WO2016031572A1 - 熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群 - Google Patents

熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群 Download PDF

Info

Publication number
WO2016031572A1
WO2016031572A1 PCT/JP2015/072812 JP2015072812W WO2016031572A1 WO 2016031572 A1 WO2016031572 A1 WO 2016031572A1 JP 2015072812 W JP2015072812 W JP 2015072812W WO 2016031572 A1 WO2016031572 A1 WO 2016031572A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
thermoelectric
conversion element
space
working
Prior art date
Application number
PCT/JP2015/072812
Other languages
English (en)
French (fr)
Inventor
眞人 馬淵
有 芦田
Original Assignee
眞人 馬淵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眞人 馬淵 filed Critical 眞人 馬淵
Priority to EP15836637.7A priority Critical patent/EP3196950A4/en
Priority to CN201580052882.9A priority patent/CN107155379A/zh
Priority to RU2017105905A priority patent/RU2017105905A/ru
Publication of WO2016031572A1 publication Critical patent/WO2016031572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a method for converting thermal energy and electrical energy.
  • thermoelectric power generation using thermoelectric materials and thermionic power generation for power generation systems that convert thermal energy into electrical energy.
  • thermoelectric material When thermoelectric material is used as reverse conversion, it can be used in a cooling system.
  • the material that utilizes the phenomenon that the amount of heat transfer and the amount of current are transported is the thermoelectric material and the thermoelectric conversion element defined in Patent Documents 1 and 2, and the working substance responsible for the heat transport phenomenon is the thermoelectric material and the thermoelectric conversion element.
  • thermoelectric materials and thermoelectric conversion elements are abbreviated as thermoelectric conversion elements.
  • the classical work materials such as electrons and holes, and mainly quantum effects at extremely low temperatures.
  • thermoelectric conversion element is extended to a thermoelectric material macroscopic quantum work substance in the case where the quantum work substance becomes prominent.
  • the current transport phenomenon also uses a wide range of electrical conductivity from metal to insulator.
  • the performance index of the thermoelectric material and the thermoelectric conversion element of the electron or hole in the case of a classical work substance in which the work substance is an electron or a hole is usually
  • a material having a larger dimensionless figure of merit ZT (T is an absolute temperature) has a higher thermoelectric energy conversion efficiency.
  • thermoelectric power is the thermoelectric power called Seebeck coefficient
  • thermal conductivity ⁇ is the thermal conductivity component ⁇ of the work substance.
  • c And ⁇ heat conduction component ⁇ ph The sum of the components, ⁇ , is the electrical resistivity of the work substance.
  • is the electrical resistivity of the work substance.
  • S and ⁇ decrease and ⁇ increases.
  • semiconductor theory there is an electron or hole concentration that is the optimal working material depending on the operating temperature range.
  • thermoelectric performance For that concentration 1) Increase electron or hole concentration and decrease ⁇ 2) ⁇ from Wiedemann-Franz law c Because it is ⁇ 1 / ⁇ , ⁇ ph To reduce 3) Increase S in a material system with a large effective mass of electrons or holes.
  • concentration 1 Increase electron or hole concentration and decrease ⁇ 2) ⁇ from Wiedemann-Franz law c Because it is ⁇ 1 / ⁇ , ⁇ ph To reduce 3) Increase S in a material system with a large effective mass of electrons or holes.
  • the above example 1) requires a large amount of carriers that realize high electrical conductivity. In flat band metals, high electrical conductivity and a large thermoelectromotive force are compatible due to the large Fermi surface and the asymmetry of electron-hole excitation. For this reason, the thermoelectric conversion performance is dramatically improved.
  • thermoelectric material As an example, layered cobalt oxide Na x CoO 2 Has been attracting attention as a thermoelectric material because it shows a huge thermoelectromotive force, and material exploration of thermoelectric materials by “digital” screening (Non-Patent Document 1) such as first-principles band calculation has been conducted.
  • the above ZT is derived by using the thermal equilibrium transport theory regarding the heat transfer amount and current amount of classical work materials. This theory can be extended to quantum working materials.
  • S As the thermoelectric material, it is desirable that S is large, ⁇ is as small as an insulator, and ⁇ is as low as a metal.
  • Phonon Glass Electron Crystal which aims to be a high mobility material that behaves like a turbulent material like glass against lattice vibrations and like a crystal against electrons or holes. Such materials have a high concentration of classical working substances and are found in degenerate compounds and their solid solutions. ph Reducing the value leads to improvement of the performance of the thermoelectric conversion element.
  • Graphite and group V metals such as arsenic, antimony and bismuth, or 2H perovskite-type calcium cobaltite and spinel-type ruthenium cobaltite are exchanged between sites due to multiple mixed ion states.
  • Non-Patent Document 2 The Nernst effect as a working material flow magnetic effect in thermoelectric materials and direct power generation is known as the electromotive force from the temperature gradient, and as the reverse process, the Ettingshausen effect is known from the electromotive force to the temperature gradient.
  • Non-Patent Documents 3, 4, and 5 The classical Nernst effect of InSb and the measurement results of the Nernst coefficient and etching Shausen coefficient of a bismuth single crystal have been published (Non-Patent Documents 3, 4, and 5).
  • Theoretical analysis also divides the degree of freedom of movement of heat and current in the magnetic field into two-dimensional degrees of freedom perpendicular to the magnetic field and degrees of freedom parallel to the magnetic field. This is performed using the thermal equilibrium transport theory (Non-Patent Document 6).
  • Classical Nernst electromotive force V N Is V N WNB ⁇ x T.
  • W the working material flow width
  • B the magnetic flux density.
  • N is the Nernst coefficient
  • S xy Is the heat flow direction x and the working material flow direction
  • ⁇ e Is the Seebeck coefficient
  • ⁇ xx Is the thermal conductivity where the heat flow direction is x and the working material flow direction is y.
  • thermoelectric power generation using the ⁇ anomalous Nernst effect '' in which an electromotive force is generated in the direction perpendicular to both the magnetization and heat flow of a magnetic material instead of an external magnetic field, the magnetic material, magnetization, and electromotive force generation direction are the same perpendicular to the heat flow. It can be taken in a plane, and manufacturing can be simplified and the area can be increased.
  • FePt and MnGa which have high magnetic anisotropy, have opposite electric field directions due to the anomalous Nernst effect, the thin wires are alternately arranged in parallel, and the electromotive force is proportional to the number of pairs of thermocouple arrays connected in series. Increase.
  • the direction of the electric field generated by the abnormal Nernst effect can be reversed according to the magnetization direction of the magnetic material. Even when composed of the same magnetic material, the abnormal Nernst voltage can be increased efficiently even when the external magnetic field is zero if the magnetization directions are alternately reversed between adjacent thin wires.
  • thermocouple array in which two types of FePt wires (hard FePt film and soft FePt film) with different magnetic fields (holding power) whose magnetization direction is reversed is arranged alternately is manufactured. Then, by setting the magnetic field to zero when the magnetization of the FePt line having a small coercive force is reversed, an antiparallel state in which the magnetization directions of adjacent FePt are reversed is obtained, and the abnormal Nernst voltage is alternately reversed. It has been shown that the electromotive force increases because it appears.
  • Non-patent document 7 According to Non-Patent Document 8, Bi 2 Te 3 Then, when the length becomes shorter than the phonon mean free path, the phonon conducts ballistically in that direction.
  • the heat transfer in the thin wire is characterized by the magnitude relationship between the length of the thin wire, the thickness in the direction perpendicular thereto, and the mean free path of the phonon when taking the length in the heat transfer direction.
  • the heat conduction follows the Fourier law and is a diffusive phonon.
  • Non-Patent Document 9 evaluates the dependence of the diameter on the amount of heat transfer using non-equilibrium molecular dynamics for nanotubes.
  • the surface roughness is reduced and there is an influence of ballistic phonon conduction in the length direction up to 1.6 ⁇ m at room temperature.
  • the heat conduction is greater than the value characterized by diffusive phonon conduction.
  • the electrical conductivity is the allowance of the electrons carrying the current flowing in a narrow direction if the cross-sectional area traversed when the electrons move is small. The energy state interval generated is large and the scattering of electrons is less likely to occur, and the density of states of electrons changes depending on the spatial dimension, resulting in improved electrical conduction.
  • thermoelectric materials such as nanothin films, superlattices, and nanowires, and thermoelectric conversion elements that use these materials, which take advantage of the improvement in the figure of merit of thermoelectric materials at lower dimensions, are available.
  • the most well-known and most widely used thermoelectric material is Bi, especially among semiconductor materials. 2 Te 3 , Bi 2-x Sb x Te 3 , Bi 2 Te 3-x Se x And other chalcogenides (Non-Patent Document 9).
  • the chalcogenide material has a ZT value of about 1, which is currently considered the lower limit for commercial profitability.
  • thermoelectric conversion materials that have reached practical use are limited to Bi—Te system in the low temperature region ( ⁇ 500K), Pb—Te system, and Si—Ge system in the middle and high temperature region ( ⁇ 800K).
  • thermoelectric materials such as layered cobalt oxides and clathrate compounds such as clathrate compounds and those utilizing strongly correlated electrons.
  • Skutterudide compounds CoSb 3
  • Silicides metal silicide Mg-Si, Na-Si
  • oxide compounds NaCo) 2 O 4
  • clathrate Ba 8 Al 16 Si 30 , Ba 8 Ga 10 Si 36 , Ba 8 Ga 16 Ge 30 Etc.
  • Non-Patent Document 10 The maximum operating temperature of PbTe-based compounds is about 950 K, but n-type PbTe has an electron concentration of 5 ⁇ 10 5 due to impurity doping. 25 m -3 The maximum performance index of about 450K is 1.7 ⁇ 10 -3 K -1 With increasing the electron concentration, the maximum figure of merit gradually decreases proportionally, 7 ⁇ 10 25 m -3 Then, at about 800K, the highest figure of merit is 1.2 ⁇ 10 -3 K -1 It becomes.
  • the PbTe-based compound has a wide temperature range where the low temperature end temperature is 300K and the high temperature end temperature is 950K.
  • the single phase generation region of the Al—Mn—Si based C54 type compound is very narrow, and only substitution of about 1 at% is allowed for Al and Si. However, this slight substitution changes the electron concentration, and n-type and p-type thermoelectric materials are obtained.
  • the former composition is Al 32 Mn 34 Si 34
  • the latter composition is Al 33 Mn 34 Si 33 It is. All the compounds show very large S exceeding 300 ⁇ V / K in absolute value. Unfortunately, however, the electrical resistivity and thermal conductivity are large, so there is a drawback that ZT cannot be as large as expected (Non-patent Document 11).
  • Non-patent Document 12 Even in a mixed structure of amorphous / nano-sized crystals (Non-patent Document 12), ZT does not increase as described above, but there are many thermoelectric materials exhibiting very large S. High transition metal silicide having a large transition metal content is very suitable for anisotropic thermoelectric conversion (Non-patent Document 13). Since S has anisotropy in nature and excellent mechanical properties, it can be expected to produce a highly reliable thermoelectric converter using anisotropy. The electromotive force of a thermoelectric material in which S exhibits anisotropy is determined by the difference between S in the vertical and horizontal directions, and ZT a (Non-Patent Document 14) is as follows: expressed.
  • T a (T H + T c ) / 2 for T H
  • T C Is the high and low temperature heat source temperature
  • ⁇ and ⁇ the direction along the axis of high symmetry, the direction perpendicular to the axis
  • V the electromotive force of this type of thermoelectric material or thermoelectric conversion element V is It is expressed.
  • ⁇ T is the temperature difference
  • L is the distance between the contacts
  • D is the thickness of the thermoelectric material or thermoelectric conversion element. Since ⁇ T is closely related to the thickness of the thermoelectric material or thermoelectric conversion element, the electromotive force sensitivity (V / Q) is as follows: Become.
  • thermoelectric material or thermoelectric conversion element is the heat flux in the thermoelectric material or thermoelectric conversion element
  • ⁇ a Is the average thermal conductivity at an angle of ⁇ degrees with respect to a more symmetrical axis
  • H is the width of the thermoelectric material or thermoelectric conversion element piece. This formula is effective when the contact resistance is much smaller than the resistance of the thermoelectric material piece.
  • Thermionic power generation is a power generation method that uses the movement of electrons into the space between electrodes. This power generation method uses a thermionic emission phenomenon in which electrons are emitted from the emitter of a high temperature electrode by thermal energy.
  • space charge may block the discharge of electrons from the emitter due to space charge limitation.
  • Cesium is used to prevent space charge limitation between electrodes, or the difference between the work function of the emitter and that of the collector is increased to increase the electromotive force. Electron energy is lost due to elastic / inelastic collisions. Some are for space use with a distance between electrodes of 0.1 mm.
  • the mechanical alloying method of Patent Document 3 may be used to improve the performance index of thermoelectric materials and thermoelectric conversion elements without changing the chemical composition using a polycrystal.
  • Patent Document 4 an amorphous structure manufactured by a sol-gel method or a dry film forming method is used in contrast to the method in which an iron silicide powder using polyvinyl alcohol as a binder is pressed and then heated to remove polyvinyl alcohol.
  • the film aims to reduce manufacturing costs.
  • spark plasma sintering is used to prevent recrystallization.
  • Non-Patent Document 15 BiSbTe crystals are crushed to several tens of nanometers in argon and then hardened by hot pressing in order to increase the figure of merit by reducing the thermal conductivity without impairing the electrical conductivity. .
  • thermoelectric material in which a grain boundary layer composed of a glass layer is not substantially present at the interface between crystals to prevent lattice vibration is 100 nanometers or less.
  • a thermoelectric material having a cage structure is used and formed on a substrate by a normal temperature impact solidification phenomenon by an aerosol deposition method. How the working material moves in the space between objects depends on the potential of the working material. In the vicinity of the surface in contact with the space, the potential is lowered by the electromirror effect. The potential is obtained by simulation or analytically as in Non-Patent Document 16.
  • the work substance can be moved from the surface to the space by passing through the potential barrier of the work substance in the space surrounding the surface or passing through the potential of the work substance by energy such as heat and electromagnetic waves or through a tunnel.
  • energy such as heat and electromagnetic waves or through a tunnel.
  • the work function and emission current are related by the Richardson-Dushman equation.
  • the current due to tunnel transmission can be related to the electric field intensity by the Fowler Nordheim equation or the like.
  • the amount of work substance released in the space is determined by the tunnel probability, heat, and electromagnetic waves.
  • the amount of work substance released is determined by the amount of laser irradiation.
  • Non-patent Document 17 The electric current in the space is between the work substance discharge and absorption terminals (hereinafter, for simplicity, the work substance discharge terminal and the reception terminal are abbreviated as terminals. Also, when discharge and reception are clarified, they are abbreviated as discharge terminals and reception terminals). The shorter the distance, the better the efficiency.
  • Thermoelectric materials have a figure of merit that is higher than that of thermoelectric materials of uniform composition by adopting a graded structure (FGM: Functionally Graded Material) in which the electron concentration, which is a working substance by impurity doping, is continuously controlled along the temperature gradient over the operating temperature range. Can be increased.
  • FGM Functionally Graded Material
  • the concept of performance varies depending on the purpose of use. Metal parts such as electrodes of the thermoelectric conversion element and external power source or load also affect the performance.
  • the distance L between the surfaces of the opposed terminals in the space portion hereinafter, the surface of the opposed terminal is abbreviated as the opposed surface for simplicity).
  • the durability of the thermoelectric system is the temperature distribution during operation of the thermoelectric material at the interface between the segment where the thermoelectric material and the electrode part of the external power source or load are joined, or between the segments.
  • thermoelectric conversion element It is determined by fatigue due to thermal stress due to the influence of temperature change during operation due to thermal expansion and thermal fluctuation of the heat source. For this reason, contact resistance between the thermoelectric material and the electrode is increased, and as a result, burnout due to Joule heat of fatigue cracks has been reported. By providing the space portion, mechanical damage due to thermal expansion can be prevented.
  • L between opposite surfaces max Since it is larger than (T), it is particularly affected by thermal fluctuation due to quantum fluctuations at low temperatures, thermal fluctuations due to fluctuations in the interface due to temperature changes during operation, and fatigue breakdown of thermoelectric conversion elements due to movement between interfaces other than the work substance. It can be suppressed. The larger the temperature difference between the high temperature part and the low temperature part, the larger the number of space parts in the thermoelectric conversion element.
  • thermoelectric conversion element converts radiation energy into electric power. This can be divided into those that do not use the heat associated with nuclear decay and those that do not.
  • thermoelectric conversion method a thermal ion conversion method, and the like that use heat.
  • thermal ion conversion method a thermal ion conversion method, and the like that use heat.
  • thermoelectric power generation using radioisotopes the radioactive isotope uses the radiation particle beam in the course of natural decay, and the decay heat of the part containing the radioisotope or the thermal energy generated at that time is collected in the collection part of the radiation particle beam. It is used for thermoelectric power generation.
  • thermoelectric conversion elements having the ideas of paragraphs 0019 and 0020, i) and ii) and between the thermoelectric material and the working substance good conductor. ⁇ To join thermoelectric materials into modules, they need to be joined.
  • Bonding methods include solder bonding method, heat pulse method (thermal plasma spraying method), physical vapor deposition method, welding method, electroplating method (chemical vapor deposition method), pressure contact method, diffusion bonding method, thick film firing method (bonding) There is an aggregation method).
  • solder joint method deterioration occurs due to diffusion of the solder material in use.
  • thick film firing method physical defects are likely to occur at the bonding interface due to impurities and oxygen mixing.
  • produces in the joining interface, and has a big influence on the durable years of thermoelectric material.
  • a contrivance for this improvement lies in a module or system comprising thermoelectric conversion elements or thermoelectric conversion elements.
  • thermoelectric materials are a member responsible for the type, shape and size of thermoelectric materials and thermoelectric conversion elements, insulation, heat insulation, external impact mitigation, radiation shield, etc. It is optimized by selecting the type and thickness.
  • multistage ⁇ In type module ⁇ The heat from the two legs of the mold module ⁇ Received at the top of the mold module ⁇ Since it is necessary to absorb the temperature at the legs of the mold module and obtain a temperature difference, ⁇ It is necessary to give a larger endothermic capacity to the legs of the mold module. For this reason, multistage ⁇ The mold module is conical.
  • thermoelectric material is attached to the electrode / structure by grease, adhesion, or soldering.
  • thermoelectric power output P is It is expressed.
  • m R L / R. R, R L Are internal resistance and external load. Electrical contact resistance R between electrode and thermoelectric material or thermoelectric conversion element, or between different thermoelectric materials C Of heat generation module efficiency ⁇ It becomes.
  • Non-Patent Document 6 Si / SiO 2
  • ⁇ Bi2Te3 Is Bi 2 Te 3 Is the resistivity. It has been reported that when A / H is constant and H is reduced from micro to nano size, the required cross-sectional area decreases and the power density increases. As a practical application, P ⁇ 10 ⁇ W is obtained due to the temperature difference between the human body and the atmosphere.
  • thermoelectric conversion element The electromotive force of the thermoelectric conversion element is extremely low.
  • a plurality of thermoelectric conversion elements are connected in series and integrated on an insulating ceramic plate.
  • ⁇ Type modules are often used.
  • two sets of thermoelectric conversion elements with different polarities are pressed in series with a member that also serves as an electrode, and the electrode member is an integrated type with or without additional fins for receiving and radiating heat.
  • Module an example of this is a Peltier device that increases energy efficiency.
  • thermoelectric conversion elements that also serve as electrodes between two sets of thermoelectric conversion elements with different polarities, and providing a heat insulating wall at the boundary between these heat sink fin rows and heat dissipating fin rows to obtain cold or hot air.
  • the laminated integrated module that performs two-piece thermoelectric conversion elements with different polarities into thin sheets, alternately laminated, and then fired integrally is as follows i No need to connect electrodes between thermoelectric elements, ii No need for space to secure insulation between thermoelectric conversion elements, iii Area efficiency is high even if the number of thermoelectric conversion elements is increased. iv Almost obtain high electromotive force even at low temperature differences have.
  • thermoelectric conversion elements having the devices of the various module paragraphs 0021 described above.
  • a pair of p-type n-type thermoelectric conversion elements with different polarities were sandwiched between electrode pairs ⁇ In the module of the mold Performance index Z mod Is It becomes.
  • Q c / P cooling operation, Q h Reduction of losses due to irreversible processes due to Joule heat generation and heat release to the outside world by improving (/ P power generation operation).
  • Q c And Q h Represents the amount of heat absorbed from the low heat source and the high heat source, respectively, and P represents the electrical work.
  • thermoelectric module in which a ceramic substrate is used as an insulator and a module without a ceramic substrate (skeleton type).
  • the thermal stress generated in the thermoelectric module sandwiched between the high and low heat sources is greater in the ceramic substrate than in the skeleton type.
  • Further improvements have been made in the heat cycle characteristics and the thermoelectric conversion elements by improving the durability against thermal stress generated at the interface of segment elements and the like that are stacked to form one element.
  • the system is configured in units of mold modules. For example, in order to increase the output current during power generation operation, ⁇ In order to increase the output voltage, or in parallel arrangement on one coated electrode plate so that the polarities of the legs of the mold module are the same thermoelectric conversion element, ⁇ There are a series arrangement in which mold modules are turned upside down and pairs with different polarities are arranged on a single coated electrode plate, or a composite arrangement of these. Like this ⁇ The mold module is assembled from a plurality of pairs of heat sources, electrodes and thermoelectric conversion elements of different polarities.
  • thermoelectric conversion element pairs It is possible to change the figure of merit of thermoelectric conversion element pairs to improve the performance of the module.
  • The cross-sectional area and length of the thermoelectric material pair of the mold foot are different.
  • a thermoelectric system generates a quantity of heat Q from a certain heat source. in And give it to the thermoelectric module, the amount of heat flows through the thermoelectric material and the heat dissipation Q out To the other heat source.
  • System efficiency ⁇ is It is. To maximize ⁇ 1) Balance the capacity of the module to be used with the target performance.
  • thermoelectric conversion elements or thermoelectric conversion elements are used. Furthermore, since there is no thermoelectric material with excellent power generation characteristics over a wide temperature range, a cascade type thermoelectric module in which several thermoelectric material rows are stacked is manufactured at high temperatures exceeding several hundred degrees. Application development is underway in the temperature range. The thermoelectric conversion efficiency of these modules has a characteristic that the higher the temperature and the larger the temperature difference, the higher (non-patent document 19). A contrivance for this improvement lies in a module or system comprising thermoelectric conversion elements or thermoelectric conversion elements. A commercially available thermoelectric module is covered with an outer wall such as a ceramic plate in order to have versatility.
  • the receiving and radiating fins are further combined by pressure contact, and the thermal resistance gradually increases.
  • the temperature difference corresponding to this thermal resistance does not contribute to power generation, and the efficiency is lowered.
  • the conversion efficiency in the case of an apparatus is reduced to nearly half of the module. It cannot be said that the conversion efficiency of thermoelectric materials is sufficient, and it becomes more effective when the heat source is at a relatively high temperature as a solution to the problem of efficiency reduction in the apparatus.
  • Thermoelectric conversion is performed in contact with the low-temperature heat source via a ceramic plate, but the electrode is exposed on the high-temperature side, and heat is transferred to the thermoelectric material directly transferred from the high-temperature heat source by radiation.
  • There is a method Non-Patent Document 20. Since the high temperature side ceramic plate and the heat collecting system are omitted, the thermal resistance loss is reduced, a higher temperature difference can be added to the thermoelectric material, and the conversion efficiency is greatly improved.
  • the conversion efficiency of a two-stage cascade module composed of mold modules is 83% of the module.
  • the module high temperature part is released from the pressure contact force and becomes a cantilever structure, the thermal stress strain problem caused by the temperature difference, which has been considered as a conventional problem, is alleviated, and versatility in mounting is improved and reliability is improved. It becomes.
  • Non-Patent Document 3 Kamran Behnia, et al. Phys. Rev. Lett. 98, 076603 (2007) Phys. Rev. Lett.
  • the target thermoelectric material is a composite functional material having both a large thermoelectromotive force, a low resistivity, and a low thermal conductivity.
  • precise measurement of these three parameters is essential.
  • thermoelectric conversion elements and modules including them cannot be “digitally” screened like the transition temperatures of superconducting materials and ferromagnetic materials.
  • Patent Documents 1 and 2 are used.
  • thermoelectric conversion element 1) Control of distance between terminals of a space portion operated by a classical system, a quantum system, or a macroscopic quantum work material, 2) By controlling the working material flow by the electromagnetic field or radiation outside the thermoelectric conversion element system in the space of the thermoelectric conversion element and in the space portion bridged by the fine structure, 3) Enables power generation, cooling, or heating operation control by a module or system composed of thermoelectric conversion elements or thermoelectric conversion elements, 4) In order to avoid damage from charge or heat retention due to light from outside the system, radiation sources in the system, etc., using a good working substance conductor, thermoelectric material, thermoelectric conversion element, etc.
  • module group consisting of a combination of thermoelectric conversion elements a module group consisting of (hereinafter abbreviated as “module group consisting of a combination of thermoelectric conversion elements”)
  • module group consisting of a combination of thermoelectric conversion elements Insulation material, thermoelectric material, thermoelectric conversion element, etc. so as to avoid damage due to electric charge or heat retention and to prevent large disturbance in working substance flow or heat flow in “module group consisting of combination of thermoelectric conversion elements”
  • the material of “module group consisting of a combination of thermoelectric conversion elements” is manufactured.
  • thermoelectric material that has not been devised is a 0th generation thermoelectric material, this is a 1st generation thermoelectric material, 7)
  • the above-mentioned 1) to 4 which is the same process as manufacturing the 0th generation thermoelectric conversion element from the 0th generation thermoelectric material by the devices of Patent Documents 1 and 2, reduces the radiation energy loss in the space in the 1st generation thermoelectric material.
  • the first generation thermoelectric conversion element is manufactured by joining in such a way.
  • the generation 0 thermoelectric material is built in the first generation thermoelectric conversion element as well as the above generation 5 thermoelectric conversion element.
  • a submicrometer space 12 is arranged so that heat transfer can be prevented in the direction in which the heat flow or working material flow is transmitted in FIG. 1, and the working material flow in this space 12 is divided into two materials 10, 11 on the left and right.
  • Heat transfer caused by the presence of pseudoparticles such as lattice vibration, magnon, spin wave, etc., while maintaining almost the same or a larger value with the working material flow in, and thermal fluctuations between heat sources or nearby materials,
  • the efficiency of a thermoelectric system is improved by comprising the thermoelectric conversion element which suppresses the quantum fluctuation at low temperature and propagation of macroscopic quantum fluctuation.
  • FIG. 2 shows an example in which the spire leg for releasing the working substance is thickened.
  • FIG. 3 shows a case in which both terminals facing each other have a spire structure in the order of nanometers and are separated by a length d on the order of submicrometers or less. It is also an excellent structure for controlling the working material flow at the working material discharge and receiving parts.
  • the conceptual diagram of the invention emphasizes the essence of the invention.
  • Current or voltage may or may not be applied to the thermoelectric conversion element containing the working substance from the “end plate for connection to the external system”, but in any case when the voltage is applied to the space, the height of the spire Is high and the distance between the terminals of the spire surfaces 13 and 14 is L max If the radius of curvature is small at the convex tip portion of the tip of the “pointed member” of the spire covered with the protective member 16 on the spire surface 13 of FIG. The electric field is increased, and the height of the potential barrier and the barrier width of the working material in the vicinity of the spire surface 13 of the charged particles as the working material are greatly reduced.
  • thermoelectric conversion element in which a working substance in a material with either positive or negative charge polarity or two different types of positive and negative charge moves, an electric field, magnetic field source, etc.
  • thermoelectric conversion element system By arranging, further temperature gradients, working substance concentration gradients, velocity gradients, etc. can be generated in the system.
  • the temperature at which operation by a classical work material, a quantum work material, or a macroscopic work material driven by the generated gradient becomes remarkable is different.
  • the spatial dimension of this material system defines the motion of the quantum or macroscopic quantum working material and separates the degrees of freedom of charge and spin. It is also possible to apply an electromagnetic field to individual spires. It is also possible to change the flow of the working material flow and the heat flow by applying a magnetic field perpendicular to the working material flow on a plane formed by two adjacent spires having different charges or the same charged working material.
  • the intensity of the electric field can be increased to a necessary value by the device of paragraph 0025, and the height of the spire can be lowered to reduce the radiation energy loss. Or as described in paragraph 0025 ⁇ Using a type module, even if the height of the spire is more than micrometer, the surface facing the spire ⁇ Mold module ⁇ The space between the gathering surfaces of the upper members can be reduced to a micrometer or less. As a result, radiation energy loss can be reduced.
  • the shape of the charged particle receiving terminal surface 44 which is a working substance, is deformed so as to surround the charged particle emission spire surface 43, which is a working substance.
  • thermoelectric material When the working substance flow rate is small, the thermoelectric material is used with the very large Seebeck coefficient described in paragraph 0010, but the working material flow rate is increased by arranging a plurality of spire structures 50, 51, and 52 in parallel as shown in FIG. Can do. At this time, it is desirable that the temperature of the corresponding part of each of 50, 51 and 52 is the same.
  • the working substance By using the electromotive force generated by the temperature gradient of the thermoelectric material 10 or 11 in FIG. 1 for the movement of the working substance in the space 12, the working substance can be placed in the space 12 without installing a power source or the like outside. A force is generated by the electric field to flow.
  • the “pointed member” is a thermoelectric material, an electromotive force can be obtained even with that member, and the figure of merit of Equation 1 is increased.
  • the spire “pointed member” and “tower” become higher, and the temperature difference at that portion also becomes larger, so several tens of nanometers long so as to generate many electromotive forces.
  • the maximum electric field E if the shape of the thermoelectric material consisting of an assembly of microcrystals of a certain degree, the shape of the material including the control of the spatial dimension of the thermoelectric material, the assembly thereof, or the device of paragraph (0038) i) is used.
  • the spatial dimension of the thermoelectric material in the spire portion can be one-dimensional (FIG. 6a), two-dimensional (FIG. 6b, c) or layered (FIG. 7).
  • FIG. 6a When the working substance is moving in the space 12 of FIG. 1, moving in the substance 10, moving in the substance 11, or existing on the spire surface 13, it is “pointed”
  • the potential energy and kinetic energy are different when the member exists on the surface 14.
  • the type of working substance itself may change.
  • thermoelectric material 10 When the working material moves in the direction from 11 to 10, the working material exiting from the spire surface 13 takes heat away from the thermoelectric material 11.
  • the working material is coupled to the “pointed member” 14 of the receiving steeple that moves through the space 12 and confronts it, the working material energy in the space 12 and the working material maximum occupation energy in the working material conduction band in the material 10 The difference is released as energy such as heat.
  • the electromotive force of the thermoelectric material 10 can be increased using the thermal energy generated at this time.
  • the energy of the working substance is caused by tunnel friction during tunnel transmission.
  • thermoelectric conversion element From the thermoelectric material by using the momentum to change the working material energy state of the facing surface in the space 12 and to reduce the frictional energy loss when the working material enters and exits the facing surface in the space 12.
  • the manufactured thermoelectric conversion element can further increase the amount of current.
  • the space between the spiers in the space and the "pointed member" is at a distance, at least one of which is a temperature range operating with a classical or quantum work material, or the distance between terminals is a macroscopic quantum work
  • a temperature range that operates on a substance or a wide temperature range that extends over both of these temperature ranges
  • the entire temperature range or a certain temperature range, or ZT of a single thermoelectric material that operates in a wide range of temperature ranges is improved in each temperature region having different narrow temperature regions covering this temperature region.
  • thermoelectric conversion elements with a space part is further improved because the thermal conductivity can be reduced compared to segmented thermoelectric materials without any ingenuity of the space part, and further, damage due to thermal stress or diffusion diffusion of material ions is reduced. Or the heat generated or absorbed by the movement of the working substance to the opposite end of the space in the space part, the momentum distribution of the working substance in the working substance flow direction, the working substance concentration distribution, or the change in the spin distribution. Can do.
  • Claim 1 relates to the space portion of the thermoelectric conversion element having the space portion by the spire surface and the “pointed member” pair surfaces 13 and 14 in FIG. 1.
  • the space 82 is bridged by a good working substance good conductor that can be thickened according to the planar shape of the interface with the thermoelectric material at both ends where the legs of both ends of the bridge member of the connected space stand. , L with the heat flow suppressed max
  • T a member longer than (T)
  • FIG. 6a At least one side of a columnar shape with a diameter of several nanometers (FIG. 6a), a cylindrical shape with a thickness of several nanometers (FIG. 6b), or a plane perpendicular to the direction of the working substance flow
  • a plate-like member (Fig. 6c) having a length of several nanometers When a plate-like member (Fig. 6c) having a length of several nanometers is used, the effect of phonon scattering on the “surface”, which is not a cross section representing the wall thickness, is more significant than the effect of phonon scattering on other than the “surface”. become.
  • FIG. 6 The effect of the spatial dimension of the structure affects the working material flow.
  • the working substance flow inside the bridging member is smaller than the working substance flow of the thermoelectric material at both ends sandwiching the bridging member, the cross-sectional area of the working substance good conductor is increased or a connected space portion using a plurality of good working substance conductors is formed.
  • a plate-like member having a thickness of several nanometers FIGGS.
  • FIG. 6b and c has a worse working substance flow than a thin member (FIG. 6a), but is better than a three-dimensional bulk.
  • FIG. 8 the figure of merit is enhanced by having a space portion in which a pair of opposite terminals are connected with a thin conductor body 83 between the thermoelectric conversion elements 80 and 81 as shown in FIG. 6a or 6b is viewed from the cross-sectional direction hatched in FIG. 6, and is combined with a cylindrical layered structure as shown in FIG. 7a, or FIG. 6c is combined as a flat layered structure as shown in FIG.
  • a thin columnar conductor having a cross-sectional area that does not make the working substance flow in the thermoelectric material smaller than that of a thermoelectric material without a connected space portion is hereinafter abbreviated as a thin wire structure.
  • a thin wire structure By forming an interface that scatters phonons and stratifying a portion having a high mobility of the working substance, heat transfer can be deteriorated and the figure of merit of Equation 1 can be increased.
  • the work material as a whole of the thin wire structure is formed by passing the low work material mobility part having a thickness sufficient to prevent the work material from being transmitted in the radial direction to the adjacent part where the work material mobility is high. The flow can be increased and the figure of merit of number 1 can be increased.
  • the phonon becomes ballistic, resulting in an increase in thermal conductivity and a decrease in the figure of merit.
  • the figure of merit can be increased by the thermoelectromotive force there.
  • the wire structure is longer than the phonon mean free path, the heat conduction follows the Fourier law. Short and ballistic increases heat conduction and reduces efficiency. In FIG. 8, by reducing lattice mismatch, impurities, and lattice defects as much as possible at the interface between the thin wire structures 83 and 80 or 81, the working material flow there becomes a working material flow of the thermoelectric materials 80 and 81 on both sides thereof.
  • a plurality of thin wire structures are introduced into the space as shown in FIG. 9 so as to obtain a working substance flow that surpasses the working substance flow of the thermoelectric material at both ends across the connected partial space.
  • the electric current is transmitted by a classical work material, a quantum work material, or a macroscopic work material. Heat is transmitted along with what generates electric power, or is transmitted by lattice vibration, radiation, or the like. In the case where the space portion is narrow or connected, quantum work materials can be used at extremely low temperatures. In the presence of a magnetic field, the resistance of the work substance is added due to the Hall effect or the Nernst effect, or the heat flow, current and electromotive force do not point in the same direction.
  • L for lattice vibration max It is a distance of (T) or more, and the performance index of the thermoelectric material is improved by providing a space portion or a connected space portion so as to prevent the heat transfer associated with the working substance flow.
  • the radiation source primarily serves to help move the work material from the work material discharge surface to the work material receiving surface.
  • Claim 3 is a working substance moving from the space 102 in FIG. 10, a material 101 having a discharge terminal surface, or a working substance to be released from the surface into the space 102 from an electromagnetic wave supply unit or a radiation source disposed in the space 102. It is possible to make the working substance easier to conduct in the space 102.
  • the radiation source can also be embedded in the surface portion of the thermoelectric material 100 facing 101 that joins the spire or spire leg from which the working substance is released. When the radiation source is placed on 105 or 106 that covers the spire 101 or the spire leg that emits the working substance, or is embedded, heat from radiation decay can be used.
  • the distance between 106 that covers 100 and 101 facing each other at a place where there is a spier in the space portion is short, and light can reach the inside by increasing the distance between 106 that covers 100 and 101 facing each other on the outside.
  • the effect of field electron emission can be included by making 101 a spire structure.
  • thermoelectric conversion element As well as reducing power consumption, the AC component I ac Is included, R i For R i (I ac ) 2 The endothermic amount decreases by / 2. For this reason, the direct-current power source to be applied is more efficient when the power source has the same ripple rate as the AC component content.
  • the thermoelectric conversion element including a space portion or a connected space portion the mobility of the working material is not uniform in terms of position and time.
  • the inflow or outflow of the electric charge of the working material is large and the electric charge is accumulated, thereby obstructing the working material flow. Further, when the electric charge of the working substance is accumulated, the thermoelectric conversion element is deteriorated.
  • a coating 15 or a thick member 15 that is a good working material conductor of a “pointed member” on the working material receiving surface, it is possible to increase the amount of movement of the efficiency material flow and make it uniform.
  • a coating or thick member on the working substance discharge side can be omitted.
  • the fourth aspect of the present invention is characterized in that an effect of diffusing a working substance locally existing on the surface of the working substance receiving terminal or spire is obtained by coating the working substance good conductor thin film.
  • the protective member 16 eliminates damage caused by radiation at the radiation source and the location irradiated with radiation, and tunnels and potentials of potential barriers for the working material due to the radiation source collapse and the heat generated by the radiation emitted from the collapse. We can expect an increase in working material flow due to barrier crossing.
  • the quality can be improved by suppressing the working substance from being scattered by the protective member that protects the working substance from being discharged or the receiving surface is roughened.
  • the working material good conductor thin film protective member reduces the influence of deterioration by strengthening the element or preventing concentration of heat, and increases efficiency.
  • thermoelectric conversion element having a space portion, as the working substance moves in the space portion, the “pointed member” and the spire deteriorate due to impact and mechanical destruction due to local movement in the space portion.
  • the surface of the spire is made of another substance. It is characterized by protection by 13, 14 or by joining other substances, by increasing the interatomic bonding force in the member, or by making a coordinated movement in the atomic group.
  • a cage-type thermoelectric material can be used for the “pointed member” of the spire including the working substance receiving mount shape to absorb vibration and prevent deterioration.
  • carbon sp 2 , Sp 3 In various hybrid ratios composed of bonds and other atoms or molecules, it is sp 2 It is sp 3
  • Claim 6 is segmented by spaces or connected spaces, so that there is little effect of performance degradation due to diffusion of components of thermoelectric material or electrode material, and power generation and cooling in the state when the thermoelectric conversion element is manufactured.
  • the system for heating operation can be changed. As shown in FIG. 11, this can be realized by changing the distance between the opposing end faces with an actuator.
  • the electromotive force can be increased by arranging a plurality of space portions. As shown in FIG.
  • thermoelectric conversion element is composed of a thermoelectric material or a good working substance conductor divided into a plurality of segments.
  • the deformation of the working substance energy state from the bulk density of the material affects the movement of the working substance, but these heights and curvature values, and the surface area of the working pillars and coils of the working substance release cones made of these working substance good conductors, etc.
  • the optimum distance and number of segments between the steeple's “pointed member” surface in space, including the steeple surface and the opposing mount shape, is determined as follows.
  • the distance between the “spiral member” surfaces of the spiers, including the spiers surface and the mounting shape facing them in space, is submicrometer max
  • the working material flow can be made larger as described below, taking the power generation operation of FIG. 12 as a specific example.
  • the distance between the “pointed member” surfaces facing each other from the surface of the spire in the space portion terminals is L max When (T) is exceeded, heat transfer by phonons or the like in this space can be almost ignored.
  • L max As described in paragraph 0035, (T) is related to the force between atoms constituting the “pointed member” facing the spire surface, and can be obtained from the actual measurement range of the distance between the atomic force microscope and the measurement surface. it can. By taking into account thermal expansion and thermal fluctuations of the heat source, especially quantum fluctuations at low temperatures, L max (T) can be corrected. 2) The enhanced electric field strength in the vicinity of the steeple surface in the active space is multiplied by the proportionality factor ⁇ taking into account the curvature of the potential difference / distance between the confronting steeple surface and the confronting “pointed member” surface. Can be approximated. Or it is calculated
  • the potential difference between the confronting spire surface and the confronting “pointed member” surface is affected by the electromotive force of the thermoelectric material at both ends across the space.
  • the amount of movement of the working material due to thermal excitation of the working material, quantum fluctuations at low temperatures, and tunnel penetration depends on the size and direction of the surface of the steeple that releases the working material.
  • the state density of the working substance in the bulk of the thermoelectric material into which the working substance is injected according to the direction of movement of the working substance in the surface of the injected steeple and the opposite “pointed member” surface. It changes from before injection, and as a result, it affects microscopic electric conductivity and thermal conductivity.
  • the conductivity changes and the figure of merit improves.
  • Such a device enables smooth and efficient space movement of the working substance as described in paragraph 0008. 4)
  • the working material flow can be increased by arranging a plurality of spires as shown in FIG.
  • the effect of ⁇ of 2 is greatly reduced. Optimization is made including the spire density on the surface of the electron emission spire terminal so that the work material flow by field electron emission is equal to or greater than the work material flow of the thermoelectric material at both ends before being divided. In this way, the distance between the steeple surface and the “pointed member” surface facing it is determined in an appropriate space.
  • the working material flow of the thermoelectric material at both ends before being divided becomes greater than the working material flow of the thermoelectric material at the both ends, or the working material flow due to field electron emission due to the enhanced electric field strength in the space part is the working material of the thermoelectric material bulk If optimization including the spire density on the surface of the electron emission terminal can be performed so that the flow rate is increased or as close as possible, the devices of 1 to 4 in paragraph 0053 are applied to other space portions.
  • the space portion optimized including the shape of the surface of one or more electrode terminals joins between the “pointed member” surfaces of the spiers including the surface of the spiers and the mounts facing them.
  • the additional loss other than the radiation emission energy loss due to the temperature difference between the member surfaces can be greatly reduced.
  • the temperature difference between the high temperature part and the low temperature part is narrow, it is not possible to optimize the distance between the steeple surface and the “pointed member” surface facing it in the space.
  • the connected space part of FIG. 6 is used.
  • the cooling operation is a reversible process of the power generation operation, the efficiency of the thermoelectric conversion element manufactured in this way is greatly improved even in the cooling operation.
  • thermoelectric material groups shown in FIG. 12 do not necessarily have to be manufactured into thermoelectric conversion elements in the order shown in the drawing. In addition, it consists of two sets of thermoelectric conversion elements with different polarities ⁇
  • ⁇ A mold module may be fabricated.
  • thermoelectric conversion elements other than mold modules are also contemplated in accordance with the scope and spirit of the present invention.
  • the working substance is not easily scattered between the thermoelectric materials 111 and 110 as shown in FIG. It is arranged in this 115 that a fine working material 114 having a shape larger than or equal to the emitting area of the steeple 111 having the emitting steeple and moving in parallel to the emitting surface of the working material moves in parallel to the emitting surface of the working material. Actuated actuators help.
  • the space portion 112 or the space 113 between the surface 114 driven by the actuator and the electrode surface 110 serves as a capacitor, so that the voltage applied to the space portion can be made high. .
  • the high voltage can be used as a trigger for initial operation.
  • the voltage applied to the target space portion during operation can be made high by using CR oscillation or CL oscillation.
  • thermoelectric conversion element from a thermoelectric material having a space portion or a connected space portion according to the claimed invention, ⁇ Numerous embodiments may be employed to provide a mold module and / or system.
  • thermoelectric material To avoid thermoelectric material or charge or heat accumulation concentration, use work material good conductor, thermoelectric material, thermoelectric conversion element, etc., and consist of two sets of thermoelectric conversion elements with different polarities ⁇ Type module and a plurality of series-parallel or series-parallel hybrids ⁇ Type module group or ⁇
  • An example of a thermoelectric material including a thermoelectric material composed of these module groups in which no charge or heat concentration occurs in a module group composed of a combination of thermoelectric conversion elements other than the type module is a plurality of thermoelectric materials composed of two sets of thermoelectric materials having different polarities.
  • ⁇ Cascade type based on type module ⁇ Implemented with type modules.
  • Cascade type sandwiched between two different heat sources ⁇ When the entire mold module group is constant and uniform heat flow does not occur, two sets of thermoelectric materials with different polarities are pressed in series, which also serves as electrodes, and the pressure-welded part has members such as receiving and heat-dissipating fins. It is necessary to use an integrated module without or a thermoelectric material having an anisotropic Seebeck coefficient.
  • Cascade type ⁇ The type module group has been described as an example of a combination of implementations. ⁇ There are module groups other than type module groups, ⁇ The identification of type is presented for illustrative purposes and should not be construed as a limitation on the claimed invention.
  • the space portion may mainly hinder the work material flow during power generation operation.
  • the work substance is released from the surface using heat, electric field, electromagnetic waves, and the like.
  • the working substance moves in the direction from 11 to 10 in FIG. 1, in the space portion, the working substance is excited by energy such as heat, electric field, electromagnetic wave, etc. in the thermoelectric material 13, 14, or near the spire surface 13. Then, the working substance tunnels through the potential barrier, so that the working substance moves to the space portion 12 and moves to the “pointed member” 14 of the confronting spire.
  • thermoelectric conversion element According to macroscopic quantum mechanics, the probability of tunneling through the potential barrier of the working material at the interface 13 in the space portion decreases exponentially as the working material mass increases, but fluctuates when operating at cryogenic temperatures. L can be suppressed L max Since (T) becomes smaller and the distance between the terminals 13 and 14 can be made narrower, it becomes possible to manufacture a thermoelectric conversion element from a thermoelectric material using ions having a large working substance mass. In the case of electrons and holes in a semiconductor, the mass of holes is generally several times the mass of electrons. As a result, when the space 12 is separated to some extent, electrons are tunneled through the p-type semiconductor rather than through holes.
  • Claim 7 is an interface suitable for power generation, cooling, and heating operation by injecting atoms or molecules that supply or absorb a working substance or atoms or molecules that are good conductors of the working substance near the interface where different members in the thermoelectric conversion system join.
  • thermoelectric conversion element it is possible to In order to improve the ZT of the thermoelectric conversion element, if the procedure of paragraph 0053 is newly repeated once using the thermoelectric conversion element according to claim 1 or 2 as a material, the figure of merit is further improved. By repeating this, a quasi-Carnot thermoelectric conversion element or quasi-Carnot thermoelectric conversion module that approaches the Carnot efficiency and a quasi-Carnot thermoelectric conversion system incorporating them can be made.
  • the material used can be either a thermoelectric conversion element alone or segmented by a different generation of thermoelectric material or combined with a different generation of thermoelectric material.
  • the above procedure differs in generational shape scale or operating mechanism.
  • claims 1 to 8 deal with a basic system in which one of two different fixed heat source temperatures does not coincide with or match the temperature of the environmental atmosphere, and claim 9 includes three or more different fixed heat source temperatures.
  • claim 1 1, 2,... Natural number, corresponding to the conventional basic system when the maximum i is 1)
  • i-type n-generation heat conversion module comprising n-type generation thermoelectric conversion elements or quasi-Carnot thermoelectric conversion elements Alternatively, quasi-Carnot i-type thermoelectric conversion modules and their systems are constructed.
  • Each of the i-type n-generation thermoelectric conversion module or quasi-Carnot i-type thermoelectric conversion module composed of the i-type n-generation thermoelectric conversion element or the quasi-Carnot thermoelectric conversion element on the “end plate for connection to the external system” Between the i-type n-generation heat conversion module comprising the i-type n-generation thermoelectric conversion element or the quasi-Carnot thermoelectric conversion element, the connectors on the “end plate for connection to the external system” and the current / voltage sources to construct a higher-specification interspecies modular system and an optimization higher-species system that further effectively utilize the temperature difference between the external load electrodes.
  • the figure of the space part containing the "spiral member” structure of a spire including the spire includes a columnar structure) terminal in a thermoelectric conversion element, and the mount shape which opposes it.
  • the figure of the space part containing the spire terminal from which a pair of opposing height in a thermoelectric conversion element differs.
  • thermoelectric conversion element (A) is a cylinder.
  • B) is a hollow cylinder.
  • C) is a rectangular parallelepiped.
  • A) is a cylinder.
  • B) is a rectangular parallelepiped.
  • relationship diagram between the i-1 generation i-1 generation thermoelectric conversion element of interest to the series ⁇ -type modular parts are fine part of the i-generation thermoelectric material is "thermoelectric conversion comprising modules of a combination of elements"
  • thermoelectric conversion element portion is focused.
  • a member (not shown in FIG. 13) made of an insulating material that can be changed by an actuator between the insulating material 135 and the working substance good conductor 138, the heat flow of heat transfer in the i-th generation thermoelectric material is adjusted to be a laminar flow, The heat of the good working substance conductor 133 passes through the insulating material 135 and reaches the good working substance conductor 138.
  • a part with a space part can be changed to a connected space part.
  • Radiant energy loss between working substance conductor that faces the spatial portion to connect the space portion is much larger than the radiation energy loss i-1 Generation ⁇ -type module, is necessary between the former and the latter area ratio is much smaller is there.
  • Working substance conductor 138 is ⁇ type module 13 incorporating heat flow from the insulator 135. Although the saddle type module is focused here, it goes without saying that a module other than the saddle type module is useful.
  • Thermoelectric material or working substance good conductor with working substance receiving terminal surface 11
  • Thermoelectric material or working substance good conductor with working substance discharge terminal surface 12
  • Space 13 Spire surface of working substance discharge terminal 14
  • Working substance receiving terminal surface 15
  • Protective member 20 Thermoelectric material or working substance good conductor 21 having working substance receiving terminal surface
  • Thermoelectric material or working substance good conductor 22 having working substance discharge terminal surface constructed in the space portion Distance between structures d (d ⁇ L max (T)) 23 Steeple surface 24 of working substance discharge terminal 24
  • Working substance receiving terminal surface 25 Coating or thickness 30
  • Thermoelectric material or working substance good conductor 31 having working substance receiving terminal surface
  • Thermoelectric material or working substance good conductor 32 having working substance discharging terminal surface In the space portion

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Powder Metallurgy (AREA)

Abstract

「熱電変換素子の組み合わせからなるモジュール群」を含む熱電材料の熱電変換効率がカルノー効率に近い熱電変換システムを創作すること。電荷乃至熱滞留によるダメージが生じない熱電変換素子から成る電荷乃至熱滞留によるダメージが生じない熱電材料である「熱電変換素子の組み合わせからなるモジュール群」を含む新たな世代の熱電材料に空間部分、或いは繋がった空間部分により熱電変換素子内を移動できる作業物質以外による熱伝導率を極力小さくする。空間を挟む熱電材料表面あるいはこの熱電材料に対向する表面を改質して発電、冷却、加熱稼働に合う界面にする。室温等の少なくとも三つ以上の異なる熱浴源に接触している熱電変換素子の組み合わせからなるモジュール群」より上位の種間モジュールの製作と、このモジュールを含め熱電変換効率がカルノー効率に近い熱電変換システムの製作すること。

Description

熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群
 本発明は、熱エネルギーと電気エネルギーとの変換方法に関する。
 熱エネルギーを電気エネルギーに変換する発電システムに熱電材料を用いた熱電発電や、熱電子発電などがある。熱電材料を逆変換として用いると冷却システムに利用できる。伝熱量と電流量が関連して輸送される現象を利用する材料が熱電材料と特許文献1、2で定義した熱電変換素子であり、熱輸送現象を担う作業物質を、熱電材料と熱電変換素子(以下簡単化のために熱電材料と熱電変換素子を熱電変換素子と略す。)では、系が古典力学で扱える場合の電子やホールなどの古典系作業物質や、おもに極低温になると量子効果が顕著になる場合の量子系作業物質そして、熱電変換素子では系に前記に加えて熱電材料巨視的量子系作業物質に拡張している。また、電流輸送現象も金属から絶縁物にいたる幅広い電気伝導度が利用される。伝熱量に比べて電荷の担い手である作業物質の輸送量が多い材料が性能の良い熱電材料または熱電変換素子であり、熱電変換素子から成るモジュールそしてシステムがある。
 作業物質が電子やホールである古典系作業物質の場合の電子やホールの熱電材料と熱電変換素子の性能は、通常、性能指数Zは
Figure JPOXMLDOC01-appb-M000001
で定義され、無次元性能指数ZT(Tは絶対温度)が大きな材料ほど熱電エネルギー変換効率が高い。ここで、Sはゼーベック係数と呼ばれる熱電能、熱伝導率κは作業物質の熱伝導成分κと格子による熱伝導成分κph成分の和、ρは作業物質の電気抵抗率である。温度を変化させないで大きいZTを得るためには、大きなS、小さなκ及び小さなρにすればいい。これら三つの熱電特性はいずれも作業物質の濃度の関数であり、その濃度が高くなるとSおよびρは小さくなり、κは大きくなる。半導体理論によると使用温度域によって最適な作業物質である電子あるいはホール濃度が存在する。
その濃度に対して熱電性能をよくするには
1)電子あるいはホール濃度を高くしρを小さくする
2)Wiedemann−Franzの法則よりκ∝1/ρであることからκphを小さくする
3)電子あるいはホールの有効質量の大きな材料系でSを大きくする
の3通りが考えられる。
 例えば上記の1)の例は、高い電気伝導度を実現する多量のキャリアが必要となる。フラットバンド金属では、大きなフェルミ面と電子−ホール励起の非対称性に起因し、高い電気伝導度と巨大な熱起電力が両立する。このため、熱電変換性能が飛躍的に向上する。その例として、層状コバルト酸化物NaCoOは巨大な熱起電力を示すことから熱電材料として注目され、第一原理バンド計算等の“デジタル”なスクリーニング(非特許文献1)による熱電材料の材料探査が行なわれている。
 上記のZTは古典系作業物質の伝熱量と電流量に関する熱平衡輸送理論を用いて導出されている。この理論は量子系作業物質にも拡張できる。
 熱電材料としてはSが大きく、κが絶縁体のように小さく、しかもρが金属のように低いことが望ましい。このような特徴はPhonon Glass Electron Crystalとして表現され、格子振動に対してはガラスのように乱れた物質として振る舞い、電子あるいはホールに対しては結晶のように振る舞う高移動度物質を目指している。このような材料は古典系作業物質濃度が高く、縮退状態化合物やこれらの固溶体の中から見出されるが、格子振動によるκphを小さくすることが熱電変換素子の性能を上げることにつながる。
 グラファイトや周期律表V族であるヒ素、アンチモン、ビスマス等の半金属或は、2Hペロブスカイト型カルシウムコバルタイトとスピネル型ルテニウムコバルタイトは、複数の混合イオン状態に起因する各サイト間の電子交換反応と不均化反応による、正孔と電子の共存状態にある正孔−電子共存型遷移金属複酸化物の熱電材料等がある。また、低温形成Co多結晶薄膜はRFマグネトロンスパッタ法にて、Ar/(Ar+O)<3%の非加熱ガラス基板上に作ると、成膜したCo薄膜は酸素が欠損しており、正孔と酸素欠損由来の電子が共存した真性半導体に近い。正孔と電子が共存した場合、正味のゼーベック係数SNetは正孔由来のゼーベック係数Sと電子由来のそれの和、SNet=(σS h+σ)/σになる。ここで、σとσは、それぞれ、電子と正孔の電気伝導率であり、σは正味の電気伝導率σ=σ+σである。Sが負であるため電子が正孔と共存するとゼーベック係数の絶対値は小さくなる。(非特許文献2)
 熱電材料内や直接発電等での作業物質流磁気効果としてのネルンスト効果は温度勾配から起電力、その逆課程としてエッティングスハウゼン効果は起電力から温度勾配、知られている。InSbの古典系ネルンスト効果そして、ビスマス単結晶のネルンスト係数およびエッチングスハウゼン係数の測定結果が発表されている(非特許文献3、4、5)。また、それらの理論解析も磁場中の伝熱量と電流量の運動の自由度を磁場に垂直な2次元面内の自由度と磁場に平行な自由度に分け、2次元面内の運動成分に関する熱平衡輸送理論を用いて行われている(非特許文献6)。古典系ネルンスト起電力VはV=WNB∇Tである。ここで、Wは作業物質流幅、Bは磁束密度である。また、Nはネルンスト係数で
Figure JPOXMLDOC01-appb-M000002
であり、Sxyは熱流方向がx、作業物質流の方向がσであるゼーベック係数、κxxは熱流方向がx、作業物質流の方向がyである熱伝導率である。この理論も量子系作業物質にも拡張できる。
 外部磁場に代り、磁性材料が持つ磁化と熱流の両者と直交する方向に起電力が生ずる「異常ネルンスト効果」を利用した熱電発電では、磁性体、磁化と起電力発生方向を熱流に垂直な同一平面内にとることができ、製造簡易化、大面積化が可能になる。高い磁気異方性を持つFePtとMnGaは異常ネルンスト効果による電界の向きが互いに反対になり、それらの細線を交互に並列化し、直列接続させた熱電対列のペア数に比例して起電力を増大する。また、異常ネルンスト効果により発生する電界の方向は、磁性材料の磁化の向きに応じて反転させることができる。同じ磁性材料で構成した場合でも隣り合う細線間で磁化の向きが交互に逆向きになっていれば、外部磁場がゼロの状態でも異常ネルンスト電圧を効率的に増大することが可能である。そこで次に、FePtの製作条件を変えることにより、磁化の向きが反転する磁場(保持力)の異なる2種類のFePt線(ハードFePt膜とソフトFePt膜)を交互に並べた熱電対列を製作し、保持力が小さいFePt線の磁化が反転した段階で磁場をゼロにすることにより、隣り合うFePtの磁化方向が逆に向いた反平行状態が得られ、異常ネルンスト電圧が交互に逆方向に現れるため起電力が増大することが示された。(非特許文献7)
 非特許文献8によるとBiTeでは、フォノンの平均自由行程よりも長さが短くなると、その方向にはフォノンは弾道的に伝導する。細線での伝熱は熱伝方向に長さ方向を取ると、細線の長さとそれと垂直方向である肉厚と、フォノンの平均自由行程との大小関係によって特徴づけられる。長さや肉厚がフォノンの平均自由行程よりも長い場合には熱伝導はフーリエ法則に従い、拡散的フォノンである。肉厚がフォノンの平均自由行程より短いときには、フォノンは肉厚方向に対しては弾道的フォノン伝導するが表面粗さによるフォノン散乱のために拡散的フォノン伝導で特徴づけられる値よりも熱伝導が小さくなってしまう。長さがフォノンの平均自由行程より短いときには、表面粗さに影響を受けないと弾道的なフォノン伝導により、拡散的フォノン伝導で特徴づけられるものより長さ方向の熱伝導が大きくなる。一方非特許文献9ではナノチューブに対して非平衡分子動力学を用いて径の伝熱量に対する依存性を評価している。1シートからなるナノチューブでは表面粗さが減少し室温では1.6μmまで長さ方向に弾道的なフォノン伝導の影響がある。その結果拡散的フォノン伝導で特徴づけられる値より熱伝導が大きい。一方、電気伝導度は導電材料の空間次元が小さい場合や、それが層状に重なった場合は、電子が移動するときに横切る断面積が微小であれば、狭い方向に流れる電流を担う電子の許されるエネルギー状態間隔が大きく電子の散乱が起こりにくくなり、電子の状態密度が空間次元によって変化し電気伝導がよくなる。低次元になると熱電材料の性能指数が改善されることを利用するものにナノ薄膜・超格子・ナノワイヤーなどの熱電材料やこれらを用いる熱電変換素子がある。
 最もよく知られ、現在最も広く使われている熱電材料は、半導体材料の中でも特にBiTe、Bi2−xSbTe、BiTe3−xSeなどをはじめとするカルコゲニド類である(非特許文献9)。すでに実用段階にあるカルコゲニド材料のZT値が約1で、現時点で商業的に採算がとれる下限と考えられている。実用化の域に達している熱電変換材料は、低温領域(~500K)でBi−Te系、中高温領域(~800K)でPb−Te系、Si−Ge系と限られている。また新たな熱電材料として層状コバルト酸化物、クラスレート化合物などのカゴ状型のものや、強相関電子を利用したものがある。スクッテルダイド系化合物(CoSb)やシリサイド(金属珪化物Mg−Si系、Na−Si系)、酸化物系化合物(NaCo、CaCo等)、クラスレート(BaAl16Si30、BaGa10Si36、BaGa16Ge30等)と呼ばれる材料で高い熱電性能を示すものが開発されている。しかしながら、それらの構成元素は人体に有害化が危惧される元素や稀少元素で構成されている材料が多い。このために、より安価で、環境に優しい合金の材料の製作が必要である。
 MgSiの結晶構造は立方晶でCaF型構造をもち、熱電性能としては650K 付近にピークを持つn型の熱電材料である。MgをAgに置換したMgSiAg0.05のSは250<T<850[K]で−1.8<S<−0.5[mV]である。また(Mg1−xAgSi(x=0.05)は300<T<500[K]で0.8<S<1.2[mV]であることが知られている。(非特許文献10)
 PbTe系化合物の最高使用温度は950K程度であるが、n型PbTeは不純物ドープによる電子濃度が5×1025−3のとき、約450K最高性能指数が1.7×10−3−1を持ち、電子濃度を増やすと徐々に最高性能指数が比例して減り、7×1025−3では、約800Kでは最高性能指数が1.2×10−3−1となる。PbTe系化合物は低温端温度が300Kで高温端温度が950Kである広い温度域をもつ。
 Al−Mn−Si系C54型化合物の単相生成領域はごく狭く、AlとSiに対して1at%程度の置換しか許されない。しかし、この僅かな置換により電子濃度が変化し、n型およびp型の熱電材料が得られる。前者の組成はAl32Mn34Si34であり、後者の組成はAl33Mn34Si33である。いずれの化合物も絶対値にして300μV/Kを越える非常に大きなSを示す。しかし、残念ながら、電気抵抗率と熱伝導度が大きいために、ZTは期待したほど大きな値が得られない欠点がある(非特許文献11)。
 また、アモルファス/ナノサイズ結晶の混合構造(非特許文献12)等でも、上記のようにZTは大きくならないが、非常に大きなSを示す熱電材料が沢山ある。
 遷移金属含有量が大きい高遷移金属シリサイドは異方性熱電変換に非常に適している(非特許文献13)。本質的にSに異方性があり、機械的性質も優れているので、信頼性の高い、異方性を利用した熱電変換器の製造が期待できる。Sが異方性を示す熱電材料の起電力は縦方向と横方向のSの差によって決定され、ZT(非特許文献14)は次のように
Figure JPOXMLDOC01-appb-M000003
表される。ここでは、T=(T+T)/2でTとTはそれぞれ高と低温熱源温度、測定した方向を‖と⊥(対称性の高い軸に沿った方向、その軸に直交する方向)の記号で表し、このタイプの熱電材料乃至熱電変換素子の起電力Vは
Figure JPOXMLDOC01-appb-M000004
と表される。ここで、ΔTは温度差、Lは接点間の距離、Dは熱電材料乃至熱電変換素子の厚さである。ΔTは熱電材料乃至熱電変換素子の厚さと密接に関連しているので、起電力感度(V/Q)は次のように
Figure JPOXMLDOC01-appb-M000005
なる。ここで、Qは熱電材料乃至熱電変換素子中の熱流束、κはより対称性の高い軸に対してα度の角度における平均熱伝導率、Hは熱電材料乃至熱電変換素子片の幅である。なお、この式は接触抵抗が熱電材料片の抵抗に比べてはるかに小さいときに有効となる。この種の熱電材料乃至熱電変換素子の主な利点は、温接点での接合がないことである。
 電子が電極間の空間に移動することを使う発電方法に熱電子発電がある。この発電方法は、高温電極のエミッタから電子が熱エネルギーによって放出される熱電子放出現象を利用している。熱電子発電では空間電荷制限のため、電子がエミッタから放出するのを空間の電荷が阻害する可能性があるが、これを防ぐ方法には、セシウムを用いる方法と、電極間隔を数マイクロメートルまで狭くする方法がある。セシウムは電極間の空間電荷制限を防ぐために使用され、あるいは起電力を高めるためにエミッタの仕事関数とコレクタの仕事関数との差を大きくしているが、電極間で電子同士あるいは電子とセシウムとの弾性・非弾性衝突により電子のエネルギーが失われる。電極間距離を0.1mmにした宇宙用のものがある。
 多結晶体を用いて化学組成を変えることなく熱電材料と熱電変換素子の性能指数を向上させるものに特許文献3のメカニカルアロイング法を用いるのもがある。また特許文献4ではバインダーにポリビニル・アルコールを使った鉄シリサイド粉体をプレス後、加熱してポリビニル・アルコールを取り除くそれまでの方法に対して、ゾルゲル法や乾式成膜法により製作したアモルファス構造の膜にすることで製作コストの低減を狙っている。特許文献5では放電プラズマ焼結して再結晶化を防いでいる。
 電気伝導度を損なうことなく熱伝導度を小さくさせて性能指数を上げるために、非特許文献15では、BiSbTeの結晶をアルゴン中で数十ナノメートルに砕いてからホット・プレスして固めている。結晶間の「アモルファスと結晶の中間的な構造」を低コストで製作し40%の改良でZT=1.4している。特許文献6では熱流を防いで電流を流すために、結晶同士の界面にガラス層からなる粒界層が実質的に存在しないようにして格子振動を防ぐ工夫を行った熱電材料に100ナノメートル以下の多結晶を利用している。ここでは、かご状構造の熱電材料を用いてエアロゾルデポジション法による常温衝撃固化現象で基板上に構成している。
 物体間の空間をどのように作業物質が移動するかは作業物質のポテンシャルによって決まる。その空間に接する表面近傍では電気鏡像効果によりそのポテンシャルが低くなる。そのポテンシャルは、シミュレーションによって、あるいは非特許文献16のように解析的に求められる。
 表面の周りを囲む空間の作業物質のポテンシャル障壁を、熱・電磁波などのエネルギーによる作業物質のポテンシャル越え乃至トンネルによって通り抜けることによって、表面から作業物質を空間に移動させることができる。熱電子放出ではRichardson−Dushmanの式で仕事関数と放出電流は関係づけられている。電界電子放出では、トンネル透過による電流はFowler Nordheimの式などで電界強度と関係づけることができる。トンネル確率・熱・電磁波などにより空間内の作業物質の放出量が決まる。レーザー照射をおこなうとレーザー照射量によって作業物質の放出量がきまる。電流密度が1×1010A/mを超えると空間内の電荷量が大きくなり、電流が空間電荷で制限を受け性能指数が悪くなる(非特許文献17)。空間内の電流は作業物質放出と吸収端子(以後、簡単のため作業物質放出端子や受取端子を端子と略す。また、放出や受取を明確にする場合は放出端子、受取端子と略す。)間距離が短いほど効率がよくなる。
 熱電材料では、稼働温度範囲にわたって、温度勾配に沿って不純物ドープによる作業物質である電子濃度を連続的に制御した傾斜構造(FGM:Functionally Graded Material)にすることにより均一組成の熱電材料より性能指数を大きくすることが可能である。複数の熱電変換素子を組み合せて使用する場合、使用目的によって性能の考え方が変わってくる。熱電変換素子と外部電源乃至負荷が持つ電極などの金属部分も性能に影響を及ぼす。また、熱電材料に空間部分を形成する場合、空間部分での対峙端子の表面(以後、簡単のため対峙端子の表面を対峙表面と略す。)間距離Lmax(T)を調整し変えることで、あるいは端子であるマウント形状を含む尖塔の「尖った部材」(以後、マウント形状を含む尖塔の「尖った部材」を「尖った部材」と略す。)や尖塔の最先端部の表面(以後、尖塔の最先端部の表面を簡単のため尖塔表面と略す。)形状を変えることで、作業物質の移動を容易にでき、また伝熱を小さくできる。
 セグメント化された熱電材料を組み合わせる方式では熱電システムの耐久性は熱電材料と外部電源乃至負荷が持つ電極部分の接合している部分やセグメント間で生じる界面の熱電材料稼働時の温度分布、界面の熱膨張や熱源の熱揺らぎによる稼働時の温度変化の影響による熱応力での疲労により決まる。また、このために熱電材料と電極間の接触抵抗が大きくなって、その結果、疲労亀裂のジュール熱による焼損が報告されている。空間部分を設けることによって、熱膨張による力学的な破損を防ぐことができる。対峙表面間はLmax(T)より大きくしてあるので、特に低温での量子揺らぎや、稼働時の温度変化による界面の揺らぎでの熱応力による破壊や、作業物質以外の界面間移動による熱電変換素子の疲労破壊が抑えられる。
 高温部と低温部の温度差が広域であればあるほど熱電変換素子内の空間部分の数は多くできる。一方、高温部と低温部の温度差が広域であるかどうかに関係なく、熱電変換素子内の繋がった空間部分の数は多くすればするほど空間部分内の輻射エネルギー損失以外の格子振動による熱伝達成分が低減できる。
 放射線のエネルギーを利用して電力に変換するものとして原子力電池がある。これには原子核崩壊に伴う熱を利用するものとしないものに分けられる。i)熱を利用するものには熱電変換方式や熱イオン変換方式などがある。ii)熱を利用しないものには放射線を半導体のpn接合に照射して起電力を得るものがある。
 放射性同位元素を使った熱電発電では、放射性同位元素が自然崩壊の過程における放射粒子線を利用し放射性同位元素を含む部位の崩壊熱あるいは放射粒子線の捕集部でそのとき発生した熱エネルギーを使って熱電発電を行っている。段落0019と段落0020のi)とii)及び、当段落の工夫を熱電材料内部や熱電材料と作業物質良導体間に持つ熱電変換素子がある。
 熱電材料を接合してモジュールに組み立てるには、接合する必要がある。接合する方法は、はんだ接合法・熱パルス法(熱プラズマ溶射法)・物理蒸着法・溶接法・電気めっき法(化学蒸着法)・加圧接触法・拡散接合法・厚膜焼成法(接合集合化法)などがある。はんだ接合法では、使用中のはんだ材料の拡散のために劣化が起こる。厚膜焼成法では、接合界面に於いて不純物や酸素の混入などにより物理的欠陥が生じやすい。また接合するため、その接合界面において熱応力が発生し熱電材料の耐久年数に大きく影響する。この改善としての工夫が熱電変換素子乃至熱電変換素子から成るモジュールやシステムにある。
 熱電材料を用いたシステムは、使用する温度領域や熱量にあわせて、熱電材料や熱電変換素子の種類・形状・大きさや、その周りの絶縁・断熱・外的衝撃緩和・輻射シールド等を担う部材の種類・厚みを選ぶことで最適化されている。 例えば、多段Π型モジュールではΠ型モジュールの二つの脚部からの熱量をΠ型モジュール上部で受け取り、その発量を上部段Π型モジュールの脚部で吸収し、かつ温度差を得る必要があるので、相対的に上部段Π型モジュールの脚部により大きい吸熱能力を与える必要がある。このため、多段Π型モジュールは円すい形になる。温度差を大きくすると多段Π型モジュールの脚部の吸熱量は小さくなるので雰囲気への熱伝導、対流の影響を除くため、通常は真空容器が使用され、−100℃程度の低温になると、周辺の物体からの輻射が大きく影響する。熱電材料の外壁材料である絶縁・断熱・外的衝撃緩和・輻射シールド等を担う部材部分に工夫が必要となる。更に、空冷フィン、ファン付き空冷フィン、あるいは水冷などを用いて放熱を行い、そのほかの構造物との熱のやり取りも考慮しなければならない。そして、熱電材料はグリース・接着・はんだづけによって、電極・構造物に取り付けられている。また、はんだの電気化学的溶出がないように、あるいは段落0022に記載の熱電材料から成るモジュールやシステムでグリース・接着剤などの拡散がないように、システム内のモジュール内部への湿気侵入防止のために、エポキシ樹脂、シリコン樹脂などでシールしている。こういったグリースやシール材によってモジュールの低温部と高温部間の熱伝導が生じて性能が下がっている。
 熱電発電出力Pは
Figure JPOXMLDOC01-appb-M000006
と表される。ここで、T、Tは高温および低温接合部温度、m=R/Rである。R、Rは内部抵抗および外部負荷である。電極−熱電材料乃至熱電変換素子間、異種熱電材料間などの電気的接触抵抗Rの熱発電モジュール効率ηへの影響は
Figure JPOXMLDOC01-appb-M000007
となる。ここで、
Figure JPOXMLDOC01-appb-M000008
である。非特許文献6によるとSi/SiO基板上にCu/Ni電極をメタライズされたところに電気化学的堆積法で熱電材料BiTeを高さHで断面積がAの形状に製作すると、その抵抗はRBi2Te3=%Bi2Te3H/AとなるのでPはA/Hに比例することになる。ここでρBi2Te3はBiTeの抵抗率である。A/Hを一定で、Hをマイクロからナノサイズに小さくすると、必要な断面積は減少し、出力密度が増えることが報告されている。実用用途として、人体と大気間の温度差でP~10数μWが得られている。
 熱電変換素子の起電力は極めて低く、実用においては複数個の熱電変換素子が直列接続されて、絶縁性のセラミックス板上で一体となった構造のΠ型モジュールがよく使われる。あるいは、Π型モジュールの変形であるプレイナー型モジュール、くし型モジュールあるいは、Π型モジュールやプレイナー型と違って、二組の極性の違う熱電変換素子を電極を兼ねた部材とを直列に圧接し、その電極部材に受・放熱用のフィンなどが付加乃至不付加の一体型モジュール、この例として、エネルギー効率を高くするペルチエ装置がある。これは二組の極性の違う熱電変換素子の間に電極を兼ねた吸熱フィンと放熱フィンを挟み、これらの吸熱フィン列と放熱フィン列の境界に断熱壁を設けて、冷風あるいは温風を得られる構造である。
 あるいは、二組の極性の違う熱電変換素子を薄いシート状に加工し交互に積層後、一体焼成を行う積層一体型モジュールは以下のような特徴
i   熱電変換素子間を接続する電極が不要、
ii  熱電変換素子間の絶縁を確保する空間が不要、
iii 熱電変換素子数を増加させても面積効率が高い、
iv  低い温度差でも高い起電力を得やすい
を持つ。このようにΠ型モジュールと異なるモジュールが色々と考案されている。
 上記の色々なモジュール段落0021の工夫を持つ熱電変換素子から成るモジュール群に適用されている。
 電極対の間に一対のp型n型という極性の異なる熱電変換素子が挟まれたΠ型のモジュール内
Figure JPOXMLDOC01-appb-I000009
能指数Zmod
Figure JPOXMLDOC01-appb-M000010
となる。
Figure JPOXMLDOC01-appb-I000011
/P冷却稼動、=Q/P発電稼動)の向上によるジュール熱発生と外界への熱放出による非可逆過程による損失の低減。ここで、QとQはそれぞれ低熱源と高熱源からの吸収熱量、Pは電気的仕事を表す。また、絶縁体にセラミックス基盤が用いられるモジュールとセラミック基盤のない(スケルトンタイプ)ものがある。熱源間温度差や基盤の大きさによるがセラミックス基盤では高熱源と低熱源に挟まれた熱電モジュールに生じる熱応力が、スケルトンタイプより大きくなる。また、熱源と絶縁体、絶縁体と電極、電極と熱電材料、複数の異種熱電材料の接合からなるセグメント異種熱電材料、組成比や不純物濃度の最適化を温度分割し、熱流が直列になるように積重ねて一つの素子にするセグメント素子等の界面に生じる熱応力に対する耐久性の向上による耐熱サイクル性の改善と熱電変換素子ではさらに向上が図られている。
 ある熱源に接触する絶縁体皮膜された電極板とそれと異なる熱源に接触する面が絶縁体で皮膜された電極板の対がある。この電極対の間にΠ型モジュールを単位にシステムが構成される。例えば、発電稼動で出力電流を上げるために、複数のΠ型モジュールの足部分の極性がそれぞれ同じ熱電変換素子になるように一枚の皮膜された電極板上に並ぶ並列配列、あるいは出力電圧を上げるために、Π型モジュールを上下に反転し極性の異なる対同士が一枚の皮膜された電極板に並ぶ直列配列、またこれらの複合した配列がある。このように複数のΠ型モジュールは熱源、電極そして極性の異なる熱電変換素子の複数の対から組み立てられている。モジュールの性能を向上させるに熱電変換素子対の性能指数を変えることが可能性である。このとき各Π型の足の熱電材料対の断面積と長さがそれぞれ違う。熱電システムは、ある熱源から熱量Qinを取得し、それを熱電モジュールに与え、熱量は熱電材料中を流れて放熱量Qoutとしてもう一方の熱源へと放出される。この間に電気的仕事Pが外界に作用する。すなわち、
±P=Qin−Qout
(+はゼーベック効果による発電稼働、−はペルチェ効果による冷却稼働)
なるエネルギー収支バランスが生じる。システム効率ηは
Figure JPOXMLDOC01-appb-M000012
である。ηを最大化するには
1)使用するモジュールの能力と目標性能とをバランスさせる。
2)モジュール単体の性能を適当な経済性で最大発揮できるようにする。
を考慮に入れる。
 例えば、発電稼動のシステム効率ηgen
Figure JPOXMLDOC01-appb-M000013
である。モジュール内部抵抗R MODと外部仕事する際の抵抗Rの比m=R/R MODについて、ηgenを最大にするmになるように最適化する。最大効率ηmaxは温度条件と熱電材料の物性値すなわち性能指数のみによって決まることが知られている。また、冷却稼動のシステム効率ηre
Figure JPOXMLDOC01-appb-M000014
で表される。ηreを最大にするmになるように最適化する。その結果、Rに流れる作業物質流が最小化されPが最小になる。
 当段落の最適化が熱電変換素子乃至熱電変換素子から成るモジュール群やシステムに適用されている。
 さらに、幅広い温度領域にわたり発電特性が優れた熱電材料はないため、数百度を超える高温の場合は、数種の熱電材料列を重ね合わせたカスケード型熱電モジュールが製作され、実際に約600℃までの温度域での応用開発が行われている。これらモジュールの熱電変換効率は温度が高いほど、そして温度差が大きいほど高くなる特性がある(非特許文献19)。この改善としての工夫が熱電変換素子乃至熱電変換素子から成るモジュールやシステムにある。
 市販の熱電モジュールは、汎用性をもたせるためにセラミックス板等の外壁で覆われている。適用し装置化に際しては、さらに受・放熱用のフィンなどが圧接で組み合わされ、熱抵抗が次第に大きくなる。このため利用可能な熱源温度差に対して、この熱抵抗分の温度差が発電に寄与しなくなり、効率が低下する。一般に、装置化した場合の変換効率はモジュールの半分近くまで下げる。
 熱電材料の変換効率が十分とはいえず、さらに装置化における効率低下問題の解決策として、熱源が比較的高温の場合にはより有効となる。低温熱源とはセラミックス板を介して圧接するが、高温側は電極を露出させ、高温熱源から輻射によって直接伝熱する方式である熱電材料への熱の授受を、輻射によって非接触で行う熱電変換方式(非特許文献20)がある。高温側のセラミックス板と集熱系が省かれるため、その分の熱抵抗損失が軽減され、より高い温度差を熱電材料に付加でき、変換効率の大幅な改善される。Π型モジュールから成る二段カスケードモジュールの変換効率はモジュールの83%になる。更に、モジュール高温部は圧接力から開放されて片持ち梁構造となるために、従来課題とされていた温度差に起因した熱応力ひずみ問題も軽減され、取り付けにおける汎用性の拡大と信頼性向上となる。
特願2011−57202号公報 WO201430264A1 特開平9−55542号公報 特開平10−27927号公報 開平10−41554号公報 特開2007−246326号公報
K.Kuroki,R.Arita,J.Phys.Soc.Jpn,Vol.76(2007)083707. 高橋純一、科学研究費助成事業(科学研究費補助金)研究成果報告書 様式C−19 平成24年5月18日 山田直臣、多賀康訓、総合工学 第24巻(2012) 10−16。非特許文献3:Kamran Behnia、et al.、Phys.Rev.Lett.98、076603(2007) Phys.Rev.Lett.958、166602(2007) Science、317 1729(2007) Ryoen Shirasaki:"Fundamental Relation Between Transport Coeffcients in Quantum Hall System" Yukawa International Seminars 2007.(20071122).京都大学国際交流ホール 」は特願2011−57202、WO 201430264A1で記載済みとして省略可能か? Yuya Sakuraba、Kota Hasegawa、Masaki Mizuguchi、Takahide Kubota、Shigemi Mizukami、Terunobu Miyazaki、and Koki Takanashi、"Anomalous Nernst Effect in an L10−FePt/MnGa Thermopiles for New Thermoelectric Applications"、Applied Physics Express,Vol.6,No.6,p.033003(4 pages)(2013)、 Phys.Rev.B47,(1993)16631 Jpn.J.Appl.Phys.47(2008)2005 M.Akasakaa,T.Iida,T.Nemoto,J.Soga,J.Sato,K.Makino,M.Fukano,Y.Takanashi,Journal of Crystal Growth 304(2007)196−201. Toyama,A.Yamamoto,H.Hazama and R.Asahi:Mater.Trans.51(2010)1127−1135. T.J.Zhu,F.Yan,X.B.Zhao,S.N.Zhang,Y.Chen and S.H.Yang:J.Phys.D:Appl.Phys.40(2007)6094−6097. Isoda,Y.;Nagai,T.;Fujiu,H.;Imai,Y.;Shinohara Y.Proceedings of ICT′07 2008,IEEE,pp251. Fedorov、M.I.;Zaitsev、V.K.Thermoelectrics Handbook.Macro to Nano;Rowe、D.M.、Ed.;CRC press.Taylor & Francis group、Boca Raton−London−New York、2006;pp 31−1−31−19. Poudel、B.et al.、"High−Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys、"Science、vol.320、no.5876、pp.634−638、May 2008. Jpn.J.Appl.Phys.48、098006(2009) Appl.Phys.33、2917(1962) J.−P.Fleurial、G.J.Snyder、J.A.Herman、P.H.Giauque、W.M.Phillips、M.A.Ryan、P.Shakkottai、E.A.Kolawa and M.A.Nicolet:18th International Conference on Thermoelectrics(1999). 財団法人エンジニアリング振興協会:カスケードモジュールの開発(高温域Co−Sb系、低温域Bi−Te系材料)熱電発電フォーラム講演資料集 2005年10月 太田稔智:高効率熱電変換システムの開発 日本熱電学会誌 Vol.4 No.2 2007年10月 pp.15−17
 目標とする熱電材料は、大きな熱起電力と低い抵抗率、低い熱伝導率を併せ持つ複合機能材料である。また熱電材料の材料探査による改良には、これら3つのパラメタの精密測定が不可欠である。しかも熱電変換素子及びそれらを含むモジュールは超伝導材料や強磁性材料の転移温度のように“デジタル”なスクリーニングができない。熱電材料の材料探査による改良を行う代わりに、特許文献1、2を用い
1)古典系、量子系あるいは、巨視的量子系作業物質で稼働する空間部分の端子間距離制御と、
2)熱電変換素子の空間および、微細構造物で架橋した空間部分における熱電変換素子系外の電磁場乃至放射線による作業物質流制御により、
3)熱電変換素子乃至熱電変換素子から成るモジュール、システムによる発電、冷却あるいは加熱稼働制御を可能とし、
4)系外からの光や系内にある放射線源等による電荷乃至熱滞留によるダメージを回避するために、作業物質良導体、熱電材料、熱電変換素子等を用い、
5)二組の極性の違う熱電変換素子から成る絶縁材料を含むΠ型モジュールさらに、直乃至並列あるいは直・並列混成である複数のΠ型モジュール群あるいは、Π型モジュール以外の熱電変換素子の組み合わせから成るモジュール群(以後、「熱電変換素子の組み合わせからなるモジュール群」と略す。)内に、
6)電荷乃至熱滞留によるダメージを回避し、更に「熱電変換素子の組み合わせからなるモジュール群」内の作業物質流乃至熱流に大きな乱れが生じないように絶縁材料、熱電材料そして、熱電変換素子等を用いて「熱電変換素子の組み合わせからなるモジュール群」の材料が製作される。特許文献1、2工夫が施されていない熱電材料を0世代熱電材料とすると、これを1世代熱電材料となり、
7)特許文献1,2工夫により0世代熱電材料から0世代熱電変換素子を製作するのと同工程である上記の1)~4)によって1世代熱電材料内の空間部分の輻射エネルギー損失が少なくなるように接合することで1世代熱電変換素子を製作し
8)0世代熱電材料はもちろん内蔵している1世代熱電変換素子に上記5)と6)行程から制作する材料は上記の0世代熱電変換材料から製作されるので、これは1世代熱電材料となり、1世代熱電材料に特許文献1、2の工夫を行い、更に、この手続続けて熱電変換効率がカルノー効率に近い熱電変換システム
9)ここまでは二つの異なる熱源温度の一方が環境雰囲気の温度と一致乃至一致しない場合である基本系を扱った。二つ以上の異なる熱源温度がある場合では基本系の組合わて熱電変換効率がカルノー効率に近いi(i=1、2、・・・自然数で、i=1が従来の基本系に相当する。)種熱電変換システム
を製作することを目的とする。
 請求項1は図1で熱流乃至作業物質流が伝わる方向に伝熱を防げるように、サブマイクロメートルの空間12を配し、この空間12での作業物質流が左右の2つの材料10、11での作業物質流と、ほとんど変えずあるいはより大きな値を保ちつつ、格子振動・マグノン・スピン波等といった擬粒子が存在することに起因する伝熱や、熱源あるいは近接する材料間による熱揺らぎ、そして低温での量子揺らぎおよび、巨視的量子揺らぎの伝搬を抑える熱電変換素子を構成することで熱電システムの効率を向上させることを特徴とする。図1の空間12を造る2つの材料10、11の端子間内の脚部をマウント状あるいは立脚する界面の形状に合わせて太くできる尖塔表面13から、それと対峙する表面14間距離が尖塔表面13での絶対温度Tに依存した長いほうの「距離」Lmax(T)を超えると、空間12のフォノン等による熱伝達をほとんど無視できるようになる。なお、格子振動Lmax(T)に比べマグノンやスピン波等のLmax(T)は遥かに小さい。Lmax(T)は、原子間力顕微鏡と測定表面間距離の実測測定範囲から得ることができる。一方、空間12はサブマイクロ以下にすることによって、作業物質の空間電荷に制限されるのを回避することを可能とする。空間の大きさをサブマイクロメートルからLmax(T)に近づけることで、この部分の作業物質流をより大きくする空間部分を制作する。稼働時は空間部分の輻射エネルギー損失による熱エネルギーの伝導は空間部分の対峙端子間13、14の温度差と、対峙する面積に依存する。端子間13、14がLmax(T)より広いがサブマイクロメートルよりも狭いと、空間部分を挟む熱電材料間や熱電材料と電極間の温度差は数ケルビン程度のため殆ど損失は抑えられる。また空間12を真空にすることで、そこでの対流による伝熱を抑えられる。金属では熱伝導は古典系作業物質の熱伝導成分κによるものがほとんどであるが、半導体になってくると、格子による熱伝導成分κph成分が大きくなっていく。空間部分でのκとκphの物理伝達現象の要因の違いを利用して、κphをゼロそしてκを低減する工夫である。
κph成分とκ成分が同じ場合には、フォノンによる熱伝導だけを抑えて他が変わらなくすると数1の性能指数は容易に2倍になる。性能指数の良い熱電材料にκph成分とκ成分が同程度のものがある。
 空間部分内の尖塔表面と「尖った部材」に対峙する尖塔表面の尖塔脚部を立脚する界面の形状に合わせて太くすることができる。図2は作業物質を放出する尖塔脚部を太くした例である。
 図3は対峙する端子が双方ともナノメートル・オーダーの尖塔構造でサブマイクロメートル以下のオーダーの長さdだけ離れている場合である。作業物質の放出部と受取部での作業物質流の制御に優れた構造でもある。
 本明細書に組み込まれ、その一部を構成する添付の図面は、本発明の原理に従った1つ以上の実施例を図示し、本明細書とともに、そのような実施例を模式的に説明するものである。発明の概念図では発明の本質を強調した説明になっている。
 作業物質を含む熱電変換素子に“外界の系と接続するための端板”から電流乃至電圧印加することもしないこともできるが、いずれにせよ空間部分に電圧が印加するとき、尖塔の高さが高く、尖塔表面13、14の端子間距離がLmax(T)に大きいほうから近づけたり、図1の尖塔表面13で保護部材16に覆われた尖塔の「尖った部材」先端部の凸先端部で曲率半径が小さかったりすれば作業物質に作用する電界が大きくなり、作業物質である荷電粒子の尖塔表面13近傍での作業物質のポテンシャル障壁の高さと障壁幅が大きく低減する。最大電界は尖塔表面13の凸先端部近傍であり、熱電材料11と尖塔の接合面から尖塔表面13で保護部材16に覆われた「尖った部材」先端部の凸先端までの高さと凸先端部の曲率半径に依存する増強因子βを用いるとその最大電界EはE=βEとなる。ここで、Eは熱電変換素子の作業物質放出表面13が平板のときの平板近傍電界である。作業物質が空間12をトンネル透過するにはこの値が10[V/m]より大きい必要がある。尖塔表面13で保護部材16に覆われた「尖った部材」先端部の曲率半径を小さくし、尖塔の高さを高くし、表面13、14の端子間距離を短くすることで電界を高めることができる。電流は尖塔先端の表面近傍の電界や作業物質放出面積に依存し、作業物質の種類や作業物質の熱励起放出・作業物質の電界放出・作業物質の光放出などの放出方法によってあるいは空間12での空間電荷分布に従って流れる。
 正・負電荷のどちらかの極性の、あるいは正・負電荷二種類の極性の違う材料中の作業物質が運動する熱電変換素子の場合に、この熱電変換素子系外に電場、磁場源等を配すことにより、この系内にさらなる温度勾配、作業物質濃度勾配、速度勾配等が生じさせることができる。それら生じた勾配によって駆動される古典系作業物質、量子系作業物質あるいは巨視的量子系作業物質による稼働が顕著になる温度は違う。更にこの材料系の空間次元は量子系乃至巨視的量子系作業物質の運動を規定し、電荷とスピンの自由度を分離したりする。また個々の尖塔等に電磁場を加えることもできる。また互いに異なる電荷あるいは同じ電荷の作業物質をもつ隣接する二つの尖塔等が作る平面で作業物質流に垂直に磁場を加えることで作業物質流の流れと熱流の流れを変えることもできる。これら電磁場による影響は空間部分12に存在する作業物質あるいは空間部分12に隣接する部分に存在する作業物質を介して作用される。また、量子系特に、巨視的量子系作業物質のポテンシャル障壁をトンネル透過する確率は作業物質質量が大きくなれば成るほど指数関数的に小さくなることを利用し、極微小変化を感知するセンサー製作が可能である。
 図1の空間12に与えられた電圧では空間12に生じるi)電界の強さを必要な値まで大きくできない場合、尖塔の高さが高くその結果、尖塔の脚部と接する表面とそれに対峙する表面間距離が大きくなる。あるいはii)作業物質流が小さい場合がある。上記のi)では段落0025の工夫により電界の強さを必要な値まで大きくして、尖塔の高さを低くして輻射エネルキー損失を低減できる。或は段落0025記載のΠ型モジュールを用いて尖塔高さはマイクロメートル以上でも、尖塔に対峙する面とΠ型モジュールのΠ上の部材の集合面間をマイクロメートル以下にできる。その結果輻射エネルギー損失を小さくできる。上記ii)では、図4のように作業物質である荷電粒子受取端子表面44の形状を、作業物質である荷電粒子放出尖塔表面43を囲むように変形することで、最大電界Eの値を持つ領域は変形する前より増加し、そこでの荷電粒子放出する面積部分は増加する。またその他の作業物質受取端子表面44の尖った部位の電界が最大になる可能性もでてくる。その結果、荷電粒子放出量が増える。このように、表面43、44の形状を変化させることにより、作業物質である荷電粒子の電界放出による空間42での作業物質流が空間を挟む熱伝導材料40、41のいずれかの作業物質流に出来るだけ近づけ、あるいはより増加することで、数1の性能指数を向上させることを可能とする。作業物質流量が小さい場合に段落0010の記載の非常に大きなゼーベック係数を熱電材料を用いるが、図5のよう複数の尖塔構造50、51、52にし、並列にすることで作業物質流量を増やすことができる。この時50、51、52のそれぞれの対応する部分の温度が同一であることが望ましい。
 図1の10或は11の熱電材料の温度勾配によって発生した起電力を、空間12での作業物質の移動に利用することで、外部に電源などを設置することなく、空間12に作業物質を流すための電界による力が発生する。「尖った部材」が熱電材料であれば、その部材でも起電力を得るごとができ、数1の性能指数が大きくなる。13、14間が広いときには尖塔である「尖った部材」と「塔」がそれぞれ高くなり、その部分での温度差も大きくなることから、多くの起電力を生じさせるように数十ナノメートル長程度の微結晶体の集合体からなる熱電材料、あるいは熱電材料の空間次元の制御を含めた素材形状やそれらの集合体、段落0038のi)の工夫などを尖塔の部分に用いれば最大電界Eがその部分に熱電材料を用いない場合より大きくなり、空間部分の作業物質流が増え数1の性能指数を更に改善できる。尖塔部分の熱電材料の空間次元は、1次元(図6a)あるいは2次元(図6b、c)あるいは層状(図7)にすることができる。
 作業物質は、図1の空間12中を移動しているとき、物質10中を移動しているとき、物質11中を移動しているとき、尖塔表面13に存在しているとき、「尖った部材」表面14に存在しているときで位置エネルギー・運動エネルギーが異なっている。また作業物質の種類自体も変わる可能性もある。作業物質が11から10の方向に移動する場合、尖塔表面13から出る作業物質は熱電材料11から熱を奪う。一方、作業物質が空間12を移動して対峙する受取尖塔の「尖った部材」14に結合したときには、空間12での作業物質のエネルギーと物質10での作業物質伝導帯の作業物質最高占有エネルギーとの差が、熱などのエネルギーとして放出される。このとき発生される熱エネルギーを使い熱電材料10の起電力を大きくすることができる。
 図1の空間12を移動する作業物質が作業物質受取部の「尖った部材」14から熱電材料表面あるいは電極表面を通過する際に、この作業物質がもつエネルギーがトンネル透過時のトンネル摩擦により作業物質受取部の表面近傍の表面作業物質状態へ散逸し、材料部分内の伝導する作業物質濃度が増加し作業物質流が多くなる。一方、これら材料内やこれら材料間の空間を移動する作業物質はその移動する方向に運動量を持っている。空間12で対峙表面の作業物質エネルギー状態を変化させ作業物質の空間12で対峙表面内に出入する際の摩擦エネルキー損失を少なくして、この運動量を利用することにより、熱電材料から請求項1により製作される熱電変換素子はさらに電流量を大きくすることができる。
 空間部分内の尖塔表面と「尖った部材」間距離で対峙する、少なくとも一方が古典系作業物質あるいは量子系作業物質で稼働する温度領域、あるいは端子間距離で対峙する双方が巨視的量子系作業物質で稼働する温度領域、あるいはこれらの両方の温度領域に渡る広範囲の温度領域の場合は、それぞれの温度領域全体乃至ある温度域、あるいは広範囲の温度領域で稼働する一つの熱電材料のZTよりもこの温度領域をカバーする互いに異なる狭い温度領域を持つそれぞれの温度領域ではZTが最高値の熱電材料を用いたセグメント化された熱電材料のZTは改善される。空間部分を持つ熱電変換素子のZTは空間部分の工夫がないセグメント化された熱電材料より熱伝導率を低減できるために更に改善され、その上熱応力による損傷乃至素材イオンの拡散混入を低減すること、あるいは作業物質の空間部分内の前述の対峙面端部への移動により発生乃至吸収する熱、作業物質の作業物質流方向の運動量分布、作業物質濃度分布乃至スピン分布の変化を利用することができる。
 請求項1は図1の対峙する尖塔表面と「尖った部材」対表面13、14による空間部分を持つ熱電変換素子の空間部分に関することであるが、上記の方法を用いても作業物質が空間部分を移動しにくく、空間部分内の伝導する作業物質流が空間部分を挟む両端の熱伝導材料内の作業物質流に満たない場合がある。この場合には図8のように繋がった空間部分の架橋部材両端部の脚部が立脚する両端の熱電材料との界面の平面形状に合わせて太くできる作業物質良導体で空間82を架橋することで、熱流を抑えた状態で、Lmax(T)よりも長い部材を用いることで対峙する端面81から端面80への直接の格子振動による熱流を抑えて、分離しているときより大きな作業物質流を得ることが可能である。図8で83として、数ナノメートルの径をもつ柱状(図6a)あるいは、数ナノメートルの厚みをもつ筒状(図6b)あるいは、作業物質流の方向に対して垂直面の少なくとも一辺が、数ナノメートルの長さである板状(図6c)の部材を使うと肉厚を表わす断面ではない「表面」でのフォノン散乱の影響が「表面」以外でのフォノン散乱の影響に比べて顕著になる。また、この場合作業物質流の方向以外で作業物質が散乱を受けにくい状態が存在することになり、「表面」が作業物質流の方向での作業物質の散乱にあまり影響を与えないほどの面積であれば、作業物質流が大きくなる。図6構造物の空間次元の影響が作業物質流に影響を与える。架橋部材内部の作業物質流が架橋部材を挟む両端の熱電材料の作業物質流より小さくなるときには、作業物質良導体の断面積を大きくするか、複数の作業物質良導体を用いる繋がった空間部分にする。数ナノメートルの肉厚の板状の部材(図6b、c)では細い部材(図6a)に比べて作業物質流が悪くなるが、三次元であるバルクに比べてよくなる。請求項2では図8のように熱電変換素子80、81の間82に細い伝導体小体83で対峙端子対が繋がった空間部分を持つことにより性能指数を高めることを特徴とする。
 図6aあるいは図6bを、図6で斜線をつけた断面方向から見て、組み合わせて図7aのような構成の円筒層状構造、あるいは図6cを組み合せて図7bのような構成の平板層状構造あるいは熱電材料中の作業物質流を、繋がった空間部分のない熱電材料より小さくしないだけの断面積をもつ細い柱状導体を以後、細線構造と略す。フォノンを散乱させるような界面をもつようにして作業物質の移動度の高い部分を層状にすることにより、熱の伝達を悪くし数1の性能指数を高めることができる。それに加えて、作業物質の移動度の高い隣接する部分に、径方向に作業物質が伝わらないだけの厚みを持つ作業物質の移動度の低い部分を介すことにより、細線構造全体としての作業物質流を高め数1の性能指数を高めることができる。細線83が短いとフォノンが弾道的となりそれによる熱伝導度が大きくなってしまい、性能指数が小さくなる。輻射エネルギー損失を大きくならないように留意しながら、細線83が長い場合は、その部分に熱電材料を用いることにより、そこでの熱起電力により性能指数を上げることができる。
 細線構造はフォノンの平均自由行程よりも長いと熱伝導はフーリエ法則に従う。短く弾道的になると熱伝導が大きくなり効率が悪くなる。図8で細線構造83と80または81との界面に格子不整合、不純物、格子欠陥をできる限り少なくすることで、そこでの作業物質流がその両側にある熱電材料80、81の作業物質流にできる限り近づけるかあるいはより増加することができる。繋がった部分空間を挟む両端の熱電材料の作業物質流を凌駕する作業物質流が得られるように図9のように複数の細線構造を空間に導入する。
 電流は、古典系作業物質、量子系作業物質あるいは、巨視的量子系作業物質により伝えられる。熱は電力を生じさせるものに付随して伝えられたり、格子振動、輻射などによって伝えられたりする。空間部分が狭い場合、あるいは繋がった空間部分の場合は極低温では量子系作業物質を利用することができる。磁場がある場合、ホール効果やネルンスト効果により、あるいはそれに作業物質の抵抗が加わり、熱流や電流や起電力が同じ方向を向かない。格子振動に対してはLmax(T)以上の距離であり、作業物質流に対してはそれに付随する伝熱を妨げるように空間部分や繋がった空間部分を設けることにより熱電材料の性能指数を向上させる。
 光を含む電磁波や放射線を図10の空間102に接し対峙する熱電材料101の界面に照射すると、そのエネルギーが作業物質に与えられる。これにより作業物質が高いエネルギー状態になり、空間部分への作業物質のポテンシャル障壁越えの高さや透過幅がが小さくなる。後者では作業物質のポテンシャルをトンネル透過するポテンシャル障壁の幅が小さくなる。あるいは表面上の飛び出しやすい作業物質の状態をとることができる。放射線源は、主に、作業物質の作業物質放出表面から作業物資受取表面への移動を助ける働きをする。請求項3は図10の空間102を移動する作業物質や、放出端子表面をもつ材料101や表面から空間102に出ようとする作業物質に空間102に配した電磁波供給部や放射線源から作業物質にエネルギーを与え、作業物質が空間102を伝導しやすくすることを可能とする。放射線源を作業物質の放出する尖塔乃至尖塔脚部と接合する101に対峙する熱電材料100表面部分に埋め込むこともできる。放射線源を作業物質放出する尖塔乃至尖塔脚部と接合する101を覆う105や106に置いた場合あるいは埋め込んだ場合には、放射崩壊による熱を利用することができる。光を用いる場合には光ファイバー等を用いて空間部分内に導き作業物質放出面を照射する。あるいは空間部分での尖塔がある所で対峙する100と101を覆う106間距離が短く、外側で対峙する100と101を覆う106間距離を長くすることで内部まで光が到達できるようになる。図10において101を尖塔構造にすることで電界電子放出の効果を含めることもできる。
 空間12があると、異種固体接合界面を透過する拡散固体原子の拡散が少なくなり、特に、高温部での熱電材料と電極間での相互の固体原子拡散が少なくなり、熱電変換素子の内部抵抗Rが小さい上、耐久年数が向上する。冷却稼働時のように熱電変換素子の内部抵抗Rを小さくなるので消費電力が低減できるだけでなく、使用する電源に交流成分Iacが含まれるとRのためにR(Iac/2だけ吸熱量が低下する。このため印加する直流電源は交流成分の含有率であるリップル率が同じ電源では効率が上がる。
 空間部分あるいは繋がった空間部分を含む熱電変換素子は作業物質の移動度が位置的・時間的に均一でなくなる。作業物質の持つ電荷の流入量と流出量が違う界面では、作業物質の電荷の流入あるいは流出が多く電荷が蓄積し、作業物質流を阻害する。また、作業物質の電荷が蓄積すると熱電変換素子の劣化が起こる。作業物質受取面上に「尖った部材」の作業物質良導体であるコーティング乃至厚みのある部材15を設けることにより作率物質流の移動量を大きく、均一にすることもできる。作業物質放出側のコーテイング乃至厚みのある部材は省略することができる。請求項4は作業物質受取端子表面あるいは尖塔表面に作業物質良導体薄膜をコーティングすることでそれら表面に局部的に存在する作業物質を拡散させる効果が得られることを特徴とする。
 保護部材16は放射線源や放射線が照射された箇所での放射線によるダメージをなくすこと、放射線源崩壊やその崩壊から放出された放射線が照射されたことによる熱による作業物質のポテンシャル障壁のトンネルやポテンシャル障壁越えによる作業物質流の増加を期待することができる。作業物質放出乃至受入面の荒れを保護する保護部材で抑えられ、作業物質が散乱されにくくすることにより品質を向上することができる。
 作業物質良導体薄膜の保護部材は、素子を強化することにより、あるいは熱の集中を防ぐことにより劣化の影響を少なくし、効率を増加させる。作業物質受取尖塔の「尖った部材」表面あるいは放出尖塔表面を作業物質良導体を保護することにより作業物質受取る「尖った部材」表面あるいは尖塔表面と熱電材料内部との局在作業物質濃度差に基づいたこれら表面から内部への移動に対する作業物質のポテンシャル障壁を小さくし、あるいは作業物質の濃度が過不足であることに基づく破壊を少なくすることができる。
 空間部分をもつ熱電変換素子では、作業物質の空間部分での移動にともない、空間部分内の局所的な移動による衝撃や力学的破壊により「尖った部材」や尖塔の劣化が起る。また、空間12に気体、あるいは金属蒸気を封入することで、気体分子との作業物質との間の衝突、作業物質の空間12でのエネルギー状態を変化させる。請求項5は作業物質を放出する尖塔表面透過後の放出尖塔表面内あるいは受取る「尖った部材」表面での作業物質励起による摩擦以外の熱電材料破壊を無くすためにそれらの表面を他の物質で13、14で保護したり他の物質を接合させたり、部材内の原子間結合力を大きくすることによって、あるいは原子集団で協調した動きをさせることで保護することを特徴とする。あるいは作業物質受取マウント形状を含む尖塔の「尖った部材」にかご型の熱電材料を用いることによって振動を吸収し劣化を防ぐことも可能である。例えば炭素sp、sp結合等や他の原子乃至分子等から成る種々の混成比の中で導電性の良くすることはsp結合が、また原子間結合力を大きく絶縁性が高くすることはsp結合が主となる材料を使うことで実現できる。
 請求項6は空間あるいは繋がった空間部分によりセグメント化されていることで、熱電材料あるいは電極材料の成分の拡散などによる性能の劣化の影響が少なく、熱電変換素子製作時の状態で、発電、冷却あるいは加熱稼働するシステム変更可能であることを特徴とする。これには図11のように対峙端面間隔距離をアクチュエータで変化させることによって実現させることを可能とする。
 高温部と低温部の温度差が広域である発電時稼動中では、複数段の空間部分を配すことにより、起電力を大きくすることができる。図12のように熱電変換素子が複数セグメント化された熱電材料あるいは作業物質良導体により構成されているとする。このとき、段落0047で述べたように熱電変換素子121表面にあるナノサイズの作業物質良導体からなる導体柱あるいはコイルの高さ、これらの作業物質放出尖塔等の表面の曲率半径は作業物質の熱電材料のバルク状態密度からの作業物質エネルギー状態の変形で作業物質の移動に影響を与えるが、これらの高さや曲率値や、これら作業物質良導体から成る導体柱やコイルの作業物質放出尖塔等の表面積、空間内で尖塔表面とそれに対峙するマウント形状を含む尖塔の「尖った部材」表面間の最適距離およびセグメントの数は次のようにして決まる。空間内で尖塔表面とそれに対峙するマウント形状を含む尖塔の「尖った部材」表面間距離はサブマイクロメータでLmax(T)より大きい値から近づけることで、図12の発電稼働を具体例として、下記のように作業物質流をより大きくできる。
1)空間部分端子間内の尖塔表面から対峙する「尖った部材」表面間距離がLmax(T)を超えると、この空間部分のフォノン等による熱伝達をほとんど無視できる。このLmax(T)は、段落0035で述べたように尖塔表面と対峙する「尖った部材」を構成する原子間の力と関係があり原子間力顕微鏡と測定表面間距離の実測測定範囲から得ることができる。熱膨張や熱源の熱揺らぎ、特に低温では量子揺らぎを考慮することでLmax(T)を補正できる。
2)稼働中の空間部分内の尖塔表面の近傍の増強電界強度は対峙する尖塔表面とそれに対峙する「尖った部材」表面間での電位差/距離に曲率を考慮に入れた比例係数βをかけて近似できる。あるいは、シミュレーションによって求められる。また対峙する尖塔表面とそれに対峙する「尖った部材」表面間の電位差は空間を挟む両端の熱電材料の起電力に影響を受ける。
3)作業物質の熱励起や低温での量子揺らぎやトンネル透過による作業物質の移動量は作業物質放出する尖塔表面の面積の大きさ・方向に依存する。また段落0008でも述べたように注入された尖塔表面とそれと対峙するの「尖った部材」表面内の、作業物質の移動の方向によって作業物質が注入される熱電材料バルクの作業物質の状態密度が注入前から変わり、その結果微視的な電気伝導度、熱伝導度に影響を与える。尖塔表面とそれに対時する「尖った部材」表面に至る部位を細線にすることで、これらの伝導度が変化し、性能指数がよくなる。空間の作業物質受取る「尖った部材」面が上記2を満たすように空間形状や空間内で尖塔表面とそれに対峙する「尖った部材」表面間距離を最適化して熱電材料の作業物質流に近づける。このような工夫により段落0008でも述べたようにスムーズで効率的な作業物質の空間移動が可能となる。
4)一つの尖塔では熱電材料バルク以上の作業物質流が得られないときは、図2のように複数の尖塔を配すことにより作業物質流を大きくすることができる。複数の尖塔が電子放出端子表面に密にあると上記2のβの効果が大きく低減される。電界電子放出による作業物質流が分割される前の両端にある熱電材料の作業物質流以上になるか、あるいはできるだけ近づけるように電子放出尖塔端子表面の尖塔密度を含めて最適化する。このようにして適切な空間内で尖塔表面とそれに対峙する「尖った部材」表面間距離が定まる。
 温度差が広域であるために、分割される前の両端にある熱電材料の作業物質流以上になるか、空間部分内の増強電界強度による電界電子放出による作業物質流れが熱電材料バルクの作業物質流量以上になるか、あるいはできるだけ近づけるように電子放出端子表面の尖塔密度を含めて最適化できるならば、段落0053の1から4の工夫を他の空間部分に適応する。
 上記の結果、1個以上の電極端子表面の形状を含めて最適化された空間部分により、対峙尖塔表面とそれに対峙するマウント形状を含む尖塔の「尖った部材」表面間や、それらと接合する部材表面間温度差による輻射放出エネルギー損失以外の付加損失を大きく低減できる。高温部と低温部の温度差が狭域である発電稼動がある場合は、空間内で尖塔表面とそれに対峙する「尖った部材」表面間距離の最適化ができない。この場合は図6の繋がった空間部分を用いる。冷却の場合は必要なだけの起電力・電流を印加する。上記のように製造されれば、熱電材料の性能指数が最高であっても、熱電変換素子の性能指数は大きく改善される。また冷却稼働は発電稼働の可逆過程なので、冷却稼働でもこのように製造された熱電変換素子の効率は大きく改善される。
 図12に示された熱電材料群は必ずしも図示された順序で、しかも全てを用いて熱電変換素子に製作される必要はない。また、二組の極性の違う熱電変換素子からなるΠ型モジュールのように、他の熱電変換素子群に依存しない熱電変換素子群は、他の熱電変換素子群と並行して独立した形態でΠ型モジュールが製作されてもよい。さらに、複数のΠ型モジュールが直列あるいは並列、または直列と並列の混成したΠ型モジュール群となる集合でシステムに実装される。直列あるいは並列、または直列と並列の混成したΠ型モジュールで実装の数多くの組み合わせを例として説明したが、明らかなように、Π型モジュール以外の熱電変換素子からなる組み合わせのモジュールも本発明の範囲及び精神に従って意図される。
 図4のように熱電材料40と41あるいは熱電材料と尖塔をもつ熱電材料を移動させる代わりに、図11のように熱電材料111と110との間で作業物質が散乱されにくく、しかも作業物質を放出する尖塔を備える111の尖塔の放出面積より大きくしかもそれに相似形状またはそれを囲む形状をもつ微小な作業物質の良伝導体114が作業物質の放出面に平行に移動するのをこの115に配置したアクチュエータは助ける。稼働開始時に交流を重畳することによって、空間部分112あるいは、アクチュエータが駆動する面114と電極表面110との間113がコンデンサーの役割を果たすことにより空間部分にかかる電圧を高い状態にすることができる。その結果、その高電圧を初動稼働のトリガーとして利用できる。また、多段にすることでCR発振やCL発振を利用することで稼働時に目的とする空間部分にかかる電圧を高い状態にすることができる。
 本発明の原理に従った熱電材料の性能指数の最大化や最適化されたΠ型モジュールやシステム実施形態についての以上の説明は、熱電材料、Π型モジュールやシステムの最適化の例示及び説明を提供するものであり、網羅的なものでも、本発明の範囲を開示されたシステム実施形態そのものに限定するものでもない。以上の教示により変更及び変形が可能であり、あるいは、本発明の様々なシステム実施形態の実施から変更及び変形が得られる。明らかなように、請求項に係る発明に従った空間部分あるいは繋がった空間部分を持つ熱電材料より熱電変換素子を実現する方法、Π型モジュール及び/又はシステムを提供することには、数多くの実施形態が採用され得る。
 熱電材料あるいは、電荷乃至熱滞留集中を回避するために、作業物質良導体、熱電材料、熱電変換素子等を用い、二組の極性の違う熱電変換素子から成るΠ型モジュールさらに、直乃至並列あるいは直・並列混成である複数のΠ型モジュール群あるいは、Π型モジュール以外の熱電変換素子の組み合わせから成るモジュール群内に、電荷乃至熱集中が生じないこれらモジュール群から成る熱電材料を含む熱電材料の例は、二組の極性の違う熱電材料から成る複数のΠ型モジュールを基礎としたカスケード型のΠ型モジュール群で実装される。二つの異なる熱源に挟まれたカスケード型のΠ型モジュール群全体が一定で一様な熱流が生じない場合は、二組の極性の違う熱電材料を電極を兼ねた直列に圧接し、その圧接部に受・放熱用のフィンなどの部材を有乃至無の一体型モジュールや、ゼーベック係数が異方性を示す熱電材料等を用いる必要がある。カスケード型のΠ型モジュール群を実装の組み合わせを例として説明したが、明らかなように、カスケード型のΠ型モジュール群以外のモジュール群もあり、Π型という特定は説明のために提示されるものであり、請求項に係る発明に関する限定といて解釈されるべきでない。
 本出願の説明に使用された如何なるアクチュエータ、Π型モジュールそしてシステム、特に断らない限り、本発明に決定的に重要な、あるいは不可欠なものとして解されるべきではない。
 空間部分をいれることで、発電稼働時に空間部分が作業物質流を主に妨げる可能性がある。熱、電界、電磁波などを利用して作業物質は表面から放出される。図1で作業物質が11から10の方向に移動するとき、空間部分では、熱電材料内13、14の熱、電界、電磁波などのエネルギーによる作業物質が励起されることによって、あるいは尖塔表面13近傍で作業物質がそのポテンシャル障壁をトンネル透過することによって、作業物質が空間部分12に移り、対峙する尖塔の「尖った部材」14へと移動する。巨視的量子力学によると、空間部分内の界面13の作業物質のポテンシャル障壁をトンネル透過する確率は作業物質質量が大きくなれば成るほど指数関数的に小さくなるが、極低温で稼動するときは揺らぎが抑えられるのでLmax(T)がより小さくなり、13、14の端子間距離をより狭くできることで、作業物質質量が大きいイオンによる熱電材料から熱電変換素子の製作も可能になる。半導体での電子とホールでは、一般にホールの質量が電子の質量の数倍である。その結果、ある程度空間12が離れるとp形半導体でもホールがトンネル透過するよりは電子がトンネル透過する。端板11が熱電材料の半導体、尖塔表面13で保護部材16に覆われた先端が金属であるときは、半導体11と尖塔表面13で保護部材16に覆われた先端とは発電稼働時はオーミック接合、冷却稼働ではショットキー接合であるほうがいい。請求項7は熱電変換システム内の異なる部材が接合する界面近傍に作業物質の供給あるいは吸収する原子乃至分子を、あるいは作業物質良導体である原子乃至分子を注入し発電、冷却、加熱稼働に合う界面にすることを可能とする。
 熱電変換素子のZTを向上させるために、請求項1、請求項2記載の熱電変換素子を素材として新たに段落0053の手続きをもう一度繰返すと、さらに性能指数は向上する。これを繰り返すことでカルノー効率に近づく準カルノー熱電変換素子乃至準カルノー熱変換モジュールおよび、それらを内蔵する準カルノー熱電変換システムを作ることを請求項8は可能とする。材料として使用するものは、熱電変換素子だけを使うことも、世代の違う熱電材料によるセグメント化や世代の違う熱電材料と組み合わせることもできる。上記手続きは、世代間の形状スケール又は稼働機構において異なっている。
 上記請求項1~請求項8では、二つの異なる固定した熱源温度の一方が環境雰囲気の温度と一致乃至一致しない基本系を扱い、請求項9では、三つ以上の異なる固定した熱源温度の中で任意の二つの異なる熱源温度の一方が環境雰囲気の温度と一致乃至一致しない請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項8記載のi(i=1、2、・・・自然数で、最大のiが1のとき従来の基本系に相当する。)種n世代熱電変換素子あるいは準カルノー熱電変換素子から成るi種n世代熱変換モジュールあるいは準カルノーi種熱電変換モジュールおよびそれらのシステムが構築される。これらi種n世代熱電変換素子あるいは準カルノー熱電変換素子から成るi種n世代熱変換モジュールあるいは準カルノーi種熱電変換モジュールのそれぞれの“外界の系と接続するための端板”上の接続子間やこれらi種n世代熱電変換素子あるいは準カルノー熱電変換素子から成るi種n世代熱変換モジュールのそれぞれの“外界の系と接続するための端板”上の接続子と電流・電圧源乃至外部負荷の電極子間の温度差を更に有効活用する、最適化上位の種間モジュール化と最適化上位の種間システムを構築する。雰囲気温度が複数ある場合もあるがここでは簡単のため一つの雰囲気温度で表した。
熱電変換素子内の尖塔(尖塔には柱状構造を含む)端子とそれに対峙するマウント形状を含む尖塔の「尖った部材」構造物を含む空間部分の図。 熱電変換素子内の尖塔端子とそれに対峙するマウント形状を含む尖塔の「尖った部材」構造物を含む空間部分の図。 熱電変換素子内の対峙する一対高さが違う尖塔端子を含む空間部分の図。 熱電変換素子内の尖塔端子とそれを囲む端子を含む空間部分の図。 熱電変換素子内に尖塔構造を複数持つ空間部分の図。 肉厚の断面積が微細な柱構造図。(a)は円柱。(b)は中空筒。(c)は直方体。 層状構造をもつ架橋部材の肉厚断面図。(a)は円柱。(b)は直方体。 熱電変換素子内の繋がった空間部分の図。 熱電変換素子内で複数の架橋部材をもつ繋がった空間部分の図。 熱電変換素子内の空間部分の図。 作業物質放出端面と相似形状をもつアクチエータで稼働する作業物流のある空間部分の図。 熱電変換素子内の多段にセグメント化された空間部分の図。 i−1世代「熱電変換素子の組み合わせからなるモジュール群」であるi世代熱電材料の微細部分である直列Π型モジュール部分に着目するi−1世代熱電変換素子とi世代熱電材料との関係図
 図13はi−1世代の極性が違う二組の熱電材料130と131をΠ型の足部分と作業物質良導体133、134と、絶縁材料135を持つ直列Π型モジュールと空間132が組み合わさたi−1世代熱電変換素子部分に着目する例を示す。絶縁材料135と作業物質良導体138間をアクチュエータで変化できる絶縁材料から成る部材(図13では省略する。)を用いi世代の熱電材料内の熱移動の熱流を層流となるように調整し、作業物質良導体133の熱は絶縁材料135を通過し作業物質良導体138に達する。空間部分を持つ部分は繋がった空間部分に変えることができる。空間部分乃至繋がった空間部分で対峙する作業物質良導体間の輻射エネルギー損失はi−1世代Π型モジュールの輻射エネルギー損失より遥かに大きいが、前者と後者の面積比が遥かに小さいことが必要である。Π型モジュールの足部分を分割間はもちろん、i−1世代熱電材料と作業物質良導体との接合部分に空間部分乃至繋がった空間部分を装着可能である。
 必要なら複数個のΠ型モジュール部分で電流量・電圧量を確保している。図13のΠ型モジュールでは作業物質良導体138は絶縁物135から熱流を取り入れる。ここではΠ型モジュールに着目したがΠ型モジュール以外のモジュールが有用であることは言うまでもない。
10 作業物質受取端子表面をもつ熱電材料または作業物質良導体
11 作業物質放出端子表面をもつ熱電材料または作業物質良導体
12 空間
13 作業物質放出端子の尖塔表面
14 作業物質受取端子表面
15 作業物質の導電性原子乃至分子を含む材料を含むコーティング乃至厚み
16 保護部材
20 作業物質受取端子表面をもつ熱電材料または作業物質良導体
21 作業物質放出端子表面をもつ熱電材料または作業物質良導体
22 空間部分内に構築された構造物間距離d(d≧Lmax(T))
23 作業物質放出端子の尖塔表面
24 作業物質受取端子表面
25 コーティング乃至厚み
30 作業物質受取端子表面をもつ熱電材料または作業物質良導体
31 作業物質放出端子表面をもつ熱電材料または作業物質良導体
32 空間部分内に構築された構造物間距離d(d≧Lmax(T))
33 保護部材
34、35 コーティング乃至厚み
40 作業物質受取端子表面をもつ熱電材料または作業物質良導体
41 作業物質放出端子表面をもつ熱電材料または作業物質良導体
42 空間
43 作業物質放出端子の尖塔表面
44 作業物質受取端子表面
50、51、52 尖塔構造
80 熱電材料または作業物質良導体
81 熱電材料または作業物質良導体
82 空間
83 作業物質良導体架橋部材
84、85 保護部材
90 作業物質受取端子表面をもつ熱電材料または作業物質良導体
91 作業物質放出端子表面をもつ熱電材料または作業物質良導体
92 空間
93 複数の作業物質良導体架橋部材
100 作業物質受取端子表面をもつ熱電材料または作業物質良導体
101 作業物質放出端子表面をもつ熱電材料または作業物質良導体
102 空間
103 線源
105 作業物質の導電性原子乃至分子を含む材料を含むコーティング乃至厚み
106 保護部材
110、111 熱電材料または作業物質良導体
112 空間
113 相似形状をもつ面と端子表面との間の空間
114 相似形状をもつ面
115 相似形状をもつ面と端子表面との間を保持し、作業物質が流れるようにする材料
120、121、122 熱電材料または作業物質良導体のセグメント
130、131 i−1世代熱電材料
132 空間
133、134 作業物質良導体
135 絶縁材料
136 熱電材料または作業物質良導体
137 保護部材乃至厚み
138 作業物質良導体
139 i世代熱電変換素子

Claims (9)

  1. 空間を挟む部材が少なくとも一方が熱電材料で、この熱電材料の端部とこの空間で対峙する部材は同じ又は異なる熱電材料の部材乃至“外界の系と接続するための端板”乃至高・低熱源乃至温部と対峙する部材等を絶縁・断熱・外的衝撃緩和・輻射シールド等を担う部材部分が環境雰囲気の温度等の少なくとも二つの異なる熱源に接触しているとき、この空間の互いに対峙する異なる絶対温度Tを持つ表面間で熱流を遮断するように空間内の熱流方向で対峙する界面間隔がそれぞれの界面構成材料で構成した原子間力顕微鏡で熱雑音を考慮した測定において原子間力の影響のなくなることで決まる長い方の距離を材料に依存する断熱間隔「距離」Lmax(T)で定義し、これ以上に成るようにすると熱流は遮断され、この空間内で作業物質が流れる方向の空間で対峙する部材端面は二つの平行面とは限らない界面上の一方に尖塔、あるいは尖塔の最先端近傍部がコイル形状、あるいはコイル状に形成される尖塔の脚部を脚部が立脚する界面の面形状に合わせて太くできる尖塔の凸先端部表面とこれに対峙するもう一つの界面上に構築される前述と同様に脚部を太くできる尖塔乃至「尖った部材」の凸先端部表面との対間隔がLmax(T)以上であるこの対を一つ以上含む空間に隣接する熱電材料自身による起電力が作用し、作業物質流量が空間に接する熱電材料内と変わらない材料に依存するこの対間隔を端子間距離とし、この対を一つ以上持つ空間である空間部分を一つ以上持つ熱電材料、“外界の系と接続するための端板”、高・低熱源乃至温部と対峙する部材等を絶縁・断熱・外的衝撃緩和・輻射シールド等を担う部材部分が環境雰囲気の温度等の熱浴中にあるとき、これを一括して熱電変換素子と定義し、この熱電変換素子内部にある熱電材料部あるいは空間部分で、(i)正・負電荷のどちらか極性の作業物質、あるいは(ii)正・負電荷の極性の作業物質が稼働する熱電変換素子の場合、この熱電変換素子系外の電場、磁場等による、この系内にさらなる温度勾配、作業物質濃度勾配、速度勾配等が生じ、それら生じた勾配によって駆動される古典系作業物質、量子系作業物質あるいは巨視的量子系作業物質が顕著になる温度は違うが、そのような作業物質を含む熱電変換素子に“外界の系と接続するための端板”から電流乃至電圧印加する場合としない場合に
    (A)空間部分の作業物質が存在する
     A:個々の尖塔等に電磁場、
     B:互いに異なる極性の電荷あるいは、同じ極性の電荷の作業物質をもつ隣接する二つの尖塔等が作る
     平面で作業物質流に垂直に磁場
     C:あるいは前述のAとBを同時
     駆動することを可能とし、
    (B)前述の(A)に加えて更に空間部分に隣接する熱電材料の作業物質流に垂直磁場制御する
     ことを可能とし、
    端子間距離で対峙する、少なくとも一方が古典系作業物質あるいは量子系作業物質で動作する温度領域、あるいは端子間距離で対峙する双方が巨視的量子系作業物質で動作する温度領域、あるいはこれらの両方の温度領域に渡る広範囲の温度領域の場合は、それぞれの温度領域全体乃至ある温度域、あるいは広範囲の温度領域で動作する一つの熱電材料の無次元性能指数ZTよりもこの温度領域をカバーする互いに異なる狭い温度領域を持つそれぞれの温度領域ではZTが最高値の熱電材料を用いたセグメント化された熱電材料のZTは改善されるが、空間部分を持つ熱電変換素子のZTは空間部分の工夫がないセグメント化された熱電材料より熱伝導率を低減できるために更に改善され、その上熱応力による損傷乃至素材イオンの拡散混入を低減すること、あるいは作業物質の空間部分内の前述の対峙面端部への移動により発生乃至吸収する熱、作業物質の作業物質流方向の運動量分布、作業物質濃度分布乃至スピン分布の変化を利用することを特徴とする熱電変換素子。
  2. 空間を挟む部材が少なくとも一方が熱電材料であるとき、熱電材料自身の起電力が請求項1記載の熱電材料よりも小さいため、請求項1記載のLmax(T)以上に成るようにすると熱流は遮断されるが、この空間内で対峙する作業物質の少なくとも一方の作業物質が古典系作業物質あるいは量子系作業物質で動作する温度領域で、作業物質が流れる方向でこの空間に接する熱電材料と同等乃至それ以上の作業物質流量になるようにLmax(T)以上の距離で対峙する界面間を架橋部材両端部の脚部が立脚する界面の平面形状に合わせて太くできる架橋部材で架橋し、これを1本以上もつ繋がった空間部分に隣接する部材と架橋部材の脚部との界面と架橋部材内での格子振動散乱によって格子振動による熱伝量を小さくでき、繋がった空間部分を一つ以上持つ熱電材料、“外界の系と接続するための端板”、熱源乃至温部と対峙する部材等を絶縁・断熱・外的衝撃緩和・輻射シールド等の部材部分が環境雰囲気の温度等の少なくとも二つの異なる熱源に接触しているとき、これを請求項1記載と同様に熱電変換素子と定義し、また請求項1記載の(A)と(B)で尖塔等の代わりに架橋部材とする部分で電場・磁場などが駆動し、またこの熱電変換素子は請求項1記載の空間部分をゼロ以上含み、請求項1記載と同様に元来の熱電材料自身や繋がった空間部分がなくセグメント化された熱電材料の性能指数を上回る上、熱応力による損傷乃至素材イオンの拡散混入を低減すること、また作業物質が繋がった空間部分内の架橋部材を伝わる移動により発生乃至吸収する熱、作業物質の作業物質流れ方向の運動量分布、作業物質濃度分布乃至スピン分布を利用することを特徴とする熱電変換素子。
  3. 請求項1記載の熱電変換素子内の少なくとも1つの空間部分内の少なくとも一つ尖塔の作業物質が流出する凸先端部と、この尖塔の脚部を支える界面、或いは請求項2記載の熱電変換素子内の少なくとも1つの繋がった空間部分内の少なくとも一つの架橋部材の脚部に作業物質を供給する界面に放射線あるいは電磁波を照射可能とする、放射線源あるいは請求項1、2記載の(A)と(B)駆動を兼ねる電磁波源で、照射部位位置と線源位置間がLmax(T)以上、あるいは照射部位位置に対峙する界面と線源位置間がLmax(T)以上でこれら線源を伝わる熱流を遮断する位置にある線源を具備した空間を持つために、これら線源を具備した空間部分あるいは繋がった空間部分と接する熱電材料と同等乃至それ以上の作業物質流量があり、これら空間部分乃至繋がった空間部分の工夫がない熱電材料の場合に比べ作業物質流を大きくし熱伝導率を低減することを特徴とする熱電変換素子。
  4. 請求項1記載の空間部分内の尖塔の脚部と接合する界面とこれに対峙する界面乃至尖塔乃至「尖った部材」の凸先端部表面等の表面全体、および請求項2記載の繋がった空間部分内の架橋部材の両脚部が接合する両界面に作業物質の導電性原子乃至分子を含む材料であるコーティング乃至厚みのある部材を貼り付ける際に、コーティング乃至厚みのある部材表面とこれに対峙するコーティング乃至厚みのある部材表面乃至尖塔の凸先端部間隔がLmax(T)以上であるようにし、請求項1,2記載の(A)と(B)駆動あるいは、請求項3記載の放射線や電磁波照射による局部的な帯電乃至作業物質の滞留を防ぐ上記の空間部分乃至繋がった空間部分内の界面のコーティング乃至厚みを具備することを特徴とする熱電変換素子。
  5. 請求項1、請求項2、請求項3記載の空間部分乃至繋がった空間部分内の尖塔等乃至架橋部材表面と界面及び請求項4記載のコーティング乃至厚みに対する放射線や電磁波照射による作業物質励起あるいは、尖塔等乃至架橋部材表面乃至界面のコーティング乃至厚みの損傷を、原子間力が強く、あるいは原子集団の位相が揃い協調した運動により表面の振動を吸収する材料である保護部材の表面が請求項4記載のLmax(T)以上の条件で接合することで、空間部分乃至繋がった空間部分の照射された界面乃至コーティング乃至厚みの作業物質励起で作業物質エネルギー状態が変化し大きな作業物質流が滞留したり、請求項1、請求項2記載の尖塔等乃至架橋部材に大量に流れる、あるいは前述の界面及びコーティング乃至厚みの照射損傷による劣化しにくいことを特徴とする熱電変換素子。
  6. 請求項1記載の熱電変換素子で請求項3、請求項4、請求項5記載の工夫の有る無しを考慮し空間部分に操作を可能とする可動部を請求項4記載のLmax(T)以上の条件で持つ熱電変換素子を用いて空間部分のオーミック接合とショットキー接合間の移動、および量子作業物質のトンネル程度や空間部分で隣接する二つの巨視的量子系作業物質秩序パラメータの重なり程度がゼロも含めて程度の変化でき、狭い温度領域は勿論、広範囲温度領域まで発電、冷却、加熱の少なくとも二つの稼動に対応し、しかも広範囲温度領域に対応できる熱電変換素子乃至Π型モジュール乃至Π型モジュール以外のモジュール等を集積化することで絶縁・断熱・外的衝撃緩和・輻射シールド等の部材材料使用量を低減することおよび、それらを内蔵する熱電変換システムを作りやすい特徴をも含む、請求項1、請求項3、請求項4、請求項5に記載の熱電変換素子の“外界の系と接続するための端板”の近傍あるいは空間部分に稼動部をもつ熱電変換素子を用いたセグメント素子であることにより、可動部がない場合に比べ調整しやすいことを特徴とする熱電変換モジュールおよび、それらを内蔵する熱電変換システム。
  7. 請求項1記載の熱電変換素子内の尖塔の凸先端部とこれに対峙する界面乃至尖塔乃至「尖った部材」の凸先端部表面等の表面全体、あるいは作業物質良導体の接合部表面とこれが接合する熱電変換素子、π型モジュールやこれらから作られるモジュールの“外界の系と接続するための端板”で、尖塔の凸先端部と作業物質良導体の接合部表面を前者、尖塔の凸先端部に対峙する尖塔等の表面と“外界の系と接続するための端板”表面を後者とし、含まれる作業物質を前者と後者の一方乃至両方に供給あるいは、吸収する原子乃至分子等濃度に依存して、前者と後者が接合部が作業物質の稼動温度領域に対応してオーミック接合乃至ショットキー接合および量子作業物質トンネル効果乃至巨視的量子系作業物質秩序パラメータの重なり程度の中で、全てが独立に最適に生じる濃度をもつ接続子を後者の表面上につくるために、如何なる二つの接続子間ても互いに離れて干渉しない距離、あるいは干渉をなくす請求項5記載の材料のコーティング乃至厚みで、
    (i)後者の尖塔の凸先端部に対峙する尖塔等の表面上にこれら接続子がつくられ、前者の尖塔の凸先端部を、請求項1記載の(A)−aあるいは請求項6記載の可動部操作することで作業物質の稼動温度領域に対応してオーミック接合乃至ショットキー接合間および量子作業物質のトンネル効果乃至巨視的量子系作業物質のトンネル効果の程度を調節しやすい特徴
    (ii)後者の“外界の系と接続するための端板”上の複数の接続子をつくり、これら接続子を全ての接続子にそれぞれ作業物質良導体の接合部表面を接合させ、熱電変換素子、π型モジュールやこれらから作られる上位モジュールが発電、冷却、加熱のそれぞれの稼動に合うように組み換えが可能な配線を
    持つ請求項1、請求項2、請求項3、請求項4、請求項5に記載の熱電変換素子乃至請求項6に記載の熱電変換モジュールおよび、それらを内蔵する熱電変換システム。
  8. 請求項1、請求項2、請求項3、請求項4、請求項5記載の熱電変換素子乃至請求項6、請求項7記載の熱電変換モジュールのZTを向上させるために、請求項1、請求項2に記載の熱電変換素子を全く含まない熱電材料を0世代熱電材料、そしてそのZTをZTとすると、
    0−a)請求項1に記載の熱電変換素子あるいは、起電力が小さいために請求項2に記載の熱電変換素子や、
    0−b)請求項3、請求項4、請求項5記載の熱電変換素子乃至請求項6、請求項7記載の熱電変換モジュールを0世代熱電変換素子あるいは、0世代熱電変換モジュールとし、
    0−c)0世代熱電変換素子乃至0世代熱電変換モジュールと作業物質良導体、絶縁材料、0世代熱電材料等を多数含むの集合体を1世代熱電材料、
    とすると、そのZTは1世代熱電材料のZTと読替えることになり、ZT>ZTであり、
    上記の0−a)~0−c)の手続きをもう一度繰返すと、
    1−a) 請求項1に記載の1世代熱電変換素子あるいは、起電力が小さいために請求項2に記載の1世代熱電変換素子や、
    1−b)請求項3、請求項4、請求項5記載の1世代熱電変換素子乃至請求項6、請求項7記載の1世代熱変換モジュールを1世代熱電変換素子あるいは、1世代熱電変換モジュールとし、
    1−c)1世代熱電変換素子乃至1世代熱変換モジュールと作業物質良導体、絶縁材料、0世代熱電材料等を多数含むの集合体を2世代熱電材料、とすると、そのZTを2世代熱電材料のZTと読替えることになり、ZT>ZTであり、更に、この手続きを3、・・・、n回目ではn世代熱電変換素子乃至n世代熱変換モジュールおよび、それらを内蔵するn世代熱電材料乃至n世代熱電変換システムあるいは、無限回繰返すとカルノー効率に近づく準カルノー熱電変換素子乃至準カルノー熱変換モジュールおよび、それらを内蔵する準カルノー熱電変換システム。
  9. 上記請求項1~請求項8では、二つの異なる固定した熱源温度の一方が環境雰囲気の温度と一致乃至一致しない基本系を扱い、ここでは三つ以上の異なる固定した熱源温度の中で任意の二つの異なる熱源温度の一方が環境雰囲気の温度と一致乃至一致しない請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項8記載のi(i=1、2、・・・自然数で、最大のiが1のとき従来の基本系に相当する)種n世代熱電変換素子あるいは準カルノーi種熱電変換素子から成るi種n世代熱変換モジュールあるいは準カルノーi種熱電変換モジュールがあり、
    (i)それぞれの前述の任意の二つの熱源に絶縁材料を介して全て接触乃至一つ以上非接触している“外界の系と接続するための端板”の温度が上位の種間モジュール化で接続すべき相手方の“外界の系と接続するための端板”の温度とが全て同じ場合と一つ以上違う場合があるが、少なくとも一つ以上異なる温度の場合、一つ以上のi種n世代熱電変換素子あるいは準カルノーi種熱電変換素子から成るi種n世代熱変換モジュールあるいは準カルノーi種熱電変換モジュールのそれぞれの“外界の系と接続するための端板”上の接続子を上位の種間モジュール化の接続子とし、
    この接続子の温度と異なる温度を持つ違ったiと異なるi’種n世代熱電変換素子あるいは準カルノーi’種熱電変換素子から成るi’種n世代熱変換モジュールあるいは準カルノーi’種熱電変換モジュールのそれぞれの“外界の系と接続するための端板”上の接続子を上位のiとi’種間モジュール化の接続子とし、これらの接続子間の、
    (ii)上記(i)記載の上位の種間モジュールを含めたi種n世代熱電変換素子・i種n世代熱電変換モジュールあるいは準カルノーi種熱電変換モジュールの“外界の系と接続するための端板”上の接続子を電流・電圧源乃至外部負荷との接続子とし、これら接続子の温度は電流・電圧源乃至外部負荷が置かれている環境雰囲気の温度等、ある温度の一方乃至両方と異なるの熱浴内にある場合、電流・電圧源乃至外部負荷の電極子と接続子間の
    温度差を基本系の請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項8記載のn世代熱電変換素子あるいは準カルノー熱電変換素子から成るn世代熱変換モジュールあるいは準カルノー熱電変換モジュールで利用する、最適化i種n世代熱電変換素子あるいは最適化準カルノーi種熱電変換素子から成る最適化i種n世代熱変換モジュールあるいは準カルノー最適化i種熱電変換モジュールおよび、それらを
    内蔵する最適化熱電変換システム。
PCT/JP2015/072812 2014-08-23 2015-07-28 熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群 WO2016031572A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15836637.7A EP3196950A4 (en) 2014-08-23 2015-07-28 Thermoelectric material, thermoelectric conversion element, and module group composed of combination of thermoelectric conversion elements and -type module group made of thermoelectric material and -type module group made of thermoelectric material other than such -type module group
CN201580052882.9A CN107155379A (zh) 2014-08-23 2015-07-28 热电材料、热电转换元件以及由热电转换元件和由热电材料制成的π型模块组和由除了这种π型模块组之外的热电材料制成的π型模块组构成的模块组
RU2017105905A RU2017105905A (ru) 2014-08-23 2015-07-28 Термоэлектрический материал, термоэлектрический преобразующий элемент и группа модулей, составленная из комбинации термоэлектрических преобразующих элементов и группы модулей П-типа, выполненных из термоэлектрического материала, и группы модулей П-типа, выполненных из термоэлектрического материала, отличного от материала группы модулей П-типа

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014183668A JP6350817B2 (ja) 2014-08-23 2014-08-23 熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群
JP2014-183668 2014-08-23

Publications (1)

Publication Number Publication Date
WO2016031572A1 true WO2016031572A1 (ja) 2016-03-03

Family

ID=55399469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072812 WO2016031572A1 (ja) 2014-08-23 2015-07-28 熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群

Country Status (5)

Country Link
EP (1) EP3196950A4 (ja)
JP (1) JP6350817B2 (ja)
CN (1) CN107155379A (ja)
RU (1) RU2017105905A (ja)
WO (1) WO2016031572A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636634A (zh) * 2020-11-20 2021-04-09 上海第二工业大学 环状热电发电器件发电装置和提高环状热电发电器件性能的方法
CN112635093A (zh) * 2020-12-30 2021-04-09 中国工程物理研究院核物理与化学研究所 一种基于90Sr同位素的温差发电装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3490016B1 (en) * 2016-07-22 2020-05-20 Fujitsu Limited Thermoelectric conversion module, sensor module, and information processing system
KR102485351B1 (ko) * 2018-07-31 2023-01-05 현대자동차주식회사 열전 변환 모듈 및 열전 변환 모듈 시스템
CN112885947B (zh) * 2019-11-29 2024-04-05 中国科学院大连化学物理研究所 一种n型立方相Ge-Te基热电材料
CN113987964A (zh) * 2021-12-27 2022-01-28 武汉理工大学 一种考虑经济性的环形热电发电机的优化设计方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515924A (ja) * 2000-12-07 2004-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション 強化型インターフェース熱電冷却器
JP2011222654A (ja) * 2010-04-07 2011-11-04 Kondo Yoshitomi 多数連結ゼーベック係数増幅熱電変換素子の構造、多数連結ゼーベック係数増幅熱電変換ユニットの構造、多数連結ゼーベック係数増幅熱電変換集合ユニットの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換モジュールの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換パネルの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換シートの構造及びその製造方法、並びに多数連結ゼーベック係数増幅熱電変換システムの構造
WO2014030264A1 (ja) * 2012-08-21 2014-02-27 Mabuchi Mahito 熱電材料に伝熱量を低減し作業物質流は本来の熱電材料以上となる空間部分あるいは繋がった空間部分を含んだ熱電変換素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771852B2 (ja) * 2011-02-27 2015-09-02 眞人 馬淵 熱電材料に伝熱量を低減し作業物質流は本来の熱電材料以上となる空間部分あるいは繋がった空間部分を含んだ熱電変換素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515924A (ja) * 2000-12-07 2004-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション 強化型インターフェース熱電冷却器
JP2011222654A (ja) * 2010-04-07 2011-11-04 Kondo Yoshitomi 多数連結ゼーベック係数増幅熱電変換素子の構造、多数連結ゼーベック係数増幅熱電変換ユニットの構造、多数連結ゼーベック係数増幅熱電変換集合ユニットの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換モジュールの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換パネルの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換シートの構造及びその製造方法、並びに多数連結ゼーベック係数増幅熱電変換システムの構造
WO2014030264A1 (ja) * 2012-08-21 2014-02-27 Mabuchi Mahito 熱電材料に伝熱量を低減し作業物質流は本来の熱電材料以上となる空間部分あるいは繋がった空間部分を含んだ熱電変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196950A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636634A (zh) * 2020-11-20 2021-04-09 上海第二工业大学 环状热电发电器件发电装置和提高环状热电发电器件性能的方法
CN112636634B (zh) * 2020-11-20 2023-10-20 上海第二工业大学 环状热电发电器件发电装置和提高环状热电发电器件性能的方法
CN112635093A (zh) * 2020-12-30 2021-04-09 中国工程物理研究院核物理与化学研究所 一种基于90Sr同位素的温差发电装置
CN112635093B (zh) * 2020-12-30 2022-11-04 中国工程物理研究院核物理与化学研究所 一种基于90Sr同位素的温差发电装置

Also Published As

Publication number Publication date
RU2017105905A (ru) 2018-09-24
JP2016046502A (ja) 2016-04-04
JP6350817B2 (ja) 2018-07-04
CN107155379A (zh) 2017-09-12
EP3196950A1 (en) 2017-07-26
EP3196950A4 (en) 2018-05-30
RU2017105905A3 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2016031572A1 (ja) 熱電材料、熱電変換素子及び熱電材料から成るπ型モジュール群乃至π型モジュール群以外と熱変電換素子の組み合わせから成るモジュール群
Tian et al. Heat transfer in thermoelectric materials and devices
Tian et al. Comprehensive review of heat transfer in thermoelectric materials and devices
CN101114690B (zh) 用于将电磁辐射转换成电能的设备及方法
Jiang Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects
JP2011514670A (ja) エネルギー変換デバイス
US20140345663A1 (en) Thermoelectric device and thermoelectric module using the same
US20120145209A1 (en) Thermoelectric element and thermoelectric module including the same
US20120186621A1 (en) Thermoelectric material including nanoinclusions, thermoelectric module and thermoelectric apparatus including the same
JP5603495B2 (ja) ナノ粒子がドープされた熱電素子を含む熱電モジュール及びその製造方法
Abdel-Motaleb et al. Thermoelectric devices: principles and future trends
JP5775163B2 (ja) 熱電変換素子及びそれを用いた熱電変換モジュール
Dresselhaus et al. New directions for nanoscale thermoelectric materials research
WO2014030264A1 (ja) 熱電材料に伝熱量を低減し作業物質流は本来の熱電材料以上となる空間部分あるいは繋がった空間部分を含んだ熱電変換素子
JP5771852B2 (ja) 熱電材料に伝熱量を低減し作業物質流は本来の熱電材料以上となる空間部分あるいは繋がった空間部分を含んだ熱電変換素子
US20150333242A1 (en) Energy Generation Device Using Non-Maxwellian Gases
Mikami et al. Power generation performance of thermoelectric module consisting of Sb-doped Heusler Fe2VAl sintered alloy
JP2012178533A5 (ja)
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
WO2018131532A1 (ja) 熱電変換素子およびその製造方法
Jovanovic et al. New thermoelectric materials and applications
US20140251403A1 (en) Thermoelectric energy converters and manufacturing method thereof
US11011692B2 (en) Thermoelectric device utilizing non-zero berry curvature
Zhu et al. High-throughput optimization and fabrication of Bi2Te2. 7Se0. 3-based artificially tilted multilayer thermoelectric devices
KR102368960B1 (ko) 열전소자 및 이를 포함하는 열전변환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836637

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015836637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836637

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017105905

Country of ref document: RU

Kind code of ref document: A