WO2016035267A1 - Thermal component - Google Patents

Thermal component Download PDF

Info

Publication number
WO2016035267A1
WO2016035267A1 PCT/JP2015/004108 JP2015004108W WO2016035267A1 WO 2016035267 A1 WO2016035267 A1 WO 2016035267A1 JP 2015004108 W JP2015004108 W JP 2015004108W WO 2016035267 A1 WO2016035267 A1 WO 2016035267A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
mhp
low temperature
high temperature
Prior art date
Application number
PCT/JP2015/004108
Other languages
French (fr)
Japanese (ja)
Inventor
彰宏 井村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016035267A1 publication Critical patent/WO2016035267A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • thermomagnetic cycle device that utilizes the temperature characteristics of a magnetic material.
  • Patent Document 1 to Patent Document 5 describe a thermomagnetic cycle apparatus that utilizes the temperature characteristics of a magnetic material.
  • the thermomagnetic cycle apparatus can be used as a heat pump or an engine.
  • a heat pump a low temperature or a high temperature is extracted by a magnetic fluctuation caused by power.
  • power is extracted by magnetic fluctuations caused by temperature differences.
  • These devices utilize a magnetocaloric element as a magnetic material.
  • JP 2012-229831 A JP 2012-255642 A JP 2012-229634 A Special table 2012-503754 gazette U.S. Pat. No. 8,448,453
  • thermomagnetism cycle device can exhibit a predetermined function by being started from a startable temperature range including the high efficiency temperature range.
  • thermomagnetic cycle device may reach outside the startable temperature range.
  • the thermomagnetism cycle device may be started from an initial temperature outside the startable temperature range. In this case, the thermomagnetism cycle device may take a long time to perform a predetermined function. In this case, the thermomagnetic cycle apparatus may not be able to perform a predetermined function.
  • thermomagnetic cycle apparatus In the above-mentioned viewpoints or other viewpoints that are not mentioned, further improvement is required for the thermal equipment using the thermomagnetic cycle apparatus.
  • One object of the disclosure is to provide a thermal apparatus including a thermomagnetic cycle device that can promote startup from an initial temperature.
  • Another object of the disclosure is to provide a thermal apparatus including a thermomagnetic cycle apparatus that can be activated from a wide temperature range.
  • thermomagnetic cycle device that can reach the steady operation temperature from the initial temperature in a short time.
  • thermomagnetic cycle device that can execute a preparatory operation before startup with low energy consumption.
  • thermomagnetism cycle device that utilizes the magnetocaloric effect of a magnetocaloric element (12) disposed between a cold end and a hot end, and for heat transport to exchange heat with the cold end or the hot end.
  • External system (2, 3) and a control device (41, 241, 341) having a pre-startup processing unit (185, 285, 385) for operating the external system before starting the thermomagnetism cycle device. It is characterized by that.
  • the external system is activated before the thermomagnetic cycle device is activated.
  • the low temperature end or high temperature end of the thermomagnetic cycle device exchanges heat with the external system.
  • the temperature of the thermomagnetic cycle device is adjusted by the external system through the low temperature end or the high temperature end. Even if the initial temperature of the thermomagnetism cycle device is at an excessively high temperature or an excessively low temperature, the temperature of the thermomagnetism cycle device approaches a temperature suitable for start-up by temperature adjustment by an external system. As a result, activation of the thermomagnetism cycle device is promoted.
  • thermomagnetism cycle device concerning a 1st embodiment. It is a flowchart which shows the starting pre-processing of 1st Embodiment. It is a graph which shows the starting pre-processing of 1st Embodiment. It is a block diagram of the thermomagnetism cycle device concerning a 2nd embodiment. It is a flowchart which shows the starting pre-processing of 2nd Embodiment. It is a block diagram of the thermomagnetism cycle device concerning a 3rd embodiment. It is a block diagram of the thermomagnetism cycle device concerning a 3rd embodiment. It is a flowchart which shows the starting pre-processing of 3rd Embodiment. It is a graph which shows the starting pre-processing of 3rd Embodiment.
  • an air conditioner 1 as a thermal device includes a magnetocaloric effect type heat pump device 11.
  • the magnetocaloric effect type heat pump apparatus 11 is also referred to as an MHP (Magneto-caloric effect Heat Pump) apparatus 11.
  • the MHP apparatus 11 provides a thermomagnetic cycle apparatus.
  • heat pump device is used in a broad sense. That is, the term “heat pump device” includes both a device that uses the cold heat obtained by the heat pump device and a device that uses the heat obtained by the heat pump device. An apparatus using cold heat may be referred to as a refrigeration cycle apparatus. Therefore, in this specification, the term heat pump apparatus is used as a concept including a refrigeration cycle apparatus.
  • the term heat pump device includes a device that utilizes both the cold and hot energy obtained thereby. For example, a dehumidifier is included.
  • the low temperature system 2 carries the cold energy obtained by the MHP device 11.
  • the thermal device has a high temperature system 3.
  • the high temperature system 3 carries the heat obtained by the MHP device 11.
  • the MHP device 11, the low temperature system 2, and the high temperature system 3 provide the air conditioner 1.
  • the air conditioner 1 is a vehicle air conditioner that is mounted on a vehicle and air-conditions a vehicle interior.
  • the MHP device 11 includes a magnetocaloric element 12.
  • the magnetocaloric element 12 is also called an MCE (Magneto-Caloric Effect) element 12.
  • the MHP device 11 uses the magnetocaloric effect of the MCE element 12.
  • the MHP device 11 generates a low temperature end 12 a and a high temperature end 12 b by the MCE element 12.
  • the MCE element 12 is provided between the low temperature end 12a and the high temperature end 12b.
  • the upper side in the figure is the low temperature end 12a
  • the lower side in the figure is the high temperature end 12b.
  • the MCE element 12 is disposed in the work chamber so as to exchange heat with the heat transport medium.
  • the MCE element 12 generates heat and absorbs heat in response to changes in the strength of the external magnetic field.
  • the MCE element 12 generates heat when an external magnetic field is applied, and absorbs heat when the external magnetic field is removed.
  • the MCE element 12 decreases in magnetic entropy and increases its temperature by releasing heat.
  • the MCE element 12 increases in magnetic entropy and decreases in temperature by absorbing heat.
  • the MCE element 12 exhibits a high magnetocaloric effect in a predetermined high-efficiency temperature zone so as to exhibit the performance required as a thermal device.
  • the MCE element 12 has a gradient in which the high-efficiency temperature zone gradually increases in a continuous or stepwise manner from the low temperature end 12a to the high temperature end 12b.
  • the material of the MCE element 12 is selected so as to exhibit necessary performance.
  • the MCE element 12 is made of a magnetic material that exhibits a high magnetocaloric effect in a normal temperature range.
  • a gadolinium-based material or a lanthanum-iron-silicon compound can be used.
  • a mixture of manganese, iron, phosphorus and germanium can be used.
  • an element that absorbs heat by applying an external magnetic field and generates heat by removing the external magnetic field may be used.
  • the MHP device 11 includes a magnetic field modulation device (MG) 13.
  • the magnetic field modulator 13 periodically increases or decreases the strength of the magnetic field applied to the MCE element 12.
  • the magnetic field modulator 13 applies an external magnetic field to the MCE element 12 and increases or decreases the strength of the external magnetic field.
  • the magnetic field modulator 13 periodically switches between an excitation state in which the MCE element 12 is placed in a strong magnetic field and a demagnetization state in which the MCE element 12 is placed in a weak magnetic field or a zero magnetic field.
  • the magnetic field modulation device 13 modulates the external magnetic field so as to periodically repeat an excitation period in which the MCE element 12 is placed in a strong external magnetic field and a demagnetization period in which the MCE element 12 is placed in an external magnetic field weaker than the excitation period. To do.
  • the magnetic field modulation device 13 repeats application and removal of the magnetic field to the MCE element 12 in synchronization with a reciprocating flow of a heat transport medium described later.
  • the magnetic field modulation device 13 includes a magnetic source 13 for generating an external magnetic field, for example, a permanent magnet or an electromagnet.
  • the MHP device 11 includes a heat transport device (PM) 14.
  • the heat transport device 14 includes a heat transport medium for transporting heat that the MCE element 12 radiates or absorbs heat, and a fluid device for flowing the heat transport medium.
  • the heat transport device 14 is a device that flows along the MCE element 12 a heat transport medium that exchanges heat with the MCE element 12.
  • the heat transport device 14 reciprocates the heat transport medium along the MCE element 12.
  • the heat transport device 14 generates a reciprocating flow of the heat transport medium in synchronization with the change of the external magnetic field by the magnetic field modulation device 13.
  • the heat transport device 14 switches the flow direction of the heat transport medium in synchronization with the increase or decrease of the magnetic field by the magnetic field modulation device 13.
  • the heat transport medium that exchanges heat with the MCE element 12 is called a primary medium.
  • the primary medium can be provided by a fluid such as antifreeze, water, oil.
  • the heat transport device 14 includes a pump for flowing a heat transport medium.
  • the magnetic field modulation device 13 and the heat transport device 14 cause the MCE element 12 to function as an element of an AMR (Active Magnetic Refrigeration) cycle.
  • AMR Active Magnetic Refrigeration
  • the magnetic field modulation device 13 applies a strong magnetic field to the MCE element 12.
  • the first direction is a direction from the low temperature end 12a toward the high temperature end 12b.
  • the magnetic field modulation device 13 applies a weak magnetic field or a zero magnetic field to the MCE element 12.
  • the second direction is a direction from the high temperature end 12b toward the low temperature end 12a.
  • the low temperature system 2 is a heat transport device for transporting, using or discarding the low temperature provided by the MHP device 11.
  • the low temperature system 2 includes a flow path 21 through which the heat transport medium flows cyclically.
  • the heat transport medium of the low temperature system 2 is called a low temperature secondary medium.
  • the low temperature system 2 includes a pump (PL) 22 for flowing a low temperature secondary medium through the flow path 21.
  • the low-temperature system 2 includes a medium heat exchanger 23 disposed so as to be able to exchange heat with the low-temperature end 12a of the MHP device 11.
  • the medium heat exchanger 23 provides heat exchange between the low temperature end 12a of the MHP device 11 and the low temperature secondary medium.
  • the low-temperature system 2 includes an air heat exchanger 24 disposed so as to be able to exchange heat with air.
  • the air heat exchanger 24 provides heat exchange between air as a heat source or heat load and a low temperature secondary medium.
  • the low temperature system 2 includes a blower (FL) 25 that allows air to pass through the air heat exchanger 24.
  • the high temperature system 3 is a heat transport device for transporting, using or discarding the high temperature provided by the MHP device 11.
  • the high temperature system 3 includes a flow path 31 through which the heat transport medium circulates.
  • the heat transport medium of the high temperature system 3 is called a high temperature secondary medium.
  • the high temperature system 3 includes a pump (PL) 32 for flowing a high temperature secondary medium through the flow path 31.
  • the high temperature system 3 includes a medium heat exchanger 33 disposed so as to be able to exchange heat with the high temperature end 12b of the MHP device 11.
  • the medium heat exchanger 33 provides heat exchange between the high temperature end 12b of the MHP device 11 and the high temperature secondary medium.
  • the high temperature system 3 includes an air heat exchanger 34 disposed so as to be able to exchange heat with air.
  • the air heat exchanger 34 provides heat exchange between air as a heat source or heat load and the high temperature secondary medium.
  • the high temperature system 3 includes a blower (FL) 35 that allows air to pass through the air heat exchanger
  • the air conditioner 1 includes a control device 41 for controlling the MHP device 11, the low temperature system 2, and the high temperature system 3.
  • the air conditioner 1 includes a temperature sensor (SM) 42 as temperature detection means for detecting the temperature Tm of the MHP device 11.
  • the temperature sensor 42 detects the temperature of the MCE element 12 as the temperature Tm of the MHP device 11.
  • the control device 41 receives a sensor signal output from the temperature sensor 42.
  • the control device 41 and the temperature sensor 42 provide a temperature acquisition unit that acquires the temperature Tm of the MHP device 11.
  • the control device 41 can switch the magnetic field modulation device 13 and the heat transport device 14 between an operating state and a stopped state.
  • the control device 41 can switch the pumps 22 and 32 and the blowers 25 and 35 between the operating state and the stopped state.
  • the control device 41 is an electronic control device (Electronic Control Unit).
  • the control device has at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data.
  • the control device is provided by a microcomputer including a computer-readable storage medium.
  • the storage medium stores a computer-readable program non-temporarily.
  • the storage medium can be provided by a semiconductor memory or a magnetic disk.
  • the controller can be provided by a computer or a set of computer resources linked by a data communication device.
  • the program is executed by the control device to cause the control device to function as the device described in this specification and to cause the control device to perform the method described in this specification.
  • the control device provides various elements. At least some of those elements can be referred to as means for performing the function, and in another aspect, at least some of those elements are blocks that are interpreted as a configuration, or modules that are interpreted as a configuration. Can be called.
  • the means and / or function provided by the control device can be provided by software recorded in a substantial memory device and a computer that executes the software, software only, hardware only, or a combination thereof.
  • the controller can be provided by a circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.
  • FIG. 2 is a flowchart showing an example of a process 180 for starting the MHP device 11.
  • a state in which the magnetic field modulation device 13 and the heat transport device 14 are continuously in an operation state is referred to as an operation state of the MHP device 11.
  • a state in which the magnetic field modulation device 13 and the heat transport device 14 are continuously stopped is referred to as a stopped state of the MHP device 11.
  • the operation of shifting the MHP device 11 from the stopped state to the activated state is referred to as activation.
  • the temperature of the MHP device 11 before the MHP device 11 is started, that is, in the stopped state, that is, the temperature of the MCE element 12 is called an initial temperature.
  • Process 180 is executed by the control device 41.
  • the control device 41 determines whether or not preparation for starting the MHP device 11 is requested. For example, when the air conditioner 1 is switched from the stopped state to the activated state by the user, it is determined that preparation for starting the MHP device 11 is required. Further, although the air conditioner 1 is in a continuous operation state, when the MHP device 11 is in a temporary stop state, it is determined that preparation for starting the MHP device 11 is required. For example, there is a request for temporarily suppressing the power consumption of the MHP device 11. If preparation for starting the MHP device 11 is not requested, the process branches to NO. If preparation for starting the MHP device is requested, the process branches to YES.
  • step 182 the control device 41 inputs the temperature Tm from the temperature sensor 42.
  • Step 182 provides a temperature acquisition unit that acquires the temperature of the MHP device 11.
  • the control device 41 determines whether or not the temperature of the MHP device 11 is within the startable temperature range.
  • An example of the startable temperature zone is a temperature zone between the lower limit temperature T1 and the upper limit temperature T2. If T1 ⁇ Tm ⁇ T2 holds, the process branches to YES. If T1 ⁇ Tm ⁇ T2 is not established, the process branches to NO.
  • the startable temperature zone can be set as a temperature zone in which the MHP device 11 can reach a steady operation state after a delay time allowed without requiring a pre-startup process. For example, the startable temperature range can be set based on experiments.
  • the upper limit temperature T2 can also be called an operable temperature of the MHP device 11.
  • step 184 the control device 41 activates the MHP device 11.
  • the control device 41 controls the magnetic field modulation device 13 to the operating state (ON).
  • the control device 41 controls the heat transport device 14 to the operating state (ON).
  • the control device 41 controls the low temperature system 2 and the high temperature system 3 to be in an operating state.
  • the air conditioner 1 functions as a heat pump.
  • the MHP device 11 can reach a steady operation state after a predetermined delay time. In a steady operation state, the MHP device 11 provides a predetermined temperature to the low temperature end 12a and the high temperature end 12b.
  • the MHP device 11 provides a low temperature to the low temperature system 2 and a high temperature to the high temperature system 3 in the operating state.
  • the air heat exchanger 24 is used as a use side heat exchanger, that is, an indoor heat exchanger.
  • the air heat exchanger 24 absorbs heat from indoor air. Indoor air is cooled by the air heat exchanger 24.
  • the air heat exchanger 34 is used as a non-use side heat exchanger, that is, an outdoor heat exchanger.
  • the air heat exchanger 34 discharges heat to the outdoor air.
  • the air heat exchanger 24 is used as a non-use side heat exchanger, that is, an outdoor heat exchanger.
  • the air heat exchanger 24 absorbs heat from outdoor air.
  • the air heat exchanger 34 is used as a use side heat exchanger, that is, an indoor heat exchanger.
  • the air heat exchanger 34 discharges heat to indoor air. Indoor air is heated by the air heat exchanger 34.
  • both the air heat exchanger 24 and the air heat exchanger 34 are used as indoor heat exchangers.
  • step 185 the process proceeds to step 185.
  • the MHP device 11 requires a longer delay time until reaching the steady operation state.
  • the MHP device 11 may not be able to reach a steady operation state.
  • pre-activation processing is executed before the MHP device 11 is activated.
  • the pre-startup process uses only the low-temperature system 2 or the high-temperature system 3 as a heat source or heat load, and brings the temperature of the MHP device 11 closer to the startable temperature range.
  • Step 183 provides a temperature determination unit that operates the pre-startup processing unit when the temperature Tm of the MHP device 11 is outside the predetermined startable temperature range T1-T2.
  • step 185 the control device 41 provides pre-startup processing.
  • the start-up pretreatment at least one of the low temperature system 2 or the high temperature system 3 is put in an operating state. Thereby, even if the MHP apparatus 11 becomes high temperature, the temperature of the MHP apparatus 11 is lowered by the low temperature that the low temperature system 2 or the high temperature system 3 has inside.
  • the low temperature system 2 or the high temperature system 3 exchanges heat with the indoor air or outdoor air of the vehicle, the temperature of the MHP apparatus 11 is lowered by the low temperature of the air introduced via the low temperature system 2 or the high temperature system 3. It is done.
  • the control device 41 determines whether or not the temperature Tm exceeds the threshold temperature T3.
  • the threshold temperature T3 can also be referred to as a reference temperature.
  • the threshold temperature T3 is a threshold for switching the cooling capacity for cooling the MHP device 11 in stages. If T3 ⁇ Tm holds, the process branches to YES. If T3 ⁇ Tm does not hold, the process branches to NO.
  • step 192 the control device 41 controls only one of the low temperature system 2 and the high temperature system 3 to the operating state.
  • the pump 22 and the blower 25 are controlled to the operation state (ON). It replaces with this and the pump 32 and the air blower 35 may be controlled by the driving
  • Step 192 provides a single system operating section that operates only one of the low temperature system 2 or the high temperature system 3.
  • step 193 the control device 41 controls both the low temperature system 2 and the high temperature system 3 to the operating state.
  • the pump 22, the blower 25, the pump 32, and the blower 35 are controlled to the operation state (ON).
  • Step 193 provides both system operation parts for operating both the low temperature system 2 and the high temperature system.
  • step 185 the process proceeds to step 184. Therefore, before the MHP apparatus 11 is activated in step 184, the pre-activation process in step 185 brings the temperature Tm of the MHP apparatus 11 close to the activation possible temperature range.
  • FIG. 3 shows an example of the cooling capacity provided in the pre-startup process.
  • the horizontal axis indicates the temperature Tm
  • the vertical axis indicates the cooling capacity and the heating capacity that change the temperature Tm toward the startable temperature range.
  • the MHP device 11 of the embodiment described above may be in an excessively high temperature state due to its own residual heat, residual heat of other equipment, solar heat, or the like.
  • the temperature Tm is outside the startable temperature range.
  • the low temperature system 2 or the high temperature system 3 is an external system for heat transport that is positioned outside the MHP device 11.
  • the low temperature system 2 or the high temperature system 3 may be able to cool the MHP device 11 by the low temperature remaining inside itself or by the air that is the subject of heat exchange. In many cases, the temperature of the air is lower than the temperature of the MHP device 11. Therefore, the MHP device 11 can be cooled by controlling at least one of the low temperature system 2 and the high temperature system 3 to be in an operating state before starting the MHP device 11.
  • the control device 41 operates at least the low temperature system 2. For this reason, the temperature of the magnetocaloric element 12 positioned in the vicinity of the low temperature end 12a is lowered. Since the magnetocaloric element 12 disposed in the vicinity of the low temperature end 12a exhibits a high magnetocaloric effect at a low temperature, the magnetocaloric effect exhibited by the magnetocaloric element 12 can be enhanced. As a result, activation of the MHP device 11 is promoted.
  • the temperature of the MHP device 11 before the MHP device 11 is activated, the temperature of the MHP device 11 can be adjusted to a temperature suitable for activation. Thereby, even if the temperature of the MHP apparatus 11 is outside the startable temperature range before starting, the MHP apparatus 11 can be started. In addition, since the pre-startup process is executed when the temperature Tm is outside the startable temperature range T1-T2, unnecessary operation of the external system is suppressed.
  • the MHP apparatus 11 can be started from a wide temperature range.
  • the temperature Tm is approached toward the startable temperature range.
  • the delay time until the MHP device 11 reaches the steady operation state from the initial temperature is shortened.
  • the pre-startup process may position the temperature Tm within the startable temperature range before the MHP device 11 is started. In this case, the MHP device 11 can reach the steady operation temperature from the initial temperature in a short time.
  • the startup time expected for the MHP device 11 can be provided.
  • the startup pre-processing is executed by operating only the external system provided by the low temperature system 2 or the high temperature system 3 without operating the magnetic field modulation device 13 and the heat transport device 14 which are elements of the MHP device 11. Therefore, the MHP device 11 can execute a preparatory operation before startup with less energy consumption.
  • Second Embodiment This embodiment is a modified example based on the preceding embodiment.
  • the low temperature system 2 is operated in Step 192.
  • a system suitable for cooling the MHP device 11 is operated.
  • the MHP device 11 has a circulation system 16 for heat transport extending from the low temperature end 12a.
  • the circulation system 16 circulates the heat transport medium cyclically.
  • the heat transport medium of the circulation system 16 can be provided by a primary medium or a secondary medium.
  • the flow in the circulation system 16 is generated by a heat transport device 14 or by a pump operable independently of the magnetic field modulator 13.
  • the MHP apparatus 11 has a circulation system 17 for heat transport extending from the high temperature end 12b.
  • the circulation system 17 flows the heat transport medium in a circulating manner.
  • the heat transport medium of the circulation system 17 can be provided by a primary medium or a secondary medium.
  • the flow in the circulation system 17 is generated by a heat transport device 14 or by a pump operable independently of the magnetic field modulator 13.
  • the low temperature system 2 includes a medium heat exchanger 223 that provides heat exchange between the circulation system 16 and the low temperature system 2.
  • the high temperature system 3 includes a medium heat exchanger 233 that provides heat exchange between the circulation system 17 and the high temperature system 3.
  • the circulation systems 16 and 17 can cause the heat transport medium to flow in the circulation systems 16 and 17 without operating the magnetic field modulator 13.
  • the heat transport device 14 can be operated by the heat transport device 14 alone while keeping the magnetic field modulation device 13 in a stopped state, and can provide a flow of the heat transport medium to the circulation systems 16 and 17.
  • the air conditioner 1 includes a temperature sensor (SL) 44 that detects the temperature TL of the low-temperature system 2.
  • the temperature TL of the low temperature system 2 is the temperature of the secondary medium in the low temperature system 2 or the temperature of the air passing through the air heat exchanger 24.
  • the air conditioner 1 includes a temperature sensor (SH) 45 that detects the temperature TH of the high-temperature system 3.
  • the temperature TH of the high temperature system 3 is the temperature of the secondary medium in the high temperature system 3 or the temperature of the air passing through the air heat exchanger 34.
  • the control device 241 inputs signals indicating the temperatures TL and TH from the temperature sensors 44 and 45.
  • FIG. 5 shows an example of a process 280 for starting the MHP device 11.
  • the same steps as those in the preceding embodiment are denoted by the same reference numerals.
  • step 282 the control device 241 inputs temperatures Tm, TL, and TH. In this embodiment, pre-startup processing 285 is executed.
  • step 292 the higher one of the low temperature system 2 and the high temperature system 3 that has a higher effect of cooling the MHP device 11 is used. For example, when TL ⁇ TH, the control device 241 operates only the low temperature system 2. When TL> TH, the control device 241 operates only the high temperature system 3. As a result, the MHP device 11 can be efficiently cooled while suppressing power consumption. Therefore, step 282 provides a selective operating unit that operates the lower temperature of the low temperature system 2 and the high temperature system 3.
  • step 294 is adopted.
  • the control device 241 controls the heat transport device 14 to the operating state (ON).
  • the magnetic field modulation device 13 is controlled to be stopped (OFF).
  • the heat transport medium flows through the circulation systems 16 and 17.
  • the MHP device 11 is cooled via the circulation systems 16 and 17.
  • control device 241 operates the external systems 2 and 3 and operates the heat transport device 14 without operating the magnetic field modulation device 13 before starting the thermomagnetic cycle device.
  • temperature adjustment is promoted inside the MHP device 11.
  • the MHP device 11 can be cooled without operating the magnetic field modulation device 13. Therefore, the MHP apparatus 11 can be efficiently cooled while suppressing power consumption.
  • This embodiment is a modification in which the preceding embodiment is a basic form.
  • the low temperature system 2 or the high temperature system 3 is used for cooling the MHP device 11.
  • the low temperature system 2 or the high temperature system 3 is also used for heating the MHP device 11.
  • a heat source cooling device 5 different from the air conditioner 1 is used for temperature adjustment of the MHP device 11.
  • a heat source cooling device (HTSC) 5 is mounted on the vehicle.
  • the heat source cooling device 5 is a device that cools a heat generating device mounted on a vehicle.
  • the heat generating device is provided by, for example, a motor for driving a vehicle, an electronic circuit, a power conversion device, an internal combustion engine, a secondary battery, a fuel cell, and the like.
  • the heat source cooling device 5 is configured to be able to adjust the temperature of the heat source independently of the low temperature system 2 and the high temperature system 3.
  • connection system 6 is provided between the heat source cooling device 5 and the low temperature system 2 to thermally connect them.
  • the connection system 6 makes it possible to introduce the cooling capacity of the heat source cooling device 5 into the MHP device 11 via the low temperature system 2.
  • the connection system 6 can also introduce the heating capability of the heat source cooling device 5 into the MHP apparatus 11 via the low temperature system 2.
  • the connection system 6 has a path 61 that enables a circulating flow of the heat transport medium between the heat source cooling device 5 and the low-temperature system 2.
  • the path 61 is provided with a bypass path 62 for refluxing the heat transport medium when the heat source cooling device 5 and the low temperature system 2 are separated.
  • the connection system 6 has a pump (PE) 63 for flowing a heat transport medium through the path 61.
  • the pump 63 flows the heat transport medium so as to supply the heat transport medium in the heat source cooling device 5 to the low temperature system 2.
  • the connection system 6 includes a plurality of valves (V1, V2, V3) 64, 65, 66. Each of the plurality of valves 64, 65, 66 can be provided by a two-position three-way valve.
  • the plurality of valves 64, 65, 66 provide a switching mechanism that switches the path 61.
  • the plurality of valves 64, 65, 66 thermally isolate the heat source cooling device 5 and the low temperature system 2 at the OFF position illustrated in FIG. At this time, the heat transport medium returns to the heat source cooling device 5.
  • the plurality of valves 64, 65, and 66 thermally connect the heat source cooling device 5 and the low temperature system 2 at the ON position illustrated in FIG. 7. At this time, the heat transport medium of the heat source cooling device 5 is supplied to the low temperature system 2.
  • the control device 341 controls the pump 63 and the plurality of valves 64, 65, 66 so as to provide a state in which the supply of the heat transport medium from the heat source cooling device 5 to the low temperature system 2 is cut off and a state in which the supply is allowed. .
  • FIG. 8 shows an example of a process 380 for starting the MHP device 11.
  • step 385 for pre-startup processing is executed.
  • the control device 341 may not only cool the MHP device 11 but also heat it.
  • step 385 at least one of the low temperature system 2 or the high temperature system 3 is put into an operating state for cooling or heating the MHP device 11. Furthermore, in order to increase the cooling capacity or the heating capacity, the heat source cooling device 5 and the low-temperature system 2 that is the heat medium system are placed in a thermal connection state.
  • step 395 the control device 41 determines whether or not the temperature Tm is lower than the lower limit temperature T1. If Tm ⁇ T1, the process branches to YES. If Tm ⁇ T1 is not established, the process branches to NO.
  • step 396 and step 397 are employed.
  • the control device 341 determines whether or not the heat source cooling device 5 can be used to cool or heat the MHP device 11. For example, in the operation state in which the temperature of the heat source cooling device 5 is sufficiently lower than the temperature Tm, it can be determined that the heat source cooling device 5 can be used for cooling the MHP device 11. Further, in an operation state in which the temperature of the heat source cooling device 5 is sufficiently higher than the temperature Tm, it can be determined that the heat source cooling device 5 can be used for heating the MHP device 11. If it is available, the process branches to YES. If it is not available, the process branches to NO.
  • step 397 the control device 341 executes heat transport from the heat source cooling device 5 to the low temperature system 2.
  • the pump 63 is controlled to be in an operating state, and the plurality of valves 64, 65, 66 are controlled to be in an ON state. This provides the state of the path 61 illustrated in FIG.
  • Step 397 provides a connection controller for thermally connecting the low temperature system 2 and the heat source cooling device 5 by the connection system 6 when the heat source cooling device 5 is available to adjust the temperature of the MHP device 11. .
  • FIG. 9 shows an example of the cooling capacity and the heating capacity provided in the pre-startup process.
  • the MHP device 11 When the temperature Tm exceeds the threshold temperature T3, the MHP device 11 is cooled using both the low temperature system 2 and the high temperature system 3. At this time, the pre-startup process goes through steps 395, 191, 193, 396, and 294. When the temperature Tm exceeds the threshold temperature T3 and the heat source cooling device 5 is available, the cooling capacity increases as illustrated by the broken line. At this time, the pre-activation process goes through steps 395, 191, 193, 396, 397, and 294.
  • the MHP device 11 When the temperature Tm is lower than the lower limit temperature T1, the MHP device 11 is heated using both the low temperature system 2 and the high temperature system 3. At this time, the pre-boot process goes through steps 395, 193, 396, and 294. When the temperature Tm is lower than the lower limit temperature T1 and the heat source cooling device 5 is available, the heating capacity increases as illustrated by the broken line. At this time, the pre-boot process goes through steps 395, 193, 396, 397, and 294.
  • the heat source cooling device 5 is also used to provide temperature control of the thermomagnetic cycle device before startup.
  • the MHP device 11 can be cooled using the heat source cooling device 5.
  • the MHP apparatus 11 can be heated using the external systems 2 and 3.
  • the MHP apparatus 11 can be heated using the heat source cooling device 5.
  • Embodiments The disclosure in this specification is not limited to the embodiments, and various modifications can be made.
  • the disclosure is not limited to the combinations shown in the embodiments, and can be implemented by various combinations.
  • Embodiments can have additional parts.
  • the portion of the embodiment may be omitted.
  • the parts of the embodiments can be replaced or combined with the parts of the other embodiments.
  • the structure, operation, and effect of the embodiment are merely examples.
  • the technical scope of the disclosure is not limited to the description of the embodiments. Some technical scope of the disclosure is indicated by the description of the scope of claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the scope of claims.
  • both the low temperature system 2 and the high temperature system 3 are employed.
  • the low temperature end 12a or the high temperature end 12b of the MHP device 1 and the heat source or heat load may be directly exchanged with heat.
  • the thermal equipment includes the low temperature system 2 or the high temperature system 3. Even in this configuration, it is possible to execute the pre-startup process of the MHP device 1 using only one of the low temperature system 2 and the high temperature system 3.
  • the vehicle air conditioner 4 is provided by the MHP device 1.
  • a residential air conditioner, a refrigeration apparatus for storing food, and the like may be provided.
  • the low temperature system 2 and the high temperature system 3 are fixed.
  • the MHP device 11 may be operated so that the low temperature end 12a and the high temperature end 12b are interchanged.
  • the MHP apparatus 11 can be operated so that the system 2 becomes a low-temperature system in the cooling application, and the MHP apparatus 11 can be operated so that the system 2 becomes the high-temperature system in the heating application.
  • Such a reversible operation can be realized by reversing the phases of the magnetic field modulation device 13 and the heat transport device 14.
  • the temperature acquisition unit that acquires the temperature of the MHP device 11 is provided by the temperature sensor 42.
  • a temperature related to the temperature of the MHP device 11 may be substituted as the temperature of the MHP device 11.
  • the temperature of the outside air can be used as the temperature of the MHP device 11.
  • the temperature acquisition unit may be provided by an estimation processing unit that estimates the temperature of the MHP device 11.
  • the temperature of the MHP device 11 can be estimated based on the stop time of the MHP device 11, the temperature of the outside air, the temperature of a device adjacent to the MHP device 11, and the like.
  • an indirect heat exchange system using a heat transport medium is adopted for both the low temperature system 2 and the high temperature system 3.
  • at least one of the low temperature system 2 or the high temperature system 3 may be provided by a direct heat exchange system in which the low temperature end 12a or the high temperature end 12b and the air directly exchange heat.
  • the blower that flows air is operated so as to exchange heat with the low temperature end 12a or the high temperature end 12b.
  • the heat transport medium is introduced from the heat source cooling device 5 to the low temperature system 2.
  • a heat transport medium may be introduced from the heat source cooling device 5 to the high temperature system 3 or to both the low temperature system 2 and the high temperature system 3.
  • the heat transport medium is directly introduced from the heat source cooling device 5 to the external systems 2 and 3. Instead, by providing a heat exchanger between the heat source cooling device 5 and the external systems 2 and 3, both of them may be thermally connected.
  • the pre-startup process is performed when the temperature Tm of the MHP device 11 is outside the startable temperature range.
  • the pre-boot process may be executed when the MHP device 11 is in the boot preparation state.
  • the pre-startup process may be executed continuously while the MHP device 11 is in a stopped state.
  • the pre-start process may be started when a preliminary operation such as opening / closing of a vehicle door is detected to use the vehicle, and the MHP device 11 may be started when the air conditioner 1 is started thereafter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

As a thermal component, an air conditioning apparatus (1) comprises a magneto-caloric heat pump apparatus (MHP apparatus) (11) as a thermal-magnetic cycle apparatus. The MHP apparatus (11) makes use of magneto-caloric effects of a magneto-caloric element (12) disposed between a low temperature tip (12a) and a high temperature tip (12b). The MHP apparatus (11) comprises a low temperature system (2) that exchanges heat with the low temperature tip (12a), and a high temperature system (3) that exchanges heat with the high temperature tip (12b). A control apparatus (41) of the air conditioning apparatus (1) activates the low temperature system (2) or the high temperature system (3) before starting the MHP apparatus (11). Even if the temperature of the MHP apparatus (11)is excessively high or excessively low, the MHP apparatus (11)is temperature adjusted by the low temperature system (2) or the high temperature system (3), as a result of which, starting the MHP apparatus (11) becomes possible.

Description

熱機器Thermal equipment 関連出願の相互参照Cross-reference of related applications
 この出願は、2014年9月3日に出願された日本特許出願2014-179484号を基礎出願とするものであり、当該基礎出願の開示内容は参照によってこの出願に組み込まれている。 This application is based on Japanese Patent Application No. 2014-179484 filed on September 3, 2014, and the disclosure of the basic application is incorporated into this application by reference.
 この開示は、磁性体の温度特性を利用する熱磁気サイクル装置を備える熱機器に関する。 This disclosure relates to a thermal apparatus including a thermomagnetic cycle device that utilizes the temperature characteristics of a magnetic material.
 特許文献1-特許文献5には、磁性体の温度特性を利用する熱磁気サイクル装置が記載されている。熱磁気サイクル装置は、ヒートポンプまたはエンジンとして利用することができる。ヒートポンプにおいては、動力によって生じる磁気的な変動によって低温または高温が取り出される。エンジンにおいては、温度差に起因して生じる磁気的な変動によって動力が取り出される。これらの装置は、磁性体として、磁気熱量素子を利用する。 Patent Document 1 to Patent Document 5 describe a thermomagnetic cycle apparatus that utilizes the temperature characteristics of a magnetic material. The thermomagnetic cycle apparatus can be used as a heat pump or an engine. In the heat pump, a low temperature or a high temperature is extracted by a magnetic fluctuation caused by power. In the engine, power is extracted by magnetic fluctuations caused by temperature differences. These devices utilize a magnetocaloric element as a magnetic material.
特開2012-229831号公報JP 2012-229831 A 特開2012-255642号公報JP 2012-255642 A 特開2012-229634号公報JP 2012-229634 A 特表2012-503754号公報Special table 2012-503754 gazette 米国特許第8448453号明細書U.S. Pat. No. 8,448,453
 多くの磁気熱量素子は、比較的狭い高効率温度帯において高い磁気熱量効果を発揮する。このため、熱磁気サイクル装置は、上記高効率温度帯を含む起動可能温度帯から起動されることによって所定の機能を発揮することができる。 Many magnetocaloric elements exhibit a high magnetocaloric effect in a relatively narrow high efficiency temperature zone. For this reason, the thermomagnetism cycle device can exhibit a predetermined function by being started from a startable temperature range including the high efficiency temperature range.
 ところが、熱磁気サイクル装置が置かれる環境に起因して、熱磁気サイクル装置の温度が起動可能温度帯の外に到達することがある。熱磁気サイクル装置は、上記起動可能温度帯の外の初期温度から起動される場合がある。この場合、熱磁気サイクル装置は、所定の機能を発揮するまでに長い時間を要することがある。また、この場合、熱磁気サイクル装置は、所定の機能を発揮できない場合がある。 However, due to the environment in which the thermomagnetic cycle device is placed, the temperature of the thermomagnetic cycle device may reach outside the startable temperature range. The thermomagnetism cycle device may be started from an initial temperature outside the startable temperature range. In this case, the thermomagnetism cycle device may take a long time to perform a predetermined function. In this case, the thermomagnetic cycle apparatus may not be able to perform a predetermined function.
 上述の観点において、または言及されていない他の観点において、熱磁気サイクル装置を利用する熱機器にはさらなる改良が求められている。 In the above-mentioned viewpoints or other viewpoints that are not mentioned, further improvement is required for the thermal equipment using the thermomagnetic cycle apparatus.
 開示は、初期温度からの起動を促進することができる熱磁気サイクル装置を備える熱機器を提供することをひとつの目的とする。 One object of the disclosure is to provide a thermal apparatus including a thermomagnetic cycle device that can promote startup from an initial temperature.
 開示は、広い温度範囲から起動することができる熱磁気サイクル装置を備える熱機器を提供することを他のひとつの目的とする。 Another object of the disclosure is to provide a thermal apparatus including a thermomagnetic cycle apparatus that can be activated from a wide temperature range.
 開示は、短時間で初期温度から定常運転温度へ到達することができる熱磁気サイクル装置を備える熱機器を提供することを他のひとつの目的とする。 It is another object of the disclosure to provide a thermal apparatus including a thermomagnetic cycle device that can reach the steady operation temperature from the initial temperature in a short time.
 開示は、少ないエネルギ消費で起動前の準備運転を実行可能な熱磁気サイクル装置を備える熱機器を提供することをさらに他のひとつの目的とする。 It is still another object of the disclosure to provide a thermal apparatus including a thermomagnetic cycle device that can execute a preparatory operation before startup with low energy consumption.
 上記目的を達成するために以下の技術的手段を採用することができる。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、開示の技術的範囲を限定するものではない。 The following technical means can be adopted to achieve the above objective. Note that the reference numerals in parentheses described in the claims and in this section indicate the correspondence with the specific means described in the embodiments described later as one aspect, and limit the technical scope of the disclosure. Not what you want.
 開示のひとつにより、熱磁気サイクル装置を備える熱機器が提供される。開示は、低温端と高温端との間に配置された磁気熱量素子(12)の磁気熱量効果を利用する熱磁気サイクル装置(11)と、低温端または高温端と熱交換する熱輸送のための外部系統(2、3)と、熱磁気サイクル装置を起動する前に、外部系統を作動させる起動前処理部(185、285、385)を有する制御装置(41、241、341)とを備えることを特徴とする。 According to one of the disclosures, a thermal apparatus including a thermomagnetic cycle device is provided. The disclosure relates to a thermomagnetism cycle device (11) that utilizes the magnetocaloric effect of a magnetocaloric element (12) disposed between a cold end and a hot end, and for heat transport to exchange heat with the cold end or the hot end. External system (2, 3) and a control device (41, 241, 341) having a pre-startup processing unit (185, 285, 385) for operating the external system before starting the thermomagnetism cycle device. It is characterized by that.
 熱磁気サイクル装置が起動される前に、外部系統が作動する。これにより熱磁気サイクル装置の低温端または高温端は、外部系統と熱交換する。この結果、低温端または高温端を通じて、熱磁気サイクル装置の温度が外部系統によって調節される。熱磁気サイクル装置の初期温度が過度に高い温度または過度に低い温度にあっても、外部系統による温度調節によって熱磁気サイクル装置の温度は起動に適した温度に接近する。この結果、熱磁気サイクル装置の起動が促進される。 The external system is activated before the thermomagnetic cycle device is activated. Thereby, the low temperature end or high temperature end of the thermomagnetic cycle device exchanges heat with the external system. As a result, the temperature of the thermomagnetic cycle device is adjusted by the external system through the low temperature end or the high temperature end. Even if the initial temperature of the thermomagnetism cycle device is at an excessively high temperature or an excessively low temperature, the temperature of the thermomagnetism cycle device approaches a temperature suitable for start-up by temperature adjustment by an external system. As a result, activation of the thermomagnetism cycle device is promoted.
第1実施形態に係る熱磁気サイクル装置のブロック図である。It is a block diagram of the thermomagnetism cycle device concerning a 1st embodiment. 第1実施形態の起動前処理を示すフローチャートである。It is a flowchart which shows the starting pre-processing of 1st Embodiment. 第1実施形態の起動前処理を示すグラフである。It is a graph which shows the starting pre-processing of 1st Embodiment. 第2実施形態に係る熱磁気サイクル装置のブロック図である。It is a block diagram of the thermomagnetism cycle device concerning a 2nd embodiment. 第2実施形態の起動前処理を示すフローチャートである。It is a flowchart which shows the starting pre-processing of 2nd Embodiment. 第3実施形態に係る熱磁気サイクル装置のブロック図である。It is a block diagram of the thermomagnetism cycle device concerning a 3rd embodiment. 第3実施形態に係る熱磁気サイクル装置のブロック図である。It is a block diagram of the thermomagnetism cycle device concerning a 3rd embodiment. 第3実施形態の起動前処理を示すフローチャートである。It is a flowchart which shows the starting pre-processing of 3rd Embodiment. 第3実施形態の起動前処理を示すグラフである。It is a graph which shows the starting pre-processing of 3rd Embodiment.
 図面を参照しながら、開示を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。また、後続の実施形態においては、先行する実施形態で説明した事項に対応する部分に百以上の位だけが異なる参照符号を付することにより対応関係を示し、重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については他の形態の説明を参照し適用することができる。 A plurality of modes for carrying out the disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. Further, in the following embodiments, the correspondence corresponding to the matters corresponding to the matters described in the preceding embodiments is indicated by adding reference numerals that differ only by one hundred or more, and redundant description may be omitted. . In each embodiment, when only a part of the structure is described, the other parts of the structure can be applied with reference to the description of the other forms.
 第1実施形態
 図1において、熱機器としての空調装置1は、磁気熱量効果型ヒートポンプ装置11を備える。磁気熱量効果型ヒートポンプ装置11はMHP(Magneto-caloric effect Heat Pump)装置11とも呼ばれる。MHP装置11は、熱磁気サイクル装置を提供する。
First Embodiment In FIG. 1, an air conditioner 1 as a thermal device includes a magnetocaloric effect type heat pump device 11. The magnetocaloric effect type heat pump apparatus 11 is also referred to as an MHP (Magneto-caloric effect Heat Pump) apparatus 11. The MHP apparatus 11 provides a thermomagnetic cycle apparatus.
 この明細書においてヒートポンプ装置の語は広義の意味で使用される。すなわち、ヒートポンプ装置の語には、ヒートポンプ装置によって得られる冷熱を利用する装置と、ヒートポンプ装置によって得られる温熱を利用する装置との両方が含まれる。冷熱を利用する装置は、冷凍サイクル装置とも呼ばれることがある。よって、この明細書においてヒートポンプ装置の語は冷凍サイクル装置を包含する概念として使用される。ヒートポンプ装置の語は、それによって得られる冷熱と温熱との両方を利用する装置を含む。例えば、除湿装置を含む。 In this specification, the term heat pump device is used in a broad sense. That is, the term “heat pump device” includes both a device that uses the cold heat obtained by the heat pump device and a device that uses the heat obtained by the heat pump device. An apparatus using cold heat may be referred to as a refrigeration cycle apparatus. Therefore, in this specification, the term heat pump apparatus is used as a concept including a refrigeration cycle apparatus. The term heat pump device includes a device that utilizes both the cold and hot energy obtained thereby. For example, a dehumidifier is included.
 図1に図示される熱機器は、低温系統2を有する。低温系統2は、MHP装置11により得られる冷熱を運搬する。熱機器は、高温系統3を有する。高温系統3は、MHP装置11により得られる温熱を運搬する。MHP装置11、低温系統2、および高温系統3は、空調装置1を提供する。空調装置1は、車両に搭載され、車室内を空調する車両用空調装置である。 The thermal equipment shown in FIG. The low temperature system 2 carries the cold energy obtained by the MHP device 11. The thermal device has a high temperature system 3. The high temperature system 3 carries the heat obtained by the MHP device 11. The MHP device 11, the low temperature system 2, and the high temperature system 3 provide the air conditioner 1. The air conditioner 1 is a vehicle air conditioner that is mounted on a vehicle and air-conditions a vehicle interior.
 MHP装置11は、磁気熱量素子12を備える。磁気熱量素子12は、MCE(Magneto-Caloric Effect)素子12とも呼ばれる。MHP装置11は、MCE素子12の磁気熱量効果を利用する。MHP装置11は、MCE素子12によって低温端12aと高温端12bとを生成する。MCE素子12は、低温端12aと高温端12bとの間に設けられている。図示の例では、図中の上側が低温端12aであり、図中の下側が高温端12bである。 The MHP device 11 includes a magnetocaloric element 12. The magnetocaloric element 12 is also called an MCE (Magneto-Caloric Effect) element 12. The MHP device 11 uses the magnetocaloric effect of the MCE element 12. The MHP device 11 generates a low temperature end 12 a and a high temperature end 12 b by the MCE element 12. The MCE element 12 is provided between the low temperature end 12a and the high temperature end 12b. In the illustrated example, the upper side in the figure is the low temperature end 12a, and the lower side in the figure is the high temperature end 12b.
 MCE素子12は、作業室内に、熱輸送媒体と熱交換するように配置されている。MCE素子12は、外部磁場の強弱の変化に応答して発熱と吸熱とを生じる。MCE素子12は、外部磁場の印加により発熱し、外部磁場の除去により吸熱する。MCE素子12は、外部磁場が印加されることによって電子スピンが磁場方向に揃うと、磁気エントロピーが減少し、熱を放出することによって温度が上昇する。また、MCE素子12は、外部磁場が除去されることによって電子スピンが乱雑になると、磁気エントロピーが増加し、熱を吸収することによって温度が低下する。MCE素子12は、熱機器として必要な性能を発揮するように、所定の高効率温度帯において高い磁気熱量効果を発揮する。MCE素子12は、低温端12aから高温端12bに向けて連続的にまたは段階的に高効率温度帯が徐々に高くなる勾配を有する。 The MCE element 12 is disposed in the work chamber so as to exchange heat with the heat transport medium. The MCE element 12 generates heat and absorbs heat in response to changes in the strength of the external magnetic field. The MCE element 12 generates heat when an external magnetic field is applied, and absorbs heat when the external magnetic field is removed. When the electron spin is aligned in the magnetic field direction by applying an external magnetic field, the MCE element 12 decreases in magnetic entropy and increases its temperature by releasing heat. In addition, when the electron spin becomes messy due to the removal of the external magnetic field, the MCE element 12 increases in magnetic entropy and decreases in temperature by absorbing heat. The MCE element 12 exhibits a high magnetocaloric effect in a predetermined high-efficiency temperature zone so as to exhibit the performance required as a thermal device. The MCE element 12 has a gradient in which the high-efficiency temperature zone gradually increases in a continuous or stepwise manner from the low temperature end 12a to the high temperature end 12b.
 MCE素子12の材料は、必要な性能を発揮するように選定されている。MCE素子12は、常温域において高い磁気熱量効果を発揮する磁性体によって作られている。例えば、ガドリニウム系材料、またはランタン-鉄-シリコン化合物を用いることができる。また、マンガン、鉄、リンおよびゲルマニウムの混合物を用いることができる。MCE素子12には、外部磁場の印加により吸熱し、外部磁場の除去により発熱する素子を利用してもよい。 The material of the MCE element 12 is selected so as to exhibit necessary performance. The MCE element 12 is made of a magnetic material that exhibits a high magnetocaloric effect in a normal temperature range. For example, a gadolinium-based material or a lanthanum-iron-silicon compound can be used. Also, a mixture of manganese, iron, phosphorus and germanium can be used. As the MCE element 12, an element that absorbs heat by applying an external magnetic field and generates heat by removing the external magnetic field may be used.
 MHP装置11は、磁場変調装置(MG)13を備える。磁場変調装置13は、MCE素子12に印加される磁場の強さを周期的に増減させる。磁場変調装置13は、MCE素子12に外部磁場を与えるとともに、その外部磁場の強さを増減させる。磁場変調装置13は、MCE素子12を強い磁界内に置く励磁状態と、MCE素子12を弱い磁界内またはゼロ磁界内に置く消磁状態とを周期的に切換える。磁場変調装置13は、MCE素子12が強い外部磁場の中に置かれる励磁期間、およびMCE素子12が励磁期間より弱い外部磁場の中に置かれる消磁期間を周期的に繰り返すように外部磁場を変調する。磁場変調装置13は、後述する熱輸送媒体の往復的な流れに同期して、MCE素子12への磁場の印加と除去とを繰り返す。磁場変調装置13は、外部磁場を生成するための磁力源13、例えば永久磁石、または電磁石を備える。 The MHP device 11 includes a magnetic field modulation device (MG) 13. The magnetic field modulator 13 periodically increases or decreases the strength of the magnetic field applied to the MCE element 12. The magnetic field modulator 13 applies an external magnetic field to the MCE element 12 and increases or decreases the strength of the external magnetic field. The magnetic field modulator 13 periodically switches between an excitation state in which the MCE element 12 is placed in a strong magnetic field and a demagnetization state in which the MCE element 12 is placed in a weak magnetic field or a zero magnetic field. The magnetic field modulation device 13 modulates the external magnetic field so as to periodically repeat an excitation period in which the MCE element 12 is placed in a strong external magnetic field and a demagnetization period in which the MCE element 12 is placed in an external magnetic field weaker than the excitation period. To do. The magnetic field modulation device 13 repeats application and removal of the magnetic field to the MCE element 12 in synchronization with a reciprocating flow of a heat transport medium described later. The magnetic field modulation device 13 includes a magnetic source 13 for generating an external magnetic field, for example, a permanent magnet or an electromagnet.
 MHP装置11は、熱輸送装置(PM)14を備える。熱輸送装置14は、MCE素子12が放熱または吸熱する熱を輸送するための熱輸送媒体と、この熱輸送媒体を流すための流体機器とを備える。熱輸送装置14は、MCE素子12と熱交換する熱輸送媒体をMCE素子12に沿って流す装置である。熱輸送装置14は、MCE素子12に沿って熱輸送媒体を往復的に流す。熱輸送装置14は、磁場変調装置13による外部磁場の変化に同期して、熱輸送媒体の往復的な流れを発生させる。熱輸送装置14は、磁場変調装置13による磁場の増減に同期して熱輸送媒体の流れ方向を切換える。MCE素子12と熱交換する熱輸送媒体は一次媒体と呼ばれる。一次媒体は、不凍液、水、油などの流体によって提供することができる。熱輸送装置14は、熱輸送媒体を流すためのポンプを備える。 The MHP device 11 includes a heat transport device (PM) 14. The heat transport device 14 includes a heat transport medium for transporting heat that the MCE element 12 radiates or absorbs heat, and a fluid device for flowing the heat transport medium. The heat transport device 14 is a device that flows along the MCE element 12 a heat transport medium that exchanges heat with the MCE element 12. The heat transport device 14 reciprocates the heat transport medium along the MCE element 12. The heat transport device 14 generates a reciprocating flow of the heat transport medium in synchronization with the change of the external magnetic field by the magnetic field modulation device 13. The heat transport device 14 switches the flow direction of the heat transport medium in synchronization with the increase or decrease of the magnetic field by the magnetic field modulation device 13. The heat transport medium that exchanges heat with the MCE element 12 is called a primary medium. The primary medium can be provided by a fluid such as antifreeze, water, oil. The heat transport device 14 includes a pump for flowing a heat transport medium.
 磁場変調装置13と熱輸送装置14とは、MCE素子12をAMR(Active Magnetic Refrigeration)サイクルの素子として機能させる。熱輸送装置14によってMCE素子12に沿って第1方向に熱輸送媒体が流されるときに、磁場変調装置13はMCE素子12に強い磁場を印加する。第1方向は、低温端12aから高温端12bに向かう方向である。熱輸送装置14によってMCE素子12に沿って第1方向とは反対の第2方向に熱輸送媒体が流されるとき、磁場変調装置13は、MCE素子12に弱い磁場またはゼロ磁場を印加する。第2方向は、高温端12bから低温端12aに向かう方向である。 The magnetic field modulation device 13 and the heat transport device 14 cause the MCE element 12 to function as an element of an AMR (Active Magnetic Refrigeration) cycle. When the heat transport medium is caused to flow in the first direction along the MCE element 12 by the heat transport device 14, the magnetic field modulation device 13 applies a strong magnetic field to the MCE element 12. The first direction is a direction from the low temperature end 12a toward the high temperature end 12b. When the heat transport medium is caused to flow along the MCE element 12 in the second direction opposite to the first direction by the heat transport device 14, the magnetic field modulation device 13 applies a weak magnetic field or a zero magnetic field to the MCE element 12. The second direction is a direction from the high temperature end 12b toward the low temperature end 12a.
 磁場変調装置13および熱輸送装置14に関しては、多様な構成を採用することができ、それらの装置に関してはこの明細書に列挙された先行技術文献の記載を参照することができる。先行技術文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用される。 Various configurations can be adopted for the magnetic field modulation device 13 and the heat transport device 14, and the description of the prior art documents listed in this specification can be referred to for these devices. The content of the prior art document is introduced or incorporated by reference as an explanation of the technical elements described in this specification.
 低温系統2は、MHP装置11によって提供される低温を運搬し、利用または廃棄するための熱輸送装置である。低温系統2は、熱輸送媒体が循環的に流れる流路21を備える。低温系統2の熱輸送媒体は低温二次媒体と呼ばれる。低温系統2は、流路21に低温二次媒体を流すためのポンプ(PL)22を備える。低温系統2は、MHP装置11の低温端12aと熱交換可能に配置された媒体熱交換器23を備える。媒体熱交換器23は、MHP装置11の低温端12aと、低温二次媒体との間の熱交換を提供する。低温系統2は、空気と熱交換可能に配置された空気熱交換器24を備える。空気熱交換器24は、熱源または熱負荷としての空気と、低温二次媒体との間の熱交換を提供する。低温系統2は、空気熱交換器24に空気を通過させる送風機(FL)25を備える。 The low temperature system 2 is a heat transport device for transporting, using or discarding the low temperature provided by the MHP device 11. The low temperature system 2 includes a flow path 21 through which the heat transport medium flows cyclically. The heat transport medium of the low temperature system 2 is called a low temperature secondary medium. The low temperature system 2 includes a pump (PL) 22 for flowing a low temperature secondary medium through the flow path 21. The low-temperature system 2 includes a medium heat exchanger 23 disposed so as to be able to exchange heat with the low-temperature end 12a of the MHP device 11. The medium heat exchanger 23 provides heat exchange between the low temperature end 12a of the MHP device 11 and the low temperature secondary medium. The low-temperature system 2 includes an air heat exchanger 24 disposed so as to be able to exchange heat with air. The air heat exchanger 24 provides heat exchange between air as a heat source or heat load and a low temperature secondary medium. The low temperature system 2 includes a blower (FL) 25 that allows air to pass through the air heat exchanger 24.
 ポンプ22が作動することにより低温二次媒体とMHP装置11の低温端12aとの間の熱交換が提供される。さらに、送風機25が作動することにより、MHP装置11の低温端12aと、空気との間の、低温二次媒体を経由する熱交換が提供される。 When the pump 22 is operated, heat exchange between the low temperature secondary medium and the low temperature end 12a of the MHP apparatus 11 is provided. Furthermore, the air blower 25 operates to provide heat exchange between the low temperature end 12a of the MHP device 11 and the air via the low temperature secondary medium.
 高温系統3は、MHP装置11によって提供される高温を運搬し、利用または廃棄するための熱輸送装置である。高温系統3は、熱輸送媒体が循環的に流れる流路31を備える。高温系統3の熱輸送媒体は高温二次媒体と呼ばれる。高温系統3は、流路31に高温二次媒体を流すためのポンプ(PL)32を備える。高温系統3は、MHP装置11の高温端12bと熱交換可能に配置された媒体熱交換器33を備える。媒体熱交換器33は、MHP装置11の高温端12bと、高温二次媒体との間の熱交換を提供する。高温系統3は、空気と熱交換可能に配置された空気熱交換器34を備える。空気熱交換器34は、熱源または熱負荷としての空気と、高温二次媒体との間の熱交換を提供する。高温系統3は、空気熱交換器34に空気を通過させる送風機(FL)35を備える。 The high temperature system 3 is a heat transport device for transporting, using or discarding the high temperature provided by the MHP device 11. The high temperature system 3 includes a flow path 31 through which the heat transport medium circulates. The heat transport medium of the high temperature system 3 is called a high temperature secondary medium. The high temperature system 3 includes a pump (PL) 32 for flowing a high temperature secondary medium through the flow path 31. The high temperature system 3 includes a medium heat exchanger 33 disposed so as to be able to exchange heat with the high temperature end 12b of the MHP device 11. The medium heat exchanger 33 provides heat exchange between the high temperature end 12b of the MHP device 11 and the high temperature secondary medium. The high temperature system 3 includes an air heat exchanger 34 disposed so as to be able to exchange heat with air. The air heat exchanger 34 provides heat exchange between air as a heat source or heat load and the high temperature secondary medium. The high temperature system 3 includes a blower (FL) 35 that allows air to pass through the air heat exchanger 34.
 ポンプ32が作動することにより高温二次媒体とMHP装置11の高温端12bとの間の熱交換が提供される。さらに、送風機35が作動することにより、MHP装置11の高温端12bと、空気との間の、高温二次媒体を経由する熱交換が提供される。 When the pump 32 is operated, heat exchange between the high temperature secondary medium and the high temperature end 12b of the MHP device 11 is provided. Furthermore, when the blower 35 is operated, heat exchange between the high temperature end 12b of the MHP device 11 and the air via the high temperature secondary medium is provided.
 空調装置1は、MHP装置11、低温系統2、および高温系統3を制御するための制御装置41を備える。空調装置1は、MHP装置11の温度Tmを検出するための温度検出手段としての温度センサ(SM)42を備える。温度センサ42は、MHP装置11の温度Tmとして、MCE素子12の温度を検出する。制御装置41は、温度センサ42が出力するセンサ信号を入力する。制御装置41および温度センサ42は、MHP装置11の温度Tmを取得する温度取得手段を提供する。 The air conditioner 1 includes a control device 41 for controlling the MHP device 11, the low temperature system 2, and the high temperature system 3. The air conditioner 1 includes a temperature sensor (SM) 42 as temperature detection means for detecting the temperature Tm of the MHP device 11. The temperature sensor 42 detects the temperature of the MCE element 12 as the temperature Tm of the MHP device 11. The control device 41 receives a sensor signal output from the temperature sensor 42. The control device 41 and the temperature sensor 42 provide a temperature acquisition unit that acquires the temperature Tm of the MHP device 11.
 制御装置41は、磁場変調装置13および熱輸送装置14を作動状態と停止状態とに切り換えることができる。制御装置41は、ポンプ22、32および送風機25、35を作動状態と停止状態とに切り換えることができる。 The control device 41 can switch the magnetic field modulation device 13 and the heat transport device 14 between an operating state and a stopped state. The control device 41 can switch the pumps 22 and 32 and the blowers 25 and 35 between the operating state and the stopped state.
 制御装置41は、電子制御装置(Electronic Control Unit)である。制御装置は、少なくともひとつの演算処理装置(CPU)と、プログラムとデータとを記憶する記憶媒体としての少なくともひとつのメモリ装置(MMR)とを有する。制御装置は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体は、コンピュータによって読み取り可能なプログラムを非一時的に格納している。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御装置は、ひとつのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源によって提供されうる。プログラムは、制御装置によって実行されることによって、制御装置をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置を機能させる。制御装置は、多様な要素を提供する。それらの要素の少なくとも一部は、機能を実行するための手段と呼ぶことができ、別の観点では、それらの要素の少なくとも一部は、構成として解釈されるブロック、または構成として解釈されるモジュールと呼ぶことができる。 The control device 41 is an electronic control device (Electronic Control Unit). The control device has at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data. The control device is provided by a microcomputer including a computer-readable storage medium. The storage medium stores a computer-readable program non-temporarily. The storage medium can be provided by a semiconductor memory or a magnetic disk. The controller can be provided by a computer or a set of computer resources linked by a data communication device. The program is executed by the control device to cause the control device to function as the device described in this specification and to cause the control device to perform the method described in this specification. The control device provides various elements. At least some of those elements can be referred to as means for performing the function, and in another aspect, at least some of those elements are blocks that are interpreted as a configuration, or modules that are interpreted as a configuration. Can be called.
 制御装置が提供する手段および/または機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。 The means and / or function provided by the control device can be provided by software recorded in a substantial memory device and a computer that executes the software, software only, hardware only, or a combination thereof. For example, if the controller is provided by a circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.
 図2は、MHP装置11の起動のための処理180の一例を示すフローチャートである。以下の説明において、磁場変調装置13および熱輸送装置14が連続的に作動状態におかれている状態をMHP装置11の作動状態と呼ぶ。磁場変調装置13および熱輸送装置14が連続的に停止状態におかれている状態をMHP装置11の停止状態と呼ぶ。MHP装置11を停止状態から作動状態に移行させる操作を起動と呼ぶ。MHP装置11が起動される前、すなわち停止状態におけるMHP装置11の温度、すなわちMCE素子12の温度は初期温度と呼ばれる。 FIG. 2 is a flowchart showing an example of a process 180 for starting the MHP device 11. In the following description, a state in which the magnetic field modulation device 13 and the heat transport device 14 are continuously in an operation state is referred to as an operation state of the MHP device 11. A state in which the magnetic field modulation device 13 and the heat transport device 14 are continuously stopped is referred to as a stopped state of the MHP device 11. The operation of shifting the MHP device 11 from the stopped state to the activated state is referred to as activation. The temperature of the MHP device 11 before the MHP device 11 is started, that is, in the stopped state, that is, the temperature of the MCE element 12 is called an initial temperature.
 処理180は、制御装置41によって実行される。ステップ181では、制御装置41は、MHP装置11の起動準備が求められているか否かを判定する。例えば、利用者によって空調装置1が停止状態から作動状態に切り換えられる場合、MHP装置11の起動準備が求められていると判定される。また、空調装置1は連続的な作動状態におかれているが、MHP装置11が一時的な停止状態におかれている場合、MHP装置11の起動準備が求められていると判定される。例えば、MHP装置11の消費電力を一時的に抑制する要求がある場合である。MHP装置11の起動準備が求められていない場合、処理はNOに分岐する。MHP装置の起動準備が求められている場合、処理はYESに分岐する。 Process 180 is executed by the control device 41. In step 181, the control device 41 determines whether or not preparation for starting the MHP device 11 is requested. For example, when the air conditioner 1 is switched from the stopped state to the activated state by the user, it is determined that preparation for starting the MHP device 11 is required. Further, although the air conditioner 1 is in a continuous operation state, when the MHP device 11 is in a temporary stop state, it is determined that preparation for starting the MHP device 11 is required. For example, there is a request for temporarily suppressing the power consumption of the MHP device 11. If preparation for starting the MHP device 11 is not requested, the process branches to NO. If preparation for starting the MHP device is requested, the process branches to YES.
 ステップ182では、制御装置41は温度センサ42から温度Tmを入力する。ステップ182は、MHP装置11の温度を取得する温度取得部を提供する。 In step 182, the control device 41 inputs the temperature Tm from the temperature sensor 42. Step 182 provides a temperature acquisition unit that acquires the temperature of the MHP device 11.
 ステップ183では、制御装置41は、MHP装置11の温度が起動可能温度帯の中にあるか否かを判定する。起動可能温度帯の一例は、下限温度T1と上限温度T2との間の温度帯である。T1<Tm<T2が成立する場合、処理はYESに分岐する。T1<Tm<T2が非成立である場合、処理はNOに分岐する。起動可能温度帯は、起動前処理を要することなくMHP装置11が許容される遅れ時間の後に定常的な運転状態に到達できる温度帯として設定できる。例えば、起動可能温度帯は、実験に基づいて設定することができる。上限温度T2はMHP装置11の動作可能温度とも呼ぶことができる。 In step 183, the control device 41 determines whether or not the temperature of the MHP device 11 is within the startable temperature range. An example of the startable temperature zone is a temperature zone between the lower limit temperature T1 and the upper limit temperature T2. If T1 <Tm <T2 holds, the process branches to YES. If T1 <Tm <T2 is not established, the process branches to NO. The startable temperature zone can be set as a temperature zone in which the MHP device 11 can reach a steady operation state after a delay time allowed without requiring a pre-startup process. For example, the startable temperature range can be set based on experiments. The upper limit temperature T2 can also be called an operable temperature of the MHP device 11.
 ステップ184では、制御装置41は、MHP装置11を起動する。制御装置41は、磁場変調装置13を作動状態(ON)に制御する。制御装置41は、熱輸送装置14を作動状態(ON)に制御する。さらに、制御装置41は、低温系統2と高温系統3とを作動状態に制御する。これにより空調装置1はヒートポンプとして機能する。 In step 184, the control device 41 activates the MHP device 11. The control device 41 controls the magnetic field modulation device 13 to the operating state (ON). The control device 41 controls the heat transport device 14 to the operating state (ON). Further, the control device 41 controls the low temperature system 2 and the high temperature system 3 to be in an operating state. Thereby, the air conditioner 1 functions as a heat pump.
 初期温度が高効率温度帯を含む起動可能温度帯の中にある場合、MHP装置11は、所定の遅れ時間の後に、定常的な運転状態に到達することができる。定常的な運転状態では、MHP装置11は、低温端12aと高温端12bとに所定の温度を提供する。 When the initial temperature is within the startable temperature range including the high efficiency temperature range, the MHP device 11 can reach a steady operation state after a predetermined delay time. In a steady operation state, the MHP device 11 provides a predetermined temperature to the low temperature end 12a and the high temperature end 12b.
 MHP装置11は、作動状態において、低温系統2に低温を提供し、高温系統3に高温を提供する。空調装置1が冷房用途に利用されるとき、空気熱交換器24は利用側熱交換器、すなわち室内熱交換器として利用される。空気熱交換器24は、室内の空気から熱を吸収する。空気熱交換器24により室内の空気が冷却される。このとき、空気熱交換器34は、非利用側熱交換器、すなわち室外熱交換器として利用される。空気熱交換器34は、室外の空気へ熱を排出する。空調装置1が暖房用途に利用されるとき、空気熱交換器24は非利用側熱交換器、すなわち室外熱交換器として利用される。空気熱交換器24は、室外の空気から熱を吸収する。このとき、空気熱交換器34は、利用側熱交換器、すなわち室内熱交換器として利用される。空気熱交換器34は、室内の空気へ熱を排出する。空気熱交換器34により室内の空気が加熱される。空調装置1が除湿用途に利用されるとき、空気熱交換器24と空気熱交換器34との両方が室内熱交換器として利用される。 The MHP device 11 provides a low temperature to the low temperature system 2 and a high temperature to the high temperature system 3 in the operating state. When the air conditioner 1 is used for cooling applications, the air heat exchanger 24 is used as a use side heat exchanger, that is, an indoor heat exchanger. The air heat exchanger 24 absorbs heat from indoor air. Indoor air is cooled by the air heat exchanger 24. At this time, the air heat exchanger 34 is used as a non-use side heat exchanger, that is, an outdoor heat exchanger. The air heat exchanger 34 discharges heat to the outdoor air. When the air conditioner 1 is used for heating applications, the air heat exchanger 24 is used as a non-use side heat exchanger, that is, an outdoor heat exchanger. The air heat exchanger 24 absorbs heat from outdoor air. At this time, the air heat exchanger 34 is used as a use side heat exchanger, that is, an indoor heat exchanger. The air heat exchanger 34 discharges heat to indoor air. Indoor air is heated by the air heat exchanger 34. When the air conditioner 1 is used for dehumidification, both the air heat exchanger 24 and the air heat exchanger 34 are used as indoor heat exchangers.
 ステップ183からNOに分岐した場合、処理はステップ185へ進む。初期温度が起動可能温度帯の外にある場合、MHP装置11は、定常的な運転状態に到達するまでにより長い遅れ時間を要する。初期温度が起動可能温度帯の外にある場合、MHP装置11は、定常的な運転状態に到達することができないこともある。この実施形態では、MHP装置11が起動される前に、起動前処理が実行される。起動前処理は、熱源または熱負荷としての低温系統2または高温系統3だけを利用して、MHP装置11の温度を起動可能温度帯の近くに向けて接近させる。さらに、望ましい作動においては、起動前処理は、熱源または熱負荷としての低温系統2または高温系統3だけを利用して、MHP装置11の温度を起動可能温度帯の中に入れる。ステップ183は、MHP装置11の温度Tmが、予め定められた起動可能温度帯T1-T2の外にあるときに起動前処理部を作動させる温度判定部を提供する。 If the process branches from step 183 to NO, the process proceeds to step 185. When the initial temperature is outside the startable temperature range, the MHP device 11 requires a longer delay time until reaching the steady operation state. When the initial temperature is outside the startable temperature range, the MHP device 11 may not be able to reach a steady operation state. In this embodiment, before the MHP device 11 is activated, pre-activation processing is executed. The pre-startup process uses only the low-temperature system 2 or the high-temperature system 3 as a heat source or heat load, and brings the temperature of the MHP device 11 closer to the startable temperature range. Further, in a desirable operation, the start-up pretreatment uses only the low temperature system 2 or the high temperature system 3 as a heat source or a heat load, and puts the temperature of the MHP device 11 in the startable temperature range. Step 183 provides a temperature determination unit that operates the pre-startup processing unit when the temperature Tm of the MHP device 11 is outside the predetermined startable temperature range T1-T2.
 ステップ185では、制御装置41は、起動前処理を提供する。起動前処理では、低温系統2または高温系統3の少なくとも一方が運転状態におかれる。これにより、MHP装置11が高温になっていても、低温系統2または高温系統3が内部に有する低温によりMHP装置11の温度が下げられる。加えて、低温系統2または高温系統3は、車両の室内空気または室外空気と熱交換するから、低温系統2または高温系統3を経由して導入される空気の低温によってMHP装置11の温度が下げられる。 In step 185, the control device 41 provides pre-startup processing. In the start-up pretreatment, at least one of the low temperature system 2 or the high temperature system 3 is put in an operating state. Thereby, even if the MHP apparatus 11 becomes high temperature, the temperature of the MHP apparatus 11 is lowered by the low temperature that the low temperature system 2 or the high temperature system 3 has inside. In addition, since the low temperature system 2 or the high temperature system 3 exchanges heat with the indoor air or outdoor air of the vehicle, the temperature of the MHP apparatus 11 is lowered by the low temperature of the air introduced via the low temperature system 2 or the high temperature system 3. It is done.
 ステップ191では、制御装置41は、温度Tmが閾値温度T3を上回るか否かを判定する。閾値温度T3は、基準温度とも呼ぶことができる。閾値温度T3は、MHP装置11を冷却するための冷却能力を段階的に切り換えるための閾値である。T3<Tmが成立する場合、処理はYESに分岐する。T3<Tmが成立しない場合、処理はNOに分岐する。 In step 191, the control device 41 determines whether or not the temperature Tm exceeds the threshold temperature T3. The threshold temperature T3 can also be referred to as a reference temperature. The threshold temperature T3 is a threshold for switching the cooling capacity for cooling the MHP device 11 in stages. If T3 <Tm holds, the process branches to YES. If T3 <Tm does not hold, the process branches to NO.
 ステップ192では、制御装置41は、低温系統2または高温系統3の一方だけを運転状態に制御する。例えば、ポンプ22と送風機25とが運転状態(ON)に制御される。これに代えて、ポンプ32と送風機35とが運転状態(ON)に制御されてもよい。MCE素子12は、低温端12aの近傍により低い高効率温度帯を有するから、低温端12aの温度を低下させることが望ましい。そこで、ステップ192では、低温系統2を運転することが望ましい。ステップ192は、低温系統2または高温系統3の一方だけを作動させる単系統作動部を提供する。 In step 192, the control device 41 controls only one of the low temperature system 2 and the high temperature system 3 to the operating state. For example, the pump 22 and the blower 25 are controlled to the operation state (ON). It replaces with this and the pump 32 and the air blower 35 may be controlled by the driving | running state (ON). Since the MCE element 12 has a lower high-efficiency temperature zone near the low temperature end 12a, it is desirable to lower the temperature of the low temperature end 12a. Therefore, in step 192, it is desirable to operate the low temperature system 2. Step 192 provides a single system operating section that operates only one of the low temperature system 2 or the high temperature system 3.
 ステップ193では、制御装置41は、低温系統2および高温系統3の両方を運転状態に制御する。ここでは、ポンプ22、送風機25、ポンプ32、および送風機35が運転状態(ON)に制御される。ステップ193は、低温系統2および高温系統の両方を作動させる両系統作動部を提供する。 In step 193, the control device 41 controls both the low temperature system 2 and the high temperature system 3 to the operating state. Here, the pump 22, the blower 25, the pump 32, and the blower 35 are controlled to the operation state (ON). Step 193 provides both system operation parts for operating both the low temperature system 2 and the high temperature system.
 ステップ185の後、処理はステップ184に進む。よって、ステップ184によってMHP装置11が起動される前に、ステップ185による起動前処理がMHP装置11の温度Tmを起動可能温度帯に近づける。 After step 185, the process proceeds to step 184. Therefore, before the MHP apparatus 11 is activated in step 184, the pre-activation process in step 185 brings the temperature Tm of the MHP apparatus 11 close to the activation possible temperature range.
 図3には、起動前処理において提供される冷却能力の一例が図示されている。横軸は温度Tmを示し、縦軸は起動可能温度帯に向けて温度Tmを変化させる冷却能力と加熱能力とを示す。MHP装置11の温度Tmが上限温度T2を上回り、閾値温度T3を上回らない場合、低温系統2または高温系統3の一方だけを利用してMHP装置11が冷却される。MHP装置11の温度Tmが閾値温度T3を上回る場合、低温系統2および高温系統3の両方を利用してMHP装置11が冷却される。MHP装置11の温度が起動可能温度帯から離れるほど、MHP装置11の温度を起動可能温度帯に近づけるための能力が高められる。具体的には、MHP装置11の温度が高くなるほど、MHP装置11を冷却する冷却能力が高められる。 FIG. 3 shows an example of the cooling capacity provided in the pre-startup process. The horizontal axis indicates the temperature Tm, and the vertical axis indicates the cooling capacity and the heating capacity that change the temperature Tm toward the startable temperature range. When the temperature Tm of the MHP device 11 exceeds the upper limit temperature T2 and does not exceed the threshold temperature T3, the MHP device 11 is cooled using only one of the low temperature system 2 and the high temperature system 3. When the temperature Tm of the MHP device 11 exceeds the threshold temperature T3, the MHP device 11 is cooled using both the low temperature system 2 and the high temperature system 3. As the temperature of the MHP device 11 is further away from the startable temperature range, the ability to bring the temperature of the MHP device 11 closer to the startable temperature range is enhanced. Specifically, the cooling capacity for cooling the MHP device 11 is increased as the temperature of the MHP device 11 increases.
 以上に述べた実施形態のMHP装置11は、自身の余熱、他の機器の余熱、または太陽熱などによって過剰な高温状態になる場合がある。このような場合に、温度Tmは起動可能温度帯の外になる。低温系統2または高温系統3は、MHP装置11の外に位置づけられた熱輸送のための外部系統である。低温系統2または高温系統3は、自己の内部に残留する低温によって、または熱交換対象である空気によって、MHP装置11を冷却できる場合がある。多くの場合に、空気の温度は、MHP装置11の温度より低い。よって、MHP装置11を起動する前に低温系統2または高温系統3の少なくとも一方を作動状態に制御することにより、MHP装置11を冷却することができる。 The MHP device 11 of the embodiment described above may be in an excessively high temperature state due to its own residual heat, residual heat of other equipment, solar heat, or the like. In such a case, the temperature Tm is outside the startable temperature range. The low temperature system 2 or the high temperature system 3 is an external system for heat transport that is positioned outside the MHP device 11. The low temperature system 2 or the high temperature system 3 may be able to cool the MHP device 11 by the low temperature remaining inside itself or by the air that is the subject of heat exchange. In many cases, the temperature of the air is lower than the temperature of the MHP device 11. Therefore, the MHP device 11 can be cooled by controlling at least one of the low temperature system 2 and the high temperature system 3 to be in an operating state before starting the MHP device 11.
 ステップ192、193では、制御装置41は、少なくとも低温系統2を作動させる。このため、低温端12aの近傍に位置づけられた磁気熱量素子12温度が下がる。低温端12aの近傍に配置された磁気熱量素子12は低温において高い磁気熱量効果を発揮するから、その磁気熱量素子12が発揮する磁気熱量効果を高めることができる。この結果、MHP装置11の起動が促進される。 In steps 192 and 193, the control device 41 operates at least the low temperature system 2. For this reason, the temperature of the magnetocaloric element 12 positioned in the vicinity of the low temperature end 12a is lowered. Since the magnetocaloric element 12 disposed in the vicinity of the low temperature end 12a exhibits a high magnetocaloric effect at a low temperature, the magnetocaloric effect exhibited by the magnetocaloric element 12 can be enhanced. As a result, activation of the MHP device 11 is promoted.
 この実施形態によると、MHP装置11が起動される前に、MHP装置11の温度を起動に適した温度に調節することができる。これにより、MHP装置11の温度が起動前に起動可能温度帯の外にあっても、MHP装置11を起動することができる。また、温度Tmが起動可能温度帯T1-T2の外にある場合に起動前処理が実行されるから、外部系統の無用な作動が抑制される。 According to this embodiment, before the MHP device 11 is activated, the temperature of the MHP device 11 can be adjusted to a temperature suitable for activation. Thereby, even if the temperature of the MHP apparatus 11 is outside the startable temperature range before starting, the MHP apparatus 11 can be started. In addition, since the pre-startup process is executed when the temperature Tm is outside the startable temperature range T1-T2, unnecessary operation of the external system is suppressed.
 この実施形態によると、初期温度が起動可能温度帯から遠く離れた温度であっても、起動前処理によって温度Tmは起動可能温度帯に向けて接近する。よって、MHP装置11を広い温度範囲から起動することができる。 According to this embodiment, even if the initial temperature is a temperature far from the startable temperature range, the temperature Tm approaches the startable temperature range by the pre-startup process. Therefore, the MHP apparatus 11 can be started from a wide temperature range.
 起動前処理は、温度Tmを起動可能温度帯に向けて接近させる。この結果、MHP装置11が初期温度から定常運転状態へ到達するまでの遅れ時間が短縮される。しかも、起動前処理は、MHP装置11が起動される前に温度Tmを起動可能温度帯の中に位置付けることがある。この場合、MHP装置11は短時間で初期温度から定常運転温度へ到達することができる。また、MHP装置11に期待される立ち上げ時間を提供可能となる。 In the pre-startup process, the temperature Tm is approached toward the startable temperature range. As a result, the delay time until the MHP device 11 reaches the steady operation state from the initial temperature is shortened. Moreover, the pre-startup process may position the temperature Tm within the startable temperature range before the MHP device 11 is started. In this case, the MHP device 11 can reach the steady operation temperature from the initial temperature in a short time. In addition, the startup time expected for the MHP device 11 can be provided.
 起動前処理は、MHP装置11の要素である磁場変調装置13および熱輸送装置14を作動させることなく、低温系統2または高温系統3によって提供される外部系統だけを作動させて実行される。よって、MHP装置11は、少ないエネルギ消費で起動前の準備運転を実行可能である。 The startup pre-processing is executed by operating only the external system provided by the low temperature system 2 or the high temperature system 3 without operating the magnetic field modulation device 13 and the heat transport device 14 which are elements of the MHP device 11. Therefore, the MHP device 11 can execute a preparatory operation before startup with less energy consumption.
 第2実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、ステップ192において低温系統2が運転される。これに代えて、この実施形態では、MHP装置11を冷却するために適した系統が運転される。
Second Embodiment This embodiment is a modified example based on the preceding embodiment. In the above embodiment, the low temperature system 2 is operated in Step 192. Instead, in this embodiment, a system suitable for cooling the MHP device 11 is operated.
 図4において、MHP装置11は、低温端12aから延び出す熱輸送のための循環系統16を有する。循環系統16は、熱輸送媒体を循環的に流す。循環系統16の熱輸送媒体は、一次媒体または二次媒体によって提供することができる。循環系統16における流れは、熱輸送装置14によって、または磁場変調装置13から独立して作動可能なポンプによって生成される。MHP装置11は、高温端12bから延び出す熱輸送のための循環系統17を有する。循環系統17は、熱輸送媒体を循環的に流す。循環系統17の熱輸送媒体は、一次媒体または二次媒体によって提供することができる。循環系統17における流れは、熱輸送装置14によって、または磁場変調装置13から独立して作動可能なポンプによって生成される。 4, the MHP device 11 has a circulation system 16 for heat transport extending from the low temperature end 12a. The circulation system 16 circulates the heat transport medium cyclically. The heat transport medium of the circulation system 16 can be provided by a primary medium or a secondary medium. The flow in the circulation system 16 is generated by a heat transport device 14 or by a pump operable independently of the magnetic field modulator 13. The MHP apparatus 11 has a circulation system 17 for heat transport extending from the high temperature end 12b. The circulation system 17 flows the heat transport medium in a circulating manner. The heat transport medium of the circulation system 17 can be provided by a primary medium or a secondary medium. The flow in the circulation system 17 is generated by a heat transport device 14 or by a pump operable independently of the magnetic field modulator 13.
 低温系統2は、循環系統16と低温系統2との間の熱交換を提供する媒体熱交換器223を備える。高温系統3は、循環系統17と高温系統3との間の熱交換を提供する媒体熱交換器233を備える。 The low temperature system 2 includes a medium heat exchanger 223 that provides heat exchange between the circulation system 16 and the low temperature system 2. The high temperature system 3 includes a medium heat exchanger 233 that provides heat exchange between the circulation system 17 and the high temperature system 3.
 この実施形態では、循環系統16、17は、磁場変調装置13を作動させることなく、循環系統16、17内に熱輸送媒体を流すことができる。例えば、熱輸送装置14は、磁場変調装置13を停止状態においたままで、熱輸送装置14単独で作動可能であり、循環系統16、17に熱輸送媒体の流れを提供することができる。 In this embodiment, the circulation systems 16 and 17 can cause the heat transport medium to flow in the circulation systems 16 and 17 without operating the magnetic field modulator 13. For example, the heat transport device 14 can be operated by the heat transport device 14 alone while keeping the magnetic field modulation device 13 in a stopped state, and can provide a flow of the heat transport medium to the circulation systems 16 and 17.
 空調装置1は、低温系統2の温度TLを検出する温度センサ(SL)44を備える。低温系統2の温度TLは、低温系統2内の二次媒体の温度、または空気熱交換器24を通過する空気の温度である。空調装置1は、高温系統3の温度THを検出する温度センサ(SH)45を備える。高温系統3の温度THは、高温系統3内の二次媒体の温度、または空気熱交換器34を通過する空気の温度である。制御装置241は、温度センサ44、45から温度TL、THを示す信号を入力する。 The air conditioner 1 includes a temperature sensor (SL) 44 that detects the temperature TL of the low-temperature system 2. The temperature TL of the low temperature system 2 is the temperature of the secondary medium in the low temperature system 2 or the temperature of the air passing through the air heat exchanger 24. The air conditioner 1 includes a temperature sensor (SH) 45 that detects the temperature TH of the high-temperature system 3. The temperature TH of the high temperature system 3 is the temperature of the secondary medium in the high temperature system 3 or the temperature of the air passing through the air heat exchanger 34. The control device 241 inputs signals indicating the temperatures TL and TH from the temperature sensors 44 and 45.
 図5は、MHP装置11の起動のための処理280の一例を示す。先行する実施形態と同じステップには同じ参照符号が付されている。 FIG. 5 shows an example of a process 280 for starting the MHP device 11. The same steps as those in the preceding embodiment are denoted by the same reference numerals.
 ステップ282において、制御装置241は、温度Tm、TL、THを入力する。この実施形態では、起動前処理285が実行される。ステップ292では、低温系統2と高温系統3とのうち、MHP装置11を冷却する効果が高いほうが利用される。例えば、TL<THの場合、制御装置241は、低温系統2だけを作動させる。TL>THの場合、制御装置241は、高温系統3だけを作動させる。これにより消費電力を抑制しながら、効率的にMHP装置11を冷却することができる。よって、ステップ282は、低温系統2と高温系統3とのうち、より温度が低いほうを作動させる選択的作動部を提供する。 In step 282, the control device 241 inputs temperatures Tm, TL, and TH. In this embodiment, pre-startup processing 285 is executed. In step 292, the higher one of the low temperature system 2 and the high temperature system 3 that has a higher effect of cooling the MHP device 11 is used. For example, when TL <TH, the control device 241 operates only the low temperature system 2. When TL> TH, the control device 241 operates only the high temperature system 3. As a result, the MHP device 11 can be efficiently cooled while suppressing power consumption. Therefore, step 282 provides a selective operating unit that operates the lower temperature of the low temperature system 2 and the high temperature system 3.
 さらに、この実施形態では、ステップ294が採用される。ステップ294では、制御装置241は、熱輸送装置14を作動状態(ON)に制御する。このとき、磁場変調装置13は停止状態(OFF)に制御される。これにより、循環系統16、17に熱輸送媒体が流れる。この結果、循環系統16、17を経由してMHP装置11が冷却される。 Furthermore, in this embodiment, step 294 is adopted. In step 294, the control device 241 controls the heat transport device 14 to the operating state (ON). At this time, the magnetic field modulation device 13 is controlled to be stopped (OFF). Thereby, the heat transport medium flows through the circulation systems 16 and 17. As a result, the MHP device 11 is cooled via the circulation systems 16 and 17.
 この実施形態によると、制御装置241は、熱磁気サイクル装置を起動する前に、磁場変調装置13を作動させることなく外部系統2、3を作動させ、かつ熱輸送装置14を作動させる。熱輸送装置14を作動させることにより、MHP装置11の内部において温度調節が促進される。また、磁場変調装置13を作動させることなく、MHP装置11を冷却することができる。よって、消費電力を抑制しながらMHP装置11を効率的に冷却することができる。 According to this embodiment, the control device 241 operates the external systems 2 and 3 and operates the heat transport device 14 without operating the magnetic field modulation device 13 before starting the thermomagnetic cycle device. By operating the heat transport device 14, temperature adjustment is promoted inside the MHP device 11. Further, the MHP device 11 can be cooled without operating the magnetic field modulation device 13. Therefore, the MHP apparatus 11 can be efficiently cooled while suppressing power consumption.
 第3実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、低温系統2または高温系統3がMHP装置11の冷却に利用される。これに加えて、この実施形態では、低温系統2または高温系統3がMHP装置11の加熱にも利用される。さらに、空調装置1とは別の熱源冷却機器5がMHP装置11の温度調節に利用される。
Third Embodiment This embodiment is a modification in which the preceding embodiment is a basic form. In the above embodiment, the low temperature system 2 or the high temperature system 3 is used for cooling the MHP device 11. In addition, in this embodiment, the low temperature system 2 or the high temperature system 3 is also used for heating the MHP device 11. Further, a heat source cooling device 5 different from the air conditioner 1 is used for temperature adjustment of the MHP device 11.
 図6および図7において、車両には熱源冷却機器(HTSC)5が搭載されている。熱源冷却機器5は、車両に搭載された発熱機器を冷却する装置である。発熱機器は、例えば、車両の走行用の電動機、電子回路、電力変換装置、内燃機関、二次電池、燃料電池などによって提供される。熱源冷却機器5は、低温系統2および高温系統3とは独立して熱源の温度を調節可能に構成されている。 6 and 7, a heat source cooling device (HTSC) 5 is mounted on the vehicle. The heat source cooling device 5 is a device that cools a heat generating device mounted on a vehicle. The heat generating device is provided by, for example, a motor for driving a vehicle, an electronic circuit, a power conversion device, an internal combustion engine, a secondary battery, a fuel cell, and the like. The heat source cooling device 5 is configured to be able to adjust the temperature of the heat source independently of the low temperature system 2 and the high temperature system 3.
 この実施形態では、熱源冷却機器5と、低温系統2との間に、それらを熱的に連結する連結系統6が設けられている。連結系統6は、熱源冷却機器5の冷却能力を低温系統2を経由してMHP装置11へ導入することを可能とする。また、連結系統6は、熱源冷却機器5の加熱能力を低温系統2を経由してMHP装置11へ導入することも可能とする。 In this embodiment, a connection system 6 is provided between the heat source cooling device 5 and the low temperature system 2 to thermally connect them. The connection system 6 makes it possible to introduce the cooling capacity of the heat source cooling device 5 into the MHP device 11 via the low temperature system 2. Moreover, the connection system 6 can also introduce the heating capability of the heat source cooling device 5 into the MHP apparatus 11 via the low temperature system 2.
 連結系統6は、熱源冷却機器5と低温系統2との間における熱輸送媒体の循環的な流れを可能とする経路61を有する。経路61には、熱源冷却機器5と低温系統2とが分離されているときに熱輸送媒体を還流させるためのバイパス経路62が設けられている。連結系統6は、経路61に熱輸送媒体を流すためのポンプ(PE)63を有する。ポンプ63は、熱源冷却機器5内の熱輸送媒体を低温系統2に供給するように熱輸送媒体を流す。連結系統6は、複数のバルブ(V1、V2、V3)64、65、66を備える。複数のバルブ64、65、66のそれぞれは二位置三方弁によって提供することができる。複数のバルブ64、65、66は、経路61を切り換える切換機構を提供する。 The connection system 6 has a path 61 that enables a circulating flow of the heat transport medium between the heat source cooling device 5 and the low-temperature system 2. The path 61 is provided with a bypass path 62 for refluxing the heat transport medium when the heat source cooling device 5 and the low temperature system 2 are separated. The connection system 6 has a pump (PE) 63 for flowing a heat transport medium through the path 61. The pump 63 flows the heat transport medium so as to supply the heat transport medium in the heat source cooling device 5 to the low temperature system 2. The connection system 6 includes a plurality of valves (V1, V2, V3) 64, 65, 66. Each of the plurality of valves 64, 65, 66 can be provided by a two-position three-way valve. The plurality of valves 64, 65, 66 provide a switching mechanism that switches the path 61.
 複数のバルブ64、65、66は、図6に図示されるOFF位置において、熱源冷却機器5と低温系統2とを熱的に分離する。このとき、熱輸送媒体は、熱源冷却機器5に還流する。複数のバルブ64、65、66は、図7に図示されるON位置において、熱源冷却機器5と低温系統2とを熱的に連結する。このとき、熱源冷却機器5の熱輸送媒体が低温系統2に供給される。制御装置341は、熱源冷却機器5から低温系統2への熱輸送媒体の供給を遮断する状態と、許容する状態とを提供するようにポンプ63、および複数のバルブ64、65、66を制御する。 The plurality of valves 64, 65, 66 thermally isolate the heat source cooling device 5 and the low temperature system 2 at the OFF position illustrated in FIG. At this time, the heat transport medium returns to the heat source cooling device 5. The plurality of valves 64, 65, and 66 thermally connect the heat source cooling device 5 and the low temperature system 2 at the ON position illustrated in FIG. 7. At this time, the heat transport medium of the heat source cooling device 5 is supplied to the low temperature system 2. The control device 341 controls the pump 63 and the plurality of valves 64, 65, 66 so as to provide a state in which the supply of the heat transport medium from the heat source cooling device 5 to the low temperature system 2 is cut off and a state in which the supply is allowed. .
 図8は、MHP装置11の起動のための処理380の一例を示す。この実施形態では、起動前処理のためのステップ385が実行される。ステップ385では、制御装置341は、MHP装置11を冷却するだけではなく、加熱する場合がある。ステップ385では、MHP装置11の冷却または加熱のために、低温系統2または高温系統3の少なくとも一方が運転状態におかれる。さらに、冷却能力または加熱能力を増加させるために、熱源冷却機器5と熱媒体系統である低温系統2との間が熱的な連結状態におかれる。 FIG. 8 shows an example of a process 380 for starting the MHP device 11. In this embodiment, step 385 for pre-startup processing is executed. In step 385, the control device 341 may not only cool the MHP device 11 but also heat it. In step 385, at least one of the low temperature system 2 or the high temperature system 3 is put into an operating state for cooling or heating the MHP device 11. Furthermore, in order to increase the cooling capacity or the heating capacity, the heat source cooling device 5 and the low-temperature system 2 that is the heat medium system are placed in a thermal connection state.
 ステップ395では、制御装置41は、温度Tmが下限温度T1を下回るか否かを判定する。Tm<T1が成立する場合、処理はYESに分岐する。Tm<T1が成立しない場合、処理はNOに分岐する。 In step 395, the control device 41 determines whether or not the temperature Tm is lower than the lower limit temperature T1. If Tm <T1, the process branches to YES. If Tm <T1 is not established, the process branches to NO.
 さらに、この実施形態では、ステップ396とステップ397とが採用される。ステップ396では、制御装置341は、MHP装置11を冷却または加熱するために熱源冷却機器5を利用可能であるか否かを判定する。例えば、熱源冷却機器5の温度が、温度Tmより十分に低い運転状態では、熱源冷却機器5はMHP装置11の冷却に利用可能であると判定できる。また、熱源冷却機器5の温度が、温度Tmより十分に高い運転状態では、熱源冷却機器5はMHP装置11の加熱に利用可能であると判定できる。利用可能である場合、処理はYESに分岐する。利用不可能である場合、処理はNOに分岐する。 Furthermore, in this embodiment, step 396 and step 397 are employed. In step 396, the control device 341 determines whether or not the heat source cooling device 5 can be used to cool or heat the MHP device 11. For example, in the operation state in which the temperature of the heat source cooling device 5 is sufficiently lower than the temperature Tm, it can be determined that the heat source cooling device 5 can be used for cooling the MHP device 11. Further, in an operation state in which the temperature of the heat source cooling device 5 is sufficiently higher than the temperature Tm, it can be determined that the heat source cooling device 5 can be used for heating the MHP device 11. If it is available, the process branches to YES. If it is not available, the process branches to NO.
 ステップ397では、制御装置341は、熱源冷却機器5から低温系統2への熱輸送を実行する。ステップ397では、ポンプ63が作動状態に制御され、複数のバルブ64、65、66がON状態に制御される。これにより図7に図示される経路61の状態が提供される。ステップ397は、MHP装置11の温度を調節するために熱源冷却機器5を利用可能であるときに連結系統6によって低温系統2と熱源冷却機器5とを熱的に連結する連結制御部を提供する。 In step 397, the control device 341 executes heat transport from the heat source cooling device 5 to the low temperature system 2. In step 397, the pump 63 is controlled to be in an operating state, and the plurality of valves 64, 65, 66 are controlled to be in an ON state. This provides the state of the path 61 illustrated in FIG. Step 397 provides a connection controller for thermally connecting the low temperature system 2 and the heat source cooling device 5 by the connection system 6 when the heat source cooling device 5 is available to adjust the temperature of the MHP device 11. .
 図9には、起動前処理において提供される冷却能力と加熱能力の一例が図示されている。温度Tmが上限温度T2を上回り、閾値温度T3を上回らない場合、低温系統2または高温系統3の一方だけを利用してMHP装置11が冷却される。このとき、起動前処理はステップ395、191、292、294を経由する。 FIG. 9 shows an example of the cooling capacity and the heating capacity provided in the pre-startup process. When the temperature Tm exceeds the upper limit temperature T2 and does not exceed the threshold temperature T3, the MHP device 11 is cooled using only one of the low temperature system 2 and the high temperature system 3. At this time, the pre-boot process goes through steps 395, 191, 292, and 294.
 温度Tmが閾値温度T3を上回る場合、低温系統2および高温系統3の両方を利用してMHP装置11が冷却される。このとき、起動前処理はステップ395、191、193、396、294を経由する。温度Tmが閾値温度T3を上回り、かつ、熱源冷却機器5が利用可能である場合、冷却能力は破線に図示されるように増加する。このとき、起動前処理はステップ395、191、193、396、397、294を経由する。 When the temperature Tm exceeds the threshold temperature T3, the MHP device 11 is cooled using both the low temperature system 2 and the high temperature system 3. At this time, the pre-startup process goes through steps 395, 191, 193, 396, and 294. When the temperature Tm exceeds the threshold temperature T3 and the heat source cooling device 5 is available, the cooling capacity increases as illustrated by the broken line. At this time, the pre-activation process goes through steps 395, 191, 193, 396, 397, and 294.
 温度Tmが下限温度T1を下回る場合、低温系統2および高温系統3の両方を利用してMHP装置11が加熱される。このとき、起動前処理はステップ395、193、396、294を経由する。温度Tmが下限温度T1を下回り、かつ、熱源冷却機器5が利用可能である場合、加熱能力は破線に図示されるように増加する。このとき、起動前処理はステップ395、193、396、397、294を経由する。 When the temperature Tm is lower than the lower limit temperature T1, the MHP device 11 is heated using both the low temperature system 2 and the high temperature system 3. At this time, the pre-boot process goes through steps 395, 193, 396, and 294. When the temperature Tm is lower than the lower limit temperature T1 and the heat source cooling device 5 is available, the heating capacity increases as illustrated by the broken line. At this time, the pre-boot process goes through steps 395, 193, 396, 397, and 294.
 この実施形態によると、上記実施形態に加えて、熱源冷却機器5も利用して、起動前における熱磁気サイクル装置の温度調節が提供される。具体的には、熱源冷却機器5を利用してMHP装置11を冷却することができる。また、この実施形態によると、外部系統2、3を利用してMHP装置11を加熱することができる。さらに、熱源冷却機器5を利用して、MHP装置11を加熱することができる。 According to this embodiment, in addition to the above-described embodiment, the heat source cooling device 5 is also used to provide temperature control of the thermomagnetic cycle device before startup. Specifically, the MHP device 11 can be cooled using the heat source cooling device 5. Moreover, according to this embodiment, the MHP apparatus 11 can be heated using the external systems 2 and 3. Furthermore, the MHP apparatus 11 can be heated using the heat source cooling device 5.
 他の実施形態
 この明細書における開示は、実施形態に何ら制限されることなく、種々変形して実施することが可能である。開示は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。実施形態は追加的な部分をもつことができる。実施形態の部分は、省略される場合がある。実施形態の部分は、他の実施形態の部分と置き換え、または組み合わせることも可能である。実施形態の構造、作用、効果は、あくまで例示である。開示の技術的範囲は、実施形態の記載に限定されない。開示のいくつかの技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
Other Embodiments The disclosure in this specification is not limited to the embodiments, and various modifications can be made. The disclosure is not limited to the combinations shown in the embodiments, and can be implemented by various combinations. Embodiments can have additional parts. The portion of the embodiment may be omitted. The parts of the embodiments can be replaced or combined with the parts of the other embodiments. The structure, operation, and effect of the embodiment are merely examples. The technical scope of the disclosure is not limited to the description of the embodiments. Some technical scope of the disclosure is indicated by the description of the scope of claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the scope of claims.
 例えば、上記実施形態では、低温系統2と高温系統3との両方を採用した。これに代えて、MHP装置1の低温端12aまたは高温端12bと、熱源または熱負荷とを直接的に熱交換させるように構成されてもよい。この場合、熱機器は、低温系統2または高温系統3を備える。この構成においても、低温系統2または高温系統3の一方だけを利用して、MHP装置1の起動前処理を実行可能である。 For example, in the above embodiment, both the low temperature system 2 and the high temperature system 3 are employed. Instead of this, the low temperature end 12a or the high temperature end 12b of the MHP device 1 and the heat source or heat load may be directly exchanged with heat. In this case, the thermal equipment includes the low temperature system 2 or the high temperature system 3. Even in this configuration, it is possible to execute the pre-startup process of the MHP device 1 using only one of the low temperature system 2 and the high temperature system 3.
 上記実施形態では、MHP装置1によって車両用の空調装置4を提供した。これに代えて、住宅用の空調装置、食品などを貯蔵する冷蔵装置などを提供してもよい。 In the above embodiment, the vehicle air conditioner 4 is provided by the MHP device 1. Instead of this, a residential air conditioner, a refrigeration apparatus for storing food, and the like may be provided.
 上記実施形態では、低温系統2と高温系統3とを固定した。これに代えて、低温端12aと高温端12bとを入れ替えるようにMHP装置11を運転してもよい。例えば、冷房用途においては系統2が低温系統となるようにMHP装置11を運転し、暖房用途においては系統2が高温系統となるようにMHP装置11を運転することができる。このような反転可能な運転は、磁場変調装置13と熱輸送装置14との位相を反転させることによって実現可能である。 In the above embodiment, the low temperature system 2 and the high temperature system 3 are fixed. Instead, the MHP device 11 may be operated so that the low temperature end 12a and the high temperature end 12b are interchanged. For example, the MHP apparatus 11 can be operated so that the system 2 becomes a low-temperature system in the cooling application, and the MHP apparatus 11 can be operated so that the system 2 becomes the high-temperature system in the heating application. Such a reversible operation can be realized by reversing the phases of the magnetic field modulation device 13 and the heat transport device 14.
 上記実施形態では、MHP装置11の温度を取得する温度取得部は、温度センサ42によって提供される。これに代えて、MHP装置11の温度に関連する温度をMHP装置11の温度として代用してもよい。例えば、外気の温度は、MHP装置11の温度として利用することができる。また、MHP装置11の温度を推定する推定処理部によって温度取得部を提供してもよい。例えば、MHP装置11の停止時間、外気の温度、MHP装置11に隣接する機器の温度などに基づいてMHP装置11の温度を推定することができる。 In the above embodiment, the temperature acquisition unit that acquires the temperature of the MHP device 11 is provided by the temperature sensor 42. Instead of this, a temperature related to the temperature of the MHP device 11 may be substituted as the temperature of the MHP device 11. For example, the temperature of the outside air can be used as the temperature of the MHP device 11. Further, the temperature acquisition unit may be provided by an estimation processing unit that estimates the temperature of the MHP device 11. For example, the temperature of the MHP device 11 can be estimated based on the stop time of the MHP device 11, the temperature of the outside air, the temperature of a device adjacent to the MHP device 11, and the like.
 上記実施形態では、低温系統2と高温系統3との両方に熱輸送媒体を利用する間接熱交換系統を採用した。これに代えて、低温系統2または高温系統3の少なくとも一方を、低温端12aまたは高温端12bと空気とが直接的に熱交換する直接熱交換系統によって提供してもよい。この場合、起動前処理においては、低温端12aまたは高温端12bと熱交換するように空気を流す送風機が運転される。 In the above embodiment, an indirect heat exchange system using a heat transport medium is adopted for both the low temperature system 2 and the high temperature system 3. Instead, at least one of the low temperature system 2 or the high temperature system 3 may be provided by a direct heat exchange system in which the low temperature end 12a or the high temperature end 12b and the air directly exchange heat. In this case, in the pre-startup process, the blower that flows air is operated so as to exchange heat with the low temperature end 12a or the high temperature end 12b.
 上記実施形態では、熱源冷却機器5から低温系統2へ熱輸送媒体が導入される。これに代えて、熱源冷却機器5から高温系統3、または低温系統2と高温系統3との両方に熱輸送媒体が導入されてもよい。さらに、上記実施形態では、熱源冷却機器5から外部系統2、3へ熱輸送媒体が直接的に導入される。これに代えて、熱源冷却機器5と外部系統2、3との間に熱交換器を設けることによって、それら両者を熱的に連結してもよい。 In the above embodiment, the heat transport medium is introduced from the heat source cooling device 5 to the low temperature system 2. Instead of this, a heat transport medium may be introduced from the heat source cooling device 5 to the high temperature system 3 or to both the low temperature system 2 and the high temperature system 3. Furthermore, in the above embodiment, the heat transport medium is directly introduced from the heat source cooling device 5 to the external systems 2 and 3. Instead, by providing a heat exchanger between the heat source cooling device 5 and the external systems 2 and 3, both of them may be thermally connected.
 上記実施形態では、MHP装置11の温度Tmが起動可能温度帯の外にある場合に起動前処理を実行した。これに代えて、MHP装置11が起動準備状態にあるときに起動前処理を実行してもよい。例えば、MHP装置11が停止状態にある期間中、継続して起動前処理を実行してもよい。また、車両を利用するために車両のドアの開閉などの予備操作を検出すると起動前処理を開始し、その後に空調装置1が起動されるとMHP装置11を起動してもよい。 In the above embodiment, the pre-startup process is performed when the temperature Tm of the MHP device 11 is outside the startable temperature range. Alternatively, the pre-boot process may be executed when the MHP device 11 is in the boot preparation state. For example, the pre-startup process may be executed continuously while the MHP device 11 is in a stopped state. Alternatively, the pre-start process may be started when a preliminary operation such as opening / closing of a vehicle door is detected to use the vehicle, and the MHP device 11 may be started when the air conditioner 1 is started thereafter.

Claims (10)

  1.  低温端と高温端との間に配置された磁気熱量素子(12)の磁気熱量効果を利用する熱磁気サイクル装置(11)と、
     前記低温端または前記高温端と熱交換する熱輸送のための外部系統(2、3)と、
     前記熱磁気サイクル装置を起動する前に、前記外部系統を作動させる起動前処理部(185、285、385)を有する制御装置(41、241、341)とを備えることを特徴とする熱機器。
    A thermomagnetism cycle device (11) that utilizes the magnetocaloric effect of the magnetocaloric element (12) disposed between the low temperature end and the high temperature end;
    An external system (2, 3) for heat transport to exchange heat with the cold end or the hot end;
    A thermal apparatus comprising: a control device (41, 241, 341) having a pre-startup processing unit (185, 285, 385) for operating the external system before starting the thermomagnetic cycle device.
  2.  前記外部系統は、前記低温端と熱交換する低温系統(2)と、前記高温端と熱交換する高温系統(3)とを備え、
     前記起動前処理部(185、285、385)は、前記熱磁気サイクル装置を起動する前に、少なくとも前記低温系統を作動させることを特徴とする請求項1に記載の熱機器。
    The external system includes a low temperature system (2) that exchanges heat with the low temperature end, and a high temperature system (3) that exchanges heat with the high temperature end,
    2. The thermal device according to claim 1, wherein the startup pretreatment unit (185, 285, 385) operates at least the low-temperature system before starting the thermomagnetism cycle device.
  3.  前記外部系統は、前記低温端と熱交換する低温系統(2)と、前記高温端と熱交換する高温系統(3)とを備え、
     前記起動前処理部(185、285、385)は、前記熱磁気サイクル装置を起動する前に、前記低温系統または前記高温系統を作動させる単系統作動部(192、292)を有することを特徴とする請求項1または請求項2に記載の熱機器。
    The external system includes a low temperature system (2) that exchanges heat with the low temperature end, and a high temperature system (3) that exchanges heat with the high temperature end,
    The startup pretreatment unit (185, 285, 385) has a single system operating unit (192, 292) that operates the low temperature system or the high temperature system before starting the thermomagnetic cycle device. The thermal device according to claim 1 or 2.
  4.  前記単系統作動部(292)は、前記低温系統と前記高温系統とのうち、より温度が低いほうを作動させることを特徴とする請求項3に記載の熱機器。 The thermal apparatus according to claim 3, wherein the single system operation unit (292) operates a lower one of the low temperature system and the high temperature system.
  5.  前記起動前処理部は、前記熱磁気サイクル装置を起動する前に、前記低温系統および前記高温系統の両方を作動させる両系統作動部(193)を有することを特徴とする請求項3または請求項4に記載の熱機器。 The said starting pre-processing part has a both-systems operating part (193) which operates both the said low-temperature system and the said high-temperature system, before starting the said thermomagnetism cycle device. 4. The thermal apparatus according to 4.
  6.  前記起動前処理部は、
     前記熱磁気サイクル装置の温度(Tm)が上限温度(T2)を上回り、前記上限温度より高い基準温度(T3)を下回るときに前記単系統作動部(192、292)を作動させ、
     前記熱磁気サイクル装置の温度(Tm)が前記基準温度(T3)を上回るときに前記両系統作動部(193)を作動させることを特徴とする請求項5に記載の熱機器。
    The startup preprocessing unit
    When the temperature (Tm) of the thermomagnetic cycle device exceeds the upper limit temperature (T2) and falls below the reference temperature (T3) higher than the upper limit temperature, the single system operation unit (192, 292) is operated,
    The thermal apparatus according to claim 5, wherein the two-system operating unit (193) is operated when the temperature (Tm) of the thermomagnetic cycle device exceeds the reference temperature (T 3).
  7.  前記熱磁気サイクル装置は、
     前記磁気熱量素子に印加する磁場を変調する磁場変調装置(13)と、
     前記磁気熱量素子が放熱または吸熱する熱を輸送する熱輸送装置(14)とを備え、
     前記起動前処理部(185、285、385)は、前記熱磁気サイクル装置を起動する前に、前記磁場変調装置を作動させることなく前記外部系統を作動させることを特徴とする請求項1から請求項6のいずれかに記載の熱機器。
    The thermomagnetic cycle device is:
    A magnetic field modulation device (13) for modulating a magnetic field applied to the magnetocaloric element;
    A heat transport device (14) for transporting heat that is dissipated or absorbed by the magnetocaloric element;
    The said starting pre-processing part (185, 285, 385) operates the said external system, without operating the said magnetic field modulation apparatus, before starting the said thermomagnetic cycle apparatus. Item 7. The thermal device according to any one of Items 6.
  8.  前記起動前処理部(285、385)は、前記熱磁気サイクル装置を起動する前に、前記磁場変調装置を作動させることなく前記外部系統を作動させ、かつ前記熱輸送装置を作動させることを特徴とする請求項7に記載の熱機器。 The activation pretreatment unit (285, 385) activates the external system without activating the magnetic field modulator and activates the heat transport device before activating the thermomagnetism cycle device. The thermal apparatus according to claim 7.
  9.  さらに、熱源を冷却するための熱源冷却機器と前記外部系統とを熱的に連結する連結系統(6)を備え、
     前記起動前処理部(385)は、前記熱磁気サイクル装置の温度を調節するために前記熱源冷却機器を利用可能であるときに前記連結系統によって前記外部系統と前記熱源冷却機器とを熱的に連結する連結制御部(397)を有することを特徴とする請求項1から請求項8のいずれかに記載の熱機器。
    Furthermore, a heat source cooling device for cooling the heat source and a connection system (6) for thermally connecting the external system,
    The startup pre-processing unit (385) thermally connects the external system and the heat source cooling device by the connection system when the heat source cooling device is available to adjust the temperature of the thermomagnetism cycle device. The thermal device according to any one of claims 1 to 8, further comprising a connection control unit (397) for connection.
  10.  前記制御装置は、前記熱磁気サイクル装置の温度(Tm)が、予め定められた起動可能温度帯(T1-T2)の外にあるときに前記起動前処理部を作動させる温度判定部(183)を有することを特徴とする請求項1から請求項9のいずれかに記載の熱機器。 The control device includes a temperature determination unit (183) that operates the pre-startup processing unit when the temperature (Tm) of the thermomagnetic cycle device is outside a predetermined startable temperature range (T1-T2). The thermal apparatus according to any one of claims 1 to 9, characterized by comprising:
PCT/JP2015/004108 2014-09-03 2015-08-19 Thermal component WO2016035267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-179484 2014-09-03
JP2014179484A JP6350138B2 (en) 2014-09-03 2014-09-03 Thermal equipment

Publications (1)

Publication Number Publication Date
WO2016035267A1 true WO2016035267A1 (en) 2016-03-10

Family

ID=55439356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004108 WO2016035267A1 (en) 2014-09-03 2015-08-19 Thermal component

Country Status (2)

Country Link
JP (1) JP6350138B2 (en)
WO (1) WO2016035267A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080854A (en) * 2016-11-14 2018-05-24 サンデンホールディングス株式会社 Magnetic heat pump device
JP2018115792A (en) * 2017-01-17 2018-07-26 サンデンホールディングス株式会社 Magnetic heat pump device
JP7111968B2 (en) * 2018-09-11 2022-08-03 ダイキン工業株式会社 magnetic refrigerator
JP6865902B1 (en) * 2020-04-27 2021-04-28 三菱電機株式会社 Magnetic temperature control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155237A (en) * 2005-12-06 2007-06-21 Toshiba Corp Heat transportation device
JP2010043775A (en) * 2008-08-11 2010-02-25 Shikoku Electric Power Co Inc Heat pump applying magneto-caloric effect
JP2012229831A (en) * 2011-04-25 2012-11-22 Denso Corp Heat pump device of magneto-caloric effect type
JP2012255642A (en) * 2011-05-13 2012-12-27 Denso Corp Thermo-magnetic cycle apparatus
JP2013245879A (en) * 2012-05-25 2013-12-09 Denso Corp Magnetic heat pump system and air conditioning device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370944A (en) * 1989-08-08 1991-03-26 Matsushita Electric Ind Co Ltd Air conditioner using magnetic refrigerator
JP5817655B2 (en) * 2012-06-15 2015-11-18 株式会社デンソー Magnetic heat pump system
JP6136842B2 (en) * 2013-10-16 2017-05-31 株式会社デンソー Thermomagnetic cycle equipment
JP6447394B2 (en) * 2014-11-28 2019-01-09 株式会社デンソー Thermomagnetic cycle equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155237A (en) * 2005-12-06 2007-06-21 Toshiba Corp Heat transportation device
JP2010043775A (en) * 2008-08-11 2010-02-25 Shikoku Electric Power Co Inc Heat pump applying magneto-caloric effect
JP2012229831A (en) * 2011-04-25 2012-11-22 Denso Corp Heat pump device of magneto-caloric effect type
JP2012255642A (en) * 2011-05-13 2012-12-27 Denso Corp Thermo-magnetic cycle apparatus
JP2013245879A (en) * 2012-05-25 2013-12-09 Denso Corp Magnetic heat pump system and air conditioning device using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10648703B2 (en) 2016-07-19 2020-05-12 Haier US Applicance Solutions, Inc. Caloric heat pump system
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system

Also Published As

Publication number Publication date
JP2016053445A (en) 2016-04-14
JP6350138B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6350138B2 (en) Thermal equipment
JP5821891B2 (en) Thermomagnetic cycle equipment
JP7260986B2 (en) vehicle thermal management system
JP6279142B2 (en) Range extender type electric bus circulation system
JP5589967B2 (en) Temperature control device for vehicles
JP7115452B2 (en) cooling system
CN108136876B (en) Temperature adjusting device for vehicle
US20190315194A1 (en) Vehicular heat management system
US20180208019A1 (en) Heat pump system
US11453264B2 (en) Vehicle heat management system
JP6387532B2 (en) Air conditioner for vehicle and component unit thereof
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
KR20200103436A (en) Cooling system for temperature regulation and Method thereof
KR20210011170A (en) Thermal management apparatus for vehicle and thermal management method for vehicle
JP2010077901A (en) Waste heat recovery device for vehicle
JP2009300007A (en) Temperature control device
JP2005214591A (en) Hot water supply system utilizing natural energy
CN108979811B (en) Power source heat dissipation and waste heat utilization system of hybrid electric vehicle and control method
JP6632718B2 (en) Hybrid vapor compression / thermoelectric heat transfer system
CN109713333B (en) Fuel cell heat dissipation system and heat dissipation control method
JP6351478B2 (en) Air conditioning system
KR100755324B1 (en) Electric generation air condition system and the Control method for the Same
JP2015081728A (en) Absorption type cool/hot water system
JP6448295B2 (en) Air conditioning system
JP6143662B2 (en) Combined heat source heat pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838546

Country of ref document: EP

Kind code of ref document: A1