WO2016035723A1 - Piston orientation control structure - Google Patents

Piston orientation control structure Download PDF

Info

Publication number
WO2016035723A1
WO2016035723A1 PCT/JP2015/074563 JP2015074563W WO2016035723A1 WO 2016035723 A1 WO2016035723 A1 WO 2016035723A1 JP 2015074563 W JP2015074563 W JP 2015074563W WO 2016035723 A1 WO2016035723 A1 WO 2016035723A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
hole
partition member
supply port
control structure
Prior art date
Application number
PCT/JP2015/074563
Other languages
French (fr)
Japanese (ja)
Inventor
陽紀 岩井
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to JP2016507942A priority Critical patent/JP6632520B2/en
Publication of WO2016035723A1 publication Critical patent/WO2016035723A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types

Definitions

  • the present invention relates to a reciprocating piston, and more particularly to a piston posture control structure.
  • a piston device 11 for switching clutch engagement / disconnection for use in an automatic transmission of a vehicle such as an automobile is known.
  • This piston device 11 is an annular cylinder provided in a housing 12.
  • An annular piston 14 that is reciprocally inserted into the chamber 13 is provided.
  • FIG. 3A shows a state in which the multi-plate clutch 20 is in an OFF state.
  • hydraulic oil is supplied from the hydraulic oil supply port 16 to the cylinder chamber 13 in this state, as shown in FIG.
  • the piston 14 moves downward in the figure against the elasticity of the return spring 19 and presses the clutch 20 to turn it ON.
  • the piston 14 is made of a metal ring, and a lip-shaped seal 15 made of a rubber-like elastic body is vulcanized and bonded to the inner peripheral portion and the outer peripheral portion of the metal ring. Or “bonded piston seal (BPS)”.
  • BPS bonded piston seal
  • the cylinder chamber 13 and the piston 14 inserted into the cylinder chamber 13 are both annular.
  • the hydraulic oil supply ports 16 are arranged in a plurality of equal distributions on the circumference, the hydraulic pressure is increased.
  • the piston 14 operates normally as shown in FIG. 3B without being inclined.
  • the present invention provides a piston posture control structure that can suppress the piston from tilting even when the hydraulic oil supply port is installed only at one location on the circumference.
  • the purpose is to provide.
  • a piston posture control structure is an operation in which an annular piston is inserted into an annular cylinder chamber and the piston is operated at one place on the circumference of the cylinder chamber.
  • An oil supply port is provided, and an annular partition member is installed between the piston and the supply port, and a through hole through which the hydraulic oil is passed is provided in the partition member.
  • a plurality of the through-holes are provided on the circumference of the partition member, and an opening cross-sectional area is set to be larger as it is provided farther from the supply port.
  • the hydraulic oil supplied from the supply port is once blocked by the partition member, and supplied to the piston via the through hole provided in the partition member.
  • a plurality of through-holes are provided on the circumference of the partition member, and the opening cross-sectional area is set larger as the distance from the supply port is increased. Therefore, the oil pressure easily acts on the piston evenly on the circumference. Thereby, even if it is a case where the supply port of hydraulic fluid is installed only in one place on the circumference, it can control that a piston carries out an inclination operation.
  • the piston posture control structure according to claim 2 of the present invention is the piston posture control structure according to claim 1, wherein the through hole is disposed at a position closest to the supply port. And a second through hole disposed farthest from the supply port and an intermediate through hole disposed between the first through hole and the second through hole on the circumference of the partition member.
  • the opening cross-sectional area is set larger in the order of the first through hole, the intermediate through hole, and the second through hole.
  • a hydraulic oil supply route having a multistage (three or more stages) structure is set over the first through hole, the intermediate through hole, and the second through hole. Therefore, since the posture of the piston is controlled at a number of locations, the posture of the piston can be further stabilized.
  • the piston posture control structure according to claim 3 of the present invention is the piston posture control structure according to claim 2, wherein the first through hole and the second through hole are symmetrical by 180 degrees on the circumference of the partition member.
  • the intermediate through-holes are set in line symmetry with the diameter line of the partition member connecting the first through-holes and the second through-holes being set as line symmetry.
  • a hydraulic oil supply route having a line-symmetric structure with the diameter line connecting the first through hole and the second through hole as the center line is set. Therefore, since the piston is prevented from tilting in the direction intersecting the center line, the posture of the piston can be further stabilized.
  • the piston posture control structure according to claim 4 of the present invention is the piston posture control structure according to any one of claims 1 to 3, wherein the partition member has a seal washer and an inner peripheral wall surface of the cylinder chamber. It is attached to.
  • the partition member can be easily attached to the inner peripheral wall surface of the cylinder chamber with the seal washer. If there is a space for attaching the seal washer and the partition member, the present invention can be applied to the existing piston device. It is possible to incorporate the structure of the invention.
  • a piston posture control structure according to claim 5 of the present invention is the piston posture control structure according to any one of claims 1 to 4, wherein the piston is incorporated in an automatic transmission to disengage the clutch. It is an automatic transmission piston used for switching.
  • the effects of the present invention can be realized in the field of pistons for automatic transmissions that are incorporated in automatic transmissions and used for switching clutch engagement / disengagement.
  • FIG. 3A is a cross-sectional view showing a state before supplying hydraulic oil (clutch OFF), and FIG. 3B is a diagram after supplying hydraulic oil (clutch ON).
  • a bonded piston seal (BPS) is used in an automatic transmission such as an automobile AT, and the BPS moves to the clutch side when a hydraulic load is applied.
  • BPS bonded piston seal
  • the hydraulic pressure is equal to the BPS when the hydraulic inlet is at one place and the oil viscosity is high at low temperature. It will not be added and will be tilted.
  • a plate partition member in which holes of different sizes are processed is installed between the hydraulic inlet and the BPS. The hole of the plate is set so that it is smaller as it is closer to the hydraulic inlet, and gradually increases in the opposite direction on the circumference.
  • FIG. 1 shows a cross section of a main part of a piston device 11 having a piston posture control structure according to an embodiment of the present invention.
  • the piston device 11 is incorporated in an automatic transmission such as an AT or CVT of a vehicle such as an automobile, and is used for switching the on / off state of the clutch 20 when the piston 14 is displaced in the axial direction by hydraulic pressure. It is configured.
  • the vertical direction in the figure is the axial direction.
  • an annular cylinder chamber 13 is provided in a partially illustrated housing (clutch housing) 12, and a piston 14 with an annular seal 15 reciprocates in the axial direction in the cylinder chamber 13.
  • a supply port (hydraulic inlet) for inserting hydraulic oil for operating the piston 14 to one end of the circumference of the cylinder chamber 13 in the axial direction (upward in the figure) and at one end on the circumference thereof. 16 is provided.
  • Reference numeral 17 denotes a piston receiving member attached to the inner peripheral wall surface of the cylinder chamber 13 by a washer 18, and a return spring 19 for returning the piston 14 is interposed between the piston receiving member 17 and the piston 14. Yes.
  • the piston 14 is made of a metal ring, and an inner peripheral cylindrical portion 14b is integrally formed on the inner peripheral end portion of the annular flat surface portion 14a toward the other axial direction (downward in the drawing), and the same shaft is connected to the outer peripheral end portion of the flat portion 14a.
  • the outer peripheral cylindrical portion 14c is integrally molded toward the other direction, and the other end in the axial direction of the outer peripheral cylindrical portion 14c serves as a pressing portion 14d for pressing the multi-plate clutch 20.
  • a lip-shaped seal 15 made of a rubber-like elastic body is adhered to the inner peripheral surface of the inner peripheral cylindrical portion 14b and the other end portion in the axial direction.
  • a lip-shaped seal 15 made of a rubber-like elastic body is bonded to the end of each of the hydraulic oils, and these seals 15 are hydraulic oil supplied from the supply port 16 to the pressurizing chamber 13a between the supply port 16 and the piston 14 ( It is provided to seal (hydraulic).
  • the piston 14 Since the piston 14 is obtained by vulcanizing and bonding the seal 15 made of a rubber-like elastic body to the metal ring in this way, it is also called “bonded piston” or “bonded piston seal (BPS)” because of its structure or function. Called.
  • the piston receiving member 17 is also formed by vulcanizing and bonding a seal 21 made of a rubber-like elastic body to a metal ring, and has an effect of canceling the pressure in the back pressure chamber 13b between the piston receiving member 17 and the piston 14. Therefore, it is also called “bonded canceller” or “bonded canceller seal (BCS)” because of its structure or function.
  • bonded canceller or “bonded canceller seal (BCS)” because of its structure or function.
  • An annular partition member 22 is installed in the pressurizing chamber 13 a between the supply port 16 and the piston 14, and the partition member 22 causes the pressurizing chamber 13 a to be separated from the first chamber 13 c between the supply port 16 and the partition member 22, and the partition member. 22 and a second chamber 13d between the piston 14. Therefore, as shown in FIG. 2 (A), the partition member 22 has a shape in which an annular convex portion 22b is provided toward the axial direction one side at the outer peripheral end of the annular flat portion 22a, and the inner periphery of the flat portion 22a.
  • the surface is in close contact with the inner peripheral wall surface of the pressurizing chamber 13a, and the tip end surface of the convex portion 22b is in close contact with one end surface in the axial direction of the pressurizing chamber 13a.
  • the partition member 22 is attached to the inner peripheral wall surface of the cylinder chamber 13 with a seal washer 23. Therefore, a groove portion 24 for engaging the seal washer 23 is provided on the inner peripheral wall surface of the cylinder chamber 13. Yes.
  • the partition member 22 is formed of a rigid material such as metal or hard resin.
  • the partition member 22 is provided with a through hole 25 for allowing the hydraulic oil to pass from the first chamber 13c to the second chamber 13d.
  • a plurality of openings are provided on the circumference, and the opening cross-sectional area is set to be larger as they are provided farther from the supply port 16 in the mounted state.
  • the through hole 25 includes a first through hole 25A disposed at a position closest to the supply port 16, a second through hole 25B disposed at a position farthest from the supply port 16, and a first through hole.
  • Intermediate through holes 25C to 25H arranged between the hole 25A and the second through hole 25B are provided on the circumference of the partition member 22, and the first through hole 25A, the intermediate through holes 25C to 25h, and the second through hole are provided.
  • the opening cross-sectional area is set larger in the order of 25B.
  • the through hole 25 includes a first through hole 25A disposed at a position closest to the supply port 16, a second through hole 25B disposed at a position farthest from the supply port 16, and a first through hole.
  • Intermediate through holes 25C to 25H arranged between the hole 25A and the second through hole 25B are provided on the circumference of the partition member 22, and among these, the first through hole 25A and the second through hole 25B are the partition member 22.
  • the intermediate through-holes 25C to 25h are arranged at 180 ° symmetrical positions on the circumference, and the size and size of the opening cross-sectional area of the partition member 22 connecting the first through-hole 25A and the second through-hole 25B are d. Is set to be line symmetric with respect to the center line of line symmetry.
  • the eight through holes are provided at equal intervals on the circumference in the figure, and the breakdown is the third through hole 25C and the fourth through hole clockwise from the first through hole 25A.
  • the second through hole 25B passes through the hole 25D and the fifth through hole 25E, and the second through hole passes through the sixth through hole 25F, the seventh through hole 25G, and the eighth through hole 25H counterclockwise from the first through hole 25A.
  • the third through hole 25C and the sixth through hole 25F have the same opening cross-sectional area and are set larger than the first through hole 25A, and the fourth through hole 25D.
  • the opening cross-sectional areas of the seventh through holes 25G are set to be the same size and larger than the third through holes 25C and the sixth through holes 25F, and the fifth through holes 25E and the eighth through holes 25H are opened.
  • the cross-sectional areas are set to the same size and the fourth through hole 2 It is set larger than D and the seventh through hole 25G, the opening cross-sectional area of the second hole 25B is set to be larger than the fifth hole 25E and the eighth through hole 25H.
  • the eight through holes are the first through hole 25A, the third through hole 25C and the sixth through hole 25F, the fourth through hole 25D and the seventh through hole 25G, the fifth through hole 25E and the eighth through hole 25H, and
  • the opening cross-sectional area is gradually increased over five stages in the order of the second through holes 25B.
  • the clutch OFF state shown in FIG. 1A is set to the initial operation position.
  • the supplied hydraulic oil is supplied.
  • a plurality of through holes 25A to 25H are provided on the circumference of the partition member 22, and the opening cross-sectional area is set larger as the distance from the supply port 16 increases. It becomes easy to work evenly on the circumference. Therefore, even when the supply port 16 is installed only at one location on the circumference of the cylinder chamber 13, it is possible to suppress the piston 14 from tilting as shown in FIG.
  • the posture of the piston 14 can be controlled at a number of locations. Since the hydraulic oil supply route having a line-symmetric structure is set by the two through holes 25A to 25H, the piston 14 is prevented from inclining in a direction crossing the line-symmetrical center line (diameter line d of the partition member 22). It is possible to do. Therefore, the posture of the piston 14 can be further stabilized.
  • the partition member 22 since the partition member 22 is attached to the inner peripheral wall surface of the cylinder chamber 13 with the seal washer 23, the partition member 22 can be easily attached to the inner peripheral wall surface of the cylinder chamber 13 with the seal washer 23. In addition, if there is a space for attaching the seal washer 23 and the partition member 22, the structure of the present invention can be incorporated into an existing piston device.
  • the number of the through holes 25 is eight. However, this is merely an example, and the number of the through holes 25 may be seven or less, or nine or more.
  • the partition member 22 decided to contact the inner peripheral wall surface and end surface of the pressurization chamber 13a directly, interposing the seal
  • the seal is preferably bonded in advance to the partition member 22.
  • Piston apparatus Housing 13 Cylinder chamber 13a Pressurization chamber 13b Back pressure chamber 13c 1st chamber 13d 2nd chamber 14 Piston 14a, 22a Plane part 14b Inner peripheral cylinder part 14c Outer periphery cylinder part 14d Press part 15,21 Seal 16 Supply port 17 Piston receiving member 18 Washer 19 Return spring 20 Clutch 22 Partition member 22b Protruding portion 23 Seal washer 24 Groove portion 25, 25A to 25G Through hole d Diameter line of partition member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Bolts, Nuts, And Washers (AREA)

Abstract

The present invention relates to a piston orientation control structure in a structure in which a circular piston (14) is inserted in a circular cylinder chamber (13) and a supply port (16) for supplying hydraulic fluid for operating the piston (14) is provided in the cylinder chamber (13). In the piston orientation control structure: a circular partition member (22) is disposed between the piston (14) and the supply port (16); through holes (25) for passing the hydraulic fluid are provided in the partition member (22); multiple through holes (25) are provided on the periphery of the partition member (22); and the farther the through holes are provided from the supply port (16), the larger the cross-sectional area of the opening is set to be. As a result, the present invention makes it possible to limit slanted operation of the piston (14) even in piston devices (11) of a type in which only a single supply port (16) is set on the periphery.

Description

ピストンの姿勢制御構造Piston attitude control structure
 本発明は、往復作動するピストンに係り、更に詳しくは、ピストンの姿勢制御構造に関する。 The present invention relates to a reciprocating piston, and more particularly to a piston posture control structure.
 従来から図3(A)に示すように、自動車等車両の自動変速機に用いられるクラッチ断続切り替え用のピストン装置11が知られており、このピストン装置11は、ハウジング12に設けた環状のシリンダ室13に往復動可能に挿入される環状のピストン14を備えている。 Conventionally, as shown in FIG. 3 (A), a piston device 11 for switching clutch engagement / disconnection for use in an automatic transmission of a vehicle such as an automobile is known. This piston device 11 is an annular cylinder provided in a housing 12. An annular piston 14 that is reciprocally inserted into the chamber 13 is provided.
 図3(A)は、多板式のクラッチ20がOFFの状態を示しており、この状態で作動油の供給ポート16からシリンダ室13へ作動油を供給すると図3(B)に示すように、ピストン14がリターンスプリング19の弾性に抗して図上の下方へ移動し、クラッチ20を押圧してONとする。 FIG. 3A shows a state in which the multi-plate clutch 20 is in an OFF state. When hydraulic oil is supplied from the hydraulic oil supply port 16 to the cylinder chamber 13 in this state, as shown in FIG. The piston 14 moves downward in the figure against the elasticity of the return spring 19 and presses the clutch 20 to turn it ON.
 ピストン14は金属環よりなり、この金属環の内周部および外周部にそれぞれゴム状弾性体よりなるリップ状のシール15を加硫接着したものであって、その構造からして「ボンデットピストン」または「ボンデッドピストンシール(BPS)」と称されることもある。 The piston 14 is made of a metal ring, and a lip-shaped seal 15 made of a rubber-like elastic body is vulcanized and bonded to the inner peripheral portion and the outer peripheral portion of the metal ring. Or “bonded piston seal (BPS)”.
 上記従来技術に対しては、以下の問題が指摘される。 The following problems are pointed out with respect to the above prior art.
 すなわち、上記したようにシリンダ室13およびこれに挿入されるピストン14は共に環状であるところ、作動油の供給ポート16が円周上複数等配状に設置されている場合には油圧がピストン14に対し円周上均等に作用するので、ピストン14は傾斜することなく図3(B)に示すように正常に作動する。 That is, as described above, the cylinder chamber 13 and the piston 14 inserted into the cylinder chamber 13 are both annular. However, when the hydraulic oil supply ports 16 are arranged in a plurality of equal distributions on the circumference, the hydraulic pressure is increased. However, the piston 14 operates normally as shown in FIG. 3B without being inclined.
 しかしながら、図4に示すように、作動油の供給ポート16が円周上1箇所のみに設置されている場合には油圧がピストン14に対し円周上均等に作用しないので、ピストン14がシリンダ室13の中心軸線0に対し傾斜作動してしまう。したがってピストン14が円周上一部のみでクラッチ20を押圧することになる等、正常な作動に支障を来たす虞がある。 However, as shown in FIG. 4, when the hydraulic oil supply port 16 is installed only at one location on the circumference, the hydraulic pressure does not act evenly on the circumference of the piston 14. The tilt operation is performed with respect to the central axis 0 of the thirteen. Therefore, there is a possibility that the normal operation may be hindered, for example, the piston 14 presses the clutch 20 with only a part of the circumference.
特開2007-303493号公報(図6)JP2007-303493A (FIG. 6)
 本発明は以上の点に鑑みて、作動油の供給ポートが円周上1箇所のみに設置されている場合であってもピストンが傾斜作動するのを抑制することができるピストンの姿勢制御構造を提供することを目的とする。 In view of the above, the present invention provides a piston posture control structure that can suppress the piston from tilting even when the hydraulic oil supply port is installed only at one location on the circumference. The purpose is to provide.
 上記目的を達成するため、本発明の請求項1によるピストンの姿勢制御構造は、環状のシリンダ室に環状のピストンが挿入されるとともに前記シリンダ室の円周上1箇所に前記ピストンを作動させる作動油を供給する供給ポートが設けられている構造であって、前記ピストンと前記供給ポートとの間に環状の仕切り部材が設置され、前記仕切り部材に、前記作動油を通過させる透孔が設けられ、前記透孔は、前記仕切り部材の円周上に複数が設けられ、前記供給ポートから遠くに設けられるほど開口断面積が大きく設定されていることを特徴とする。 In order to achieve the above object, a piston posture control structure according to claim 1 of the present invention is an operation in which an annular piston is inserted into an annular cylinder chamber and the piston is operated at one place on the circumference of the cylinder chamber. An oil supply port is provided, and an annular partition member is installed between the piston and the supply port, and a through hole through which the hydraulic oil is passed is provided in the partition member. A plurality of the through-holes are provided on the circumference of the partition member, and an opening cross-sectional area is set to be larger as it is provided farther from the supply port.
 上記構成によれば、供給ポートから供給される作動油が仕切り部材によって一旦堰き止められ、仕切り部材に設けた透孔を経由してピストンのほうへ供給される。透孔は、仕切り部材の円周上に複数が設けられ、供給ポートから遠くに設けられるほど開口断面積が大きく設定されているため、油圧がピストンに対し円周上均等に作用しやすくなる。これにより、作動油の供給ポートが円周上1箇所のみに設置されている場合であっても、ピストンが傾斜作動するのを抑制することができる。 According to the above configuration, the hydraulic oil supplied from the supply port is once blocked by the partition member, and supplied to the piston via the through hole provided in the partition member. A plurality of through-holes are provided on the circumference of the partition member, and the opening cross-sectional area is set larger as the distance from the supply port is increased. Therefore, the oil pressure easily acts on the piston evenly on the circumference. Thereby, even if it is a case where the supply port of hydraulic fluid is installed only in one place on the circumference, it can control that a piston carries out an inclination operation.
 また、本発明の請求項2によるピストンの姿勢制御構造は、上記した請求項1記載のピストン姿勢制御構造において、前記透孔は、前記供給ポートに対し最も近い位置に配置される第1透孔と、前記供給ポートに対し最も遠い位置に配置される第2透孔と、前記第1透孔および第2透孔間に配置される中間の透孔とを前記仕切り部材の円周上に備え、前記第1透孔、中間の透孔および第2透孔の順に開口断面積が大きく設定されていることを特徴とする。 The piston posture control structure according to claim 2 of the present invention is the piston posture control structure according to claim 1, wherein the through hole is disposed at a position closest to the supply port. And a second through hole disposed farthest from the supply port and an intermediate through hole disposed between the first through hole and the second through hole on the circumference of the partition member. The opening cross-sectional area is set larger in the order of the first through hole, the intermediate through hole, and the second through hole.
 この構成によれば、第1透孔、中間の透孔および第2透孔に亙って多段式(3段以上)構造の作動油供給ルートが設定される。したがってピストンの姿勢を多数の箇所において制御するため、ピストンの姿勢を一層安定化することが可能とされる。 According to this configuration, a hydraulic oil supply route having a multistage (three or more stages) structure is set over the first through hole, the intermediate through hole, and the second through hole. Therefore, since the posture of the piston is controlled at a number of locations, the posture of the piston can be further stabilized.
 また、本発明の請求項3によるピストンの姿勢制御構造は、上記した請求項2記載のピストン姿勢制御構造において、前記第1透孔および第2透孔は前記仕切り部材の円周上180度対称位置に配置され、前記中間の透孔は、前記第1透孔および第2透孔を結ぶ前記仕切り部材の直径線を線対称の中心線として線対称に設定されていることを特徴とする。 The piston posture control structure according to claim 3 of the present invention is the piston posture control structure according to claim 2, wherein the first through hole and the second through hole are symmetrical by 180 degrees on the circumference of the partition member. The intermediate through-holes are set in line symmetry with the diameter line of the partition member connecting the first through-holes and the second through-holes being set as line symmetry.
 この構成によれば、第1透孔および第2透孔を結ぶ直径線を中心線とする線対称構造の作動油供給ルートが設定される。したがってピストンが中心線と交差する方向に傾斜しようとするのを抑制するため、ピストンの姿勢を一層安定化することが可能とされる。 According to this configuration, a hydraulic oil supply route having a line-symmetric structure with the diameter line connecting the first through hole and the second through hole as the center line is set. Therefore, since the piston is prevented from tilting in the direction intersecting the center line, the posture of the piston can be further stabilized.
 また、本発明の請求項4によるピストンの姿勢制御構造は、上記した請求項1ないし3の何れかに記載したピストン姿勢制御構造において、前記仕切り部材は、シールワッシャーをもって前記シリンダ室の内周壁面に取り付けられることを特徴とする。 The piston posture control structure according to claim 4 of the present invention is the piston posture control structure according to any one of claims 1 to 3, wherein the partition member has a seal washer and an inner peripheral wall surface of the cylinder chamber. It is attached to.
 この構成によれば、仕切り部材をシールワッシャーをもってシリンダ室の内周壁面に容易に取り付けることが可能とされ、また、シールワッシャーおよび仕切り部材を取り付けるスペースがあれば既存のピストン装置に対しても本発明の構造を組み込むことが可能とされる。 According to this configuration, the partition member can be easily attached to the inner peripheral wall surface of the cylinder chamber with the seal washer. If there is a space for attaching the seal washer and the partition member, the present invention can be applied to the existing piston device. It is possible to incorporate the structure of the invention.
 また、本発明の請求項5によるピストンの姿勢制御構造は、上記した請求項1ないし4の何れかに記載したピストン姿勢制御構造において、前記ピストンは、自動変速機に組み込まれてクラッチの断続を切り替えるために用いられる自動変速機用ピストンであることを特徴とする。 A piston posture control structure according to claim 5 of the present invention is the piston posture control structure according to any one of claims 1 to 4, wherein the piston is incorporated in an automatic transmission to disengage the clutch. It is an automatic transmission piston used for switching.
 この構成によれば、自動変速機に組み込まれてクラッチの断続を切り替えるために用いられる自動変速機用ピストンの分野において、本発明の作用効果を実現することが可能とされる。 According to this configuration, the effects of the present invention can be realized in the field of pistons for automatic transmissions that are incorporated in automatic transmissions and used for switching clutch engagement / disengagement.
 本発明によれば、作動油の供給ポートが円周上1箇所のみに設置されている場合であっても、ピストンが傾斜作動するのを抑制することができる。 According to the present invention, it is possible to prevent the piston from being tilted even when the hydraulic oil supply port is installed at only one place on the circumference.
本発明の実施例に係るピストン姿勢制御構造を備えるピストン装置の要部断面図であって、図1(A)は作動油供給前(クラッチOFF)の状態を示す断面図、図1(B)は作動油供給後(クラッチON)の状態を示す断面図BRIEF DESCRIPTION OF THE DRAWINGS It is principal part sectional drawing of the piston apparatus provided with the piston attitude | position control structure based on the Example of this invention, Comprising: FIG. 1 (A) is sectional drawing which shows the state before hydraulic oil supply (clutch OFF), FIG.1 (B). Is a cross-sectional view showing the state after supplying hydraulic oil (clutch ON) 同構造に備えられる仕切り部材を示す図であって、図2(A)は仕切り部材の断面図、図2(B)は仕切り部材の平面図It is a figure which shows the partition member with which the structure is equipped, Comprising: FIG. 2 (A) is sectional drawing of a partition member, FIG.2 (B) is a top view of a partition member 従来例に係るピストン装置の要部断面図であって、図3(A)は作動油供給前(クラッチOFF)の状態を示す断面図、図3(B)は作動油供給後(クラッチON)の状態を示す断面図FIG. 3A is a cross-sectional view of a main part of a piston device according to a conventional example, FIG. 3A is a cross-sectional view showing a state before supplying hydraulic oil (clutch OFF), and FIG. 3B is a diagram after supplying hydraulic oil (clutch ON). Sectional view showing the state of 同ピストン装置における不具合(ピストン傾斜作動)発生状態を示す断面図Sectional drawing which shows the malfunction (piston tilting action) occurrence state in the piston device
 本発明には、以下の実施形態が含まれる。
(1)ボンデッドピストンシール(BPS)は自動車ATなどの自動変速機に使われており、油圧負荷時にBPSはクラッチ側へ移動する。ここで、油圧入口が円周上複数(等配)に設置されている場合は作動上問題ないが、油圧入口が1箇所、且つ低温で油粘度が高くなった状態では油圧がBPSに均等に付加されず、傾斜作動してしまう。
(2)そこで、本発明では、油圧入口とBPSの間に大きさ違いの穴を加工したプレート(仕切り部材)を設置する。プレートの穴は油圧入口に近いほど小さく、円周上対向側方向へ次第に大きくなるように設定する。
(3)本発明によれば、プレートに大きさ違いの穴加工(オリフィス効果)を設けることにより、油圧入口の円周上対向側に油が廻りやすくなり、BPS全体に均等な油圧が負荷され、傾斜作動が抑制される。
The present invention includes the following embodiments.
(1) A bonded piston seal (BPS) is used in an automatic transmission such as an automobile AT, and the BPS moves to the clutch side when a hydraulic load is applied. Here, there is no problem in operation when the hydraulic inlets are installed in plural (equal distribution) on the circumference, but the hydraulic pressure is equal to the BPS when the hydraulic inlet is at one place and the oil viscosity is high at low temperature. It will not be added and will be tilted.
(2) Therefore, in the present invention, a plate (partition member) in which holes of different sizes are processed is installed between the hydraulic inlet and the BPS. The hole of the plate is set so that it is smaller as it is closer to the hydraulic inlet, and gradually increases in the opposite direction on the circumference.
(3) According to the present invention, by providing holes of different sizes (orifice effect) on the plate, it becomes easier for oil to turn to the circumferentially opposite side of the hydraulic inlet, and an equal hydraulic pressure is applied to the entire BPS. Inclination operation is suppressed.
 つぎに本発明の実施例を図面にしたがって説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例に係るピストン姿勢制御構造を備えるピストン装置11の要部断面を示している。ピストン装置11は、自動車等車両のATやCVT等の自動変速機に組み込まれ、油圧によりピストン14が軸方向に変位してクラッチ20の断続を切り替えるために用いられるものであって、以下のように構成されている。尚、図1では図上上下方向が軸方向である。 FIG. 1 shows a cross section of a main part of a piston device 11 having a piston posture control structure according to an embodiment of the present invention. The piston device 11 is incorporated in an automatic transmission such as an AT or CVT of a vehicle such as an automobile, and is used for switching the on / off state of the clutch 20 when the piston 14 is displaced in the axial direction by hydraulic pressure. It is configured. In FIG. 1, the vertical direction in the figure is the axial direction.
 すなわち図1(A)に示すように、一部を図示したハウジング(クラッチハウジング)12に環状のシリンダ室13が設けられ、このシリンダ室13に環状のシール15付きピストン14が軸方向に往復動可能に挿入されるとともに、シリンダ室13の軸方向一方(図では上方)の端面であってその円周上1箇所に、ピストン14を作動させる作動油を供給するための供給ポート(油圧入口)16が設けられている。符号17は、ワッシャー18によってシリンダ室13の内周壁面に取り付けられたピストン受け部材を示し、このピストン受け部材17とピストン14との間にピストン14を復帰動させるリターンスプリング19が介装されている。 That is, as shown in FIG. 1A, an annular cylinder chamber 13 is provided in a partially illustrated housing (clutch housing) 12, and a piston 14 with an annular seal 15 reciprocates in the axial direction in the cylinder chamber 13. A supply port (hydraulic inlet) for inserting hydraulic oil for operating the piston 14 to one end of the circumference of the cylinder chamber 13 in the axial direction (upward in the figure) and at one end on the circumference thereof. 16 is provided. Reference numeral 17 denotes a piston receiving member attached to the inner peripheral wall surface of the cylinder chamber 13 by a washer 18, and a return spring 19 for returning the piston 14 is interposed between the piston receiving member 17 and the piston 14. Yes.
 ピストン14は金属環よりなり、環状の平面部14aの内周端部に軸方向他方(図では下方)へ向けて内周筒部14bを一体成形するとともに平面部14aの外周端部に同じく軸方向他方へ向けて外周筒部14cを一体成形したもので、外周筒部14cの軸方向他方の端部が多板式のクラッチ20を押圧するための押圧部14dとされる。また、内周筒部14bの内周面であって軸方向他方の端部にゴム状弾性体よりなるリップ状のシール15が接着されるとともに外周筒部14cの外周面であって軸方向一方の端部にも同じくゴム状弾性体よりなるリップ状のシール15が接着され、これらのシール15は、供給ポート16から供給ポート16およびピストン14間の加圧室13aへ供給される作動油(油圧)をシールするために設けられている。 The piston 14 is made of a metal ring, and an inner peripheral cylindrical portion 14b is integrally formed on the inner peripheral end portion of the annular flat surface portion 14a toward the other axial direction (downward in the drawing), and the same shaft is connected to the outer peripheral end portion of the flat portion 14a. The outer peripheral cylindrical portion 14c is integrally molded toward the other direction, and the other end in the axial direction of the outer peripheral cylindrical portion 14c serves as a pressing portion 14d for pressing the multi-plate clutch 20. In addition, a lip-shaped seal 15 made of a rubber-like elastic body is adhered to the inner peripheral surface of the inner peripheral cylindrical portion 14b and the other end portion in the axial direction. Similarly, a lip-shaped seal 15 made of a rubber-like elastic body is bonded to the end of each of the hydraulic oils, and these seals 15 are hydraulic oil supplied from the supply port 16 to the pressurizing chamber 13a between the supply port 16 and the piston 14 ( It is provided to seal (hydraulic).
 ピストン14はこのように金属環にゴム状弾性体よりなるシール15を加硫接着したものであるので、その構造ないし機能からして「ボンデットピストン」または「ボンデッドピストンシール(BPS)」とも称される。 Since the piston 14 is obtained by vulcanizing and bonding the seal 15 made of a rubber-like elastic body to the metal ring in this way, it is also called “bonded piston” or “bonded piston seal (BPS)” because of its structure or function. Called.
 一方、ピストン受け部材17はこれも金属環にゴム状弾性体よりなるシール21を加硫接着したもので、またピストン受け部材17およびピストン14間の背圧室13bにおいて圧力をキャンセルする作用を奏するので、その構造ないし機能からして「ボンデットキャンセラー」または「ボンデッドキャンセラーシール(BCS)」とも称される。 On the other hand, the piston receiving member 17 is also formed by vulcanizing and bonding a seal 21 made of a rubber-like elastic body to a metal ring, and has an effect of canceling the pressure in the back pressure chamber 13b between the piston receiving member 17 and the piston 14. Therefore, it is also called “bonded canceller” or “bonded canceller seal (BCS)” because of its structure or function.
 上記供給ポート16およびピストン14間の加圧室13aに環状の仕切り部材22が設置され、この仕切り部材22によって加圧室13aが供給ポート16および仕切り部材22間の第1室13cと、仕切り部材22およびピストン14間の第2室13dとに仕切られている。このため仕切り部材22は図2(A)に示すように、環状の平面部22aの外周端部に軸方向一方へ向けて環状の凸部22bを設けた形状とされ、平面部22aの内周面をもって加圧室13aの内周壁面に密接するとともに凸部22bの先端面をもって加圧室13aの軸方向一方の端面に密接する。また、この仕切り部材22はシールワッシャー23をもってシリンダ室13の内周壁面に取り付けられるもので、このためシリンダ室13の内周壁面にはシールワッシャー23を係合するための溝部24が設けられている。仕切り部材22は金属や硬質樹脂などの剛材によって成形されている。 An annular partition member 22 is installed in the pressurizing chamber 13 a between the supply port 16 and the piston 14, and the partition member 22 causes the pressurizing chamber 13 a to be separated from the first chamber 13 c between the supply port 16 and the partition member 22, and the partition member. 22 and a second chamber 13d between the piston 14. Therefore, as shown in FIG. 2 (A), the partition member 22 has a shape in which an annular convex portion 22b is provided toward the axial direction one side at the outer peripheral end of the annular flat portion 22a, and the inner periphery of the flat portion 22a. The surface is in close contact with the inner peripheral wall surface of the pressurizing chamber 13a, and the tip end surface of the convex portion 22b is in close contact with one end surface in the axial direction of the pressurizing chamber 13a. The partition member 22 is attached to the inner peripheral wall surface of the cylinder chamber 13 with a seal washer 23. Therefore, a groove portion 24 for engaging the seal washer 23 is provided on the inner peripheral wall surface of the cylinder chamber 13. Yes. The partition member 22 is formed of a rigid material such as metal or hard resin.
 また、図2(B)に示すように仕切り部材22には、作動油を第1室13cから第2室13dへ通過させるための透孔25が設けられ、透孔25は、仕切り部材22の円周上に複数が設けられ、装着状態において供給ポート16から遠くに設けられるほど開口断面積が大きく設定されている。 Further, as shown in FIG. 2B, the partition member 22 is provided with a through hole 25 for allowing the hydraulic oil to pass from the first chamber 13c to the second chamber 13d. A plurality of openings are provided on the circumference, and the opening cross-sectional area is set to be larger as they are provided farther from the supply port 16 in the mounted state.
 また、透孔25は、供給ポート16に対して最も近い位置に配置される第1透孔25Aと、供給ポート16に対して最も遠い位置に配置される第2透孔25Bと、第1透孔25Aおよび第2透孔25B間に配置される中間の透孔25C~25Hとを仕切り部材22の円周上に備え、第1透孔25A、中間の透孔25C~25hおよび第2透孔25Bの順に開口断面積が大きく設定されている。 The through hole 25 includes a first through hole 25A disposed at a position closest to the supply port 16, a second through hole 25B disposed at a position farthest from the supply port 16, and a first through hole. Intermediate through holes 25C to 25H arranged between the hole 25A and the second through hole 25B are provided on the circumference of the partition member 22, and the first through hole 25A, the intermediate through holes 25C to 25h, and the second through hole are provided. The opening cross-sectional area is set larger in the order of 25B.
 また、透孔25は、供給ポート16に対して最も近い位置に配置される第1透孔25Aと、供給ポート16に対して最も遠い位置に配置される第2透孔25Bと、第1透孔25Aおよび第2透孔25B間に配置される中間の透孔25C~25Hとを仕切り部材22の円周上に備え、これらのうち第1透孔25Aおよび第2透孔25Bは仕切り部材22の円周上180度対称位置に配置され、中間の透孔25C~25hはその配置および開口断面積の大きさが第1透孔25Aおよび第2透孔25Bを結ぶ仕切り部材22の直径線dを線対称の中心線として線対称に設定されている。 The through hole 25 includes a first through hole 25A disposed at a position closest to the supply port 16, a second through hole 25B disposed at a position farthest from the supply port 16, and a first through hole. Intermediate through holes 25C to 25H arranged between the hole 25A and the second through hole 25B are provided on the circumference of the partition member 22, and among these, the first through hole 25A and the second through hole 25B are the partition member 22. The intermediate through-holes 25C to 25h are arranged at 180 ° symmetrical positions on the circumference, and the size and size of the opening cross-sectional area of the partition member 22 connecting the first through-hole 25A and the second through-hole 25B are d. Is set to be line symmetric with respect to the center line of line symmetry.
 更にまた、透孔25は、図では8つの透孔が円周上等間隔で等配状に設けられ、その内訳は、第1透孔25Aから右回りに第3透孔25C、第4透孔25D、第5透孔25Eを経て第2透孔25Bとされるとともに第1透孔25Aから左回りに第6透孔25F、第7透孔25Gおよび第8透孔25Hを経て第2透孔25Bとされ、これらのうち、第3透孔25Cおよび第6透孔25Fの開口断面積は互いに同じ大きさに設定されるとともに第1透孔25Aよりも大きく設定され、第4透孔25Dおよび第7透孔25Gの開口断面積は互いに同じ大きさに設定されるとともに第3透孔25Cおよび第6透孔25Fよりも大きく設定され、第5透孔25Eおよび第8透孔25Hの開口断面積は互いに同じ大きさに設定されるとともに第4透孔25Dおよび第7透孔25Gよりも大きく設定され、第2透孔25Bの開口断面積は第5透孔25Eおよび第8透孔25Hよりも大きく設定されている。したがって8つの透孔は、第1透孔25A、第3透孔25Cおよび第6透孔25F、第4透孔25Dおよび第7透孔25G、第5透孔25Eおよび第8透孔25H、ならびに第2透孔25Bの順に5段階に亙って開口断面積が徐々に大きく設定されている。 Furthermore, in the drawing, the eight through holes are provided at equal intervals on the circumference in the figure, and the breakdown is the third through hole 25C and the fourth through hole clockwise from the first through hole 25A. The second through hole 25B passes through the hole 25D and the fifth through hole 25E, and the second through hole passes through the sixth through hole 25F, the seventh through hole 25G, and the eighth through hole 25H counterclockwise from the first through hole 25A. Among these holes, the third through hole 25C and the sixth through hole 25F have the same opening cross-sectional area and are set larger than the first through hole 25A, and the fourth through hole 25D. And the opening cross-sectional areas of the seventh through holes 25G are set to be the same size and larger than the third through holes 25C and the sixth through holes 25F, and the fifth through holes 25E and the eighth through holes 25H are opened. The cross-sectional areas are set to the same size and the fourth through hole 2 It is set larger than D and the seventh through hole 25G, the opening cross-sectional area of the second hole 25B is set to be larger than the fifth hole 25E and the eighth through hole 25H. Accordingly, the eight through holes are the first through hole 25A, the third through hole 25C and the sixth through hole 25F, the fourth through hole 25D and the seventh through hole 25G, the fifth through hole 25E and the eighth through hole 25H, and The opening cross-sectional area is gradually increased over five stages in the order of the second through holes 25B.
 上記構成を備えるピストン装置11は、図1(A)に示したクラッチOFFの状態を初動位置とされ、この状態で、供給ポート16から高圧の作動油が供給されると、供給された作動油は仕切り部材22によって一旦、第1室13cに蓄えられ、仕切り部材22に設けた透孔25A~25Hを経由して第2室13dのほうへ供給される。透孔25A~25Hは、仕切り部材22の円周上に複数が設けられ、供給ポート16から遠くに設けられるほど開口断面積が大きく設定されているため、油圧が環状のピストン14に対しその円周上均等に作用しやすくなる。したがって供給ポート16がシリンダ室13の円周上1箇所のみに設置されている場合であっても、ピストン14が図4に示したように傾斜作動するのを抑制することができる。 In the piston device 11 having the above-described configuration, the clutch OFF state shown in FIG. 1A is set to the initial operation position. When high pressure hydraulic oil is supplied from the supply port 16 in this state, the supplied hydraulic oil is supplied. Is temporarily stored in the first chamber 13c by the partition member 22, and supplied to the second chamber 13d via the through holes 25A to 25H provided in the partition member 22. A plurality of through holes 25A to 25H are provided on the circumference of the partition member 22, and the opening cross-sectional area is set larger as the distance from the supply port 16 increases. It becomes easy to work evenly on the circumference. Therefore, even when the supply port 16 is installed only at one location on the circumference of the cylinder chamber 13, it is possible to suppress the piston 14 from tilting as shown in FIG.
 また、上記構成では、8つの透孔25A~25Hによって多段式(5段階)構造の作動油供給ルートが設定されるため、ピストン14の姿勢を多数の箇所において制御することが可能とされ、8つの透孔25A~25Hによって線対称構造の作動油供給ルートが設定されるため、ピストン14が線対称の中心線(仕切り部材22の直径線d)と交差する方向に傾斜しようとするのを抑制することが可能とされる。したがってピストン14の姿勢を一層安定化することができる。 In the above configuration, since the hydraulic oil supply route having a multistage (five-stage) structure is set by the eight through holes 25A to 25H, the posture of the piston 14 can be controlled at a number of locations. Since the hydraulic oil supply route having a line-symmetric structure is set by the two through holes 25A to 25H, the piston 14 is prevented from inclining in a direction crossing the line-symmetrical center line (diameter line d of the partition member 22). It is possible to do. Therefore, the posture of the piston 14 can be further stabilized.
 また、上記構成では、仕切り部材22がシールワッシャー23をもってシリンダ室13の内周壁面に取り付けられるため、仕切り部材22をシールワッシャー23をもってシリンダ室13の内周壁面に容易に取り付けることが可能とされ、また、シールワッシャー23および仕切り部材22を取り付けるスペースがあれば既存のピストン装置に対しても本発明の構造を組み込むことが可能とされている。 In the above configuration, since the partition member 22 is attached to the inner peripheral wall surface of the cylinder chamber 13 with the seal washer 23, the partition member 22 can be easily attached to the inner peripheral wall surface of the cylinder chamber 13 with the seal washer 23. In addition, if there is a space for attaching the seal washer 23 and the partition member 22, the structure of the present invention can be incorporated into an existing piston device.
 尚、上記実施例では、透孔25の数を8つとしたが、これは単なる例示であって、透孔25の数は7つ以下または9つ以上であっても良い。 In the above embodiment, the number of the through holes 25 is eight. However, this is merely an example, and the number of the through holes 25 may be seven or less, or nine or more.
 また、上記実施例では、仕切り部材22を加圧室13aの内周壁面や端面に直接接触させることにしたが、両者の間にゴム状弾性体よりなるシール(図示せず)を介在させることによりシール性を高めるようにしても良い。この場合、シールはこれを仕切り部材22に対し予め接着するのが好ましい。 Moreover, in the said Example, although the partition member 22 decided to contact the inner peripheral wall surface and end surface of the pressurization chamber 13a directly, interposing the seal | sticker (not shown) which consists of rubber-like elastic bodies between both. Therefore, the sealing property may be improved. In this case, the seal is preferably bonded in advance to the partition member 22.
 11 ピストン装置
 12 ハウジング
 13 シリンダ室
 13a 加圧室
 13b 背圧室
 13c 第1室
 13d 第2室
 14 ピストン
 14a,22a 平面部
 14b 内周筒部
 14c 外周筒部
 14d 押圧部
 15,21 シール
 16 供給ポート
 17 ピストン受け部材
 18 ワッシャー
 19 リターンスプリング
 20 クラッチ
 22 仕切り部材
 22b 凸部
 23 シールワッシャー
 24 溝部
 25,25A~25G 透孔
 d 仕切り部材の直径線
DESCRIPTION OF SYMBOLS 11 Piston apparatus 12 Housing 13 Cylinder chamber 13a Pressurization chamber 13b Back pressure chamber 13c 1st chamber 13d 2nd chamber 14 Piston 14a, 22a Plane part 14b Inner peripheral cylinder part 14c Outer periphery cylinder part 14d Press part 15,21 Seal 16 Supply port 17 Piston receiving member 18 Washer 19 Return spring 20 Clutch 22 Partition member 22b Protruding portion 23 Seal washer 24 Groove portion 25, 25A to 25G Through hole d Diameter line of partition member

Claims (5)

  1.  環状のシリンダ室に環状のピストンが挿入されるとともに前記シリンダ室の円周上1箇所に前記ピストンを作動させる作動油を供給する供給ポートが設けられている構造であって、
    前記ピストンと前記供給ポートとの間に環状の仕切り部材が設置され、
    前記仕切り部材に、前記作動油を通過させる透孔が設けられ、
    前記透孔は、前記仕切り部材の円周上に複数が設けられ、前記供給ポートから遠くに設けられるほど開口断面積が大きく設定されていることを特徴とするピストンの姿勢制御構造。
    An annular piston is inserted into the annular cylinder chamber, and a supply port for supplying hydraulic oil for operating the piston is provided at one place on the circumference of the cylinder chamber,
    An annular partition member is installed between the piston and the supply port,
    The partition member is provided with a through hole through which the hydraulic oil passes.
    A plurality of the through holes are provided on the circumference of the partition member, and an opening cross-sectional area is set so as to be farther from the supply port.
  2.  請求項1記載のピストン姿勢制御構造において、
    前記透孔は、前記供給ポートに対し最も近い位置に配置される第1透孔と、前記供給ポートに対し最も遠い位置に配置される第2透孔と、前記第1透孔および第2透孔間に配置される中間の透孔とを前記仕切り部材の円周上に備え、
    前記第1透孔、中間の透孔および第2透孔の順に開口断面積が大きく設定されていることを特徴とするピストンの姿勢制御構造。
    In the piston attitude control structure according to claim 1,
    The through holes include a first through hole disposed closest to the supply port, a second through hole disposed farthest from the supply port, the first through hole, and the second through hole. An intermediate through hole disposed between the holes is provided on the circumference of the partition member,
    A piston posture control structure, wherein an opening cross-sectional area is set larger in the order of the first through hole, the intermediate through hole, and the second through hole.
  3.  請求項2記載のピストン姿勢制御構造において、
    前記第1透孔および第2透孔は前記仕切り部材の円周上180度対称位置に配置され、
    前記中間の透孔は、前記第1透孔および第2透孔を結ぶ前記仕切り部材の直径線を線対称の中心線として線対称に設定されていることを特徴とするピストンの姿勢制御構造。
    In the piston attitude control structure according to claim 2,
    The first through hole and the second through hole are arranged at 180 ° symmetrical positions on the circumference of the partition member;
    2. The piston attitude control structure according to claim 1, wherein the intermediate through hole is set in line symmetry with a diameter line of the partition member connecting the first through hole and the second through hole as a center line of line symmetry.
  4.  請求項1ないし3の何れかに記載したピストン姿勢制御構造において、
    前記仕切り部材は、シールワッシャーをもって前記シリンダ室の内周壁面に取り付けられることを特徴とするピストンの姿勢制御構造。
    In the piston attitude control structure according to any one of claims 1 to 3,
    The piston posture control structure, wherein the partition member is attached to an inner peripheral wall surface of the cylinder chamber with a seal washer.
  5.  請求項1ないし4の何れかに記載したピストン姿勢制御構造において、
    前記ピストンは、自動変速機に組み込まれてクラッチの断続を切り替えるために用いられる自動変速機用ピストンであることを特徴とするピストンの姿勢制御構造。
    In the piston attitude control structure according to any one of claims 1 to 4,
    The piston is a piston for an automatic transmission that is incorporated in an automatic transmission and used for switching the engagement / disengagement of a clutch.
PCT/JP2015/074563 2014-09-05 2015-08-31 Piston orientation control structure WO2016035723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507942A JP6632520B2 (en) 2014-09-05 2015-08-31 Piston attitude control structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181111 2014-09-05
JP2014-181111 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035723A1 true WO2016035723A1 (en) 2016-03-10

Family

ID=55439786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074563 WO2016035723A1 (en) 2014-09-05 2015-08-31 Piston orientation control structure

Country Status (2)

Country Link
JP (1) JP6632520B2 (en)
WO (1) WO2016035723A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3063142U (en) * 1999-04-16 1999-10-19 友大科技工業股▲ふん▼有限公司 Equalizing type substrate surface treatment structure
JP2007147093A (en) * 2005-11-24 2007-06-14 Kobe Steel Ltd Thermal storage type heat supply device
JP2010190278A (en) * 2009-02-17 2010-09-02 Nok Corp Annular partition part of hydraulic clutch device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3063142U (en) * 1999-04-16 1999-10-19 友大科技工業股▲ふん▼有限公司 Equalizing type substrate surface treatment structure
JP2007147093A (en) * 2005-11-24 2007-06-14 Kobe Steel Ltd Thermal storage type heat supply device
JP2010190278A (en) * 2009-02-17 2010-09-02 Nok Corp Annular partition part of hydraulic clutch device

Also Published As

Publication number Publication date
JP6632520B2 (en) 2020-01-22
JPWO2016035723A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
KR101808995B1 (en) Cooling channel cover and piston provided with a cooling channel cover
US9851015B2 (en) Pilot-operated pressure relief valve with lateral pressure connection
US9441756B2 (en) Valve arrangement
US20160223047A1 (en) Electronically controlled internal damper
US9145902B2 (en) Hydraulic accumulator
US10626948B2 (en) Damper
US20190226547A1 (en) Damping Valve For A Vibration Damper
CN106402299B (en) Tensioning apparatus
US10330170B2 (en) Shock absorber
US20150276002A1 (en) Damping Valve Arrangement With A Multistage Damping Force Characteristic
WO2014002642A1 (en) Accumulator
JP2018534499A (en) Pressure limiting valve
CN104350287A (en) Master cylinder
WO2016035723A1 (en) Piston orientation control structure
US20110201433A1 (en) Device for damping vibrations
JP2015108421A (en) Fluid control valve
JP5003677B2 (en) Hydraulic accumulator
RU2639825C2 (en) Sealing device in valve and valve with such sealing device
JP2018530471A (en) Hydraulic unit
JP2008267606A (en) Non-leakage balanced valve system
JP2013100910A (en) Hydraulic clutch release device
CN113242943B (en) fluid pressure buffer
KR20180133590A (en) Automatic transmission
JP7100140B2 (en) Flow switching valve
JP6964942B2 (en) Piston mechanism of automatic transmission

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507942

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837849

Country of ref document: EP

Kind code of ref document: A1