酷な条件として、180℃で30分熱処理したときであってもヘーズ変化量は1.5%以下、好ましくは1.0%以下となる。 In the polyester-based laminated film of the present invention, oligomer precipitation from the base film during heat treatment is suppressed. Specifically, the haze change amount when heat-treated at 150 ° C. for 1 hour is 1.0% or less. Preferably, it is 0.5% or less. Further, as a more severe condition, even when heat treatment is performed at 180 ° C. for 30 minutes, the amount of change in haze is 1.5% or less, preferably 1.0% or less.
 本明細書中、ヘーズ変化量は、JIS-K7136:2000に従って測定された値に基づいている。 In the present specification, the amount of change in haze is based on a value measured according to JIS-K7136: 2000.
 本発明のポリエステル系積層フィルムは、種々のコート層、特にアクリル系ハードコート樹脂に対する良好な接着性を有し、また、熱処理時に析出するオリゴマーが低減されている。このため、タッチパネル用ディスプレイ等の光学用易接着フィルムとして好適に用いることができる。 The polyester laminated film of the present invention has good adhesion to various coat layers, particularly acrylic hard coat resins, and oligomers that precipitate during heat treatment are reduced. For this reason, it can be suitably used as an easily adhesive film for optics such as a touch panel display.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。
<特性の評価>
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
<Evaluation of characteristics>
〔耐水性〕
 積層フィルムを、25℃の蒸留水に浸漬させ、24時間後に静かに引き上げ、風乾させた後、樹脂層の外観を目視にて観察した。
○:外観変化がなかった。
△:樹脂層の一部が白化または膨潤した(実用上問題なし)。
×:樹脂層の全体が溶解もしくは膨潤した。
〔water resistant〕
The laminated film was immersed in distilled water at 25 ° C., gently pulled up after 24 hours and air-dried, and then the appearance of the resin layer was visually observed.
○: No change in appearance.
Δ: Part of the resin layer was whitened or swollen (no problem in practical use).
X: The entire resin layer was dissolved or swollen.
〔接着性〕
 アクリル系ハードコート樹脂(大日精化社製 セイカビームPHC)を、積層フィルムのポリエステル樹脂層上に卓上型コーティング装置を用いて塗布し、低圧水銀灯UVキュア装置(東芝ライテック社製、40mW/cm、一灯式)でキュアリングを行い、厚さ3μmのハードコート層を形成した。この被膜をJIS K-5600-5-6に準拠し、クロスカット法によって、接着性を確認した。詳しくは、切り込みを入れて100区画の格子パターンをつくった被膜に粘着テープ(ニチバン社製TF-12)を貼り、勢いよくテープを剥離した。なお、「100/100」が、100区画に全く剥がれがなく、最も良い状態であり、「0/100」が、100区画全てが剥がれ、最も良くない状態を示す。100/100~90/100を合格とし、100/100~95/100、特に100/100~98/100、が優れており、100/100が最も優れていることを示す。
〔Adhesiveness〕
Acrylic hard coat resin (Seika Beam PHC manufactured by Dainichi Seika Co., Ltd.) is applied onto the polyester resin layer of the laminated film using a desktop coating device, and a low-pressure mercury lamp UV cure device (Toshiba Lighting & Technology Corp., 40 mW / cm, one Curing was performed by a lamp type) to form a hard coat layer having a thickness of 3 μm. This coating was checked for adhesion by a cross-cut method in accordance with JIS K-5600-5-6. Specifically, an adhesive tape (TF-12 manufactured by Nichiban Co., Ltd.) was applied to a film in which cuts were made to form a lattice pattern of 100 sections, and the tape was peeled off vigorously. In addition, “100/100” is the best state with no separation at 100 sections, and “0/100” indicates the state where all 100 sections are peeled off and is not the best. 100/100 to 90/100 is accepted, 100/100 to 95/100, particularly 100/100 to 98/100 is excellent, and 100/100 is the most excellent.
〔ポリエステル樹脂のガラス転移温度〕
 ポリエステル樹脂を10mg秤量し、入力補償型示差走査熱量測定装置(パーキンエルマー社製DSC;Diamond DSC型、検出範囲:-50℃~200℃)を用いて、昇温速度10℃/分の条件で測定をおこなった。得られた昇温曲線中の、低温側ベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大となるような点で引いた接線との交点の温度を求め、ガラス転移温度とした。
[Glass transition temperature of polyester resin]
10 mg of a polyester resin is weighed, and using an input-compensated differential scanning calorimeter (DSC manufactured by Perkin Elmer; Diamond DSC type, detection range: −50 ° C. to 200 ° C.) at a temperature rising rate of 10 ° C./min. Measurements were made. In the obtained temperature rise curve, the temperature at the intersection of the straight line obtained by extending the low temperature side baseline to the high temperature side and the tangent drawn at the point where the slope of the step change part of the glass transition becomes maximum is obtained. The glass transition temperature was determined.
〔ヘーズ変化量〕
 積層フィルムの非コート面(樹脂層反対面)に透明粘着シート(日東電工製LUCIACS CS9621T)を貼り付け、JIS-K7136:2000に基づき、ヘーズメーターNDH4000(日本電色製)を用いて積層フィルムの加熱処理前のヘーズ値を測定した。次に、積層フィルムを150℃に熱したオーブンに投入し、1時間の加熱処理後取り出した。その後、得られたフィルムについて上記と同様の方法で再度ヘーズ値を測定した。得られたフィルムについて、加熱処理後と加熱処理前のヘーズ値の差を、ヘーズの変化量とした。
 上記のヘーズ変化量の測定を、加熱処理条件を180℃、30分と変更した場合についてもおこなった。
[Change in haze]
A transparent adhesive sheet (LUCIACS CS9621T manufactured by Nitto Denko) was pasted on the non-coated surface (the surface opposite to the resin layer) of the laminated film, and based on JIS-K7136: 2000, a haze meter NDH4000 (Nippon Denshoku) was used. The haze value before the heat treatment was measured. Next, the laminated film was put into an oven heated to 150 ° C. and taken out after heat treatment for 1 hour. Thereafter, the haze value of the obtained film was measured again by the same method as described above. About the obtained film, the difference of the haze value after heat processing and before heat processing was made into the variation | change_quantity of haze.
The measurement of the amount of haze change was also performed when the heat treatment condition was changed to 180 ° C. and 30 minutes.
〔外観(熱シワ)〕
 積層フィルムの外観を目視観察し、以下のように評価した。
 ○:シワが確認されない。
 △:シワが確認されるが、四方を手に持ち、引っ張ることで、シワが確認できなくなる(実用上問題なし)。
 ×:シワが確認され、四方を手に持ち、引っ張っても、シワが確認される。
[Appearance (heat wrinkles)]
The appearance of the laminated film was visually observed and evaluated as follows.
○: Wrinkles are not confirmed.
Δ: Wrinkles are confirmed, but wrinkles cannot be confirmed by holding and pulling on all sides (no problem in practical use).
X: Wrinkles are confirmed, and wrinkles are confirmed even if the hand is held and pulled.
〔耐ブロッキング性〕
 積層フィルムを50mm×50mmの大きさに切り出し、当該積層フィルムと二軸延伸ポリエチレンテレフタレート(PET)フィルム(S-50、ユニチカ社製)とを、積層フィルムのコート面(樹脂層)と二軸延伸PETフィルムの非コロナ面とが接触するように重ね合せ、60℃で10kPaの荷重をかけた状態で、24時間放置した。荷重を取り除いて室温まで冷却した後、樹脂層とPETフィルムとの密着状態を調べることで耐ブロッキング性を評価した。
○:接触する積層フィルム間に密着が認められない。
△:接触する積層フィルム間で密着が認められたものの、簡単に剥がれ、樹脂層に白化などの変化が見られない(実用上問題なし)。
×:接触する積層フィルム間で、樹脂層が凝集破壊を起こすか、または、剥がした後の樹脂層が全体的に白くなっている。
[Blocking resistance]
The laminated film is cut into a size of 50 mm × 50 mm, and the laminated film and a biaxially stretched polyethylene terephthalate (PET) film (S-50, manufactured by Unitika) are biaxially stretched with the coated surface (resin layer) of the laminated film. The layers were superposed so that they contacted the non-corona surface of the PET film, and left for 24 hours at 60 ° C. under a load of 10 kPa. After removing the load and cooling to room temperature, blocking resistance was evaluated by examining the adhesion between the resin layer and the PET film.
○: Adhesion is not recognized between the laminated films in contact.
(Triangle | delta): Although close_contact | adherence was recognized between the laminated | multilayer films which contact, it peels easily and a change, such as whitening, is not seen by the resin layer (no problem practically).
X: Between the laminated | multilayer films which contact, a resin layer raise | generates cohesive failure, or the resin layer after peeling has become white as a whole.
[ポリエステル樹脂の調製]
調製例1
 テレフタル酸3057g、5-ナトリウムスルホイソフタル酸ジメチル474g、エチレングリコール1154g、トリシクロ[5.2.1.02,6]デカンジメタノール275gからなる混合物をオートクレーブ中で、250℃で4時間加熱してエステル化反応を行った。この時のモノマー成分の配合は、テレフタル酸:5-ナトリウムスルホイソフタル酸ジメチル:エチレングリコール:トリシクロ[5.2.1.02,6]デカンジメタノール=92:8:93:7(モル比)とした。次いで、触媒として三酸化アンチモン0.525g、トリエチルホスフェート0.328g、酢酸亜鉛二水和物1.580gを添加した後、系の温度を250℃に昇温し、系の圧力を0.4MPaで制圧し、3時間反応を行った。その後、徐々に放圧し、常圧にて1時間反応を行った。その後、270℃に昇温し、徐々に減じて1時間後に13Paとした。この条件下でさらに重縮合反応を続け、2時間30分後に系を窒素ガスで常圧にして重縮合反応を終了した。その後、系を窒素ガスで加圧状態にしておいてシート状に樹脂を払い出し、放冷した。次いで、クラッシャーで粉砕し、篩を用いて目開き1~6mmの分画を採取し、表1に示す組成の、粒状のポリエステル樹脂(P-1)を得た。
[Preparation of polyester resin]
Preparation Example 1
A mixture of 3057 g of terephthalic acid, 474 g of dimethyl 5-sodium sulfoisophthalate, 1154 g of ethylene glycol and 275 g of tricyclo [5.2.1.0 2,6 ] decanedimethanol was heated in an autoclave at 250 ° C. for 4 hours. An esterification reaction was performed. At this time, the monomer component was blended with terephthalic acid: 5-sodium sulfoisophthalate dimethyl: ethylene glycol: tricyclo [5.2.1.0 2,6 ] decanedimethanol = 92: 8: 93: 7 (molar ratio). ). Next, 0.525 g of antimony trioxide, 0.328 g of triethyl phosphate and 1.580 g of zinc acetate dihydrate were added as catalysts, the temperature of the system was raised to 250 ° C., and the pressure of the system was 0.4 MPa. Suppressed and reacted for 3 hours. Thereafter, the pressure was gradually released, and the reaction was performed at normal pressure for 1 hour. Thereafter, the temperature was raised to 270 ° C. and gradually decreased to 13 Pa after 1 hour. The polycondensation reaction was continued under these conditions, and the polycondensation reaction was terminated after 2 hours and 30 minutes by setting the system to normal pressure with nitrogen gas. Thereafter, the system was pressurized with nitrogen gas, and the resin was dispensed into a sheet and allowed to cool. Subsequently, the mixture was pulverized with a crusher, and a fraction having an opening of 1 to 6 mm was collected using a sieve to obtain a granular polyester resin (P-1) having the composition shown in Table 1.
調製例2~5および8~25
 重合後の樹脂組成が表1~表5に記載した内容になるよう、樹脂組成を変更した以外は、ポリエステル樹脂(P-1)と同様にして、ポリエステル樹脂(P-2)~(P-5)および(P-8)~(P-25)をそれぞれ得た。その結果を表1~表5に示す。
Preparation Examples 2-5 and 8-25
The polyester resins (P-2) to (P-) are the same as the polyester resin (P-1) except that the resin composition is changed so that the resin composition after polymerization is as described in Tables 1 to 5. 5) and (P-8) to (P-25) were obtained. The results are shown in Tables 1 to 5.
調製例6
 テレフタル酸3099g、エチレングリコール812g、トリシクロ[5.2.1.02,6]デカンジメタノール1208gからなる混合物をオートクレーブ中で、250℃で4時間加熱してエステル化反応を行った。この時のモノマー成分の配合は、テレフタル酸:エチレングリコール:トリシクロ[5.2.1.02,6]デカンジメタノール=97:68:32(モル比)とした。次いで、触媒として三酸化アンチモン0.525g、トリエチルホスフェート0.328g、酢酸亜鉛二水和物1.580g添加した後、系の温度を250℃に昇温し、系の圧力を0.4MPaで制圧し、3時間反応を行った。その後、徐々に放圧し、常圧にて1時間反応を行った。その後、270℃に昇温し、徐々に減じて1時間後に13Paとした。この条件下でさらに2時間縮重合反応を続け、系を窒素ガスで常圧にし、無水トリメリット酸94gを添加し、270℃で2時間攪拌して解重合反応をおこなった。その後、系を窒素ガスで加圧状態にしておいてシート状に樹脂を払い出し、放冷した。次いで、クラッシャーで粉砕し、篩を用いて目開き1~6mmの分画を採取し、表1に示す組成の、粒状のポリエステル樹脂(P-6)を得た。
Preparation Example 6
A mixture comprising 3099 g of terephthalic acid, 812 g of ethylene glycol, and 1208 g of tricyclo [5.2.1.0 2,6 ] decanedimethanol was heated in an autoclave at 250 ° C. for 4 hours to carry out an esterification reaction. At this time, the monomer component was blended with terephthalic acid: ethylene glycol: tricyclo [5.2.1.0 2,6 ] decanedimethanol = 97: 68: 32 (molar ratio). Next, 0.525 g of antimony trioxide, 0.328 g of triethyl phosphate and 1.580 g of zinc acetate dihydrate were added as catalysts, and then the temperature of the system was raised to 250 ° C., and the pressure of the system was controlled at 0.4 MPa. And reacted for 3 hours. Thereafter, the pressure was gradually released, and the reaction was performed at normal pressure for 1 hour. Thereafter, the temperature was raised to 270 ° C. and gradually decreased to 13 Pa after 1 hour. Under this condition, the polycondensation reaction was further continued for 2 hours, the system was brought to atmospheric pressure with nitrogen gas, 94 g of trimellitic anhydride was added, and the mixture was stirred at 270 ° C. for 2 hours to carry out the depolymerization reaction. Thereafter, the system was pressurized with nitrogen gas, and the resin was dispensed into a sheet and allowed to cool. Next, the mixture was pulverized with a crusher, and a fraction having an opening of 1 to 6 mm was collected using a sieve to obtain a granular polyester resin (P-6) having the composition shown in Table 1.
調製例7
 重合後の樹脂組成が表1に記載した内容になるよう、樹脂組成を変更した以外は、ポリエステル樹脂(P-6)と同様にして、ポリエステル樹脂(P―7)を得た。その結果を表1に示す。
Preparation Example 7
A polyester resin (P-7) was obtained in the same manner as the polyester resin (P-6) except that the resin composition was changed so that the resin composition after polymerization was as described in Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、表1~表5において、略語は以下のものを示す。
TPA:テレフタル酸
IPA:イソフタル酸
SIP:5-ナトリウムスルホイソフタル酸
TMA:トリメリット酸
EG:エチレングリコール
TCD:トリシクロ[5.2.1.0(2,6)]デカンジメタノール
DEG:ジエチレングリコール
NPG:ネオペンチルグリコール
PD:1,2-プロパンジオール
BAEO:ビスフェノールAのエチレンオキシド付加物
In Tables 1 to 5, abbreviations indicate the following.
TPA: terephthalic acid IPA: isophthalic acid SIP: 5-sodium sulfoisophthalic acid TMA: trimellitic acid EG: ethylene glycol TCD: tricyclo [5.2.1.0 (2,6)] decanedimethanol DEG: diethylene glycol NPG: Neopentyl glycol PD: 1,2-propanediol BAEO: ethylene oxide adduct of bisphenol A
ポリエステル樹脂塗工液の製造例1
 ジャケット付きの、密閉が可能な円筒状ガラス容器(内容量3L)と、攪拌機(東京理科器械社製、「MAZELA NZ-1200」)を用い、ポリエステル樹脂(P-1)を300g、イソプロパノールを50g、蒸留水を650gそれぞれガラス容器内に仕込み、攪拌翼の回転速度を70rpmに保って攪拌しながら、ジャケット内に熱水を通して昇温した。内温が80℃になった時点で昇温を止め、そこから攪拌を90分間続けた。攪拌中は内温を72±2℃に保つよう行った。その後、ジャケット内に冷水を通し、回転速度を30rpmに下げて攪拌しつつ、25℃まで冷却しポリエステル樹脂分散液を得た。得られたポリエステル樹脂分散液800gを丸底フラスコに仕込み、水40gを添加し、メカニカルスターラーとリービッヒ冷却器を設置し、フラスコをオイルバスで加熱し、常圧で水性媒体を40g留去した。その後、室温まで冷却し、さらに攪拌しながら、最後に固形分濃度が30質量%となるようにイオン交換水を加えて、ポリエステル樹脂分散液を得た。
 このポリエステル樹脂分散液と硬化性水性分散体(オキサゾリン基含有化合物、エポクロスWS-700;日本触媒社製)とを、固形分質量比が100/5となるよう配合し、混合攪拌して塗工液(S-1)を得た。
Production example 1 of polyester resin coating solution
Using a jacketed cylindrical glass container (with an internal volume of 3 L) and a stirrer (manufactured by Tokyo Science Instruments Co., Ltd., “MAZELA NZ-1200”), 300 g of polyester resin (P-1) and 50 g of isopropanol Then, 650 g of distilled water was charged in each glass container, and the temperature was raised by passing hot water into the jacket while stirring while maintaining the rotation speed of the stirring blade at 70 rpm. When the internal temperature reached 80 ° C., the temperature was raised and stirring was continued for 90 minutes. During stirring, the internal temperature was kept at 72 ± 2 ° C. Thereafter, cold water was passed through the jacket, and the rotation speed was lowered to 30 rpm and the mixture was stirred and cooled to 25 ° C. to obtain a polyester resin dispersion. 800 g of the obtained polyester resin dispersion was charged into a round bottom flask, 40 g of water was added, a mechanical stirrer and a Liebig condenser were installed, the flask was heated in an oil bath, and 40 g of an aqueous medium was distilled off at normal pressure. Thereafter, the mixture was cooled to room temperature, and further with stirring, ion-exchanged water was finally added so that the solid content concentration was 30% by mass to obtain a polyester resin dispersion.
This polyester resin dispersion and a curable aqueous dispersion (oxazoline group-containing compound, Epocros WS-700; manufactured by Nippon Shokubai Co., Ltd.) were blended so that the solid content mass ratio was 100/5, and mixed and stirred for coating. A liquid (S-1) was obtained.
塗工液の製造例2~31
 ポリエステル樹脂の種類、および硬化剤の種類および添加量を表1~表5に記載された通りに変更した以外は、製造例1と同様の操作を行って、ポリエステル樹脂塗工液(S-2)~(S-31)を得た。
Coating liquid production examples 2-31
A polyester resin coating solution (S-2) was prepared in the same manner as in Production Example 1 except that the type of polyester resin and the type and addition amount of the curing agent were changed as described in Tables 1 to 5. ) To (S-31) were obtained.
 硬化剤としては以下の化合物を用いた。
 カルボジイミド基含有化合物としてカルボジライトV-02-L2(日清紡社製)を用いた。
 多官能イソシアネート化合物としてバソナートHW-100(BASF社製)を用いた。
 メラミン樹脂としてM-30WT(チャン・チュン・プラスチック社製(ChangChun Plastics. Co. Ltd.))を用いた。
The following compounds were used as the curing agent.
Carbodilite V-02-L2 (Nisshinbo Co., Ltd.) was used as the carbodiimide group-containing compound.
Vasonate HW-100 (manufactured by BASF) was used as the polyfunctional isocyanate compound.
M-30WT (manufactured by ChangChun Plastics. Co. Ltd.) was used as the melamine resin.
〔実施例A、比較例A(ポストコートフィルムの製造)〕
実施例A1
 二軸延伸ポリエチレンテレフタレート(PET)フィルム(S-50、ユニチカ社製、厚さ50μm、Hz3.8%)のコロナ処理面に、卓上型コーティング装置(安田精機社製フィルムアプリケータ;No.542-AB型、バーコータ装着)を用いて熱乾燥処理後の樹脂層厚みが0.24μmとなるよう、塗工液(S―1)をポストコートした。その後、180℃に設定された熱風乾燥機中で30秒間乾燥させることにより、ポストコートフィルムを得た。
[Example A, Comparative Example A (Production of Post Coat Film)]
Example A1
On the corona-treated surface of a biaxially stretched polyethylene terephthalate (PET) film (S-50, manufactured by Unitika, thickness 50 μm, Hz 3.8%), a tabletop coating device (film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542) The coating liquid (S-1) was post-coated using an AB type and a bar coater) so that the resin layer thickness after the heat drying treatment was 0.24 μm. Then, the postcoat film was obtained by making it dry for 30 seconds in the hot air dryer set to 180 degreeC.
実施例A2~A29および比較例A1~A5
 用いる塗工液を表1~表5に記載のように変更し、基材PETフィルムの厚み、ポリエステル樹脂層の厚み、熱乾燥処理温度を表6~表10に記載のように変更した以外は、実施例A1と同様の操作を行ってポストコートフィルムを得た。
Examples A2 to A29 and Comparative Examples A1 to A5
The coating liquid to be used was changed as shown in Tables 1 to 5 except that the thickness of the base PET film, the thickness of the polyester resin layer, and the heat drying treatment temperature were changed as shown in Tables 6 to 10. The same operation as in Example A1 was performed to obtain a post coat film.
〔実施例B、比較例B(インラインコートフィルムの製造)〕
 実施例Bおよび比較例Bにおいては、ポリエステルフィルム基材に用いられるポリエステル樹脂として以下のものを用いた。
 ポリエチレンテレフタレートAとして、後述のポリエチレンテレフタレートBに粒子径2.3μmのシリカ粒子を0.07質量%含有させたポリエチレンテレフタレート樹脂を用いた。
 ポリエチレンテレフタレートBとして、重合触媒が三酸化アンチモン、固有粘度が0.67、ガラス転移温度が78℃、融点が253℃のポリエチレンテレフタレート樹脂を用いた。
[Example B, Comparative Example B (production of in-line coated film)]
In Example B and Comparative Example B, the following were used as the polyester resin used for the polyester film substrate.
As polyethylene terephthalate A, a polyethylene terephthalate resin in which 0.07% by mass of silica particles having a particle diameter of 2.3 μm was contained in polyethylene terephthalate B described later was used.
As the polyethylene terephthalate B, a polyethylene terephthalate resin having a polymerization catalyst of antimony trioxide, an intrinsic viscosity of 0.67, a glass transition temperature of 78 ° C., and a melting point of 253 ° C. was used.
実施例B1
 ポリエチレンテレフタレートBを押出機I(スクリュー径:50mm)に、ポリエチレンテレフタレートAを押出機II(スクリュー径:65mm)にそれぞれ投入して280℃で溶融後、それぞれの溶融体を複層ダイスのTダイの出口に至る前で、層の厚み比(II/I/II)が6/38/6となり、総厚みが1000μmとなるよう3層で合流積層させた。積層された溶融体を、Tダイ出口より押出し、表面温度を20℃に温調した冷却ドラム上に密着させて急冷固化して未延伸フィルムを得た。続いて90℃に温調した予熱ロール群で予熱した後、90℃に温調した延伸ロール間で周速を変化させて4.0倍に縦延伸し、厚さ250μmの縦延伸フィルムを得た。次に縦延伸フィルムにマイヤーバーを用いて熱乾燥処理後の樹脂層厚みが0.19μmとなるよう塗工液(S-1)をインラインコートした。その後、インラインコートされたフィルムをテンター式延伸機に導き、予熱温度90℃、延伸温度120℃で5倍に横延伸し、続いて230℃で熱乾燥処理を行い、200℃で横方向に3%の弛緩処理を行った。テンターから出たフィルムは、フィルム速度150m/minで巻き取った。こうして厚さ50μmの二軸延伸ポリエステルフィルムを得た。
Example B1
Polyethylene terephthalate B was introduced into extruder I (screw diameter: 50 mm) and polyethylene terephthalate A was introduced into extruder II (screw diameter: 65 mm). After melting at 280 ° C., each melt was formed into a T-die of a multilayer die. Before reaching the outlet, the layer thickness ratio (II / I / II) was 6/38/6, and the three layers were joined and laminated so that the total thickness was 1000 μm. The laminated melt was extruded from a T-die outlet, and was brought into close contact with a cooling drum whose surface temperature was adjusted to 20 ° C. to rapidly cool and solidify to obtain an unstretched film. Subsequently, after preheating with a preheating roll group whose temperature is adjusted to 90 ° C., the longitudinal speed is changed 4.0 times by changing the peripheral speed between the drawing rolls whose temperature is adjusted to 90 ° C., thereby obtaining a 250 μm thick longitudinally stretched film. It was. Next, the longitudinally stretched film was coated in-line with the coating liquid (S-1) using a Mayer bar so that the resin layer thickness after the heat drying treatment was 0.19 μm. Thereafter, the inline-coated film is guided to a tenter type stretching machine, and is stretched 5 times at a preheating temperature of 90 ° C. and a stretching temperature of 120 ° C., followed by a heat drying treatment at 230 ° C., followed by 3 in the transverse direction at 200 ° C. % Relaxation treatment. The film coming out of the tenter was wound up at a film speed of 150 m / min. Thus, a biaxially stretched polyester film having a thickness of 50 μm was obtained.
実施例B2~B20およびB25~B30ならびに比較例B1~B5
 用いる塗工液を表1~表5に記載のように変更した以外は、実施例B1と同様の操作を行ってインラインコートフィルムを得た。
 なお、実施例B30において塗工液(S-2)は、ポリエステル樹脂と硬化剤との合計量に対するシリカ粒子(粒子径200nm)の割合が表9に記載の値になるように、シリカ粒子を分散させて用いた。
Examples B2 to B20 and B25 to B30 and Comparative Examples B1 to B5
An inline coated film was obtained in the same manner as in Example B1, except that the coating liquid used was changed as shown in Tables 1 to 5.
In Example B30, the coating liquid (S-2) was prepared so that the ratio of the silica particles (particle diameter 200 nm) to the total amount of the polyester resin and the curing agent was the value shown in Table 9. Used in a dispersed manner.
実施例B31
 ポリエチレンテレフタレートBを押出機I(スクリュー径:50mm)に、またポリエチレンテレフタレートAを押出機II(スクリュー径:65mm)にそれぞれ投入して280℃で溶融後、それぞれの溶融体をTダイの出口に至る前で、層の厚み比(I/II)が33/17となり、総厚みが1000μmとなるよう2層で合流積層させた。積層された溶融体を、複層ダイスのTダイ出口より押出し、表面温度を20℃に温調した冷却ドラム上に密着させて急冷固化して未延伸フィルムを得た。続いて90℃に温調した予熱ロール群で予熱した後、90℃に温調した延伸ロール間で周速を変化させて4.0倍に縦延伸し、厚さ250μmの縦延伸フィルムを得た。次に縦延伸フィルムにマイヤーバーを用いて熱乾燥処理後の樹脂層厚みが0.19μmとなるよう塗工液(S-2)をインラインコートした。その後、インラインコートされたフィルムをテンター式延伸機に導き、予熱温度90℃、延伸温度120℃で5倍に横延伸し、続いて230℃で熱乾燥処理を行い、200℃で横方向に3%の弛緩処理を行った。テンターから出たフィルムは、フィルム速度150m/minで巻き取った。こうして厚さ50μmの二軸延伸ポリエステルフィルムを得た。
 なお、本実施例において塗工液(S-2)は、ポリエステル樹脂と硬化剤との合計量に対するシリカ粒子(粒子径200nm)の割合が表9に記載の値になるように、シリカ粒子を分散させて用いた。
Example B31
Polyethylene terephthalate B was introduced into Extruder I (screw diameter: 50 mm), and polyethylene terephthalate A was introduced into Extruder II (screw diameter: 65 mm). After melting at 280 ° C., each melt was introduced into the outlet of the T-die. Before reaching, the layer thickness ratio (I / II) was 33/17, and the two layers were joined and laminated so that the total thickness was 1000 μm. The laminated melt was extruded from the T-die outlet of a multi-layer die, brought into close contact with a cooling drum whose surface temperature was adjusted to 20 ° C., and rapidly cooled and solidified to obtain an unstretched film. Subsequently, after preheating with a preheating roll group whose temperature is adjusted to 90 ° C., the longitudinal speed is changed 4.0 times by changing the peripheral speed between the drawing rolls whose temperature is adjusted to 90 ° C., thereby obtaining a 250 μm thick longitudinally stretched film. It was. Next, the longitudinally stretched film was coated in-line with the coating liquid (S-2) using a Mayer bar so that the resin layer thickness after the heat drying treatment was 0.19 μm. Thereafter, the inline-coated film is guided to a tenter type stretching machine, and is stretched 5 times at a preheating temperature of 90 ° C. and a stretching temperature of 120 ° C., followed by a heat drying treatment at 230 ° C., followed by 3 in the transverse direction at 200 ° C. % Relaxation treatment. The film coming out of the tenter was wound up at a film speed of 150 m / min. Thus, a biaxially stretched polyester film having a thickness of 50 μm was obtained.
In this example, the coating liquid (S-2) was prepared so that the ratio of the silica particles (particle diameter 200 nm) to the total amount of the polyester resin and the curing agent was a value shown in Table 9. Used in a dispersed manner.
実施例B32
 塗工液(S-2)に配合するシリカ粒子(粒子径200nm)の割合を、ポリエステル樹脂と硬化剤との合計量に対して表9に記載のように変更した以外は、実施例B31と同様の操作を行ってインラインコートフィルムを得た。
Example B32
Example B31 except that the ratio of silica particles (particle diameter 200 nm) to be blended with the coating liquid (S-2) was changed as shown in Table 9 with respect to the total amount of the polyester resin and the curing agent. The same operation was performed to obtain an inline coated film.
実施例B33
 ポリエチレンテレフタレートAを押出機I(スクリュー径:50mm)に投入して280℃で溶融し、厚みが1000μmとなるようTダイ出口より押出し、表面温度を20℃に温調した冷却ドラム上に密着させて急冷固化して未延伸フィルムを得た。続いて90℃に温調した予熱ロール群で予熱した後、90℃に温調した延伸ロール間で周速を変化させて4.0倍に縦延伸し、厚さ250μmの縦延伸フィルムを得た。次に縦延伸フィルムにマイヤーバーを用いて熱乾燥処理後の樹脂層厚みが0.19μmとなるよう塗工液(S-2)をインラインコートした。その後、インラインコートされたフィルムをテンター式延伸機に導き、予熱温度90℃、延伸温度120℃で5倍に横延伸し、続いて230℃で熱乾燥処理を行い、200℃で横方向に3%の弛緩処理を行った。テンターから出たフィルムは、フィルム速度150m/minで巻き取った。こうして厚さ50μmの二軸延伸ポリエステルフィルムを得た。
 なお、本実施例において塗工液(S-2)は、ポリエステル樹脂と硬化剤との合計量に対するシリカ粒子の割合が表9に記載の値になるように、シリカ粒子(粒子径200nm)を分散させて用いた。
Example B33
Polyethylene terephthalate A is put into Extruder I (screw diameter: 50 mm), melted at 280 ° C., extruded from the T-die outlet so that the thickness becomes 1000 μm, and brought into close contact with a cooling drum whose surface temperature is adjusted to 20 ° C. And solidified rapidly to obtain an unstretched film. Subsequently, after preheating with a preheating roll group whose temperature is adjusted to 90 ° C., the longitudinal speed is changed 4.0 times by changing the peripheral speed between the drawing rolls whose temperature is adjusted to 90 ° C., thereby obtaining a 250 μm thick longitudinally stretched film. It was. Next, the longitudinally stretched film was coated in-line with the coating liquid (S-2) using a Mayer bar so that the resin layer thickness after the heat drying treatment was 0.19 μm. Thereafter, the inline-coated film is guided to a tenter type stretching machine, and is stretched 5 times at a preheating temperature of 90 ° C. and a stretching temperature of 120 ° C., followed by a heat drying treatment at 230 ° C., followed by 3 in the transverse direction at 200 ° C. % Relaxation treatment. The film coming out of the tenter was wound up at a film speed of 150 m / min. Thus, a biaxially stretched polyester film having a thickness of 50 μm was obtained.
In this example, the coating liquid (S-2) was prepared with silica particles (particle diameter 200 nm) so that the ratio of the silica particles to the total amount of the polyester resin and the curing agent was the value shown in Table 9. Used in a dispersed manner.
 実施例および比較例で得られた積層フィルムとその評価結果を表6~表10に示す。 Tables 6 to 10 show the laminated films obtained in Examples and Comparative Examples and their evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例A1~A29ならびに実施例B1~B5、B8~B20およびB25~B33では、所定の配合に従ったため、得られた塗工液は安定性が良く、塗工液から得られたポリエステル樹脂層は、接着性に優れ、加熱処理に伴うヘーズ値の変化(ΔH)が抑制されていた。 In Examples A1 to A29 and Examples B1 to B5, B8 to B20 and B25 to B33, the obtained coating liquid had good stability, and the polyester resin layer obtained from the coating liquid Was excellent in adhesiveness, and haze value change (ΔH) accompanying heat treatment was suppressed.
 特に、実施例A2、A3、A6~A15、A18~A20、A23~A24およびA26~A28、ならびに実施例B2、B3、B8~B15、B18~B20、B26~B28およびB30~B33では、被膜中に含まれるTCDおよび硬化剤の量がいずれも、最適な範囲であったため、より優れた接着性を示した。さらには加熱処理に伴うオリゴマーの析出がより抑制されていたため、ヘーズ値の変化(ΔH)もより抑制されていた。 In particular, in Examples A2, A3, A6 to A15, A18 to A20, A23 to A24 and A26 to A28, and Examples B2, B3, B8 to B15, B18 to B20, B26 to B28 and B30 to B33, Since the amounts of TCD and curing agent contained in each were within the optimum range, more excellent adhesion was exhibited. Furthermore, since precipitation of the oligomer accompanying the heat treatment was further suppressed, the change in haze value (ΔH) was further suppressed.
 また、実施例A1~A5、A8、A11~A15、A18~A25およびA27~A29ならびに実施例B1~B5、B8、B11~B15、B18~B20、B25およびB27~B33では、被膜中に含まれるSIPおよび硬化剤の量がいずれも、より適切であったため、より高い耐水性を示した。特に上記した実施例Bでは、良好な延伸追随性が得られた。 In Examples A1 to A5, A8, A11 to A15, A18 to A25 and A27 to A29 and Examples B1 to B5, B8, B11 to B15, B18 to B20, B25 and B27 to B33, they are contained in the coating film. Both the amount of SIP and curing agent was more appropriate and therefore showed higher water resistance. In particular, in Example B described above, good stretchability was obtained.
 特に、実施例B1~B5、B8~B20およびB25~B29では、インライン工程において高い温度で熱乾燥処理することで、実施例A1~A5、A8~A20およびA25~A29と比較して、ポリエステル樹脂層の接着性が一段と向上していた。 In particular, in Examples B1 to B5, B8 to B20, and B25 to B29, the polyester resin was compared with Examples A1 to A5, A8 to A20, and A25 to A29 by heat drying treatment at a high temperature in the in-line process. The adhesion of the layer was further improved.
 一方、比較例A1およびA4では、ポリエステル樹脂(A)のジオール成分に占めるTCD成分が多すぎたため、接着性が低下した。 On the other hand, in Comparative Examples A1 and A4, since the TCD component in the diol component of the polyester resin (A) was too much, the adhesiveness was lowered.
 比較例A2およびB2、比較例A3およびB3および比較例A5およびB5では、ポリエステル樹脂(A)のジオール成分に占めるTCD成分が少なすぎたため、加熱処理に伴うヘーズ値の変化(ΔH)が著しく大きかった。 In Comparative Examples A2 and B2, Comparative Examples A3 and B3, and Comparative Examples A5 and B5, since the TCD component in the diol component of the polyester resin (A) was too small, the change in haze value (ΔH) accompanying the heat treatment was significantly large. It was.
 本発明の積層フィルムは、電子材料、光学材料、または電子光学材料として有用である。 The laminated film of the present invention is useful as an electronic material, an optical material, or an electro-optical material.

Claims (6)

  1.  ポリエステルフィルム基材の少なくとも片面にポリエステル樹脂層を有する積層フィルムであって、前記ポリエステル樹脂層を構成するポリエステル樹脂のジオール成分のうち5~70モル%がトリシクロデカン構造を有するジオール成分であり、150℃で1時間加熱処理した際のヘーズ変化量が1.0%以下である、積層フィルム。 A laminated film having a polyester resin layer on at least one surface of a polyester film substrate, wherein 5 to 70 mol% of a diol component of the polyester resin constituting the polyester resin layer is a diol component having a tricyclodecane structure; A laminated film having a haze change amount of 1.0% or less when heat-treated at 150 ° C. for 1 hour.
  2.  前記ポリエステル樹脂層を構成するポリエステル樹脂のジカルボン酸成分のうち、0.1~15モル%がスルホン酸塩基を有するジカルボン酸成分である、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein 0.1 to 15 mol% of the dicarboxylic acid component of the polyester resin constituting the polyester resin layer is a dicarboxylic acid component having a sulfonate group.
  3.  前記ポリエステル樹脂層を構成するポリエステル樹脂のジカルボン酸成分のうち、3~8モル%がスルホン酸塩基を有するジカルボン酸成分である、請求項2に記載の積層フィルム。 The laminated film according to claim 2, wherein 3 to 8 mol% of the dicarboxylic acid component of the polyester resin constituting the polyester resin layer is a dicarboxylic acid component having a sulfonate group.
  4.  前記ポリエステル樹脂層が硬化剤をさらに含有し、該硬化剤の含有量が前記ポリエステル樹脂100質量部に対して1~10質量部である、請求項1~3のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the polyester resin layer further contains a curing agent, and the content of the curing agent is 1 to 10 parts by mass with respect to 100 parts by mass of the polyester resin.
  5.  前記ポリエステル樹脂を含有する塗工液をポリエステルフィルム基材に塗布後、180℃以上の温度で熱乾燥処理を行うことを特徴とする、請求項1~4のいずれかに記載の積層フィルムの製造方法。 The production of a laminated film according to any one of claims 1 to 4, wherein after the coating liquid containing the polyester resin is applied to a polyester film substrate, a heat drying treatment is performed at a temperature of 180 ° C or higher. Method.
  6.  前記塗工液を塗布したポリエステルフィルム基材を、少なくとも一方向に延伸することを特徴とする請求項5に記載のポリエステル系積層フィルムの製造方法。 6. The method for producing a polyester-based laminated film according to claim 5, wherein the polyester film substrate coated with the coating liquid is stretched in at least one direction.
PCT/JP2015/075061 2014-09-05 2015-09-03 Layered film WO2016035850A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177005709A KR20170052580A (en) 2014-09-05 2015-09-03 Layered film
CN201580047172.7A CN106660351A (en) 2014-09-05 2015-09-03 Layered film
JP2016546691A JP6063612B2 (en) 2014-09-05 2015-09-03 Laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-181288 2014-09-05
JP2014181288 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035850A1 true WO2016035850A1 (en) 2016-03-10

Family

ID=55439907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075061 WO2016035850A1 (en) 2014-09-05 2015-09-03 Layered film

Country Status (5)

Country Link
JP (1) JP6063612B2 (en)
KR (1) KR20170052580A (en)
CN (1) CN106660351A (en)
TW (1) TW201623009A (en)
WO (1) WO2016035850A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727768B (en) * 2020-04-24 2021-05-11 南亞塑膠工業股份有限公司 Polyester film for used in dry film
CN112961332A (en) * 2021-02-22 2021-06-15 仪化东丽聚酯薄膜有限公司 Low-precipitation polyester film and preparation method thereof
CN114571820A (en) * 2022-02-23 2022-06-03 广东卓尔新材料有限公司 Flame-retardant polyester film and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113694A (en) * 1991-10-21 1993-05-07 Toyobo Co Ltd Electrophotographic toner
JP2013075967A (en) * 2011-09-30 2013-04-25 Unitika Ltd Coating agent, coating film, and laminate
JP2013177496A (en) * 2012-02-28 2013-09-09 Toyobo Co Ltd Biomass plastic coating
JP2013181159A (en) * 2012-03-05 2013-09-12 Toyobo Co Ltd Biomass plastic coating material
JP2014133854A (en) * 2012-12-10 2014-07-24 Mitsubishi Plastics Inc Laminated polyester film
JP2015086248A (en) * 2013-10-28 2015-05-07 ユニチカ株式会社 Aqueous adhesive agent and coated film obtained from the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113694A (en) * 1991-10-21 1993-05-07 Toyobo Co Ltd Electrophotographic toner
JP2013075967A (en) * 2011-09-30 2013-04-25 Unitika Ltd Coating agent, coating film, and laminate
JP2013177496A (en) * 2012-02-28 2013-09-09 Toyobo Co Ltd Biomass plastic coating
JP2013181159A (en) * 2012-03-05 2013-09-12 Toyobo Co Ltd Biomass plastic coating material
JP2014133854A (en) * 2012-12-10 2014-07-24 Mitsubishi Plastics Inc Laminated polyester film
JP2015086248A (en) * 2013-10-28 2015-05-07 ユニチカ株式会社 Aqueous adhesive agent and coated film obtained from the same

Also Published As

Publication number Publication date
TW201623009A (en) 2016-07-01
KR20170052580A (en) 2017-05-12
JP6063612B2 (en) 2017-01-18
CN106660351A (en) 2017-05-10
JPWO2016035850A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
KR101665429B1 (en) Multilayer polyester film
JP5570289B2 (en) Laminated polyester film
JP6237964B1 (en) Release film for manufacturing ceramic green sheets
TW201714998A (en) Pressure-sensitive adhesive film
JP5520138B2 (en) Laminated polyester film
JP6330833B2 (en) Laminated polyester film
CN108034065B (en) Optical polyester film and preparation method thereof
JP5536379B2 (en) Laminated polyester film
JP6063612B2 (en) Laminated film
JP4216962B2 (en) Release film
JP2009120675A (en) Double-sided adhesive sheet, method for producing the same and use thereof
JP2017109489A (en) Laminated film
JP2017100399A (en) Laminated film
JP2016180092A (en) Polyester-based laminated film
JP2005178312A (en) Gas barrier laminated polyester film and its manufacturing method
JP2017097225A (en) Protective film
JP2017065114A (en) Laminated film
JP2017154464A (en) Laminated film
JP2017128093A (en) Laminated film
JP5734405B2 (en) Laminated polyester film
JP2015016677A (en) Release polyester film
JP5748833B2 (en) Laminated polyester film
JP2013022887A (en) Polyester film for insert molding
JP2011173372A (en) In-mold transfer laminate film and in-mold transfer processing member comprising the same
JP2017151384A (en) Light diffusion film and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546691

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177005709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838604

Country of ref document: EP

Kind code of ref document: A1