WO2016033808A1 - Industrial controller - Google Patents

Industrial controller Download PDF

Info

Publication number
WO2016033808A1
WO2016033808A1 PCT/CN2014/086051 CN2014086051W WO2016033808A1 WO 2016033808 A1 WO2016033808 A1 WO 2016033808A1 CN 2014086051 W CN2014086051 W CN 2014086051W WO 2016033808 A1 WO2016033808 A1 WO 2016033808A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
controller
contacts
interface
industrial
Prior art date
Application number
PCT/CN2014/086051
Other languages
French (fr)
Inventor
Xiaobo Wang
Liang He
Original Assignee
Abb Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ltd filed Critical Abb Technology Ltd
Priority to PCT/CN2014/086051 priority Critical patent/WO2016033808A1/en
Publication of WO2016033808A1 publication Critical patent/WO2016033808A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/64Means for preventing incorrect coupling
    • H01R13/641Means for preventing incorrect coupling by indicating incorrect coupling; by indicating correct or full engagement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus

Definitions

  • Embodiments of the present disclosure relate to an industrial controller, particular to an industrial controller with the function of automatic identification for a type of a module.
  • An industrial controller is widely used as a control device for small range process control. Normally, the industrial controller contains several input/output ports and configurable process control algorithm. After inputs/output ports are connected to a field signal and a process control algorithm is configured, a user can establish a control loop so as to control the process variables to desired set points.
  • the industrial controller can be normally used for only one control loop.
  • the complexity of control process brings different input/output types for fie control loop.
  • level control using an ON/OFF valve needs one analog input and one digital output
  • temperature control of heating a chamber using steam flows needs one temperature input and one analog output.
  • input/output modules of the industrial controller are usually modularized and can be customized for different applications.
  • the customization of the industrial controller requires manual operation. After the selected input/output module is plugged in, usually in the form of a board, the user needs to identify the type of such module and configure software thereof. This process requires extra time for configuring the module in the firmware. Moreover, if there are many types of modules, wrong configuration of input/output modules may cause damage to the modules itself or even to the controller.
  • One of the objectives of the present disclosure is to propose an industrial controller with automatic module type identification.
  • a type of a module can be automatically identified by using a simple resistor and a parallel/serial convertor. Configuration data will also be automatically loaded to match the module plugged.
  • an industrial controller which comprises a controller interface adapted to form electrical connection with at least one module, type of which is to be identified.
  • the controller interface has a plurality of contacts, at least two of the contacts are each connected to a voltage supply via a corresponding resistor unit respectively, and a voltage level of at least one of the at least two contacts will be changed after the controller interface is connected with the module.
  • the industrial controller also comprises a control unit configured to communicate with the controller interface, and identify the type of the module based on the voltage level at the at least two contacts after the module is connected with the controller interface.
  • control unit can be configured to identify the type of the module based on the comparison of the voltage level at the at least two contacts with a preset value.
  • the preset value may be zero.
  • the corresponding resistor unit can comprise at least one resistor.
  • the voltage supply can be a DC voltage supply provided by a power supply.
  • a first side of the resistor unit can be connected to a corresponding one of the at least two contacts and a second side of the resistor unit is connected to the voltage supply, wherein the first side of the resistor unit is further connected to the control unit which receives a high level voltage if the contact is not grounded or a low level voltage if the contact is grounded by the module.
  • the industrial controller can comprise an I/O board disengageably coupled to the control unit, wherein the I/O board comprises the at least one controller interface.
  • three of the contacts can be connected to the voltage supply via the corresponding resistor unit respectively.
  • the resistor unit may comprise three resistors, with each of the three resistors connected to one of the three contacts.
  • the industrial controller can comprise a parallel-to-serial converter for sending serial signals to the control unit and sending parallel signals to the controller interface.
  • a parallel-to-serial converter for sending serial signals to the control unit and sending parallel signals to the controller interface.
  • the industrial controller can be a single loop controller.
  • a module to be used with the industrial controller as defined above which comprises a module interface adapted to form electrical connection with a controller interface of the industrial controller.
  • the module interface has a plurality of contacts.
  • At least one of the contacts can be grounded.
  • the industrial controller can be a single loop controller.
  • an industrial controller system which comprises an industrial controller as defined above; and at least one module as defined above.
  • the module interface of the module is adapted to be disengageably coupled to the controller interface of the industrial controller.
  • a method for identifying the type of the module used in the industrial controller system comprises connecting at least one module to the industrial controller through the controller interface; detecting voltage levels of the at least two contacts; and identifying type of the module based on the detected voltage levels.
  • the present disclosure is advantageous in general that it realizes automatic input/output module identification by a simple way and easily obtained components, which allows for cost effectiveness, convenient manufacturing, small layout and configuration flexibility for the user.
  • ports on the control unit can be greatly reduced in number.
  • Fig. 1 illustrates a schematic diagram of an industrial control system, which includes an industrial controller and at least one module, according to an embodiment of the present disclosure
  • Fig. 2 illustrates examples of controller interface and module interface according to an embodiment of the present disclosure.
  • Fig. 1 illustrates a schematic diagram of an industrial control system 300, which includes an industrial controller 100 and at least one module 200, according to an embodiment of the present disclosure.
  • an industrial control system 300 includes an industrial controller 100 and a module 200. It is to be understood that although Fig. 1 shows only one module 200, there can be a plurality of modules simultaneously used with one industrial controller 100.
  • the industrial control system 300 can be either a standalone apparatus used in a control system, or a functional block embedded in such control system. The form of the industrial control system 300 is not intended to be limited by any means.
  • the industrial controller 100 includes a control unit 140 for processing control signals from the modules.
  • the control unit 140 can be a micro controller unit (MCU) . It can be provided with a power supply 110 for powering the industrial control system 300.
  • the industrial controller 100 also includes an I/O board 120 having at least one controller interface 130. A signal received by the controller interface 130 can be transmitted to the control unit 140 via the I/O board 120. Similarly, the control unit 140 can transmit a signal to controller interface 130 via the I/O board 120.
  • both the power supply 110 and the I/O board 120 can be modularized and disengageably connected to the control unit 140, as illustrated by the connection among the I/O board 120, the control unit 140 and the power supply 110 via solid lines.
  • either the power supply 110 or the I/O board 120 can be fixed onto the control unit 140. In the present disclosure, the number of the power supply 110 and the I/O board 120 is not intended to be limited.
  • the controller interface 130 has a plurality of contacts 131a, 131b (shown in Fig. 2) , e. g. , in the form of several pins/sockets in a row.
  • the controller interface 130 can be adapted to be coupled with the module 200 via a module interface 210 having a plurality of contacts 211a, 211b, etc. (shown in Fig. 2) .
  • a particular module 200 is coupled with the controller interface 130, an electrical connection is formed between the module 200 and the industrial controller 100 for signals/data transmission.
  • the module 200 may be an input module such as a temperature sensor, which generates and transmits temperature signals to the industrial controller 100 via the connection of the controller interface 130 and the module interface 210.
  • the module 200 may also be an output module for receiving processed signals/data sent from the control unit 140 and outputting such signals/data to the control system.
  • the above electrical connection can be achieved by coupling the contacts 131a, 131b, etc. of the controller interface 130 with the respective contacts 211a, 211b, etc. of the module interface 210.
  • Such contacts may be in the form of pairs of pins and sockets, or in the form of other electrical contacts which allows for disengageable connection therebetween.
  • the module interface 210 of the module 200 is disengageably coupled to the controller interface 130 of the industrial controller 100.
  • the connection between the contacts of the controller interface 130 and the contacts of the module interface 210 is unique, meaning that the contacts of the controller interface 130 would not be mismatched with the contacts of the module interface 210.
  • a parallel-to-serial converter 150 located between the controller 130 and the control unit 140.
  • the parallel-to-serial converter 150 can send serial signals to the control unit 140, and sends parallel signals to the controller interface 130.
  • the parallel-to-serial converter 150 is mounted on the I/O board 120.
  • the parallel-to-serial converter 150 can receive parallel signals from the controller interface 130 and converts the parallel signals into serial signals.
  • the parallel-to-serial converter 150 can also receive serial signals from the control unit 140 and convert the serial signals into parallel signals. By this configuration, the number of input/output ports on the control unit 140 used for transmitting signals may be greatly reduced.
  • An example of the parallel-to-serial converter 150 is 74HC165 by NXP Semiconductors.
  • Fig. 2 illustrates examples of a controller interface 130 and a module interface 210 according to an embodiment of the present disclosure.
  • resistor units 132a, 132b there are two contacts 131a, 131b connected to a voltage supply V via respective resistor units 132a, 132b.
  • the resistor units 132a, 132b may purely consist of resistors, which can be in the form of, for example, a single resistor, a number of serially connected resistors, a number of parallelly connected resistors, or a number of resistors in both serial and parallel.
  • resistor unit here shall not be limited to the above only, instead all kinds of components or combinations of components having same or similar function shall be covered. As illustrated by Fig.
  • the contact 131a may be connected to the voltage supply V via the resistor unit 132a, and the contact 131b may be connected to the voltage supply via the resistor unit 132b.
  • the voltage supply V is preferably a DC voltage supply provided by the power supply 110, i. e. , the contacts 131a, 131b are connected to the power supply 110 via their respective resistor units. Specifically, a first side of each of the two resistor units 132a, 132b is connected to respective one of the two contacts 131a, 131b and a second side of each of the two resistor units 132a, 132b is connected to the voltage supply V.
  • each of the two resistor units 132a, 132b is further connected to the control unit 140 (denoted by D1 and D2 in Fig. 2) which will detect a voltage normally equal to V if the contact is not mated with the module interface 210, or detect a different voltage (normally about zero volts when grounded) if the contact is grounded by the module 200 or supplied with a different voltage.
  • the control unit 140 By measuring the detected voltages at D1 and D2, and sending the values thereof to the control unit 140, types of the particular module 200 being connected to the industrial controller 100 can be identified.
  • Other contacts except the two contacts 131a, 131b are used for receiving parallel signals from the module 200.
  • the two types of module interfaces 210 in Fig. 2 there are counterpart contacts 211a, 211b on each of the module interfaces 210 for mating with the contacts 131a, 131b of the controller interface 130.
  • the first module interface 210 in Fig. 2 has two contacts 211a, 211b both grounded, while the second module interface 210 in Fig. 2 has only one contact 211a grounded and the other contact 211b being a “dummy” contact connecting to nowhere. That is, in one embodiment, at least one contact of the module interface 210 is grounded.
  • the control unit 140 is able to identify the type of the module 200 being connected. That is, in one embodiment, the type of the module 200 is identifiable by detecting which of the contacts is/are grounded by its/their corresponding contacts of the module interface 210, as long as the type of module 200 is preset in the control unit 140.
  • the module is capable of grounding particular contact (s) intentionally, and this implementation is described by taking reference to Fig. 2.
  • the module does not necessarily ground the contact (s) of the controller interface of the industrial controller, because the intended purpose can be realized once the contact (s) of the module interface of the module can intentionally alter the value of voltage level at particular contact (s) of the controller interface of the industrial controller.
  • the contact (s) of the module interface may be configured to supply another voltage which may be identical with or different from the voltage value of voltage supply V of the industrial controller.
  • the control unit 140 may read the voltage level at every contact and compare the voltage readings with, for example, a lookup table with configuration data for identifying which type of the module is mated with the industrial controller.
  • the user when the user would like to use the industrial control system 300 according to the present disclosure, he/she needs to first preset the industrial controller 100 with, for example, a lookup table with configuration data, which indicates that certain type (s) of modules is/are associated with the detected voltages at the contacts of the controller interface 130, because different contact (s) of the module interface 210 may alter the detected voltage differently.
  • the configuration data After the user sets the configuration data, one or more modules can be connected to or mated with the controller interface 130.
  • the industrial controller 100 can be powered on followed by automatic module identification.
  • a configuration for that particular type of module 200 can be automatically loaded by the control unit 140.
  • a function test passes, the control system 300 will automatically operates by itself. Otherwise, if such function test fails (e. g. wrong module type) , the industrial controller 100 is turned off for troubleshooting by the user.
  • the industrial controller, module and the industrial control system according to the present disclosure are advantageous because the industrial controller only uses several resistors to realize automatic input/output module identification, which saves time for test and configuration, and reduces risks caused by wrong configuration.
  • the industrial controller only resistors and several contacts are included compared with conventional controllers, cost is relatively low and mass production is easily achieved.
  • there is no significant size increase which is suitable for the industrial controller especially the single loop controller with fixed size requirement.
  • address table can be easily redesigned for different types of input/output modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Programmable Controllers (AREA)
  • Control By Computers (AREA)

Abstract

An industrial controller (100) is disclosed. The industrial controller (100) comprises a controller interface (130) adapted to form electrical connection with at least one module (200), type of which is to be identified, wherein the controller interface (130) has a plurality of contacts, at least two of the contacts (131a, 131b) are each connected to a voltage supply via a corresponding resistor unit (132a, 132b) respectively, and a voltage level of at least one of the at least two contacts (131a, 131b) will be changed after the controller interface (130) is connected with the module (200); and a control unit (140) configured to communicate with the controller interface (130), and identify the type of the module (200) based on the voltage level at the at least two contacts (131a, 131b) after the module (200) is connected with the controller interface (130). There is also disclosed a module (200) to be used with the industrial controller (100), an industrial controller system (300) and a method of using the industrial control system (300). With the industrial controller, the module and the system of the present invention, it is realized that the industrial controller can identify the type of the module being mounted thereon automatically.

Description

INDUSTRIAL CONTROLLER
Field of Invention
Embodiments of the present disclosure relate to an industrial controller, particular to an industrial controller with the function of automatic identification for a type of a module.
Background of Invention
An industrial controller is widely used as a control device for small range process control. Normally, the industrial controller contains several input/output ports and configurable process control algorithm. After inputs/output ports are connected to a field signal and a process control algorithm is configured, a user can establish a control loop so as to control the process variables to desired set points.
According to an application of such industrial controller, the industrial controller can be normally used for only one control loop. However, the complexity of control process brings different input/output types for fie control loop. For example, level control using an ON/OFF valve needs one analog input and one digital output, and temperature control of heating a chamber using steam flows needs one temperature input and one analog output. In order to make use of an industrial controller, input/output modules of the industrial controller are usually modularized and can be customized for different applications.
Normally, the customization of the industrial controller requires manual operation. After the selected input/output module is plugged in, usually in the form of a board, the user needs to identify the type of such module and configure software thereof. This process requires extra time for configuring the module in the firmware. Moreover, if there are many types of modules, wrong configuration of input/output modules may cause damage to the modules itself or even to the controller.
Summary of Invention
One of the objectives of the present disclosure is to propose an industrial controller with automatic module type identification. A type of a module can be automatically identified by using a simple resistor and a parallel/serial convertor. Configuration data will also be  automatically loaded to match the module plugged.
According to one aspect of the present disclosure, there is provided an industrial controller, which comprises a controller interface adapted to form electrical connection with at least one module, type of which is to be identified. The controller interface has a plurality of contacts, at least two of the contacts are each connected to a voltage supply via a corresponding resistor unit respectively, and a voltage level of at least one of the at least two contacts will be changed after the controller interface is connected with the module. The industrial controller also comprises a control unit configured to communicate with the controller interface, and identify the type of the module based on the voltage level at the at least two contacts after the module is connected with the controller interface.
According to one embodiment of the present disclosure, the control unit can be configured to identify the type of the module based on the comparison of the voltage level at the at least two contacts with a preset value. Preferably, the preset value may be zero.
According to one embodiment of the present disclosure, the corresponding resistor unit can comprise at least one resistor.
According to one embodiment of the present disclosure, the voltage supply can be a DC voltage supply provided by a power supply.
According to one embodiment of the present disclosure, a first side of the resistor unit can be connected to a corresponding one of the at least two contacts and a second side of the resistor unit is connected to the voltage supply, wherein the first side of the resistor unit is further connected to the control unit which receives a high level voltage if the contact is not grounded or a low level voltage if the contact is grounded by the module. By using simple resistors and detecting the voltage levels on the first sides of the resistors, the control unit is able to detect if certain contact is grounded, and identify which type of the module is connected with correspondences preset in the control unit.
According to one embodiment of the present disclosure, the industrial controller can comprise an I/O board disengageably coupled to the control unit, wherein the I/O board comprises the at least one controller interface.
According to one embodiment of the present disclosure, three of the contacts can be connected to the voltage supply via the corresponding resistor unit respectively. Preferably, the resistor unit may comprise three resistors, with each of the three resistors connected to one of the three contacts.
According to one embodiment of the present disclosure, the industrial controller can comprise a parallel-to-serial converter for sending serial signals to the control unit and sending parallel signals to the controller interface. With this parallel-to-serial converter, the number of port on the control unit used for transmitting signals with the module may be greatly reduced.
According to one embodiment of the present disclosure, the industrial controller can be a single loop controller.
According to another aspect of the present disclosure, there is provided a module to be used with the industrial controller as defined above, which comprises a module interface adapted to form electrical connection with a controller interface of the industrial controller. The module interface has a plurality of contacts.
According to one embodiment of the present disclosure, at least one of the contacts can be grounded.
According to one embodiment of the present disclosure, the industrial controller can be a single loop controller.
According to another aspect of the present disclosure, there is provided an industrial controller system, which comprises an industrial controller as defined above; and at least one module as defined above. The module interface of the module is adapted to be disengageably coupled to the controller interface of the industrial controller.
According to another aspect of the present disclosure, there is provided a method for identifying the type of the module used in the industrial controller system as defined above, the method comprises connecting at least one module to the industrial controller through the controller interface; detecting voltage levels of the at least two contacts; and identifying type of the module based on the detected voltage levels.
The present disclosure is advantageous in general that it realizes automatic input/output module identification by a simple way and easily obtained components, which allows for cost effectiveness, convenient manufacturing, small layout and configuration flexibility for the user. In addition, with the parallel-to-serial converter of the present disclosure, ports on the control unit can be greatly reduced in number.
Brief Description of Drawings
Embodiments of the invention will now be described, by way of example only, with  reference to the accompanying drawings, in which:
Fig. 1 illustrates a schematic diagram of an industrial control system, which includes an industrial controller and at least one module, according to an embodiment of the present disclosure; and
Fig. 2 illustrates examples of controller interface and module interface according to an embodiment of the present disclosure.
Detailed Deseription of Embodiments
Reference will now be made in detail to several embodiments of the present disclosure, example of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures, and may indicates similar or like functionality. The figures depict embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the present disclosure described therein.
Fig. 1 illustrates a schematic diagram of an industrial control system 300, which includes an industrial controller 100 and at least one module 200, according to an embodiment of the present disclosure.
In accordance with this embodiment, as shown in Fig. 1, an industrial control system 300 includes an industrial controller 100 and a module 200. It is to be understood that although Fig. 1 shows only one module 200, there can be a plurality of modules simultaneously used with one industrial controller 100. The industrial control system 300 can be either a standalone apparatus used in a control system, or a functional block embedded in such control system. The form of the industrial control system 300 is not intended to be limited by any means.
According to an embodiment of the present disclosure, the industrial controller 100 includes a control unit 140 for processing control signals from the modules. The control unit 140 can be a micro controller unit (MCU) . It can be provided with a power supply 110 for powering the industrial control system 300. The industrial controller 100 also includes an I/O board 120 having at least one controller interface 130. A signal received by the controller interface 130 can be transmitted to the control unit 140 via the I/O board 120. Similarly, the control unit 140 can transmit a signal to controller interface 130 via the I/O board 120. As shown in Figure 1, both the power supply 110 and the I/O board 120 can be modularized and disengageably  connected to the control unit 140, as illustrated by the connection among the I/O board 120, the control unit 140 and the power supply 110 via solid lines. In another embodiment, either the power supply 110 or the I/O board 120 can be fixed onto the control unit 140. In the present disclosure, the number of the power supply 110 and the I/O board 120 is not intended to be limited.
According to an embodiment of the present disclosure, the controller interface 130 has a plurality of  contacts  131a, 131b (shown in Fig. 2) , e. g. , in the form of several pins/sockets in a row. The controller interface 130 can be adapted to be coupled with the module 200 via a module interface 210 having a plurality of  contacts  211a, 211b, etc. (shown in Fig. 2) . When a particular module 200 is coupled with the controller interface 130, an electrical connection is formed between the module 200 and the industrial controller 100 for signals/data transmission. In one embodiment, the module 200 may be an input module such as a temperature sensor, which generates and transmits temperature signals to the industrial controller 100 via the connection of the controller interface 130 and the module interface 210. In another embodiment, the module 200 may also be an output module for receiving processed signals/data sent from the control unit 140 and outputting such signals/data to the control system. The above electrical connection can be achieved by coupling the  contacts  131a, 131b, etc. of the controller interface 130 with the  respective contacts  211a, 211b, etc. of the module interface 210. Such contacts may be in the form of pairs of pins and sockets, or in the form of other electrical contacts which allows for disengageable connection therebetween. In other words, the module interface 210 of the module 200 is disengageably coupled to the controller interface 130 of the industrial controller 100. Preferably, the connection between the contacts  of the controller interface 130 and the contacts of the module interface 210 is unique, meaning that the contacts of the controller interface 130 would not be mismatched with the contacts of the module interface 210.
According to an embodiment of the present disclosure, there is provided with a parallel-to-serial converter 150 located between the controller 130 and the control unit 140. The parallel-to-serial converter 150 can send serial signals to the control unit 140, and sends parallel signals to the controller interface 130. Preferably, the parallel-to-serial converter 150 is mounted on the I/O board 120. The parallel-to-serial converter 150 can receive parallel signals from the controller interface 130 and converts the parallel signals into serial signals. The parallel-to-serial converter 150 can also receive serial signals from the control unit 140 and convert the serial signals into parallel signals. By this configuration, the number of input/output ports on the control unit 140 used for transmitting signals may be greatly reduced.  An example of the parallel-to-serial converter 150 is 74HC165 by NXP Semiconductors.
Fig. 2 illustrates examples of a controller interface 130 and a module interface 210 according to an embodiment of the present disclosure.
In accordance with this embodiment, as shown in Fig. 2, there are two  contacts  131a, 131b connected to a voltage supply V via  respective resistor units  132a, 132b. In one embodiment, the  resistor units  132a, 132b may purely consist of resistors, which can be in the form of, for example, a single resistor, a number of serially connected resistors, a number of parallelly connected resistors, or a number of resistors in both serial and parallel. However, the term “resistor unit” here shall not be limited to the above only, instead all kinds of components or combinations of components having same or similar function shall be covered. As illustrated by Fig. 2, the contact 131a may be connected to the voltage supply V via the resistor unit 132a, and the contact 131b may be connected to the voltage supply via the resistor unit 132b. The voltage supply V is preferably a DC voltage supply provided by the power supply 110, i. e. , the  contacts  131a, 131b are connected to the power supply 110 via their respective resistor units. Specifically, a first side of each of the two  resistor units  132a, 132b is connected to respective one of the two  contacts  131a, 131b and a second side of each of the two  resistor units  132a, 132b is connected to the voltage supply V. The first side of each of the two  resistor units  132a, 132b is further connected to the control unit 140 (denoted by D1 and D2 in Fig. 2) which will detect a voltage normally equal to V if the contact is not mated with the module interface 210, or detect a different voltage (normally about zero volts when grounded) if the contact is grounded by the module 200 or supplied with a different voltage. By measuring the detected voltages at D1 and D2, and sending the values thereof to the control unit 140, types of the particular module 200 being connected to the industrial controller 100 can be identified. Other contacts except the two  contacts  131a, 131b are used for receiving parallel signals from the module 200.
According to an embodiment of the present disclosure, as seen from the two types of module interfaces 210 in Fig. 2, there are  counterpart contacts  211a, 211b on each of the module interfaces 210 for mating with the  contacts  131a, 131b of the controller interface 130. The first module interface 210 in Fig. 2 has two  contacts  211a, 211b both grounded, while the second module interface 210 in Fig. 2 has only one contact 211a grounded and the other contact 211b being a “dummy” contact connecting to nowhere. That is, in one embodiment, at least one contact of the module interface 210 is grounded. In other words, if there is no module 200 connected to the controller interface 130, all the detected voltages D1 and D2 at the first sides of all the resistors are substantially equal to V; if there is a module 200 connected to or mated with  the controller interface 130, at least one of the contacts of the controller interface 130 is grounded, with the detected voltage at D1 and/or D2 substantially equal to zero. If two of the contacts are used to alter the detected voltage (s) at the first side (s) of the resistor (s) , there are totally 22-1 = 3 types of modules can be preset in the control unit 140, in which the three types of modules include a first type with  contact  211a and 211b both grounded, a second type with only contact 211a grounded, and a third type with only contact 211b grounded (not shown in Fig. 2) . By reading the voltage level at the first side of each resistor, the control unit 140 is able to identify the type of the module 200 being connected. That is, in one embodiment, the type of the module 200 is identifiable by detecting which of the contacts is/are grounded by its/their corresponding contacts of the module interface 210, as long as the type of module 200 is preset in the control unit 140.
According to another embodiment of the present disclosure, there can be more than two contacts used to alter the detected voltage (s) at the first side (s) of the resistor (s) , which allows for more types of modules being identifiable. For example, three contacts used to alter the detected voltage (s) allow for 23-1 = 7 types of modules being identifiable, and four contacts used to alter the detected voltage (s) allow for 24-1 = 15 types of modules being identifiable, etc. According to the embodiment as discussed above, the module is capable of grounding particular contact (s) intentionally, and this implementation is described by taking reference to Fig. 2. However, it should be noted that the module does not necessarily ground the contact (s) of the controller interface of the industrial controller, because the intended purpose can be realized once the contact (s) of the module interface of the module can intentionally alter the value of voltage level at particular contact (s) of the controller interface of the industrial controller. For example, the contact (s) of the module interface may be configured to supply another voltage which may be identical with or different from the voltage value of voltage supply V of the industrial controller. In such cases, the control unit 140 may read the voltage level at every contact and compare the voltage readings with, for example, a lookup table with configuration data for identifying which type of the module is mated with the industrial controller.
Also, it is to be noted that there are many different types of the industrial controller, such as a single loop controller. However, it is not intended to limit the type of the controller, and all controllers within the scope and spirit of this disclosure are meant to be protected.
According to an embodiment of the present disclosure, when the user would like to use the industrial control system 300 according to the present disclosure, he/she needs to first preset the industrial controller 100 with, for example, a lookup table with configuration data, which  indicates that certain type (s) of modules is/are associated with the detected voltages at the contacts of the controller interface 130, because different contact (s) of the module interface 210 may alter the detected voltage differently. After the user sets the configuration data, one or more modules can be connected to or mated with the controller interface 130. Then the industrial controller 100 can be powered on followed by automatic module identification. By detecting which type of module 200 is installed on the industrial controller 100, a configuration for that particular type of module 200 can be automatically loaded by the control unit 140. Then, if a function test passes, the control system 300 will automatically operates by itself. Otherwise, if such function test fails (e. g. wrong module type) , the industrial controller 100 is turned off for troubleshooting by the user.
The industrial controller, module and the industrial control system according to the present disclosure are advantageous because the industrial controller only uses several resistors to realize automatic input/output module identification, which saves time for test and configuration, and reduces risks caused by wrong configuration. In addition, because only resistors and several contacts are included compared with conventional controllers, cost is relatively low and mass production is easily achieved. Also, there is no significant size increase, which is suitable for the industrial controller especially the single loop controller with fixed size requirement. Lastly, address table can be easily redesigned for different types of input/output modules.
Although claims have been formulated in this application to particular combinations of features, it should be understood that the scope of the disclosure of the present disclosure also includes any novel features or any novel combinations of features disclosed herein either explicitly or implicitly or any generalisation thereof, whether or not it relates to the same invention as presently claimed in any claim. The applicants hereby give notice that new claims may be formulated to such features and/or combinations of features during the prosecution of the present application or of any further application derived therefrom.

Claims (14)

  1. An industrial controller (100) , comprising:
    a controller interface (130) adapted to form electrical connection with at least one module (200) , type of which is to be identified, wherein the controller interface (130) has a plurality of contacts, at least two of the contacts (131a, 131b) are each connected to a voltage supply via a corresponding resistor unit (132a, 132b) respectively, and a voltage level of at least one of the at least two contacts (131a, 131b) will be changed after the controller interface (130) is connected with the module (200) ; and
    a control unit (140) configured to communicate with the controller interface (130) , and identify the type of the module (200) based on the voltage level at the at least two contacts (131a, 131b) after the module (200) is connected with the controller interface (130) .
  2. The industrial controller (100) according to Claim 1, wherein the control unit (140) is configured to identify the type of the module (200) based on the comparison of the voltage level at the at least two contacts (131a, 131b) with a preset value.
  3. The industrial controller (100) according to Claim 2, wherein the preset value is zero.
  4. The industrial controller (100) according to any of the preceding claims, wherein the corresponding resistor unit (132a, 132b) comprises at least one resistor (132a, 132b) .
  5. The industrial controller (100) according to any of the preceding claims, wherein the voltage supply is a DC voltage supply provided by a power supply (110) .
  6. The industrial controller (100) according to any of the preceding claims, wherein a first side of the resistor unit (132a, 132b) is connected to a corresponding one of the at least two contacts (131a, 131b) and a second side of the resistor unit (132a, 132b) is connected to the voltage supply, wherein the first side of the resistor unit (132a, 132b) is further connected to the control unit (140) which receives a high level voltage if the contact is not grounded or a low level voltage if the contact is grounded by the module (200) .
  7. The industrial controller (100) according to any of the preceding claims, further comprising an I/O board (120) disengageably coupled to the control unit (140) , wherein the I/O board (120) comprises the at least one controller interface (130) .
  8. The industrial controller (100) according to any of the preceding claims, wherein three of the contacts are connected to the voltage supply via the corresponding resistor unit (132) respectively.
  9. The industrial controller (100) according to any of the preceding claims, further comprising a parallel-to-serial converter (150) for sending serial signals to the control unit (140) and sending parallel signals to the controller interface (130) .
  10. The industrial controller (100) according to any of the preceding claims, wherein the industrial controller is a single loop controller.
  11. A module (200) to be used with the industrial controller (100) according to any of claims 1-10, comprising:
    a module interface (210) adapted to form electrical connection with a controller interface (130) of the industrial controller (100) ,
    wherein the module interface (210) has a plurality of contacts (211a, 211b) adapted to mate with the contacts (131a, 131b) of the controller interface (130) .
  12. The module (200) according to claim 11, wherein at least one of the contacts of the module interface (210) is grounded.
  13. An industrial control system (300) , comprising
    an industrial controller (100) according to any of claims 1-10; and 
    at least one module (200) according to claim 11 or 12;
    wherein the module interface (210) of the module (200) is adapted to be disengageably coupled to the controller interface (130) of the industrial controller (100) .
  14. A method of using an industrial control system (300) according to claim 13, comprising:
    connecting at least one module to the industrial controller through the controller interface;
    detecting voltage levels of the at least two contacts (131a, 131b) ; and
    identifying type of the module based on the detected voltage levels.
PCT/CN2014/086051 2014-09-05 2014-09-05 Industrial controller WO2016033808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086051 WO2016033808A1 (en) 2014-09-05 2014-09-05 Industrial controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086051 WO2016033808A1 (en) 2014-09-05 2014-09-05 Industrial controller

Publications (1)

Publication Number Publication Date
WO2016033808A1 true WO2016033808A1 (en) 2016-03-10

Family

ID=55439051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086051 WO2016033808A1 (en) 2014-09-05 2014-09-05 Industrial controller

Country Status (1)

Country Link
WO (1) WO2016033808A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525325A (en) * 2018-04-24 2018-09-14 深圳小西科技有限公司 A kind of building block system instruction module, host apparatus and modular system
CN109086235A (en) * 2018-08-10 2018-12-25 深圳市吉影科技有限公司 A kind of underwater common apparatus detection identification and control method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2870027Y (en) * 2006-02-28 2007-02-14 深圳迈瑞生物医疗电子股份有限公司 Tele-detection monitoring system monitoring terminal capable of automatically identifying lead type
US20080133165A1 (en) * 2006-12-04 2008-06-05 Advantest Corporation Test apparatus and device interface
CN102193503A (en) * 2010-03-15 2011-09-21 研祥智能科技股份有限公司 Industrial control mainboard and method thereof for identifying external device
US20130272692A1 (en) * 2012-04-16 2013-10-17 Samsung Electronics Co., Ltd. Photographing apparatus for recognizing type of external device, method of controlling the photographing apparatus, and the external device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2870027Y (en) * 2006-02-28 2007-02-14 深圳迈瑞生物医疗电子股份有限公司 Tele-detection monitoring system monitoring terminal capable of automatically identifying lead type
US20080133165A1 (en) * 2006-12-04 2008-06-05 Advantest Corporation Test apparatus and device interface
CN102193503A (en) * 2010-03-15 2011-09-21 研祥智能科技股份有限公司 Industrial control mainboard and method thereof for identifying external device
US20130272692A1 (en) * 2012-04-16 2013-10-17 Samsung Electronics Co., Ltd. Photographing apparatus for recognizing type of external device, method of controlling the photographing apparatus, and the external device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525325A (en) * 2018-04-24 2018-09-14 深圳小西科技有限公司 A kind of building block system instruction module, host apparatus and modular system
CN109086235A (en) * 2018-08-10 2018-12-25 深圳市吉影科技有限公司 A kind of underwater common apparatus detection identification and control method and system

Similar Documents

Publication Publication Date Title
US7746090B1 (en) System for testing connections of two connectors
US7928738B2 (en) Detecting system for detecting connection of connectors and connector assemblies having same
US7880734B2 (en) Comprehensive control system
US20110080046A1 (en) Master and slave power outlet system
JP2014134807A5 (en)
WO2016033808A1 (en) Industrial controller
US20130175336A1 (en) Input/Output Module and Method for Operating the Input/Output Module
US20170184670A1 (en) Test circuit board adapted to be used on serial advanced technology attachment connector
CN108732462B (en) Detection device and method
JP2017097688A5 (en)
US9312915B2 (en) Disconnection detecting apparatus and method
US20130166954A1 (en) Test apparatus for testing signal transmission of motherboard
CN106568471B (en) Sensor power supply and signal adjusting interface of machine state monitoring system
EP3312687A3 (en) On machine input/output (i/o) system with modular connections
CN110389278B (en) B2B connector assembly detection device that targets in place
US20130166937A1 (en) Universal serial bus hub
TWI569020B (en) Displaying device and testing method thereof
CN104459427A (en) Automatic testing device for two VGA interfaces
KR200446263Y1 (en) Cable tester
CN106548742B (en) Panel driving circuit
EP2728800A1 (en) Data communications
US10015893B2 (en) Automation field device
JP2019509582A5 (en)
JP2008082959A (en) Ecu function inspecting apparatus
CN113009382B (en) Custom interface monitoring method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901382

Country of ref document: EP

Kind code of ref document: A1