WO2019021565A1 - ファイバレーザ装置 - Google Patents
ファイバレーザ装置 Download PDFInfo
- Publication number
- WO2019021565A1 WO2019021565A1 PCT/JP2018/017421 JP2018017421W WO2019021565A1 WO 2019021565 A1 WO2019021565 A1 WO 2019021565A1 JP 2018017421 W JP2018017421 W JP 2018017421W WO 2019021565 A1 WO2019021565 A1 WO 2019021565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical fiber
- mode
- fbg
- fiber
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
Definitions
- the present invention relates to a highly reliable laser device, and is particularly suitable for a laser device that emits light of high power.
- the fiber laser device is used in various fields such as the laser processing field and the medical field because the fiber laser device is excellent in light-condensing property, high in power density, and capable of obtaining light as a small beam spot.
- the power density of the light in the amplification optical fiber may be increased to cause the nonlinear optical effect.
- the effective cross-sectional area (A eff ) of the light propagating through the amplification optical fiber it is conceivable to increase the effective cross-sectional area (A eff ) of the light propagating through the amplification optical fiber.
- a eff effective cross-sectional area
- the effective cross-sectional area is increased, light of higher order other than the light of the fundamental mode (LP 01 mode) is easily excited, and light is easily oscillated in the multi mode.
- LP 01 mode fundamental mode
- Patent Document 1 describes a fiber laser device having an amplification double clad fiber capable of propagating multi-mode light.
- a mode converter is arranged to excite only the fundamental mode light so that only the fundamental mode light is included in the light incident on the core, and an amplification double for propagating the multimode light In the cladding fiber, it is supposed that the light of the fundamental mode can be amplified.
- the beam quality can be improved if the fundamental mode is amplified more than other modes.
- the beam quality can be enhanced more than the light of modes higher than the predetermined mode. Can be improved.
- an object of the present invention is to provide a fiber laser device capable of emitting light with high beam quality and high power.
- the fiber laser device of the present invention comprises an excitation light source for emitting excitation light, and an amplification light having a core for transmitting light of a plurality of modes added with an active element excited by the excitation light.
- a fiber a first mirror provided on one side of the amplification optical fiber for reflecting light amplified by the amplification optical fiber with a predetermined reflectance of less than 100%, and on the other side of the amplification optical fiber And the second mirror that reflects light of a wavelength band at least a part of which is the same as the wavelength band of the light reflected by the first mirror with a reflectance lower than that of the first mirror, and the amplification based on the first mirror And an optical component provided on the opposite side to the optical fiber side and reflecting light of a wavelength band at least a part of which is the same as the wavelength band of the light reflected by the first mirror; It is characterized in that light of a plurality of modes of light passing through the lens up to a predetermined mode including the fundamental mode is reflected at a higher reflectance than light of a mode higher than that of the predetermined mode. .
- this fiber laser device uses an amplification optical fiber for propagating light of a plurality of modes, the diameter of the core can be made larger than that of an amplification optical fiber for propagating only light of the fundamental mode. Therefore, even when light of large power propagates through the amplification optical fiber, generation of nonlinear optical light can be suppressed.
- the amplification optical fiber that propagates the light of the plurality of modes the light of the plurality of modes tends to be excited. Therefore, in the fiber laser device of the present invention, of the light transmitted through the first mirror, the light up to the predetermined mode is reflected by the optical component at a higher reflectance than the light of the high-order mode.
- the power of the light up to the predetermined mode is larger than the power of the light of the high-order mode, as compared with the case where the above optical component is not provided.
- the light up to the predetermined mode is the light of the lower mode among the light of the plurality of modes propagating through the amplification optical fiber. Therefore, even if the amplification factor of the light of the low order mode and the amplification factor of the light of the high order mode are the same in the amplification optical fiber, as a result, the light of the low order mode is higher than the light of the high order mode Will also be amplified. Therefore, the light of the low order mode can be emitted with a higher power than the light of the high order mode.
- the fiber laser device of the present invention light with high beam quality and large power can be emitted.
- the light of the predetermined mode is light of the fundamental mode
- the light of the high-order mode is light of the second-order LP mode or more.
- the optical component may include a filter and a third mirror that reflects light transmitted through the filter, and the filter may suppress transmission of light of the high-order mode.
- the filter is an optical fiber that suppresses the propagation of the light of the high-order mode and propagates the light up to the predetermined mode.
- the optical component in this case can be composed of an optical fiber as a filter and a third mirror.
- This optical fiber is an optical fiber having a smaller number of propagation modes than the amplification optical fiber.
- a mirror such as FBG (Fiber Bragg Grating) can be used as the third mirror, and the optical component can be configured with a simple configuration.
- the optical fiber to be the filter is preferably a single mode fiber.
- the filter be an optical fiber in which light of the higher mode is lost by bending.
- the diameter of the core of the optical fiber to be the filter is equal to the diameter of the core of the amplification optical fiber.
- loss of light can be suppressed when light propagates from the amplification optical fiber to the optical fiber as a filter, and reduction in the efficiency of the fiber laser device can be suppressed.
- the light reflectance of the optical component is higher than the reflectance of the first mirror.
- At least a portion of the wavelength band of the light reflected by the first mirror and the wavelength band of the light reflected by the optical component overlap. Therefore, a part of the light reflected by the optical component and incident on the first mirror is reflected again by the first mirror toward the optical component.
- the light reflectance of the optical component is higher than the reflectance of the first mirror as described above, light reciprocating between the first mirror and the optical component is mainly from the first mirror side. It will radiate
- the fiber laser device of the present invention As described above, according to the fiber laser device of the present invention, light with high beam quality and large power can be emitted.
- FIG. 1 is a view showing a fiber laser device according to the present embodiment.
- the excitation light source 10 for emitting excitation light and the excitation light emitted from the excitation light source 10 are incident, and the active element to be excited by the excitation light is added.
- Optical fiber 20 for amplification an optical fiber 21 connected to one end of the amplification optical fiber 20, a first FBG 31 as a first mirror provided in the optical fiber 21, and the other end of the amplification optical fiber 20
- Optical fiber 22 a second FBG 32 as a second mirror provided in the optical fiber 22
- an optical component 40 connected to the optical fiber 21, and a combiner 50 for making the excitation light incident on the optical component 40 Provided as a configuration.
- the excitation light source 10 is composed of a plurality of laser diodes 11 and emits excitation light of a wavelength that excites the active element added to the amplification optical fiber 20.
- Each laser diode 11 of the excitation light source 10 is connected to an optical fiber 12 for excitation light, and light emitted from the laser diode 11 is an optical fiber 12 for excitation light optically connected to the respective laser diode 11.
- Propagate As the excitation light optical fiber 12, for example, a multimode fiber can be mentioned. In this case, the excitation light propagates through the excitation light optical fiber 12 as multimode light.
- the active element to be added to the amplification optical fiber 20 is, for example, ytterbium as described later, the wavelength of the excitation light is, for example, 915 nm.
- the amplification optical fiber 20 has a core, an inner cladding that encloses the outer peripheral surface of the core without gaps and an outer cladding that has a lower refractive index than the core, and an outer that covers the outer peripheral surface of the inner cladding and that has a lower refractive index than the inner cladding. It is comprised from a clad and the coating layer which coat
- a material constituting the core of the amplification optical fiber 20 for example, an element such as germanium which raises the refractive index, and an active element such as ytterbium (Yb) which is excited by light emitted from the excitation light source 10 are added. Quartz.
- a rare earth element can be mentioned, and as the rare earth element, thulium (Tm), cerium (Ce), neodymium (Nd), europium (Eu), erbium (Er), etc. in addition to ytterbium mentioned above It can be mentioned.
- the active element include bismuth (Bi).
- the pure quartz which the dopant is not added at all is mentioned, for example.
- inner clad may be comprised from the quartz to which the element which lowers refractive indexes, such as a fluorine, was added, for example.
- resin whose refractive index is lower than an inner clad is mentioned, for example.
- an outer clad is mentioned, for example UV curable resin different from resin which comprises these.
- the amplification optical fiber 20 is an optical fiber capable of propagating light of a plurality of modes, and is, for example, a fumode fiber for propagating light of a wavelength of 1060 nm in several modes.
- the amplification optical fiber 20 can propagate, for example, light of 4 LP modes of LP 01 mode, LP 11 mode, LP 21 mode, and LP 02 mode.
- an amplification optical fiber for propagating such a plurality of modes for example, mention is made of an amplification optical fiber having a core diameter of 16 ⁇ m and a relative refractive index difference of 0.15% between the core and the inner cladding.
- the amplification optical fiber 20 may be a multimode fiber that propagates light of more modes than several modes.
- the optical fiber 21 has the same configuration as the amplification optical fiber 20 except that the active element is not added to the core. Therefore, in the present embodiment, the core diameter of the optical fiber 21 and the diameter of the core of the amplification optical fiber 20 are equal to each other, and the outer diameter of the inner cladding of the optical fiber 21 and the outer diameter of the inner cladding of the amplification optical fiber 20. The diameters are made equal to one another.
- the central axis of the core of the optical fiber 21 is aligned with the central axis of the core of the amplification optical fiber 20 and is connected to one end of the amplification optical fiber 20. Accordingly, the core of the amplification optical fiber 20 and the core of the optical fiber 21 are optically coupled, and the inner cladding of the amplification optical fiber 20 and the inner cladding of the optical fiber 21 are optically coupled.
- the first FBG 31 is provided at the core of the optical fiber 21.
- the FBG Fiber Bragg Grating
- the FBG is configured by repeating the high refractive index portion and the low refractive index portion with a constant period along the longitudinal direction of the optical fiber 21.
- the first FBG 31 reflects light of a specific wavelength band among the light emitted by the active element of the amplification optical fiber 20 in the excited state, with a reflectance of less than 100%. As described above, when the active element added to the amplification optical fiber 20 is ytterbium, the first FBG 31 reflects, for example, light having a wavelength of 1060 nm with a reflectance of, for example, 80% to 90%.
- the optical fiber 22 has a core similar to the core of the amplification optical fiber 20 except that the active element is not added, and the same configuration as the inner cladding of the amplification optical fiber 20 surrounding the outer peripheral surface of the core without a gap. And a covering layer covering the outer peripheral surface of the inner cladding.
- the optical fiber 22 is connected to the other end of the amplification optical fiber 20, and the core of the amplification optical fiber 20 and the core of the optical fiber 22 are optically coupled.
- the second FBG 32 is provided at the core of the optical fiber 22.
- the second FBG 32 is provided on the other end side of the amplification optical fiber 20 and is optically coupled to the core of the amplification optical fiber 20.
- the second FBG 32 is configured to reflect light in a wavelength band at least a part of which is the same as the wavelength band of the light reflected by the first FBG 31 with a reflectance lower than that of the first FBG 31.
- the second FBG 32 is configured to reflect light in the same wavelength band as the wavelength band of the light reflected by the first FBG 31 with a 50% reflectance.
- a resonator is formed by the amplification optical fiber 20, the first FBG 31, and the second FBG 32, and the fiber laser device 1 of the present embodiment is of the resonator type.
- a delivery fiber may be connected to the side of the optical fiber 22 opposite to the amplification optical fiber 20 side.
- an optical component 40 is connected to an end of the optical fiber 21 opposite to the amplification optical fiber 20 side.
- the optical component 40 of this embodiment has an optical fiber 41 and a third FBG 43 as a third mirror.
- the optical fiber 41 has the same configuration as the optical fiber 21 except that the light in the wavelength band propagating in the amplification optical fiber 20 is a single mode fiber that propagates only in the fundamental mode. Ru. Therefore, as described above, when light of wavelength 1060 nm propagates through the amplification optical fiber 20, light of the wavelength is propagated in the fundamental mode, and light of a second-order LP mode or higher which is a mode higher than the fundamental mode Propagation is suppressed.
- propagating light in a single mode when light having a wavelength of 1060 nm propagates for example, mention is made of an optical fiber having a core diameter of 10 ⁇ m and a relative refractive index difference of 0.15% between the core and the inner cladding.
- the optical fiber 41 which is such a single mode fiber can be understood as a filter which can suppress the transmission of the light of the higher mode and can transmit the light of the fundamental mode.
- the diameter of the core of the optical fiber 41 and the diameter of the core of the amplification optical fiber 20 are equal to each other, and the outer diameter of the inner cladding of the optical fiber 41 and the outer diameter of the inner cladding of the amplification optical fiber 20 The diameters are made equal to one another.
- the diameters of the cores of the amplification optical fiber 20, the optical fiber 21 and the optical fiber 41 are equal to each other, and the outer diameter of the inner cladding of the amplification optical fiber 20, the optical fiber 21 and the optical fiber 41 is Be equal to each other.
- the optical fiber 41 is connected to the optical fiber 21 with the central axis of the core aligned with the central axis of the core of the optical fiber 21. Therefore, the core of the amplification optical fiber 20 and the core of the optical fiber 41 are optically coupled through the core of the optical fiber 21, and the inner cladding of the amplification optical fiber 20 and the inner cladding of the optical fiber 41 are optical fibers It is optically coupled via the 21 inner cladding.
- a third FBG 43 is provided.
- the third FBG 43 is optically coupled to the first FBG 31.
- the third FBG 43 is configured to reflect light in a wavelength band at least partially the same as the wavelength band of the light reflected by the first FBG 31.
- the third FBG 43 has the same reflected wavelength as the reflected wavelength band of the first FBG 31
- the light in the band is configured to be reflected at a higher reflectance than the first FBG 31.
- the third FBG 43 is configured to reflect, for example, light in the same wavelength band as that of the light reflected by the first FBG 31 with a reflectance of 99%.
- the optical component 40 includes the optical fiber 41 and the third FBG 43, light of a plurality of modes propagating through the amplification optical fiber 20 and transmitted through the first FBG 31 is light of a fundamental mode higher than the fundamental mode. It can be understood as a component that reflects with higher reflectance.
- a combiner 50 is formed at the end of the optical fiber 41 opposite to the amplification optical fiber 20.
- the core of the optical fiber 12 for excitation light is connected to the inner cladding of the optical fiber 41.
- the excitation light optical fiber 12 connected to the excitation light source 10 and the inner cladding of the amplification optical fiber 20 are optically coupled via the optical fiber 41 and the inner cladding of the optical fiber 21.
- excitation light is emitted from each of the laser diodes 11 of the excitation light source 10.
- the excitation light emitted from the excitation light source 10 enters the inner cladding of the amplification optical fiber 20 from the excitation light optical fiber 12 through the inner cladding of the optical fiber 41 and the inner cladding of the optical fiber 21.
- the excitation light incident on the inner cladding of the amplification optical fiber 20 mainly propagates in the inner cladding, and excites the active element added to the core when passing through the core of the amplification optical fiber 20.
- the active element in the excited state emits spontaneous emission light.
- the spontaneous emission light propagates through the core of the amplification optical fiber 20, light of a part of the wavelength is reflected by the first FBG 31, and light of the wavelength reflected by the second FBG 32 among the reflected light is reflected by the second FBG 32 And reciprocate between the first FBG 31 and the second FBG 32, that is, within the resonator.
- This light is amplified by stimulated emission when propagating through the core of the amplification optical fiber 20, and enters a laser oscillation state.
- the light amplified by the amplification optical fiber 20 is light of a plurality of modes.
- the amplification optical fiber 20 is a fumode fiber, light of several modes is amplified.
- the first FBG 31 has a reflectance of less than 100% as described above, part of the light of the plurality of modes propagating through the amplification optical fiber 20 is transmitted through the first FBG 31.
- the light transmitted through the first FBG 31 enters the core of the optical fiber 41 of the optical component 40.
- the optical fiber 41 of the present embodiment is a single mode fiber, light of the fundamental mode of the plurality of modes of light transmitted through the first FBG 31 and propagated through the optical fiber 21 propagates through the optical fiber 41.
- the propagation of the optical fiber 41 is suppressed for light of higher order modes than the second order LP mode.
- the optical fiber 21 and the optical fiber 41 are equal to each other as described above, the loss of light can be suppressed. Then, the light of the fundamental mode propagating through the optical fiber 41 is reflected by the third FBG 43, propagates through the optical fiber 41 again, and enters the core of the optical fiber 21.
- the optical fiber 21 can propagate light of a plurality of modes as described above, but when light of the fundamental mode is incident from the optical fiber 41, it mainly propagates light of the fundamental mode.
- a part of the light having a large power of the light of the fundamental mode propagating from the optical fiber 41 to the core of the optical fiber 21 passes through the first FBG 31 and the other part is reflected by the first FBG 31.
- the light reflected by the first FBG 31 propagates through the optical fiber 41, is reflected again by the third FBG 43, and propagates toward the first FBG 31 again.
- part of the light reciprocates between the first FBG 31 and the third FBG 43.
- the reflectance of the light of the third FBG 43 is higher than the reflectance of the first FBG 31, so the first FBG 31
- the light that reciprocates between the second FBG 43 and the third FBG 43 mainly exits from the first FBG 31 side.
- the light emitted from the first FBG 31 enters the core of the amplification optical fiber 20 from the optical fiber 21 and is amplified again.
- the light incident from the optical fiber 21 to the amplification optical fiber 20 is a light having a large power of light in the fundamental mode. Therefore, although light of a plurality of modes is propagated to the amplification optical fiber 20, the light is not reflected by the optical component 40 because the light having a large power of the light of the fundamental mode is incident and amplified. In contrast, light having a large power of light in the fundamental mode propagates through the amplification optical fiber 20. Then, a part of the light amplified by the amplification optical fiber 20 passes through the second FBG 32 and exits from the optical fiber 22. As described above, this light has a large power of light in the fundamental mode.
- the fiber laser device 1 emits light with large power of light in the fundamental mode.
- the optical fiber 41 is not limited to a single mode fiber as long as it is an optical fiber that propagates light having a mode number smaller than the number of modes of light propagating in the amplification optical fiber 20. That is, the optical fiber 41 propagates the light up to the predetermined mode including the fundamental mode among the light of the plurality of modes which propagates through the amplification optical fiber 20 and transmits the first FBG 31 and is higher than the predetermined mode. It is an optical fiber in which the propagation of light of the next mode is suppressed.
- the optical component 40 includes light of a plurality of modes propagating through the amplification optical fiber 20 and transmitting the first FBG 31 up to a predetermined mode including the fundamental mode, a light of a mode higher than the predetermined mode. It is a component that reflects at a higher reflectivity than that of the other.
- the light up to the predetermined mode is the light of the lower mode among the light of the plurality of modes propagating through the amplification optical fiber 20.
- the fiber laser device 1 having such an optical component, when a part of the light of a plurality of modes propagating in the amplification optical fiber 20 passes through the first FBG 31, the light of the plurality of modes which can propagate in the amplification optical fiber 20 Among these, the light of the low-order mode propagates through the optical fiber 41 and is reflected by the third FBG 43. Therefore, a part of the light having a large power of the light of the low order mode including the basic mode is transmitted through the first FBG 31, and the light is amplified by the amplification optical fiber 20.
- the fiber laser device 1 emits a light having a large power of the low order mode.
- the fiber laser device 1 of the present embodiment includes the pumping light source 10 for emitting pumping light, and the amplification optical fiber 20 to which the active element to be pumped by the pumping light is added to propagate light of a plurality of modes.
- a first FBG 31 provided on one side of the amplification optical fiber 20 to reflect light amplified by the amplification optical fiber 20 with a predetermined reflectance of less than 100%, and provided on the other side of the amplification optical fiber 20
- a second FBG 32 that reflects light of a wavelength band at least a part of which is the same as the wavelength band of the light reflected by the first FBG 31 is provided on the opposite side to the amplification optical fiber 20 side with reference to the first FBG 31
- an optical component 40 that reflects light in the same wavelength band as at least a portion of the wavelength band of the light reflected by the first FBG 31.
- the optical component 40 transmits the light of a plurality of modes propagating through the amplification optical fiber 20 and transmitting the first FBG 31 to a predetermined mode including the fundamental mode as a light of a mode higher than the predetermined mode. It also reflects with high reflectivity.
- Such a fiber laser device 1 uses an amplification optical fiber 20 for propagating light of a plurality of modes, and the diameter of the core is larger than that of the amplification optical fiber for propagating only light of the fundamental mode. Therefore, even when light of large power propagates through the amplification optical fiber 20, generation of nonlinear optical light can be suppressed. Further, in the fiber laser device 1, of the light transmitted through the first FBG 31 by the optical component 40, the light up to the predetermined mode is reflected at a higher reflectance than the light of the high-order mode. A portion of the reflected light is again transmitted through the first FBG 31 and amplified by the amplification optical fiber 20.
- the power of the light up to the predetermined mode is larger than the power of the light of the high-order mode as compared with the case where the optical component 40 is not provided.
- the light up to the predetermined mode is the light of the low-order mode of the light of the plurality of modes propagating through the amplification optical fiber 20. Therefore, even if the amplification factor of the light of the low order mode and the amplification factor of the light of the high order mode are the same in the amplification optical fiber 20, as a result, the light of the low order mode is a high order mode It will be amplified more than light. Therefore, the light of the low order mode can be emitted with a higher power than the light of the high order mode.
- the fiber laser device 1 of the present embodiment light with high beam quality and large power can be emitted.
- the optical component 40 is constituted by the optical fiber 41 as a filter and the third FBG 43 that reflects the light transmitted through the optical fiber 41, the optical component has a simple configuration. Can be configured.
- the optical fiber 41 is a single mode fiber, the light of the fundamental mode can be further amplified in the amplification optical fiber 20, and light with better beam quality is emitted. can do.
- the reflectance of the light of the third FBG 43 is made higher than the reflectance of the light of the first FBG 31. That is, the reflectance of the light of the optical component 40 is made higher than the reflectance of the light of the first FBG 31. Accordingly, light reciprocating between the first FBG 31 and the optical component 40 is mainly emitted from the side of the first FBG 31 and enters the amplification optical fiber 20. For this reason, light up to a predetermined mode can be amplified more efficiently.
- FIG. 2 is a view showing a fiber laser device according to the present invention.
- the fiber laser device 1 of this embodiment differs from the fiber laser device 1 of the first embodiment in that the optical fiber 41 used for the optical component 40 is a multimode fiber.
- the optical fiber 41 of the present embodiment can propagate light of the same plurality of modes as the amplification optical fiber 20. However, the optical fiber 41 is bent at a predetermined diameter, and the bending causes loss of light of the second-order LP mode or higher which is a mode higher than the fundamental mode.
- the amplification optical fiber 20 propagates light of wavelength 1060 nm in the 4LP mode
- the core diameter is 16 ⁇ m
- the relative refractive index difference between the core and the inner cladding is 0.
- the core diameter of the optical fiber 41 and the relative refractive index difference between the core and the inner cladding are made the same as the diameter and the relative refractive index difference between the core and the inner cladding of the optical fiber 20 for amplification.
- the bending diameter is set to, for example, 4 cm in order to lose light in the secondary LP mode or higher due to the bending of the optical fiber 41.
- the fiber laser device 1 In such a fiber laser device 1, light propagating through the amplification optical fiber 20 and transmitted through the first FBG 31 enters the optical fiber 41. In the optical fiber 41, light of the fundamental mode and light of a higher order than the fundamental mode propagate, but light other than the fundamental mode is lost due to bending. Therefore, the light reflected by the third FBG 43 and incident again on the first FBG 31 is mainly the light of the fundamental mode as in the first embodiment. Therefore, as in the first embodiment, the fiber laser device 1 emits light with a large power of light in the fundamental mode.
- the optical fiber 41 propagates the light of the fundamental mode and the mode higher than the fundamental mode, and the light of the higher mode is lost due to bending.
- light of up to a predetermined mode including a fundamental mode and light of a mode higher than the predetermined mode may be transmitted, and light of a higher mode may be lost due to bending.
- the light that propagates through the optical fiber 41 and is reflected by the third FBG 43 and enters the first FBG 31 again is the light in the above-described predetermined mode.
- the light up to this predetermined mode is a light of a mode lower than the light of the higher mode. Therefore, in this case, the fiber laser device 1 emits light with a large power of the low order mode.
- the fiber laser device 1 of the present embodiment it is possible to determine the light of the high-order mode to be lost by adjusting the bending diameter etc. of the optical fiber to be a filter, so that the desired low-order mode Light can be propagated.
- the light of the low order mode can also be the light of the fundamental mode as described above. Therefore, it is possible to appropriately adjust the number of modes of light to be output which is desired to increase the power.
- the optical component 40 is configured of the optical fiber 41 as a filter and the third FBG 43 as a third mirror.
- the optical component of the present invention reflects the light of a plurality of modes transmitted through the first FBG 31 up to a predetermined mode including the fundamental mode at a higher reflectance than the light of a mode higher than the predetermined mode.
- the optical fiber 41 does not particularly function as a filter
- the third mirror reflects light up to a predetermined mode including the fundamental mode with a higher reflectance than light of a mode higher than the predetermined mode. good.
- the third mirror is configured of an FBG
- the FBG is configured such that the refractive index of the high refractive index portion is high at the center of the core and lower than the center of the core at the outer periphery of the core.
- the power of light in the fundamental mode is higher at the center of the core and lower at the outer periphery of the core.
- the power of the light of the higher mode is also raised outside the center of the core. Therefore, by using the FBG as described above, the light of the fundamental mode can be reflected at a higher reflectance than the light of the higher mode.
- the region of high refractive index in the high refractive index portion light up to a predetermined mode can be reflected at a higher reflectance than light of a mode of higher order than that.
- the optical fiber 41 is used as a filter, but it is a filter that transmits light up to a predetermined mode including the fundamental mode and suppresses transmission of light of modes higher than the predetermined mode.
- the optical fiber is not limited.
- the first FBG 31, the second FBG 32, and the third FBG 43 have been exemplified as the first mirror, the second mirror, and the third mirror, but the first mirror, the second mirror, and the third mirror have other configurations. It may be
- the fiber laser device of the present invention can emit light with high beam quality and large power, and can be used in various industries such as the laser processing field and the medical field.
- Fiber laser device 10 Pumping light source 20: Optical fiber for amplification 31: First FBG (first mirror) 32 ... 2nd FBG (2nd mirror) 40: Optical component 41: Optical fiber 43: Third FBG (third mirror)
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Lasers (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
ファイバレーザ装置(1)は、活性元素が添加され複数のモードの光を伝搬するコアを有する増幅用光ファイバ(20)と、増幅用光ファイバで増幅される光を100%未満の所定の反射率で反射する第1FBG(31)と、第1FBG(31)が反射する光を第1FBG(31)よりも低い反射率で反射する第2FBG(32)と、第1FBG(31)が反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を反射する光学部品(40)と、を備える。光学部品(40)は、増幅用光ファイバ(20)を伝搬し第1FBG(31)を透過する複数のモードの光のうち基本モードを含む所定のモードまでの光を当該所定のモードより高次のモードの光よりも高い反射率で反射する。
Description
本発明は、信頼性に優れるレーザ装置に関し、特にパワーの大きな光を出射するレーザ装置に好適なものである。
ファイバレーザ装置は、集光性に優れ、パワー密度が高く、小さなビームスポットとなる光が得られることから、レーザ加工分野、医療分野等の様々な分野において用いられている。
このようなファイバレーザ装置において、出射する光のパワーが大きくなると増幅用光ファイバ内における光のパワー密度が高くなり非線形光学効果が生じる場合がある。この非線形光学効果を抑制するために増幅用光ファイバを伝搬する光の実効断面積(Aeff)を大きくすることが考えられる。しかし、実効断面積を大きくすると基本モード(LP01モード)の光以外の高次の光が励振し易くなり、マルチモードで光が発振し易くなる。マルチモードの光が出射する場合、ファイバレーザ装置から出射する光の集光性が悪くなる傾向にあるため、高次モードの光のパワーが抑制された光を出射させたいという要望がある。
下記特許文献1には、マルチモードの光を伝搬可能な増幅用ダブルクラッドファイバを有するファイバレーザ装置が記載されている。このファイバレーザ装置では、コアに入射する光に基本モードの光のみが含まれるように、基本モードの光のみを励振するようなモードコンバータを配して、マルチモードの光を伝搬する増幅用ダブルクラッドファイバにおいて基本モードの光を中心に増幅できるとされている。
上記特許文献1のようにマルチモードの光を伝搬可能な増幅用ダブルクラッドファイバを用いて基本モードの光のみを増幅できれば、ビーム品質が良くパワーの大きな光を出射することができる。しかし、光をマルチモードで伝搬できる光ファイバに基本モードの光のみを有する光を入射する場合であっても、基本モードの光以外の高次モードの光が励振されてしまう傾向がある。特許文献1に記載の増幅用光ファイバにおいて高次モードの光が励振されてしまうと、高次モードの光が増幅されてビーム品質の良くない光が出射されてしまう。従って、ビーム品質が良くパワーの大きな光を出射することができるファイバレーザ装置が求められている。
上記のように増幅用光ファイバをマルチモードの光が伝搬する場合であっても、基本モードが他のモードよりも増幅されれば、ビーム品質を向上することができる。また、基本モードのみでなく増幅用光ファイバを伝搬するマルチモードのうち基本モードを含む所定のモードまでの光を当該所定のモードより高次のモードの光よりも増幅することができれば、ビーム品質を向上することができる。
そこで、本発明は、ビーム品質が良くパワーの大きな光を出射することができるファイバレーザ装置を提供することを目的とする。
上記課題を解決するため、本発明のファイバレーザ装置は、励起光を出射する励起光源と、前記励起光により励起される活性元素が添加され複数のモードの光を伝搬するコアを有する増幅用光ファイバと、前記増幅用光ファイバの一方側に設けられ前記増幅用光ファイバで増幅される光を100%未満の所定の反射率で反射する第1ミラーと、前記増幅用光ファイバの他方側に設けられ前記第1ミラーが反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を前記第1ミラーよりも低い反射率で反射する第2ミラーと、前記第1ミラーを基準として前記増幅用光ファイバ側と反対側に設けられ、前記第1ミラーが反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を反射する光学部品と、を備え、前記光学部品は、前記第1ミラーを透過する前記複数のモードの光のうち基本モードを含む所定のモードまでの光を当該所定のモードよりも高次のモードの光より高い反射率で反射することを特徴とするものである。
このファイバレーザ装置は、複数のモードの光を伝搬する増幅用光ファイバが用いられるため、基本モードの光のみを伝搬する増幅用光ファイバと比べて、コアの径を大きくすることができる。従って、パワーの大きな光が増幅用光ファイバを伝搬する場合であっても非線形光学光が生じることを抑制することができる。しかし、上記のように複数のモードの光を伝搬する増幅用光ファイバでは複数のモードの光が励振されてしまう傾向がある。そこで、本発明のファイバレーザ装置では、光学部品により第1ミラーを透過する光のうち所定のモードまでの光が高次のモードの光よりも高い反射率で反射される。この反射された光の一部は再び第1ミラーを透過して増幅用光ファイバで増幅される。従って、第1ミラーから増幅用光ファイバに入射する光は、上記光学部品が無い場合と比べて、所定のモードまでの光のパワーが高次モードの光のパワーよりも大きくなる。この所定のモードまでの光は増幅用光ファイバを伝搬する複数のモードの光のうち低次のモードの光である。このため、増幅用光ファイバにおいて、低次のモードの光の増幅率と高次モードの光の増幅率とが同じであっても、結果として低次のモードの光が高次モードの光よりも増幅されることとなる。従って、低次のモードの光を高次モードの光よりも大きなパワーで出射することができる。以上より、本発明のファイバレーザ装置によれば、ビーム品質が良くパワーの大きな光を出射することができる。
また、前記所定のモードの光は基本モードの光とされ前記高次のモードの光は2次LPモード以上の光とされることが好ましい。
このような構成によれば、光学部品が無い場合と比べて、基本モードの光をそれよりも高次のモードの光よりも大きなパワーで出射することができる。従って、ビーム品質がより良い光を出射することができる。
また、前記光学部品はフィルタと前記フィルタを透過する光を反射する第3ミラーとを有し、前記フィルタは前記高次のモードの光の透過を抑制することとしても良い。
この場合、前記フィルタは前記高次のモードの光の伝搬が抑制され前記所定のモードまでの光を伝搬する光ファイバとされることが好ましい。
この場合の光学部品は、フィルタとしての光ファイバと第3ミラーとで構成されることができる。この光ファイバは、増幅用光ファイバよりも伝搬モード数の少ない光ファイバとされる。また、フィルタとして光ファイバが用いられることで、第3ミラーとしてFBG(Fiber Bragg Grating)等のミラーを用いることができ、簡易な構成で光学部品を構成することができる。
前記フィルタとされる前記光ファイバはシングルモードファイバとされることが好ましい。
シングルモードファイバをフィルタとして用いることで、簡易な構成でビーム品質がより良い光を出射することができる。
或いは、前記フィルタは曲げられることで前記高次のモードの光が損失される光ファイバとされることが好ましい。
この場合、フィルタとされる光ファイバの曲げ直径等を調整することで、損失させる高次のモードの光を定めることができるため、所望のモードまでの光を伝搬させることができる。従って、出射する光のパワーを大きくしたい光のモード数を適宜調整することができる。
また、前記フィルタとされる前記光ファイバのコアの直径は前記増幅用光ファイバのコアの直径と等しいことが好ましい。
この場合、増幅用光ファイバからフィルタとされる光ファイバに光が伝搬する際に光の損失を抑制することができ、ファイバレーザ装置の効率が低減することを抑制することができる。
また、前記光学部品の光の反射率は前記第1ミラーの反射率よりも高いことが好ましい。
第1ミラーが反射する光の波長帯域と光学部品が反射する光の波長帯域とは少なくとも一部が重なる。従って、光学部品で反射され第1ミラーに入射する光の一部は、再び光学部品に向かって第1ミラーで反射される。この場合において、上記のように光学部品の光の反射率が第1ミラーの反射率よりも高いことで、第1ミラーと光学部品との間を往復する光は、第1ミラー側から主に出射して増幅用光ファイバに入射することとなる。従って、この構成によれば、より効率良く低次のモードの光を増幅することができる。
以上説明したように、本発明のファイバレーザ装置によれば、ビーム品質が良くパワーの大きな光を出射することができる。
以下、本発明に係るファイバレーザ装置の好適な実施形態について図面を参照しながら詳細に説明する。
(第1実施形態)
図1は、本実施形態にかかるファイバレーザ装置を示す図である。図1に示すように、本実施形態のファイバレーザ装置1は、励起光を出射する励起光源10と、励起光源10から出射する励起光が入射し、励起光により励起される活性元素が添加される増幅用光ファイバ20と、増幅用光ファイバ20の一端に接続される光ファイバ21と、光ファイバ21に設けられる第1ミラーとしての第1FBG31と、増幅用光ファイバ20の他端に接続される光ファイバ22と、光ファイバ22に設けられる第2ミラーとしての第2FBG32と、光ファイバ21に接続される光学部品40と、光学部品40に励起光を入射するためのコンバイナ50と、を主な構成として備える。
図1は、本実施形態にかかるファイバレーザ装置を示す図である。図1に示すように、本実施形態のファイバレーザ装置1は、励起光を出射する励起光源10と、励起光源10から出射する励起光が入射し、励起光により励起される活性元素が添加される増幅用光ファイバ20と、増幅用光ファイバ20の一端に接続される光ファイバ21と、光ファイバ21に設けられる第1ミラーとしての第1FBG31と、増幅用光ファイバ20の他端に接続される光ファイバ22と、光ファイバ22に設けられる第2ミラーとしての第2FBG32と、光ファイバ21に接続される光学部品40と、光学部品40に励起光を入射するためのコンバイナ50と、を主な構成として備える。
励起光源10は、複数のレーザダイオード11から構成され、増幅用光ファイバ20に添加される活性元素を励起する波長の励起光を出射する。励起光源10のそれぞれのレーザダイオード11は、励起光用光ファイバ12に接続されており、レーザダイオード11から出射する光は、それぞれのレーザダイオード11に光学的に接続される励起光用光ファイバ12を伝搬する。励起光用光ファイバ12としては、例えば、マルチモードファイバを挙げることができ、この場合、励起光は励起光用光ファイバ12をマルチモード光として伝搬する。なお、後述のように増幅用光ファイバ20に添加される活性元素が例えばイッテルビウムである場合、励起光の波長は、例えば、915nmとされる。
増幅用光ファイバ20は、コアと、コアの外周面を隙間なく囲みコアよりも低い屈折率とされる内側クラッドと、内側クラッドの外周面を被覆し内側クラッドよりも低い屈折率とされる外側クラッドと、外側クラッドの外周面を被覆する被覆層とから構成されている。増幅用光ファイバ20のコアを構成する材料としては、例えば、屈折率を上昇させるゲルマニウム等の元素、及び、励起光源10から出射する光により励起されるイッテルビウム(Yb)等の活性元素が添加された石英が挙げられる。このような活性元素としては、希土類元素が挙げられ、希土類元素としては、上記イッテルビウムの他にツリウム(Tm)、セリウム(Ce)、ネオジウム(Nd)、ユーロピウム(Eu)、エルビウム(Er)等が挙げられる。さらに活性元素として、希土類元素の他に、ビスマス(Bi)等が挙げられる。また、増幅用光ファイバ20の内側クラッドを構成する材料としては、例えば、何らドーパントが添加されていない純粋石英が挙げられる。なお、コアに屈折率を上昇させる元素が添加されない場合には、内側クラッドは例えばフッ素等の屈折率を低下させる元素が添加された石英から構成されても良い。また、増幅用光ファイバ20の外側クラッドを構成する材料としては、例えば、内側クラッドより屈折率の低い樹脂が挙げられ、増幅用光ファイバ20の被覆層を構成する材料としては、例えば、外側クラッドを構成する樹脂とは異なる紫外線硬化樹脂が挙げられる。
また、増幅用光ファイバ20は、複数のモードの光を伝搬することができる光ファイバとされ、例えば、波長1060nmの光を数モードで伝搬するフューモードファイバとされる。増幅用光ファイバ20は、例えば、LP01モード、LP11モード、LP21モード、及びLP02モードの4LPモードの光を伝搬することができる。このような複数のモードを伝搬する増幅用光ファイバとして、例えば、コアの直径が16μmであり、コアと内側クラッドとの比屈折率差が0.15%とされる増幅用光ファイバを挙げることができる。また、増幅用光ファイバ20は、数モードよりも多数のモードの光を伝搬するマルチモードファイバとされても良い。
光ファイバ21は、コアに活性元素が添加されていない点を除き増幅用光ファイバ20と同じ構成とされる。従って、本実施形態では、光ファイバ21のコアの直径と増幅用光ファイバ20のコアの直径とが互いに等しくされ、光ファイバ21の内側クラッドの外径と増幅用光ファイバ20の内側クラッドの外径とが互いに等しくされる。光ファイバ21は、コアの中心軸が増幅用光ファイバ20のコアの中心軸と合わされて、増幅用光ファイバ20の一端に接続されている。従って、増幅用光ファイバ20のコアと光ファイバ21のコアとが光学的に結合し、増幅用光ファイバ20の内側クラッドと光ファイバ21の内側クラッドとが光学的に結合している。
第1FBG31は、光ファイバ21のコアに設けられている。こうして第1FBG31は、増幅用光ファイバ20の一端側に設けられて増幅用光ファイバ20のコアと光学的に結合されている。FBG(Fiber Bragg Grating)は、光ファイバ21の長手方向に沿って一定の周期で高屈折率部分と低屈折率部分とが繰り返されることで構成されている。この高屈折率部分と低屈折率部分との繰り返し周期、高屈折率部分と低屈折率部分との繰り返し回数、高屈折率部分と低屈折率部分との屈折率差等が調整されることにより、FBGの反射波長帯域、FBGの反射率等が定められる。第1FBG31は、励起状態とされた増幅用光ファイバ20の活性元素が放出する光のうち特定の波長帯域の光を100%未満の反射率で反射する。上述のように増幅用光ファイバ20に添加される活性元素がイッテルビウムである場合、第1FBG31は、例えば波長が1060nmの光を例えば80%から90%の反射率で反射する。
光ファイバ22は、活性元素が添加されていないことを除いて増幅用光ファイバ20のコアと同様のコアと、当該コアの外周面を隙間なく囲み増幅用光ファイバ20の内側クラッドと同様の構成の内側クラッドと、内側クラッドの外周面を被覆する被覆層とから構成されている。光ファイバ22は、増幅用光ファイバ20の他端に接続されており、増幅用光ファイバ20のコアと光ファイバ22のコアとが光学的に結合している。
第2FBG32は光ファイバ22のコアに設けられている。こうして第2FBG32は、増幅用光ファイバ20の他端側に設けられて増幅用光ファイバ20のコアと光学的に結合されている。第2FBG32は、第1FBG31が反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を第1FBG31よりも低い反射率で反射するように構成されている。第2FBG32は、例えば、第1FBG31が反射する光の波長帯域と同じ波長帯域の光を50%の反射率で反射するように構成されている。
こうして、増幅用光ファイバ20と第1FBG31と第2FBG32とで共振器が形成され、本実施形態のファイバレーザ装置1は共振器型とされる。
なお、特に図示しないが、光ファイバ22の増幅用光ファイバ20側と反対側にデリバリファイバが接続されていても良い。
また、光ファイバ21の増幅用光ファイバ20側と反対側の端部には光学部品40が接続されている。本実施形態の光学部品40は、光ファイバ41と第3ミラーとしての第3FBG43とを有する。
本実施形態では、光ファイバ41は、増幅用光ファイバ20を伝搬する波長帯域の光を基本モードのみで伝搬するシングルモードファイバとされることを除いては、光ファイバ21と同様の構成とされる。従って、上記のように、増幅用光ファイバ20を波長1060nmの光が伝搬する場合、当該波長の光を基本モードで伝搬し、基本モードより高次のモードである2次LPモード以上の光の伝搬が抑制される。波長1060nmの光が伝搬する場合にシングルモードで光を伝搬する場合、例えば、コアの直径が10μmであり、コアと内側クラッドとの比屈折率差が0.15%とされる光ファイバを挙げることができる。このようなシングルモードファイバである光ファイバ41は、高次のモードの光の透過が抑制され基本モードの光を透過することができるフィルタと理解することができる。また、本実施形態では、光ファイバ41のコアの直径と増幅用光ファイバ20のコアの直径とが互いに等しくされ、光ファイバ41の内側クラッドの外径と増幅用光ファイバ20の内側クラッドの外径とが互いに等しくされる。従って、本実施形態では、増幅用光ファイバ20と光ファイバ21と光ファイバ41とでコアの直径が互いに等しく、増幅用光ファイバ20と光ファイバ21と光ファイバ41とで内側クラッドの外径が互いに等しくされる。光ファイバ41は、コアの中心軸が光ファイバ21のコアの中心軸と合わされて、光ファイバ21に接続されている。従って、増幅用光ファイバ20のコアと光ファイバ41のコアとが光ファイバ21のコアを介して光学的に結合し、増幅用光ファイバ20の内側クラッドと光ファイバ41の内側クラッドとが光ファイバ21の内側クラッドを介して光学的に結合している。
光ファイバ41のコアには、第3FBG43が設けられている。こうして第3FBG43は、第1FBG31と光学的に結合されている。第3FBG43は、第1FBG31が反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を反射するように構成され、本実施形態では、第3FBG43は、第1FBG31の反射波長帯域と同じ反射波長帯域の光を第1FBG31よりも高い反射率で反射するように構成されている。第3FBG43は、例えば、第1FBG31が反射する光の波長帯域と同じ波長帯域の光を99%の反射率で反射するように構成されている。
光学部品40は、上記光ファイバ41及び第3FBG43を有するため、増幅用光ファイバ20を伝搬し第1FBG31を透過する複数のモードの光のうち基本モードの光を基本モードより高次のモードの光よりも高い反射率で反射する部品と理解することができる。
また、光ファイバ41の増幅用光ファイバ20側とは反対側の端部にはコンバイナ50が形成されている。また、コンバイナ50において、光ファイバ41の内側クラッドに励起光用光ファイバ12のコアが接続されている。こうして、励起光源10と接続される励起光用光ファイバ12と増幅用光ファイバ20の内側クラッドとは、光ファイバ41及び光ファイバ21の内側クラッドを介して、光学的に結合される。
次にファイバレーザ装置1の動作について説明する。
まず、励起光源10のそれぞれのレーザダイオード11から励起光が出射する。励起光源10から出射した励起光は、励起光用光ファイバ12から光ファイバ41の内側クラッド及び光ファイバ21の内側クラッドを介して、増幅用光ファイバ20の内側クラッドに入射する。増幅用光ファイバ20の内側クラッドに入射した励起光は主に内側クラッドを伝搬して、増幅用光ファイバ20のコアを通過する際にコアに添加されている活性元素を励起する。励起状態とされた活性元素は、自然放出光を放出する。この自然放出光は、増幅用光ファイバ20のコアを伝搬して、一部の波長の光が第1FBG31により反射され、反射された光のうち第2FBG32が反射する波長の光が第2FBG32で反射されて、第1FBG31と第2FBG32との間、すなわち共振器内を往復する。この光は、増幅用光ファイバ20のコアを伝搬するときに誘導放出により増幅され、レーザ発振状態となる。ところで、上記のように増幅用光ファイバ20は複数のモードの光を伝搬可能とするため、増幅用光ファイバ20で増幅される光は複数のモードの光とされる。例えば、上記のように増幅用光ファイバ20がフューモードファイバとされる場合、数モードの光が増幅される。
また第1FBG31は上記のように100%未満の反射率とされるため、増幅用光ファイバ20を伝搬する複数のモードの光の一部は、第1FBG31を透過する。第1FBG31を透過する光は光学部品40の光ファイバ41のコアに入射する。上記のように本実施形態の光ファイバ41はシングルモードファイバとされるため、第1FBG31を透過して光ファイバ21を伝搬する複数のモードの光のうち基本モードの光が光ファイバ41を伝搬し、2次LPモード以上の高次モードの光は光ファイバ41の伝搬が抑制される。このとき上記のように増幅用光ファイバ20と光ファイバ21と光ファイバ41とでコアの直径が互いに等しいことにより、光の損失を抑制することができる。そして、光ファイバ41を伝搬する基本モードの光は、第3FBG43で反射されて、再び光ファイバ41を伝搬し、光ファイバ21のコアに入射する。光ファイバ21は上記のように複数のモードの光を伝搬することができるが、光ファイバ41から基本モードの光が入射すると主に基本モードの光を伝搬する。つまり、基本モードの光が光ファイバ21のコアに入射する場合、光ファイバ21において基本モード以外の高次のモードの光が励振するとしても、複数のモードの光が光ファイバ21に入射する場合と比べて、基本モードの光のパワーが他のモードの光のパワーよりも大きな光が光ファイバ21を伝搬する。
光ファイバ41から光ファイバ21のコアを伝搬する基本モードの光のパワーが大きな光の一部は、第1FBG31を透過し、他の一部は第1FBG31で反射される。第1FBG31で反射される光は光ファイバ41を伝搬して第3FBG43で再び反射され、再び第1FBG31に向かって伝搬する。こうして、一部の光は、第1FBG31と第3FBG43との間を往復するが、本実施形態では、上記のように第3FBG43の光の反射率は第1FBG31の反射率よりも高いため、第1FBG31と第3FBG43との間を往復する光は、主に第1FBG31側から出射する。
第1FBG31から出射する光は、光ファイバ21から増幅用光ファイバ20のコアに入射して再び増幅される。この光ファイバ21から増幅用光ファイバ20に入射する光は基本モードの光のパワーが大きな光である。従って、増幅用光ファイバ20には複数のモードの光が伝搬しているが、基本モードの光のパワーが大きな光が入射して増幅されることで、光学部品40で光が反射しない場合と比べて、増幅用光ファイバ20には基本モードの光のパワーが大きな光が伝搬することになる。そして、増幅用光ファイバ20で増幅された光のうち一部の光は、第2FBG32を透過して光ファイバ22から出射する。この光は上記のように基本モードの光のパワーが大きな光とされる。
こうして、ファイバレーザ装置1からは、基本モードの光のパワーが大きな光が出射する。
なお、上記実施形態では、光ファイバ41がシングルモードファイバとされる例について説明した。しかし、光ファイバ41は、増幅用光ファイバ20を伝搬する光のモード数よりも少ないモード数の光を伝搬する光ファイバであれば、シングルモードファイバに限定されない。つまり、光ファイバ41は、増幅用光ファイバ20を伝搬し第1FBG31を透過する複数のモードの光のうち、基本モードを含む所定のモードまでの光を伝搬して、当該所定のモードよりも高次のモードの光の伝搬が抑制される光ファイバとされる。この場合の光学部品40は、増幅用光ファイバ20を伝搬し第1FBG31を透過する複数のモードの光のうち基本モードを含む所定のモードまでの光を当該所定のモードより高次のモードの光よりも高い反射率で反射する部品となる。この所定のモードまでの光は増幅用光ファイバ20を伝搬する複数のモードの光のうち低次のモードの光となる。このような光学部品を有するファイバレーザ装置1では、増幅用光ファイバ20を伝搬する複数のモードの光の一部が第1FBG31を透過すると、増幅用光ファイバ20を伝搬し得る複数のモードの光のうち、低次のモードの光が光ファイバ41を伝搬して第3FBG43で反射される。従って、基本モードを含む低次のモードの光のパワーが大きな光の一部が第1FBG31を透過して、当該光は増幅用光ファイバ20で増幅される。上記のように、増幅用光ファイバ20には複数のモードの光が伝搬しているが、低次のモードの光のパワーが大きな光が入射して増幅されることで、光学部品40で光が反射しない場合と比べて、増幅用光ファイバ20には低次のモードの光のパワーが大きな光が伝搬することになる。従って、ファイバレーザ装置1からは、低次のモードのパワーの大きな光が出射する。
以上説明したように、本実施形態のファイバレーザ装置1は、励起光を出射する励起光源10と、励起光により励起される活性元素が添加され複数のモードの光を伝搬する増幅用光ファイバ20と、増幅用光ファイバ20の一方側に設けられ増幅用光ファイバ20で増幅される光を100%未満の所定の反射率で反射する第1FBG31と、増幅用光ファイバ20の他方側に設けられ第1FBG31が反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を第1FBG31よりも低い反射率で反射する第2FBG32と、第1FBG31を基準として増幅用光ファイバ20側と反対側に設けられ、第1FBG31が反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を反射する光学部品40と、を備える。そして、光学部品40は、増幅用光ファイバ20を伝搬し第1FBG31を透過する複数のモードの光のうち基本モードを含む所定のモードまでの光を当該所定のモードより高次のモードの光よりも高い反射率で反射する。
このようなファイバレーザ装置1は、複数のモードの光を伝搬する増幅用光ファイバ20が用いられており、基本モードの光のみを伝搬する増幅用光ファイバと比べて、コアの直径が大きい。従って、パワーの大きな光が増幅用光ファイバ20を伝搬する場合であっても非線形光学光が生じることを抑制することができる。また、ファイバレーザ装置1では、光学部品40により第1FBG31を透過する光のうち所定のモードまでの光が高次のモードの光よりも高い反射率で反射される。この反射された光の一部は再び第1FBG31を透過して増幅用光ファイバ20で増幅される。従って、第1FBG31から増幅用光ファイバに入射する光は、光学部品40が無い場合と比べて、所定のモードまでの光のパワーが高次モードの光のパワーよりも大きくなる。上記のように所定のモードまでの光は増幅用光ファイバ20を伝搬する複数のモードの光のうち低次のモードの光である。このため、増幅用光ファイバ20において、低次のモードの光の増幅率と高次モードの光の増幅率とが同じであっても、結果として低次のモードの光が高次のモードの光よりも増幅されることとなる。従って、低次のモードの光を高次モードの光よりも大きなパワーで出射することができる。こうして、本実施形態のファイバレーザ装置1によれば、ビーム品質が良くパワーの大きな光を出射することができる。
また、本実施形態のファイバレーザ装置1では、光学部品40がフィルタとされる光ファイバ41と、光ファイバ41を透過する光を反射する第3FBG43とから構成されるため、簡易な構成で光学部品を構成することができる。
また、本実施形態のファイバレーザ装置1では、光ファイバ41がシングルモードファイバとされるため、増幅用光ファイバ20において基本モードの光をより増幅することができ、ビーム品質がより良い光を出射することができる。
また、本実施形態のファイバレーザ装置1では、第3FBG43の光の反射率が第1FBG31の光の反射率よりも高くされる。すなわち、光学部品40の光の反射率は第1FBG31の光の反射率よりも高くされる。従って、第1FBG31と光学部品40との間を往復する光は、第1FBG31側から主に出射して増幅用光ファイバ20に入射する。このため、より効率良く所定のモードまでの光を増幅することができる。
(第2実施形態)
次に、本発明の第2実施形態について図2を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第2実施形態について図2を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図2は、本発明にかかるファイバレーザ装置を示す図である。図2に示すように本実施形態のファイバレーザ装置1では、光学部品40に用いられる光ファイバ41がマルチモードファイバとされる点において第1実施形態のファイバレーザ装置1と異なる。
本実施形態の光ファイバ41は、増幅用光ファイバ20と同じ複数のモードの光を伝搬することができる。ただし、光ファイバ41は所定の直径で曲げられており、当該曲げにより基本モードより高次のモードである2次LPモード以上の光が損失される。例えば、第1実施形態において説明したように、増幅用光ファイバ20が波長1060nmの光を4LPモードで伝搬し、コアの直径が16μmであり、コアと内側クラッドとの比屈折率差が0.25%とされ、光ファイバ41のコアの直径及びコアと内側クラッドとの比屈折率差が増幅用光ファイバ20のコアの直径及びコアと内側クラッドとの比屈折率差と同じにされるとする。この場合に光ファイバ41の曲げにより、2次LPモード以上の光が損失されるには、例えば、曲げ直径が4cmとされる。
このようなファイバレーザ装置1では、増幅用光ファイバ20を伝搬し、第1FBG31を透過する光は、光ファイバ41に入射する。光ファイバ41では、基本モードの光と基本モードよりも高次の光とが伝搬するが、基本モード以外の光が曲げにより損失する。従って、第3FBG43で反射して再び第1FBG31に入射する光は、第1実施形態と同様にして主に基本モードの光となる。このため、第1実施形態と同様にしてファイバレーザ装置1からは基本モードの光のパワーが大きな光が出射する。
なお、本実施形態では、上記のように光ファイバ41が基本モードと基本モードより高次のモードの光を伝搬し、高次のモードの光が曲げにより損失するものとした。しかし、基本モードを含む所定のモードまでの光と当該所定のモードより高次のモードの光を伝搬し、高次のモードの光が曲げにより損失するものとしても良い。この場合、光ファイバ41を伝搬して第3FBG43で反射して再び第1FBG31に入射する光は、上記所定のモードまでの光とされる。この所定のモードまでの光は、高次のモードの光よりも低次のモードの光とされる。従って、この場合、ファイバレーザ装置1からは低次のモードのパワーが大きな光が出射する。
本実施形態のファイバレーザ装置1によれば、フィルタとされる光ファイバの曲げ直径等を調整することで、損失させる高次のモードの光を定めることができるため、所望の低次のモードの光を伝搬させることができる。この低次のモードの光を上記のように基本モードの光とすることもできる。従って、出射する光のうちパワーを大きくしたい光のモード数を適宜調整することができる。
以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではなく、適宜変更することが可能である。
例えば、上記実施形態では、光学部品40がフィルタとしての光ファイバ41と第3ミラーとしての第3FBG43とから構成された。しかし、本発明の光学部品は、第1FBG31を透過する複数のモードの光のうち基本モードを含む所定のモードまでの光を当該所定のモードより高次のモードの光よりも高い反射率で反射するかぎりにおいて、上記実施形態の光学部品40に限定されない。例えば光ファイバ41は特にフィルタとして機能せず、第3ミラーが、基本モードを含む所定のモードまでの光を当該所定のモードより高次のモードの光よりも高い反射率で反射するものとしても良い。例えば、第3ミラーがFBGで構成され、当該FBGは、高屈折率部の屈折率がコアの中心で高くコアの外周でコアの中心よりも低くされるように構成される。基本モードの光のパワーはコアの中心ほど高くコアの外周ほど低い。また高次モードの光のパワーはコアの中心以外でも高くされる。従って、上記のようなFBGが用いられることで、基本モードの光を高次モードの光よりも高い反射率で反射することができる。この高屈折率部の中で高い反射率とされる領域を調整することで、所定のモードまでの光をそれよりも高次のモードの光よりも高い反射率で反射することができる。
また、上記実施形態では、フィルタとして光ファイバ41を用いたが、基本モードを含む所定のモードまでの光を透過し、当該所定のモードより高次のモードの光の透過を抑制するフィルタであれば光ファイバに限定はされない。
また、上記実施形態において、第1ミラー、第2ミラー、第3ミラーとして、第1FBG31、第2FBG32、第3FBG43を例に説明したが、第1ミラー、第2ミラー、第3ミラーは他の構成であっても良い。
本発明によれば、本発明のファイバレーザ装置は、ビーム品質が良くパワーの大きな光を出射することができ、レーザ加工分野、医療分野等の様々な産業において利用可能である。
1・・・ファイバレーザ装置
10・・・励起光源
20・・・増幅用光ファイバ
31・・・第1FBG(第1ミラー)
32・・・第2FBG(第2ミラー)
40・・・光学部品
41・・・光ファイバ
43・・・第3FBG(第3ミラー)
10・・・励起光源
20・・・増幅用光ファイバ
31・・・第1FBG(第1ミラー)
32・・・第2FBG(第2ミラー)
40・・・光学部品
41・・・光ファイバ
43・・・第3FBG(第3ミラー)
Claims (8)
- 励起光を出射する励起光源と、
前記励起光により励起される活性元素が添加され複数のモードの光を伝搬する増幅用光ファイバと、
前記増幅用光ファイバの一方側に設けられ前記増幅用光ファイバで増幅される光を100%未満の反射率で反射する第1ミラーと、
前記増幅用光ファイバの他方側に設けられ前記第1ミラーが反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を前記第1ミラーよりも低い反射率で反射する第2ミラーと、
前記第1ミラーを基準として前記増幅用光ファイバ側と反対側に設けられ、前記第1ミラーが反射する光の波長帯域と少なくとも一部が同じ波長帯域の光を反射する光学部品と、
を備え、
前記光学部品は、前記第1ミラーを透過する前記複数のモードの光のうち基本モードを含む所定のモードまでの光を当該所定のモードよりも高次のモードの光よりも高い反射率で反射する
ことを特徴とするファイバレーザ装置。 - 前記所定のモードの光は基本モードの光とされ前記高次のモードの光は2次LPモード以上の光とされる
ことを特徴とする請求項1に記載のファイバレーザ装置。 - 前記光学部品はフィルタと前記フィルタを透過する光を反射する第3ミラーとを有し、
前記フィルタは前記高次のモードの光の透過を抑制する
ことを特徴とする請求項1または2に記載のファイバレーザ装置。 - 前記フィルタは前記高次のモードの光の伝搬が抑制され前記所定のモードまでの光を伝搬する光ファイバとされる
ことを特徴とする請求項3に記載のファイバレーザ装置。 - 前記フィルタとされる前記光ファイバはシングルモードファイバとされる
ことを特徴とする請求項4に記載のファイバレーザ装置。 - 前記フィルタは曲げられることで前記高次のモードの光が損失される光ファイバとされる
ことを特徴とする請求項3に記載のファイバレーザ装置。 - 前記フィルタとされる前記光ファイバのコアの直径は前記増幅用光ファイバのコアの直径と等しい
ことを特徴とする請求項4から6のいずれか1項に記載のファイバレーザ装置。 - 前記光学部品の光の反射率は前記第1ミラーの反射率よりも高い
ことを特徴とする請求項1から7のいずれか1項に記載のファイバレーザ装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017144872A JP2019029421A (ja) | 2017-07-26 | 2017-07-26 | ファイバレーザ装置 |
JP2017-144872 | 2017-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019021565A1 true WO2019021565A1 (ja) | 2019-01-31 |
Family
ID=65040516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017421 WO2019021565A1 (ja) | 2017-07-26 | 2018-05-01 | ファイバレーザ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019029421A (ja) |
WO (1) | WO2019021565A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113167966A (zh) * | 2019-02-21 | 2021-07-23 | 株式会社藤仓 | 滤波器装置、激光装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060239610A1 (en) * | 2005-01-07 | 2006-10-26 | Hickey Louise M B | Apparatus for propagating optical radiation |
US20070153840A1 (en) * | 2002-09-18 | 2007-07-05 | Yaakov Shevy | Traveling-wave linear cavity laser |
JP2010003895A (ja) * | 2008-06-20 | 2010-01-07 | Hitachi Cable Ltd | ファイバレーザ用光ファイバ及びファイバレーザ |
JP2013048277A (ja) * | 2011-03-31 | 2013-03-07 | Fujikura Ltd | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 |
JP5159956B2 (ja) * | 2009-12-22 | 2013-03-13 | 株式会社フジクラ | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 |
JP2014527301A (ja) * | 2011-08-10 | 2014-10-09 | オーエフエス ファイテル,エルエルシー | モード変換を用いる少モード化ファイバデバイス |
JP2014216497A (ja) * | 2013-04-25 | 2014-11-17 | 株式会社フジクラ | 光回路装置 |
JP2016051859A (ja) * | 2014-09-01 | 2016-04-11 | 株式会社フジクラ | ファイバレーザ装置 |
US20160111851A1 (en) * | 2014-10-15 | 2016-04-21 | Nlight Photonics Corporation | Slanted fbg for srs suppression |
JP2017026672A (ja) * | 2015-07-16 | 2017-02-02 | 株式会社フジクラ | 光ファイバグレーティング用光ファイバおよびファイバレーザ装置 |
-
2017
- 2017-07-26 JP JP2017144872A patent/JP2019029421A/ja active Pending
-
2018
- 2018-05-01 WO PCT/JP2018/017421 patent/WO2019021565A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070153840A1 (en) * | 2002-09-18 | 2007-07-05 | Yaakov Shevy | Traveling-wave linear cavity laser |
US20060239610A1 (en) * | 2005-01-07 | 2006-10-26 | Hickey Louise M B | Apparatus for propagating optical radiation |
JP2010003895A (ja) * | 2008-06-20 | 2010-01-07 | Hitachi Cable Ltd | ファイバレーザ用光ファイバ及びファイバレーザ |
JP5159956B2 (ja) * | 2009-12-22 | 2013-03-13 | 株式会社フジクラ | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 |
JP2013048277A (ja) * | 2011-03-31 | 2013-03-07 | Fujikura Ltd | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 |
JP2014527301A (ja) * | 2011-08-10 | 2014-10-09 | オーエフエス ファイテル,エルエルシー | モード変換を用いる少モード化ファイバデバイス |
JP2014216497A (ja) * | 2013-04-25 | 2014-11-17 | 株式会社フジクラ | 光回路装置 |
JP2016051859A (ja) * | 2014-09-01 | 2016-04-11 | 株式会社フジクラ | ファイバレーザ装置 |
US20160111851A1 (en) * | 2014-10-15 | 2016-04-21 | Nlight Photonics Corporation | Slanted fbg for srs suppression |
JP2017026672A (ja) * | 2015-07-16 | 2017-02-02 | 株式会社フジクラ | 光ファイバグレーティング用光ファイバおよびファイバレーザ装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113167966A (zh) * | 2019-02-21 | 2021-07-23 | 株式会社藤仓 | 滤波器装置、激光装置 |
US11835776B2 (en) | 2019-02-21 | 2023-12-05 | Fujikura Ltd. | Filter device and laser apparatus |
CN113167966B (zh) * | 2019-02-21 | 2024-01-19 | 株式会社藤仓 | 滤波器装置、激光装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2019029421A (ja) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8611003B2 (en) | Double clad fiber laser device | |
US8498044B2 (en) | Amplification optical fiber, and optical fiber amplifier and resonator using the same | |
WO2012060220A1 (ja) | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 | |
JP6511235B2 (ja) | ファイバレーザ装置 | |
JP5694266B2 (ja) | 光ファイバ及びそれを用いたファイバレーザ装置 | |
WO2014061409A1 (ja) | 光ファイバ及びそれを用いたファイバレーザ装置 | |
JP2011210756A (ja) | 光学部品付き増幅用光ファイバ、及び、これを用いたファイバレーザ装置 | |
US11835776B2 (en) | Filter device and laser apparatus | |
JP2014225584A (ja) | ファイバレーザ装置 | |
JPWO2020203900A1 (ja) | 活性元素添加光ファイバ、共振器、及び、ファイバレーザ装置 | |
WO2019021565A1 (ja) | ファイバレーザ装置 | |
JP2010199563A (ja) | 光増幅器及び共振器 | |
WO2020203136A1 (ja) | ファイバレーザ装置 | |
WO2020203930A1 (ja) | 活性元素添加光ファイバ、共振器、及び、ファイバレーザ装置 | |
JP2005251992A (ja) | 光ファイバレーザ | |
JP5202676B2 (ja) | 増幅用光学部品、及び、これを用いた光ファイバ増幅器、並びに、ファイバレーザ装置 | |
JP6499126B2 (ja) | 光コンバイナ、光増幅器、及び、レーザ装置 | |
WO2018193816A1 (ja) | レーザ装置、レーザシステム | |
CA3025416C (en) | Amplification optical fiber, fiber laser device, and optical resonator | |
JP2011035012A (ja) | ファイバレーザ装置 | |
JP2018186239A (ja) | 光コンバイナ及びファイバレーザ装置 | |
CN113241576A (zh) | 基于光纤随机光栅的2μm波段柱矢量光纤随机激光器 | |
JP2007281162A (ja) | レーザ光出力装置及びノイズ光除去方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18837981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18837981 Country of ref document: EP Kind code of ref document: A1 |