WO2016031843A1 - Charger - Google Patents

Charger Download PDF

Info

Publication number
WO2016031843A1
WO2016031843A1 PCT/JP2015/073956 JP2015073956W WO2016031843A1 WO 2016031843 A1 WO2016031843 A1 WO 2016031843A1 JP 2015073956 W JP2015073956 W JP 2015073956W WO 2016031843 A1 WO2016031843 A1 WO 2016031843A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charger
battery
ground fault
control unit
Prior art date
Application number
PCT/JP2015/073956
Other languages
French (fr)
Japanese (ja)
Inventor
和寛 新村
守 倉石
慎司 広瀬
伊藤 智之
量也 山田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2016545566A priority Critical patent/JPWO2016031843A1/en
Publication of WO2016031843A1 publication Critical patent/WO2016031843A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to technology for charging storage batteries of different rated voltages.
  • a charger for charging different types of storage batteries needs to identify the type of storage battery and perform charging according to a charging voltage, a charging current and a charging control method suitable for the type of the storage battery.
  • the values of resistance and impedance provided in advance on the storage battery are read, the values are used as identification signals to determine the type of storage battery, and the determined charging characteristics of the type of storage battery
  • a charger that performs charging by switching to a suitable charging circuit is known, for example, from Patent Document 1 below.
  • the charger is provided with a ground fault detection circuit, and when a ground fault is detected, a measure such as issuing an alarm is taken.
  • FIG. 9 shows a configuration example of the ground fault detection circuit.
  • the ground fault detection circuit 3 has one end of each of the resistors 31 and 32 connected to the positive electrode potential line (+) and the negative electrode potential line (-) of the feed line 2 and the other end connected to the anode.
  • a light emitting diode 34 is provided. The cathode of the light emitting diode 34 is connected to the ground potential conductor via a resistor 33.
  • the ground fault detection circuit 3 further includes a phototransistor 35 for receiving light emitted from the light emitting diode 34.
  • the collector of the phototransistor 35 is connected to the power supply voltage terminal 36 through the resistor 37, and the emitter of the phototransistor 35 is Is connected to the ground potential conductor.
  • the output voltage of the collector of the phototransistor 35 is input to the input terminal of the control unit 4 through the resistor 38.
  • the control unit 4 is configured using a CPU (Central Processing Unit) or the like.
  • the light emitting diode 34 and the phototransistor 35 constitute a photocoupler.
  • either the high level signal or the low level signal from the collector of the phototransistor 35 is input to the input terminal of the control unit 4 depending on whether or not a ground fault has occurred.
  • the determination unit 41 determines whether or not a ground fault has occurred based on the signal.
  • a battery charger including a ground fault detection circuit 3 for detecting a ground fault of the feeder 2 based on the voltage of the feeder 2 and charging a plurality of types of storage batteries with different rated voltages to charge a low-voltage storage battery
  • the threshold level for ground fault detection in the ground fault detection circuit 3 must be lowered.
  • the threshold level for detecting the ground fault is lowered, when charging a storage battery of high voltage type, the charging voltage output from the feeding line 2 is high, so the voltage of the feeding line 2 is It does not fall below the threshold level for ground fault detection, and the occurrence of a ground fault may not be detected.
  • the threshold level for detecting the ground fault is increased according to the storage battery of the high voltage type, when charging the storage battery of the low voltage type, the charging voltage output from the feed line 2 is low. Even if a fault does not occur, the charging voltage output from the feed line 2 becomes lower than the threshold level for ground fault detection, and the occurrence of a ground fault may be erroneously detected.
  • the ground fault detection circuit 3 that detects a ground fault of the feed line 2 changes the charge voltage and the ground fault according to the type of storage battery in the feed line 2 The accuracy of the ground fault detection circuit 3 must be increased to distinguish it from the voltage change due to
  • storage batteries of a plurality of predetermined rated voltages such as 24V storage batteries, 48V storage batteries, and 80V storage batteries. Therefore, equip the charger with a plurality of protection functions corresponding to storage batteries with a plurality of rated voltages, or provide only a protection function corresponding to a storage battery with the highest rated voltage among the plurality of rated voltages in a charger. Is considered.
  • the cost increases as the protection functions increase.
  • the protection function does not work for the storage battery with a low rated voltage, and the over-voltage protection accuracy is lowered.
  • the present invention aims at performing abnormalities detection appropriately, suppressing the increase in cost, in the charger which can charge the storage battery of a different rated voltage.
  • a charger is a charger for charging storage batteries different in rated voltage, and includes voltage information acquisition means for acquiring a rated voltage of a storage battery connected to the charger, and the charger The detection means changes the abnormality detection method according to the rated voltage acquired by the voltage information acquisition means.
  • abnormality detection can be performed appropriately, suppressing the increase in cost in the charger which can charge the storage battery of a different rated voltage.
  • FIG. 1 The structural example of the principal part of the charger of this invention is shown in FIG.
  • a ground fault detection circuit 3 for detecting a ground fault of the feeder 2 with respect to the feeder 2 of the charging unit 1 for supplying charging current to a battery (not shown) (not shown) is a charger. 10 will be equipped.
  • the ground fault detection circuit 3 connects one end of each of the resistors 31 and 32 to the positive electrode potential line (+) and the negative electrode potential line (-) of the feed line 2 as described in FIG.
  • a light emitting diode 34 is connected to the other end of the light emitting diode.
  • the cathode of the light emitting diode 34 is connected to the ground potential conductor via a resistor 33.
  • the ground fault detection circuit 3 further includes a phototransistor 35 for receiving light emitted from the light emitting diode 34.
  • the collector of the phototransistor 35 is connected to the power supply voltage terminal 36 through the resistor 37, and the emitter of the phototransistor 35 is Is connected to the ground potential conductor.
  • the output voltage of the collector of the phototransistor 35 is input to the input terminal of the control unit 4 through the resistor 38.
  • the light emitting diode 34 When a ground fault does not occur in the feed line 2, the light emitting diode 34 emits light, the phototransistor 35 is turned on, and the collector of the phototransistor 35 outputs a low level detection signal. On the other hand, when a ground fault occurs in the feed line 2, the light emitting diode 34 does not emit light, the phototransistor 35 is turned off, and the collector of the phototransistor 35 outputs a high level detection signal.
  • a threshold level for ground fault detection in the ground fault detection circuit 3 that is, a threshold level at which the light emitting diode 34 is turned off, the voltage output from the feeder 2 at the time of charging the high voltage type battery is lowered due to the ground fault.
  • the level at which this can be detected is set by the resistance value of the resistors 31, 32, and 33, and the like.
  • a detection signal of high level or low level from the collector of the phototransistor 35 is input to the input terminal of the control unit 4 depending on whether or not a ground fault has occurred. Determine the occurrence of a fault. However, when the voltage of the battery (rated voltage of the storage battery) identified by the voltage identification unit 42 (voltage information acquisition unit) is less than or equal to a predetermined voltage, the ground fault determination unit 41 (ground fault determination unit) 3. Disable the ground fault detection based on the detection signal output from 3 and enable the ground fault detection based on the detection signal when the voltage of the battery is greater than a predetermined voltage.
  • the ground fault judging unit 41 drives the ground fault detection circuit 3 by stopping the power supply to the ground fault detection circuit 3 when the voltage of the battery connected to the charger 10 is lower than a predetermined voltage. , And the ground fault detection circuit 3 may be continuously driven when the voltage of the battery connected to the charger 10 is larger than a predetermined voltage.
  • the voltage identification unit 42 is based on the information on the type of battery notified from the battery monitoring control unit on the battery side via the communication line 5 such as CAN (Controller Area Network) communication before the start of charging of the battery to be charged.
  • the voltage of the battery (the rated voltage of the storage battery) can be identified.
  • the voltage of the feeder 2 connected to the battery may be measured by the charging unit 1 before charging starts, and the voltage of the battery to be charged (rated voltage of the storage battery) may be identified based on the voltage.
  • the ground fault determination unit 41 when charging a low voltage battery (such as a storage battery with a low rated voltage) of a low voltage such as 24 V or 48 V based on the voltage notified from the voltage identification unit 42, the ground fault determination unit 41 performs ground fault detection.
  • a high voltage type battery storage battery with high rated voltage
  • 60 V is defined as a predetermined voltage in order to enable ground fault detection.
  • the ground fault detection is invalidated, and a battery with a predetermined voltage greater than 60 V (a rated voltage of greater than 60 V) Control) to enable ground fault detection.
  • a battery of multiple voltages of 24 V to 80 V can be charged by one type of charger without erroneous detection of a ground fault.
  • a low voltage battery for example, a battery of 24V and 48V
  • no major damage is caused to the battery side or the charger side. There is no problem even if it is invalidated.
  • the battery voltage (rated voltage of the storage battery) is determined based on the information on the type of the battery notified via the communication line 5 such as CAN communication.
  • the communication line 5 such as CAN communication.
  • FIG. 2 shows an operation flow example of ground fault detection when charging a battery of a plurality of types of voltages.
  • the voltage identification unit 42 identifies the voltage of the battery (rated voltage of the storage battery) by the information notified from the battery side through communication such as CAN communication (step S21).
  • the ground fault determination unit 41 compares the voltage of the battery identified by the voltage identification unit 42 with a predetermined voltage (step S22), and if the battery voltage is greater than the predetermined voltage (YES in step S22), ground fault detection The ground fault detection by the detection signal obtained from the circuit 3 is validated (step S23), and the ground fault detection by the detection signal obtained from the ground fault detection circuit 3 when the battery voltage is less than the predetermined voltage (NO in step S22) Are invalidated (step S24).
  • the charger 10 determines various conditions of charge, and when the ground fault is not detected and various conditions are satisfied, charging of the battery is started. On the other hand, when the condition of charge is not satisfied, such as when a ground fault is detected, measures for ensuring safety such as issuing an alarm are executed.
  • FIG. 3 is a figure which shows the other structural example of the principal part of the charger of embodiment.
  • the charger 1a shown in FIG. 3 is a charger for charging a vehicle such as an electric forklift or a plug-in hybrid vehicle, and includes a charging cable 2a.
  • Charging connector 3a provided at the end of charging cable 2a is connected to charging connector 4a provided on the vehicle side, and battery pack 5a is provided from battery charger 1a via power line in charging cable 2a and charging connectors 3a and 4a.
  • 51 storage battery
  • 51 lithium ion battery
  • the charger 1 a includes a power supply unit 11 and a control unit 12.
  • the power supply unit 11 includes a PFC (Power Factor Correction) circuit (power factor correction circuit) 111, an isolated DC / DC converter circuit 112, a non-insulated DC / DC converter circuit 113, and a power unit control unit 115 (threshold setting). Section) and an output overvoltage protection circuit (protection section) 116.
  • PFC Power Factor Correction
  • circuit power factor correction circuit
  • isolated DC / DC converter circuit 112 isolated DC / DC converter circuit
  • non-insulated DC / DC converter circuit 113 non-insulated DC / DC converter circuit
  • power unit control unit 115 threshold setting
  • the PFC circuit 111 includes a rectifier circuit, a coil, a switching element, a diode, a capacitor, a control circuit, and the like.
  • the switching element is repeatedly turned on and off by the control circuit to convert AC power supplied from the external power supply 6a into DC. Convert.
  • the isolated DC / DC converter circuit 112 includes a switching element, a capacitor, a coil, a transformer, a rectifier circuit, a smoothing circuit, a control circuit, and the like, and the control circuit repeatedly outputs the PFC circuit 111 by turning on and off the switching element.
  • the transmitted power is transmitted from the primary coil of the transformer to the secondary coil, and the power transmitted to the secondary coil is rectified and smoothed by the rectifier circuit and the smoothing circuit and output.
  • the non-insulated DC / DC converter circuit 113 includes a switching element, a coil, a capacitor, a diode, a control circuit, and the like, and the control circuit repeatedly outputs the isolated DC / DC converter circuit 112 by turning on and off the switching element. Step-down or boost-up the voltage.
  • the power supply unit control unit 115 drives the power supplied from the isolated DC / DC converter 112 by stepping down the power for the control unit, and drives the PFC circuit 111, the isolated DC / DC converter circuit 112, and the non-insulated DC / DC converter. Each operation of the DC converter circuit 113 is controlled.
  • the control unit 12 includes an AC / DC circuit 121, a control unit control unit 122 having a communication unit 1221 (voltage information acquisition means), a charger state display unit 123, and a storage unit 124.
  • the AC / DC circuit 121 converts AC power supplied from the external power supply 6a into DC power.
  • the control unit control unit 122 is driven by the power supplied from the AC / DC circuit 121, and controls the entire charger 1a.
  • the communication unit 1221 of the control unit control unit 122 sets the current command value transmitted from the battery pack control unit 52 provided in the battery pack 5a to the charge connectors 3a and 4a and the communication line in the charge cable 2a (for example, CAN ( Controller Area Network) received via the communication line for communication, and the received current command value is transmitted to the power supply unit control unit 115 via the communication line (for example, communication line for CAN communication) in the charger 1a.
  • CAN Controller Area Network
  • the power supply unit control unit 115 controls the PFC circuit 111 and the isolated DC / DC converter such that the power or current corresponding to the current command value transmitted from the communication unit 1221 of the control unit control unit 122 is output from the charger 1a.
  • the operation of each of the circuit 112 and the non-insulated DC / DC converter circuit 113 is controlled.
  • the charger state display unit 123 includes, for example, a plurality of lamps indicating various states (standby, charging, abnormality, etc.) of the charger 1a, and a lamp corresponding to a control signal sent from the control unit control unit 122 Light.
  • the power supply unit control unit 115, the control unit control unit 122, and the battery pack control unit 52 are, for example, a micro control unit (MCU), a central processing unit (CPU), a multicore CPU, a programmable device (field programmable gate (FPGA) (Array), PLD (Programmable Logic Device), and the like.
  • the storage unit 124 is configured by, for example, a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the communication unit 1221 makes a transmission request for voltage information via the communication line in the charge cable 2a and the charge connectors 3a and 4a. And sends it to the battery pack control unit 52.
  • the control unit control unit 52 controls the voltage information indicating the voltage of the battery 51 (rated voltage of the storage battery) (for example, 24V system, 48V system, or 80V system) Send to 122
  • the control unit control unit 122 determines, based on the received voltage information, how many V-system batteries 51 the power supply destination battery 51 is, and communicates the determination result It transmits to the power supply unit control part 115 by the part 1221 via the communication line in the charger 1a.
  • the power supply unit control unit 115 When the power supply unit control unit 115 receives the determination result transmitted from the control unit control unit 122, the power supply unit control unit 115 sets the threshold value Vth based on the received determination result.
  • the output overvoltage protection circuit 116 stops the non-insulated DC / DC converter circuit 113 when the output voltage of the non-insulated DC / DC converter circuit 113 becomes equal to or higher than the threshold value Vth. That is, when the output voltage of the power supply unit including the PFC circuit 111, the isolated DC / DC converter circuit 112, and the non-insulated DC / DC converter circuit 113 becomes equal to or higher than the threshold Vth, the output overvoltage protection circuit 116 Stop.
  • FIG. 4 is a diagram showing an example of the output overvoltage protection circuit 116. As shown in FIG. 4
  • the output overvoltage protection circuit 116 shown in FIG. 4 includes resistors 21 and 22, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 23, a resistor 24, and a comparator 25.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the resistors 21 and 22 are connected in series to each other, and provided between the output of the non-insulated DC / DC converter circuit 113 and the ground.
  • the drain terminal of the MOSFET 23 is connected to the negative terminal of the comparator 25 and one end of the resistor 24, and the source terminal of the MOSFET 23 is connected to the reference GND.
  • the other end of the resistor 24 is connected to a voltage source.
  • the positive input terminal of the comparator 25 is connected to the connection point of the resistors 21 and 22.
  • the signal output from the comparator 25 is input to the non-insulated DC / DC converter circuit 113.
  • the power supply unit control unit 115 inputs a pulse signal of the Duty ratio according to the determination result transmitted from the control unit control unit 122 to the gate terminal of the MOSFET 23, and turns the MOSFET 23 on and off repeatedly.
  • a voltage corresponding to the duty ratio of the pulse signal output from the power supply unit controller 115 is input to the negative input terminal of the comparator 25.
  • the output voltage of the non-insulated DC / DC converter circuit 113 is divided by the resistors 21 and 22 and input to the positive input terminal of the comparator 25.
  • the comparator 25 outputs a high level signal when the voltage input to the positive input terminal is larger than the voltage input to the negative input terminal, and the voltage input to the negative input terminal is positive.
  • the non-insulated DC / DC converter circuit 113 supplies power to the battery 51 by repeatedly turning on and off switching elements provided therein when the signal output from the comparator 25 is at a low level. To continue. In addition, when the battery 51 is charged, the non-insulated DC / DC converter circuit 113 turns off the switching element provided in the battery 51 when the signal output from the comparator 25 changes from the low level to the high level. Turn off the power supply.
  • 35 V is set as the threshold value Vth corresponding to "24V battery 51".
  • Vth the threshold value corresponding to "24V battery 51”.
  • the output voltage of the non-insulated DC / DC converter circuit 113 is 35 V or more, a voltage larger than 3.5 V is input to the positive input terminal of the comparator 25, and the non-insulated DC / DC converter circuit 113
  • the resistance values of the resistors 21 and 22 are selected such that a voltage smaller than 3.5 V is input to the positive input terminal of the comparator 25 when the output voltage is smaller than 35 V.
  • 10 V is applied to the drain terminal of the MOSFET 23.
  • the non-insulated DC / DC converter circuit 113 continues the power supply to the battery 51 by repeatedly turning on and off the switching element provided therein.
  • the non-insulated DC / DC converter circuit 113 stops the power supply to the battery 51 by turning off the switching element provided therein.
  • 60 V is set as the threshold value Vth corresponding to “48-V battery 51”.
  • the output voltage of the non-insulated DC / DC converter circuit 113 is 60 V or more, a voltage larger than 6.0 V is input to the positive input terminal of the comparator 25, and the non-insulated DC / DC converter circuit 113
  • the resistance values of the resistors 21 and 22 are selected such that a voltage smaller than 6.0 V is input to the positive input terminal of the comparator 25 when the output voltage is smaller than 60 V.
  • 10 V is applied to the drain terminal of the MOSFET 23.
  • the non-insulated DC / DC converter circuit 113 continues the power supply to the battery 51 by repeatedly turning on and off the switching element provided therein.
  • the non-insulated DC / DC converter circuit 113 stops the power supply to the battery 51 by turning off the switching element provided therein.
  • 90 V is set as the threshold value Vth corresponding to the “80 V battery 51”.
  • the output voltage of the non-insulated DC / DC converter circuit 113 is 90 V or more, a voltage larger than 9.0 V is input to the positive input terminal of the comparator 25, and the non-insulated DC / DC converter circuit 113
  • the resistance values of the resistors 21 and 22 are selected such that a voltage smaller than 9.0 V is input to the positive input terminal of the comparator 25 when the output voltage is smaller than 90 V.
  • 10 V is applied to the drain terminal of the MOSFET 23.
  • the non-insulated DC / DC converter circuit 113 continues the power supply to the battery 51 by repeatedly turning on and off the switching element provided therein.
  • the non-insulated DC / DC converter circuit 113 stops the power supply to the battery 51 by turning off the switching element provided therein.
  • FIG. 5 is a flowchart showing an example of the operation of the charger 1a.
  • control unit controller 122 stands by until the charge connector 3a is connected to the charge connector 4a (S31: No), and detects that the charge connector 3a is connected to the charge connector 4a (S31: Yes), Voltage information is acquired (S32).
  • control unit controller 122 and the power supply unit controller 115 set the threshold value Vth based on the voltage information (S33).
  • the output overvoltage protection circuit 116 determines that the output voltage of the non-insulated DC / DC converter circuit 113 is smaller than the threshold value Vth (S34: No), it returns to the operation of S34 and performs overvoltage protection processing for the battery 51. continue.
  • the output overvoltage protection circuit 116 determines that the output voltage of the non-insulated DC / DC converter circuit 113 is equal to or higher than the threshold Vth (S34: Yes)
  • the non-insulated DC / DC converter circuit 113 is stopped ( S35), the overvoltage protection process for the battery 51 is finished.
  • FIG. 6 is a flowchart showing an example of the operation of S33 shown in FIG.
  • the control unit controller 122 determines that the battery 51 to which the power is supplied is "24V battery 51", and the determination result is transmitted from the control unit controller 122 to the power supply unit controller 115. If it is (S41: Yes), the power supply unit control unit 115 sets the threshold value Vth corresponding to the "24V battery 51" which is the judgment result (S42).
  • control unit control unit 122 determines that the battery 51 of the power supply destination is the “48V system battery 51” based on the voltage information, and the determination result is transmitted from the control unit control unit 122 to the power supply unit control unit 115 Then (S41: No, S43: Yes), the power supply unit control unit 115 sets a threshold value Vth corresponding to "48V battery 51" which is the judgment result (S44).
  • control unit control unit 122 determines that the battery 51 of the power supply destination is the “80V battery 51” based on the voltage information, and the determination result is transmitted from the control unit control unit 122 to the power supply unit control unit 115 If it is (S41: No, S43: No, S45: Yes), the power supply unit control unit 115 sets the threshold value Vth corresponding to "80V battery 51" which is the judgment result (S46).
  • the control unit control unit 122 can not identify the battery 51 of the power supply destination based on the voltage information and the battery 51 of the power supply destination can not be identified.
  • the power supply unit controller 115 determines that an abnormality has occurred based on the determination result, and stops the non-insulated DC / DC converter circuit 113. Then, the overvoltage protection process for the battery 51 is ended (S47).
  • the charger 1a of the embodiment sets the threshold value Vth based on the voltage information transmitted from the battery pack 5a, and when the output voltage of the non-insulated DC / DC converter circuit 113 becomes equal to or higher than the threshold value Vth, the non-insulated DC Since the configuration is such that the / DC converter circuit 113 is stopped, overvoltage protection can be performed on the batteries 51 of a plurality of voltages determined in advance by one output overvoltage protection circuit 116. As a result, while suppressing the increase in the cost of the charger 1a, it is possible to prevent the overvoltage protection accuracy from being lowered for the battery 51 of a plurality of voltages determined in advance.
  • FIG. 7 is a view showing a modification of the charger 10 shown in FIG.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the charger 10 shown in FIG. 7 includes a detection unit 6, and the detection unit 6 includes, for example, a ground fault detection circuit 3 and a ground fault determination unit 41.
  • the ground fault detection circuit 3 detects a ground fault of the feed line 2. That is, the ground fault detection circuit 3 detects an abnormality of the charger 10.
  • the ground fault determination unit 41 detects the detection output of the ground fault detection circuit 3 when the voltage of the battery (rated voltage of the storage battery) acquired by the voltage identification unit 42 (voltage information acquisition means) is less than a predetermined voltage.
  • the detection output of the ground fault detection circuit 3 is validated. That is, the ground fault determination unit 41 changes the abnormality detection method according to the rated voltage of the storage battery acquired by the voltage identification unit 42 (voltage information acquisition unit).
  • the detection unit 6 detects an abnormality of the charger 10 and changes the abnormality detection method according to the rated voltage of the storage battery acquired by the voltage identification unit 42 (voltage information acquisition unit).
  • the method can be changed to an appropriate abnormality detection method according to the rated voltage of the storage battery, so that the abnormality detection accuracy can be enhanced.
  • FIG. 8 is a view showing a modification of the charger 1a shown in FIG.
  • the same components as those shown in FIG. 3 will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the charger 1a shown in FIG. 8 includes a detection unit 117.
  • the detection unit 117 includes, for example, a power supply unit control unit 115 and an output overvoltage protection circuit 116.
  • the output overvoltage protection circuit 116 detects an abnormality of the charger 1a.
  • the power supply unit control unit 115 sets the threshold value Vth based on the voltage of the battery 51 (rated voltage of the storage battery) acquired by the communication unit 1221 (voltage information acquisition unit). That is, the power supply unit control unit 115 changes the abnormality detection method according to the voltage (rated voltage of the storage battery) of the battery 51 acquired by the communication unit 1221 (voltage information acquisition unit).
  • the detection unit 117 detects an abnormality of the charger 1 a and changes the abnormality detection method according to the voltage of the battery 51 (rated voltage of the storage battery) acquired by the communication unit 1221 (voltage information acquisition unit). .
  • a charger that charges multiple types of batteries with different voltages A ground fault detection circuit that detects a ground fault of the feed line; Voltage identification means for identifying the voltage of the battery to be charged; When the voltage of the battery to be charged is lower than a predetermined voltage, the detection output of the ground fault detection circuit is invalidated, and when the voltage of the battery to be charged is larger than a predetermined voltage, the detection output of the ground fault detection circuit is effective.
  • a charging control method for controlling the operation of the power supply unit in a charger including a power supply unit for supplying power to a battery provided in a battery pack, The charger is Receiving voltage information indicating the voltage of the battery from the battery pack; Setting a threshold based on the voltage information; The power supply unit is stopped when the output voltage of the power supply unit is equal to or more than the threshold value.

Abstract

A charger 10 is configured by being provided with a voltage identifying unit 42 that acquires a rated voltage of a storage battery, and a detecting means 6 that detects an abnormality of the charger 10, and the detecting means 6 changes an abnormality detection method corresponding to the rated voltage acquired by means of the voltage identifying unit 42.

Description

充電器Charger
 本発明は、異なる定格電圧の蓄電池を充電する技術に関する。 The present invention relates to technology for charging storage batteries of different rated voltages.
 充電式の蓄電池の種類として、例えば、リチウムイオン電池、鉛電池、ニッケル水素電池等がある。種類の異なる蓄電池を充電する充電器は、蓄電池の種類を識別し、該蓄電池の種類に適した充電電圧、充電電流及び充電制御方法により充電を行う必要がある。 As a type of rechargeable storage battery, for example, there are a lithium ion battery, a lead battery, a nickel hydrogen battery and the like. A charger for charging different types of storage batteries needs to identify the type of storage battery and perform charging according to a charging voltage, a charging current and a charging control method suitable for the type of the storage battery.
 種類の異なる蓄電池を充電する充電器として、蓄電池側に予め設けられた抵抗やインピーダンスの値等を読み取り、それらの値を識別信号として蓄電池の種類を判定し、判定した蓄電池の種類の充電特性に適合した充電回路に切替えて充電を行う充電器が、下記の特許文献1等により知られている。 As a charger for charging different types of storage batteries, the values of resistance and impedance provided in advance on the storage battery are read, the values are used as identification signals to determine the type of storage battery, and the determined charging characteristics of the type of storage battery A charger that performs charging by switching to a suitable charging circuit is known, for example, from Patent Document 1 below.
 充電器において給電線に地絡が発生すると、蓄電池側又は充電器側の機器に損傷を与えるおそれがある異常な電圧又は電流が出力される。そのため、安全機構として、充電器に地絡検知回路を設け、地絡を検出した場合、警報を発するなどの策が講じられる。 When a ground fault occurs in the feeder in the charger, an abnormal voltage or current is output that may damage equipment on the storage battery side or the charger side. Therefore, as a safety mechanism, the charger is provided with a ground fault detection circuit, and when a ground fault is detected, a measure such as issuing an alarm is taken.
 図9に地絡検知回路の構成例を示す。図9に示すように、図示省略の蓄電池に充電電流を供給する充電部1の給電線2に対して、該給電線2の地絡を検出する地絡検出回路3が、充電器10内に備えられる。 FIG. 9 shows a configuration example of the ground fault detection circuit. As shown in FIG. 9, a ground fault detection circuit 3 for detecting a ground fault of the feed line 2 with respect to the feed line 2 of the charging unit 1 that supplies charging current to a storage battery (not shown) Be equipped.
 地絡検知回路3は、給電線2の正極電位線(+)と負極電位線(-)とにそれぞれ抵抗31,32の一端を接続し、該抵抗31,32の他端にアノードを接続した発光ダイオード34を備える。該発光ダイオード34のカソードは、抵抗33を介して接地電位導体に接続される。 The ground fault detection circuit 3 has one end of each of the resistors 31 and 32 connected to the positive electrode potential line (+) and the negative electrode potential line (-) of the feed line 2 and the other end connected to the anode. A light emitting diode 34 is provided. The cathode of the light emitting diode 34 is connected to the ground potential conductor via a resistor 33.
 また、地絡検知回路3は、発光ダイオード34の発光を受光するフォトトランジスタ35を備え、該フォトトランジスタ35のコレクタは、抵抗37を介して電源電圧端子36に接続され、該フォトトランジスタ35のエミッタは接地電位導体に接続される。 The ground fault detection circuit 3 further includes a phototransistor 35 for receiving light emitted from the light emitting diode 34. The collector of the phototransistor 35 is connected to the power supply voltage terminal 36 through the resistor 37, and the emitter of the phototransistor 35 is Is connected to the ground potential conductor.
 フォトトランジスタ35のコレクタの出力電圧は、抵抗38を介して制御部4の入力端子に入力される。制御部4は、CPU(Central Processing Unit)等を用いて構成される。発光ダイオード34とフォトトランジスタ35とでフォトカプラを構成する。 The output voltage of the collector of the phototransistor 35 is input to the input terminal of the control unit 4 through the resistor 38. The control unit 4 is configured using a CPU (Central Processing Unit) or the like. The light emitting diode 34 and the phototransistor 35 constitute a photocoupler.
 給電線2に地絡が発生していない場合は、給電線2の正極電位と負極電位とを抵抗31,32で分割した電圧が発光ダイオード34のアノードに印加される。すると、発光ダイオード34に電流が流れて該発光ダイオード34が発光する。発光ダイオード34が発光すると、フォトトランジスタ35がオンとなり、そのコレクタからローレベルの信号が出力される。 When a ground fault does not occur in the feed line 2, a voltage obtained by dividing the positive electrode potential and the negative electrode potential of the feed line 2 by the resistors 31 and 32 is applied to the anode of the light emitting diode 34. Then, a current flows in the light emitting diode 34 and the light emitting diode 34 emits light. When the light emitting diode 34 emits light, the phototransistor 35 is turned on, and a low level signal is output from its collector.
 一方、給電線2に地絡が発生した場合は、給電線2の正極電位と負極電位とを抵抗31,32で分割した電圧が低下するため、発光ダイオード34に流れる電流が減少し、該発光ダイオード34が発光しなくなるため、フォトトランジスタ35はオフとなり、該フォトトランジスタ35のコレクタからハイレベルの信号が出力される。 On the other hand, when a ground fault occurs in the feed line 2, the voltage obtained by dividing the positive electrode potential and the negative electrode potential of the feed line 2 by the resistors 31 and 32 decreases, so the current flowing to the light emitting diode 34 decreases. Since the diode 34 does not emit light, the phototransistor 35 is turned off, and the collector of the phototransistor 35 outputs a high level signal.
 このように、制御部4の入力端子には、地絡が発生したか否かに応じて、フォトトランジスタ35のコレクタからのハイレベル又はローレベルのいずれかの信号が入力されるので、地絡判定部41は、該信号を基に地絡が発生したか否かを判定する。 As described above, either the high level signal or the low level signal from the collector of the phototransistor 35 is input to the input terminal of the control unit 4 depending on whether or not a ground fault has occurred. The determination unit 41 determines whether or not a ground fault has occurred based on the signal.
 給電線2の電圧を基に給電線2の地絡を検知する地絡検知回路3を備え、定格電圧の異なる複数種類の蓄電池を充電する充電器において、低電圧の種類の蓄電池の充電を行うときは、給電線2から出力される充電電圧が低いため、地絡検知回路3における地絡検知のための閾値レベルを低くしなければならない。 A battery charger including a ground fault detection circuit 3 for detecting a ground fault of the feeder 2 based on the voltage of the feeder 2 and charging a plurality of types of storage batteries with different rated voltages to charge a low-voltage storage battery When the charging voltage output from the feed line 2 is low, the threshold level for ground fault detection in the ground fault detection circuit 3 must be lowered.
 地絡検知のための閾値レベルを低くすると、高電圧の種類の蓄電池を充電するときは、給電線2から出力される充電電圧が高いため、地絡が発生しても給電線2の電圧が地絡検知のための閾値レベルより低くならず、地絡の発生が検知されないおそれがある。 If the threshold level for detecting the ground fault is lowered, when charging a storage battery of high voltage type, the charging voltage output from the feeding line 2 is high, so the voltage of the feeding line 2 is It does not fall below the threshold level for ground fault detection, and the occurrence of a ground fault may not be detected.
 一方、高電圧の種類の蓄電池に合わせて、地絡検知のための閾値レベルを高くした場合、低電圧の種類の蓄電池を充電するとき、給電線2から出力される充電電圧が低いため、地絡が発生していなくても、給電線2から出力される充電電圧が地絡検知のための閾値レベルより低くなり、地絡の発生を誤検知してしまうおそれがある。 On the other hand, when the threshold level for detecting the ground fault is increased according to the storage battery of the high voltage type, when charging the storage battery of the low voltage type, the charging voltage output from the feed line 2 is low. Even if a fault does not occur, the charging voltage output from the feed line 2 becomes lower than the threshold level for ground fault detection, and the occurrence of a ground fault may be erroneously detected.
 このように、定格電圧の種類が異なる蓄電池を充電する充電器10において、給電線2の地絡を検地する地絡検知回路3は、給電線2における蓄電池の種類による充電電圧の変化と地絡による電圧変化とを区別するために、地絡検知回路3の精度を高くしなければならない。 As described above, in the charger 10 that charges storage batteries of different types of rated voltage, the ground fault detection circuit 3 that detects a ground fault of the feed line 2 changes the charge voltage and the ground fault according to the type of storage battery in the feed line 2 The accuracy of the ground fault detection circuit 3 must be increased to distinguish it from the voltage change due to
 地絡検知回路3の精度を高くするには、複雑な回路の設計や調整を必要とし、また高精度の部品を用いなければならず、コストが増大してしまう。また、地絡検知回路3の精度が低いと、地絡を誤検知してしまうという問題があった。 In order to increase the accuracy of the ground fault detection circuit 3, it is necessary to design and adjust a complicated circuit, and it is necessary to use high precision components, resulting in an increase in cost. In addition, when the accuracy of the ground fault detection circuit 3 is low, there is a problem that the ground fault is erroneously detected.
 また、蓄電池が過充電状態になったり充電器が異常になったりすることで充電器の出力電圧が過電圧になると、その過電圧で蓄電池が劣化しないように充電器を停止させるものがある。例えば、特許文献2~4参照。 In addition, when the output voltage of the battery charger becomes an over voltage due to the battery being overcharged or the battery charger becoming abnormal, the battery charger may be stopped so that the battery does not deteriorate due to the over voltage. See, for example, Patent Documents 2 to 4.
 また、車両に搭載される蓄電池として、24V系の蓄電池、48V系の蓄電池、及び80V系の蓄電池など、予め決められた複数の定格電圧の蓄電池が存在する。そのため、複数の定格電圧の蓄電池にそれぞれ対応した複数の保護機能を充電器に備えたり、複数の定格電圧のうちの最も高い定格電圧の蓄電池に対応する保護機能のみを充電器に備えたりすることが考えられる。 Moreover, as a storage battery mounted in a vehicle, storage batteries of a plurality of predetermined rated voltages, such as 24V storage batteries, 48V storage batteries, and 80V storage batteries, exist. Therefore, equip the charger with a plurality of protection functions corresponding to storage batteries with a plurality of rated voltages, or provide only a protection function corresponding to a storage battery with the highest rated voltage among the plurality of rated voltages in a charger. Is considered.
 しかしながら、複数の定格電圧の蓄電池にそれぞれ対応した複数の保護機能を充電器に備える場合は、保護機能の増加に伴ってコストが増大してしまう。また、最も高い定格電圧の蓄電池に対応する保護機能のみを充電器に備える場合は、低い定格電圧の蓄電池に対して保護機能が働かず過電圧保護精度が低下してしまう。 However, in the case where the battery charger is provided with a plurality of protection functions respectively corresponding to storage batteries of a plurality of rated voltages, the cost increases as the protection functions increase. In addition, when the battery charger is provided with only the protection function corresponding to the storage battery with the highest rated voltage, the protection function does not work for the storage battery with a low rated voltage, and the over-voltage protection accuracy is lowered.
特開2002-10508号公報Japanese Patent Laid-Open No. 2002-10508 特開2012-143072号公報JP 2012-143072 A 特開2009-089453号公報JP, 2009-089453, A 特開平10-215523号公報Japanese Patent Application Laid-Open No. 10-215523
 上記課題に鑑み、本発明は、異なる定格電圧の蓄電池を充電可能な充電器において、コストの増大を抑えつつ、適正に異常検知を行うことを目的とする。 In view of the above-mentioned subject, the present invention aims at performing abnormalities detection appropriately, suppressing the increase in cost, in the charger which can charge the storage battery of a different rated voltage.
 本発明に係る一つの形態としての充電器は、定格電圧の異なる蓄電池を充電する充電器であって、前記充電器に接続された蓄電池の定格電圧を取得する電圧情報取得手段と、前記充電器の異常を検知する検知手段とからなり、前記検知手段は、前記電圧情報取得手段により取得された定格電圧に応じて異常検知方法を変える。 A charger according to one aspect of the present invention is a charger for charging storage batteries different in rated voltage, and includes voltage information acquisition means for acquiring a rated voltage of a storage battery connected to the charger, and the charger The detection means changes the abnormality detection method according to the rated voltage acquired by the voltage information acquisition means.
 本発明によれば、異なる定格電圧の蓄電池を充電可能な充電器において、コストの増大を抑えつつ、適正に異常検知を行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, abnormality detection can be performed appropriately, suppressing the increase in cost in the charger which can charge the storage battery of a different rated voltage.
実施形態の充電器の要部の構成例を示す図である。It is a figure which shows the structural example of the principal part of the charger of embodiment. 複数種類の電圧のバッテリを充電するときの地絡検知の動作フロー例を示す図である。It is a figure which shows the operation | movement example of a grounding detection at the time of charging the battery of multiple types of voltage. 実施形態の充電器の要部の他の構成例を示す図である。It is a figure which shows the other structural example of the principal part of the charger of embodiment. 出力過電圧保護回路の一例を示す図である。It is a figure which shows an example of an output overvoltage protection circuit. 充電器の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a charger. 図5に示すS33の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of S33 shown in FIG. 図1に示す充電器の変形例を示す図である。It is a figure which shows the modification of the charger shown in FIG. 図3に示す充電器の変形例を示す図である。It is a figure which shows the modification of the charger shown in FIG. 地絡検知回路の構成例を示す図である。It is a figure which shows the structural example of a ground fault detection circuit.
 以下、本発明の実施形態について図面を参照して説明する。図1に本発明の充電器の要部の構成例を示す。図1に示すように、図示省略のバッテリ(蓄電池)に充電電流を供給する充電部1の給電線2に対して、該給電線2の地絡を検出する地絡検出回路3が、充電器10内に備えられる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The structural example of the principal part of the charger of this invention is shown in FIG. As shown in FIG. 1, a ground fault detection circuit 3 for detecting a ground fault of the feeder 2 with respect to the feeder 2 of the charging unit 1 for supplying charging current to a battery (not shown) (not shown) is a charger. 10 will be equipped.
 地絡検知回路3は、図9で説明したように、給電線2の正極電位線(+)と負極電位線(-)とにそれぞれ抵抗31,32の一端を接続し、該抵抗31,32の他端にアノードを接続した発光ダイオード34を備える。該発光ダイオード34のカソードは、抵抗33を介して接地電位導体に接続される。 The ground fault detection circuit 3 connects one end of each of the resistors 31 and 32 to the positive electrode potential line (+) and the negative electrode potential line (-) of the feed line 2 as described in FIG. A light emitting diode 34 is connected to the other end of the light emitting diode. The cathode of the light emitting diode 34 is connected to the ground potential conductor via a resistor 33.
 また、地絡検知回路3は、発光ダイオード34の発光を受光するフォトトランジスタ35を備え、該フォトトランジスタ35のコレクタは、抵抗37を介して電源電圧端子36に接続され、該フォトトランジスタ35のエミッタは接地電位導体に接続される。フォトトランジスタ35のコレクタの出力電圧は、抵抗38を介して制御部4の入力端子に入力される。 The ground fault detection circuit 3 further includes a phototransistor 35 for receiving light emitted from the light emitting diode 34. The collector of the phototransistor 35 is connected to the power supply voltage terminal 36 through the resistor 37, and the emitter of the phototransistor 35 is Is connected to the ground potential conductor. The output voltage of the collector of the phototransistor 35 is input to the input terminal of the control unit 4 through the resistor 38.
 給電線2に地絡が発生していない場合は、発光ダイオード34が発光し、フォトトランジスタ35がオンとなり、フォトトランジスタ35のコレクタからローレベルの検知信号が出力される。一方、給電線2に地絡が発生した場合は、発光ダイオード34が発光せず、フォトトランジスタ35はオフとなり、フォトトランジスタ35のコレクタからハイレベルの検知信号が出力される。 When a ground fault does not occur in the feed line 2, the light emitting diode 34 emits light, the phototransistor 35 is turned on, and the collector of the phototransistor 35 outputs a low level detection signal. On the other hand, when a ground fault occurs in the feed line 2, the light emitting diode 34 does not emit light, the phototransistor 35 is turned off, and the collector of the phototransistor 35 outputs a high level detection signal.
 地絡検知回路3における地絡検知のための閾値レベル、すなわち、発光ダイオード34が消灯する閾値レベルとして、高電圧の種類のバッテリの充電時に給電線2から出力される電圧が、地絡により低下したことを検知することができるレベルを、抵抗31,32,33の抵抗値等により設定しておく。 As a threshold level for ground fault detection in the ground fault detection circuit 3, that is, a threshold level at which the light emitting diode 34 is turned off, the voltage output from the feeder 2 at the time of charging the high voltage type battery is lowered due to the ground fault. The level at which this can be detected is set by the resistance value of the resistors 31, 32, and 33, and the like.
 制御部4の入力端子には、地絡が発生したか否かにより、フォトトランジスタ35のコレクタからのハイレベル又はローレベルの検知信号が入力され、該検知信号により地絡判定部41は、地絡の発生を判定する。ただし、地絡判定部41(地絡判定手段)は、電圧識別部42(電圧情報取得手段)により識別されるバッテリの電圧(蓄電池の定格電圧)が所定の電圧以下のとき、地絡検知回路3から出力される検知信号による地絡検知を無効化し、バッテリの電圧が所定の電圧より大きいとき、該検知信号による地絡検知を有効化する。なお、地絡判定部41は、充電器10に接続されたバッテリの電圧が所定の電圧以下のときに、地絡検知回路3への電源供給を停止するなどして地絡検知回路3の駆動を停止させ、充電器10に接続されたバッテリの電圧が所定の電圧より大きいときに、地絡検知回路3を継続して駆動させるように構成してもよい。 A detection signal of high level or low level from the collector of the phototransistor 35 is input to the input terminal of the control unit 4 depending on whether or not a ground fault has occurred. Determine the occurrence of a fault. However, when the voltage of the battery (rated voltage of the storage battery) identified by the voltage identification unit 42 (voltage information acquisition unit) is less than or equal to a predetermined voltage, the ground fault determination unit 41 (ground fault determination unit) 3. Disable the ground fault detection based on the detection signal output from 3 and enable the ground fault detection based on the detection signal when the voltage of the battery is greater than a predetermined voltage. The ground fault judging unit 41 drives the ground fault detection circuit 3 by stopping the power supply to the ground fault detection circuit 3 when the voltage of the battery connected to the charger 10 is lower than a predetermined voltage. , And the ground fault detection circuit 3 may be continuously driven when the voltage of the battery connected to the charger 10 is larger than a predetermined voltage.
 電圧識別部42は、充電するバッテリの充電開始前に、CAN(Controller Area Network)通信等の通信線5を介してバッテリ側の電池監視制御部から通知されるバッテリの種別に関する情報に基づいて、該バッテリの電圧(蓄電池の定格電圧)を識別する構成とすることができる。或いは、バッテリに接続した給電線2の電圧を、充電開始前に充電部1で測定し、その電圧を基に、充電するバッテリの電圧(蓄電池の定格電圧)を識別する構成としてもよい。 The voltage identification unit 42 is based on the information on the type of battery notified from the battery monitoring control unit on the battery side via the communication line 5 such as CAN (Controller Area Network) communication before the start of charging of the battery to be charged. The voltage of the battery (the rated voltage of the storage battery) can be identified. Alternatively, the voltage of the feeder 2 connected to the battery may be measured by the charging unit 1 before charging starts, and the voltage of the battery to be charged (rated voltage of the storage battery) may be identified based on the voltage.
 地絡判定部41は、電圧識別部42から通知される電圧を基に、例えば、24V,48V等の低電圧の種類のバッテリ(定格電圧が低い蓄電池)の充電のときは、地絡検知を無効化し、80V等の高電圧の種類のバッテリ(定格電圧が高い蓄電池)の充電のときは、地絡検知を有効化するために、所定の電圧として例えば60Vを定めておく。そして、所定の電圧60V以下のバッテリ(所定の電圧60V以下の定格電圧の蓄電池)に対しては、地絡検知を無効化し、所定の電圧60Vより大きいバッテリ(所定の電圧60Vより大きい定格電圧の蓄電池)に対しては、地絡検知を有効化するよう制御する。 For example, when charging a low voltage battery (such as a storage battery with a low rated voltage) of a low voltage such as 24 V or 48 V based on the voltage notified from the voltage identification unit 42, the ground fault determination unit 41 performs ground fault detection. In the case of disabling and charging a high voltage type battery (storage battery with high rated voltage) such as 80 V, for example, 60 V is defined as a predetermined voltage in order to enable ground fault detection. Then, for a battery with a predetermined voltage of 60 V or less (a storage battery with a rated voltage of 60 V or less), the ground fault detection is invalidated, and a battery with a predetermined voltage greater than 60 V (a rated voltage of greater than 60 V) Control) to enable ground fault detection.
 これにより、低電圧バッテリを充電する際に、地絡を誤検知することなく、例えば24V~80Vの複数種類の電圧のバッテリを一つの種類の充電器で充電することができる。なお、低電圧バッテリ(例えば24V,48Vのバッテリ)の充電において、給電線2に地絡が発生しても、バッテリ側又は充電器側に大きな損傷を与えることがないので、地絡の検知を無効化しても支障は無い。 As a result, when charging the low voltage battery, for example, a battery of multiple voltages of 24 V to 80 V can be charged by one type of charger without erroneous detection of a ground fault. In the charging of a low voltage battery (for example, a battery of 24V and 48V), even if a ground fault occurs in the feeder 2, no major damage is caused to the battery side or the charger side. There is no problem even if it is invalidated.
 また、充電器10とバッテリとを充電用のケーブルで接続したとき、CAN通信等の通信線5を介して通知されるバッテリの種別に関する情報に基づいて、バッテリの電圧(蓄電池の定格電圧)を識別し、該バッテリの電圧により地絡検知を有効化することにより、短時間で地絡検知の判定を行うことが可能となる。 In addition, when the charger 10 and the battery are connected by a charging cable, the battery voltage (rated voltage of the storage battery) is determined based on the information on the type of the battery notified via the communication line 5 such as CAN communication. By identifying and validating the ground fault detection based on the voltage of the battery, it is possible to determine the ground fault detection in a short time.
 図2に複数種類の電圧のバッテリを充電するときの地絡検知の動作フロー例を示す。まず、バッテリの充電が開始されると、電圧識別部42は、バッテリ側からCAN通信等の通信により通知される情報により、該バッテリの電圧(蓄電池の定格電圧)を識別する(ステップS21)。 FIG. 2 shows an operation flow example of ground fault detection when charging a battery of a plurality of types of voltages. First, when charging of the battery is started, the voltage identification unit 42 identifies the voltage of the battery (rated voltage of the storage battery) by the information notified from the battery side through communication such as CAN communication (step S21).
 地絡判定部41は、電圧識別部42により識別したバッテリの電圧と所定の電圧とを比較し(ステップS22)、バッテリの電圧が所定の電圧より大きい場合(ステップS22でYES)、地絡検知回路3から得られる検出信号による地絡検知を有効化し(ステップS23)、バッテリの電圧が所定の電圧以下の場合(ステップS22でNO)、地絡検知回路3から得られる検出信号による地絡検知を無効化する(ステップS24)。 The ground fault determination unit 41 compares the voltage of the battery identified by the voltage identification unit 42 with a predetermined voltage (step S22), and if the battery voltage is greater than the predetermined voltage (YES in step S22), ground fault detection The ground fault detection by the detection signal obtained from the circuit 3 is validated (step S23), and the ground fault detection by the detection signal obtained from the ground fault detection circuit 3 when the battery voltage is less than the predetermined voltage (NO in step S22) Are invalidated (step S24).
 その後、充電器10は、充電の種々の条件を判定し、地絡が検知されず、種々の条件が成立した場合、バッテリへの充電を開始する。一方、地絡が検知されるなど、充電の条件が満たされない場合、警報を発する等の安全性確保のための処置等を実行する。 Thereafter, the charger 10 determines various conditions of charge, and when the ground fault is not detected and various conditions are satisfied, charging of the battery is started. On the other hand, when the condition of charge is not satisfied, such as when a ground fault is detected, measures for ensuring safety such as issuing an alarm are executed.
 図3は、実施形態の充電器の要部の他の構成例を示す図である。 FIG. 3: is a figure which shows the other structural example of the principal part of the charger of embodiment.
 図3に示す充電器1aは、電動フォークリフトやプラグインハイブリッド車などの車両へ充電する充電器であって、充電ケーブル2aを備えている。充電ケーブル2aの先端に設けられる充電コネクタ3aが車両側に設けられる充電コネクタ4aに接続され、充電器1aから充電ケーブル2a内の電力線及び充電コネクタ3a、4aを介して電池パック5aに備えられる電池51(蓄電池)(例えば、リチウムイオン電池)に電力が供給されると、電池51が充電される。 The charger 1a shown in FIG. 3 is a charger for charging a vehicle such as an electric forklift or a plug-in hybrid vehicle, and includes a charging cable 2a. Charging connector 3a provided at the end of charging cable 2a is connected to charging connector 4a provided on the vehicle side, and battery pack 5a is provided from battery charger 1a via power line in charging cable 2a and charging connectors 3a and 4a. When power is supplied to 51 (storage battery) (for example, a lithium ion battery), the battery 51 is charged.
 また、充電器1aは、電源ユニット11及び制御ユニット12を備える。 Further, the charger 1 a includes a power supply unit 11 and a control unit 12.
 電源ユニット11は、PFC(Power Factor Correction)回路(力率改善回路)111と、絶縁型DC/DCコンバータ回路112と、非絶縁型DC/DCコンバータ回路113と、電源ユニット制御部115(閾値設定部)と、出力過電圧保護回路(保護部)116とを備える。 The power supply unit 11 includes a PFC (Power Factor Correction) circuit (power factor correction circuit) 111, an isolated DC / DC converter circuit 112, a non-insulated DC / DC converter circuit 113, and a power unit control unit 115 (threshold setting). Section) and an output overvoltage protection circuit (protection section) 116.
 PFC回路111は、整流回路、コイル、スイッチング素子、ダイオード、コンデンサ、及び制御回路などを備え、制御回路によってスイッチング素子を繰り返しオン、オフすることで外部電源6aから供給される交流の電力を直流に変換する。 The PFC circuit 111 includes a rectifier circuit, a coil, a switching element, a diode, a capacitor, a control circuit, and the like. The switching element is repeatedly turned on and off by the control circuit to convert AC power supplied from the external power supply 6a into DC. Convert.
 絶縁型DC/DCコンバータ回路112は、スイッチング素子、コンデンサ、コイル、トランス、整流回路、平滑回路、及び制御回路などを備え、制御回路によってスイッチング素子を繰り返しオン、オフすることでPFC回路111から出力される電力をトランスの一次コイルから二次コイルに伝え、二次コイルに伝わった電力を整流回路及び平滑回路により整流及び平滑して出力する。 The isolated DC / DC converter circuit 112 includes a switching element, a capacitor, a coil, a transformer, a rectifier circuit, a smoothing circuit, a control circuit, and the like, and the control circuit repeatedly outputs the PFC circuit 111 by turning on and off the switching element. The transmitted power is transmitted from the primary coil of the transformer to the secondary coil, and the power transmitted to the secondary coil is rectified and smoothed by the rectifier circuit and the smoothing circuit and output.
 非絶縁型DC/DCコンバータ回路113は、スイッチング素子、コイル、コンデンサ、ダイオード、及び制御回路などを備え、制御回路によってスイッチング素子を繰り返しオン、オフすることで絶縁型DC/DCコンバータ回路112から出力される電圧を降圧又は昇圧する。 The non-insulated DC / DC converter circuit 113 includes a switching element, a coil, a capacitor, a diode, a control circuit, and the like, and the control circuit repeatedly outputs the isolated DC / DC converter circuit 112 by turning on and off the switching element. Step-down or boost-up the voltage.
 電源ユニット制御部115は、絶縁型DC/DCコンバータ112から供給される電力を制御部用に降圧した電力により駆動し、PFC回路111、絶縁型DC/DCコンバータ回路112、及び非絶縁型DC/DCコンバータ回路113のそれぞれの動作を制御する。 The power supply unit control unit 115 drives the power supplied from the isolated DC / DC converter 112 by stepping down the power for the control unit, and drives the PFC circuit 111, the isolated DC / DC converter circuit 112, and the non-insulated DC / DC converter. Each operation of the DC converter circuit 113 is controlled.
 制御ユニット12は、AC/DC回路121と、通信部1221(電圧情報取得手段)を有する制御ユニット制御部122と、充電器状態表示部123と、記憶部124とを備える。 The control unit 12 includes an AC / DC circuit 121, a control unit control unit 122 having a communication unit 1221 (voltage information acquisition means), a charger state display unit 123, and a storage unit 124.
 AC/DC回路121は、外部電源6aから供給される交流の電力を直流の電力に変換する。 The AC / DC circuit 121 converts AC power supplied from the external power supply 6a into DC power.
 制御ユニット制御部122は、AC/DC回路121から供給される電力により駆動し、充電器1a全体の制御を行う。例えば、制御ユニット制御部122の通信部1221は、電池パック5aに備えられる電池パック制御部52から送信される電流指令値を充電コネクタ3a、4a及び充電ケーブル2a内の通信線(例えば、CAN(Controller Area Network )通信用の通信線)を介して受信し、その受信した電流指令値を充電器1a内の通信線(例えば、CAN通信用の通信線)を介して電源ユニット制御部115に送信する。電源ユニット制御部115は、制御ユニット制御部122の通信部1221から送信される電流指令値に応じた電力又は電流が充電器1aから出力されるように、PFC回路111、絶縁型DC/DCコンバータ回路112、及び非絶縁型DC/DCコンバータ回路113のそれぞれの動作を制御する。 The control unit control unit 122 is driven by the power supplied from the AC / DC circuit 121, and controls the entire charger 1a. For example, the communication unit 1221 of the control unit control unit 122 sets the current command value transmitted from the battery pack control unit 52 provided in the battery pack 5a to the charge connectors 3a and 4a and the communication line in the charge cable 2a (for example, CAN ( Controller Area Network) received via the communication line for communication, and the received current command value is transmitted to the power supply unit control unit 115 via the communication line (for example, communication line for CAN communication) in the charger 1a. Do. The power supply unit control unit 115 controls the PFC circuit 111 and the isolated DC / DC converter such that the power or current corresponding to the current command value transmitted from the communication unit 1221 of the control unit control unit 122 is output from the charger 1a. The operation of each of the circuit 112 and the non-insulated DC / DC converter circuit 113 is controlled.
 充電器状態表示部123は、例えば、充電器1aの各種状態(待機、充電、及び異常など)を示す複数のランプを備え、制御ユニット制御部122から送られてくる制御信号に対応するランプを点灯する。 The charger state display unit 123 includes, for example, a plurality of lamps indicating various states (standby, charging, abnormality, etc.) of the charger 1a, and a lamp corresponding to a control signal sent from the control unit control unit 122 Light.
 なお、電源ユニット制御部115、制御ユニット制御部122、及び電池パック制御部52は、例えば、MCU(Micro Control Unit)、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)により構成される。また、記憶部124は、例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性メモリにより構成される。 The power supply unit control unit 115, the control unit control unit 122, and the battery pack control unit 52 are, for example, a micro control unit (MCU), a central processing unit (CPU), a multicore CPU, a programmable device (field programmable gate (FPGA) (Array), PLD (Programmable Logic Device), and the like. Further, the storage unit 124 is configured by, for example, a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory).
 例えば、制御ユニット制御部122は、充電コネクタ3aが充電コネクタ4aに接続されたことを検出すると、電圧情報の送信要求を通信部1221により充電ケーブル2a内の通信線及び充電コネクタ3a、4aを介して電池パック制御部52に送信する。 For example, when the control unit controller 122 detects that the charge connector 3a is connected to the charge connector 4a, the communication unit 1221 makes a transmission request for voltage information via the communication line in the charge cable 2a and the charge connectors 3a and 4a. And sends it to the battery pack control unit 52.
 電池パック制御部52は、電圧情報の送信要求を受信すると、電池51の電圧(蓄電池の定格電圧)(例えば、24V系、48V系、又は、80V系)を示す電圧情報を、制御ユニット制御部122に送信する。 When the battery pack control unit 52 receives the transmission request for voltage information, the control unit control unit controls the voltage information indicating the voltage of the battery 51 (rated voltage of the storage battery) (for example, 24V system, 48V system, or 80V system) Send to 122
 制御ユニット制御部122は、電圧情報を通信部1221により受信すると、受信した電圧情報に基づいて、電力供給先の電池51が何V系の電池51であるかを判断し、その判断結果を通信部1221により充電器1a内の通信線を介して電源ユニット制御部115に送信する。 When the voltage information is received by the communication unit 1221, the control unit control unit 122 determines, based on the received voltage information, how many V-system batteries 51 the power supply destination battery 51 is, and communicates the determination result It transmits to the power supply unit control part 115 by the part 1221 via the communication line in the charger 1a.
 電源ユニット制御部115は、制御ユニット制御部122から送信される判断結果を受信すると、その受信した判断結果に基づいて、閾値Vthを設定する。 When the power supply unit control unit 115 receives the determination result transmitted from the control unit control unit 122, the power supply unit control unit 115 sets the threshold value Vth based on the received determination result.
 出力過電圧保護回路116は、非絶縁型DC/DCコンバータ回路113の出力電圧が閾値Vth以上になると、非絶縁型DC/DCコンバータ回路113を停止させる。すなわち、出力過電圧保護回路116は、PFC回路111、絶縁型DC/DCコンバータ回路112、及び非絶縁型DC/DCコンバータ回路113などからなる電源部の出力電圧が閾値Vth以上になると、その電源部を停止させる。 The output overvoltage protection circuit 116 stops the non-insulated DC / DC converter circuit 113 when the output voltage of the non-insulated DC / DC converter circuit 113 becomes equal to or higher than the threshold value Vth. That is, when the output voltage of the power supply unit including the PFC circuit 111, the isolated DC / DC converter circuit 112, and the non-insulated DC / DC converter circuit 113 becomes equal to or higher than the threshold Vth, the output overvoltage protection circuit 116 Stop.
 図4は、出力過電圧保護回路116の一例を示す図である。 FIG. 4 is a diagram showing an example of the output overvoltage protection circuit 116. As shown in FIG.
 図4に示す出力過電圧保護回路116は、抵抗21、22と、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)23と、抵抗24と、コンパレータ25とを備える。 The output overvoltage protection circuit 116 shown in FIG. 4 includes resistors 21 and 22, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 23, a resistor 24, and a comparator 25.
 抵抗21、22は互いに直列接続され、非絶縁型DC/DCコンバータ回路113の出力とグランドとの間に設けられている。MOSFET23のドレイン端子はコンパレータ25の負側の端子および抵抗24の一方端に接続され、MOSFET23のソース端子は基準となるGNDに接続されている。抵抗24の他方端は電圧源に接続されている。コンパレータ25の正側の入力端子は抵抗21、22の接続点に接続されている。コンパレータ25から出力される信号は非絶縁型DC/DCコンバータ回路113に入力される。電源ユニット制御部115は、制御ユニット制御部122から送信される判断結果に応じたDuty比のパルス信号をMOSFET23のゲート端子に入力し、MOSFET23を繰り返しオン、オフさせる。MOSFET23が繰り返しオン、オフすると、電源ユニット制御部115から出力されるパルス信号のDuty比に応じた電圧がコンパレータ25の負側の入力端子に入力される。非絶縁型DC/DCコンバータ回路113の出力電圧は抵抗21、22により分圧され、コンパレータ25の正側の入力端子に入力される。コンパレータ25は、正側の入力端子に入力される電圧が負側の入力端子に入力される電圧よりも大きいとき、ハイレベルの信号を出力し、負側の入力端子に入力される電圧が正側の入力端子に入力される電圧よりも大きいとき、ローレベルの信号を出力する。非絶縁型DC/DCコンバータ回路113は、電池51の充電時、コンパレータ25から出力される信号がローレベルのとき、自身に備えられるスイッチング素子を繰り返しオン、オフすることにより電池51への電力供給を継続する。また、非絶縁型DC/DCコンバータ回路113は、電池51の充電時、コンパレータ25から出力される信号がローレベルからハイレベルになると、自身に備えられるスイッチング素子をオフにすることで電池51への電力供給を停止する。 The resistors 21 and 22 are connected in series to each other, and provided between the output of the non-insulated DC / DC converter circuit 113 and the ground. The drain terminal of the MOSFET 23 is connected to the negative terminal of the comparator 25 and one end of the resistor 24, and the source terminal of the MOSFET 23 is connected to the reference GND. The other end of the resistor 24 is connected to a voltage source. The positive input terminal of the comparator 25 is connected to the connection point of the resistors 21 and 22. The signal output from the comparator 25 is input to the non-insulated DC / DC converter circuit 113. The power supply unit control unit 115 inputs a pulse signal of the Duty ratio according to the determination result transmitted from the control unit control unit 122 to the gate terminal of the MOSFET 23, and turns the MOSFET 23 on and off repeatedly. When the MOSFET 23 is repeatedly turned on and off, a voltage corresponding to the duty ratio of the pulse signal output from the power supply unit controller 115 is input to the negative input terminal of the comparator 25. The output voltage of the non-insulated DC / DC converter circuit 113 is divided by the resistors 21 and 22 and input to the positive input terminal of the comparator 25. The comparator 25 outputs a high level signal when the voltage input to the positive input terminal is larger than the voltage input to the negative input terminal, and the voltage input to the negative input terminal is positive. When it is larger than the voltage input to the input terminal on the side, it outputs a low level signal. When the battery 51 is charged, the non-insulated DC / DC converter circuit 113 supplies power to the battery 51 by repeatedly turning on and off switching elements provided therein when the signal output from the comparator 25 is at a low level. To continue. In addition, when the battery 51 is charged, the non-insulated DC / DC converter circuit 113 turns off the switching element provided in the battery 51 when the signal output from the comparator 25 changes from the low level to the high level. Turn off the power supply.
 例えば、「24V系の電池51」に対応する閾値Vthとして35Vを設定する場合を考える。なお、非絶縁型DC/DCコンバータ回路113の出力電圧が35V以上のとき、コンパレータ25の正側の入力端子に3.5Vよりも大きい電圧が入力され、非絶縁型DC/DCコンバータ回路113の出力電圧が35Vよりも小さいとき、コンパレータ25の正側の入力端子に3.5Vよりも小さい電圧が入力されるように、抵抗21、22の抵抗値が選択されているものとする。また、MOSFET23のドレイン端子に10Vが印加されているものとする。また、制御ユニット制御部122から電源ユニット制御部115に送信される判断結果が「24V系の電池51」であるとき、電源ユニット制御部115からMOSFET23のゲート端子にオンDuty比が65%のパルス信号が出力され、コンパレータ25の負側の入力端子に3.5V(=10V×(1-0.65)の電圧が入力されるものとする。 For example, it is assumed that 35 V is set as the threshold value Vth corresponding to "24V battery 51". When the output voltage of the non-insulated DC / DC converter circuit 113 is 35 V or more, a voltage larger than 3.5 V is input to the positive input terminal of the comparator 25, and the non-insulated DC / DC converter circuit 113 It is assumed that the resistance values of the resistors 21 and 22 are selected such that a voltage smaller than 3.5 V is input to the positive input terminal of the comparator 25 when the output voltage is smaller than 35 V. Further, 10 V is applied to the drain terminal of the MOSFET 23. Also, when the judgment result transmitted from the control unit control unit 122 to the power supply unit control unit 115 is "24V battery 51", a pulse having an on duty ratio of 65% from the power supply unit control unit 115 to the gate terminal of the MOSFET 23 A signal is output, and a voltage of 3.5 V (= 10 V × (1−0.65)) is input to the negative input terminal of the comparator 25.
 このような場合において、非絶縁型DC/DCコンバータ回路113の出力電圧が35Vよりも小さいとき、3.5Vよりも小さい電圧がコンパレータ25の正側の入力端子に入力される。このとき、コンパレータ25の負側の入力端子に入力される電圧は、正側の入力端子に入力される電圧よりも大きいため、コンパレータ25からローレベルの信号が出力される。そのため、非絶縁型DC/DCコンバータ回路113は、自身に備えられるスイッチング素子を繰り返しオン、オフさせることで電池51への電力供給を継続する。 In such a case, when the output voltage of the non-insulated DC / DC converter circuit 113 is smaller than 35 V, a voltage smaller than 3.5 V is input to the positive input terminal of the comparator 25. At this time, since the voltage input to the negative input terminal of the comparator 25 is larger than the voltage input to the positive input terminal, the comparator 25 outputs a low level signal. Therefore, the non-insulated DC / DC converter circuit 113 continues the power supply to the battery 51 by repeatedly turning on and off the switching element provided therein.
 また、非絶縁型DC/DCコンバータ回路113の出力電圧が35V以上になると、3.5Vよりも大きい電圧がコンパレータ25の正側の入力端子に入力される。このとき、コンパレータ25の正側の入力端子に入力される電圧は、負側の入力端子に入力される電圧よりも大きくなるため、コンパレータ25からハイレベルの信号が出力される。そのため、非絶縁型DC/DCコンバータ回路113は、自身に備えられるスイッチング素子をオフさせることで電池51への電力供給を停止する。 When the output voltage of the non-insulated DC / DC converter circuit 113 is 35 V or more, a voltage larger than 3.5 V is input to the positive input terminal of the comparator 25. At this time, the voltage input to the positive input terminal of the comparator 25 is larger than the voltage input to the negative input terminal, so the comparator 25 outputs a high level signal. Therefore, the non-insulated DC / DC converter circuit 113 stops the power supply to the battery 51 by turning off the switching element provided therein.
 また、例えば、「48V系の電池51」に対応する閾値Vthとして60Vを設定する場合を考える。なお、非絶縁型DC/DCコンバータ回路113の出力電圧が60V以上のとき、コンパレータ25の正側の入力端子に6.0Vよりも大きい電圧が入力され、非絶縁型DC/DCコンバータ回路113の出力電圧が60Vよりも小さいとき、コンパレータ25の正側の入力端子に6.0Vよりも小さい電圧が入力されるように、抵抗21、22の抵抗値が選択されているものとする。また、MOSFET23のドレイン端子に10Vが印加されているものとする。また、制御ユニット制御部122から電源ユニット制御部115に送信される判断結果が「48V系の電池51」であるとき、電源ユニット制御部115からMOSFET23のゲート端子にオンDuty比が40%のパルス信号が出力され、コンパレータ25の負側の入力端子に6.0V(=10V×(1-0.4)の電圧が入力されるものとする。 Further, for example, it is assumed that 60 V is set as the threshold value Vth corresponding to “48-V battery 51”. When the output voltage of the non-insulated DC / DC converter circuit 113 is 60 V or more, a voltage larger than 6.0 V is input to the positive input terminal of the comparator 25, and the non-insulated DC / DC converter circuit 113 It is assumed that the resistance values of the resistors 21 and 22 are selected such that a voltage smaller than 6.0 V is input to the positive input terminal of the comparator 25 when the output voltage is smaller than 60 V. Further, 10 V is applied to the drain terminal of the MOSFET 23. In addition, when the judgment result transmitted from the control unit control unit 122 to the power supply unit control unit 115 is “48V system battery 51”, a pulse with an on duty ratio of 40% from the power supply unit control unit 115 to the gate terminal of the MOSFET 23 A signal is output, and a voltage of 6.0 V (= 10 V × (1−0.4) is input to the negative input terminal of the comparator 25.
 このような場合において、非絶縁型DC/DCコンバータ回路113の出力電圧が60Vよりも小さいとき、6.0Vよりも小さい電圧がコンパレータ25の正側の入力端子に入力される。このとき、コンパレータ25の負側の入力端子に入力される電圧は、正側の入力端子に入力される電圧よりも大きいため、コンパレータ25からローレベルの信号が出力される。そのため、非絶縁型DC/DCコンバータ回路113は、自身に備えられるスイッチング素子を繰り返しオン、オフさせることで電池51への電力供給を継続する。 In such a case, when the output voltage of the non-insulated DC / DC converter circuit 113 is smaller than 60 V, a voltage smaller than 6.0 V is input to the positive input terminal of the comparator 25. At this time, since the voltage input to the negative input terminal of the comparator 25 is larger than the voltage input to the positive input terminal, the comparator 25 outputs a low level signal. Therefore, the non-insulated DC / DC converter circuit 113 continues the power supply to the battery 51 by repeatedly turning on and off the switching element provided therein.
 また、非絶縁型DC/DCコンバータ回路113の出力電圧が60V以上になると、6.0Vよりも大きい電圧がコンパレータ25の正側の入力端子に入力される。このとき、コンパレータ25の正側の入力端子に入力される電圧は、負側の入力端子に入力される電圧よりも大きくなるため、コンパレータ25からハイレベルの信号が出力される。そのため、非絶縁型DC/DCコンバータ回路113は、自身に備えられるスイッチング素子をオフさせることで電池51への電力供給を停止する。 When the output voltage of the non-insulated DC / DC converter circuit 113 is 60 V or more, a voltage larger than 6.0 V is input to the positive input terminal of the comparator 25. At this time, the voltage input to the positive input terminal of the comparator 25 is larger than the voltage input to the negative input terminal, so the comparator 25 outputs a high level signal. Therefore, the non-insulated DC / DC converter circuit 113 stops the power supply to the battery 51 by turning off the switching element provided therein.
 また、例えば、「80V系の電池51」に対応する閾値Vthとして90Vを設定する場合を考える。なお、非絶縁型DC/DCコンバータ回路113の出力電圧が90V以上のとき、コンパレータ25の正側の入力端子に9.0Vよりも大きい電圧が入力され、非絶縁型DC/DCコンバータ回路113の出力電圧が90Vよりも小さいとき、コンパレータ25の正側の入力端子に9.0Vよりも小さい電圧が入力されるように、抵抗21、22の抵抗値が選択されているものとする。また、MOSFET23のドレイン端子に10Vが印加されているものとする。また、制御ユニット制御部122から電源ユニット制御部115に送信される判断結果が「80V系の電池51」であるとき、電源ユニット制御部115からMOSFET23のゲート端子にオンDuty比が10%のパルス信号が出力され、コンパレータ25の負側の入力端子に9.0V(=10V×(1-0.1)の電圧が入力されるものとする。 Further, for example, it is assumed that 90 V is set as the threshold value Vth corresponding to the “80 V battery 51”. When the output voltage of the non-insulated DC / DC converter circuit 113 is 90 V or more, a voltage larger than 9.0 V is input to the positive input terminal of the comparator 25, and the non-insulated DC / DC converter circuit 113 It is assumed that the resistance values of the resistors 21 and 22 are selected such that a voltage smaller than 9.0 V is input to the positive input terminal of the comparator 25 when the output voltage is smaller than 90 V. Further, 10 V is applied to the drain terminal of the MOSFET 23. Also, when the judgment result transmitted from the control unit control unit 122 to the power supply unit control unit 115 is “80V system battery 51”, a pulse having an on duty ratio of 10% from the power supply unit control unit 115 to the gate terminal of the MOSFET 23 A signal is output, and a voltage of 9.0 V (= 10 V × (1-0.1) is input to the negative input terminal of the comparator 25.
 このような場合において、非絶縁型DC/DCコンバータ回路113の出力電圧が90Vよりも小さいとき、9.0Vよりも小さい電圧がコンパレータ25の正側の入力端子に入力される。このとき、コンパレータ25の負側の入力端子に入力される電圧は、正側の入力端子に入力される電圧よりも大きいため、コンパレータ25からローレベルの信号が出力される。そのため、非絶縁型DC/DCコンバータ回路113は、自身に備えられるスイッチング素子を繰り返しオン、オフさせることで電池51への電力供給を継続する。 In such a case, when the output voltage of the non-insulated DC / DC converter circuit 113 is smaller than 90 V, a voltage smaller than 9.0 V is input to the positive input terminal of the comparator 25. At this time, since the voltage input to the negative input terminal of the comparator 25 is larger than the voltage input to the positive input terminal, the comparator 25 outputs a low level signal. Therefore, the non-insulated DC / DC converter circuit 113 continues the power supply to the battery 51 by repeatedly turning on and off the switching element provided therein.
 また、非絶縁型DC/DCコンバータ回路113の出力電圧が90V以上になると、9.0Vよりも大きい電圧がコンパレータ25の正側の入力端子に入力される。このとき、コンパレータ25の正側の入力端子に入力される電圧は、負側の入力端子に入力される電圧よりも大きくなるため、コンパレータ25からハイレベルの信号が出力される。そのため、非絶縁型DC/DCコンバータ回路113は、自身に備えられるスイッチング素子をオフさせることで電池51への電力供給を停止する。 In addition, when the output voltage of the non-insulated DC / DC converter circuit 113 is 90 V or more, a voltage larger than 9.0 V is input to the positive input terminal of the comparator 25. At this time, the voltage input to the positive input terminal of the comparator 25 is larger than the voltage input to the negative input terminal, so the comparator 25 outputs a high level signal. Therefore, the non-insulated DC / DC converter circuit 113 stops the power supply to the battery 51 by turning off the switching element provided therein.
 図5は、充電器1aの動作の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of the operation of the charger 1a.
 まず、制御ユニット制御部122は、充電コネクタ3aが充電コネクタ4aに接続されるまで待機し(S31:No)、充電コネクタ3aが充電コネクタ4aに接続されたことを検出すると(S31:Yes)、電圧情報を取得する(S32)。 First, the control unit controller 122 stands by until the charge connector 3a is connected to the charge connector 4a (S31: No), and detects that the charge connector 3a is connected to the charge connector 4a (S31: Yes), Voltage information is acquired (S32).
 次に、制御ユニット制御部122及び電源ユニット制御部115は、電圧情報に基づいて、閾値Vthを設定する(S33)。 Next, the control unit controller 122 and the power supply unit controller 115 set the threshold value Vth based on the voltage information (S33).
 次に、出力過電圧保護回路116は、非絶縁型DC/DCコンバータ回路113の出力電圧が閾値Vthよりも小さいと判断すると(S34:No)、S34の動作に戻り、電池51に対する過電圧保護処理を継続する。 Next, when the output overvoltage protection circuit 116 determines that the output voltage of the non-insulated DC / DC converter circuit 113 is smaller than the threshold value Vth (S34: No), it returns to the operation of S34 and performs overvoltage protection processing for the battery 51. continue.
 また、出力過電圧保護回路116は、非絶縁型DC/DCコンバータ回路113の出力電圧が閾値Vth以上であると判断すると(S34:Yes)、非絶縁型DC/DCコンバータ回路113を停止させて(S35)、電池51に対する過電圧保護処理を終了する。 When the output overvoltage protection circuit 116 determines that the output voltage of the non-insulated DC / DC converter circuit 113 is equal to or higher than the threshold Vth (S34: Yes), the non-insulated DC / DC converter circuit 113 is stopped ( S35), the overvoltage protection process for the battery 51 is finished.
 図6は、図5に示すS33の動作の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of the operation of S33 shown in FIG.
 まず、制御ユニット制御部122により電圧情報に基づいて電力供給先の電池51が「24V系の電池51」であると判断され、その判断結果が制御ユニット制御部122から電源ユニット制御部115に送信されると(S41:Yes)、電源ユニット制御部115は、その判断結果である「24V系の電池51」に対応する閾値Vthを設定する(S42)。 First, based on the voltage information, the control unit controller 122 determines that the battery 51 to which the power is supplied is "24V battery 51", and the determination result is transmitted from the control unit controller 122 to the power supply unit controller 115. If it is (S41: Yes), the power supply unit control unit 115 sets the threshold value Vth corresponding to the "24V battery 51" which is the judgment result (S42).
 また、制御ユニット制御部122により電圧情報に基づいて電力供給先の電池51が「48V系の電池51」であると判断され、その判断結果が制御ユニット制御部122から電源ユニット制御部115に送信されると(S41:No、S43:Yes)、電源ユニット制御部115は、その判断結果である「48V系の電池51」に対応する閾値Vthを設定する(S44)。 Further, the control unit control unit 122 determines that the battery 51 of the power supply destination is the “48V system battery 51” based on the voltage information, and the determination result is transmitted from the control unit control unit 122 to the power supply unit control unit 115 Then (S41: No, S43: Yes), the power supply unit control unit 115 sets a threshold value Vth corresponding to "48V battery 51" which is the judgment result (S44).
 また、制御ユニット制御部122により電圧情報に基づいて電力供給先の電池51が「80V系の電池51」であると判断され、その判断結果が制御ユニット制御部122から電源ユニット制御部115に送信されると(S41:No、S43:No、S45:Yes)、電源ユニット制御部115は、その判断結果である「80V系の電池51」に対応する閾値Vthを設定する(S46)。 Further, the control unit control unit 122 determines that the battery 51 of the power supply destination is the “80V battery 51” based on the voltage information, and the determination result is transmitted from the control unit control unit 122 to the power supply unit control unit 115 If it is (S41: No, S43: No, S45: Yes), the power supply unit control unit 115 sets the threshold value Vth corresponding to "80V battery 51" which is the judgment result (S46).
 また、制御ユニット制御部122により電圧情報に基づいて電力供給先の電池51が何V系の電池51であるかを特定できないと判断され、その判断結果が制御ユニット制御部122から電源ユニット制御部115に送信されると(S41:No、S43:No、S45:No)、電源ユニット制御部115は、その判断結果により異常が発生したと判断し、非絶縁型DC/DCコンバータ回路113を停止させて(S47)、電池51に対する過電圧保護処理を終了する。 In addition, it is determined that the control unit control unit 122 can not identify the battery 51 of the power supply destination based on the voltage information and the battery 51 of the power supply destination can not be identified. When transmitted to 115 (S41: No, S43: No, S45: No), the power supply unit controller 115 determines that an abnormality has occurred based on the determination result, and stops the non-insulated DC / DC converter circuit 113. Then, the overvoltage protection process for the battery 51 is ended (S47).
 実施形態の充電器1aは、電池パック5aから送信される電圧情報に基づいて、閾値Vthを設定し、非絶縁型DC/DCコンバータ回路113の出力電圧が閾値Vth以上になると、非絶縁型DC/DCコンバータ回路113を停止させる構成であるため、1つの出力過電圧保護回路116により予め決められた複数の電圧の電池51に対してそれぞれ過電圧保護を行うことができる。これにより、充電器1aのコストの増大を抑えつつ、予め決められた複数の電圧の電池51に対して過電圧保護精度を低下させないようにすることができる。 The charger 1a of the embodiment sets the threshold value Vth based on the voltage information transmitted from the battery pack 5a, and when the output voltage of the non-insulated DC / DC converter circuit 113 becomes equal to or higher than the threshold value Vth, the non-insulated DC Since the configuration is such that the / DC converter circuit 113 is stopped, overvoltage protection can be performed on the batteries 51 of a plurality of voltages determined in advance by one output overvoltage protection circuit 116. As a result, while suppressing the increase in the cost of the charger 1a, it is possible to prevent the overvoltage protection accuracy from being lowered for the battery 51 of a plurality of voltages determined in advance.
 なお、実施形態の充電器1aは、車両に搭載される充電器として採用してもよい。 In addition, you may employ | adopt the charger 1a of embodiment as a charger mounted in a vehicle.
 以上、本発明の実施形態について説明したが、本発明は、以上に述べた実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成又は実施形態を取ることができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment described above, It can take various structure or embodiment in the range which does not deviate from the summary of this invention. it can.
 図7は、図1に示す充電器10の変形例を示す図である。なお、図7において、図1に示す構成と同じ構成には、同じ符号を付し、その説明を省略する。 FIG. 7 is a view showing a modification of the charger 10 shown in FIG. In FIG. 7, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
 図7に示す充電器10は、検知手段6を備え、その検知手段6は、例えば、地絡検知回路3と地絡判定部41とを備えて構成される。 The charger 10 shown in FIG. 7 includes a detection unit 6, and the detection unit 6 includes, for example, a ground fault detection circuit 3 and a ground fault determination unit 41.
 上述したように、地絡検知回路3は、給電線2の地絡を検出する。すなわち、地絡検知回路3は、充電器10の異常を検知する。 As described above, the ground fault detection circuit 3 detects a ground fault of the feed line 2. That is, the ground fault detection circuit 3 detects an abnormality of the charger 10.
 また、地絡判定部41は、電圧識別部42(電圧情報取得手段)により取得されたバッテリの電圧(蓄電池の定格電圧)が所定の電圧以下のときに、地絡検知回路3の検知出力を無効化し、電圧識別部42により取得されたバッテリの電圧(蓄電池の定格電圧)が所定の電圧より大きいときに、地絡検知回路3の検知出力を有効化する。すなわち、地絡判定部41は、電圧識別部42(電圧情報取得手段)により取得された蓄電池の定格電圧に応じて異常検知方法を変える。 In addition, the ground fault determination unit 41 detects the detection output of the ground fault detection circuit 3 when the voltage of the battery (rated voltage of the storage battery) acquired by the voltage identification unit 42 (voltage information acquisition means) is less than a predetermined voltage. When the voltage of the battery (rated voltage of the storage battery) acquired by the voltage identification unit 42 is larger than a predetermined voltage, the detection output of the ground fault detection circuit 3 is validated. That is, the ground fault determination unit 41 changes the abnormality detection method according to the rated voltage of the storage battery acquired by the voltage identification unit 42 (voltage information acquisition unit).
 このように、検知手段6は、充電器10の異常を検知するとともに、電圧識別部42(電圧情報取得手段)により取得された蓄電池の定格電圧に応じて異常検知方法を変える。 As described above, the detection unit 6 detects an abnormality of the charger 10 and changes the abnormality detection method according to the rated voltage of the storage battery acquired by the voltage identification unit 42 (voltage information acquisition unit).
 これにより、異なる定格電圧の蓄電池を充電可能な充電器10において、蓄電池の定格電圧に応じた適切な異常検知方法に変えることができるため、異常検知精度を高めることができる。 Thereby, in the charger 10 capable of charging storage batteries of different rated voltages, the method can be changed to an appropriate abnormality detection method according to the rated voltage of the storage battery, so that the abnormality detection accuracy can be enhanced.
 図8は、図3に示す充電器1aの変形例を示す図である。なお、図8において、図3に示す構成と同じ構成には、同じ符号を付し、その説明を省略する。 FIG. 8 is a view showing a modification of the charger 1a shown in FIG. In FIG. 8, the same components as those shown in FIG. 3 will be assigned the same reference numerals and descriptions thereof will be omitted.
 図8に示す充電器1aは、検知手段117を備え、その検知手段117は、例えば、電源ユニット制御部115と、出力過電圧保護回路116とを備えて構成される。 The charger 1a shown in FIG. 8 includes a detection unit 117. The detection unit 117 includes, for example, a power supply unit control unit 115 and an output overvoltage protection circuit 116.
 上述したように、出力過電圧保護回路116は、PFC回路111、絶縁型DC/DCコンバータ回路112、及び非絶縁型DC/DCコンバータ回路113などからなる電源部の出力電圧が閾値Vth以上になると、その電源部を停止させる。すなわち、出力過電圧保護回路116は、充電器1aの異常を検知する。 As described above, when the output overvoltage of the power supply unit including the PFC circuit 111, the isolated DC / DC converter circuit 112, the non-insulated DC / DC converter circuit 113, etc. Stop the power supply unit. That is, the output overvoltage protection circuit 116 detects an abnormality of the charger 1a.
 また、電源ユニット制御部115は、通信部1221(電圧情報取得手段)により取得された電池51の電圧(蓄電池の定格電圧)に基づいて、閾値Vthを設定する。すなわち、電源ユニット制御部115は、通信部1221(電圧情報取得手段)により取得された電池51の電圧(蓄電池の定格電圧)に応じて異常検知方法を変える。 Further, the power supply unit control unit 115 sets the threshold value Vth based on the voltage of the battery 51 (rated voltage of the storage battery) acquired by the communication unit 1221 (voltage information acquisition unit). That is, the power supply unit control unit 115 changes the abnormality detection method according to the voltage (rated voltage of the storage battery) of the battery 51 acquired by the communication unit 1221 (voltage information acquisition unit).
 このように、検知手段117は、充電器1aの異常を検知するとともに、通信部1221(電圧情報取得手段)により取得された電池51の電圧(蓄電池の定格電圧)に応じて異常検知方法を変える。 As described above, the detection unit 117 detects an abnormality of the charger 1 a and changes the abnormality detection method according to the voltage of the battery 51 (rated voltage of the storage battery) acquired by the communication unit 1221 (voltage information acquisition unit). .
 これにより、異なる定格電圧の蓄電池を充電可能な充電器1aにおいて、蓄電池の定格電圧に応じた適切な異常検知方法に変えることができるため、異常検知精度を高めることができる。
[付記1]
 電圧の異なる複数種類のバッテリを充電する充電器であって、
 給電線の地絡を検知する地絡検知回路と、
 充電するバッテリの電圧を識別する電圧識別手段と、
 充電するバッテリの電圧が所定の電圧以下のときに、前記地絡検知回路の検知出力を無効化し、充電するバッテリの電圧が所定の電圧より大きいときに、前記地絡検知回路の検知出力を有効化する地絡判定手段と、
 を備えたことを特徴とする充電器。
[付記2]
 前記電圧識別手段は、前記バッテリの充電開始前に、通信により前記バッテリ側から通知される情報に基づいて、前記バッテリの電圧を識別することを特徴とする付記1に記載の充電器。
[付記3]
 電圧の異なる複数種類のバッテリを充電するときの給電線の地絡検知判定方法であって、
 充電するバッテリの電圧を識別する電圧識別ステップと、
 充電するバッテリの電圧が所定の電圧以下のときに、給電線の地絡を検知する地絡検知回路の検知出力を無効化し、充電するバッテリの電圧が所定の電圧より大きいときに、前記地絡検知回路の検知出力を有効化する地絡判定ステップと、
 を含むことを特徴とする地絡検知判定方法。
[付記4]
 前記電圧識別ステップは、前記バッテリの充電開始前に、通信により前記バッテリ側から通知される情報に基づいて、前記バッテリの電圧を識別することを特徴とする付記3に記載の地絡検知判定方法。
[付記5]
 電池パックに備えられる電池に電力を供給する電源部と、
 前記電池の電圧を示す電圧情報を前記電池パックから受信する通信部と、
 前記電圧情報に基づいて、閾値を設定する閾値設定部と、
 前記電源部の出力電圧が前記閾値以上になると、前記電源部を停止させる保護部と、
 を備えることを特徴とする充電器。
[付記6]
 電池パックに備えられる電池に電力を供給する電源部を備える充電器において、前記電源部の動作を制御する充電制御方法であって、
 前記充電器が、
  前記電池の電圧を示す電圧情報を前記電池パックから受信し、
  前記電圧情報に基づいて、閾値を設定し、
  前記電源部の出力電圧が前記閾値以上になると、前記電源部を停止させる
 ことを特徴とする充電制御方法。
As a result, in the battery charger 1a capable of charging storage batteries of different rated voltages, the method can be changed to an appropriate abnormality detection method according to the rated voltage of the storage battery, so that the abnormality detection accuracy can be enhanced.
[Supplementary Note 1]
A charger that charges multiple types of batteries with different voltages,
A ground fault detection circuit that detects a ground fault of the feed line;
Voltage identification means for identifying the voltage of the battery to be charged;
When the voltage of the battery to be charged is lower than a predetermined voltage, the detection output of the ground fault detection circuit is invalidated, and when the voltage of the battery to be charged is larger than a predetermined voltage, the detection output of the ground fault detection circuit is effective. Ground fault judging means to
A charger characterized by comprising.
[Supplementary Note 2]
The battery charger according to claim 1, wherein the voltage identification unit identifies a voltage of the battery based on information notified from the battery side by communication before starting charging of the battery.
[Supplementary Note 3]
It is a ground fault detection judging method of a feeder line when charging a plurality of types of batteries with different voltages,
A voltage identification step identifying the voltage of the battery to be charged;
When the voltage of the battery to be charged is less than a predetermined voltage, the detection output of the ground fault detection circuit for detecting a ground fault of the feed line is invalidated, and the voltage of the battery to be charged is larger than the predetermined voltage A ground fault judgment step of validating the detection output of the detection circuit;
A ground fault detection judging method characterized by including.
[Supplementary Note 4]
The ground fault detection / determination method according to claim 3, wherein the voltage identification step identifies the voltage of the battery based on information notified from the battery side by communication before starting charging of the battery. .
[Supplementary Note 5]
A power supply unit for supplying power to the battery provided in the battery pack;
A communication unit that receives voltage information indicating the voltage of the battery from the battery pack;
A threshold setting unit configured to set a threshold based on the voltage information;
A protection unit for stopping the power supply unit when the output voltage of the power supply unit is equal to or higher than the threshold value;
A charger characterized by comprising.
[Supplementary Note 6]
A charging control method for controlling the operation of the power supply unit in a charger including a power supply unit for supplying power to a battery provided in a battery pack,
The charger is
Receiving voltage information indicating the voltage of the battery from the battery pack;
Setting a threshold based on the voltage information;
The power supply unit is stopped when the output voltage of the power supply unit is equal to or more than the threshold value.
1 充電部
2 給電線
3 地絡検知回路
31,32,33,37,38 抵抗
34 発光ダイオード
35 フォトトランジスタ
36 電源電圧端子
4 制御部
41 地絡判定部
42 電圧識別部
5 通信線
6 検知手段
1a 充電器
2a 充電ケーブル
3a、4a 充電コネクタ
5a 電池パック
6a 外部電源
117 検知手段
11 電源ユニット
12 制御ユニット
51 電池
52 電池パック制御部
111 PFC回路
112 絶縁型DC/DCコンバータ回路
113 非絶縁型DC/DCコンバータ回路
115 電源ユニット制御部
116 出力過電圧保護回路
121 AC/DC回路
122 制御ユニット制御部
123 充電器状態表示部
124 記憶部
1221 通信部
 
DESCRIPTION OF SYMBOLS 1 charge part 2 feeder 3 ground fault detection circuit 31, 32, 33, 33, 38, resistance 34 light emitting diode 35 phototransistor 36 power supply voltage terminal 4 control part 41 ground fault decision part 42 voltage discrimination part 5 communication line 6 detection means 1a Charger 2a Charging Cable 3a, 4a Charging Connector 5a Battery Pack 6a External Power Supply 117 Detection Means 11 Power Supply Unit 12 Control Unit 51 Battery 52 Battery Pack Control Unit 111 PFC Circuit 112 Isolated DC / DC Converter Circuit 113 Non-Isolated DC / DC Converter circuit 115 power supply unit control unit 116 output overvoltage protection circuit 121 AC / DC circuit 122 control unit control unit 123 charger state display unit 124 storage unit 1221 communication unit

Claims (4)

  1.  定格電圧の異なる蓄電池を充電する充電器であって、
     前記充電器に接続された蓄電池の定格電圧を取得する電圧情報取得手段と、
     前記充電器の異常を検知する検知手段と、
     からなり、
     前記検知手段は、前記電圧情報取得手段により取得された定格電圧に応じて異常検知方法を変える
     ことを特徴とする充電器。
    A charger for charging storage batteries of different rated voltages,
    Voltage information acquisition means for acquiring a rated voltage of a storage battery connected to the charger;
    Detection means for detecting an abnormality of the charger;
    Consists of
    The said detection means changes the abnormality detection method according to the rated voltage acquired by the said voltage information acquisition means.
  2.  請求項1に記載の充電器であって、
     前記検知手段は、
      給電線の地絡を検知する地絡検知回路と、
      前記電圧情報取得手段により取得された定格電圧が所定の電圧以下のときに、前記地絡検知回路の検知出力を無効化し、前記電圧情報取得手段により取得された定格電圧が前記所定の電圧より大きいときに、前記地絡検知回路の検知出力を有効化する地絡判定手段と、
     を備えることを特徴とする充電器。
    The charger according to claim 1, wherein
    The detection means is
    A ground fault detection circuit that detects a ground fault of the feed line;
    When the rated voltage acquired by the voltage information acquiring means is equal to or lower than a predetermined voltage, the detection output of the ground fault detecting circuit is nullified, and the rated voltage acquired by the voltage information acquiring means is larger than the predetermined voltage Ground fault judging means for validating the detection output of the ground fault detection circuit;
    A charger characterized by comprising.
  3.  請求項1に記載の充電器であって、
     前記電圧情報取得手段は、前記充電器に接続された蓄電池の充電開始前に、通信により前記充電器に接続された蓄電池側から通知される情報に基づいて、前記充電器に接続された蓄電池の定格電圧を取得する
     ことを特徴とする充電器。
    The charger according to claim 1, wherein
    The voltage information acquisition means is a storage battery connected to the charger based on information notified from the storage battery side connected to the charger by communication before starting charging of the storage battery connected to the charger. A charger characterized by obtaining a rated voltage.
  4.  請求項1に記載の充電器であって、
     前記充電器に接続された蓄電池に電力を供給する電源部を備え、
     前記検知手段は、
      前記電圧情報取得手段により取得された定格電圧に基づいて、閾値を設定する閾値設定部と、
      前記電源部の出力電圧が前記閾値以上になると、前記電源部を停止させる保護部と、
     を備えることを特徴とする充電器。
     
    The charger according to claim 1, wherein
    A power supply unit for supplying power to a storage battery connected to the charger;
    The detection means is
    A threshold setting unit configured to set a threshold based on the rated voltage acquired by the voltage information acquisition unit;
    A protection unit for stopping the power supply unit when the output voltage of the power supply unit is equal to or higher than the threshold value;
    A charger characterized by comprising.
PCT/JP2015/073956 2014-08-27 2015-08-26 Charger WO2016031843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545566A JPWO2016031843A1 (en) 2014-08-27 2015-08-26 Charger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014172600 2014-08-27
JP2014-172600 2014-08-27
JP2014-214140 2014-10-21
JP2014214140 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016031843A1 true WO2016031843A1 (en) 2016-03-03

Family

ID=55399729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073956 WO2016031843A1 (en) 2014-08-27 2015-08-26 Charger

Country Status (2)

Country Link
JP (1) JPWO2016031843A1 (en)
WO (1) WO2016031843A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195651A (en) * 2016-04-18 2017-10-26 株式会社オートネットワーク技術研究所 Relay device and on-vehicle system
CN113783243A (en) * 2021-07-26 2021-12-10 岚图汽车科技有限公司 Low-voltage storage battery charging circuit and fault detection method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178033A (en) * 2007-12-26 2009-08-06 Rohm Co Ltd Step-up switching regulator and its control circuit
WO2012053487A1 (en) * 2010-10-18 2012-04-26 有限会社オーエイチケー研究所 Battery charger and battery charging method
US20120286729A1 (en) * 2011-05-10 2012-11-15 Leviton Manufacturing Co., Inc. Electric vehicle supply equipment with over-current protection
JP2014027803A (en) * 2012-07-27 2014-02-06 Hitachi Koki Co Ltd Power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178033A (en) * 2007-12-26 2009-08-06 Rohm Co Ltd Step-up switching regulator and its control circuit
WO2012053487A1 (en) * 2010-10-18 2012-04-26 有限会社オーエイチケー研究所 Battery charger and battery charging method
US20120286729A1 (en) * 2011-05-10 2012-11-15 Leviton Manufacturing Co., Inc. Electric vehicle supply equipment with over-current protection
JP2014027803A (en) * 2012-07-27 2014-02-06 Hitachi Koki Co Ltd Power supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195651A (en) * 2016-04-18 2017-10-26 株式会社オートネットワーク技術研究所 Relay device and on-vehicle system
US10804714B2 (en) 2016-04-18 2020-10-13 Autonetworks Technologies, Ltd. Relay device and in-vehicle system
CN113783243A (en) * 2021-07-26 2021-12-10 岚图汽车科技有限公司 Low-voltage storage battery charging circuit and fault detection method thereof

Also Published As

Publication number Publication date
JPWO2016031843A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US9778321B2 (en) Charge control device
CN103633683B (en) Charging device
US8860373B2 (en) Protective circuit and charging device
US10770909B2 (en) Short circuit protection for data interface charging
US9246402B2 (en) Converter and semiconductor device
US8097976B2 (en) Lighting controller for a vehicle lamp
US20150349651A1 (en) Switching power supply apparatus
EP3451478A1 (en) Solar charging system and control method thereof
US20130026977A1 (en) Charger device
CN1909314B (en) Electronic trip device with a power supply circuit means, and circuit breaker comprising such device
US20160301233A1 (en) Power supply device and method for controlling power supply device
US20150357928A1 (en) Dc power supply device
CN112510652B (en) Battery charging circuit, charging device and electronic device
CN112994168A (en) Charging circuit and charger for detecting battery load plugging state
WO2016031843A1 (en) Charger
JP2011200034A (en) Switching power supply apparatus
KR20230104554A (en) Low heat wireless power receiving device
CN103683396B (en) A kind of adaptive battery balanced charging device and method with upset defencive function
CN214045155U (en) Charging protection circuit and charger
JP2009081901A (en) Device for preventing excessive voltage
CN213027822U (en) Switching power supply constant current circuit, switching power supply chip and turn-off circuit
KR20150062785A (en) Low heat wireless power receiving device
CN210120418U (en) Charging circuit and charger
US10418834B2 (en) Power source apparatus
CN112737075A (en) Power supply voltage control method, circuit and line fault indicator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835845

Country of ref document: EP

Kind code of ref document: A1