WO2016035414A1 - ファイバレーザ装置 - Google Patents

ファイバレーザ装置 Download PDF

Info

Publication number
WO2016035414A1
WO2016035414A1 PCT/JP2015/067184 JP2015067184W WO2016035414A1 WO 2016035414 A1 WO2016035414 A1 WO 2016035414A1 JP 2015067184 W JP2015067184 W JP 2015067184W WO 2016035414 A1 WO2016035414 A1 WO 2016035414A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
fbg
light
core
optical fiber
Prior art date
Application number
PCT/JP2015/067184
Other languages
English (en)
French (fr)
Inventor
正浩 柏木
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP15838193.9A priority Critical patent/EP3196991B1/en
Priority to CN201580043778.3A priority patent/CN106575851B/zh
Publication of WO2016035414A1 publication Critical patent/WO2016035414A1/ja
Priority to US15/437,957 priority patent/US20170162998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/163Single longitudinal mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass

Definitions

  • the present invention relates to a fiber laser device that can emit light of good beam quality.
  • a resonator type fiber laser device in which a pair of FBGs (Fiber Bragg Gratings) are arranged with an optical fiber for amplification interposed therebetween is known.
  • FBGs Fiber Bragg Gratings
  • a fiber laser device As such a fiber laser device, light having a wavelength band of visible light is emitted by converting light having a wavelength band of near-infrared light to a short wavelength side by a wavelength conversion element. .
  • wavelength conversion element When performing wavelength conversion of emitted light, if there are many modes in the light before wavelength conversion, there is a tendency that wavelength conversion cannot be performed efficiently. It is desirable that only the fundamental mode light is included and no higher order mode light is included. In addition, even when wavelength conversion is not performed, since light with excellent light collecting properties is required for processing or the like, a fiber laser device that can emit light with good beam quality is required.
  • the present inventor has proposed an amplification optical fiber and a fiber laser device using the same described in Patent Document 1 below.
  • the active element is added at a higher concentration than the central portion of the core in the core region where the intensity of the LP01 mode light is stronger than at least one of the LP02 mode light and the LP03 mode light. It is one of the features.
  • fundamental mode light is amplified rather than higher order mode light. Therefore, according to the fiber laser device using this amplification optical fiber, it is possible to emit light with good beam quality.
  • an object of the present invention is to provide a fiber laser device that can emit light of good beam quality.
  • a fiber laser device includes an amplification optical fiber in which an active element that emits light in an excited state is added to a core, and an optical fiber disposed on one side of the amplification optical fiber.
  • a first FBG that reflects at least part of the light emitted by the active element and an optical fiber core that is disposed on the other side of the amplification optical fiber, and the first FBG reflects
  • a second FBG that reflects light at a lower reflectivity than the first FBG, and the fundamental mode light wavelength reflected by the first FBG and the fundamental mode light wavelength reflected by the second FBG coincide with each other;
  • the wavelength of the higher-order mode light reflected by the first FBG and the wavelength of the higher-order mode light reflected by the second FBG are different from each other.
  • ⁇ Basic mode light travels straight along the longitudinal direction of the core, while higher-order mode light propagates obliquely with respect to the longitudinal direction of the core while being reflected by the side surface of the core. Therefore, the fundamental mode light propagating in the core and the higher-order mode light have different speeds for propagating the core along the longitudinal direction. This means that the wavelengths of the fundamental mode light and the higher-order mode light are different.
  • the reflected wavelengths of the light in the fundamental mode are the same in the first FBG and the second FBG. Therefore, the fundamental mode light resonates between the first FBG and the second FBG, and is amplified by stimulated emission of the active element of the amplification optical fiber.
  • the fiber laser device of the present invention can improve the beam quality of the emitted light. Can do.
  • the first FBG includes a plurality of high refractive index portions having a refractive index higher than a refractive index of a core on which the first FBG is formed
  • the second FBG includes: A plurality of high refractive index portions having a refractive index higher than the refractive index of the core on which the second FBG is formed are formed at predetermined intervals, and each of the high refractive indexes of at least one of the first FBG and the second FBG.
  • the refractive index in the cross section perpendicular to the longitudinal direction of the core is not uniform.
  • the reflection wavelength of the fundamental mode light in the first FBG and the second FBG is equal to each other.
  • the reflection wavelengths of the light in the next mode also match each other.
  • the inventor makes the reflection wavelength of the fundamental mode light and the reflection wavelength of the light of the higher order mode individually by making the refractive index in the cross section perpendicular to the core of the high refractive index portion forming the FBG non-uniform. Found that can be adjusted.
  • the refractive index in the cross section of each of the high refractive index portions of at least one of the first FBG and the second FBG is made non-uniform.
  • the reflection wavelengths of the light in the higher-order mode can be made inconsistent with each other by matching the reflection wavelengths of the light in the fundamental mode between the first FBG and the second FBG.
  • the outer periphery in which the refractive index of the central region that is within a predetermined range from the center in the cross section perpendicular to the longitudinal direction of the core is outside the central region It is preferably higher than the refractive index of the region.
  • the light intensity peak is located only at the center of the core, whereas in the higher order mode, the light intensity peak is located in addition to the core center. Therefore, the loss of the fundamental mode light can be reduced by matching the reflection wavelength of the fundamental mode light between the first FBG and the second FBG as described above for the refractive index distribution of the high refractive index portion. Resonance and amplification can be effectively performed, and light with better beam quality can be emitted.
  • the refractive index of the outer peripheral region may be equivalent to the refractive index of the core portion sandwiched between the high refractive index portions where the outer peripheral region is formed.
  • the refractive index of the outer peripheral region in the high refractive index portion is equal to the portion other than the high refractive index portion of the core, it is possible to further increase the loss of light in the higher order mode. Therefore, light with better beam quality can be emitted.
  • the refractive index in a cross section perpendicular to the longitudinal direction of the core is made uniform, and in each of the high refractive index portions of the second FBG, in the longitudinal direction of the core. It is preferable that the refractive index in a vertical cross section be non-uniform.
  • the second FBG side is the light emission side. Accordingly, since the refractive index distribution of the high refractive index portion of the first FBG is made uniform in the plane, the loss of light in the fundamental mode in the first FBG can be suppressed.
  • a fiber laser device capable of emitting light of good beam quality is provided.
  • FIG. 1 is a diagram showing a fiber laser device according to an embodiment of the present invention.
  • the fiber laser device 1 of the present embodiment includes an amplification optical fiber 10, a pumping light source 20, a first optical fiber 30, a first FBG 35 provided in the first optical fiber 30, and a second
  • the optical fiber 40, the 2nd FBG45 provided in the 2nd optical fiber 40, and the optical combiner 50 are provided as main structures.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of the amplification optical fiber 10 shown in FIG.
  • the amplification optical fiber 10 covers a core 11, an inner cladding 12 that surrounds the outer peripheral surface of the core 11 without a gap, an outer cladding 13 that covers the outer peripheral surface of the inner cladding 12, and an outer cladding 13.
  • a covering layer 14 to be formed as a main structure, and a so-called double clad structure is provided.
  • the refractive index of the inner cladding 12 is lower than the refractive index of the core 11, and the refractive index of the outer cladding 13 is lower than the refractive index of the inner cladding 12.
  • the core 11 is made of, for example, quartz to which a dopant such as germanium (Ge) that increases the refractive index is added.
  • the inner cladding 12 is, for example, quartz to which no dopant is added or fluorine that decreases the refractive index. It consists of quartz to which a dopant such as (F) is added.
  • the outer clad 13 is made of resin or quartz. Examples of the resin include ultraviolet curable resin, and the quartz is, for example, fluorine (F) that lowers the refractive index so that the refractive index is lower than that of the inner clad 12.
  • an active element such as ytterbium (Yb) that is excited by the excitation light emitted from the excitation light source 20 is added to the core 11.
  • active elements include rare earth elements, and examples of rare earth elements include thulium (Tm), cerium (Ce), neodymium (Nd), europium (Eu), and erbium (Er) in addition to ytterbium. It is done.
  • examples of the active element include bismuth (Bi) in addition to the rare earth element.
  • the amplification optical fiber 10 is a multimode fiber, and light of a higher order mode higher than the second order LP mode propagates through the core 11 in addition to the light of the fundamental mode.
  • the excitation light source 20 is composed of a plurality of laser diodes 21.
  • the laser diode 21 is, for example, a Fabry-Perot type semiconductor laser made of a GaAs-based semiconductor, and emits excitation light having a center wavelength of 915 nm.
  • Each laser diode 21 of the pumping light source 20 is connected to an optical fiber 25, and pumping light emitted from the laser diode 21 propagates through the optical fiber 25 as, for example, multimode light.
  • Each optical fiber 25 is connected to one end of the amplification optical fiber 10 in the optical combiner 50. Specifically, the core of each optical fiber 25 and the inner cladding 12 of the amplification optical fiber 10 are connected so that the core of each optical fiber 25 is optically coupled to the inner cladding 12 of the amplification optical fiber 10. It is connected. Accordingly, the excitation light emitted from each laser diode 21 is incident on the inner cladding 12 of the amplification optical fiber 10 via the optical fiber 25 and propagates mainly through the inner cladding 12.
  • FIG. 3 is a view showing a state of the first optical fiber 30.
  • the first optical fiber 30 includes, as main components, a core 31 to which no active element is added and a clad 32 that surrounds the outer peripheral surface of the core 31 without a gap.
  • the first optical fiber 30 is connected to one end of the amplification optical fiber 10 together with the optical fiber 25 in the optical combiner 50.
  • the core 11 of the amplification optical fiber 10 and the core 31 of the first optical fiber 30 are connected so that the core 31 of the first optical fiber 30 is optically coupled to the core 11 of the amplification optical fiber 10. It is connected.
  • the first optical fiber 30 is a multimode fiber and propagates light similar to the light propagated by the core 11 of the amplification optical fiber 10. Accordingly, multimode light propagating through the core 11 of the amplification optical fiber 10 propagates through the core 31 of the first optical fiber 30 while remaining in multimode.
  • the first FBG 35 is provided in the core 31 of the first optical fiber 30.
  • the first FBG 35 is disposed on one side of the amplification optical fiber 10 and is optically coupled to the core 11 of the amplification optical fiber 10.
  • the first FBG 35 includes a high refractive index portion 36 having a refractive index higher than that of the core 31 other than the first FBG 35 and a low refractive index portion 37 having a refractive index similar to that of the core 31 other than the first FBG 35. It is repeated periodically along the longitudinal direction. Therefore, the core portion that is the low refractive index portion 37 is sandwiched between the high refractive index portions 36.
  • the first FBG 35 is configured to reflect at least some wavelengths of light emitted by the active element of the amplification optical fiber 10 in an excited state.
  • the reflectance of the first FBG 35 is higher than the reflectance of the second FBG 45 described later, and reflects light having a desired wavelength out of light emitted from the active element, for example, by 99% or more.
  • FIG. 4 is a diagram showing a state of a cross section passing through the high refractive index portion 36 of the first optical fiber 30 and perpendicular to the longitudinal direction of the first optical fiber 30.
  • FIG. 4A shows a configuration of the first optical fiber 30 in the cross section
  • FIG. 4B shows a refractive index distribution of the first optical fiber 30 in the cross section.
  • the refractive index distribution in the radial direction of the core 31 in the high refractive index portion 36 of the first FBG 35 is uniform.
  • the high refractive index portion of the FBG is formed by irradiating light such as ultraviolet rays to a portion that becomes the high refractive index portion.
  • photosensitive elements such as germanium (property of changing the refractive index when irradiated with light) such as germanium are added to the core 31, and ultraviolet light or the like that reacts with the element reacts with the high refractive index portion 36.
  • the high refractive index portion 36 is formed by irradiating the portion to be formed from the side surface side of the first optical fiber 30. Since the high refractive index portion 36 has a uniform refractive index in the radial direction of the core 31 as described above, a photosensitive element is added to the core 31 of the first optical fiber 30 at a constant concentration.
  • the refractive index of the low refractive index portion 37 is indicated by a dotted line.
  • the fundamental mode light travels straight along the longitudinal direction of the core, while the higher-order mode light propagates obliquely with respect to the longitudinal direction of the core while being reflected by the side surface of the core. . Accordingly, the fundamental mode light propagating through the core and the higher-order mode light have different speeds along the longitudinal direction of the core. This means that the wavelengths of the fundamental mode light and the higher-order mode light are different.
  • the reflection wavelength of light in the fundamental mode is 1063.7 nm
  • the reflection wavelength of light in the second order LP mode is 1062.6 nm
  • light in the third order LP mode is used.
  • the reflection wavelength of the fourth-order LP mode light is 1060.9 nm.
  • terminal part 38 which converts light into heat is provided in the opposite side to the side connected with the optical fiber 10 for amplification of the 1st optical fiber 30. As shown in FIG.
  • FIG. 5 is a view showing a state of the second optical fiber 40.
  • the second optical fiber 40 includes a core 41 to which no active element is added and a clad 42 that surrounds the outer peripheral surface of the core 41 without a gap as main components.
  • the second optical fiber 40 is a multimode fiber like the first optical fiber 30 and propagates the same light as the light propagated by the core 11 of the amplification optical fiber 10.
  • the second optical fiber 40 is connected at the other end of the amplification optical fiber 10 so that the core 11 of the amplification optical fiber 10 and the core 41 of the second optical fiber 40 are optically coupled. Accordingly, multimode light propagating through the core 11 of the amplification optical fiber 10 propagates through the core 41 of the second optical fiber 40 while remaining in multimode.
  • the second FBG 45 is provided in the core 41 of the second optical fiber 40.
  • the second FBG 45 is disposed on the other side of the amplification optical fiber 10 and is optically coupled to the core 11 of the amplification optical fiber 10.
  • the second FBG 45 includes a high refractive index portion 46 having a refractive index higher than that of the core 41 other than the second FBG 45 and a low refractive index portion 47 having a refractive index similar to that of the core 41 other than the second FBG 45. It is repeated periodically along the longitudinal direction. Therefore, the core portion which is the low refractive index portion 47 is sandwiched between the high refractive index portions 46.
  • the second FBG 45 is configured to reflect a part of the light reflected by the first FBG 35 with a lower reflectance than the first FBG 35.
  • the second FBG 45 reflects this light with a reflectance of about 10%, for example.
  • the first FBG 35, the amplification optical fiber 10, and the second FBG 45 form a resonator.
  • FIG. 6 is a diagram showing a state of a cross section passing through the high refractive index portion 46 of the second optical fiber 40 and perpendicular to the longitudinal direction of the second optical fiber 40.
  • FIG. 6A shows the configuration of the second optical fiber 40 in the cross section
  • FIG. 6B shows the refractive index distribution of the second optical fiber 40 in the cross section.
  • the core 41 of the second optical fiber 40 includes a central region 41 c that includes the center of the core 41 and an outer peripheral region 41 o that surrounds the central region 41 c and includes the outermost peripheral portion of the core 41.
  • both the refractive index of the central region 41 c and the outer peripheral region 41 o are higher than the refractive index of the cladding 42.
  • the refractive index of the central region 41c is equal to the refractive index of the outer peripheral region 41o.
  • the refractive index of the central region 41c may be higher than the refractive index of the outer peripheral region 41o, and the refractive index of the central region 41c may be lower than the refractive index of the outer peripheral region 41o.
  • the refractive index is non-uniform in the cross section perpendicular to the longitudinal direction of the core 41.
  • the refractive index of the central region 41c is higher than the refractive index of the outer peripheral region 41o.
  • the refractive index of the low refractive index portion 47 is indicated by a dotted line in the same manner as the refractive index of the low refractive index portion 37 shown in FIG. 4B.
  • the refractive index of the outer peripheral region 41 o in the high refractive index portion 46 of the present embodiment is equivalent to the refractive index of the low refractive index portion 47.
  • the refractive index of the outer peripheral region 41o may be higher than the refractive index of the low refractive index portion 47.
  • the following may be performed. That is, an element having high photosensitivity such as germanium is added to the central region 41c of the core 41, and an element having no photosensitivity or low photosensitivity like phosphorus or aluminum is added to the outer peripheral region 41o of the core 41. Added.
  • the reflection wavelength of the fundamental mode light coincides with the reflection wavelength of the fundamental mode light of the first FBG 35, and the reflection of the light of the higher order mode is performed.
  • the wavelength does not match the reflection wavelength of the higher-order mode light of the first FBG 35. Therefore, in the present embodiment, the reflection wavelength of the fundamental mode at the second FBG 45 is 1063.7 nm, the reflection wavelength of the light of the second order LP mode is 1062.0 nm, and the reflection wavelength of the light of the third order LP mode is The reflection wavelength of the fourth-order LP mode light is 1061.4 nm.
  • the reflection of light in the fundamental mode at the second FBG 45 is reflected.
  • the wavelength is matched with the reflection wavelength of the fundamental mode light at the first FBG 35
  • the reflection wavelength of the higher order mode light at the second FBG 45 is also matched with the reflection wavelength of the higher order mode light at the first FBG 35.
  • the reflection wavelength of the light of the fundamental mode in the second FBG 45 is not matched with the reflection wavelength of the fundamental mode at the first FBG 35, but the reflection wavelength of the light of the higher order mode is not matched with the reflection wavelength of the higher order mode at the first FBG 35.
  • the light intensity peak is located at the center of the core, and in the higher mode, the light intensity peak is located in addition to the core center. Therefore, by making the refractive index distribution in the high refractive index portion 46 of the second FBG 45 as described above, the loss of light in the fundamental mode in the second FBG 45 can be made smaller than the light in the higher order mode.
  • the refractive index of the outer peripheral region 41o is equal to the refractive index of the low refractive index portion 47.
  • the loss of light in the higher-order mode can be made larger in the second FBG 45 than in the fundamental mode.
  • excitation light is emitted from each laser diode 21 of the excitation light source 20.
  • This excitation light is incident on the inner cladding 12 of the amplification optical fiber 10 via the optical fiber 25 and propagates mainly through the inner cladding 12.
  • the excitation light propagating through the inner cladding 12 excites the active element added to the core 11 when passing through the core 11.
  • the active element in the excited state emits spontaneous emission light in a specific wavelength band.
  • light having a wavelength reflected in common by the first FBG 35 and the second FBG 45 resonates between the first FBG 35 and the second FBG 45.
  • the excited active element causes stimulated emission, and the resonating light is amplified.
  • part of the light passes through the second FBG 45 and is emitted from the second optical fiber 40.
  • the light in the higher order mode that is equal to or higher than the second LP mode is incident on the first FBG 35.
  • the first FBG 35 has a fundamental mode light having a center wavelength of 1063.7 nm and a center wavelength of 1062.6 nm.
  • Next-order LP mode light, third-order LP mode light having a center wavelength of 1061.0 nm, and fourth-order LP mode light having a center wavelength of 1060.9 nm are reflected.
  • the second FBG 45 has the fundamental mode light having a center wavelength of 1063.7 nm and the center wavelength.
  • Light of a second order LP mode having a wavelength of 1062.0 nm, light of a third order LP mode having a center wavelength of 1061.8 nm, and light of a fourth order LP mode having a center wavelength of 1061.4 nm are reflected.
  • the reflection wavelength of the fundamental mode light matches the reflection wavelength of the light in the fundamental mode of the first FBG 35, but the reflection wavelength of the higher order mode light does not match the reflection wavelength of the light in the higher order mode of the first FBG 35. Is done. For this reason, among the light reflected by the first FBG 35 and incident on the second FBG 45, the light in the fundamental mode is reflected by the second FBG 45 with a lower reflectance than the first FBG 35. However, among the light that is reflected by the first FBG 35 and incident on the second FBG 45, the higher-order mode light is suppressed from being reflected by the second FBG 45 and is transmitted through the second FBG 45.
  • the light that is reflected and resonated in common by the first FBG 35 and the second FBG 45 is mainly the fundamental mode light
  • the amplification mode optical fiber 10 mainly amplifies the fundamental mode light. Therefore, fundamental mode light is mainly emitted from the second optical fiber 40.
  • the first FBG 35 and the second FBG 45 have the same fundamental mode light reflection wavelengths.
  • the reflection wavelengths of the higher-order mode light are not matched with each other. Therefore, amplification of higher-order mode light is suppressed, and fundamental mode light is amplified and emitted. Therefore, according to the fiber laser device 1 of the present invention, the beam quality of emitted light is improved. Can do.
  • the high refractive index portion 36 of the first FBG 35 has a constant refractive index in the radial direction of the core 31, whereas the high refractive index portion 46 of the second FBG 45 that is the light emission side FBG is The refractive index is not uniform in the radial direction of the core 41. Therefore, the loss of light on the first FBG 35 side can be suppressed, and the reflection wavelength of the higher-order mode light can be made to be inconsistent between the first FBG 35 and the second FBG 45.
  • the wavelength of the fundamental mode light reflected by the first FBG 35 and the wavelength of the fundamental mode light reflected by the second FBG 45 coincide with each other, and the wavelength of the higher-order mode light reflected by the first FBG 35 As long as the wavelengths of the higher-order mode light reflected by the 2FBG 45 are not matched with each other, they can be appropriately modified.
  • the refractive index of the high refractive index portion 36 of the first FBG 35 is uniform in the cross section perpendicular to the longitudinal direction of the core 31, and the refractive index of the high refractive index portion 46 of the second FBG 45 is the longitudinal direction of the core 41. It was made non-uniform in the cross section perpendicular to.
  • the refractive index of the high refractive index portion 36 of the first FBG 35 may be non-uniform in the cross section perpendicular to the longitudinal direction of the core 31.
  • the refractive index distribution of the high refractive index portion 36 is similar to the refractive index distribution of the high refractive index portion 46, and the refractive index of the central region that is within a predetermined range from the center in the cross section perpendicular to the longitudinal direction of the core 31. May be higher than the refractive index of the outer peripheral region outside the central region.
  • the refractive index of the outer peripheral region of the high refractive index portion 36 may be equivalent to the refractive index of the low refractive index portion 37 of the first FBG 35.
  • the refractive index of the high refractive index portion 36 of the first FBG 35 is not uniform in the cross section perpendicular to the longitudinal direction of the core 31, the refractive index of the high refractive index portion 46 of the second FBG 45 is equal to the longitudinal length of the core 41. It may be uniform in a cross section perpendicular to the direction. Even in this case, the light reflectance of the second FBG 45 is made lower than the light reflectance of the first FBG 35.
  • the refractive index of the high refractive index portion 36 of the first FBG 35 is uniform in the cross section perpendicular to the longitudinal direction of the core 31, as in the above embodiment.
  • the reflectance is used.
  • the refractive index of the central region 41c of the high refractive index portion 46 of the second FBG 45 is higher than the refractive index of the outer peripheral region 41o, and the refractive index of the outer peripheral region 41o is equal to the refractive index of the low refractive index portion 47. It was made equivalent. However, when the refractive index of the high refractive index portion 46 of the second FBG 45 is not uniform in the cross section perpendicular to the longitudinal direction of the core 41, the refractive index distribution of the high refractive index portion 46 of the second FBG 45 is different from that of the above embodiment. May be.
  • the refractive index of the outer peripheral region 41o may be a refractive index between the refractive index of the central region 41c and the refractive index of the low refractive index portion 47.
  • the refractive index of the high refractive index portion 46 may be the highest at the center of the core 41 and gradually decrease toward the outer peripheral side of the core 41. Further, the portion having the highest refractive index in the high refractive index portion 46 may not be located at the center of the core 41.
  • Such a modification of the refractive index distribution of the high refractive index portion 46 is also applicable when the high refractive index portion 36 of the first FBG 35 is non-uniform in a cross section perpendicular to the longitudinal direction of the core 31.
  • the position where the excitation light enters the amplification optical fiber 10 is not particularly limited.
  • An active element may be added to the core 31 of the first optical fiber 30 and the core 41 of the second optical fiber 40.
  • a fiber laser device capable of emitting light of good beam quality is provided, and is expected to be used in a processing fiber laser device or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

 ファイバレーザ装置1は、活性元素がコア11に添加される増幅用光ファイバ10と、活性元素が放出する光の少なくとも一部を反射する第1FBG35と、第1FBG35が反射する光を第1FBG35よりも低い反射率で反射する第2FBG45と、を備え、第1FBG35が反射する基本モードの光の波長と第2FBG45が反射する基本モードの光の波長とは互いに一致し、第1FBG35が反射する高次モードの光の波長と第2FBGが反射する高次モードの光の波長とは互いに不一致とされることを特徴とする。

Description

ファイバレーザ装置
 本発明は、良好なビーム品質の光を出射することができるファイバレーザ装置に関する。
 加工機等において使用されるファイバレーザ装置の一つとして、一対のFBG(Fiber Bragg Gratings)が増幅用光ファイバを挟んで配置される共振器型のファイバレーザ装置が知られている。
 このようなファイバレーザ装置として、波長変換素子により、近赤外光の波長帯域を有する光を短波長側に変換することで、可視光の波長帯域を有する光を出射することが行われている。出射する光の波長変換を行う際、波長変換される前の光に多数のモードが存在すると、効率良く波長変換を行うことができない傾向があるため、波長変換素子に入射する光には出来るだけ基本モードの光のみが含まれて高次モードの光が含まれないことが望ましい。また、波長変換を行わない場合であっても、加工等において集光性に優れる光が求められるため、良好なビーム品質の光を出射することができるファイバレーザ装置が求められている。
 一方、ファイバレーザ装置の高出力化に伴い、パワーのより大きな光を伝搬する必要性が生じている。このため、増幅用光ファイバ等の光ファイバにシングルモードファイバよりもコアの直径が大きいマルチモードファイバを用いたいという要望がある。このようにマルチモードファイバを用いる場合であっても、基本モードの光が含まれて高次モードの光が低減された良好なビーム品質の光を出射させたいという要望がある。
 このような要請に応えるため、本発明者は、下記特許文献1に記載の増幅用光ファイバ及びそれを用いたファイバレーザ装置を提案した。この増幅用光ファイバは、LP01モードの光の強度がLP02モードの光及びLP03モードの光の少なくとも一方の強度よりも強いコアの領域において、活性元素がコアの中心部よりも高い濃度で添加されていることを特徴の一つとしている。この増幅用光ファイバでは、高次モードの光よりも基本モードの光が増幅される。従って、この増幅用光ファイバを用いたファイバレーザ装置によれば、良好なビーム品質の光を出射することができる。
特許第4667535号公報
 しかし、上記のように活性元素が添加される領域が偏在している増幅用光ファイバを用いずとも、良好なビーム品質の光を出射することができるファイバレーザ装置が求められている。
 そこで、本発明は、良好なビーム品質の光を出射することができるファイバレーザ装置を提供することを目的とする。
 上記課題を解決するため、本発明のファイバレーザ装置は、励起状態で光を放出する活性元素がコアに添加された増幅用光ファイバと、前記増幅用光ファイバの一方側に配置される光ファイバのコアに形成され、前記活性元素が放出する光の少なくとも一部を反射する第1FBGと、前記増幅用光ファイバの他方側に配置される光ファイバのコアに形成され、前記第1FBGが反射する光を前記第1FBGよりも低い反射率で反射する第2FBGと、を備え、前記第1FBGが反射する基本モードの光の波長と前記第2FBGが反射する基本モードの光の波長は互いに一致し、前記第1FBGが反射する高次モードの光の波長と前記第2FBGが反射する高次モードの光の波長は互いに不一致とされることを特徴とするものである。
 基本モードの光はコアの長手方向に沿って直進するが、高次モードの光はコアの側面で反射しながらコアの長手方向に対して斜めに伝搬する。従って、コア内を伝搬する基本モードの光と高次モードの光とでは、コアを長手方向に沿って伝搬する速度が異なる。このことは基本モードの光と高次モードの光とで波長が異なることを意味する。ここで、上記ファイバレーザ装置では、第1FBGと第2FBGとで、基本モードの光の反射波長が互いに一致する。このため、基本モードの光は、第1FBGと第2FBGとの間を共振して、増幅用光ファイバの活性元素の誘導放出により増幅される。一方、第1FBGと第2FBGとでは、高次モードの光の反射波長が互いに不一致とされる。従って、高次モードの光が第1FBGと第2FBGとの間で共振することが抑制される。従って、高次モードの光の増幅が抑制される。こうして、基本モードの光が増幅されて出射し、出射する高次モードの光は増幅が抑制されているため、本発明のファイバレーザ装置によれば、出射する光のビーム品質を良好とすることができる。
 また、上記のファイバレーザ装置において、前記第1FBGは前記第1FBGが形成されるコアの屈折率よりも高い屈折率を有する複数の高屈折率部が所定間隔で形成されて成り、前記第2FBGは前記第2FBGが形成されるコアの屈折率よりも高い屈折率を有する複数の高屈折率部が所定間隔で形成されて成り、前記第1FBG及び前記第2FBGの少なくとも一方のそれぞれの前記高屈折率部において、コアの長手方向に垂直な断面での屈折率が不均一とされることが好ましい。
 第1FBG及び第2FBGにおけるそれぞれの高屈折率部のコアの長手方向に垂直な断面における屈折率が均一な場合、第1FBGと第2FBGとで基本モードの光の反射波長を互いに一致させると、高次モードの光の反射波長も互いに一致する。本発明者は、FBGを形成する高屈折率部のコアに垂直な断面における屈折率が不均一とされることで、基本モードの光の反射波長と高次モードの光の反射波長とを個別に調整することができることを見出した。そこで、上記のように第1FBG及び第2FBGの少なくとも一方のそれぞれの高屈折率部の断面における屈折率を不均一とする。この場合、第1FBGと第2FBGとで基本モードの光の反射波長を互いに一致させることで、高次モードの光の反射波長を互いに不一致とすることができる。
 この場合、屈折率が不均一とされる前記高屈折率部において、コアの長手方向に垂直な断面での中心から所定の範囲内となる中心領域の屈折率が前記中心領域の外側となる外周領域の屈折率よりも高いことが好ましい。
 基本モードの光はコアの中心にのみ光の強度のピークが位置するのに対して、高次モードはコアの中心以外にも光の強度のピークが位置する。従って、高屈折率部の屈折率分布を上記のようにして、第1FBGと第2FBGとで基本モードの光の反射波長を一致させることで、基本モードの光の損失を小さくすることができ、効果的に共振及び増幅させることができ、より良好なビーム品質の光を出射することができる。
 さらにこの場合、前記外周領域の屈折率は、当該外周領域が形成される高屈折率部で挟まれるコア部分の屈折率と同等とされることとしても良い。
 高屈折率部における外周領域の屈折率が、コアの高屈折率部以外の部分と同等されることで、高次モードの光の損失をより大きくすることができる。従って、より良好なビーム品質の光を出射することができる。
 また、前記第1FBGのそれぞれの前記高屈折率部において、コアの長手方向に垂直な断面での屈折率が均一とされ、前記第2FBGのそれぞれの前記高屈折率部において、コアの長手方向に垂直な断面での屈折率が不均一とされることが好ましい。
 第2FBGは、第1FBGよりも低い反射率とされることから、第2FBG側が光の出射側である。従って、第1FBGの高屈折率部の屈折率分布が面内で均一とされることで、第1FBGにおける基本モードの光の損失を抑えることができる。
 以上のように、本発明によれば、良好なビーム品質の光を出射することができるファイバレーザ装置が提供される。
本発明の実施形態に係るファイバレーザ装置を示す図である。 増幅用光ファイバの長手方向に垂直な断面の様子を示す図である。 第1光ファイバの様子を示す図である。 第1光ファイバの高屈折率部を通る断面の様子を示す図である。 第2光ファイバの様子を示す図である。 第2光ファイバの高屈折率部を通る断面の様子を示す図である。
 以下、本発明に係るファイバレーザ装置の好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図のスケールと、以下の説明に記載のスケールとが異なる場合がある。
 図1は、本発明の実施形態に係るファイバレーザ装置を示す図である。図1に示すように、本実施形態のファイバレーザ装置1は、増幅用光ファイバ10と、励起光源20と、第1光ファイバ30と、第1光ファイバ30に設けられる第1FBG35と、第2光ファイバ40と、第2光ファイバ40に設けられる第2FBG45と、光コンバイナ50とを主な構成として備える。
 図2は、図1に示す増幅用光ファイバ10の断面の構造を示す断面図である。図2に示すように増幅用光ファイバ10は、コア11と、コア11の外周面を隙間なく囲む内側クラッド12と、内側クラッド12の外周面を被覆する外側クラッド13と、外側クラッド13を被覆する被覆層14とを主な構成として備え、いわゆるダブルクラッド構造とされている。内側クラッド12の屈折率はコア11の屈折率よりも低く、外側クラッド13の屈折率は内側クラッド12の屈折率よりも低くされている。
 このため、コア11は、例えば屈折率を上昇させるゲルマニウム(Ge)等のドーパントが添加された石英から成り、この場合内側クラッド12は、例えば、何らドーパントが添加されない石英や屈折率を低下させるフッ素(F)等のドーパントが添加された石英から成る。また、外側クラッド13は、樹脂または石英から成り、樹脂としては例えば紫外線硬化樹脂が挙げられ、石英としては例えば内側クラッド12よりもさらに屈折率が低くなるように屈折率を低下させるフッ素(F)等のドーパントが添加された石英が挙げられる。また、被覆層14を構成する材料としては、例えば、紫外線硬化樹脂が挙げられ、外側クラッド13が樹脂の場合、外側クラッドを構成する樹脂とは異なる紫外線硬化樹脂とされる。
 また、コア11には上記のドーパントの他に励起光源20から出射される励起光により励起されるイッテルビウム(Yb)等の活性元素が添加されている。このような活性元素としては、希土類元素が挙げられ、希土類元素としては、イッテルビウムの他にツリウム(Tm)、セリウム(Ce)、ネオジウム(Nd)、ユーロピウム(Eu)、エルビウム(Er)等が挙げられる。さらに活性元素として、希土類元素の他にビスマス(Bi)等を挙げることができる。
 また、増幅用光ファイバ10は、マルチモードファイバであり、コア11を基本モードの光の他に2次LPモード以上の高次モードの光が伝搬する。
 励起光源20は、複数のレーザダイオード21から構成される。本実施形態では、レーザダイオード21は、例えば、GaAs系半導体を材料としたファブリペロー型半導体レーザであり中心波長が915nmの励起光を出射する。また、励起光源20のそれぞれのレーザダイオード21は光ファイバ25に接続されており、レーザダイオード21から出射する励起光は光ファイバ25を例えばマルチモード光として伝播する。
 それぞれの光ファイバ25は光コンバイナ50において、増幅用光ファイバ10の一端に接続されている。具体的には、それぞれの光ファイバ25のコアが増幅用光ファイバ10の内側クラッド12と光学的に結合するように、それぞれの光ファイバ25のコアと増幅用光ファイバ10の内側クラッド12とが接続されている。従って、それぞれのレーザダイオード21が出射する励起光は、光ファイバ25を介して増幅用光ファイバ10の内側クラッド12に入射して、内側クラッド12を主に伝搬する。
 図3は、第1光ファイバ30の様子を示す図である。第1光ファイバ30は、活性元素が添加されていないコア31と、このコア31の外周面を隙間なく囲むクラッド32とを主な構成として備える。第1光ファイバ30は、光コンバイナ50において、光ファイバ25と共に増幅用光ファイバ10の一端に接続されている。具体的には、増幅用光ファイバ10のコア11に第1光ファイバ30のコア31が光学的に結合するように、増幅用光ファイバ10のコア11と第1光ファイバ30のコア31とが接続されている。第1光ファイバ30は、マルチモードファイバであり、増幅用光ファイバ10のコア11が伝搬する光と同様の光を伝搬する。従って、増幅用光ファイバ10のコア11を伝搬するマルチモードの光は、マルチモードのまま第1光ファイバ30のコア31を伝搬する。
 また、第1光ファイバ30のコア31には、第1FBG35が設けられている。こうして、第1FBG35は増幅用光ファイバ10の一方側に配置され、増幅用光ファイバ10のコア11と光学的に結合する。第1FBG35は、コア31の第1FBG35以外の部分よりも屈折率が高い高屈折率部36と、コア31の第1FBG35以外の部分と同様の屈折率である低屈折率部37とが、コア31の長手方向に沿って周期的に繰り返されている。従って、低屈折率部37であるコア部分は、高屈折率部36で挟まれている。第1FBG35は、励起状態とされた増幅用光ファイバ10の活性元素が放出する光うち少なくとも一部の波長の光を反射するように構成されている。また、第1FBG35の反射率は、後述の第2FBG45の反射率よりも高く、活性元素が放出する光うち所望の波長の光を例えば99%以上で反射する。
 図4は、第1光ファイバ30の高屈折率部36を通り第1光ファイバ30の長手方向に垂直な断面の様子を示す図である。具体的には、図4(A)は当該断面における第1光ファイバ30の構成を示し、図4(B)は当該断面における第1光ファイバ30の屈折率分布を示す。図4に示すように、第1FBG35の高屈折率部36におけるコア31の径方向での屈折率分布は均一とされる。一般にFBGの高屈折率部は、高屈折率部となる部位に紫外線等の光が照射されて形成される。従って、コア31にはゲルマニウム等の感光性(光が照射されることで屈折率が変化する性質)の元素が添加されており、当該元素が反応する紫外線等の光が高屈折率部36となる部位に第1光ファイバ30の側面側から照射されて、高屈折率部36は形成される。上記のように高屈折率部36はコア31の径方向で均一の屈折率であるため、第1光ファイバ30のコア31には、感光性の元素が一定の濃度で添加されている。なお、図4(B)には、低屈折率部37の屈折率が点線で示されている。
 ところで、コアを伝搬する光のうち、基本モードの光はコアの長手方向に沿って直進するが、高次モードの光はコアの側面で反射しながらコアの長手方向に対して斜めに伝搬する。従って、コアを伝搬する基本モードの光と高次モードの光とでは、コアを長手方向に沿って伝搬する速度が異なる。このことは基本モードの光と高次モードの光とで波長が異なることを意味する。
 そこで、本実施形態においては、第1FBG35では、例えば、基本モードの光の反射波長が1063.7nmとされ、2次LPモードの光の反射波長が1062.6nmとされ、3次LPモードの光の反射波長が1061.0nmとされ、4次LPモードの光の反射波長が1060.9nmとされる。
 なお、第1光ファイバ30の増幅用光ファイバ10と接続される側と反対側には、光を熱に変換する終端部38が設けられている。
 図5は、第2光ファイバ40の様子を示す図である。第2光ファイバ40は、活性元素が添加されていないコア41と、このコア41の外周面を隙間なく囲むクラッド42とを主な構成として備える。第2光ファイバ40は、第1光ファイバ30と同様にマルチモードファイバであり、増幅用光ファイバ10のコア11が伝搬する光と同様の光を伝搬する。第2光ファイバ40は、増幅用光ファイバ10の他端において、増幅用光ファイバ10のコア11と第2光ファイバ40のコア41とが光学的に結合するように接続される。従って、増幅用光ファイバ10のコア11を伝搬するマルチモードの光は、マルチモードのまま第2光ファイバ40のコア41を伝搬する。
 また、第2光ファイバ40のコア41には、第2FBG45が設けられている。こうして、第2FBG45は増幅用光ファイバ10の他方側に配置され、増幅用光ファイバ10のコア11と光学的に結合する。第2FBG45は、コア41の第2FBG45以外の部分よりも屈折率が高い高屈折率部46と、コア41の第2FBG45以外の部分と同様の屈折率である低屈折率部47とが、コア41の長手方向に沿って周期的に繰り返されている。従って、低屈折率部47であるコア部分は、高屈折率部46で挟まれている。第2FBG45は、第1FBG35が反射する光の一部を第1FBG35よりも低い反射率で反射するように構成されている。第2FBG45は、第1FBG35が反射する光が入射する場合に、この光を例えば10%程度の反射率で反射する。こうして、第1FBG35と増幅用光ファイバ10と第2FBG45とで、共振器が形成されている。
 図6は、第2光ファイバ40の高屈折率部46を通り第2光ファイバ40の長手方向に垂直な断面の様子を示す図である。具体的には、図6(A)は当該断面における第2光ファイバ40の構成を示し、図6(B)は当該断面における第2光ファイバ40の屈折率分布を示す。図6(A)に示すように、第2光ファイバ40のコア41は、コア41の中心を含む中心領域41cと中心領域41cを囲みコア41の最外周部分を含む外周領域41oとから成る。特に図示しないが、中心領域41c及び外周領域41oの屈折率は、共にクラッド42の屈折率よりも高くされる。また、本実施形態では、第2FBG45の高屈折率部46を除き、中心領域41cの屈折率は外周領域41oの屈折率と同等されている。ただし、中心領域41cの屈折率が外周領域41oの屈折率よりも高くされても良く、中心領域41cの屈折率が外周領域41oの屈折率よりも低くされても良い。
 また、図6(B)に示すように、第2FBG45の高屈折率部46においては、コア41の長手方向に垂直な断面において屈折率が不均一とされる。本実施形態では、中心領域41cの屈折率が外周領域41oの屈折率よりも高くされている。なお、図6(B)では、図4(B)で低屈折率部37の屈折率が示されるのと同様にして、低屈折率部47の屈折率が点線で示されている。図6(B)から理解できるとおり、本実施形態の高屈折率部46における外周領域41oの屈折率は、低屈折率部47の屈折率と同等とされる。ただし、外周領域41oの屈折率は、低屈折率部47の屈折率よりも高くされても良い。このような高屈折率部46の屈折率分布を得るには次の様にすればよい。つまり、コア41の中心領域41cには、ゲルマニウム等の感光性の高い元素が添加され、コア41の外周領域41oには、リンやアルミニウムのように感光性を示さない或いは感光性の低い元素が添加される。そして、高屈折率部46となる部位に添加される元素が反応する紫外線等の光が第2光ファイバ40の側面側から照射される。こうして図6(B)に示す中心領域41cの屈折率が外周領域41oの屈折率よりも高くされた高屈折率部46を得ることができる。
 このような屈折率分布の高屈折率部46を有する第2FBG45では、基本モードの光の反射波長が第1FBG35の基本モードの光の反射波長と一致するものとされ、高次モードの光の反射波長が第1FBG35の高次モードの光の反射波長と不一致とされる。そこで、本実施形態においては、第2FBG45での基本モードの反射波長は1063.7nmとされ、2次LPモードの光の反射波長が1062.0nmとされ、3次LPモードの光の反射波長が1061.8nmとされ、4次LPモードの光の反射波長が1061.4nmとされる。
 本実施形態と異なり、第2FBG45の高屈折率部46の屈折率が、第1FBG35の高屈折率部36のようにコア41の径方向で一定の場合、第2FBG45での基本モードの光の反射波長を第1FBG35での基本モードの光の反射波長と一致させると、第2FBG45での高次モードの光の反射波長も第1FBG35での高次モードの光の反射波長と一致してしまう。しかし、本実施形態では、第2FBG45の高屈折率部46の屈折率が、コア41の径方向で不均一とされることで、上記のように、第2FBG45において、基本モードの光の反射波長を第1FBG35での基本モードの反射波長と一致させつつも、高次モードの光の反射波長を第1FBG35での高次モードの反射波長と不一致としている。
 また基本モードの光はコアの中心で光の強度のピークが位置し、高次モードはコアの中心以外にも光の強度のピークが位置する。従って、第2FBG45の高屈折率部46における屈折率分布を上記のようにすることで、第2FBG45における基本モードの光の損失を高次モードの光よりも小さくすることができる。特に本実施形態では、上記のように、外周領域41oの屈折率が、低屈折率部47の屈折率と同等とされる。従って、外周領域41oの屈折率が低屈折率部47の屈折率と異なる場合と比べて、第2FBG45において基本モードの光よりも高次モードの光の損失をより大きくすることができる。
 次に、ファイバレーザ装置1の光学的な動作について説明する。
 まず、励起光源20のそれぞれのレーザダイオード21から励起光が出射される。この励起光は光ファイバ25を介して、増幅用光ファイバ10の内側クラッド12に入射して、主に内側クラッド12を伝搬する。内側クラッド12を伝搬する励起光は、コア11を通過する際にコア11に添加されている活性元素を励起する。励起状態とされた活性元素は、特定の波長帯域の自然放出光を放出する。この自然放出光を起点として、第1FBG35及び第2FBG45で共通して反射される波長の光が、第1FBG35と第2FBG45との間を共振する。共振する光が増幅用光ファイバ10のコア11を伝搬するときに、励起状態の活性元素が誘導放出を起こして、共振する光が増幅される。共振する光のうち、一部の光は第2FBG45を透過して、第2光ファイバ40から出射する。そして、第1FBG35と増幅用光ファイバ10と第2FBG45とを含む共振器内における利得と損失が等しくなったところでレーザ発振状態となり、第2光ファイバ40から一定のパワーの光が出射する。
 ところで、第1FBG35には、基本モードの光の他、第2LPモード以上となる高次モードの光が入射する。第1FBG35の基本モードの光及び高次モードの光の反射波長が上記の通りであれば、第1FBG35では、中心波長が1063.7nmの基本モードの光、及び、中心波長が1062.6nmの2次LPモードの光、及び、中心波長が1061.0nmの3次LPモードの光、及び、中心波長が1060.9nmの4次LPモードの光が反射する。一方、上記のように、第2FBG45の基本モードの光及び高次モードの光の反射波長が上記の通りであれば、第2FBG45では、中心波長が1063.7nmの基本モードの光、及び、中心波長が1062.0nmの2次LPモードの光、及び、中心波長が1061.8nmの3次LPモードの光、及び、中心波長が1061.4nmの4次LPモードの光が反射する。従って、第2FBG45では、基本モード光の反射波長が第1FBG35の基本モードの光の反射波長と一致するが、高次モード光の反射波長が第1FBG35の高次モードの光の反射波長と不一致とされる。このため、第1FBG35で反射して第2FBG45に入射する光のうち、基本モードの光は第1FBG35よりも低い反射率で第2FBG45により反射される。しかし、第1FBG35で反射して第2FBG45に入射する光のうち、高次モードの光は、第2FBG45での反射が抑制され、第2FBG45を透過する。
 こうして第1FBG35と第2FBG45とで共通して反射し共振する光は主に基本モードの光とされ、増幅用光ファイバ10では主に基本モードの光が増幅する。このため、第2光ファイバ40からは、主に基本モードの光が出射する。
 なお、増幅用光ファイバ10側から第1FBG35を透過する光の大部分は、終端部38で熱に変換されて消滅する。
 以上説明したように、本実施形態のファイバレーザ装置によれば、第1FBG35と第2FBG45とで、基本モードの光の反射波長が互いに一致する。一方、第1FBGと第2FBGとでは、高次モードの光の反射波長が互いに不一致とされる。従って、高次モードの光が増幅されることが抑制され、基本モードの光が増幅されて出射するため、本発明のファイバレーザ装置1によれば、出射する光のビーム品質を良好とすることができる。
 また、本実施形態では、第1FBG35の高屈折率部36がコア31の径方向で一定の屈折率とされるのに対して、光の出射側FBGである第2FBG45の高屈折率部46がコア41の径方向で不均一な屈折率とされる。従って、第1FBG35側での光の損失を抑制して、高次モードの光の反射波長を第1FBG35と第2FBG45とで不一致とさせることができる。
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。本発明のファイバレーザ装置は、第1FBG35が反射する基本モードの光の波長と第2FBG45が反射する基本モードの光の波長は互いに一致し、第1FBG35が反射する高次モードの光の波長と第2FBG45が反射する高次モードの光の波長は互いに不一致とされる限りにおいて、適宜変形することができる。
 例えば、上記実施形態では、第1FBG35の高屈折率部36の屈折率はコア31の長手方向に垂直な断面において均一とされ、第2FBG45の高屈折率部46の屈折率がコア41の長手方向に垂直な断面において不均一とされた。しかし、第1FBG35の高屈折率部36の屈折率が、コア31の長手方向に垂直な断面において不均一とされても良い。この場合、高屈折率部36の屈折率分布は、高屈折率部46の屈折率分布のように、コア31の長手方向に垂直な断面において中心から所定の範囲内となる中心領域の屈折率が当該中心領域の外側となる外周領域の屈折率よりも高い構成とされても良い。そして、この場合、高屈折率部36の外周領域の屈折率が第1FBG35の低屈折率部37の屈折率と同等とされても良い。このように第1FBG35の高屈折率部36の屈折率が、コア31の長手方向に垂直な断面において不均一とされる場合、第2FBG45の高屈折率部46の屈折率は、コア41の長手方向に垂直な断面において均一とされても良い。この場合であっても、第2FBG45の光の反射率は第1FBG35の光の反射率よりも低くされる。ただし、光の損失を抑制し効率よく光を出射する観点から、第1FBG35の高屈折率部36の屈折率はコア31の長手方向に垂直な断面において均一とされて、上記実施形態の様な反射率とされることが好ましい。
 また、上記実施形態では、第2FBG45の高屈折率部46の中心領域41cの屈折率が外周領域41oの屈折率よりも高くされ、外周領域41oの屈折率が低屈折率部47の屈折率と同等とされた。しかし、第2FBG45の高屈折率部46の屈折率がコア41の長手方向に垂直な断面において不均一とされる場合、第2FBG45の高屈折率部46の屈折率分布は、上記実施形態と異なっていても良い。例えば、外周領域41oの屈折率が、中心領域41cの屈折率と低屈折率部47の屈折率との間の屈折率とされても良い。また、高屈折率部46の屈折率は、コア41の中心で最も高く、コア41の外周側に進むほど徐々に低くなることとしても良い。また、高屈折率部46における最も屈折率の高い部位がコア41の中心に位置しなくても良い。このような高屈折率部46の屈折率分布の変形例は、第1FBG35の高屈折率部36がコア31の長手方向に垂直な断面において不均一とされる場合にも適用可能である。
 また、励起光が増幅用光ファイバ10に入射する位置は、特に限定されない。また、第1光ファイバ30のコア31、第2光ファイバ40のコア41に活性元素が添加されていても良い。
 以上説明したように、本発明によれば、良好なビーム品質の光を出射することができるファイバレーザ装置が提供され、加工用のファイバレーザ装置等においての利用が期待される。
1・・・ファイバレーザ装置
10・・・増幅用光ファイバ
11・・・コア
12・・・内側クラッド
13・・・外側クラッド
20・・・励起光源
30・・・第1光ファイバ
31・・・コア
35・・・第1FBG
36・・・高屈折率部
37・・・低屈折率部
40・・・第2光ファイバ
41・・・コア
41c・・・中心領域
41o・・・外周領域
45・・・第2FBG
46・・・高屈折率部
47・・・低屈折率部

 

Claims (5)

  1.  励起状態で光を放出する活性元素がコアに添加された増幅用光ファイバと、
     前記増幅用光ファイバの一方側に配置される光ファイバのコアに形成され、前記活性元素が放出する光の少なくとも一部を反射する第1FBGと、
     前記増幅用光ファイバの他方側に配置される光ファイバのコアに形成され、前記第1FBGが反射する光を前記第1FBGよりも低い反射率で反射する第2FBGと、
    を備え、
     前記第1FBGが反射する基本モードの光の波長と前記第2FBGが反射する基本モードの光の波長とは互いに一致し、
     前記第1FBGが反射する高次モードの光の波長と前記第2FBGが反射する高次モードの光の波長とは互いに不一致とされる
    ことを特徴とするファイバレーザ装置。
  2.  前記第1FBGは前記第1FBGが形成されるコアの屈折率よりも高い屈折率を有する複数の高屈折率部が所定間隔で形成されて成り、前記第2FBGは前記第2FBGが形成されるコアの屈折率よりも高い屈折率を有する複数の高屈折率部が所定間隔で形成されて成り、
     前記第1FBG及び前記第2FBGの少なくとも一方のそれぞれの前記高屈折率部において、コアの長手方向に垂直な断面での屈折率が不均一とされる
    ことを特徴とする請求項1に記載のファイバレーザ装置。
  3.  屈折率が不均一とされる前記高屈折率部において、コアの長手方向に垂直な断面での中心から所定の範囲内となる中心領域の屈折率が前記中心領域の外側となる外周領域の屈折率よりも高い
    ことを特徴とする請求項2に記載のファイバレーザ装置。
  4.  前記外周領域の屈折率は、当該外周領域が形成される高屈折率部で挟まれるコア部分の屈折率と同等とされる
    ことを特徴とする請求項3に記載のファイバレーザ装置。
  5.  前記第1FBGのそれぞれの前記高屈折率部において、コアの長手方向に垂直な断面での屈折率が均一とされ、
     前記第2FBGのそれぞれの前記高屈折率部において、コアの長手方向に垂直な断面での屈折率が不均一とされる
    ことを特徴とする請求項2から4のいずれか1項に記載のファイバレーザ装置。

     
PCT/JP2015/067184 2014-09-01 2015-06-15 ファイバレーザ装置 WO2016035414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15838193.9A EP3196991B1 (en) 2014-09-01 2015-06-15 Fiber laser device
CN201580043778.3A CN106575851B (zh) 2014-09-01 2015-06-15 光纤激光装置
US15/437,957 US20170162998A1 (en) 2014-09-01 2017-02-21 Fiber laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-177455 2014-09-01
JP2014177455A JP6511235B2 (ja) 2014-09-01 2014-09-01 ファイバレーザ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/437,957 Continuation US20170162998A1 (en) 2014-09-01 2017-02-21 Fiber laser device

Publications (1)

Publication Number Publication Date
WO2016035414A1 true WO2016035414A1 (ja) 2016-03-10

Family

ID=55439485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067184 WO2016035414A1 (ja) 2014-09-01 2015-06-15 ファイバレーザ装置

Country Status (5)

Country Link
US (1) US20170162998A1 (ja)
EP (1) EP3196991B1 (ja)
JP (1) JP6511235B2 (ja)
CN (1) CN106575851B (ja)
WO (1) WO2016035414A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171208A (ja) * 2015-03-12 2016-09-23 株式会社フジクラ 光ファイバ、ファイバアンプ、及びファイバレーザ
JP6268232B2 (ja) 2016-07-04 2018-01-24 株式会社フジクラ 光ファイバ、及び、レーザ装置
WO2019013862A2 (en) * 2017-05-15 2019-01-17 Ipg Photonics Corporation RAMAN LASER FIBER MONOMODE PUMP WITH HIGH POWER SENSING
JP2019029421A (ja) * 2017-07-26 2019-02-21 株式会社フジクラ ファイバレーザ装置
CN111527429A (zh) 2017-12-28 2020-08-11 株式会社藤仓 光纤以及激光装置
EP3734336A4 (en) 2017-12-28 2021-08-25 Fujikura, Ltd. OPTICAL FIBER AND LASER DEVICE
EP3794692A4 (en) * 2018-06-29 2022-03-02 IPG Photonics Corporation HIGH POWER YTTERBIUM:ERBIUM (YB:ER) FIBER LASER SYSTEM WITH 1.02-1.06 UM SHEATH PUMPING SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220779A (ja) * 2006-02-15 2007-08-30 Fujikura Ltd マルチモードファイバ、光増幅器及びファイバレーザ
JP2012099649A (ja) * 2010-11-02 2012-05-24 Fujikura Ltd 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器
WO2013001734A1 (ja) * 2011-06-29 2013-01-03 パナソニック株式会社 ファイバレーザ
JP2013197332A (ja) * 2012-03-21 2013-09-30 Fujikura Ltd 光回路装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305335A (en) * 1989-12-26 1994-04-19 United Technologies Corporation Single longitudinal mode pumped optical waveguide laser arrangement
US5647038A (en) * 1995-08-30 1997-07-08 Hughes Aircraft Company Narrow bandwidth Bragg grating reflector for use in an optical waveguide
US6597711B2 (en) * 1998-12-04 2003-07-22 Cidra Corporation Bragg grating-based laser
US6751241B2 (en) * 2001-09-27 2004-06-15 Corning Incorporated Multimode fiber laser gratings
WO2007107164A2 (en) * 2006-03-17 2007-09-27 Crystal Fibre A/S An optical fiber, a fiber laser, a fiber amplifier and articles comprising such elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220779A (ja) * 2006-02-15 2007-08-30 Fujikura Ltd マルチモードファイバ、光増幅器及びファイバレーザ
JP2012099649A (ja) * 2010-11-02 2012-05-24 Fujikura Ltd 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器
WO2013001734A1 (ja) * 2011-06-29 2013-01-03 パナソニック株式会社 ファイバレーザ
JP2013197332A (ja) * 2012-03-21 2013-09-30 Fujikura Ltd 光回路装置

Also Published As

Publication number Publication date
US20170162998A1 (en) 2017-06-08
JP2016051859A (ja) 2016-04-11
CN106575851B (zh) 2020-06-26
JP6511235B2 (ja) 2019-05-15
EP3196991A1 (en) 2017-07-26
CN106575851A (zh) 2017-04-19
EP3196991B1 (en) 2019-05-15
EP3196991A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
US8498044B2 (en) Amplification optical fiber, and optical fiber amplifier and resonator using the same
WO2016035414A1 (ja) ファイバレーザ装置
US9431787B2 (en) Amplification optical fiber and fiber laser device using the same
CA3029493C (en) Optical fiber and laser device
US9529148B2 (en) Optical fiber and fiber laser device using same
US9325142B2 (en) Optical fiber and fiber laser apparatus using same
JP6744074B2 (ja) 光ファイバグレーティング用光ファイバおよびファイバレーザ装置
US20210057866A1 (en) Optical fiber and laser device
US20220094131A1 (en) Active element-added optical fiber, resonator, and fiber laser device
WO2020203930A1 (ja) 活性元素添加光ファイバ、共振器、及び、ファイバレーザ装置
JP6499126B2 (ja) 光コンバイナ、光増幅器、及び、レーザ装置
WO2019021565A1 (ja) ファイバレーザ装置
CN111566526A (zh) 光纤以及激光装置
CA3025416C (en) Amplification optical fiber, fiber laser device, and optical resonator
JP7177090B2 (ja) 高パワークラッディングポンプ単一モードファイバーラマンレーザー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838193

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015838193

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838193

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE