WO2016033720A1 - 钛系催化剂及其制备方法和应用 - Google Patents

钛系催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2016033720A1
WO2016033720A1 PCT/CN2014/085662 CN2014085662W WO2016033720A1 WO 2016033720 A1 WO2016033720 A1 WO 2016033720A1 CN 2014085662 W CN2014085662 W CN 2014085662W WO 2016033720 A1 WO2016033720 A1 WO 2016033720A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
ring
catalyst
Prior art date
Application number
PCT/CN2014/085662
Other languages
English (en)
French (fr)
Inventor
王勇
秦玉升
郭洪辰
王献红
王佛松
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Priority to PCT/CN2014/085662 priority Critical patent/WO2016033720A1/zh
Publication of WO2016033720A1 publication Critical patent/WO2016033720A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers

Definitions

  • the invention relates to the field of catalysts, in particular to titanium-based catalysts and preparation methods and applications.
  • Carbon dioxide is the main gas that causes the greenhouse effect, and it is also one of the most abundant carbon sources on the planet. It is also an inexpensive carbon and oxygen resource.
  • carbon dioxide is an important research topic in the synthesis of bulk basic chemicals, fuels and polymer materials. Among them, carbonic acid and epoxide are used as raw materials, and the aliphatic polycarbonate copolymerized by the catalyst is a fully degradable polymer material with good transparency and excellent performance of blocking oxygen and water. It is used as engineering plastics, biodegradable non-polluting materials, disposable pharmaceuticals and food packaging materials, adhesives and composite materials, and has wide application potential in food and medical packaging.
  • the technical problem to be solved by the present invention is to provide a titanium-based catalyst and a preparation method and application thereof, and the titanium-based catalyst provided by the invention can efficiently catalyze the dioxin by a high-efficiency catalyst. Copolymerization of carbon and epoxy compounds, and the resulting polyester is non-toxic.
  • the present invention provides a titanium-based catalyst, as shown in the formula (I),
  • R 1 is a C1-C20 alkylene group, a C1-C20 alkyleneoxy group, a C6-C20 arylene group, or a C6-C20-substituted arylene group;
  • R 2 , R 3 , and R 4 are independently selected from the group consisting of: H, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a fluorine-substituted C1-C20 alkyl group.
  • R 3 and R 4 and their adjacent carbons together form a closed ring
  • X is a halogen group, -NO 3 , CH 3 COO-, CCl 3 COO-, CF 3 COO-, ClO 4 -, BF 4 -, BPh 4 -, -CN, -N 3 , p-toluene, p-Toluenesulfonate, o-nitrophenoloxy, p-nitrophenoloxy, m-nitrophenoloxy, 2,4-dinitrophenoloxy, 3,5-dinitrophenoloxy, 2,4,6 - Trinitrophenoloxy, 3,5-dichlorophenoloxy, 3,5-difluorophenoloxy, 3,5-di-trifluoromethylphenoloxy or pentafluorophenol oxygen anion.
  • the R 2 and R 3 and the carbon adjacent thereto form a closed ring, which is a C6-C20 aromatic ring, a C6-C20 substituted aromatic ring, a C3-C20 alicyclic ring, a C3-C20 substituted alicyclic ring, a C3 to C20 heterocyclic ring or a C3 to C20 substituted heterocyclic ring;
  • the R 3 and R 4 and the carbon adjacent thereto form a closed ring, which is a C6-C20 aromatic ring, a C6-C20 substituted aromatic ring, a C3-C20 alicyclic ring, a C3-C20 substituted alicyclic ring, and a C3-C20 ring.
  • the catalyst has the structure of formula (I-a),
  • a, b, c, and d are independently selected from the group consisting of H, a C1-C20 alkyl group, a C6-C20 aryl group, a substituted C1-C20 alkyl group, or a substituted C6-C20 aryl group.
  • the R 1 is a structure of the formula (II), the formula (III), the formula (IV) or the formula (V).
  • R 5 , R 6 are independently selected from H, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , C(CH 3 ) 3 , OCH 3 , OCH 2 CH 3 , Cl, Br or NO 2 ,
  • n is an integer of 1 to 6.
  • the invention also provides a preparation method of a titanium-based catalyst, comprising:
  • R 1 is a C1-C20 alkylene group, a C1-C20 alkyleneoxy group, a C6-C20 arylene group, or a C6-C20-substituted arylene group;
  • R 2 , R 3 , and R 4 are independently selected from the group consisting of: H, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a fluorine-substituted C1-C20 alkyl group.
  • R 2 and R 3 and their adjacent carbons together form a closed ring
  • R 3 and R 4 and their adjacent carbons together form a closed ring
  • the base of the step 2) is NaH, KH, Rli, RONa or ROK,
  • R is a C1-C6 alkyl group.
  • the TiCl 3 .(THF) 3 is prepared as follows:
  • the molar ratio of the aldehyde compound represented by the formula (VI-a) to the diamine represented by the formula (VI-b) is (2 to 3):1.
  • the invention also provides a preparation method of polycarbonate, comprising:
  • the catalyst provided by the present invention is mixed with an epoxy compound, a cocatalyst and carbon dioxide to obtain a polycarbonate.
  • the cation in the cocatalyst is a quaternary ammonium salt or a quaternary phosphonium salt.
  • the present invention provides a titanium-based catalyst having the structure represented by the formula (I), which can efficiently catalyze the copolymerization of an epoxy compound with carbon dioxide, and has good selectivity, and the experimental results show that
  • the catalyst provided by the catalyst provided catalyzes a polymer having a carbonate unit content of more than 95%, a cyclic carbonate by-product of less than 1.0%, and a catalyst amount of only one thousandth of the epoxy compound; furthermore, provided by the present invention
  • the polycarbonate prepared by the catalyst is non-toxic and can be applied to the fields of food and medical packaging.
  • the present invention provides a titanium-based catalyst, as shown in the formula (I),
  • R 1 is a C1-C20 alkylene group, a C1-C20 alkyleneoxy group, a C6-C20 arylene group, or a C6-C20-substituted arylene group;
  • R 2 , R 3 , and R 4 are independently selected from the group consisting of: H, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a fluorine-substituted C1-C20 alkyl group.
  • R 3 and R 4 and their adjacent carbons together form a closed ring
  • X is a halogen group, -NO 3 , CH 3 COO-, CCl 3 COO-, CF 3 COO-, ClO 4 -, BF 4 -, BPh 4 -, -CN, -N 3 , p-toluene, p-Toluenesulfonate, o-nitrophenoloxy, p-nitrophenoloxy, m-nitrophenoloxy, 2,4-dinitrophenoloxy, 3,5-dinitrophenoloxy, 2,4,6 - Trinitrophenoloxy, 3,5-dichlorophenoloxy, 3,5-difluorophenoloxy, 3,5-di-trifluoromethylphenoloxy or pentafluorophenol oxygen anion.
  • R 1 is preferably a C1-C8 alkylene group, a C1-C8 alkyleneoxy group, a C6-C12 arylene group, a C6-C12 substituted arylene group; more preferably a C1-C6 subunit.
  • alkyl group a C1-C6 alkyleneoxy group, a C6-C8 arylene group, a C6-C10-substituted arylene group; wherein the alkylene group, the alkyleneoxy group, the substituent on the substituted arylene group is preferably - CH 3 , -CH 2 CH 3 , -CH(CH 3 ) 2 , -C(CH 3 ) 3 , -OCH 3 , -OCH 2 CH 3 , -Cl, -CN, Br- or NO 2 -, R 1 is most preferably of the formula (II), formula (III), formula (IV) or formula (V).
  • R 5 , R 6 are independently selected from H, -CH 3 , -CH 2 CH 3 , -CH(CH 3 ) 2 , -C(CH 3 ) 3 , -OCH 3 , -OCH 2 CH 3 , Cl-, Br - or -NO 2 , n is an integer of from 1 to 6, more preferably 1 or 2, and for the group of the structure of the formula (III), the configuration of the two chiral centers is (R, R), (S, S), (R, S) or (S, R).
  • the R 2 is preferably H, a C1-C8 alkyl group, a C1-C8 alkoxy group or a fluorine-substituted C1-C8 alkyl group, more preferably an H or a C1-C4 alkyl group;
  • the R 3 is preferably H, C1-C8 alkyl, alkoxy C1-C8 or fluoro substituted C1-C8 alkyl, more preferably H or C1-C4 alkyl;
  • said R 4 is preferably H, C1-C8 of An alkyl group, a C1-C8 alkoxy group or a fluorine-substituted C1-C8 alkyl group, more preferably an H or a C1-C4 alkyl group;
  • R 2 and the R 3 and the carbon adjacent thereto form a closed ring, preferably a C6-C20 aromatic ring, a C6-C20 substituted aromatic ring, a C3-C20 alicyclic ring, and a C3-C20 substituted alicyclic ring.
  • a C3-C20 heterocyclic ring or a C3-C20 substituted heterocyclic ring more preferably a C6-C12 aromatic ring or a C6-C12-substituted aromatic ring, most preferably a benzene ring or a substituted benzene ring; a substitution on the substituted aromatic ring
  • the group is preferably a C1-C20 alkyl group, a C1-C20 alkoxy group or a fluorine-substituted C1-C20 alkyl group, more preferably a C1-C8 alkyl group, a C1-C8 alkoxy group or a fluorine-substituted C1- C8 alkyl, most preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy or pentyl;
  • R 3 and the R 4 and the carbon adjacent thereto form a closed ring, preferably a C6-C20 aromatic ring, a C6-C20 substituted aromatic ring, a C3-C20 alicyclic ring, and a C3-C20 substituted alicyclic ring.
  • a C3-C20 heterocyclic ring or a C3-C20 substituted heterocyclic ring more preferably a C6-C12 aromatic ring or a C6-C12-substituted aromatic ring, most preferably a benzene ring or a substituted benzene ring; a substitution on the substituted aromatic ring
  • the group is preferably a C1-C20 alkyl group, a C1-C20 alkoxy group or a fluorine-substituted C1-C20 alkyl group, more preferably a C1-C8 alkyl group, a C1-C8 alkoxy group or a fluorine-substituted C1-
  • the C8 alkyl group is most preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy or pentyl.
  • the X is preferably Cl-, Br-, -NO 3 , CH 3 COO-, CCl 3 COO-, CF 3 COO-, ClO 4 -, BF 4 -, BPh 4 -, -CN, -N 3 , Methyl benzoate, p-toluenesulfonate, o-nitrophenol oxygen, p-nitrophenol oxygen, m-nitrophenol oxygen, 2,4-dinitrophenol oxygen, 3,5-dinitrophenol oxygen 2,4,6-trinitrophenoloxy, 3,5-dichlorophenoloxy, 3,5-difluorophenoloxy, 3,5-di-trifluoromethylphenoloxy or pentafluorophenol oxygen anion.
  • the catalyst preferably has the structure of formula (II).
  • R 1 , R 2 , and X are as defined above,
  • a, b, c, d are independently selected from H, C1-C20 alkyl, C6-C20 aryl, substituted C1-C20 alkyl or substituted C6-C20 aryl, more preferably independently selected From C1-C8 alkyl, C1-C8 alkoxy or fluoro-substituted C1-C8 alkyl, most preferably independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl , isobutyl, tert-butyl, methoxy, ethoxy or pentyl.
  • the catalyst is preferably a complex having a structure represented by the formula (VII) to the formula (XV):
  • the invention also provides a preparation method of a titanium-based catalyst, comprising:
  • R 1 is a C1-C20 alkylene group, a C1-C20 alkyleneoxy group, a C6-C20 arylene group, or a C6-C20-substituted arylene group;
  • R 2 , R 3 , and R 4 are independently selected from the group consisting of: H, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a fluorine-substituted C1-C20 alkyl group.
  • R 2 and R 3 and their adjacent carbons together form a closed ring
  • R 3 and R 4 and their adjacent carbons together form a closed ring
  • an aldehyde compound represented by the formula (VI-a) is reacted with a diamine represented by the formula (VI-b) to obtain a tetradentate double Schiff base ligand; wherein the aldehyde represented by the formula (VI-a) the class of compounds R 2, R 3, R 4 is defined with a titanium compound in the R 2, R 3, is defined the same as R 4, with the limitation that titanium-based diamine represented by R 1 (VI-b)
  • the definition of R 1 in the compound is the same, and the molar ratio of the aldehyde compound represented by the formula (VI-a) to the diamine represented by the formula (VI-b) is preferably (2 to 3): 1, more preferably 2: 1;
  • the solvent of the reaction is preferably an alcohol compound, more preferably methanol or ethanol; and the temperature of the reaction is preferably a reflux reaction.
  • a tetradentate double Schiff base ligand is reacted with TiCl 3 .(THF) 3 in the presence of a base to obtain a titanium-based catalyst; the tetradentate double Schiff base ligand and the TiCl 3 .
  • the molar ratio of 3 is preferably 1: (1 to 1.2), more preferably 1:1; the base is preferably NaH, KH, Rli, RONa or ROK, wherein R is a C1-C6 alkyl group;
  • the molar ratio of the base to the tetradentate double Schiff base ligand is preferably 1: (3 to 8), more preferably 1: (3 to 5).
  • the tetradentate double Schiff base ligand is first reacted with a base, and then TiCl 3 (THF) 3 is added at -20 to -78 ° C to obtain a titanium catalyst. .
  • the present invention is not particularly limited to the source of TiCl 3 .(THF) 3 , and the TiCl 3 .(THF) 3 described in the present invention is preferably prepared by the following method:
  • the present invention first dissolves dodecyltrititanium aluminum (3TiCl 3 .AlCl 3 ) into a toluene slurry, and then adds THF to the slurry solution at -60 to -80 ° C, and the addition is completed. After that, the temperature is slowly raised to 70 ° C, and reacted at the temperature for 15 to 30 hours to obtain TiCl 3 .
  • the ratio of the amount of the dodecachlorotrititanium to the toluene is 5 mmol to 8 mmol: 1 mL;
  • the toluene is preferably purified toluene, and the purification method may be a purification method well known to those skilled in the art, and the tetrahydrofuran is preferably purified tetrahydrofuran, and the purification method may be a purification method well known to those skilled in the art.
  • the source of dodecachlorotrititanium aluminum which is commercially available.
  • the invention also provides a preparation method of polycarbonate, comprising:
  • the catalyst provided by the present invention is mixed with an epoxy compound, a cocatalyst and carbon dioxide to obtain a polycarbonate.
  • the catalyst provided by the present invention is mixed with an epoxy compound, a cocatalyst and carbon dioxide to obtain a polycarbonate;
  • the epoxy compound is preferably a C1-C20 epoxy compound, more preferably ethylene oxide. , propylene oxide, 1,2-butylene oxide, cyclohexene oxide, epoxycyclopentane, epichlorohydrin, glycidyl methacrylate, methyl glycidyl ether, phenyl glycidyl ether, and One or more of styrene alkylene oxides;
  • the cation in the cocatalyst is preferably a quaternary ammonium salt or a quaternary phosphonium salt, and the quaternary ammonium salt or the quaternary phosphonium salt is preferably [R' 4 N] + .
  • R' is a C1-C20 alkyl group, a C1-C20 alkoxy group a C6-C20 aryl group or a C6-C20 substituted aryl group;
  • the anion in the cocatalyst is preferably a halogen group, -NO 3 , CH 3 COO-, CCl 3 COO-, CF 3 COO-, ClO 4 -, BF 4 -, BPh 4 -, -CN, -N 3 , p-toluic acid, p-toluenesulfonate, o-nitrophenol oxygen, p-nitrophenol oxygen, m-nitrophenol oxygen, 2,4 -dinitrophenol oxygen, 3-5 dinitrophenol oxygen, 2, 4,6-trinitrophenoloxy, 3,5-dichlorophenoloxy, 3,5-difluorophenol
  • the molar ratio of the catalyst to the epoxide is 1: (500 to 10000); the temperature of the reaction is preferably 0 to 150 ° C, and the reaction time is preferably 0.5 to 48 hours.
  • the pressure of the reaction is preferably from 0.1 to 5 MPa; the present invention has no particular requirements on the apparatus for the reaction, and is preferably carried out in an autoclave.
  • the titanium-based catalyst provided by the invention has high catalytic activity and catalytic selectivity, can efficiently catalyze copolymerization of epoxy compound and carbon dioxide, and has good copolymerization selectivity.
  • the experimental results show that the polymer obtained by the catalyst provided by the present application is catalyzed.
  • the content of the carbonate unit is higher than 95%, the by-product of the cyclic carbonate is less than 10.0%, and the amount of the catalyst is only required to be one hundred to one ten thousandth of the epoxy compound; further, the polymerization prepared by the catalyst provided by the present invention Carbonate is non-toxic and can be used in food and medical packaging.
  • the TiCl 3 .(THF) 3 prepared in Example 1 was analyzed by an elemental analyzer.
  • the elemental analysis results were: C, 38.55, H, 6.64; the actual calculation results were: C, 38.68, H, 6.50;
  • the examples were indeed prepared as TiCl 3 .(THF) 3 .
  • the TOF value of the catalyst system was calculated to be 557 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and the results were measured.
  • the average molecular weight is 5400 and the molecular weight distribution is 1.14.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.
  • the TOF value of the catalytic system was calculated to be 450 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 5,100, and the molecular weight distribution was 1.12.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.
  • the TOF value of the catalyst system was calculated to be 476 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 5,200 and the molecular weight distribution was 1.13.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.
  • the TOF value of the catalyst system was calculated to be 541 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 5,200, and the molecular weight distribution was 1.11.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.
  • the TOF value of the catalyst system was calculated to be 84 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 13,000 and the molecular weight distribution was 1.15.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR. The results showed that the cyclic carbonate by-product was less than 10.0%, and the content of the carbonate unit in the polymer was higher than 95%.
  • the TOF value of the catalyst system was calculated to be 430 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 12,000 and the molecular weight distribution was 1.14.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.
  • the reaction vessel was cooled to room temperature, carbon dioxide was slowly removed, and unreacted mercapto glycidyl ether was taken out at room temperature in a vacuum oven, and the obtained polycarbonate was 2.61 g.
  • the TOF value of the catalyst system was calculated to be 50 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 5100 and the molecular weight distribution was 1.15.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 5.0%, and the content of the carbonate unit in the polymer was more than 99%.
  • the TOF value of the catalyst system was calculated to be 594 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 5,800 and the molecular weight distribution was 1.14.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.
  • the TOF value of the catalyst system was calculated to be 180 h -1 .
  • the molecular weight of the polycarbonate obtained in the examples was measured by GPC, and as a result, the number average molecular weight was 6,400, and the molecular weight distribution was 1.13.
  • the polycarbonate obtained in the examples was examined by 1 H-NMR, and it was found that the cyclic carbonate by-product was less than 1.0%, and the content of the carbonate unit in the polymer was higher than 99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

提供一种具有式(I)所示结构的钛系催化剂及其制备方法和应用,该催化剂能够高效的催化环氧化合物与二氧化碳的共聚制备聚碳酸酯,该聚碳酸酯无毒,可应用于食品、医用包装领域。

Description

钛系催化剂及其制备方法和应用 技术领域
本发明涉及催化剂领域,尤其涉及钛系催化剂及制备方法和应用。
背景技术
二氧化碳是造成温室效应的主要气体,同时又是地球上最丰富的碳源之一,也是一种廉价的碳氧资源。二氧化碳作为碳氧资源在合成大宗基础化学品、燃料和高分子材料方面是一个重要的研究课题。其中,以二氧化碳与环氧化物为原料,在催化剂作用下共聚合成的脂肪族聚碳酸酯是一种全降解型高分子材料,具有良好的透明性,优良的阻隔氧气和水的性能,可以用作工程塑料、生物降解的无污染材料、一次性医药和食品包装材料、胶粘剂以及复合材料等,且在食品和医用包装等领域也具有广泛的应用潜力。
1969年Inoue首次实现二氧化碳和环氧丙烷共聚以来,相继出现了烷基锌/活泼氢催化体系、羧酸锌体系、双金属氰化物催化剂、稀土三元催化剂、金属卟啉催化剂、酚锌盐类催化体系和二亚胺锌类催化剂等一系列催化体系,这些催化体系的研究和开发对于合成全生物降解脂肪族聚碳酸酯具有较大的推动作用,有的体系已经用于工业化生产,但是以上体系仍然存在催化活性低,反应时间长的问题。
2003年开始出现的四齿希夫碱钴配合物(Selen)CoX催化体系发展迅速,先后出现了由(Selen)CoX配合物与季铵盐或季磷盐组成的双组份催化体系和集活性点和位阻性有机碱基团于一体的单组份双功能催化体系,这两类催化剂活性达到106克聚合物/摩尔催化剂。但是钴作为一种有毒金属,在各种国际标准中被严格限制,使得钴系催化体系生产的聚碳酸酯材料很难推广应用于食品、医用包装领域,因此这类具有较高活性的四齿希夫碱钴配合物催化剂一直无法应用于实际工业生产。
发明内容
有鉴于此,本发明所要解决的技术问题在于提供一种钛系催化剂及其制备方法和应用,本发明提供的钛系催化剂能高效催化剂可高效催化二氧 化碳与环氧化合物的共聚,且得到的聚酯无毒。
本发明提供了一种钛系催化剂,如式(I)所示,
Figure PCTCN2014085662-appb-000001
其中,R1为C1-C20的亚烷基、C1-C20的亚烷氧基、C6~C20亚芳基、C6~C20取代的亚芳基;
R2,R3,R4独立的选自:H、C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,
或者R2和R3及其与它们相邻的碳共同形成封闭的环,
或者R3和R4及其与它们相邻的碳共同形成封闭的环;
X为卤基、-NO3、CH3COO-、CCl3COO-、CF3COO-、ClO4-、BF4-、BPh4-、-CN、-N3、对甲基苯甲酸根、对甲基苯磺酸根、邻硝基苯酚氧、对硝基苯酚氧、间硝基苯酚氧、2,4-二硝基苯酚氧、3,5-二硝基苯酚氧、2,4,6-三硝基苯酚氧、3,5-二氯苯酚氧、3,5-二氟苯酚氧、3,5-二-三氟甲基苯酚氧或五氟酚氧负离子。
优选的,所述R2和R3及其与它们相邻的碳共同形成封闭的环为C6~C20芳环、C6~C20取代芳环、C3~C20脂环、C3~C20取代脂环、C3~C20杂环或C3~C20取代杂环;
所述R3和R4及其与它们相邻的碳共同形成封闭的环为C6~C20芳环、C6~C20取代芳环、C3~C20脂环、C3~C20取代脂环、C3~C20杂环或C3~C20取代杂环。
优选的,所述催化剂具有式(I-a)结构,
Figure PCTCN2014085662-appb-000002
其中,a、b、c、d独立的选自H、C1-C20的烷基、C6-C20的芳基、取代的C1-C20的烷基或取代的C6-C20的芳基。
优选的,所述R1为式(II)、式(III)、式(IV)或式(V)结构,
Figure PCTCN2014085662-appb-000003
其中,*表示连接位置,
R5,R6独立选自H、CH3、CH2CH3、CH(CH3)2、C(CH3)3、OCH3、OCH2CH3、Cl、Br或NO2
n为1~6的整数。
本发明还提供了一种钛系催化剂的制备方法,包括:
1)将式(VI-a)所示醛类化合物与式(VI-b)所示二胺反应,得到四齿双希夫碱配体;
Figure PCTCN2014085662-appb-000004
其中,R1为C1-C20的亚烷基、C1-C20的亚烷氧基、C6~C20亚芳基、C6~C20取代的亚芳基;
R2,R3,R4独立的选自:H、C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,
或者R2和R3及其与它们相邻的碳共同形成封闭的环;
或者R3和R4及其与它们相邻的碳共同形成封闭的环;
2)将四齿双希夫碱配体与TiCl3.(THF)3在碱存在下反应,得到钛系催化剂。
优选的,所述步骤2)的碱为NaH、KH、Rli、RONa或ROK,
其中,R为C1~C6的烷基。
优选的,所述TiCl3.(THF)3按照以下方法制备:
将十二氯三钛铝(3TiCl3.AlCl3)溶解至甲苯中化浆,在-20℃~-78℃ 条件下加入四氢呋喃反应,得到TiCl3.(THF)3
优选的,所述式(VI-a)所示醛类化合物与式(VI-b)所示二胺的摩尔比为(2~3):1。
本发明还提供了一种聚碳酸酯的制备方法,包括:
将本发明提供的催化剂与环氧化合物、助催化剂和二氧化碳混合反应,得到聚碳酸酯。
优选的,所述助催化剂中的阳离子为季铵盐或季鏻盐类。
与现有技术相比,本发明提供了一种具有式(I)所示结构的钛系催化剂,该催化剂能够高效的催化环氧化合物与二氧化碳的共聚,选择性好,实验结果表明,通过本申请提供的催化剂催化得到的聚合物中碳酸酯单元含量高于95%,环状碳酸酯副产物少于1.0%,且催化剂用量仅需环氧化合物的千分之一;此外,通过本发明提供的催化剂制备得到的聚碳酸酯无毒,可应用于食品、医用包装领域。
具体实施方式
本发明提供了一种钛系催化剂,如式(I)所示,
Figure PCTCN2014085662-appb-000005
其中,R1为C1-C20的亚烷基、C1-C20的亚烷氧基、C6~C20亚芳基、C6~C20取代的亚芳基;
R2,R3,R4独立的选自:H、C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,
或者R2和R3及其与它们相邻的碳共同形成封闭的环,
或者R3和R4及其与它们相邻的碳共同形成封闭的环;
X为卤基、-NO3、CH3COO-、CCl3COO-、CF3COO-、ClO4-、BF4-、BPh4-、-CN、-N3、对甲基苯甲酸根、对甲基苯磺酸根、邻硝基苯酚氧、 对硝基苯酚氧、间硝基苯酚氧、2,4-二硝基苯酚氧、3,5-二硝基苯酚氧、2,4,6-三硝基苯酚氧、3,5-二氯苯酚氧、3,5-二氟苯酚氧、3,5-二-三氟甲基苯酚氧或五氟酚氧负离子。
按照本发明,所述R1优选为C1-C8的亚烷基、C1-C8的亚烷氧基、C6~C12亚芳基、C6~C12取代亚芳基;更优选为C1-C6的亚烷基、C1-C6的亚烷氧基、C6~C8亚芳基、C6~C10取代亚芳基;其中,所述亚烷基、亚烷氧基、取代亚芳基上的取代基优选-CH3、-CH2CH3、-CH(CH3)2、-C(CH3)3、-OCH3、-OCH2CH3、-Cl、-CN、Br-或NO2-,所述R1最优选为具有式(II)、式(III)、式(IV)或式(V)结构,
Figure PCTCN2014085662-appb-000006
其中,*表示连接位置,
R5,R6独立选自H、-CH3、-CH2CH3、-CH(CH3)2、-C(CH3)3、-OCH3、-OCH2CH3、Cl-、Br-或-NO2,n为1~6的整数,更优选为1或2,关于式(III)结构的基团,其两个手性中心的构型为(R,R)、(S,S)、(R,S)或(S,R)。
所述R2优选为H、C1-C8的烷基、C1-C8的烷氧基或氟取代的C1-C8烷基,更优选为H或C1-C4的烷基;所述R3优选为H、C1-C8的烷基、C1-C8的烷氧基或氟取代的C1-C8烷基,更优选为H或C1-C4的烷基;所述R4优选为H、C1-C8的烷基、C1-C8的烷氧基或氟取代的C1-C8烷基,更优选为H或C1-C4的烷基;
或者所述R2和所述R3及其与它们相邻的碳共同形成封闭的环优选为C6~C20芳环、C6~C20取代芳环、C3~C20脂环、C3~C20取代脂环、C3~C20杂环或C3~C20取代杂环,更优选为C6~C12芳环或C6~C12取代的芳环,最优选为苯环或取代的苯环;所述取代芳环上的取代基优选为C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,更优选为C1-C8的烷基、C1-C8的烷氧基或氟取代的C1-C8烷基,最优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基或戊基;
或者所述R3和所述R4及其与它们相邻的碳共同形成封闭的环优选为C6~C20芳环、C6~C20取代芳环、C3~C20脂环、C3~C20取代脂环、C3~C20杂环或C3~C20取代杂环,更优选为C6~C12芳环或C6~C12取代的芳环,最优选为苯环或取代的苯环;所述取代芳环上的取代基优选为C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,更优选为C1-C8的烷基、C1-C8的烷氧基或氟取代的C1-C8烷基,最优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基或戊基。
所述X优选为Cl-、Br-、-NO3、CH3COO-、CCl3COO-、CF3COO-、ClO4-、BF4-、BPh4-、-CN、-N3、对甲基苯甲酸根、对甲基苯磺酸根、邻硝基苯酚氧、对硝基苯酚氧、间硝基苯酚氧、2,4-二硝基苯酚氧、3,5-二硝基苯酚氧、2,4,6-三硝基苯酚氧、3,5-二氯苯酚氧、3,5-二氟苯酚氧、3,5-二-三氟甲基苯酚氧或五氟酚氧负离子。
具体的,所述催化剂优选具有式(II)结构,
Figure PCTCN2014085662-appb-000007
其中,R1、R2、X的限定同前,
a、b、c、d独立的选自H、C1-C20的烷基、C6-C20的芳基、取代的C1-C20的烷基或取代的C6-C20的芳基,更优选独立的选自C1-C8的烷基、C1-C8的烷氧基或氟取代的C1-C8烷基,最优选独立的选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基或戊基。
更具体的,所述催化剂优选为具有式(VII)~式(XV)所示结构的配合物:
Figure PCTCN2014085662-appb-000008
本发明还提供了一种钛系催化剂的制备方法,包括:
1)将式(VI-a)所示醛类化合物与式(VI-b)所示二胺反应,得到 四齿双希夫碱配体;
Figure PCTCN2014085662-appb-000009
其中,R1为为C1-C20的亚烷基、C1-C20的亚烷氧基、C6~C20亚芳基、C6~C20取代亚芳基;
R2,R3,R4独立的选自:H、C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,
或者R2和R3及其与它们相邻的碳共同形成封闭的环;
或者R3和R4及其与它们相邻的碳共同形成封闭的环;
2)将四齿双希夫碱配体与TiCl3.(THF)3在碱存在下反应,得到钛系催化剂。
按照本发明,将式(VI-a)所示醛类化合物与式(VI-b)所示二胺反应,得到四齿双希夫碱配体;其中,式(VI-a)所示醛类化合物中的R2、R3、R4的限定与钛系化合物中R2、R3、R4的限定相同,式(VI-b)所示二胺中的R1的限定与钛系化合物中R1的限定相同,所述式(VI-a)所示醛类化合物与式(VI-b)所示二胺的摩尔比优选为(2~3):1,更优选为2:1;所述反应的溶剂优选为醇类化合物,更优选为甲醇或乙醇;所述反应的温度优选为回流反应。
按照本发明,将四齿双希夫碱配体与TiCl3.(THF)3在碱存在下反应,得到钛系催化剂;所述四齿双希夫碱配体与所述TiCl3.(THF)3的摩尔比优选为1:(1~1.2),更优选为1:1;所述碱优选为NaH、KH、Rli、RONa或ROK,其中,R为C1~C6的烷基;所述碱与所述四齿双希夫碱配体的摩尔比优选为1:(3~8),更优选为1:(3~5)。
为了反应能够很好的进行,本发明优选先将四齿双希夫碱配体与碱反应,然后再在-20~-78℃条件下加入TiCl3.(THF)3反应,得到钛系催化剂。
此外,本发明对TiCl3.(THF)3的来源没有特殊限制,本发明所述的TiCl3.(THF)3优选按照以下方法制备:
将十二氯三钛铝(3TiCl3.AlCl3)溶解至甲苯中化浆,在-20℃~-78℃条件下加入四氢呋喃反应,得到TiCl3.(THF)3
具体的,本发明首先将十二氯三钛铝(3TiCl3.AlCl3)溶解至甲苯中化浆,然后在-60~-80℃条件下向化浆后的溶液中加入THF,滴加完毕后,缓慢升温至70℃,并在该温度反应15~30小时,得到TiCl3.(THF)3;所述十二氯三钛铝与所述甲苯的用量比为5mmol~8mmol:1mL;所述甲苯优选为精制后的甲苯,所述精制的方法为本领域人员熟知的精制方法即可,所述四氢呋喃优选为精制的四氢呋喃,所述精制的方法为本领域技术人员熟知的精制方法即可;对十二氯三钛铝的来源没有特殊限制,市售的即可。
本发明还提供了一种聚碳酸酯的制备方法,包括:
将本发明提供的催化剂与环氧化合物、助催化剂和二氧化碳混合反应,得到聚碳酸酯。
按照本发明,将将本发明提供的催化剂与环氧化合物、助催化剂和二氧化碳混合反应,得到聚碳酸酯;所述环氧化合物优选为C1-C20的环氧化合物,更优选为环氧乙烷、环氧丙烷、1,2-环氧丁烷、环氧环己烷、环氧环戊烷、环氧氯丙烷、甲基丙烯酸缩水甘油醚、甲基缩水甘油醚、苯基缩水甘油醚和苯乙烯环氧烷烃中的一种或几种;所述助催化剂中的阳离子优选为季铵盐或季鏻盐类,所述季铵盐或季鏻盐优选为[R’4N]+,[R’4P]+,[R’3P=N=PR’3]+或[P[NR’3]3]+,其中R’为C1-C20的烷基、C1-C20的烷氧基、C6-C20芳基或C6-C20取代芳基;所述助催化剂中的阴离子优选为卤基、-NO3、CH3COO-、CCl3COO-、CF3COO-、ClO4-、BF4-、BPh4-、-CN、-N3、对甲基苯甲酸根、对甲基苯磺酸根、邻硝基苯酚氧、对硝基苯酚氧、间硝基苯酚氧、2,4-二硝基苯酚氧、3-5二硝基苯酚氧、2,4,6-三硝基苯酚氧、3,5-二氯苯酚氧、3,5-二氟苯酚氧、3,5-二-三氟甲基苯酚氧或五氟酚氧负离子。
在本发明中,所述催化剂与所述环氧化物的摩尔比为1:(500~10000);所述反应的温度优选为0~150℃,所述反应的时间优选为0.5~48小时,所述反应的压力优选为0.1~5MPa;本发明对反应的装置没有特殊要求,优选在高压反应釜内进行。
本发明提供的钛系催化剂具有高的催化活性和催化选择性,能够高效的催化环氧化合物与二氧化碳的共聚,共聚选择性好,实验结果表明,通过本申请提供的催化剂催化得到的聚合物中碳酸酯单元含量高于95%,环状碳酸酯副产物少于10.0%,且催化剂用量仅需环氧化合物的五百到一万分之一;此外,通过本发明提供的催化剂制备得到的聚碳酸酯无毒,可应用于食品、医用包装领域。
下面将结合本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:三价钛四氢呋喃配合物TiCl3.(THF)3的制备
100mL单口烧瓶中加入5.0g(25mmol)紫色的3TiCl3.AlCl3,用4mL精制的甲苯化浆,放入-78℃的干冰-丙酮浴中,缓慢滴入5mL的精制的THF。滴加完后体系缓慢升温至70℃回流20h,回流完毕后,冷却至室温,过滤,滤渣用精制的正己烷洗涤三次,减压除去残留溶剂,得到淡蓝色的固体产物7.59g,产率82%。
通过元素分析仪,对实施例1制备的TiCl3.(THF)3进行分析,其元素分析结果为:C,38.55,H,6.64;实际计算结果为:C,38.68,H,6.50;可见,实施例制备的确为TiCl3.(THF)3
实施例2:式(VII)结构的配合物的制备。
4.68g 3,5-二叔丁基水杨醛(20mmol)溶解在100mL干燥乙醇中,1.08g,1,2-苯二胺(10mmol)溶解在20mL的干燥乙醇中。然后在搅拌条件下,把1,2-邻苯二胺的乙醇溶液滴加到3,5-二叔丁基水醛的乙醇溶液中,加热回流并搅拌14h后,冷却反应混合物至室温,旋转蒸发除去可挥发性物质,得到固体,将所述固体用乙醇重结晶后并真空干燥后,得到黄色针状四齿双希夫碱配体III5.05g,产率为93%。
Figure PCTCN2014085662-appb-000010
四齿双希夫碱配体III;
将上述四齿双希夫碱配体III溶于精制的20mLTHF中,冷却到0℃加入4当量的NaH(60%分散在矿物油中),体系逐渐升至室温,继续反应4h,过滤除去过量的NaH,滤液冷却至0℃,缓慢加入1当量的TiCl3.(THF)3,加完后,反应体系逐渐升至室温,继续反应12h。过滤除去反应生成的NaCl,滤液真空除去溶剂,得到黄绿色的具有式(VII)结构的配合物,产率98%。
通过质谱仪对实施例制备得到的具有式(VII)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:621.3。
实施例3:式(VIII)结构配合物的制备
将0.062g式(VII)结构的配合物溶于精制的二氯甲烷/丙酮(体积比1:1)混合溶剂中,加入2当量的AgNO3,室温下避光反应12h,减压除去混合溶剂,用精制的二氯甲烷重新溶解,过滤,除去生成的AgCl和未反应的AgNO3,减压除去溶剂,得到墨绿色的具有式(VIII)结构的配合物。
通过质谱仪对实施例制备得到的具有式(VIII)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:648.3。
实施例4:式(IX)结构配合物的制备
将0.062g式(VII)结构的配合物溶于精制的二氯甲烷/丙酮(体积比1:1)混合溶剂中,加入2当量的AgOAc,室温下避光反应12h,减压除去混合溶剂,用精制的二氯甲烷重新溶解,过滤,除去生成的AgCl和未反应的AgOAc。减压除去溶剂,得到墨绿色的具有式(IX)结构的配合物。
通过质谱仪对实施例制备得到的具有式(IX)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:645.3。
实施例5:式(X)结构配合物的制备
将0.062g式(VII)结构的配合物溶于精制的二氯甲烷/丙酮(体积比 1:1)混合溶剂中,加入2当量的AgOTs,室温下避光反应12h,减压除去混合溶剂,用精制的二氯甲烷重新溶解,过滤,除去生成的AgCl和未反应的AgOTs。减压除去溶剂,得到墨绿色的具有式(X)结构的配合物。
通过质谱仪对实施例制备得到的具有式(X)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:757.3。
实施例6:式(XI)结构配合物的制备
将4.68g 3,5-二叔丁基水杨醛(20mmol)溶解在100mL干燥乙醇中,1.14g,(R,R)-1,2-环己二胺(10mmol)溶解在20mL的干燥乙醇中。然后在搅拌条件下,把(R,R)-1,2-环己二胺的乙醇溶液滴加到3,5-二叔丁基水醛的乙醇溶液中,加热回流并搅拌14h后,冷却反应混合物至室温,旋转蒸发除去可挥发性物质,得到黄色固体,把所得固体物用乙醇重结晶后并真空干燥后,得到四齿双希夫碱配体IV5.15g,产率为95%。
Figure PCTCN2014085662-appb-000011
四齿双希夫碱配体IV;
将0.54g(1mmol)四齿双希夫碱配体IV溶于精制的20mLTHF中,冷却到0℃加入4当量的NaH(60%分散在矿物油中),体系逐渐升至室温,继续反应4h。过滤除去过量的NaH,滤液冷却至0℃,缓慢加入1当量的TiCl3.(THF)3,体系逐渐升至室温,继续反应12h。过滤除去反应生成的NaCl,滤液真空除去溶剂,得到墨绿色的具有式(XI)结构的配合物,产率为98%。
通过质谱仪对实施例制备得到的具有式(XI)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:627.3。
实施例7:式(XII)结构配合物的制备
a)4.68g 3,5-二叔丁基水杨醛(20mmol)溶解在100mL干燥乙醇中,1.02g,2,2-二甲基丙二胺(10mmol)溶解在20mL的干燥乙醇中。然后在搅拌条件下,把2,2-二甲基丙二胺的乙醇溶液滴加到3,5-二叔丁基水醛的乙 醇溶液中,加热回流并搅拌14h后,冷却反应混合物至室温,旋转蒸发除去可挥发性物质,得到黄色固体,把所得固体物用乙醇重结晶后并真空干燥后,得到四齿双希夫碱配体V4.75g,产率为89%。
Figure PCTCN2014085662-appb-000012
四齿双希夫碱配体V;
将0.53g(1mmol)四齿双希夫碱配体V溶于精制的20mL THF中,冷却到0℃加入4当量的NaH(60%分散在矿物油中),体系逐渐升至室温,继续反应4h。过滤除去过量的NaH,滤液冷却至0℃,缓慢加入1当量的TiCl3.(THF)3,体系逐渐升至室温,继续反应12h。过滤除去反应生成的NaCl,滤液真空除去溶剂,得到墨绿色的具有式(XII)结构的配合物,产率98%。
通过质谱仪对实施例制备得到的具有式(XII)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:615.3。
实施例8:式(XIII)结构配合物的制备
4.68g 3,5-二叔丁基水杨醛(20mmol)溶解在100mL干燥乙醇中,0.88g,1,1-二甲基乙二胺(10mmol)溶解在20mL的干燥乙醇中。然后在搅拌条件下,把1,1-二甲基乙二胺的乙醇溶液滴加到3,5-二叔丁基水醛的乙醇溶液中,加热回流并搅拌14h后,冷却反应混合物至室温,旋转蒸发除去可挥发性物质,得到黄色固体,把所得固体物用乙醇重结晶后并真空干燥后,得到黄色针状四齿双希夫碱配体VI,4.42g,产率为85%。
Figure PCTCN2014085662-appb-000013
四齿双希夫碱配体VI;
将0.52g(1mmol)黄色针状四齿双希夫碱配体VI溶于精制的20mLTHF中,冷却到0℃加入4当量的NaH(60%分散在矿物油中),体系逐 渐升至室温,继续反应4h,过滤除去过量的NaH,滤液冷却至0℃,缓慢加入1当量的TiCl3.(THF)3,体系逐渐升至室温,继续反应12h。过滤除去反应生成的NaCl,滤液真空除去溶剂,得到墨绿色的式(XIII)结构配合物,产率99%。
通过质谱仪对实施例制备得到的具有式(XIII)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:601.3。
实施例9:式(XIV)结构配合物的制备
4.16g 3-叔丁基-5-甲氧基水杨醛(20mmol)溶解在100mL干燥乙醇中,1.08g,1,2-苯二胺(10mmol)溶解在20mL的干燥乙醇中。然后在搅拌条件下,把1,2-邻苯二胺的乙醇溶液滴加到3-叔丁基-5-甲氧基水杨醛的乙醇溶液中,加热回流并搅拌14h后,冷却反应混合物至室温,旋转蒸发除去可挥发性物质,得到黄色固体,把所得固体物用乙醇重结晶后并真空干燥后,得到黄色针状黄色针状四齿双希夫碱配体VII,4.25g,产率为87%。
Figure PCTCN2014085662-appb-000014
四齿双希夫碱配体VII;
将0.49g(1mmol)四齿双希夫碱配体VII溶于精制的20mLTHF中,冷却到0℃加入4当量的NaH(60%分散在矿物油中),体系逐渐升至室温,继续反应4h。过滤除去过量的NaH,滤液冷却至0℃,缓慢加入1当量的TiCl3.(THF)3,体系逐渐升至室温,继续反应12h。过滤除去反应生成的NaCl,滤液真空除去溶剂,得到墨绿色的式(XIV)结构配合物,产率99%。
通过质谱仪对实施例制备得到的具有式(XIV)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:569.2。
实施例10:式(XIV)结构配合物的制备
4.68g 3,5-叔丁基水杨醛(20mmol)溶解在100mL干燥乙醇中,1.77g, 3,4-二氯-1,2-苯二胺(10mmol)溶解在20mL的干燥乙醇中。然后在搅拌条件下,把3,4-二氯-1,2-苯二胺的乙醇溶液滴加到3-叔丁基-5-甲氧基水杨醛的乙醇溶液中,加热回流并搅拌14h后,冷却反应混合物至室温,旋转蒸发除去可挥发性物质,得到黄色固体,把所得固体物用乙醇重结晶后并真空干燥后,得到黄色针状四齿双希夫碱配体VIII,5.36g,产率为88%。
Figure PCTCN2014085662-appb-000015
四齿双希夫碱配体VIII;
将0.61g四齿双希夫碱配体VIII溶于精制的20mL THF中,冷却到0℃加入4当量的NaH(60%分散在矿物油中),体系逐渐升至室温,继续反应4h。过滤除去过量的NaH,滤液冷却至0℃,缓慢加入1当量的TiCl3.(THF)3,体系逐渐升至室温,继续反应12h。过滤除去反应生成的NaCl,滤液真空除去溶剂,得到墨绿色的式(XV)结构配合物,产率98%。
通过质谱仪对实施例制备得到的具有式(XV)结构的配合物进行检测,结果表明,MALDI-TOF-MS(m/z)Calcd for[C36H46ClN2O2Ti]+:689.2。
实施例11
在手套箱内,将0.075mmol实施例2制备的配合物,0.075mmol[PPN]Cl和75mmol干燥的环氧环己烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在120℃,将压力升至4.0MPa,反应1小时,聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的环氧环己烷,称重得到的聚碳酸酯为5.9g。
通过计算得该催化体系的TOF值为557h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数 均分子量为5400,分子量分布1.14,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
实施例12
在手套箱内,将0.075mmol实施例3制备的配合物,075mmol[PPN]Cl和75mmol干燥的环氧环己烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在120℃,将压力升至4.0MPa,将温度控制在120℃下搅拌反应1小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的环氧环己烷,称重得到的聚碳酸酯为4.8g。
通过计算得该催化体系的TOF值为450h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为5100,分子量分布1.12,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
实施例13
在手套箱内,将0.075mmol实施例4制备的配合物和75mmol,0.075mmol[PPN]Cl干燥的环氧环己烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在120℃,将压力升至4.0MPa,将温度控制在120℃下搅拌反应1小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的环氧环己烷,称重得到的聚碳酸酯为5.07g。
通过计算得该催化体系的TOF值为476h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为5200,分子量分布1.13,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
实施例14
在手套箱内,将0.075mmol实施例5制备的配合物,0.075mmol[PPN][DNP](DNP指代2,4-二硝基酚氧)和75mmol干燥的环氧环己烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在120℃,将压力升至4.0MPa,将温度控制在120℃下搅拌反应1小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的环氧环己烷,称重得到的聚碳酸酯为5.77g。
通过计算得该催化体系的TOF值为541h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为5200,分子量分布1.11,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
实施例15
在手套箱内,将0.075mmol实施例6制备的配合物,0.075mmol[PPN]Cl和75mmol干燥的环氧丙烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在60℃,将压力升至3.0MPa,将温度控制在60℃下搅拌反应3小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的环氧丙烷,称重得到的聚碳酸酯为1.73g。
通过计算得该催化体系的TOF值为84h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为13000,分子量分布1.15,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于10.0%,聚合物中碳酸酯单元含量高于95%。
实施例16
在手套箱内,将0.075mmol实施例7制备的配合物,0.075mmol[PPN]Cl和75mmol干燥的氧化苯乙烯加入到预先经过除水、除氧处理的15mL高压 反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在80℃,将压力升至4.0MPa,将温度控制在80℃下搅拌反应5小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的氧化苯乙烯,称重得到的聚碳酸酯为3.32g。
通过计算得该催化体系的TOF值为430h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为12000,分子量分布1.14,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
实施例17
在手套箱内,将0.075mmol实施例8制备的配合物,0.075mmol[PPN]Cl和75mmol干燥的糠基缩水甘油醚加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在60℃,将压力升至3.0MPa,将温度控制在60℃下搅拌反应5小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的的糠基缩水甘油醚,称重得到的聚碳酸酯为2.61g。
通过计算得该催化体系的TOF值为50h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为5100,分子量分布1.15,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于5.0%,聚合物中碳酸酯单元含量高于99%。
实施例18
在手套箱内,将0.037mmol实施例2制备的配合物,0.037mmol[PPN]Cl和75mmol干燥的环氧环己烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在120℃,将压力升至4.0MPa,反应1小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳, 于真空干燥箱内室温抽掉未反应完的环氧环己烷,称重得到的聚碳酸酯为,6.3g。
通过计算得该催化体系的TOF值为594h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为5800,分子量分布1.14,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
实施例19
在手套箱内,将0.037mmol实施例2制备的配合物,0.037mmol[PPN][NO3]和75mmol干燥的环氧环己烷加入到预先经过除水、除氧处理的15mL高压反应釜中,将高压釜取出手套箱后迅速通过具有压力调节功能的CO2补给线向釜内充入CO2至1.0MPa,将温度控制在80℃,将压力升至4.0MPa,反应3小时。聚合反应结束后,将反应釜冷至室温,缓慢放掉二氧化碳,于真空干燥箱内室温抽掉未反应完的环氧环己烷,称重得到的聚碳酸酯为5.7g。
通过计算得该催化体系的TOF值为180h-1
通过GPC对实施例得到的聚碳酸酯的分子量进行测定,其结果测得数均分子量为6400,分子量分布1.13,
通过1H-NMR对实施例得到的聚碳酸酯进行检测,结果表明,环状碳酸酯副产物少于1.0%,聚合物中碳酸酯单元含量高于99%。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种钛系催化剂,如式(I)所示,
    Figure PCTCN2014085662-appb-100001
    其中,R1为C1-C20的亚烷基、C1-C20的亚烷氧基、C6~C20亚芳基、C6~C20取代的亚芳基;
    R2,R3,R4独立的选自:H、C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,
    或者R2和R3及其与它们相邻的碳共同形成封闭的环,
    或者R3和R4及其与它们相邻的碳共同形成封闭的环;
    X为卤基、-NO3、CH3COO-、CCl3COO-、CF3COO-、ClO4-、BF4-、BPh4-、-CN、-N3、对甲基苯甲酸根、对甲基苯磺酸根、邻硝基苯酚氧、对硝基苯酚氧、间硝基苯酚氧、2,4-二硝基苯酚氧、3,5-二硝基苯酚氧、2,4,6-三硝基苯酚氧、3,5-二氯苯酚氧、3,5-二氟苯酚氧、3,5-二-三氟甲基苯酚氧或五氟酚氧负离子。
  2. 根据权利要求1所述的催化剂,其特征在于,所述R2和R3及其与它们相邻的碳共同形成封闭的环为C6~C20芳环、C6~C20取代芳环、C3~C20脂环、C3~C20取代脂环、C3~C20杂环或C3~C20取代杂环;
    所述R3和R4及其与它们相邻的碳共同形成封闭的环为C6~C20芳环、C6~C20取代芳环、C3~C20脂环、C3~C20取代脂环、C3~C20杂环或C3~C20取代杂环。
  3. 根据权利要求1所述的催化剂,其特征在于,所述催化剂具有式(I-a)结构,
    Figure PCTCN2014085662-appb-100002
    其中,a、b、c、d独立的选自H、C1-C20的烷基、C6-C20的芳基、取代的C1-C20的烷基或取代的C6-C20的芳基。
  4. 根据权利要求1~3任意一项所述的催化剂,其特征在于,所述R1为式(II)、式(III)、式(IV)或式(V)结构,
    Figure PCTCN2014085662-appb-100003
    其中,*表示连接位置,
    R5,R6独立选自H、CH3、CH2CH3、CH(CH3)2、C(CH3)3、OCH3、OCH2CH3、Cl、Br或NO2
    n为1~6的整数。
  5. 一种钛系催化剂的制备方法,包括:
    1)将式(VI-a)所示醛类化合物与式(VI-b)所示二胺反应,得到四齿双希夫碱配体;
    Figure PCTCN2014085662-appb-100004
    其中,R1为C1-C20的亚烷基、C1-C20的亚烷氧基、C6~C20亚芳基、C6~C20取代的亚芳基;
    R2,R3,R4独立的选自:H、C1-C20的烷基、C1-C20的烷氧基或氟取代的C1-C20烷基,
    或者R2和R3及其与它们相邻的碳共同形成封闭的环;
    或者R3和R4及其与它们相邻的碳共同形成封闭的环;
    2)将四齿双希夫碱配体与TiCl3.(THF)3在碱存在下反应,得到钛系催化剂。
  6. 根据权利要求5所述的制备方法,其特征在于,所述步骤2)的碱为NaH、KH、Rli、RONa或ROK,
    其中,R为C1~C6的烷基。
  7. 根据权利要求5所述的制备方法,其特征在于,所述TiCl3.(THF)3按照以下方法制备:
    将十二氯三钛铝(3TiCl3.AlCl3)溶解至甲苯中化浆,在-20℃~-78℃条件下加入四氢呋喃反应,得到TiCl3.(THF)3
  8. 根据权利要求5所述的制备方法,其特征在于,所述式(VI-a)所示醛类化合物与式(VI-b)所示二胺的摩尔比为(2~3):1。
  9. 一种聚碳酸酯的制备方法,包括:
    将权利要求1~4任意一项所述的催化剂或权利要求4~8任意一项所述的制备方法制备得到的催化剂与环氧化合物、助催化剂和二氧化碳混合反应,得到聚碳酸酯。
  10. 根据权利要求9所述的制备方法,其特征在于,所述助催化剂中的阳离子为季铵盐或季鏻盐类。
PCT/CN2014/085662 2014-09-01 2014-09-01 钛系催化剂及其制备方法和应用 WO2016033720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085662 WO2016033720A1 (zh) 2014-09-01 2014-09-01 钛系催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085662 WO2016033720A1 (zh) 2014-09-01 2014-09-01 钛系催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016033720A1 true WO2016033720A1 (zh) 2016-03-10

Family

ID=55438970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085662 WO2016033720A1 (zh) 2014-09-01 2014-09-01 钛系催化剂及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2016033720A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584018A (zh) * 2022-10-25 2023-01-10 华中科技大学 一种聚酯i-聚酯ii-聚碳酸酯三嵌段共聚物的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308845A (ja) * 2001-04-12 2002-10-23 Kyushu Univ 光学活性なスルホキシドの製造方法
US20080234502A1 (en) * 2007-03-23 2008-09-25 Nissan Chemical Industries, Ltd. Production method of optically active epoxy compound, complex used for the method and production method of the complex
CN101636392A (zh) * 2007-03-10 2010-01-27 日产化学工业株式会社 光学活性环氧化合物的制造方法
CN102558199A (zh) * 2011-12-31 2012-07-11 中国科学院长春应用化学研究所 四齿席夫碱金属配合物、金属卟啉配合物和制备聚碳酸酯的方法
CN103068831A (zh) * 2010-06-18 2013-04-24 雷蒙特亚特特拉维夫大学有限公司 Salalen配体及有机金属络合物
CN104226366A (zh) * 2014-09-01 2014-12-24 中国科学院长春应用化学研究所 钛系催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308845A (ja) * 2001-04-12 2002-10-23 Kyushu Univ 光学活性なスルホキシドの製造方法
CN101636392A (zh) * 2007-03-10 2010-01-27 日产化学工业株式会社 光学活性环氧化合物的制造方法
US20080234502A1 (en) * 2007-03-23 2008-09-25 Nissan Chemical Industries, Ltd. Production method of optically active epoxy compound, complex used for the method and production method of the complex
CN103068831A (zh) * 2010-06-18 2013-04-24 雷蒙特亚特特拉维夫大学有限公司 Salalen配体及有机金属络合物
CN102558199A (zh) * 2011-12-31 2012-07-11 中国科学院长春应用化学研究所 四齿席夫碱金属配合物、金属卟啉配合物和制备聚碳酸酯的方法
CN104226366A (zh) * 2014-09-01 2014-12-24 中国科学院长春应用化学研究所 钛系催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YONG ET AL.: "Copolymerization of Carbon Dioxide and Cyclohexene Oxide Catalyzed by New Titanium-Site Catalyst", 2013 NATIONAL POLYMER ACADEMIC THESIS SEMINAR, 16 October 2013 (2013-10-16), pages 65 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584018A (zh) * 2022-10-25 2023-01-10 华中科技大学 一种聚酯i-聚酯ii-聚碳酸酯三嵌段共聚物的制备方法
CN115584018B (zh) * 2022-10-25 2023-10-20 华中科技大学 一种聚酯i-聚酯ii-聚碳酸酯三嵌段共聚物的制备方法

Similar Documents

Publication Publication Date Title
Boyd et al. Synthesis, structures, and reactions of titanium, scandium, and yttrium complexes of diamino-bis (phenolate) ligands: Monomeric, dimeric, neutral, cationic, and multiply bonded derivatives
Lamberti et al. Phenoxy-thioether aluminum complexes as ε-caprolactone and lactide polymerization catalysts
Sánchez-Barba et al. Ligand transfer reactions of mixed-metal lanthanide/magnesium allyl complexes with β-diketimines: synthesis, structures, and ring-opening polymerization catalysis
Lian et al. Aluminum and zinc complexes based on an amino-bis (pyrazolyl) ligand: synthesis, structures, and use in MMA and lactide polymerization
Balsells et al. Achiral tetrahydrosalen ligands for the synthesis of C 2-symmetric Titanium complexes: A structure and diastereoselectivity study
Haddad et al. Synthesis and structure of neutral and cationic aluminum complexes supported by bidentate O, P-phosphinophenolate ligands and their reactivity with propylene oxide and ε-caprolactone
Ireland et al. Cationic organomagnesium complexes as highly active initiators for the ring-opening polymerization of ε-caprolactone
EP1954703B1 (en) Novel dinuclear transition metal compound, catalyst composition comprising the same, method of preparing olefin polymer, and olefin polymer produced using the method
Milione et al. Neutral and cationic heteroscorpionate aluminum complexes: Synthesis, structure, and ring-opening polymerization of ε-caprolactone
Kan et al. Aluminum methyl, alkoxide and α-alkoxy ester complexes supported by 6, 6′-dimethylbiphenyl-bridged salen ligands: synthesis, characterization and catalysis for rac-lactide polymerization
Huang et al. Syntheses of titanium (IV) complexes with mono-Cp and Schiff base ligands and their catalytic activities for ethylene polymerization and ethylene/1-hexene copolymerization
Sobota et al. Syntheses, structure, and reactivity of chiral titanium compounds: Procatalysts for olefin polymerization
Tolpygin et al. Chloro and Alkyl Rare-Earth Complexes Supported by ansa-Bis (amidinate) Ligands with a Rigid o-Phenylene Linker. Ligand Steric Bulk: A Means of Stabilization or Destabilization?
Zhang et al. Synthesis and characterization of lanthanide amides bearing aminophenoxy ligands and their catalytic activity for the polymerization of lactides
Shen et al. Synthesis and characterisation of alkylaluminium benzimidazolates and their use in the ring-opening polymerisation of ε-caprolactone
Homden et al. Early transition metal complexes bearing a C-capped tris (phenolate) ligand incorporating a pendant imine arm: synthesis, structure, and ethylene polymerization behavior
Cooper et al. Synthesis and characterization of group 4 permethylpentalene dichloride complexes
JP2015525268A (ja) アミジナートおよびグアニジナート錯体、連鎖移動重合触媒としてのそれらの使用、ならびに当該方法により得られる長鎖アルコール
Guo et al. 2-Aminopyrrolyl dilithium compounds: Synthesis, structural diversity, and catalytic activity for amidation of aldehydes with amines
Wang et al. Lithium, Magnesium, and Zinc Iminophosphorano (8-quinolyl) methanide Complexes: Syntheses, Characterization, and Activity in ε-Caprolactone Polymerization
Rios Yepes et al. Mono-and dinuclear asymmetric aluminum guanidinates for the catalytic CO2 fixation into cyclic carbonates
CN104226366B (zh) 钛系催化剂及其制备方法和应用
Tang et al. Highly active catalysts for the ring-opening polymerization of ethylene oxide and propylene oxide based on products of alkylaluminum compounds with bulky tetraphenol ligands
Jung et al. Cooperative initiation in a dinuclear indium complex for CO2 epoxide copolymerization
Ji et al. Synthesis of Ti, Zr, and Hf complexes with a new tetra-azane ligand by one-pot HCl-elimination and their properties as catalysts for production of UHMWPE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901034

Country of ref document: EP

Kind code of ref document: A1