WO2016033815A1 - 无创血糖测定方法及系统 - Google Patents

无创血糖测定方法及系统 Download PDF

Info

Publication number
WO2016033815A1
WO2016033815A1 PCT/CN2014/086187 CN2014086187W WO2016033815A1 WO 2016033815 A1 WO2016033815 A1 WO 2016033815A1 CN 2014086187 W CN2014086187 W CN 2014086187W WO 2016033815 A1 WO2016033815 A1 WO 2016033815A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
blood glucose
wavelength
module
circuit
Prior art date
Application number
PCT/CN2014/086187
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
王海荣
程金兢
张少鹏
Original Assignee
深圳市前海安测信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海安测信息技术有限公司 filed Critical 深圳市前海安测信息技术有限公司
Publication of WO2016033815A1 publication Critical patent/WO2016033815A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor

Definitions

  • the invention relates to the technical field of blood glucose measurement, in particular to a method and a system for measuring non-invasive blood sugar.
  • Diabetes patients need to frequently measure and control blood glucose levels in order to avoid the complications of diabetes.
  • the characteristic light of glucose cannot penetrate the bones of the human body; in four aspects, the same body part of different people has glucose There is a big difference in the absorption rate of characteristic light, which is mainly due to the difference in the body tissue, cell composition and composition or size of the tester, so it is not necessary to use a mathematical model for blood glucose measurement in all populations. realistic.
  • the main object of the present invention is to solve the problem that the conventional non-invasive blood glucose method has poor measurement accuracy and low sensitivity to blood glucose.
  • the present invention provides a non-invasive blood glucose measuring method comprising the following steps:
  • the initial step two according to B 1, B 2, and the initial glucose concentration value pre-stored in A 0, a predetermined portion of the initial absorption rate of infrared light having a wavelength of ⁇ 1, A 1, a predetermined portion of the infrared light of a wavelength ⁇ 2
  • the absorption rate A 2 calculates the current blood glucose concentration value D 0 .
  • the current blood glucose concentration value D 0 in step two is calculated using the following formula:
  • D 0 A 0 ⁇ (B 1 - B 2 ) / (A 1 - A 2 ) + k; wherein k is a constant and 0 ⁇ k ⁇ 0.5.
  • step 3 is further included:
  • the initial blood glucose concentration value A 0 of the user to be tested is obtained by the minimally invasive blood glucose measurement method, and the initial absorption rate A 1 of the infrared light having the wavelength ⁇ 1 of the preset portion of the user is determined, and the predetermined portion is the wavelength ⁇ 2
  • the initial absorption rate of infrared light A 2 is obtained by the minimally invasive blood glucose measurement method, and the initial absorption rate A 1 of the infrared light having the wavelength ⁇ 1 of the preset portion of the user is determined, and the predetermined portion is the wavelength ⁇ 2
  • the initial absorption rate of infrared light A 2 is obtained by the minimally invasive blood glucose measurement method, and the initial absorption rate A 1 of the infrared light having the wavelength ⁇ 1 of the preset portion of the user is determined, and the predetermined portion is the wavelength ⁇ 2
  • the initial absorption rate of infrared light A 2 is obtained by the minimally invasive blood glucose measurement method, and the initial absorption rate A 1 of the infrare
  • the initial absorption rate E 0 of the preset portion to the infrared light having the wavelength ⁇ 3 is measured, and the value is stored and the position corresponding to the value is the calibration position; wherein 1000 nm ⁇ ⁇ 3 ⁇ 1200 nm.
  • step four is further included:
  • the infrared light having the wavelength of ⁇ 3 irradiated to the predetermined portion is at least two beams.
  • the predetermined portion is a hand tiger mouth, a nasal wall, an ear, an earlobe, a cervical artery or a wrist artery.
  • the present invention also provides a non-invasive blood glucose measuring system comprising the following modules:
  • An infrared light emitting module for transmitting infrared light of a preset wavelength in real time
  • the infrared light receiving module is configured to receive infrared light signals of a certain wavelength range in real time, and convert the received infrared light signals into analog electrical signals;
  • the signal conversion module is connected to the infrared light receiving module, and the signal conversion module converts the analog electrical signal into a digital signal;
  • the data processing module is connected to the signal conversion module, and the data processing module performs analysis and calculation on the digital signal, and finally obtains a measured result of the measured blood glucose concentration of the human body;
  • the human-computer interaction module is connected to the data processing module, and the human-computer interaction module is configured to input an instruction, and display the measurement result of the blood glucose concentration of the human body or broadcast the measurement result of the blood glucose concentration of the human body through a voice.
  • the non-invasive blood glucose measuring system further comprises a data communication module, wherein the data communication module is connected to the data processing module, and the data communication module is configured to perform remote data transmission on the measurement result of the human blood glucose concentration.
  • the infrared light emitting module comprises at least three infrared light emitting tubes of different wavelengths.
  • the infrared light emitted by the infrared light emitting module and the infrared light received by the infrared light receiving module have a wavelength ranging from 800 nm to 3800 nm.
  • the driving signal of the infrared light emitting module is a pulse signal, and the duty ratio of the pulse signal ranges from 1:20 to 1:1.5.
  • the infrared light emitting module includes an infrared light emitting circuit and a power circuit
  • the infrared light receiving module includes an infrared light receiving circuit and a power circuit
  • the signal conversion module includes a filter circuit, a signal amplifying circuit, a signal selecting circuit, and a signal conversion circuit
  • the data processor module includes a microprocessor circuit and a power circuit
  • the human-machine interaction module includes a microprocessor circuit, an information input circuit, and a display circuit
  • the data communication module includes a microprocessor circuit and data Communication circuit.
  • the non-invasive blood glucose measuring method of the invention removes the interference of water and the interference of the human body when measuring the blood glucose concentration of the human body, so that the measurement result is more accurate and credible, the repeatability of the measurement result is better, the sensitivity is high, and the specific test body is more suitable. Good assay results are specific.
  • FIG. 1 is a flow chart of an embodiment of a non-invasive blood glucose measuring method according to the present invention
  • FIG. 2 is a flow chart of another embodiment of a method for measuring non-invasive blood glucose according to the present invention.
  • FIG. 3 is a block diagram showing the hardware structure of an embodiment of the non-invasive blood glucose measuring system of the present invention.
  • FIG. 4 is a block diagram showing the hardware structure of another embodiment of the non-invasive blood glucose measuring system of the present invention.
  • Figure 5 is a flow chart showing the operation of an embodiment of the non-invasive blood glucose measuring system of the present invention.
  • Figure 6 is a circuit diagram of a power supply of the non-invasive blood glucose measuring system of the present invention.
  • FIG. 7 is a circuit diagram of a communication module and related auxiliary modules in the non-invasive blood glucose measuring system of the present invention.
  • Figure 8 is a circuit diagram of an interface of a microprocessor in the non-invasive blood glucose measuring system of the present invention.
  • FIG. 9 is an interface circuit diagram of a 128X64 LCM module in the non-invasive blood glucose measuring system of the present invention.
  • Figure 10 is a circuit diagram of a microprocessor in the non-invasive blood glucose measuring system of the present invention.
  • Figure 11 is a diagram showing the driving circuit diagram and signal input circuit of the buzzer in the non-invasive blood glucose measuring system of the present invention.
  • FIG. 12 is a diagram showing an infrared light receiving circuit and a signal conversion circuit in the non-invasive blood glucose measuring system of the present invention
  • Figure 13 is a circuit diagram of an infrared light emission driving circuit in the non-invasive blood glucose measuring system of the present invention.
  • the invention provides a non-invasive blood glucose measuring method. Referring to FIG. 1, the method comprises the following steps:
  • a step S10 measuring the predetermined portion of the infrared light of a wavelength ⁇ 1 of the current absorption rate of B 1, and measurement of the predetermined portion of the infrared light of a wavelength ⁇ 2 of the absorption rate of the current B 2; wherein, 1600nm ⁇ ⁇ 1 ⁇ 2300 nm, 1400 nm ⁇ ⁇ 2 ⁇ 1600 nm;
  • Two step S20 the initial absorption rate B 1, B 2 and the pre-stored initial glucose concentration value A 0, a predetermined portion of the infrared light of a wavelength ⁇ 1 A 1, a predetermined portion of the infrared light of a wavelength ⁇ 2
  • the initial absorption rate A 2 calculates the current blood glucose concentration value D 0 .
  • D 0 A 0 ⁇ (B 1 -B 2 )/(A 1 -A 2 )+k; wherein k is a constant and 0 ⁇ k ⁇ 0.5.
  • the inner blood glucose concentration code value of the current user preset portion is determined by infrared spectroscopy. Specifically, the real blood glucose concentration value A 0 of the user to be tested is obtained, and the preset portion is irradiated with the infrared light of the wavelength ⁇ 1 to obtain the current absorption rate A 1 of the infrared light of the wavelength; and then the wavelength is ⁇ 2 infrared light irradiating the predetermined portion, the predetermined portion to obtain a wavelength ⁇ 2 of the infrared light absorbance a 2.
  • the currently measured infrared light absorption rate A 1 is a preliminary measurement of the blood glucose concentration value at the preset portion.
  • other components mainly water
  • Glucose absorbs infrared light having a wavelength of 1600 nm to 2300 nm, and water absorbs infrared light having a wavelength in this range. Therefore, the infrared light having a wavelength of ⁇ 2 is irradiated to a predetermined portion by a characteristic spectrum of water.
  • the absorption rate A 2 of the preset portion to the infrared light having the wavelength ⁇ 2 and the absorption of the infrared light having the wavelength ⁇ 2 are less, so that the water of the predetermined portion can be used for the infrared light having the wavelength ⁇ 2 .
  • the absorption rate A 2 replaces the absorption rate of the water of the predetermined portion with respect to the infrared light of the wavelength ⁇ 1 , and subtracts A 2 from A 1 , that is, the absorption rate of the glucose of the predetermined portion to the infrared light of the wavelength ⁇ 1 is obtained.
  • the true blood glucose level A 0 corresponds to the inner code value (A 1 -A 2 ) of the infrared light measurement glucose concentration.
  • the non-invasive blood glucose measuring method and system of the invention removes the interference of water and the interference of the human body when measuring the blood glucose concentration of the human body, so that the measurement result is more accurate and credible, the measurement result is more reproducible, the sensitivity is high, and the specific test body is tested. Has a good specificity of the assay results.
  • the method for obtaining the true blood glucose concentration value A 0 of the user to be tested is various.
  • the method further includes a step S30 before the step S10: obtaining the user to be tested by the minimally invasive blood glucose measurement method.
  • the initial glucose concentration values a 0, and determining the user's predetermined portion of the infrared light having a wavelength of ⁇ 1 is the initial absorbance a 1, and the predetermined initial portion of the wavelength ⁇ of the infrared light absorption of 2 a 2;
  • step S10 is further included before step S10:
  • a wavelength of infrared light irradiation of the predetermined portion of the current measurement portion 3, a current measuring portion for measuring the current absorption of the wavelength ⁇ of the infrared light 3 E 1.
  • the position of the measurement point of the user preset part needs to be calibrated in advance to ensure that each time When measuring, the infrared light is irradiated at the same specific position of the user's preset portion. Specifically, the infrared light having a wavelength of ⁇ 3 is irradiated to the predetermined portion to obtain an infrared light absorption rate E 0 of the predetermined portion with a wavelength of ⁇ 3 . After the E 0 is stabilized, the value is stored, and the value is stored. The position is the calibration position.
  • the predetermined portion is irradiated with infrared light having a wavelength of ⁇ 3 to obtain an absorption rate E 1 of the predetermined portion for infrared light having a wavelength of ⁇ 3 , when the deviation between E 1 and E 0 Less than 3%, that is, the current measurement site is the same as the previous calibration position.
  • the predetermined portion is moved until the deviation between E 1 and E 0 is less than 3%.
  • the infrared light having the wavelength ⁇ 3 irradiated to the predetermined portion is at least two beams.
  • a wavelength of infrared light irradiation 3 the preset predetermined portion of the portion obtained on the wavelength ⁇ of the infrared absorbance E 1 3 calibration difficult and inner code
  • the value E 0 is the same.
  • at least two beams of infrared light having a wavelength of ⁇ 3 that illuminate the predetermined portion are irradiated.
  • ⁇ 3 1200 nm.
  • the predetermined part is a hand tiger mouth, a nasal wall, an ear, an earlobe, a cervical artery or a wrist artery.
  • the characteristic spectrum of blood sugar which has excellent absorption rate for glucose, but other tissues of the human body also have strong absorption properties.
  • the characteristic spectrum of glucose cannot penetrate the bones of the human body, which is necessary to measure the body parts. Effective choice.
  • the characteristic spectrum of blood glucose cannot penetrate the bones of the human body, so the body parts irradiated by the infrared spectroscopy in the present invention are: the tiger's mouth, the nasal wall, the ear or the earlobe, the cervical artery, the wrist artery. At the same position, these measurement positions have no bones, contain a large amount of blood, and are easy to measure.
  • the present invention also provides a non-invasive blood glucose measuring system.
  • the system includes the following modules:
  • the infrared light emitting mode 10 is configured to emit infrared light of a preset wavelength in real time
  • the infrared light receiving module 11 is configured to receive infrared light signals of a certain wavelength range in real time, and convert the received infrared light signals into analog electrical signals;
  • the signal conversion module 12 is connected to the infrared light receiving module 11, the signal conversion module converts the analog electrical signal into a digital signal;
  • the data processing module 13 is connected to the signal conversion module 12, and the data processing module 13 performs analysis and calculation on the digital signal, and finally obtains the measured result of the measured blood glucose concentration of the human body;
  • the human-computer interaction module 14 is connected to the data processing module 13, and the human-computer interaction module 14 is configured to receive an instruction input by the user, and display the measurement result of the blood glucose concentration of the human body or broadcast the voice through the voice. The measurement result of the blood sugar concentration of the human body.
  • the infrared light emitting module 10 emits a specific wavelength of infrared light in real time, and the specific wavelength of infrared light is irradiated on a predetermined part of the body of the person to be measured, such as an ear lobe, an ear, a neck artery position, and a wrist artery position.
  • a predetermined part of the body of the person to be measured such as an ear lobe, an ear, a neck artery position, and a wrist artery position.
  • the position of the palm of the hand or the position of the nostrils, the infrared light of a specific wavelength passes through the preset part of the measurer, and has a certain degree of attenuation.
  • the infrared light receiving module converts the signal into a simulation.
  • the size of the analog electrical signal and the human blood glucose concentration show a certain mathematical model relationship (specifically, in the measurement process, water has interference with the determination of glucose, that is, water also absorbs the infrared light of the characteristic wavelength of glucose, so Here, it is necessary to measure the absorption amount of infrared light of the characteristic wavelength of water to glucose, and then remove the amount of partial glucose characteristic light absorbed by the water based on the absorption amount of the characteristic light of the original glucose to obtain the characteristic of glucose. The absolute total amount of light absorption).
  • the signal conversion module 12 filters and amplifies the analog electrical signal reflecting the blood glucose concentration of the human body and converts it into a digital signal acceptable to the microprocessor module; the data processor module 13 After receiving the digital signal, the digital signal is analyzed and calculated, and then the measured human blood glucose concentration is obtained. Finally, the microprocessor module displays the measured result or broadcasts it through the human-computer interaction module.
  • the non-invasive blood glucose measuring system further includes a data communication module 15, and the data communication module 15 is connected to the data processing module 13, and the data communication module 15 is configured to perform the measurement result of the blood glucose concentration of the human body. Remote data transfer.
  • the non-invasive blood glucose measuring system is not limited to the measurement result being displayed by the display module or broadcasted by voice.
  • the system can also set a data communication module, can realize a remote information communication function, and can perform remote data transmission of the measurement result of the system. Information service function.
  • system initialization is performed after the system starts to be started, including reading the initial infrared light absorption value and the human body blood glucose constant value from the memory, including initializing some parameters and data (initial data acquisition is required) Create a blood glucose measurement method to obtain the blood glucose level of the specific measurement person, which can be manually input into the system, and simultaneously perform infrared spectroscopy on blood glucose The measurement, the infrared light glucose inside code value).
  • the system checks whether the detection signal is connected, and checks whether there is any tester to measure the blood sugar. If there is a detection signal input, the signal is processed and analyzed, such as debounce the signal data.
  • Digital filtering processing such as thorns, and some dynamic data analysis and judgment on the data, judging the trend and trend of the data, until the measured data tends to be stable, reading the stable data, and then calculating the mathematical model, thereby calculating The blood glucose concentration measurement value of the person to be measured; finally, the obtained measurement result is output.
  • the infrared light emitting module includes at least three infrared light emitting tubes of different wavelengths.
  • a characteristic spectrum of glucose (for example, 1650 nm) is firstly required to initially measure the absorption of characteristic light by glucose, and in order to make the absorption of characteristic light of glucose more accurate, It is also necessary to rule out the effects of water during the measurement.
  • water interferes with the determination of glucose, that is, water absorbs the infrared light of the characteristic wavelength of glucose. Therefore, it is necessary to measure the absorption of infrared light by the characteristic wavelength of water to glucose, and then in the original glucose pair. Based on the absorption of the characteristic light, the amount of partial glucose characteristic light absorbed by the water is removed to obtain the absolute total amount of glucose absorbed by the characteristic light.
  • glucose absorbs less infrared light at 1400 nm, and water has a stronger absorption of infrared light of the wavelength, so that the absorption of characteristic light of water by glucose can be replaced by measuring the absorption of infrared light by 1400 nm by water. (eg 1650 nm) to eliminate the interference of water on the determination of glucose content.
  • the system since the system is in actual application measurement, it is necessary to pre-measure the position of the measurement point of the measured person to ensure that the infrared light is irradiated at the same specific part of the body of the measurer for each measurement.
  • 1200nm infrared light the 1200nm infrared light can penetrate the human skeleton, and the absorption rate of infrared light is proportional to the thickness of the human tissue
  • the two places near the human body measurement site are illuminated, and the infrared light is The absorption rate is measured, and the internal code value of the infrared light absorption rate of the two blood glucose is obtained, and the internal code value is stored.
  • the infrared light measurement value of 1200 nm is compared with the calibration inner code value.
  • the value exceeds 3% the two infrared light are not irradiated at the same position (compared with the calibration), It is necessary to continuously move the illumination or measure the position until the measurement position is positioned to meet the requirements before performing the measurement of the non-invasive blood glucose of the present invention.
  • the infrared light emitting module includes at least three infrared light emitting tubes of different wavelengths.
  • the infrared light emitted by the infrared light emitting module 10 and the infrared light received by the infrared light receiving module 11 have a wavelength ranging from 800 nm to 3800 nm.
  • the infrared light emitting module needs to receive the infrared light emitted by the infrared light emitting module, and the infrared light emitting module 10 is required to receive the infrared light emitted by the infrared light emitting module.
  • the infrared light emitting module 10 The emitted infrared light and the infrared light received by the infrared light receiving module 11 have a wavelength ranging from 800 nm to 3800 nm to ensure that the infrared light emitting module 10 can emit, and the infrared light receiving module 11 can receive infrared light of a desired wavelength.
  • the driving signal of the infrared light emitting module 10 is a pulse signal, and the duty ratio of the pulse signal ranges from 1:20 to 1:1.5.
  • the duty ratio of the pulse wave is from 1:1.5 to 1:20, so that the infrared light driving fluctuation is better solved. problem.
  • the duty ratio is less than 1:20, the intensity and luminous flux of the emitted characteristic light are too small, the penetration effect is not good, and the measurement requirement is not met; when the duty ratio is greater than 1:1.5, the characteristic light emitted is The light intensity and the luminous flux are greatly fluctuated, and the error of the measurement result is large, and the measurement needs are not met.
  • the non-invasive blood glucose measuring system further includes a driving power source for driving the infrared light emitting module and the infrared light receiving module, and the driving power source has a ripple of less than 100 mv.
  • the infrared light emitted by the infrared light emitting tube is different under the same power source driving, it always has fluctuations, which causes a large error in the measurement.
  • the driving power sources of the infrared light emitting module 10 and the infrared light receiving module 11 are the same, and when the ripple of the power source voltage is small, the luminous flux change rate of the infrared light can be made.
  • the fluctuation of the infrared light emitted by the infrared light emitting tube is also small.
  • the ripple of the power source is less than 100 mv.
  • the signal voltage difference of the input end of the signal conversion module is less than 50 mv, and the signal conversion rate of the signal conversion module is 10 Hz to 1000 Hz.
  • the output signal of the sensor belongs to a small signal, generally below 10 mv, and the voltage difference at the signal input terminal is less than 50 mv, because the amplification factor of the amplifier can be up to 100 times. Exceeding this voltage will cause the range of the output voltage of the amplifier and the failure of the amplifier.
  • the reason for choosing 10HZ to 1000HZ is: if it is less than 10HZ, the data sampling and analysis speed is too slow to achieve the purpose of real-time measurement. If it is greater than 1000HZ, the sampling rate is too fast, which will result in many data not being analyzed. It will be discarded, and the sampling rate that is too high will also cause the sampled data to be unstable.
  • the infrared light emitting module 10 includes an infrared light emitting circuit and a power circuit
  • the infrared light receiving module 11 includes an infrared light receiving circuit and a power circuit
  • the signal converting module 12 includes a filter circuit, a signal amplifying circuit, and a signal. a circuit and a signal conversion circuit
  • the data processor module 13 includes a microprocessor circuit and a power circuit
  • the human-machine interaction module 14 includes a microprocessor circuit, an information input circuit, and a display circuit
  • the data communication module 15 includes Microprocessor circuit and data communication circuit.
  • the system includes a multi-channel infrared light emitting circuit, a power supply circuit, an infrared light receiving circuit, a filter circuit, a signal amplifying circuit, a signal selecting circuit, a signal converting circuit, an information input circuit, a display circuit, a data communication circuit, and a microprocessor.
  • the circuit, the multi-channel infrared light emitting circuit, the power supply circuit, the infrared light receiving circuit, the filter circuit, the signal amplifying circuit, the signal selecting circuit, the signal converting circuit, the information input circuit, the display circuit, the data communication circuit and the microprocessor circuit are in turn Electrical connection, the microprocessor circuit is electrically connected with the information input circuit, the display circuit and the data communication circuit respectively; the infrared light emitting circuit and the power circuit constitute an infrared light emitting module, and the infrared light receiving circuit and the power circuit constitute an infrared light receiving module and a filter circuit
  • the small signal amplification, the signal selection circuit, the signal conversion circuit constitute a signal conversion module, the microprocessor circuit and the power circuit constitute a data processor module, the microprocessor circuit, the keyboard input circuit and the display circuit constitute a human-computer interaction module.
  • POWER is a power supply part, which is composed of a 2-level DC-DC circuit and its corresponding filter circuit.
  • the MAX232 is a data communication module and an auxiliary circuit, which constitutes a communication circuit through a communication chip and a corresponding capacitor, USART RX And the USART TX is the interface to the microprocessor.
  • the I/O circuit is an interface circuit for the I/O of the microprocessor.
  • the LCD circuit is an interface circuit of a conventional 128X64 LCM module.
  • the MCU is a microprocessor module
  • the 8RF3421 microprocessor is an 8-bit microprocessor, which is a flash.
  • ROM structure of the microprocessor, its instruction system has 43 instructions, there is a UART communication structure inside, with a 16MHZ crystal oscillator circuit, working voltage 2.3V to 5.5V, it has three working modes.
  • BUZZER is a buzzer drive circuit that is driven by an 8050 triode.
  • the KEY is a signal input circuit (also called a push-button circuit).
  • the purpose of connecting a 4.7k ohm resistor is to eliminate the I/O port when the button is shaken. A large current in the moment of impact.
  • SENSOR_A is an infrared light receiving circuit and a signal conversion circuit, which receives infrared light whose signal intensity is attenuated after passing through a specific part of the human body through a D1-infrared receiving tube, and then converts into a current signal, and the current signal passes through the resistors R6 and R12.
  • the signal on R6 is used as the sampling signal.
  • the sampling signal enters the signal conversion module-CS1 through the filter circuit composed of R4, R9, C11, C12 and C15.
  • the signal conversion module contains: operation amplification, multi-path selection, mode Digital conversion (ADC) circuit, the analog-to-digital conversion (ADC) module is a 24-bit ADC module with programmable operational amplifier circuit and multiple selection circuit.
  • ADC analog-to-digital conversion
  • the signal is converted and output to the MCU through the SCLK and DOUT interfaces.
  • the signal is filtered by the MCU, signal state analysis and mathematical model calculation, and finally the MCU outputs the measurement result.
  • SENSOR_B, SENSOR_C, SENSOR_D SENSOR_E, SENSOR_F are five infrared light emission driving circuits, which are driven by a S8050 triode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Emergency Medicine (AREA)

Abstract

一种无创血糖测定方法及无创血糖测定系统,无创血糖测定方法包括如下步骤:测定预设部位对波长为λ1的红外光的当前吸收率B1,测定预设部位对波长为λ2的红外光的当前吸收率B2;根据B1、B2以及预存的初始血糖浓度值A0、预设部位对波长为λ1的红外光的初始吸收率A1、预设部位对波长为λ2的红外光的初始吸收率A2计算出当前血糖浓度值D0=A0×(B1-B2)/(A1-A2)+k;其中,k为常数,且0≤k≤0.5。无创血糖测定系统包括红外光发射模(10)、红外光接收模块(11)、信号转换模块(12)、数据处理模块(13)、人机交互模块(14)。在测量人体血糖浓度时剔除了组织中水的干扰并降低了个体差异干扰。

Description

无创血糖测定方法及系统
技术领域
本发明涉及血糖测定技术领域,尤其涉及一种无创血糖测定方法及系统。
背景技术
糖尿病患者为了避免糖尿病的并发症,需要频繁地测量和控制血糖浓度,目前在我国,糖尿病患者测量血糖浓度的方法大部分是采用有创的血糖计。频繁的采血进行血液葡萄糖浓度的测量一方面给糖尿病患者带来了巨大的经济负担和医疗费用,另一方面也给糖尿病患者带来了巨大的身体和心理痛苦和感染疾病的风险。为了应对上述形势,迫切需要一种针对糖尿病患者的无创性血液葡萄糖浓度的快速测量系统。
目前,利用无创红外光测量血糖已有相关的报道,但是,利用红外光测定人体血糖浓度的技术还有许多的不完善之处。 一方面,血糖的特征光难以确定,到目前为止还没有寻找到一个较佳的特征光;二方面,水和葡萄糖的吸收峰有重叠,水的干扰难以剔除;三方面,虽然葡萄糖对其特征光有很强的吸收率,但是人体其它组织对葡萄糖的特征光也有强的吸收收性,如,葡萄糖的特征光就不能穿透人体的骨骼;四方面,不同人的同一个身体部位对葡萄糖的特征光的吸收率存在很大的差异,该差异主要因测试者的身体组织、细胞的成分和组成或尺寸存在较大的差异,所以要想利用一个数学模型进行所有人群的血糖测量是不现实的。
发明内容
本发明的主要目的在于解决现有的无创血糖方法对血糖的测定精度差、灵敏度低的问题。
为实现上述目的,本发明提供一种无创血糖测定方法,包括以下步骤:
步骤一,测定所述预设部位对波长为λ1的红外光的当前吸收率B1 ,然后测定该预设部位对波长为λ2 的红外光的当前吸收率B2 ;其中,1600nm < λ1 ≤2300nm,1400nm≤λ2 ≤1600nm;
步骤二,根据B1 、B2 以及预存的初始血糖浓度值A0 、预设部位对波长为λ1 的红外光的初始吸收率A1 、预设部位对波长为λ2 的红外光的初始吸收率A2 计算出当前血糖浓度值D0
优选地,采用以下公式计算步骤二中当前血糖浓度值D0
D0 =A0 ×(B 1 -B2 )/(A 1 -A2 )+k;其中,k为常数,且0≤k≤0.5。
优选地,所述步骤一之前还包括步骤三:
通过微创血糖测定方法获取待测用户的初始血糖浓度值A0 ,并测定用户的预设部位对波长为λ1 的红外光的初始吸收率A1 ,以及该预设部位对波长为λ2 的红外光的初始吸收率A2
测定预设部位对波长为λ3 的红外光的初始吸收率E 0 ,将该值存储并以该值对应的位置为标定位置;其中1000nm≤λ3 ≤1200nm。
优选地,步骤一之前还包括步骤四:
以波长为λ3 的红外光照射预设部位的当前测定部位,测定所述当前测定部位对波长为λ3 的红外光的当前吸收率E1
当E1 与E0 的偏差小于3%,判定当前测定部位与所述标定位置相同,当E1 与E0 的偏差不小于3%,在预设部位中改变当前测定部位的位置,直至E1 与E0 之间的偏差小于3%。
优选地,所述步骤四中,照射所述预设部位的波长为λ3 的红外光至少为两束。
优选地,所述预设部位为手部虎口、鼻腔壁、耳边、耳垂、颈部动脉或腕部动脉。
为实现上述目的本发明还提供一种无创血糖测定系统,包括以下模块:
红外光发射模块,用于实时发射预设波长的红外光;
红外光接收模块,用于实时接收一定波长范围的红外光信号,并且将接收的红外光信号转换成模拟电信号;
信号转换模块,所述信号转换模块连接所述红外光接收模块,该信号转换模块将所述该模拟电信号转换成数字信号;
数据处理模块,所述数据处理模块连接所述信号转换模块,该数据处理模块将所述数字信号进行分析计算,最后得到所测定的人体血糖浓度的测定结果;
人机交互模块,所述人机交互模块连接所述数据处理模块,所述人机交互模块用于输入指令,并显示所述人体血糖浓度的测定结果或者通过语音播报该人体血糖浓度的测定结果。
优选地,该无创血糖测定系统还包括数据通信模块,所述数据通讯模块连接所述数据处理模块,该数据通信模块用于将所述人体血糖浓度的测定结果进行远程数据传输。
优选地,所述红外光发射模块包括至少三个不同波长的红外光发射管。
优选地,所述红外光发射模块所发射的红外光以及所述红外光接收模块接收的红外光的波长范围为800nm至3800nm。
优选地,所述红外光发射模块的驱动信号是脉冲信号,该脉冲信号的占空比的范围为1:20至1:1.5。
优选地,所述红外光发射模块包括红外光发射电路及电源电路;所述红外光接收模块包括红外光接收电路及电源电路;所述信号转换模块包括滤波电路、信号放大电路、信号选择电路及信号转换电路;所述数据处理器模块包括微处理器电路及电源电路;所述人机交互模块包括微处理器电路、信息输入电路及显示电路,所述数据通讯模块包括微处理器电路及数据通讯电路。
本发明无创血糖测定方法在测量人体血糖浓度时剔除了水的干扰以及人体自身的干扰,使测定结果更加准确可信、测量结果的重复性更好、灵敏度高,并且针对特定的测试人体具有较好的测定结果特异性。
附图说明
图1为本发明无创血糖测定方法一实施例流程图;
图2为本发明无创血糖测定方法另一实施例流程图;
图3为是本发明无创血糖测定系统一实施例的硬件结构框图;
图4为本发明无创血糖测定系统另一实施例的硬件结构框图;
图5为本发明无创血糖测定系统一实施例的工作流程图;
图6为本发明无创血糖测定系统的电源的电路图;
图7为本发明无创血糖测定系统中通讯模块及相关辅助模块的电路图;
图8为本发明无创血糖测定系统中微处理器的接口电路图;
图9为本发明无创血糖测定系统中128X64的LCM模组的接口电路图;
图10为本发明无创血糖测定系统中微处理器电路图;
图11为本发明无创血糖测定系统中轰鸣器驱动电路图及信号输入电路图;
图12为本发明无创血糖测定系统中红外光接收电路和信号转换电路图;
图13为本发明无创血糖测定系统中红外光发射驱动电路图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种无创血糖测定方法,参照图1,该方法包括以下步骤:
步骤一S10,测定所述预设部位对波长为λ1的红外光的当前吸收率B 1 ,然后测定该预设部位对波长为λ2 的红外光的当前吸收率B2 ;其中,1600nm≤λ 1 ≤2300nm,1400nm≤λ2 < 1600nm;
步骤二S20,根据B1、B2 以及预存的初始血糖浓度值A0 、预设部位对波长为λ1 的红外光的初始吸收率A1 、预设部位对波长为λ2 的红外光的初始吸收率A2 计算出当前血糖浓度值D0
D0 = A0×(B1 -B2 )/(A1 -A2 )+k;其中,k为常数,且0≤k≤0.5。
在实时测定用户血糖浓度之前,需要获取该用户的血糖浓度的真实值,同时以红外光谱法测定当前用户预设部位的血糖浓度内码值。具体的,获取待测用户的真实血糖浓度值A 0 的同时以波长λ 1 的红外光照射预设部位,获取该部位当前对该波长的红外光的吸收率A 1 ;然后以波长为λ 2的红外光照射所述预设部位,得出该预设部位对波长为λ 2 的红外光的吸收率A2 。当前测得的红外光吸收率A1 是对预设部位血糖浓度值的初步测定。在人体内,由于其他成分(主要是水)对葡萄糖的红外特征光谱也有吸收,所以要想得到准确的葡萄糖对其特征光谱的吸收值,还需要剔除水的干扰。葡萄糖对波长为1600nm至2300nm的红外光均有吸收,而水对波长在该范围的红外光也有吸收,所以在此,通过水的特征光谱,波长为λ2 的红外光照射预设部位,得出该预设部位对波长为λ2 的红外光的吸收率A2 ,葡萄糖对波长为λ2 的红外光吸收较少,于是可以以该预设部位的水对波长为λ2 的红外光的吸收率A2 替换该预设部位的水对波长为λ1 的红外光的吸收率,以A1 减去A2 ,即得该预设部位的葡萄糖对波长为λ1 的红外光的吸收率。这样真实血糖值A 0 就与红外光测定葡萄糖浓度的内码值(A1 -A2 )相对应。
得到用户真实的血糖值A 0 和红外光测定葡萄糖浓度的内码值(A1 -A2 )之后的在一段时间(一个月或一周的时间内)内,当需要实时监测用户的血糖浓度时,不需要再用微创的方法,只需以波长为λ1 的红外光照射所述预设部位,得出该部位对该波长的红外光吸收率B1 ,以波长为λ2 的红外光照射所述预设部位,得出该预设部位对波长为λ2 的红外光的吸收率B2 ,这样,红外光测定的葡萄糖的内码值即为(B1 -B2 ),此次葡萄糖真实浓度值D0 与红外光测定葡萄糖的内码值(B1 -B2 )也是对应的。用公式: A0 /(A1 -A2 )=D0 /(B1 -B2 ),计算出用户的血糖浓度值,即D0 = A0 ×(B1 -B2 )/(A1 -A2 ) 。
由于,用户的皮肤会因肤色的差异对测量造成一定的误差,皮肤颜色越深,造成的误差越大,因此为了排除用户肤色的影响,在以上公式中加入调整参数k,公式调整为:D0 = A0×(B1 -B2 )/(A1 -A2 )+k ;具体的,这里k是常数,其范围为0≤k≤0.5;黄种人群的k值约为0.3,白种人群的k值约为0.1,黑种人群的k值约为0.5。
本发明无创血糖测定方法及系统在测量人体血糖浓度时剔除了水的干扰以及人体自身的干扰,使测定结果更加准确可信、测量结果的重复性更好、灵敏度高,并且针对特定的测试人体具有较好的测定结果特异性。
进一步地,获取待测用户的真实血糖浓度值A 0 的方式有多种,在本实施例中,本方法在步骤一S10之前还包括步骤三S30:通过微创血糖测定方法获取待测用户的初始血糖浓度值A 0 ,并测定用户的预设部位对波长为λ1 的红外光的初始吸收率A1 ,以及该预设部位对波长为λ2 的红外光的初始吸收率A2
并测定预设部位对波长为λ3 的红外光的初始吸收率E0 ,将该值存储并以该值对应的位置为标定位置;其中1000nm≤λ3 ≤1200nm。
进一步地,参照图1和图2,步骤一S10之前还包括步骤四S40:
以波长为λ3 的红外光照射预设部位的当前测定部位,测定所述当前测定部位对波长为λ3 的红外光的当前吸收率E1
当E1 与E0 的偏差小于3%,判定当前测定部位与所述标定位置相同,当E1 与E0 的偏差不小于3%,在预设部位中改变当前测定部位的位置,直至E1 与E0 之间的偏差小于3%。
红外光照射预设部位的时候,由于红外光的吸收率随人体组织的厚度成正比例关系,所以在实际的应用测定中,需要预先对用户预设部位的测量点位置进行标定,以保证每次测量时,红外光的照射在用户的预设部位的同一个特定位置。具体的,以波长为λ3 的红外光照射所述预设部位得出该预设部位对波长为λ3 的红外光吸收率E0 ,待E0 稳定后,将该值存储,并以该位置为标定位置。以后每次测定的时候,以波长为λ3 的红外光照射所述预设部位,得出该预设部位对波长为λ3 的红外光的吸收率E1 ,当E1 与E0 的偏差小于3%,即认为,当前测定部位与先前标定位置相同,当E1 与E0 的偏差不小于3%,挪动所述预设部位,直至E1 与E0 之间的偏差小于3%。
进一步地,所述步骤四S40中,照射所述预设部位的波长为λ3 的红外光至少为两束。
具体的,在实际的设计工作中,以波长为λ3 的红外光照射所述预设部位所得到的该预设部位对波长为λ3 的红外光吸收率E1 很难与标定的内码值E0 相同。为了使待测定位置与标定位置更接近,在本实施例中,位置标定之后,照射所述预设部位的波长为λ3 的红外光至少为两束。这样,两束波长为λ3 的红外光照射到预设部位的时候,可以得到两个红外光吸收值,该两个红外光吸收值与E0 的偏差均小于3%,即可认为当前测定部位与先前标定位置相同。
进一步地,所述λ3 =1200nm。
具体的,波长为1200nm的红外光照射可以实现位置的标定,1200nm的红外光可以穿透人体的骨骼组织,对位置较为敏感,位置不同,测得的数据也不同,因此在本实施例中,选取λ3 =1200nm,以这种方法进行测量身体位置定位。
进一步地,所述预设部位为手部虎口、鼻腔壁、耳边、耳垂、颈部动脉或腕部动脉。
血糖的特征光谱,它对葡萄糖有优秀的吸收率,但人体的其它组织对它也有很强的吸收性,例如:葡萄糖的特征光谱就不能穿透人体的骨骼,这就要进行测量的身体部位的有效选择。针对以上的问题,血糖的特征光谱不能穿透人体的骨骼,所以本发明选择红外光谱测量血糖时照射的身体部位是:手部虎口,鼻腔壁,耳边或耳垂,颈部动脉,腕部动脉等位置,这些测量位置没有骨骼,含有大量丰富的血液,且容易实现测量的部位。
下表为六位糖尿病患者使用本方法测定其血糖浓度值的数据表;其中采用的红外光波长为λ1 =1650nm、λ2 =1400nm、λ3 =1200nm。从表中可以看出,采用本方法测定患者血糖浓度值微创值相比其偏差在±0.1mmol/L之内,可见本发明的方法测定用户血糖值非常准确。
姓名 微创血糖值 A0 (mmol/L) 标定时的10进制的内码值 (A1 -A2 餐后2小时血糖值(mmol/L)/内码值(10进制内码值) 餐后2小时血糖微创值(mmol/L) 餐前血糖值(mmol/L)/内码值( 10 进制) 餐前血糖微创值(mmol/L)
张先生 7.5 15746 8.9/1845 2 8.8 6.8/14279 6.9
蔡先生 9.0 18456 12.1/24834 12.0 8.2/16899 8.1
赵女士 7.2 15120 8.5/ 17850 8.5 7.0/ 14700 7.1
王先生 8.8 18452 12.3/ 25791 12.2 8.3/ 17404 8.1
秦女士 7.6 15690 9.3/ 19200 9.4 7.1/ 14658 7.2
李先生 6.5 13655 6.8/ 14285 6.6 5.9/ 12395 6.0
本发明还提供了一种无创血糖测定系统,参照图3,该系统包括以下模块:
红外光发射模10,用于实时发射预设波长的红外光;
红外光接收模块11,用于实时接收一定波长范围的红外光信号,并且将接收的红外光信号转换成模拟电信号;
信号转换模块12,所述信号转换模块12连接所述红外光接收模块11,该信号转换模块将所述该模拟电信号转换成数字信号;
数据处理模块13,所述数据处理模块13连接所述信号转换模块12,该数据处理模块13将所述数字信号进行分析计算,最后得到所测定的人体血糖浓度的测定结果;
人机交互模块14,所述人机交互模块14连接所述数据处理模块13,所述人机交互模块14用于接收用户输入的指令,并显示所述人体血糖浓度的测定结果或者通过语音播报该人体血糖浓度的测定结果。
具体的,红外光发射模块10实时的发射一特定波长的红外光,该特定波长的红外光照射在待测量者身体的预设部位,例如耳垂、耳边、颈部动脉位置、腕部动脉位置、手掌虎口或鼻孔位置,特定波长(如1650nm)的红外光经过测量者的预设部位后,有一定程度的衰减,红外光接收模块接收该衰减的红外光信号后,将该信号转换成模拟电信号,该模拟电信号的大小与人体血糖浓度呈现一定的数学模型关系(具体的,在测定过程中,水对葡萄糖的测定有干扰,即水对葡萄糖的特征波长的红外光也有吸收,于是在此就需要测定水对葡萄糖的特征波长的红外光的吸收量,然后在原始葡萄糖对其特征光的吸收量的基础上将水吸收的部分葡萄糖特征光的量去除,以得到葡萄糖对其特征光吸收的绝对总量)。衰减的红外光信号转换成模拟电信号后,信号转换模块12将反映人体血糖葡萄糖浓度的模拟电信号进行滤波、放大后将其转换成微处理器模块可以接受的数字信号;数据处理器模块13接收到该数字信号后,对该数字信号进行分析并计算,然后得到所测定的人体血糖浓度。最后微处理器模块通过人机交互模块把测量的结果显示或通过语音播报。
进一步地,参照图4,该无创血糖测定系统还包括数据通信模块15,所述数据通讯模块15连接所述数据处理模块13,该数据通信模块15用于将所述人体血糖浓度的测定结果进行远程数据传输。
具体的,该无创血糖测定系统不限于其测定结果通过显示模块显示或通过语音播报,该系统还可以设置数据通信模块,能够实现远程信息通讯功能,能够将本系统的测量结果进行远程数据传输等信息化服务功能。
参照图5,系统开始启动后要进行系统初始化,包括从存储器中读取初始血糖浓度值初始红外光吸收率和人体血糖常数值,包括初始化一些参数和数据(数据采集之初,需要进行使用微创的血糖测量方法,得到该特定测量人员血糖值,该血糖值可以手动输入到该系统中,同时进行红外光谱法对血糖 的测量,得到红外光血糖内码值)。初始化完成后系统即进行检测有无检测信号接入,既检查有没有测试者进行血糖的测量,如有检测信号输入,就对该信号进行一些处理和分析,如对信号数据进行去抖、去刺等数字滤波处理,和对数据进行一些动态数据分析和判断,判断数据的走向和趋势,直到该测量数据趋于稳定后读取该稳定数据,再将该数据进行数学模型计算,从而计算得到待测量者的血液葡萄糖的浓度测量值;最后将得到的测定结果输出。
进一步地,所述红外光发射模块包括至少三个不同波长的红外光发射管。
具体的,由于本系统进行血糖含量测定的时候,首先需要一个葡萄糖的特征光谱(例如1650nm),以初步测定葡萄糖对其特征光的吸收量,为了使葡萄糖对其特征光的吸收量更准确,还需要排除在该测定过程中水的影响。在测定过程中,水对葡萄糖的测定有干扰,即水对葡萄糖的特征波长的红外光也有吸收,于是在此就需要测定水对葡萄糖的特征波长的红外光的吸收量,然后在原始葡萄糖对其特征光的吸收量的基础上将水吸收的部分葡萄糖特征光的量去除,以得到葡萄糖对其特征光吸收的绝对总量。具体的,葡萄糖对1400nm的红外光吸收较少,而水对该波长的红外光有较强的吸收,于是可以通过测定水对1400nm的红外光的吸收量替代水对葡萄糖的特征光的吸收量(例如1650nm),以此剔除水对葡萄糖含量测定的干扰。
此外,由于本系统在实际的应用测量中,需要预先进行被测量者的测量点位置标定,以保证每次测量时,红外光的照射在测量者身体的同一个特定部位。首先,通过选取1200nm的红外光(该1200nm的红外光能够穿透人体骨骼,且红外光的吸收率随人体组织的厚度成正比例关系)照射人体测量部位附近的2个位置后,对红外光的吸收率进行测量,得到该2个血糖的红外光吸收率的内码值,将该内码值进行存储。测量过程开始时既对1200nm的红外光测量值与标定的内码值进行比较,当值超过3%时,既该2个红外光不是照射在同一个位置上(与标定时相比),就需要不断的挪动照射或测量位置,直到测量位置定位符合要求后再进行本发明无创血糖的测量。
上述过程中,至少需要三个不同的波长的红外光,因此红外光发射模块包括至少三个不同波长的红外光发射管。
进一步地,所述红外光发射模块10所发射的红外光以及所述红外光接收模块11接收的红外光的波长范围为800nm至3800nm。
具体的,由于所述红外光发射模块需要发射的红外光波长为1000nm至2300nm,同样红外光接收模块需要接收红外光发射模块发出的红外光;在本实施例中,所述红外光发射模块10所发射的红外光以及所述红外光接收模块11接收的红外光的波长范围为800nm至3800nm,以保证红外光发射模块10能够发射、红外光接收模块11能接收所需波长的红外光。
进一步地,所述红外光发射模块10的驱动信号是脉冲信号,该脉冲信号的占空比的范围为1:20至1:1.5。
具体的,为了解决红外发射光光强度的波动问题和增加红外光的穿透能力,脉冲波的占空比是从1:1.5到1:20,这样就较好的解决了红外光驱动波动的问题。当占空比小于1:20的时候,所发射特征光的光强和光通量太小,穿透效果不佳,达不到测量要求;当占空比大于1:1.5时,所发射特征光的光强和光通量出现较大的波动,测定结果的误差较大,也达不到测量需要。
进一步地,所述无创血糖测定系统还包括用于驱动所述红外光发射模块和红外光接收模块驱动电源,所述驱动电源的纹波小于100mv。
具体的,由于在相同的电源驱动下,红外光发射管所发射的红外光是不相同的,它总是会有波动,这个会对测量造成较大的误差。在本实施例中为了减小这种误差,所述红外光发射模块10和红外光接收模块11的驱动电源相同,该电源电压的纹波较小的情况下,可以使红外光的光通量变化率减小,红外光发射管所发射的红外光的波动也较小,具体的,该电源的纹波小于100mv。
进一步地,所述信号转换模块的输入端信号电压差小于50mv,所述信号转换模块的信号转换速率为10HZ至1000HZ。
具体的,传感器的输出信号属于小信号,一般在10mv以下,信号输入端电压差小于50mv,因放大器的放大倍数可以到100倍,超出这个电压会导致放大器的输出电压的范围和放大器的失效。选择10HZ至1000HZ的原因是:如果小于10HZ,则数据采样和分析的速度太慢,不能够较好的实现实时测量的目的;同时如果大于1000HZ,采样速率太快,会导致许多数据没有进行分析就会丢弃,同时太高的采样速率,也会导致采样的数据不稳定。
进一步地,所述红外光发射模块10包括红外光发射电路及电源电路;所述红外光接收模块11包括红外光接收电路及电源电路;所述信号转换模块12包括滤波电路、信号放大电路、信号选择电路及信号转换电路;所述数据处理器模块13包括微处理器电路及电源电路;所述人机交互模块14包括微处理器电路、信息输入电路及显示电路,所述数据通讯模块15包括微处理器电路及数据通讯电路。
具体的,该系统包括多路红外光发射电路、电源电路、红外光接收电路、滤波电路、信号放大电路、信号选择电路、信号转换电路、信息输入电路、显示器电路、数据通讯电路和微处理器电路,所述多路红外光发射电路、电源电路、红外光接收电路、滤波电路、信号放大电路、信号选择电路、信号转换电路、信息输入电路、显示器电路、数据通讯电路和微处理器电路依次电连接,微处理器电路分别与信息输入电路、显示器电路和数据通讯电路电连接;红外光发射电路和电源电路构成红外光发射模块,红外光接收电路和电源电路构成红外光接收模块、滤波电路、小信号放大、信号选择电路、信号转换电路构成信号转换模块、微处理器电路和电源电路构成数据处理器模块、微处理器电路、键盘输入电路和显示器电路构成人机交互模块。
以下结合附图介绍电路硬件及工作原理,参照图6,POWER是电源部分,它分别由2级DC-DC电路及其相应滤波电路组成。
参照图7,MAX232是数据通讯模块及辅助电路,它通过通讯芯片及相应的电容构成通讯电路,USART RX 和USART TX是与微处理器的接口。
参照图8,I/O电路是微处理器的I/O 的接口电路。
参照图9,LCD电路是普通的128X64的LCM模组的接口电路。
参照图10,MCU 是微处理器模块,该8RF3421微处理器是8位微处理器,它是flash ROM结构的微处理器,它的指令系统有43条指令,内部有1路UART的通信结构,内带16MHZ的晶振电路,工作电压2.3V到5.5V,它有3种工作模式。
参照图11,BUZZER是轰鸣器驱动电路,它通过一个8050的三极管进行驱动,KEY是信号输入电路(也称按键电路),接4.7k欧姆电阻的目的是消除按键抖动时对I/O口的冲击瞬间大电流。
参照图12,SENSOR_A是红外光接收电路和信号转换电路,它通过D1-红外接收管接收经过人体特定部位后信号强度衰减的红外光,然后转换成电流信号,电流信号经过电阻R6、R12后在R6上的信号既作为采样信号,该采样信号经由R4、R9、C11、C12和C15组成的滤波电路后进入信号转换模块--CS1,该信号转换模块内部含有:运算放大、多路选择、模数转换(ADC)电路,该模数转换(ADC)模块是一个24位的ADC模块,它有可编程的运算放大电路和多路选择电路,信号转换后经SCLK和DOUT接口输出到MCU微处理器,该信号经MCU进行滤波处理、信号状态分析和数学模型计算,最后由MCU将测量结果输出。
参照图13,SENSOR_B、SENSOR_C 、SENSOR_D SENSOR_E、SENSOR_F是5个红外光发射驱动电路,它分别通过一个S8050的三极管进行驱动。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种无创血糖测定方法,其特征在于,包括以下步骤:
    步骤一,测定所述预设部位对波长为λ1 的红外光的当前吸收率B1 ,然后测定该预设部位对波长为λ2 的红外光的当前吸收率B2 ;其中,1600nm < λ1 ≤2300nm,1400nm≤λ2 ≤1600nm;
    步骤二,根据B1、B2 以及预存的初始血糖浓度值A0 、预设部位对波长为λ1 的红外光的初始吸收率A1 、预设部位对波长为λ2 的红外光的初始吸收率A2 计算出当前血糖浓度值D0
  2. 如权利要求1所述的无创测定方法,其特征在于,采用以下公式计算步骤二中当前血糖浓度值D0
    D0 = A0×(B1 -B2 )/(A1 -A2 )+k ;其中,k为常数,且0≤k≤0.5。
  3. 如权利要求2所述的无创测定方法,其特征在于,所述步骤一之前还包括步骤三:
    通过微创血糖测定方法获取待测用户的初始血糖浓度值A0 ,并测定用户的预设部位对波长为λ1 的红外光的初始吸收率A1 ,以及该预设部位对波长为λ2 的红外光的初始吸收率A2
    测定预设部位对波长为λ3 的红外光的初始吸收率E0 ,将该值存储并以该值对应的位置为标定位置;其中1000nm≤λ3 ≤1200nm。
  4. 如权利要求3所述的无创血糖测定方法,其特征在于,步骤一之前还包括步骤四:
    以波长为λ3 的红外光照射预设部位的当前测定部位,测定所述当前测定部位对波长为λ3 的红外光的当前吸收率E1
    当E1 与E0 的偏差小于3%,判定当前测定部位与所述标定位置相同,当E1 与E0 的偏差不小于3%,在预设部位中改变当前测定部位的位置,直至E1 与E0 之间的偏差小于3%。
  5. 如权利要求4所述的无创血糖测定方法,其特征在于,所述步骤四中,照射所述预设部位的波长为λ3 的红外光至少为两束。
  6. 如权利要求1至5任一项所述的无创血糖测定方法,其特征在于,所述预设部位为手部虎口、鼻腔壁、耳边、耳垂、颈部动脉或腕部动脉。
  7. 一种无创血糖测定系统,其特征在于,包括以下模块:
    红外光发射模块,用于实时发射预设波长的红外光;
    红外光接收模块,用于实时接收一定波长范围的红外光信号,并且将接收的红外光信号转换成模拟电信号;
    信号转换模块,所述信号转换模块连接所述红外光接收模块,该信号转换模块将所述该模拟电信号转换成数字信号;
    数据处理模块,所述数据处理模块连接所述信号转换模块,该数据处理模块将所述数字信号进行分析计算,最后得到所测定的人体血糖浓度的测定结果;
    人机交互模块,所述人机交互模块连接所述数据处理模块,所述人机交互模块用于输入指令,并显示所述人体血糖浓度的测定结果或者通过语音播报该人体血糖浓度的测定结果。
  8. 如权利要求7所述的无创血糖测定系统,其特征在于,该无创血糖测定系统还包括数据通信模块,所述数据通讯模块连接所述数据处理模块,该数据通信模块用于将所述人体血糖浓度的测定结果进行远程数据传输。
  9. 如权利要求7所述的无创血糖测定系统,其特征在于,所述红外光发射模块包括至少三个不同波长的红外光发射管。
  10. 如权利要求7、8或9所述的无创血糖测定系统,其特征在于,所述红外光发射模块所发射的红外光以及所述红外光接收模块接收的红外光的波长范围为800nm至3800nm。
  11. 如权利要求7、8或9所述的无创血糖测定系统,其特征在于,所述红外光发射模块的驱动信号是脉冲信号,该脉冲信号的占空比的范围为1:20至1:1.5。
  12. 如权利要求8所述的无创血糖测定系统,其特征在于,所述红外光发射模块包括红外光发射电路及电源电路;所述红外光接收模块包括红外光接收电路及电源电路;所述信号转换模块包括滤波电路、信号放大电路、信号选择电路及信号转换电路;所述数据处理器模块包括微处理器电路及电源电路;所述人机交互模块包括微处理器电路、信息输入电路及显示电路,所述数据通讯模块包括微处理器电路及数据通讯电路。
PCT/CN2014/086187 2014-09-04 2014-09-10 无创血糖测定方法及系统 WO2016033815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410449764.9A CN104257390B (zh) 2014-09-04 2014-09-04 无创血糖测定方法及系统
CN201410449764.9 2014-09-04

Publications (1)

Publication Number Publication Date
WO2016033815A1 true WO2016033815A1 (zh) 2016-03-10

Family

ID=52149062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086187 WO2016033815A1 (zh) 2014-09-04 2014-09-10 无创血糖测定方法及系统

Country Status (2)

Country Link
CN (1) CN104257390B (zh)
WO (1) WO2016033815A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509178A (zh) * 2021-06-02 2021-10-19 圣点世纪科技股份有限公司 一种基于差温状态监控的无创血糖检测方法及装置
CN113598763A (zh) * 2021-08-05 2021-11-05 重庆大学 一种基于mic-pca-narx校正算法的无创血糖检测装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105433953A (zh) * 2015-11-28 2016-03-30 深圳市前海安测信息技术有限公司 基于光电信号的血糖数据采集系统及方法
CN108152244A (zh) * 2017-12-15 2018-06-12 京东方科技集团股份有限公司 一种血糖检测装置和血糖检测方法
CN108593593A (zh) * 2018-04-24 2018-09-28 深圳市英谱科技有限公司 串行双红外光谱无创血糖测量装置
CN109157224B (zh) * 2018-06-06 2021-06-08 电子科技大学 一种增加参考光源校准的脉搏血氧监控系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192273A (zh) * 1995-06-07 1998-09-02 马西默有限公司 血糖监测系统
US6064898A (en) * 1998-09-21 2000-05-16 Essential Medical Devices Non-invasive blood component analyzer
US20030032064A1 (en) * 2001-03-01 2003-02-13 Umass/Worcester Correction of spectra for subject diversity
CN1642478A (zh) * 2002-03-25 2005-07-20 山越宪一 不抽血的血液成分值测量装置及方法
CN101400301A (zh) * 2006-03-10 2009-04-01 松下电器产业株式会社 生物体成分浓度测定装置
CN101799412A (zh) * 2010-04-07 2010-08-11 中国科学院自动化研究所 无创测量人体血糖的近红外光谱透射方法及装置
CN204147036U (zh) * 2014-09-04 2015-02-11 深圳市前海安测信息技术有限公司 无创血糖测定系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206623B2 (en) * 2000-05-02 2007-04-17 Sensys Medical, Inc. Optical sampling interface system for in vivo measurement of tissue
US6853854B1 (en) * 1998-09-18 2005-02-08 Q Step Technologies, Llc Noninvasive measurement system
KR100493154B1 (ko) * 2002-03-20 2005-06-03 삼성전자주식회사 광음향분광학을 이용한 비침습적 생체성분 측정장치
KR100464324B1 (ko) * 2003-03-17 2005-01-03 삼성전자주식회사 목적물의 성분농도 측정방법 및 장치
KR20060044058A (ko) * 2004-11-11 2006-05-16 삼성전자주식회사 투과반사를 이용한 혈중성분 측정 장치 및 방법
CN101461712B (zh) * 2007-12-19 2010-10-20 中国科学院电子学研究所 可佩戴式无创血糖快速检测仪
CN104000599B (zh) * 2014-05-07 2016-06-01 辛勤 一种测量血糖浓度的方法及便携式设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192273A (zh) * 1995-06-07 1998-09-02 马西默有限公司 血糖监测系统
US6064898A (en) * 1998-09-21 2000-05-16 Essential Medical Devices Non-invasive blood component analyzer
US20030032064A1 (en) * 2001-03-01 2003-02-13 Umass/Worcester Correction of spectra for subject diversity
CN1642478A (zh) * 2002-03-25 2005-07-20 山越宪一 不抽血的血液成分值测量装置及方法
CN101400301A (zh) * 2006-03-10 2009-04-01 松下电器产业株式会社 生物体成分浓度测定装置
CN101799412A (zh) * 2010-04-07 2010-08-11 中国科学院自动化研究所 无创测量人体血糖的近红外光谱透射方法及装置
CN204147036U (zh) * 2014-09-04 2015-02-11 深圳市前海安测信息技术有限公司 无创血糖测定系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509178A (zh) * 2021-06-02 2021-10-19 圣点世纪科技股份有限公司 一种基于差温状态监控的无创血糖检测方法及装置
CN113509178B (zh) * 2021-06-02 2022-07-08 圣点世纪科技股份有限公司 一种基于差温状态监控的无创血糖检测方法及装置
CN113598763A (zh) * 2021-08-05 2021-11-05 重庆大学 一种基于mic-pca-narx校正算法的无创血糖检测装置及方法

Also Published As

Publication number Publication date
CN104257390A (zh) 2015-01-07
CN104257390B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2016033815A1 (zh) 无创血糖测定方法及系统
WO2016086448A1 (zh) 基于光谱技术的无创血糖测量系统及其测量方法
EP0261789B1 (en) Feedback-controlled method and apparatus for processing signals
US20050192488A1 (en) Non-invasive method and apparatus for determining a physiological parameter
AU2001240744B2 (en) Non-invasive measurement of skin bilirubin level
US4859056A (en) Multiple-pulse method and apparatus for use in oximetry
HRP20201563T1 (hr) Uređaj za neinvazivno mjerenje razine šećera u krvi
CN107666860B (zh) 光电体积描记装置
WO2005081965A3 (en) Spectral imaging calibration
WO2009004541A1 (en) Spectroscopy measurements of the concentration of a substance in a scattering tissue
US20090096748A1 (en) Input device with physiological measuring function
US10932702B2 (en) Method for noninvasively determining blood glucose concentration
JP2008157809A (ja) レーザ出力制御装置および光学測定ユニット
EP0408637B1 (en) Near-infrared analysis of tissue fat percentage
KR101215081B1 (ko) 단전원 증폭 모듈을 이용한 산소포화도 측정 장치
US20050171416A1 (en) Noninvasive measurement system
Du et al. Removal of interference signals due to water from in vivo near-infrared (NIR) spectra of blood glucose by region orthogonal signal correction (ROSC)
CN108593593A (zh) 串行双红外光谱无创血糖测量装置
JPH07255709A (ja) 濃度測定装置
JPS63275327A (ja) 診断装置
CN107928682B (zh) 一种信息采集传感器以及生理参数获取装置
Turgunova et al. Development of the device for study of the skin characteristics
Mishra et al. A portable system for real-time non-contact blood oxygen saturation measurements
Kossowski et al. Non-invasive blood glucose measurement
WO2023224176A1 (en) Device and method for measuring blood constituents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 27.07.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14901131

Country of ref document: EP

Kind code of ref document: A1