WO2016035450A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2016035450A1
WO2016035450A1 PCT/JP2015/069596 JP2015069596W WO2016035450A1 WO 2016035450 A1 WO2016035450 A1 WO 2016035450A1 JP 2015069596 W JP2015069596 W JP 2015069596W WO 2016035450 A1 WO2016035450 A1 WO 2016035450A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
dark
fluorescence
display
unit
Prior art date
Application number
PCT/JP2015/069596
Other languages
French (fr)
Japanese (ja)
Inventor
足立 晋
木村 健士
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2016035450A1 publication Critical patent/WO2016035450A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements

Definitions

  • the present invention relates to an imaging apparatus for irradiating a fluorescent dye injected into a subject with excitation light and photographing fluorescence generated from the fluorescent dye.
  • indocyanine green as a fluorescent dye is injected into the affected area.
  • ICG indocyanine green
  • near infrared light 750 to 810 nm (nanometer) as excitation light
  • indocyanine green emits fluorescence in the near infrared region having a peak at about 850 nm.
  • This fluorescence is photographed by a camera capable of detecting near infrared light, and the image is displayed on a display unit such as a liquid crystal display panel.
  • a display unit such as a liquid crystal display panel.
  • Patent Document 1 discloses a near-infrared fluorescence intensity distribution image obtained by irradiating an indocyanine green excitation light to a living organ to which indocyanine green is administered, and indocyanine green administration. Compared with the cancer lesion distribution image obtained by applying X-rays, nuclear magnetic resonance or ultrasound to the previous test organ, it is detected by the intensity distribution image of near-infrared fluorescence, A data collection method is disclosed in which data of a region that is not detected in a cancer lesion distribution image is collected as cancer secondary lesion region data.
  • Patent Document 2 discloses that a subject to which an angiographic contrast agent is administered is alternately irradiated with excitation light and visible light, and a fluorescent image and a visible image irradiated with excitation light by an imaging unit are alternately displayed.
  • a surgical support method is disclosed in which a blood vessel image is extracted by performing threshold processing on a fluorescent image with a predetermined threshold, and a composite image in which a visible image and the extracted blood vessel image are superimposed is obtained.
  • Fluorescence from indocyanine green is very weak compared to visible light. For this reason, when photographing this fluorescence with a CMOS or CCD camera, it is necessary to take measures to increase the excitation light emitted from the excitation light source or to increase the amplification factor of the camera that photographs the excitation light. There is a need.
  • CMOS sensor when used as a camera, artifacts caused by a readout circuit are generally superimposed on the sensor output. This is caused by variations in characteristics of FETs (field effect transistors), conversion errors of built-in ADCs (analog / digital conversion circuits), and the like. Such artifacts are particularly problematic when photographing fluorescence that is weak compared to visible light.
  • FETs field effect transistors
  • ADCs analog / digital conversion circuits
  • the present invention has been made to solve the above problems, and even when photographing fluorescence, it is possible to prevent occurrence of artifacts due to the image sensor and display an accurate fluorescence image.
  • An object is to provide an imaging apparatus.
  • an excitation light source for irradiating the subject with an excitation light beam for exciting the fluorescent dye injected into the subject, and fluorescence generated from the fluorescent dye by irradiating the excitation light beam
  • An imaging device capable of capturing an image, and correcting a dark image that is an output of the imaging device in a state where the fluorescence is not incident on the imaging device in an imaging apparatus that captures a fluorescent image of the subject at a predetermined frame rate
  • An image correction unit a dark image storage unit that stores a dark image corrected by the image correction unit, and a dark image stored in the dark image storage unit from a fluorescence image captured by the imaging element;
  • an image processing unit that transmits the subtracted image as a display image to the display unit.
  • the image correction unit adds a preset offset value to the pixel value of the dark image.
  • the image correction unit adds the offset value to the pixel value of the image sensor that has captured the fluorescent image of the subject.
  • the image correction unit corrects the dark image so that the pixel value of the dark image after correction is in the vicinity of the lower end of the dynamic range of the output value of the image sensor.
  • the dark image is acquired at a constant interval with respect to an image acquired from the image sensor at a predetermined frame rate, and the dark image acquired at a constant interval is integrated and averaged. It is stored in the dark image storage unit.
  • the image processing unit includes a display image storage unit that stores the display image, and the image processing unit replaces the dark image with the display when the dark image is acquired from the imaging element.
  • the display image stored in the image storage unit is transmitted to the display unit.
  • the image processing device further includes a second imaging element capable of capturing a visible light image of the subject, and the image processing unit receives the display image and the visible image captured by the second imaging element. Send to display.
  • the fifth aspect of the invention even when the dark image changes due to a temperature change or the like, it is possible to prevent the occurrence of artifacts and display an accurate fluorescent image.
  • the sixth aspect of the invention it is possible to prevent a dark image from being mixed in an image displayed at a predetermined frame rate on the display unit, and to make a display image suitable.
  • a visible image and an accurate fluorescent image can be displayed on the display unit.
  • FIG. 1 is a schematic diagram of an imaging apparatus according to the present invention.
  • 2 is a perspective view of an illumination / photographing unit 12.
  • FIG. 2 is a schematic diagram of a camera 21.
  • FIG. It is a block diagram which shows the main control systems of the imaging device which concerns on this invention. It is explanatory drawing which shows the fundamental view of this invention. It is explanatory drawing which shows the correction method of the dark image D typically.
  • 3 is a functional block diagram of a fluorescence image processing unit 32.
  • FIG. It is a circuit diagram of an addition circuit.
  • FIG. 1 is a schematic diagram of an imaging apparatus according to the present invention.
  • the imaging apparatus includes an input unit 11 such as a touch panel, and includes a main body 10 incorporating a control unit 30 and the like described later, an illumination / photographing unit 12 supported movably by an arm 13, and a liquid crystal display panel.
  • a display unit 14 and a treatment table 16 on which a patient 17 is placed are provided.
  • the illumination / imaging unit 12 is not limited to the one supported by the arm 13, and may be carried by the surgeon in hand.
  • the display unit 14 may be a glasses-type wearable device instead of a liquid crystal display panel.
  • FIG. 2 is a perspective view of the illumination / photographing unit 12 described above.
  • the illumination / photographing unit 12 includes a camera 21 capable of detecting near-infrared rays and visible light, a visible light source 22 including a large number of LEDs disposed on the outer peripheral portion of the camera 21, and an outer peripheral portion of the visible light source 22. And an excitation light source 23 made up of a number of arranged LEDs.
  • the visible light source 22 emits visible light.
  • the excitation light source 23 irradiates near infrared light having a wavelength of 760 nm, which is excitation light for exciting indocyanine green.
  • FIG. 3 is a schematic diagram of the camera 21.
  • the camera 21 includes a movable lens 71 that reciprocates for focusing, a wavelength selection filter 53, a visible light image sensor 51, and a fluorescence image sensor 52.
  • the visible light image sensor 51 and the fluorescence image sensor 52 are composed of a CMOS or a CCD.
  • Visible light and fluorescence incident on the camera 21 coaxially along the optical axis L pass through the movable lens 71 constituting the focusing mechanism and then reach the wavelength selection filter 53.
  • visible light and fluorescence incident coaxially visible light is reflected by the wavelength selection filter 53 and enters the visible light image sensor 51.
  • the fluorescence passes through the wavelength selection filter 53 and enters the fluorescence imaging device 52.
  • the focusing mechanism including the movable lens 71, the visible light is focused on the visible light image sensor 51 and the fluorescence is focused on the fluorescence image sensor 52.
  • FIG. 4 is a block diagram showing a main control system of the imaging apparatus according to the present invention.
  • This imaging apparatus is composed of a CPU that performs logical operations, a ROM that stores operation programs necessary for controlling the apparatus, a RAM that temporarily stores data during control, and the like, and a control unit that controls the entire apparatus 30.
  • the control unit 30 synthesizes the visible image and the fluorescent image with the visible image processing unit 31 for processing the visible image, the fluorescent image processing unit 32 for processing the fluorescent image generated from indocyanine green, and the like. Image synthesizing unit 33.
  • the control unit 30 is connected to the input unit 11 and the display unit 14 described above.
  • the control unit 30 is connected to an illumination / photographing unit 12 including a camera 21, a visible light source 22, and an excitation light source 23.
  • the visible image processing unit 31 in the control unit 30 transmits a control signal to the visible light source 22 and the visible light imaging device 51 and receives an image signal of a visible image from the visible light imaging device 51.
  • the fluorescence image processing unit 32 in the control unit 30 transmits a control signal to the excitation light source 23 and the fluorescence imaging element 52 and receives an image signal of the fluorescence image from the fluorescence imaging element 52.
  • indocyanine green When performing an operation using the imaging apparatus having the above-described configuration, indocyanine green is injected into the patient 17 who is supine on the treatment table 16 by injection. Then, near infrared rays are emitted from the excitation light source 23 toward the subject including the affected part, and visible light is emitted from the visible light source 22. As the near infrared light emitted from the excitation light source 23, as described above, 760 nm near infrared light acting as excitation light for indocyanine green to emit fluorescence is employed. As a result, indocyanine green generates fluorescence in the near infrared region having a peak at about 850 nm.
  • the camera 21 captures the vicinity of the affected part of the patient 17.
  • the camera 21 can detect fluorescence and visible light.
  • An image obtained by irradiating the patient 17 with visible light and photographing this with the camera 21 becomes a visible image
  • an image obtained by irradiating the patient 17 with near-infrared light and photographing fluorescence from indocyanine green with the camera 21 is a fluorescent image.
  • a fluorescent image captured by the camera 21 at a predetermined frame rate is processed by the fluorescent image processing unit 32
  • a visible image captured by the camera 21 at a predetermined frame rate is processed by the visible image processing unit 31.
  • the processed fluorescence image data and visible image data are synthesized by the image synthesis unit 33 to create a fusion image in which the visible image and the fluorescence image are fused.
  • a fluorescent image, a visible image, and a fusion image are displayed simultaneously or selectively in divided areas.
  • artifacts caused by the readout circuit are generally superimposed on the images photographed by the visible light image sensor 51 and the fluorescence image sensor 52.
  • the presence of this artifact becomes a problem when the signal amplification factor of the fluorescence imaging element 52 is increased, particularly when photographing fluorescence from indocyanine green which is much weaker than visible light.
  • the fluorescence image processing unit 32 corrects and stores the dark image that is the output of the fluorescence imaging element 52 in a state where the fluorescence is not incident on the fluorescence imaging element 52, and stores the fluorescence image.
  • the corrected dark image is solved.
  • FIG. 5 is an explanatory diagram showing the basic concept of the present invention.
  • the fluorescence imaging device 52 receives the control signal from the fluorescence image processing unit 32 and acquires the fluorescence image P at a predetermined frame rate. Then, for each predetermined frame, instead of the fluorescence image P, a dark image D that is an output of the fluorescence image sensor 52 in a state where no fluorescence enters the fluorescence image sensor 52 is acquired. In the embodiment shown in FIG. 5, a case where one of 10 frames is a dark image D is shown. After the dark image D is corrected, the corrected dark image D is subtracted from the fluorescent image P. Note that the fluorescent image P and the dark image D are used after recursive computation, as will be described later.
  • FIG. 6 is an explanatory diagram schematically showing a method of correcting the dark image D.
  • the horizontal axis indicates a predetermined area of the fluorescence imaging element 52
  • the vertical axis indicates the pixel value of the dark image D in that area.
  • a preset offset value is added to the pixel value of the dark image D using an adder circuit described later, as shown in FIG. A correction configuration is adopted.
  • the extent to which the negative region in the pixel value of the dark image D is eliminated, that is, the pixel value of the corrected dark image D is equal to the image sensor for fluorescence.
  • the configuration in which the dark image D is corrected so as to be near the lower end of the dynamic range of the output value of 52 is employed. This offset value may be set when the apparatus is activated, or may be changed over time at regular intervals.
  • the dark image D in this specification is an output of the fluorescence imaging element 52 in a state where no fluorescence is incident on the fluorescence imaging element 52.
  • the dark image D may be an output of the fluorescence imaging element 52 when the excitation light source 23 is turned off, or may be an output of the fluorescence imaging element 52 when the fluorescence is blocked by a shutter or the like.
  • a state in which fluorescence is not incident electronically may be created by setting the exposure time (charge accumulation time) of the fluorescence imaging element 52 to zero.
  • This dark image D may be one frame of data, or may be a simple addition average or a weighted addition average of a plurality of frames of data.
  • FIG. 7 is a functional block diagram of the fluorescent image processing unit 32 described above.
  • the fluorescent image processing unit 32 includes an image memory 44 for storing the dark image D, an image memory 45 for storing the fluorescent image after dark image subtraction, computing units 41, 42, and 43, and a bus controller 46. With.
  • the computing units 41, 42, 43 and the bus controller 46 are connected by a data bus 47.
  • FIG. 8 shows a circuit of an adding circuit as an image correcting unit according to the present invention that generates a corrected dark image D and fluorescent image P by adding a preset offset value to the output from the fluorescence imaging device 52.
  • This adding circuit adds an offset value to the dark image D by adding the offset voltage Vr to the output voltage Vsig from the fluorescent imaging device 52, as shown in FIG. This is for adding a similar offset value to the fluorescent image P.
  • the addition circuit includes an addition amplifier 65, an A / D converter 66, a D / A converter 67, and a switch 61 that closes to the Vsig side when receiving the output voltage Vsig from the fluorescence imaging element 52.
  • a switch 68 that is closed from the D / A converter 67 to the offset voltage output (Vr) side, a reset switch 62, and capacitors 63, 64, and 69 are provided.
  • the offset voltage Vr is added from the D / A converter 67 to the output voltage Vsig from the fluorescence imaging element 52, and then the added voltage is converted into a pixel value by the A / D converter 66. It has a configuration for outputting as data. Note that only one adder circuit may be provided for the fluorescence image sensor 52, and a plurality of adder circuits are built in and integrated for each signal readout row (or readout column) inside the fluorescence image sensor 52. It may be arranged.
  • the offset value is added to both the dark image D and the fluorescence image P output from the fluorescence image sensor 52.
  • the fluorescence image P can be displayed on the display unit 14 with the same brightness.
  • the addition of the offset value to the fluorescent image may be omitted.
  • the corrected dark image is stored in the image memory 44 shown in FIG.
  • the corrected dark image is a dark image after the offset value is added by the adding circuit shown in FIG.
  • the image memory 44 stores a dark image Dn that is integrated and averaged from the newly acquired dark image D and the previously acquired dark image [Dn ⁇ 1] according to the following equation (1).
  • is a coefficient that is greater than 0 and equal to or less than 1. This calculation is executed by the calculator 41.
  • Dn ⁇ D + (1 ⁇ ) ⁇ [Dn ⁇ 1] (1)
  • the computing unit 43 subtracts the dark image Dn stored in the image memory 44 from the fluorescent image P acquired by the fluorescent imaging element 52 as shown in the following equation (2), thereby displaying the display image Q.
  • Create The display image Q is sent to the display unit 14 via the image composition unit 33. As a result, it is possible to display an accurate fluorescent image in which artifacts due to the readout circuit of the fluorescent imaging element 52 are prevented.
  • Q P ⁇ Dn (2)
  • the image memory 45 stores the newly acquired display image Q and the display image [Qn ⁇ 1] acquired in the past after the recursive calculation according to the following equation (3).
  • a display image Qn is stored.
  • is a coefficient that is greater than 0 and equal to or less than 1. This calculation is executed by the calculator 42.
  • Qn ⁇ Q + (1- ⁇ ) ⁇ [Qn-1] (3)
  • the fluorescent image processing unit 32 displays the recursive display image Qn stored in the image memory 45 instead of the dark image D on the display unit 14.
  • the fluorescence imaging element 52 acquires the fluorescence image P at a predetermined frame rate, and acquires the dark image D instead of the fluorescence image P every predetermined frame.
  • the display image Qn after recursive stored in the image memory 45 instead of the dark image D is transmitted to the display unit 14, It is possible to prevent the dark image D from being mixed in the image displayed at the predetermined frame rate on the display unit 14 and to make the display image suitable.
  • this recursive calculation may be omitted.
  • a light source that emits near-infrared light having a wavelength of 760 nm is used as the excitation light source 23.
  • excitation light is obtained by exciting indocyanine green.
  • Those that irradiate near-infrared light having a wavelength of about 750 nm to 810 nm capable of generating light can be used.
  • indocyanine green is used as a material containing a fluorescent dye, and the indocyanine green is irradiated with near-infrared light of 760 nm as excitation light, so that it is approximately 850 nm from indocyanine green.
  • near-infrared light of 760 nm as excitation light, so that it is approximately 850 nm from indocyanine green.
  • light other than near-infrared light may be used.
  • 5-ALA (5-aminolevulinic acid / 5-aminolevulinic acid) can be used as a fluorescent dye.
  • 5-ALA When 5-ALA is used, 5-ALA that has entered the body of the patient 17 changes to a protoporphyrin IX / PpIX that is a fluorescent substance.
  • visible light of about 400 nm When visible light of about 400 nm is irradiated toward the protoporphyrin, red visible light is irradiated as fluorescence from the protoporphyrin. Therefore, when 5-ALA is used, an excitation light source that emits visible light having a wavelength of about 400 nm may be used, and a light source for confirmation emits fluorescence from protoporphyrin. What irradiates red visible light to be used may be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A fluorescent image processing unit (32) corrects and stores a dark image which is output from a fluorescence imaging element (52) without fluorescence impinging on the fluorescence imaging element (52), and subtracts the corrected dark image from a fluorescent image captured by the fluorescence imaging element (52).

Description

イメージング装置Imaging device
 この発明は、被写体に注入された蛍光色素に対して励起光を照射し、蛍光色素から発生した蛍光を撮影するイメージング装置に関する。 The present invention relates to an imaging apparatus for irradiating a fluorescent dye injected into a subject with excitation light and photographing fluorescence generated from the fluorescent dye.
 近年、近赤外蛍光イメージングと呼称される手法が外科手術に利用されている。この近赤外蛍光イメージングにおいては、蛍光色素としてのインドシアニングリーン(ICG)を患部に注入する。そして、このインドシアニングリーンに750~810nm(ナノメータ)の近赤外光を励起光として照射すると、インドシアニングリーンはおおよそ850nmをピークとする近赤外領域の蛍光を発する。この蛍光を、近赤外光を検出可能なカメラで撮影し、その画像を液晶表示パネル等の表示部に表示する。この近赤外蛍光イメージングによれば、体表から20mm程度までの深さに存在する血管やリンパ管等の観察が可能となる。 In recent years, a technique called near-infrared fluorescence imaging has been used for surgery. In this near-infrared fluorescence imaging, indocyanine green (ICG) as a fluorescent dye is injected into the affected area. When indocyanine green is irradiated with near infrared light of 750 to 810 nm (nanometer) as excitation light, indocyanine green emits fluorescence in the near infrared region having a peak at about 850 nm. This fluorescence is photographed by a camera capable of detecting near infrared light, and the image is displayed on a display unit such as a liquid crystal display panel. According to this near-infrared fluorescence imaging, it is possible to observe blood vessels, lymph vessels, and the like existing at a depth of about 20 mm from the body surface.
 特許文献1には、インドシアニングリーンが投与された生体の被検臓器に対して、インドシアニングリーンの励起光を照射して得られた、近赤外蛍光の強度分布イメージと、インドシアニングリーン投与前の被検臓器に対して、X線、核磁気共鳴または超音波を作用させて得られた、癌病巣分布イメージと、を比較し、近赤外蛍光の強度分布イメージで検出されるが、癌病巣分布イメージでは検出されない領域のデータを、癌の副病巣領域データとして収集するデータ収集方法が開示されている。 Patent Document 1 discloses a near-infrared fluorescence intensity distribution image obtained by irradiating an indocyanine green excitation light to a living organ to which indocyanine green is administered, and indocyanine green administration. Compared with the cancer lesion distribution image obtained by applying X-rays, nuclear magnetic resonance or ultrasound to the previous test organ, it is detected by the intensity distribution image of near-infrared fluorescence, A data collection method is disclosed in which data of a region that is not detected in a cancer lesion distribution image is collected as cancer secondary lesion region data.
 また、特許文献2には、血管造影剤が投与された被検体に対して励起光と可視光とを交互に照射し、撮像手段によって励起光が照射された蛍光画像と可視画像とを交互に取得するとともに、蛍光画像を所定の閾値により閾値処理して血管画像を抽出し、可視画像と抽出した血管画像を重畳させた合成画像を作成する手術支援方法が開示されている。 Patent Document 2 discloses that a subject to which an angiographic contrast agent is administered is alternately irradiated with excitation light and visible light, and a fluorescent image and a visible image irradiated with excitation light by an imaging unit are alternately displayed. A surgical support method is disclosed in which a blood vessel image is extracted by performing threshold processing on a fluorescent image with a predetermined threshold, and a composite image in which a visible image and the extracted blood vessel image are superimposed is obtained.
国際公開第2009/139466号公報International Publication No. 2009/139466 特開2009-226072号公報JP 2009-226072 A
 インドシアニングリーンからの蛍光は、可視光に比べて非常に微弱である。このため、この蛍光をCMOSやCCDカメラにより撮影する場合には、励起用光源から照射する励起光を強くするという対応を取るか、励起光を撮影するカメラの増幅率を大きくするという対応を取る必要がある。 Fluorescence from indocyanine green is very weak compared to visible light. For this reason, when photographing this fluorescence with a CMOS or CCD camera, it is necessary to take measures to increase the excitation light emitted from the excitation light source or to increase the amplification factor of the camera that photographs the excitation light. There is a need.
 しかしながら、励起光を強くした場合には、消費電力が多くなるばかりではなく、撮影時の発熱量が多くなるという問題を生ずる。一方、カメラの増幅率を大きくした場合には、カメラ特有の固定パターンまで増幅してしまい、アーチファクトが発生するという問題を生ずる。 However, when the excitation light is strengthened, there is a problem that not only the power consumption increases, but also the amount of heat generated during photographing increases. On the other hand, when the amplification factor of the camera is increased, a fixed pattern peculiar to the camera is amplified, resulting in a problem that an artifact is generated.
 例えば、カメラとしてCMOSセンサを使用した場合には、センサの出力には、一般的に読み出し回路に起因するアーチファクトが重畳する。この原因は、FET(電界効果トランジスタ)の特性のばらつきや、内蔵されているADC(アナログデジタル変換回路)の変換誤差等である。このようなアーチファクトは、可視光に比べて微弱である蛍光を撮影する場合に特に問題となる。 For example, when a CMOS sensor is used as a camera, artifacts caused by a readout circuit are generally superimposed on the sensor output. This is caused by variations in characteristics of FETs (field effect transistors), conversion errors of built-in ADCs (analog / digital conversion circuits), and the like. Such artifacts are particularly problematic when photographing fluorescence that is weak compared to visible light.
 この発明は上記課題を解決するためになされたものであり、蛍光を撮影する場合であっても、撮像素子に起因するアーチファクトの発生を防止して、正確な蛍光画像を表示することが可能なイメージング装置を提供することを目的とする。 The present invention has been made to solve the above problems, and even when photographing fluorescence, it is possible to prevent occurrence of artifacts due to the image sensor and display an accurate fluorescence image. An object is to provide an imaging apparatus.
 第1の発明では、被写体に注入された蛍光色素を励起させるための励起光線を、前記被写体に向けて照射する励起用光源と、励起光線が照射されることにより前記蛍光色素から発生する蛍光を撮像可能な撮像素子と、を備え、前記被写体の蛍光画像を所定のフレームレートで撮影するイメージング装置において、前記撮像素子に前記蛍光が入射しない状態における前記撮像素子の出力であるダーク画像を補正する画像補正部と、前記画像補正部により補正されたダーク画像を記憶するダーク画像記憶部と、前記撮像素子で撮像した蛍光の画像から前記ダーク画像記憶部に記憶されたダーク画像を減算するとともに、減算後の画像を表示用画像として表示部に送信する画像処理部と、を備えたことを特徴とする。 In the first aspect of the invention, an excitation light source for irradiating the subject with an excitation light beam for exciting the fluorescent dye injected into the subject, and fluorescence generated from the fluorescent dye by irradiating the excitation light beam An imaging device capable of capturing an image, and correcting a dark image that is an output of the imaging device in a state where the fluorescence is not incident on the imaging device in an imaging apparatus that captures a fluorescent image of the subject at a predetermined frame rate An image correction unit, a dark image storage unit that stores a dark image corrected by the image correction unit, and a dark image stored in the dark image storage unit from a fluorescence image captured by the imaging element; And an image processing unit that transmits the subtracted image as a display image to the display unit.
 第2の発明では、前記画像補正部は、ダーク画像の画素値に対して、予め設定したオフセット値を加算する。 In the second invention, the image correction unit adds a preset offset value to the pixel value of the dark image.
 第3の発明では、前記画像補正部は、前記被写体の蛍光画像を撮影した前記撮像素子の画素値に対して前記オフセット値を加算する。 In the third invention, the image correction unit adds the offset value to the pixel value of the image sensor that has captured the fluorescent image of the subject.
 第4の発明では、前記画像補正部は、補正後のダーク画像の画素値が、前記撮像素子の出力値のダイナミックレンジの下端近傍になるように前記ダーク画像を補正する。 In the fourth invention, the image correction unit corrects the dark image so that the pixel value of the dark image after correction is in the vicinity of the lower end of the dynamic range of the output value of the image sensor.
 第5の発明では、前記撮像素子から所定のフレームレートで取得される画像に対して一定の間隔で前記ダーク画像が取得されるとともに、一定の間隔で取得されたダーク画像が積算平均されて前記ダーク画像記憶部に記憶される。 In the fifth invention, the dark image is acquired at a constant interval with respect to an image acquired from the image sensor at a predetermined frame rate, and the dark image acquired at a constant interval is integrated and averaged. It is stored in the dark image storage unit.
 第6の発明では、前記表示用画像を記憶する表示用画像記憶部を備えるとともに、前記画像処理部は、前記撮像素子から前記ダーク画像が取得されたときに、前記ダーク画像に替えて前記表示用画像記憶部に記憶した表示用画像を前記表示部に送信する。 In a sixth aspect of the invention, the image processing unit includes a display image storage unit that stores the display image, and the image processing unit replaces the dark image with the display when the dark image is acquired from the imaging element. The display image stored in the image storage unit is transmitted to the display unit.
 第7の発明では、前記被写体の可視光画像を撮影可能な第2の撮像素子をさらに備え、前記画像処理部は、前記表示用画像と前記第2の撮像素子により撮像した可視画像とを前記表示部に送信する。 In a seventh aspect of the invention, the image processing device further includes a second imaging element capable of capturing a visible light image of the subject, and the image processing unit receives the display image and the visible image captured by the second imaging element. Send to display.
 第1から第4の発明によれば、蛍光を撮影する場合であっても、撮像素子に起因するアーチファクトの発生を防止して、正確な蛍光画像を表示することが可能となる。 According to the first to fourth aspects of the invention, even when fluorescence is photographed, it is possible to prevent occurrence of artifacts due to the image sensor and display an accurate fluorescence image.
 第5の発明によれば、温度変化等によりダーク画像に変動が生じた場合においても、アーチファクトの発生を防止して、正確な蛍光画像を表示することが可能となる。 According to the fifth aspect of the invention, even when the dark image changes due to a temperature change or the like, it is possible to prevent the occurrence of artifacts and display an accurate fluorescent image.
 第6の発明によれば、表示部に所定のフレームレートで表示する画像中にダーク画像が混在することを防止して、表示画像を好適なものとすることが可能となる。 According to the sixth aspect of the invention, it is possible to prevent a dark image from being mixed in an image displayed at a predetermined frame rate on the display unit, and to make a display image suitable.
 第7の発明によれば、可視画像と正確な蛍光画像とを表示部に表示することが可能となる。 According to the seventh aspect, a visible image and an accurate fluorescent image can be displayed on the display unit.
この発明に係るイメージング装置の概要図である。1 is a schematic diagram of an imaging apparatus according to the present invention. 照明・撮影部12の斜視図である。2 is a perspective view of an illumination / photographing unit 12. FIG. カメラ21の概要図である。2 is a schematic diagram of a camera 21. FIG. この発明に係るイメージング装置の主要な制御系を示すブロック図である。It is a block diagram which shows the main control systems of the imaging device which concerns on this invention. この発明の基本的な考え方を示す説明図である。It is explanatory drawing which shows the fundamental view of this invention. ダーク画像Dの補正方法を模式的に示す説明図である。It is explanatory drawing which shows the correction method of the dark image D typically. 蛍光画像処理部32の機能ブロック図である。3 is a functional block diagram of a fluorescence image processing unit 32. FIG. 加算回路の回路図である。It is a circuit diagram of an addition circuit.
 以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明に係るイメージング装置の概要図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an imaging apparatus according to the present invention.
 このイメージング装置は、タッチパネル等の入力部11を備え、後述する制御部30等を内蔵した本体10と、アーム13により移動可能に支持された照明・撮影部12と、液晶表示パネルから構成される表示部14と、患者17を載置する治療台16とを備える。なお、照明・撮影部12はアーム13によって支持されたものに限定されず、術者が手に携帯するものであってもよい。また、表示部14として、液晶表示パネルではなく、眼鏡型のウエアラブルデバイスを使用してもよい。 The imaging apparatus includes an input unit 11 such as a touch panel, and includes a main body 10 incorporating a control unit 30 and the like described later, an illumination / photographing unit 12 supported movably by an arm 13, and a liquid crystal display panel. A display unit 14 and a treatment table 16 on which a patient 17 is placed are provided. The illumination / imaging unit 12 is not limited to the one supported by the arm 13, and may be carried by the surgeon in hand. The display unit 14 may be a glasses-type wearable device instead of a liquid crystal display panel.
 図2は、上述した照明・撮影部12の斜視図である。 FIG. 2 is a perspective view of the illumination / photographing unit 12 described above.
 この照明・撮影部12は、近赤外線および可視光を検出可能なカメラ21と、このカメラ21の外周部に配設された多数のLEDよりなる可視光源22と、この可視光源22の外周部に配設された多数のLEDよりなる励起用光源23とを備える。可視光源22は、可視光を照射する。励起用光源23は、インドシアニングリーンを励起させるための励起光であるその波長が760nmの近赤外光を照射する。 The illumination / photographing unit 12 includes a camera 21 capable of detecting near-infrared rays and visible light, a visible light source 22 including a large number of LEDs disposed on the outer peripheral portion of the camera 21, and an outer peripheral portion of the visible light source 22. And an excitation light source 23 made up of a number of arranged LEDs. The visible light source 22 emits visible light. The excitation light source 23 irradiates near infrared light having a wavelength of 760 nm, which is excitation light for exciting indocyanine green.
 図3は、カメラ21の概要図である。 FIG. 3 is a schematic diagram of the camera 21.
 このカメラ21は、焦点合わせのために往復移動する可動レンズ71と、波長選択フィルター53と、可視光用撮像素子51と、蛍光用撮像素子52とを備える。可視光用撮像素子51と蛍光用撮像素子52とは、CMOSやCCDから構成される。カメラ21に対して、その光軸Lに沿って同軸で入射した可視光および蛍光は、焦点合わせ機構を構成する可動レンズ71を通過した後、波長選択フィルター53に到達する。同軸状に入射した可視光および蛍光のうち、可視光は、波長選択フィルター53により反射され、可視光用撮像素子51に入射する。また、同軸状の可視光および蛍光のうち、蛍光は、波長選択フィルター53を通過して蛍光用撮像素子52に入射する。このとき、可動レンズ71を含む焦点合わせ機構の作用により、可視光は可視光用撮像素子51に対して焦点合わせされ、蛍光は蛍光用撮像素子52に対して焦点合わせされる。 The camera 21 includes a movable lens 71 that reciprocates for focusing, a wavelength selection filter 53, a visible light image sensor 51, and a fluorescence image sensor 52. The visible light image sensor 51 and the fluorescence image sensor 52 are composed of a CMOS or a CCD. Visible light and fluorescence incident on the camera 21 coaxially along the optical axis L pass through the movable lens 71 constituting the focusing mechanism and then reach the wavelength selection filter 53. Of visible light and fluorescence incident coaxially, visible light is reflected by the wavelength selection filter 53 and enters the visible light image sensor 51. Of the coaxial visible light and fluorescence, the fluorescence passes through the wavelength selection filter 53 and enters the fluorescence imaging device 52. At this time, by the action of the focusing mechanism including the movable lens 71, the visible light is focused on the visible light image sensor 51 and the fluorescence is focused on the fluorescence image sensor 52.
 図4は、この発明に係るイメージング装置の主要な制御系を示すブロック図である。 FIG. 4 is a block diagram showing a main control system of the imaging apparatus according to the present invention.
 このイメージング装置は、論理演算を実行するCPU、装置の制御に必要な動作プログラムが格納されたROM、制御時にデータ等が一時的にストアされるRAM等から構成され、装置全体を制御する制御部30を備える。この制御部30は、可視画像を処理するための可視画像処理部31と、インドシアニングリーンから発生した蛍光の画像を処理するための蛍光画像処理部32と、可視画像と蛍光画像とを合成するための画像合成部33とを備える。 This imaging apparatus is composed of a CPU that performs logical operations, a ROM that stores operation programs necessary for controlling the apparatus, a RAM that temporarily stores data during control, and the like, and a control unit that controls the entire apparatus 30. The control unit 30 synthesizes the visible image and the fluorescent image with the visible image processing unit 31 for processing the visible image, the fluorescent image processing unit 32 for processing the fluorescent image generated from indocyanine green, and the like. Image synthesizing unit 33.
 この制御部30は、上述した入力部11および表示部14と接続されている。また、この制御部30は、カメラ21、可視光源22および励起用光源23を備えた照明・撮影部12と接続されている。制御部30における可視画像処理部31は、可視光源22と可視光用撮像素子51に対して制御信号を送信するとともに、可視光用撮像素子51から可視画像の画像信号を受信する。また、制御部30における蛍光画像処理部32は、励起用光源23と蛍光用撮像素子52に対して制御信号を送信するとともに、蛍光用撮像素子52から蛍光画像の画像信号を受信する。 The control unit 30 is connected to the input unit 11 and the display unit 14 described above. The control unit 30 is connected to an illumination / photographing unit 12 including a camera 21, a visible light source 22, and an excitation light source 23. The visible image processing unit 31 in the control unit 30 transmits a control signal to the visible light source 22 and the visible light imaging device 51 and receives an image signal of a visible image from the visible light imaging device 51. Further, the fluorescence image processing unit 32 in the control unit 30 transmits a control signal to the excitation light source 23 and the fluorescence imaging element 52 and receives an image signal of the fluorescence image from the fluorescence imaging element 52.
 上述した構成を有するイメージング装置を使用して手術を行う場合には、治療台16上の仰臥した患者17にインドシアニングリーンを注射により注入する。そして、患部を含む被写体に向けて、励起用光源23から近赤外線を照射するとともに可視光源22から可視光を照射する。なお、励起用光源23から照射される近赤外光としては、上述したように、インドシアニングリーンが蛍光を発するための励起光として作用する760nmの近赤外光が採用される。これにより、インドシアニングリーンは、約850nmをピークとする近赤外領域の蛍光を発生する。 When performing an operation using the imaging apparatus having the above-described configuration, indocyanine green is injected into the patient 17 who is supine on the treatment table 16 by injection. Then, near infrared rays are emitted from the excitation light source 23 toward the subject including the affected part, and visible light is emitted from the visible light source 22. As the near infrared light emitted from the excitation light source 23, as described above, 760 nm near infrared light acting as excitation light for indocyanine green to emit fluorescence is employed. As a result, indocyanine green generates fluorescence in the near infrared region having a peak at about 850 nm.
 そして、患者17の患部付近をカメラ21により撮影する。このカメラ21は、上述したように、蛍光と可視光とを検出することが可能となっている。患者17に可視光を照射し、これをカメラ21により撮影した画像が可視画像となり、患者17に近赤外光を照射し、インドシアニングリーンからの蛍光をカメラ21により撮影した画像が蛍光画像となる。カメラ21により所定のフレームレートで撮影された蛍光画像は蛍光画像処理部32により処理され、カメラ21により所定のフレームレートで撮影された可視画像は可視画像処理部31により処理される。そして、処理後の蛍光画像データと可視画像データとは、画像合成部33において合成され、可視画像と蛍光画像とが融合されたフュージョン画像が作成される。表示部14には、蛍光画像、可視画像およびフュージョン画像が、領域を分けて同時に、あるいは、選択的に表示される。 Then, the camera 21 captures the vicinity of the affected part of the patient 17. As described above, the camera 21 can detect fluorescence and visible light. An image obtained by irradiating the patient 17 with visible light and photographing this with the camera 21 becomes a visible image, and an image obtained by irradiating the patient 17 with near-infrared light and photographing fluorescence from indocyanine green with the camera 21 is a fluorescent image. Become. A fluorescent image captured by the camera 21 at a predetermined frame rate is processed by the fluorescent image processing unit 32, and a visible image captured by the camera 21 at a predetermined frame rate is processed by the visible image processing unit 31. Then, the processed fluorescence image data and visible image data are synthesized by the image synthesis unit 33 to create a fusion image in which the visible image and the fluorescence image are fused. On the display unit 14, a fluorescent image, a visible image, and a fusion image are displayed simultaneously or selectively in divided areas.
 このような構成において、可視光用撮像素子51および蛍光用撮像素子52により撮影された画像には、一般的に読み出し回路に起因するアーチファクトが重畳する。このアーチファクトの存在は、特に、可視光に比べて非常に微弱なインドシアニングリーンからの蛍光を撮影する場合において、蛍光用撮像素子52の信号の増幅率を大きくしたときに問題となる。 In such a configuration, artifacts caused by the readout circuit are generally superimposed on the images photographed by the visible light image sensor 51 and the fluorescence image sensor 52. The presence of this artifact becomes a problem when the signal amplification factor of the fluorescence imaging element 52 is increased, particularly when photographing fluorescence from indocyanine green which is much weaker than visible light.
 このため、この発明にかかるイメージング装置においては、蛍光画像処理部32において、蛍光用撮像素子52に蛍光が入射しない状態における蛍光用撮像素子52の出力であるダーク画像を補正して記憶し、蛍光用撮像素子52で撮像した蛍光の画像から補正後のダーク画像を減算することにより、上述したアーチファクトの問題を解消するようにしている。 For this reason, in the imaging apparatus according to the present invention, the fluorescence image processing unit 32 corrects and stores the dark image that is the output of the fluorescence imaging element 52 in a state where the fluorescence is not incident on the fluorescence imaging element 52, and stores the fluorescence image. By subtracting the corrected dark image from the fluorescence image picked up by the image pickup device 52, the above-described artifact problem is solved.
 図5は、この発明の基本的な考え方を示す説明図である。 FIG. 5 is an explanatory diagram showing the basic concept of the present invention.
 蛍光用撮像素子52は、蛍光画像処理部32からの制御信号を受け、所定のフレームレートで蛍光画像Pを取得する。そして、所定のフレームごとに、蛍光画像Pにかえて、蛍光用撮像素子52に蛍光が入射しない状態における蛍光用撮像素子52の出力であるダーク画像Dを取得する。図5に示す実施形態においては、10フレームのうちの1フレームをダーク画像Dとした場合を示している。そして、このダーク画像Dに対して補正を行った後、蛍光画像Pから補正後のダーク画像Dを減算するようにしている。なお、蛍光画像Pとダーク画像Dとは、後述するように、リカーシブ演算後のものが使用される。 The fluorescence imaging device 52 receives the control signal from the fluorescence image processing unit 32 and acquires the fluorescence image P at a predetermined frame rate. Then, for each predetermined frame, instead of the fluorescence image P, a dark image D that is an output of the fluorescence image sensor 52 in a state where no fluorescence enters the fluorescence image sensor 52 is acquired. In the embodiment shown in FIG. 5, a case where one of 10 frames is a dark image D is shown. After the dark image D is corrected, the corrected dark image D is subtracted from the fluorescent image P. Note that the fluorescent image P and the dark image D are used after recursive computation, as will be described later.
 図6は、ダーク画像Dの補正方法を模式的に示す説明図である。 FIG. 6 is an explanatory diagram schematically showing a method of correcting the dark image D.
 この図において、横軸は蛍光用撮像素子52の所定の領域を示し、縦軸はその領域におけるダーク画像Dの画素値を示している。一般に、ダーク画像においては、そのダークレベルがゼロとなるように設計されていることから、本来はマイナスの画素値になる領域がゼロに固定されている。このため、図6(a)においてハッチングを付した本来マイナスとなる領域の画素値が考慮されないことになる。このため、蛍光用撮像素子52で撮像した蛍光画像Pから単純にダーク画像Dを減算したとしても、アーチファクトを完全に解消することはできない。 In this figure, the horizontal axis indicates a predetermined area of the fluorescence imaging element 52, and the vertical axis indicates the pixel value of the dark image D in that area. In general, since a dark image is designed so that its dark level is zero, a region where a negative pixel value is originally fixed is zero. For this reason, the pixel values in the originally negative region hatched in FIG. 6A are not considered. For this reason, even if the dark image D is simply subtracted from the fluorescence image P captured by the fluorescence imaging element 52, the artifact cannot be completely eliminated.
 このため、この発明に係るイメージング装置においては、図6(b)に示すように、後述する加算回路を利用して、ダーク画像Dの画素値に対して、予め設定したオフセット値を加算して補正する構成を採用している。このときには、このオフセット値が過剰となることによる弊害を防止するため、ダーク画像Dの画素値における負の領域が解消する程度、すなわち、補正後のダーク画像Dの画素値が、蛍光用撮像素子52の出力値のダイナミックレンジの下端近傍になるように、ダーク画像Dを補正する構成を採用している。なお、このオフセット値は、装置の起動時に設定されてもよく、一定時間毎に経時的に変更されてもよい。 For this reason, in the imaging apparatus according to the present invention, a preset offset value is added to the pixel value of the dark image D using an adder circuit described later, as shown in FIG. A correction configuration is adopted. At this time, in order to prevent an adverse effect due to the excessive offset value, the extent to which the negative region in the pixel value of the dark image D is eliminated, that is, the pixel value of the corrected dark image D is equal to the image sensor for fluorescence. The configuration in which the dark image D is corrected so as to be near the lower end of the dynamic range of the output value of 52 is employed. This offset value may be set when the apparatus is activated, or may be changed over time at regular intervals.
 なお、この明細書におけるダーク画像Dとは、蛍光用撮像素子52に蛍光が入射しない状態における蛍光用撮像素子52の出力である。このダーク画像Dは、励起用光源23を消灯したときの蛍光用撮像素子52の出力であってもよく、シャッター等により蛍光を遮断したときの蛍光用撮像素子52の出力であってもよい。さらには、蛍光用撮像素子52の露光時間(電荷蓄積時間)をゼロにすることにより、電子的に蛍光が入射しない状態を作り出すものであってもよい。このダーク画像Dは1フレームのデータであってもよく、複数フレームのデータを単純加算平均、あるいは、重みづけして加算平均したものであってもよい。 Note that the dark image D in this specification is an output of the fluorescence imaging element 52 in a state where no fluorescence is incident on the fluorescence imaging element 52. The dark image D may be an output of the fluorescence imaging element 52 when the excitation light source 23 is turned off, or may be an output of the fluorescence imaging element 52 when the fluorescence is blocked by a shutter or the like. Furthermore, a state in which fluorescence is not incident electronically may be created by setting the exposure time (charge accumulation time) of the fluorescence imaging element 52 to zero. This dark image D may be one frame of data, or may be a simple addition average or a weighted addition average of a plurality of frames of data.
 図7は、上述した蛍光画像処理部32の機能ブロック図である。 FIG. 7 is a functional block diagram of the fluorescent image processing unit 32 described above.
 この蛍光画像処理部32は、ダーク画像Dを記憶するための画像メモリ44と、ダーク画像減算後の蛍光画像を記憶するための画像メモリ45と、演算器41、42、43と、バスコントローラ46とを備える。演算器41、42、43と、バスコントローラ46とは、データバス47により接続されている。 The fluorescent image processing unit 32 includes an image memory 44 for storing the dark image D, an image memory 45 for storing the fluorescent image after dark image subtraction, computing units 41, 42, and 43, and a bus controller 46. With. The computing units 41, 42, 43 and the bus controller 46 are connected by a data bus 47.
 図8は、蛍光用撮像素子52からの出力に対して予め設定したオフセット値を加算し、補正後のダーク画像Dと蛍光画像Pを生成するこの発明に係る画像補正部としての加算回路の回路図である。 FIG. 8 shows a circuit of an adding circuit as an image correcting unit according to the present invention that generates a corrected dark image D and fluorescent image P by adding a preset offset value to the output from the fluorescence imaging device 52. FIG.
 この加算回路は、蛍光用撮像素子52からの出力電圧Vsigにオフセット電圧Vrを加算することにより、図6に示すように、ダーク画像Dに対してオフセット値を加算するとともに、これと同様に、蛍光画像Pに対して同様のオフセット値を加算するためのものである。この加算回路は、加算アンプ65と、A/D変換器66と、D/A変換器67と、蛍光用撮像素子52からの出力電圧Vsigを受信するときにVsig側に閉じるスイッチ61と、同じくD/A変換器67からオフセット電圧出力(Vr)側に閉じるスイッチ68と、リセット用のスイッチ62と、コンデンサ63、64、69とを備える。この加算回路においては、蛍光用撮像素子52からの出力電圧Vsigに対して、D/A変換器67からオフセット電圧Vrを加算した後、加算後の電圧をA/D変換器66により画素値のデータとして出力する構成を有する。なお、この加算回路は、蛍光用撮像素子52に対して1個だけ配設してもよく、また、蛍光用撮像素子52内部の信号読み出し行(もしくは読み出し列)毎に複数個を内蔵・集積して配設してもよい。 This adding circuit adds an offset value to the dark image D by adding the offset voltage Vr to the output voltage Vsig from the fluorescent imaging device 52, as shown in FIG. This is for adding a similar offset value to the fluorescent image P. The addition circuit includes an addition amplifier 65, an A / D converter 66, a D / A converter 67, and a switch 61 that closes to the Vsig side when receiving the output voltage Vsig from the fluorescence imaging element 52. A switch 68 that is closed from the D / A converter 67 to the offset voltage output (Vr) side, a reset switch 62, and capacitors 63, 64, and 69 are provided. In this adder circuit, the offset voltage Vr is added from the D / A converter 67 to the output voltage Vsig from the fluorescence imaging element 52, and then the added voltage is converted into a pixel value by the A / D converter 66. It has a configuration for outputting as data. Note that only one adder circuit may be provided for the fluorescence image sensor 52, and a plurality of adder circuits are built in and integrated for each signal readout row (or readout column) inside the fluorescence image sensor 52. It may be arranged.
 上述した実施形態においては、蛍光用撮像素子52から出力されるダーク画像Dと蛍光画像Pの両方にオフセット値を加算している。これにより、蛍光画像Pをそのままの明るさで表示部14に表示することができる。但し、表示部14に表示される蛍光画像の輝度がある程度小さくなってもよい場合には、蛍光画像に対するオフセット値の加算を省略するようにしてもよい。 In the embodiment described above, the offset value is added to both the dark image D and the fluorescence image P output from the fluorescence image sensor 52. Thereby, the fluorescence image P can be displayed on the display unit 14 with the same brightness. However, when the luminance of the fluorescent image displayed on the display unit 14 may be reduced to some extent, the addition of the offset value to the fluorescent image may be omitted.
 以上のような構成を有するイメージング装置により画像を表示するときには、図7に示す画像メモリ44に補正後のダーク画像を保存する。この補正後のダーク画像は、図8に示す加算回路によりオフセット値を加算された後のダーク画像である。そして、画像メモリ44には、新たに取得されたダーク画像Dと過去に取得されたダーク画像[Dn-1]から、下記の式(1)により積算平均されたダーク画像Dnが保存される。なお、下記の式(1)におけるαは、0より大きく1以下となる係数である。この演算は、演算器41により実行される。
  Dn=αD+(1-α)・[Dn-1] ・・・ (1)
When an image is displayed by the imaging apparatus having the above configuration, the corrected dark image is stored in the image memory 44 shown in FIG. The corrected dark image is a dark image after the offset value is added by the adding circuit shown in FIG. The image memory 44 stores a dark image Dn that is integrated and averaged from the newly acquired dark image D and the previously acquired dark image [Dn−1] according to the following equation (1). In the following formula (1), α is a coefficient that is greater than 0 and equal to or less than 1. This calculation is executed by the calculator 41.
Dn = αD + (1−α) · [Dn−1] (1)
 そして、演算器43が、下記の式(2)で示すように、蛍光用撮像素子52により取得した蛍光画像Pから画像メモリ44に記憶されたダーク画像Dnを減算することにより、表示用画像Qを作成する。この表示用画像Qは、画像合成部33を介して表示部14に送られる。これにより、蛍光用撮像素子52の読み出し回路に起因するアーチファクトの発生を防止した、正確な蛍光画像を表示することが可能となる。
  Q=P-Dn ・・・ (2)
Then, the computing unit 43 subtracts the dark image Dn stored in the image memory 44 from the fluorescent image P acquired by the fluorescent imaging element 52 as shown in the following equation (2), thereby displaying the display image Q. Create The display image Q is sent to the display unit 14 via the image composition unit 33. As a result, it is possible to display an accurate fluorescent image in which artifacts due to the readout circuit of the fluorescent imaging element 52 are prevented.
Q = P−Dn (2)
 また、これと並行して、画像メモリ45には、新たに取得された表示用画像Qと過去に取得された表示用画像[Qn-1]から、下記の式(3)によるリカーシブ演算後の表示用画像Qnが保存される。なお、下記の式(3)におけるβは、0より大きく1以下となる係数である。この演算は、演算器42により実行される。
  Qn=βQ+(1-β)・[Qn-1] ・・・ (3)
In parallel with this, the image memory 45 stores the newly acquired display image Q and the display image [Qn−1] acquired in the past after the recursive calculation according to the following equation (3). A display image Qn is stored. In the following formula (3), β is a coefficient that is greater than 0 and equal to or less than 1. This calculation is executed by the calculator 42.
Qn = βQ + (1-β) · [Qn-1] (3)
 そして、蛍光画像処理部32は、蛍光用撮像素子52からダーク画像Dが取得されたときに、このダーク画像Dに替えて画像メモリ45に記憶したリカーシブ後の表示用画像Qnを表示部14に送信する。すなわち、図5に示すように、蛍光用撮像素子52は、所定のフレームレートで蛍光画像Pを取得するとともに、所定のフレームごとに、蛍光画像Pにかえてダーク画像Dを取得する。この場合に、蛍光用撮像素子52からダーク画像Dが取得されたときに、このダーク画像Dに替えて画像メモリ45に記憶したリカーシブ後の表示用画像Qnを表示部14に送信することにより、表示部14に所定のフレームレートで表示する画像中にダーク画像Dが混在することを防止して、表示画像を好適なものとすることが可能となる。 Then, when the dark image D is acquired from the fluorescence image sensor 52, the fluorescent image processing unit 32 displays the recursive display image Qn stored in the image memory 45 instead of the dark image D on the display unit 14. Send. That is, as shown in FIG. 5, the fluorescence imaging element 52 acquires the fluorescence image P at a predetermined frame rate, and acquires the dark image D instead of the fluorescence image P every predetermined frame. In this case, when the dark image D is acquired from the fluorescence imaging device 52, the display image Qn after recursive stored in the image memory 45 instead of the dark image D is transmitted to the display unit 14, It is possible to prevent the dark image D from being mixed in the image displayed at the predetermined frame rate on the display unit 14 and to make the display image suitable.
 なお、上述した式(3)によるリカーシブ演算を行うことによりランダムノイズを減少させることが可能ではあるが、このリカーシブ演算を省略してもよい。ここで、リカーシブ演算を行う場合には、上述した計数βをαより大きくすることが好ましい。例えば、αを0.02程度とし、βを0.5程度とすることにより、残像の少ない好適な画像を得ることが可能となる。 In addition, although it is possible to reduce random noise by performing the recursive calculation according to the above-described equation (3), this recursive calculation may be omitted. Here, when performing a recursive calculation, it is preferable to make the above-mentioned count β larger than α. For example, by setting α to about 0.02 and β to about 0.5, it is possible to obtain a suitable image with little afterimage.
 なお、上述した実施形態においては、励起用光源23として、波長が760nmの近赤外光を照射するものを使用しているが、励起用光源23としては、インドシアニングリーンを励起させて励起光を発生させることが可能な750nm~810nm程度の近赤外光を照射させるものを使用することができる。 In the embodiment described above, a light source that emits near-infrared light having a wavelength of 760 nm is used as the excitation light source 23. However, as the excitation light source 23, excitation light is obtained by exciting indocyanine green. Those that irradiate near-infrared light having a wavelength of about 750 nm to 810 nm capable of generating light can be used.
 また、上述した実施形態においては、蛍光色素を含む材料としてインドシアニングリーンを使用し、このインドシアニングリーンに対して760nmの近赤外光を励起光として照射することにより、インドシアニングリーンからおおよそ850nmをピークとする近赤外領域の蛍光を発光させる場合について説明したが、近赤外線以外の光を使用してもよい。 Further, in the above-described embodiment, indocyanine green is used as a material containing a fluorescent dye, and the indocyanine green is irradiated with near-infrared light of 760 nm as excitation light, so that it is approximately 850 nm from indocyanine green. Although the case of emitting fluorescence in the near-infrared region having a peak at, light other than near-infrared light may be used.
 例えば、蛍光色素として、5-ALA(5-アミノレブリン酸/5-Aminolevulinic Acid)を使用することができる。この5-ALAを使用した場合には、患者17の体内に侵入した5-ALAが蛍光物質であるプロトポルフィリン(protoporphyrinIX/PpIX)に変化する。このプロトポルフィリンに向けて400nm程度の可視光を照射すると、プロトポルフィリンから赤色の可視光が蛍光として照射される。このため、5-ALAを使用する場合には、励起用光源としてはその波長が400nm程度の可視光を照射するものを使用すればよく、また、確認用光源としては、プロトポルフィリンから蛍光として発光される赤色の可視光を照射するものを使用すればよい。 For example, 5-ALA (5-aminolevulinic acid / 5-aminolevulinic acid) can be used as a fluorescent dye. When 5-ALA is used, 5-ALA that has entered the body of the patient 17 changes to a protoporphyrin IX / PpIX that is a fluorescent substance. When visible light of about 400 nm is irradiated toward the protoporphyrin, red visible light is irradiated as fluorescence from the protoporphyrin. Therefore, when 5-ALA is used, an excitation light source that emits visible light having a wavelength of about 400 nm may be used, and a light source for confirmation emits fluorescence from protoporphyrin. What irradiates red visible light to be used may be used.
 10  本体
 11  入力部
 12  照明・撮影部
 13  アーム
 14  表示部
 16  治療台
 17  患者
 21  カメラ
 22  可視光源
 23  励起用光源
 30  制御部
 31  可視画像処理部
 32  蛍光画像処理部
 33  画像合成部
 44  画像メモリ
 45  画像メモリ
 51  可視光用撮像素子
 52  蛍光用撮像素子
 65  加算アンプ
DESCRIPTION OF SYMBOLS 10 Main body 11 Input part 12 Illumination and imaging | photography part 13 Arm 14 Display part 16 Treatment table 17 Patient 21 Camera 22 Visible light source 23 Excitation light source 30 Control part 31 Visible image process part 32 Fluorescence image process part 33 Image composition part 44 Image memory 45 Image memory 51 Image sensor for visible light 52 Image sensor for fluorescence 65 Addition amplifier

Claims (7)

  1.  被写体に注入された蛍光色素を励起させるための励起光線を、前記被写体に向けて照射する励起用光源と、
     励起光線が照射されることにより前記蛍光色素から発生する蛍光を撮像可能な撮像素子と、を備え、
     前記被写体の蛍光画像を所定のフレームレートで撮影するイメージング装置において、
     前記撮像素子に前記蛍光が入射しない状態における前記撮像素子の出力であるダーク画像を補正する画像補正部と、
     前記画像補正部により補正されたダーク画像を記憶するダーク画像記憶部と、
     前記撮像素子で撮像した蛍光の画像から前記ダーク画像記憶部に記憶されたダーク画像を減算するとともに、減算後の画像を表示用画像として表示部に送信する画像処理部と、
     を備える、イメージング装置。
    An excitation light source that irradiates the subject with an excitation beam for exciting the fluorescent dye injected into the subject;
    An imaging device capable of imaging fluorescence generated from the fluorescent dye when irradiated with excitation light, and
    In an imaging apparatus that captures a fluorescent image of the subject at a predetermined frame rate,
    An image correction unit that corrects a dark image that is an output of the image sensor in a state where the fluorescence does not enter the image sensor;
    A dark image storage unit that stores a dark image corrected by the image correction unit;
    An image processing unit that subtracts the dark image stored in the dark image storage unit from the fluorescence image captured by the image sensor and transmits the image after subtraction to the display unit as a display image;
    An imaging apparatus comprising:
  2.  請求項1に記載のイメージング装置において、
     前記画像補正部は、ダーク画像の画素値に対して、予め設定したオフセット値を加算するイメージング装置。
    The imaging apparatus according to claim 1, wherein
    The image correction unit is an imaging apparatus that adds a preset offset value to a pixel value of a dark image.
  3.  請求項2に記載のイメージング装置において、
     前記画像補正部は、前記被写体の蛍光画像を撮影した前記撮像素子の画素値に対して前記オフセット値を加算するイメージング装置。
    The imaging apparatus according to claim 2, wherein
    The imaging apparatus, wherein the image correction unit adds the offset value to a pixel value of the imaging element that has captured a fluorescent image of the subject.
  4.  請求項3に記載のイメージング装置において、
     前記画像補正部は、補正後のダーク画像の画素値が、前記撮像素子の出力値のダイナミックレンジの下端近傍になるように前記ダーク画像を補正するイメージング装置。
    The imaging device according to claim 3.
    The image correction unit corrects the dark image so that the pixel value of the dark image after correction is in the vicinity of the lower end of the dynamic range of the output value of the image sensor.
  5.  請求項4に記載のイメージング装置において、
     前記撮像素子から所定のフレームレートで取得される画像に対して一定の間隔で前記ダーク画像が取得されるとともに、一定の間隔で取得されたダーク画像が積算平均されて前記ダーク画像記憶部に記憶されるイメージング装置。
    The imaging device according to claim 4.
    The dark image is acquired at a fixed interval with respect to an image acquired at a predetermined frame rate from the imaging device, and the dark images acquired at a fixed interval are averaged and stored in the dark image storage unit. Imaging device.
  6.  請求項5に記載のイメージング装置において、
     前記表示用画像を記憶する表示用画像記憶部を備えるとともに、
     前記画像処理部は、前記撮像素子から前記ダーク画像が取得されたときに、前記ダーク画像に替えて前記表示用画像記憶部に記憶した表示用画像を前記表示部に送信するイメージング装置。
    The imaging device according to claim 5, wherein
    A display image storage unit for storing the display image;
    When the dark image is acquired from the imaging device, the image processing unit transmits a display image stored in the display image storage unit instead of the dark image to the display unit.
  7.  請求項1から請求項6のいずれかに記載のイメージング装置において、
     前記被写体の可視光画像を撮影可能な第2の撮像素子をさらに備え、
     前記画像処理部は、前記表示用画像と前記第2の撮像素子により撮像した可視画像とを前記表示部に送信するイメージング装置。
    The imaging apparatus according to any one of claims 1 to 6,
    A second imaging device capable of capturing a visible light image of the subject;
    The image processing unit is an imaging apparatus that transmits the display image and a visible image captured by the second image sensor to the display unit.
PCT/JP2015/069596 2014-09-01 2015-07-08 Imaging device WO2016035450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014176712 2014-09-01
JP2014-176712 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035450A1 true WO2016035450A1 (en) 2016-03-10

Family

ID=55439520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069596 WO2016035450A1 (en) 2014-09-01 2015-07-08 Imaging device

Country Status (1)

Country Link
WO (1) WO2016035450A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131096A1 (en) * 2017-01-11 2018-07-19 株式会社島津製作所 Fluorescence imaging device and fluorescence imaging system
JP2018126234A (en) * 2017-02-07 2018-08-16 株式会社島津製作所 Time intensity curve measuring apparatus
JP2018185598A (en) * 2017-04-25 2018-11-22 株式会社島津製作所 Image processing device and imaging device
WO2019215799A1 (en) * 2018-05-07 2019-11-14 株式会社島津製作所 Medical imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200605A (en) * 1996-01-12 1997-07-31 Sanyo Electric Co Ltd Digital video camera
JP2001161696A (en) * 1999-09-29 2001-06-19 Fuji Photo Film Co Ltd Method and apparatus for acquiring fluorescent image
JP2005195379A (en) * 2003-12-31 2005-07-21 Yamaguchi Univ Neoplasm image detecting method, and device therefor
JP2009543663A (en) * 2006-07-18 2009-12-10 トラスティーズ オブ ボストン ユニバーシティ Apparatus with integrated multi-fiber optical probe and method of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200605A (en) * 1996-01-12 1997-07-31 Sanyo Electric Co Ltd Digital video camera
JP2001161696A (en) * 1999-09-29 2001-06-19 Fuji Photo Film Co Ltd Method and apparatus for acquiring fluorescent image
JP2005195379A (en) * 2003-12-31 2005-07-21 Yamaguchi Univ Neoplasm image detecting method, and device therefor
JP2009543663A (en) * 2006-07-18 2009-12-10 トラスティーズ オブ ボストン ユニバーシティ Apparatus with integrated multi-fiber optical probe and method of use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131096A1 (en) * 2017-01-11 2018-07-19 株式会社島津製作所 Fluorescence imaging device and fluorescence imaging system
JPWO2018131096A1 (en) * 2017-01-11 2019-11-07 株式会社島津製作所 Fluorescence imaging apparatus and fluorescence imaging system
JP2018126234A (en) * 2017-02-07 2018-08-16 株式会社島津製作所 Time intensity curve measuring apparatus
JP2018185598A (en) * 2017-04-25 2018-11-22 株式会社島津製作所 Image processing device and imaging device
WO2019215799A1 (en) * 2018-05-07 2019-11-14 株式会社島津製作所 Medical imaging device
JPWO2019215799A1 (en) * 2018-05-07 2021-03-11 株式会社島津製作所 Medical imaging device

Similar Documents

Publication Publication Date Title
JP5507376B2 (en) Imaging device
JP4731248B2 (en) Electronic endoscope system
JP5864880B2 (en) Endoscope apparatus and method for operating endoscope apparatus
JP6319448B2 (en) Imaging device
WO2016035450A1 (en) Imaging device
JP2008194374A (en) X-ray image projector and method
JP5742970B2 (en) Radiography equipment
WO2016042892A1 (en) Imaging device
JP5539840B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP5244164B2 (en) Endoscope device
JP2016214507A (en) Imaging apparatus
JP2009201586A (en) Radiographic apparatus
JP2009201552A (en) Radiographic apparatus
JP5264382B2 (en) Image acquisition device
JP2010233939A (en) Method and apparatus for controlling administration of labeling reagent and method and apparatus for photographing fluorescent image
JP5525991B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP2009201587A (en) Radiographic apparatus
KR100977806B1 (en) An apparatus for X-ray image processing and the method of using the same
JP6535701B2 (en) Imaging device
JP2005198975A (en) X-ray diagnostic apparatus and its method
US10159457B2 (en) X-ray diagnostic apparatus
WO2016039002A1 (en) Imaging device and imaging method
JP6863520B2 (en) Medical imaging device
WO2023090044A1 (en) Processor for electronic endoscope and electronic endoscopic system
JP7257829B2 (en) Image processing device, image processing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP