WO2016031262A1 - Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device - Google Patents

Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device Download PDF

Info

Publication number
WO2016031262A1
WO2016031262A1 PCT/JP2015/052301 JP2015052301W WO2016031262A1 WO 2016031262 A1 WO2016031262 A1 WO 2016031262A1 JP 2015052301 W JP2015052301 W JP 2015052301W WO 2016031262 A1 WO2016031262 A1 WO 2016031262A1
Authority
WO
WIPO (PCT)
Prior art keywords
walking
base body
walking assistance
control unit
state
Prior art date
Application number
PCT/JP2015/052301
Other languages
French (fr)
Japanese (ja)
Inventor
剛英 松本
藤田 英明
上山 明紀
松岡 祐樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016031262A1 publication Critical patent/WO2016031262A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement

Definitions

  • This disclosure relates to the control of a walking assist device, and more particularly to the safety control of a walking assist device.
  • walking aid vehicles such as walker and silver car exist as devices for assisting walking of elderly people and the like who are difficult to walk.
  • a walking assist vehicle that gives the wheels driving force by a motor or the like and brakes on the downhill to suppress the speed (hereinafter also referred to as “speed reduction”) or assists the climb on the uphill.
  • speed reduction a walking assist vehicle that gives the wheels driving force by a motor or the like and brakes on the downhill to suppress the speed
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-290302
  • the walking assist device disclosed in Patent Document 1 is “by a movable base, a motion control mechanism for controlling the movement of the base, a support provided on the base to support the user, and an action from the user.
  • the driving force is adjusted using a force sensor or a speed sensor.
  • the driving force is applied when the wheel is fixed by an obstacle, etc. with the force sensor alone, excessive current flows to drive the wheel, or a sudden driving force is applied when the lock is released.
  • the speed sensor alone may not be correctly controlled when the substrate such as the inclination moves contrary to the user's intention. More specifically, when the wheel is locked due to a groove, an obstacle, or the like, there is a risk that the user may be at risk if the assist force is activated. Or since an elderly person or a person with a reduced mobility uses a walking assist device, further safety is required. Therefore, there is a need for a technique that increases user safety. There is also a need for a walking assist device that moves according to the user's intention.
  • the present disclosure has been made to solve the above-described problems, and an object in one aspect is to provide a walking assist device that increases the safety of the user. An object in another aspect is to provide a walking assistance device that moves in accordance with a user's intention.
  • An object in another aspect is to provide a method for controlling the walking assist device so as to increase the safety of the user.
  • An object in another aspect is to provide a method for controlling a walking assistance device to move in accordance with a user's intention.
  • An object in another aspect is to provide a program for causing a computer to control a walking assist device so as to increase the safety of the user.
  • An object in another aspect is to provide a program for causing a computer to control a walking assistance device so as to move in accordance with a user's intention.
  • a walking assist device includes a base, a drive unit for moving the base, an action force detection unit for detecting an action force acting on the base, and a state detection for detecting the state of the base And a movement control unit for controlling the movement of the base by the driving unit based on the acting force detected by the acting force detecting unit, the driving unit according to the direction in which the acting force acts and the state of the substrate. And a safety control unit for stopping the movement of the base body.
  • the condition includes the speed of the substrate.
  • the safety control unit is configured to stop the movement of the substrate by the driving unit when the substrate is stopped.
  • the safety control unit is configured to detect that the substrate is in an abnormal state when the direction of the acting force is opposite to the traveling direction of the substrate.
  • the state includes the tilt of the substrate.
  • the safety control unit controls the movement control unit so that the base body moves in the traveling direction.
  • the walking assist device further includes a brake for stopping the base.
  • the state detection unit includes a brake detection unit that detects that the brake is operated.
  • the safety control unit is configured to stop the movement of the base body by the drive unit.
  • the safety control unit detects that the base body is in an abnormal state when the speed of the base body is equal to or higher than a predetermined speed after a predetermined time has elapsed since the brake operation was detected. It is configured as follows.
  • the safety control unit is configured to detect that the substrate is in an abnormal state when the stopped state of the substrate continues for a predetermined time.
  • the walking assist device further includes a notification unit for notifying that the base body is in an abnormal state.
  • the drive unit includes a motor.
  • the walking assist device further includes a motor electromagnetic brake.
  • the safety control unit is configured to operate the electromagnetic brake.
  • a base power source switch is further provided.
  • the safety control unit is configured to turn off the switch.
  • a method for controlling a walking assistance device includes a step of moving the walking assistance device, a step of detecting an acting force acting on the walking assistance device, a step of detecting the state of the walking assistance device, and a walking assistance device based on the detected acting force. And a step of stopping the movement of the walking assistance device according to the direction in which the acting force works and the state of the walking assistance device.
  • a program for causing a computer to control a walking assist device is provided. This program is based on the step of moving the walking assist device to the computer, the step of detecting the acting force acting on the walking assist device, the step of detecting the state of the walking assist device, and the detected acting force. The step of controlling the movement of the walking assist device, the direction in which the acting force works, and the step of stopping the movement of the walking assist device according to the state of the walking assist device are executed.
  • FIG. 1 is a diagram illustrating a configuration of a walking auxiliary vehicle 1.
  • FIG. It is a figure showing the state in which the user is holding the walk auxiliary vehicle.
  • FIG. It is a figure showing the functional composition of walk auxiliary vehicle 500.
  • FIG. 5 is a block diagram illustrating a configuration of functions realized by walking auxiliary vehicle 800.
  • 5 is a flowchart showing a part of processing executed by walking auxiliary vehicle 900. It is a flowchart showing a part of process which the walk auxiliary vehicle 1 performs.
  • a walking assistance vehicle that mainly assists (assists) walking is exemplified as an example of the walking assistance device, but the application target of the technical idea according to the present disclosure is not limited to the walking assistance vehicle.
  • the technical idea is applied to all devices that have a member that supports at least a part of the user's body on a movable base and assist the user's walk by assisting the movement of the base. can do. Therefore, the technical idea can be applied to a moving device such as a stroller, a carriage, a silver car, a wheelchair, etc., which moves forward when pushed by a person.
  • the wheels are rotated by a driving force such as a motor to assist the user's walking.
  • the driving force can be adjusted by the force with which the user pushes the grip of the walking assist vehicle.
  • the movement control is not performed when the walking auxiliary vehicle is stopped even if the force pushing the grip is detected.
  • the walking auxiliary vehicle continues to stop, it is possible to prevent accidents such as a user's falling due to unexpected movement.
  • FIG. 1A is a view of the walking assist vehicle 1 as seen from the side.
  • FIG. 1B is a view of the walking assist vehicle 1 as viewed from above.
  • FIG. 1C is a block diagram illustrating the configuration of the control unit 10 of the walking assist vehicle 1.
  • the walking assist vehicle 1 includes a base frame (hereinafter also simply referred to as “base”) 40, a grip 2, and a brake lever 7 for manual operation. , A start / stop switch 2A and a bag 26 for storing objects.
  • the base body 40 includes a left frame 41, a right frame 42, a frame 43, and a control unit 10 for controlling the walking auxiliary vehicle 1.
  • the frame 43 is bridged between the left frame 41 and the right frame 42 to connect the left frame 41 and the right frame 42.
  • a part of the frame 43 constitutes a seatable seat.
  • the left frame 41 and the right frame 42 are each provided with a grip 2, a front wheel 3, and a rear wheel 4 that are gripped by a user during walking.
  • the rear wheel 4 is driven by a motor 5.
  • the grip 2 is configured to support at least a part of the body of the user of the walking assistance vehicle 1 as a support portion.
  • a battery unit 25 for supplying electric power to each part of the walking auxiliary vehicle 1 is arranged.
  • the battery unit 25 is, for example, a rechargeable battery.
  • the attachment position of the control part 10 and the battery part 25 should just be a position which does not become obstructive at the time of a walk, and is not limited to the position shown by FIG. 1 (A) and FIG. 1 (B).
  • the control unit 10 includes a CPU (Central Processing Unit) 21, a memory 22, an input unit 23, and an output unit 24.
  • the memory 22 is realized by, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the input unit 23 receives input of signals output from various sensors.
  • the output unit 24 outputs a signal to the motor 5 and other units.
  • the control unit 10 controls the operation of the walking auxiliary vehicle 1.
  • the control unit 10 controls the rotation of the motor 5.
  • the motor 5 is realized by, for example, a DC (Direct Current) motor.
  • the rear wheel 4 is connected to a rotating shaft (not shown) of the motor 5 and rotates in conjunction with the rotating motion of the motor 5.
  • the motor 5 is provided on the rear wheel 4, and the walking auxiliary vehicle 1 is rear wheel drive.
  • the driving type of the walking auxiliary vehicle 1 is not limited to this, and may be front wheel driving in which the front wheels 3 are driven, or four wheel driving in which both the front wheels 3 and the rear wheels 4 are driven.
  • the braking force can act on the base body 40 by using the short brake (short circuit braking) of the motor 5.
  • the short brake short circuit braking
  • the coil of the motor 5 is short-circuited by ON / OFF of a switch to obtain a braking force.
  • the brake stops the wheel rotation like a bicycle brake.
  • the CPU 21 stops the current supply to the motor 5 so that the braking force by the brake acts on the motor 5 while the current is supplied to the motor 5. This prevents the front wheel 3 and the rear wheel 4 from being locked.
  • the walking auxiliary vehicle 1 is used as a normal walker in which the assist force and the deceleration force by the motor 5 do not act. obtain.
  • FIG. 2 is a diagram illustrating a state in which the user is holding the walking assist vehicle 1.
  • the control unit 10 detects a pushing force (hereinafter also referred to as “acting force”) acting on the walking auxiliary vehicle 1 based on a signal from a sensor (not shown).
  • the control unit 10 determines the rotation amount (rotation direction and angle) of the motor 5 from the detection result, and rotates the motor 5 according to the determined rotation amount.
  • the rear wheel 4 rotates in the traveling direction due to the rotation of the motor 5
  • the front wheel 3 also rotates in conjunction with this rotation, and the walking assist vehicle 1 moves in the traveling direction.
  • the user in the state of gripping the grip 2 is urged to walk in the traveling direction along with the movement, that is, the walk is assisted and can walk stably.
  • FIG. 3 is a block diagram showing functions provided in the walking assistance vehicle 1.
  • the walking auxiliary vehicle 1 includes an acting force detection unit 11, a speed detection unit 12, a traveling direction detection unit 13, a movement control unit 14, a drive unit 15, and a safety control unit 16.
  • the acting force detector 11 detects a force applied to the base body 40 by a user or the like. More specifically, the acting force detector 11 detects the force applied to the base body 40 from the output of a force sensor (not shown) built in the grip 2.
  • the grip 2 includes a force sensor (not shown).
  • the force sensor detects a force (pushing force or pulling force) applied to the grip 2 and outputs the detection result as an electric signal, like a strain gauge or a force sensor.
  • the applied force detection unit 11 detects the magnitude and direction of the force applied to the grip 2 from the electrical signal output by the force sensor, and the force is a force that pushes the walking auxiliary vehicle 1 or a pulling force. Determine whether.
  • the force in the arrow direction in FIG. 2 (the force acting in the traveling direction) is a pushing force
  • the force in the reverse direction is a pulling force.
  • the speed detector 12 detects the speed of the walking auxiliary vehicle 1.
  • the traveling direction detection unit 13 detects the traveling direction of the walking auxiliary vehicle 1 (for example, forward or backward). In one aspect, the traveling direction detection unit 13 detects the traveling direction of the moving base body 40. For example, the traveling direction detection unit 13 detects the traveling direction of the base body 40 based on the rotation direction of the wheels. The traveling direction detector 13 detects the traveling direction (the arrow direction in FIG. 2 or the opposite direction) from the control signal.
  • the traveling direction detection method is not limited to this.
  • the traveling direction detection unit 13 uses a sensor for detecting the rotation direction of a wheel or an axle to detect the traveling direction from the output of the sensor. May be.
  • the movement control unit 14 determines a control method for moving the walking auxiliary vehicle 1 and controls the movement of the walking auxiliary vehicle 1. More specifically, the movement control unit 14 determines the rotational direction, rotational torque, rotational speed, and the like of the drive wheels. More specifically, for example, the movement control unit 14 determines the driving wheel (for example, the front wheel) based on the force applied to the grip 2 detected by the acting force detection unit 11 and the traveling direction detected by the traveling direction detection unit 13. 3 and the control method of the motor 5 for transmitting the driving force to the rear wheels 4). In one aspect, the control method indicates a driving rate. The driving rate indicates the magnitude of the driving assist force transmitted to the driving wheel by the motor 5 in order to assist the driving.
  • the drive rate is determined by a set of the magnitude of the assist force (unit:%) and the magnitude of the speed reduction force (unit:%).
  • the control method is indicated by a driving rate using a ratio (unit:%) to a predetermined reference control method (assist force ⁇ or deceleration force ⁇ ).
  • assist force ⁇ is the maximum driving force of the motor 5
  • deceleration force ⁇ is the maximum braking force (100%) of the motor 5
  • the driving rate is the walking assist vehicle 1 (more specifically, more specifically). Whether the auxiliary driving force is applied to the base body 40).
  • the movement control unit 14 determines that the direction of the force applied to the grip 2 and the traveling direction are the same or substantially the same, the movement control unit 14 selects the control method according to any one of the following cases 1 to 3 Determine from. (Case 1) When it is determined that the walking auxiliary vehicle 1 is moving on a flat ground, a control method in which an assist force having a predetermined magnitude is assisted (Case 2) The walking auxiliary vehicle 1 moves uphill.
  • a control method in which an assist force larger than the assist force in (Case 1) is assisted (Case 3), when it is determined that the walking assistance vehicle 1 is moving downhill (Case 1) A control method in which a deceleration force larger than the assist force is applied in the direction opposite to the movement direction.
  • the driving unit 15 drives the front wheel 3 and the rear wheel 4.
  • the drive unit 15 generates a control signal for rotating the motor 5 based on a signal from the movement control unit 14.
  • the drive part 15 produces
  • the safety control unit 16 controls the driving of the walking assistance vehicle 1 based on the state of the walking assistance vehicle 1 and the direction in which the acting force acts on the walking assistance vehicle 1.
  • the safety control unit 16 stops the movement of the base body 40 by the driving unit 15 according to the direction in which the acting force acts on the base body 40 and the state of the base body 40.
  • the state of the substrate 40 includes the speed of the substrate 40.
  • the safety control unit 16 is configured to stop the movement of the base body 40 by the driving unit 15. If the base body 40 is stopped despite the detection of the acting force, the base body 40 is likely to be locked by a step or other obstacle. Therefore, in such a case, the safety of the user is enhanced by stopping the movement control (by stopping the movement of the walking auxiliary vehicle 1).
  • the safety control unit 16 is configured to detect that the base body 40 is in an abnormal state. Normally, the base body 40 moves in the direction in which the acting force is detected. Therefore, when the direction of the acting force and the traveling direction of the base body 40 are opposite, it can be determined that the state of the walking assist vehicle 1 is abnormal.
  • the safety control unit 16 is configured to stop the movement of the base body 40 by the drive unit 15 when the brake of the walking auxiliary vehicle 1 is activated. For example, the safety control unit 16 stops supplying power to the drive unit 15. With such a configuration, the operating state of the brake is detected as a user's intention to stop. It is possible to eliminate the state in which the driving force by the motor 5 is working even though the user is braking. Thereby, the safety of the walking auxiliary vehicle 1 increases.
  • the safety control unit 16 determines that the base body 40 is abnormal. It is comprised so that it may detect that it is in a state. Normally, the base body 40 is configured to stop when the brake is applied. However, if the base body 40 does not stop when the brake is activated, the walking auxiliary vehicle 1 detects that the walking auxiliary vehicle 1 is in an abnormal state.
  • the safety control unit 16 when the acting force is detected, is configured to detect that the base body 40 is in an abnormal state when the stop state of the base body 40 continues for a predetermined time. Yes.
  • the base body 40 when the base body 40 does not move for a certain period of time even though the acting force is detected, there is a high possibility that the driving wheel of the base body 40 is locked. It can be detected that there is an abnormal condition.
  • the walking auxiliary vehicle 1 further includes a notification unit for notifying that the base body is in an abnormal state.
  • the notification unit may be realized by, for example, an LED (Light Emitting Diode) or other light emitting device, a buzzer or other audio output device, a monitor or other display device.
  • the walking auxiliary vehicle 1 further includes an electromagnetic brake (not shown) of the motor 5.
  • the safety control unit 16 is configured to operate the electromagnetic brake. By controlling the motor 5 so as to stop the base body 40 in an abnormal state, the safety of the walking assist vehicle 1 is increased.
  • the walking auxiliary vehicle 1 further includes a switch (not shown) of a power source (for example, the motor 5) of the base body 40.
  • a switch for example, the motor 5
  • the safety control unit 16 is configured to turn off the switch. With such a configuration, the entire movement control system stops so that the walking auxiliary vehicle 1 stops in an abnormal state. Thereby, since occurrence of problems such as runaway of the system is prevented, the safety of the walking assist vehicle 1 using the system is enhanced.
  • FIG. 4 is a flowchart showing a part of processing executed by the walking auxiliary vehicle 1.
  • the processing is realized by the CPU 21 executing a program. Note that part or all of the processing may be realized by a circuit or other hardware that implements unique processing.
  • the CPU 21 detects the start and supplies power to each part to control the assist function. To start.
  • step S ⁇ b> 102 the CPU 21 determines whether the user's force is applied to the grip 2 based on the output of the force sensor of the grip 2 as the acting force detection unit 11.
  • CPU 21 determines that the force is applied to grip 2 (YES in step S102)
  • CPU 21 switches control to step S103. If not (NO in step S102), CPU 21 switches control to step S108.
  • step S103 the CPU 21 detects the pressing force on the grip 2 and the rotation state of the wheel (for example, the rotation direction, the rotation speed, etc.).
  • step S104 the CPU 21 determines, as the movement control unit 14, a control method for the walking assist vehicle 1 based on the detected state of the base body 40.
  • the walking assistance vehicle 1 operates to assist the user's walking based on the determined control method.
  • the CPU 21 increases the assist force.
  • the CPU 21 determines the assist force so that the assist force is smaller than that of the uphill as a control method.
  • the CPU 21 determines the assist force in proportion to the magnitude of the base 40 according to the magnitude of the inclination of the base body 40, for example.
  • the assist force determined is greater than the assist force when moving on a flat ground.
  • the CPU 21 acts in the direction opposite to the moving direction so as to be larger than the assist force in the case of flat ground in proportion to the inclination of the base body 40. Decide what speed to slow.
  • step S105 the CPU 21 controls the drive unit 15 as the movement control unit 14 according to the control method determined in step S104.
  • the drive unit 15 drives the motor 5, the walking assist vehicle 1 moves with an assist force.
  • step S106 the CPU 21 determines, as the safety control unit 16, whether or not the base body 40 of the walking assist vehicle 1 is stopped based on the output from the sensor.
  • control is switched to step S107. If not (NO in step S106), CPU 21 returns control to step S102.
  • step S107 the CPU 21 sends a stop command to the drive unit 15 as the movement control unit 14, and stops the drive by the drive unit 15. Thereafter, the control is returned to step S102.
  • step S108 the CPU 21 determines whether or not the stop switch has been pressed.
  • CPU 21 determines that the stop switch has been pressed (YES in step S108)
  • CPU 21 stops driving auxiliary walking vehicle 1 and ends the control. If not (NO in step S108), CPU 21 switches control to step S102.
  • the walking assistance vehicle 1 prohibits the motor 5 from being driven to advance the walking assistance vehicle 1 while it is stopped.
  • Car 1 stops moving. This increases safety.
  • the walking auxiliary vehicle 500 according to the present embodiment has a function of weakening the driving force without stopping the driving unit 15 when moving uphill, and the walking according to the first embodiment. Different from auxiliary vehicle 1. That is, in the first embodiment, the driving force is not applied when the wheel is stopped even if a force is applied to the grip, whereas the driving force is not applied in the second embodiment if it is an uphill.
  • the walk auxiliary vehicle 50 according to the present embodiment is different from the walk auxiliary vehicle 1 according to the first embodiment in that
  • FIG. 5 is a diagram illustrating the appearance of the walking assistance vehicle 500.
  • the walking auxiliary vehicle 500 further includes an inclination sensor 6 in addition to the configuration of the walking auxiliary vehicle 1 according to the first embodiment.
  • the inclination sensor 6 detects the degree of inclination of the walking auxiliary vehicle 500 that is moving.
  • FIG. 6 is a diagram illustrating a functional configuration of the walking assist vehicle 500.
  • the walking auxiliary vehicle 500 further includes an inclination detection unit 17 in addition to the configuration of the walking auxiliary vehicle 1 according to the first embodiment.
  • the inclination detection unit 17 is realized by the inclination sensor 6, for example.
  • the inclination detector 17 detects the degree of inclination of the walking assist vehicle 500.
  • the inclination detector 17 detects the degree of inclination such as 5 degrees uphill or 10 degrees downhill.
  • the detected degree of inclination of the walking assist vehicle 500 is input to the safety control unit 16.
  • the safety control unit 16 controls the driving of the motor 5 by the driving unit 15 according to the degree of inclination of the walking assist vehicle 500.
  • the state of the base body 40 is detected as the inclination of the base body 40.
  • the safety control unit 16 moves the base body 40 in the traveling direction even when the base body 40 is stopped.
  • the movement control unit 14 is controlled so that a force that is weaker than the force that acts during normal assisting acts.
  • the movement control unit 14 controls the drive unit 15 based on a signal from the safety control unit 16.
  • FIG. 7 is a flowchart showing a part of processing executed by walking assist vehicle 500.
  • the same step number is attached
  • step S106 the CPU 21 as the safety control unit 16 determines whether or not the base body 40 is stopped based on the output from the sensor.
  • CPU 21 determines that base body 40 is stopped (YES in step S106)
  • CPU 21 switches control to step S110. If not (NO in step S106), CPU 21 returns control to step S102.
  • step S110 the CPU 21 as the safety control unit 16 determines whether or not the walking assistance vehicle 500 is on an uphill, based on the output of the inclination detection unit 17.
  • CPU 21 determines that walking auxiliary vehicle 500 is on the uphill (YES in step S110)
  • CPU 21 switches control to step S111. If not (NO in step S110), CPU 21 switches control to step S107.
  • step S111 the CPU 21 sends a signal to the driving unit 15 as the safety control unit 16 so as to reduce the driving force of the motor 5.
  • the drive unit 15 reduces the power supplied to the motor 5 based on the command.
  • the third embodiment will be described below.
  • the walking auxiliary vehicle 800 according to the third embodiment is different from the walking auxiliary vehicle 1,500 in that it includes a configuration for controlling the driving of the walking auxiliary vehicle 800 when the brake is operated.
  • the hardware configuration of the walking auxiliary vehicle 800 is realized by the hardware configuration of the walking auxiliary vehicle 1 or the hardware configuration of the walking auxiliary vehicle 500. Therefore, description of the hardware configuration of walking assistance vehicle 800 will not be repeated.
  • FIG. 8 is a block diagram showing a configuration of functions realized by walking auxiliary vehicle 800.
  • the walking assistance vehicle 800 further includes a brake detection unit 18 in addition to the configuration shown in FIG. 3.
  • the brake detection unit 18 detects that the brake lever 7 (FIG. 1) of the walking auxiliary vehicle 800 has been operated. The detection result is input to the safety control unit 16.
  • FIG. 9 is a flowchart showing a part of processing executed by walking auxiliary vehicle 900.
  • the same step number is attached
  • step S106 the CPU 21 as the safety control unit 16 determines whether or not the base body 40 is stopped based on the output from the sensor.
  • control is switched to step S107. If not (NO in step S106), CPU 21 switches control to step S112.
  • step S112 the CPU 21 determines whether or not the brake lever 7 is operating based on a signal from the brake detection unit 18.
  • control is switched to step S107. If not (NO in step S112), CPU 21 returns control to step S102.
  • step S107 the CPU 21 sends a stop command to the drive unit 15 as the movement control unit 14, and causes the drive unit 15 to stop driving the motor 5.
  • the walking auxiliary vehicle 1 reliably maintains the stopped state. Thereafter, the control is returned to step S102.
  • step S106 when walking assist vehicle 800 is stopped (YES in step S106), if the operation of the brake is detected (YES in step S112), walking Since the motor 5 of the auxiliary vehicle 800 does not rotate, the walking auxiliary vehicle 800 does not start suddenly. Thereby, since it can prevent that the walk auxiliary vehicle 800 moves against a user's will, the safety of the walk auxiliary vehicle 800 increases.
  • the walking assistance vehicle according to the present embodiment is different from the walking assistance vehicle according to each of the above-described embodiments in that it has an abnormal state detection function. More specifically, when the walking assistance vehicle according to the present embodiment is recognized as having no correlation between the state detected by each sensor and the operation (speed, traveling direction) of the base 40 of the walking assistance vehicle. In addition, it is detected that the walking assistance vehicle is in an abnormal state. Then, the walking assist vehicle 1 performs safety control when an abnormal state is detected.
  • the hardware configuration of the walking assistance vehicle according to the present embodiment is the same as the hardware configuration of the walking assistance vehicle according to each of the embodiments described above. Accordingly, the walking assistance vehicle according to the fourth embodiment will be described below based on the configuration of the walking assistance vehicle according to the above-described embodiment.
  • the safety control unit 16 correlates a state detected from a signal sent from each detection unit (for example, the acting force detection unit 11, the speed detection unit 12, and the traveling direction detection unit 13) with the operation of the base body 40. Judge whether or not. When the correlation between the state and the motion is not obtained, the safety control unit 16 detects that the walking assist vehicle 1 is in an abnormal state.
  • each detection unit for example, the acting force detection unit 11, the speed detection unit 12, and the traveling direction detection unit 13
  • the base body 40 normally moves in the direction intended by the user, that is, in the direction in which the grip 2 is pressed, and therefore is detected by the direction of the acting force detected by the acting force detector 11 and the traveling direction detector 13.
  • the traveling direction of the base body 40 is opposite, it is assumed that the walking auxiliary vehicle 1 is in an abnormal state such that some external force is applied to the wheel or the base body 40 or the acting force detection unit 11 is out of order. Is done.
  • the wheel is locked by an obstacle or the like when the base body 40 has not moved in the traveling direction for a certain period of time despite the fact that the grip 2 is pushed and the acting force is detected. It is assumed that the walking assistance vehicle 1 is in an abnormal state, such as being in a state or having a malfunction in the acting force detector 11.
  • the safety control unit 16 performs control for ensuring safety when such an abnormal state is detected.
  • FIG. 10 is a flowchart showing a part of processing executed by the walking auxiliary vehicle 1.
  • the same step number is attached
  • step S113 the CPU 21 determines, as the safety control unit 16, whether or not an abnormal state of the walking auxiliary vehicle 1 has been detected based on each signal sent from each sensor.
  • CPU 21 determines that an abnormal state of walking auxiliary vehicle 1 has been detected (YES in step S113)
  • control is switched to step S114. If not (NO in step S113), CPU 21 returns control to step S102.
  • step S114 the CPU 21 executes safety control.
  • the CPU 21 outputs an alarm sound or the like from a speaker (not shown) as the safety control unit 16 to notify the user of the occurrence of an abnormality.
  • the CPU 21 can act as a safety control unit 16 and a braking force by an electromagnetic brake of the motor 5.
  • the CPU 21 can forcibly turn off the power of the system of the walking assistance vehicle 1. Note that the aspect of the safety control may vary depending on the detected abnormal state, or may be changed with the passage of time that the abnormal state continues.
  • the walking auxiliary vehicle 1 since the walking auxiliary vehicle 1 according to the present embodiment has a safety control function, it is possible to ensure the safety of the user even when an abnormal state is detected.
  • achieving the walk auxiliary vehicle which concerns on each embodiment is implement
  • the program is stored in advance in a nonvolatile data recording medium (for example, a flash memory) of the walking assist vehicle 1.
  • the program may be downloadable from a provider of the program via the Internet or other networks.
  • the communication method is not particularly limited.
  • the function can be realized by a combination of circuits that realize each process.

Abstract

Provided is a walking assistance device with which safety is increased. A walking assistance cart, which is an embodiment of the walking assistance device, is provided with: an acting force-detecting unit (11) for detecting forces acting on a base; a speed-detecting unit (12) for detecting the speed of the walking assistance cart; a progress direction-detecting unit (13) for detecting the direction of progress (for example, forward or backward) of the walking assistance cart; a movement control unit (14) for determining a control method for moving the walking assistance cart and controlling the movement of the walking assistance cart; a driving unit (15) for driving the front wheels and the back wheels; and a safety control unit (16) for controlling the driving of the walking assistance cart on the basis of state of the walking assistance cart and the direction in which the acting force acts on the walking assistance cart.

Description

歩行補助装置、歩行補助装置を制御するための方法、および、コンピュータに歩行補助装置を制御させるためのプログラムWalking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device
 本開示は歩行補助装置の制御に関し、より特定的には、歩行補助装置の安全の制御に関する。 This disclosure relates to the control of a walking assist device, and more particularly to the safety control of a walking assist device.
 従来、高齢者等の歩行が困難な人の歩行を補助する器具として歩行器やシルバーカーといった歩行補助車が存在する。また、モータ等による駆動力を車輪に持たせて、下り坂でブレーキをかけて速度を抑制(以下「抑速」ともいう。)したり、上り坂での上りを補助したりする歩行補助車が開発されている。 Conventionally, walking aid vehicles such as walker and silver car exist as devices for assisting walking of elderly people and the like who are difficult to walk. In addition, a walking assist vehicle that gives the wheels driving force by a motor or the like and brakes on the downhill to suppress the speed (hereinafter also referred to as “speed reduction”) or assists the climb on the uphill. Has been developed.
 たとえば、特開2003-290302号公報(特許文献1)は、「歩行補助装置において、人が調節しなくても、運動特性が自動調節され、装置の扱いが容易になるようにする」技術を開示している。特許文献1に開示された歩行補助装置は、「移動可能な基体と、基体の移動を制御する運動制御機構と、基体に設けられて利用者を支持する支持部と、利用者からの作用によって生ずる装置の変化を検出するセンサ9と、センサ9により検出される検出値41に従って運動制御機構を制御する運動制御演算装置とを備え」、運動制御演算装置は、運動特性パラメータを記憶する運動特性記憶部32と、検出値41に基づいて運動特性パラメータを調整する運動特性調整部34と、検出値41と運動特性パラメータとに従って運動制御機構を制御する運動制御部31とを備え」る([要約]参照)。 For example, Japanese Patent Application Laid-Open No. 2003-290302 (Patent Document 1) describes a technique of “in a walking assistance device, even if a person does not adjust, the motion characteristics are automatically adjusted so that the device can be handled easily”. Disclosure. The walking assist device disclosed in Patent Document 1 is “by a movable base, a motion control mechanism for controlling the movement of the base, a support provided on the base to support the user, and an action from the user. A sensor 9 for detecting a change in the resulting device, and a motion control arithmetic device for controlling the motion control mechanism in accordance with the detection value 41 detected by the sensor 9, ”the motion control arithmetic device stores the motion characteristic parameter for storing the motion characteristic parameter. A storage unit 32, an exercise characteristic adjustment unit 34 that adjusts an exercise characteristic parameter based on the detection value 41, and an exercise control unit 31 that controls the exercise control mechanism according to the detection value 41 and the exercise characteristic parameter. Summary]).
特開2003-290302号公報JP 2003-290302 A
 特許文献1に開示された技術によると、力センサや速度センサを用いて駆動力が調整される。しかし、力センサのみでは車輪が障害物等により固定された場合に駆動力を働かせると車輪を駆動させるために過度な電流が流れたり、ロックが外れた場合に急激な駆動力がかかったりする場合がある。また、速度センサのみでは、傾斜等の基体が使用者の意図と反して動く場合に正しく制御できない場合がある。より具体的には、溝や障害物等で車輪がロック状態の場合に、アシスト力が働くと使用者に危険が及ぶ恐れがある。あるいは、高齢者や足の不自由な人が歩行補助装置を使用するため、より一層の安全性が要求される。したがって、使用者の安全性が高まる技術が必要とされている。また、使用者の意図に沿って動く歩行補助装置が必要とされている。 According to the technique disclosed in Patent Document 1, the driving force is adjusted using a force sensor or a speed sensor. However, when the driving force is applied when the wheel is fixed by an obstacle, etc. with the force sensor alone, excessive current flows to drive the wheel, or a sudden driving force is applied when the lock is released. There is. In addition, the speed sensor alone may not be correctly controlled when the substrate such as the inclination moves contrary to the user's intention. More specifically, when the wheel is locked due to a groove, an obstacle, or the like, there is a risk that the user may be at risk if the assist force is activated. Or since an elderly person or a person with a reduced mobility uses a walking assist device, further safety is required. Therefore, there is a need for a technique that increases user safety. There is also a need for a walking assist device that moves according to the user's intention.
 本開示は、上述のような問題点を解決するためになされたものであって、ある局面における目的は、使用者の安全性が高まる歩行補助装置を提供することである。他の局面における目的は、使用者の意図に沿って動く歩行補助装置を提供することである。 The present disclosure has been made to solve the above-described problems, and an object in one aspect is to provide a walking assist device that increases the safety of the user. An object in another aspect is to provide a walking assistance device that moves in accordance with a user's intention.
 他の局面における目的は、使用者の安全性が高まるように歩行補助装置を制御するための方法を提供することである。他の局面における目的は、使用者の意図に沿って動くように歩行補助装置を制御するための方法を提供することである。 An object in another aspect is to provide a method for controlling the walking assist device so as to increase the safety of the user. An object in another aspect is to provide a method for controlling a walking assistance device to move in accordance with a user's intention.
 他の局面における目的は、使用者の安全性が高まるようにコンピュータに歩行補助装置を制御させるためのプログラムを提供することである。他の局面における目的は、使用者の意図に沿って動くようにコンピュータに歩行補助装置を制御させるためのプログラムを提供することである。 An object in another aspect is to provide a program for causing a computer to control a walking assist device so as to increase the safety of the user. An object in another aspect is to provide a program for causing a computer to control a walking assistance device so as to move in accordance with a user's intention.
 一実施の形態に従う歩行補助装置は、基体と、基体を移動させるための駆動部と、基体に作用する作用力を検出するための作用力検出部と、基体の状態を検出するための状態検出部と、作用力検出部により検出される作用力に基づいて、駆動部による基体の移動を制御するための移動制御部と、作用力が働く方向と、基体の状態とに応じて、駆動部による基体の移動を停止するための安全制御部とを備える。 A walking assist device according to an embodiment includes a base, a drive unit for moving the base, an action force detection unit for detecting an action force acting on the base, and a state detection for detecting the state of the base And a movement control unit for controlling the movement of the base by the driving unit based on the acting force detected by the acting force detecting unit, the driving unit according to the direction in which the acting force acts and the state of the substrate. And a safety control unit for stopping the movement of the base body.
 好ましくは、状態は、基体の速度を含む。基体が停止している場合に、安全制御部は、駆動部による基体の移動を停止するように構成されている。 Preferably, the condition includes the speed of the substrate. The safety control unit is configured to stop the movement of the substrate by the driving unit when the substrate is stopped.
 好ましくは、作用力の方向と基体の進行方向が逆の場合に、安全制御部は、基体が異常の状態であると検知するように構成されている。 Preferably, the safety control unit is configured to detect that the substrate is in an abnormal state when the direction of the acting force is opposite to the traveling direction of the substrate.
 好ましくは、状態は、基体の傾きを含む。基体が上り傾斜の状態にあり、基体の進行方向への作用力が検出された場合に、安全制御部は、基体が進行方向に移動するように移動制御部を制御する。 Preferably, the state includes the tilt of the substrate. When the base body is in an upwardly inclined state and an acting force in the traveling direction of the base body is detected, the safety control unit controls the movement control unit so that the base body moves in the traveling direction.
 好ましくは、歩行補助装置は、基体を停止させるブレーキをさらに備える。状態検出部は、ブレーキが作動したことを検知するブレーキ検知部を含む。ブレーキが作動した場合に、安全制御部は、駆動部による基体の移動を停止するように構成されている。 Preferably, the walking assist device further includes a brake for stopping the base. The state detection unit includes a brake detection unit that detects that the brake is operated. When the brake is activated, the safety control unit is configured to stop the movement of the base body by the drive unit.
 好ましくは、ブレーキの作動が検知されてから予め定められた時間の経過後に、基体の速度が予め定められた速度以上である場合に、安全制御部は、基体が異常の状態であると検知するように構成されている。 Preferably, the safety control unit detects that the base body is in an abnormal state when the speed of the base body is equal to or higher than a predetermined speed after a predetermined time has elapsed since the brake operation was detected. It is configured as follows.
 好ましくは、作用力が検出された場合において基体の停止状態が予め定められた時間続いたとき、安全制御部は、基体が異常の状態であると検知するように構成されている。 Preferably, when the acting force is detected, the safety control unit is configured to detect that the substrate is in an abnormal state when the stopped state of the substrate continues for a predetermined time.
 好ましくは、歩行補助装置は、基体が異常の状態であることを通知するための通知部をさらに備える。 Preferably, the walking assist device further includes a notification unit for notifying that the base body is in an abnormal state.
 好ましくは、駆動部は、モータを含む。歩行補助装置は、モータの電磁ブレーキをさらに備える。基体が異常の状態である場合に、安全制御部は、電磁ブレーキを作動させるように構成されている。 Preferably, the drive unit includes a motor. The walking assist device further includes a motor electromagnetic brake. When the base is in an abnormal state, the safety control unit is configured to operate the electromagnetic brake.
 好ましくは、基体の動力源のスイッチをさらに備える。基体が異常の状態であることが検知されると、安全制御部は、スイッチをオフにするように構成されている。 Preferably, a base power source switch is further provided. When it is detected that the substrate is in an abnormal state, the safety control unit is configured to turn off the switch.
 他の実施の形態に従うと、歩行補助装置を制御するための方法が提供される。この方法は、歩行補助装置を移動させるステップと、歩行補助装置に作用する作用力を検出するステップと、歩行補助装置の状態を検出するステップと、検出される作用力に基づいて、歩行補助装置の移動を制御するステップと、作用力が働く方向と、歩行補助装置の状態とに応じて、歩行補助装置の移動の停止するステップとを含む。 According to another embodiment, a method for controlling a walking assistance device is provided. The method includes a step of moving the walking assistance device, a step of detecting an acting force acting on the walking assistance device, a step of detecting the state of the walking assistance device, and a walking assistance device based on the detected acting force. And a step of stopping the movement of the walking assistance device according to the direction in which the acting force works and the state of the walking assistance device.
 さらに他の実施の形態に従うと、コンピュータに歩行補助装置を制御させるためのプログラムが提供される。このプログラムは、コンピュータに、歩行補助装置を移動させるステップと、歩行補助装置に作用する作用力を検出するステップと、歩行補助装置の状態を検出するステップと、検出される作用力に基づいて、歩行補助装置の移動を制御するステップと、作用力が働く方向と、歩行補助装置の状態とに応じて、歩行補助装置の移動の停止するステップとを実行させる。 According to yet another embodiment, a program for causing a computer to control a walking assist device is provided. This program is based on the step of moving the walking assist device to the computer, the step of detecting the acting force acting on the walking assist device, the step of detecting the state of the walking assist device, and the detected acting force. The step of controlling the movement of the walking assist device, the direction in which the acting force works, and the step of stopping the movement of the walking assist device according to the state of the walking assist device are executed.
 この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。 The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention which is to be understood in connection with the accompanying drawings.
歩行補助車1の構成を表す図である。1 is a diagram illustrating a configuration of a walking auxiliary vehicle 1. FIG. 使用者が歩行補助車1をつかんでいる状態を表す図である。It is a figure showing the state in which the user is holding the walk auxiliary vehicle. 歩行補助車1が備える機能を表すブロック図である。It is a block diagram showing the function with which the walk auxiliary vehicle 1 is provided. 歩行補助車1が実行する処理の一部を表すフローチャートである。It is a flowchart showing a part of process which the walk auxiliary vehicle 1 performs. 歩行補助車500の外観を表す図である。It is a figure showing the external appearance of the walk auxiliary vehicle 500. FIG. 歩行補助車500の機能構成を表す図である。It is a figure showing the functional composition of walk auxiliary vehicle 500. 歩行補助車500が実行する処理の一部を表すフローチャートである。It is a flowchart showing a part of process which the walk auxiliary vehicle 500 performs. 歩行補助車800によって実現される機能の構成を表すブロック図である。FIG. 5 is a block diagram illustrating a configuration of functions realized by walking auxiliary vehicle 800. 歩行補助車900が実行する処理の一部を表すフローチャートである。5 is a flowchart showing a part of processing executed by walking auxiliary vehicle 900. 歩行補助車1が実行する処理の一部を表すフローチャートである。It is a flowchart showing a part of process which the walk auxiliary vehicle 1 performs.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 以下の実施の形態では、歩行補助装置の一例として、主に歩行を補助(アシスト)する歩行補助車が例示されるが、本開示に係る技術思想の適用対象は、歩行補助車に限定されない。たとえば、当該技術思想は、移動可能な基体に使用者の身体の少なくとも一部を支持する部材を有し、基体の移動を支援することにより、使用者の歩行をアシストするような装置全般に適用することができる。したがって、当該技術思想は、ベビーカー、台車、シルバーカー、車椅子等の移動装置であって人が押すことにより前進する装置に適用することができる。 In the following embodiment, a walking assistance vehicle that mainly assists (assists) walking is exemplified as an example of the walking assistance device, but the application target of the technical idea according to the present disclosure is not limited to the walking assistance vehicle. For example, the technical idea is applied to all devices that have a member that supports at least a part of the user's body on a movable base and assist the user's walk by assisting the movement of the base. can do. Therefore, the technical idea can be applied to a moving device such as a stroller, a carriage, a silver car, a wheelchair, etc., which moves forward when pushed by a person.
 [第1の実施の形態]
 要約すると、本実施の形態に係る歩行補助車では、車輪がモータ等の駆動力によって回転し、使用者の歩行をアシストする。使用者が歩行補助車のグリップを押す力により駆動力を調整することができる。モータの駆動力による移動制御を行う状態において、グリップを押す力が検知されても、歩行補助車が停止している場合、移動制御を行わない。結果として、歩行補助車は停止し続けるので、不意に移動することによる使用者の転倒などの事故を防止できる。
[First embodiment]
In summary, in the walking auxiliary vehicle according to the present embodiment, the wheels are rotated by a driving force such as a motor to assist the user's walking. The driving force can be adjusted by the force with which the user pushes the grip of the walking assist vehicle. In the state where the movement control by the driving force of the motor is performed, the movement control is not performed when the walking auxiliary vehicle is stopped even if the force pushing the grip is detected. As a result, since the walking auxiliary vehicle continues to stop, it is possible to prevent accidents such as a user's falling due to unexpected movement.
 <ハードウェア構成>
 図1を参照して、第1の実施の形態に係る歩行補助車1の構成について説明する。図1(A)は、歩行補助車1を側面からみた図である。図1(B)は、歩行補助車1を上からみた図である。図1(C)は、歩行補助車1の制御部10の構成を表すブロック図である。
<Hardware configuration>
With reference to FIG. 1, the structure of the walking auxiliary vehicle 1 which concerns on 1st Embodiment is demonstrated. FIG. 1A is a view of the walking assist vehicle 1 as seen from the side. FIG. 1B is a view of the walking assist vehicle 1 as viewed from above. FIG. 1C is a block diagram illustrating the configuration of the control unit 10 of the walking assist vehicle 1.
 図1(A)および図1(B)に示されるように、歩行補助車1は、基体フレーム(以下、単に「基体」ともいう)40と、グリップ2と、手動操作用のブレーキレバー7と、スタート/停止スイッチ2Aと、物を収容するためのバッグ26とを備える。基体40は、左フレーム41と、右フレーム42と、フレーム43と、歩行補助車1を制御するための制御部10とを含む。 As shown in FIGS. 1A and 1B, the walking assist vehicle 1 includes a base frame (hereinafter also simply referred to as “base”) 40, a grip 2, and a brake lever 7 for manual operation. , A start / stop switch 2A and a bag 26 for storing objects. The base body 40 includes a left frame 41, a right frame 42, a frame 43, and a control unit 10 for controlling the walking auxiliary vehicle 1.
 フレーム43は、左フレーム41と右フレーム42との間にブリッジ状に渡されて、左フレーム41と右フレーム42とを連結している。フレーム43の一部は、着座可能な座部を構成する。左フレーム41および右フレーム42には、それぞれ、歩行時に使用者が握るグリップ2と、前輪3と、後輪4とが設けられている。後輪4は、モータ5により駆動される。グリップ2は、支持部として、歩行補助車1の使用者の身体の少なくとも一部を支持するように構成されている。 The frame 43 is bridged between the left frame 41 and the right frame 42 to connect the left frame 41 and the right frame 42. A part of the frame 43 constitutes a seatable seat. The left frame 41 and the right frame 42 are each provided with a grip 2, a front wheel 3, and a rear wheel 4 that are gripped by a user during walking. The rear wheel 4 is driven by a motor 5. The grip 2 is configured to support at least a part of the body of the user of the walking assistance vehicle 1 as a support portion.
 バッグ26には、歩行補助車1の各部に電力を供給するための電池部25が配置される。電池部25は、たとえば、充電可能な電池である。なお、制御部10および電池部25の取り付け位置は、歩行時の妨げにならない位置であればよく、図1(A)および図1(B)に示される位置に限定されない。 In the bag 26, a battery unit 25 for supplying electric power to each part of the walking auxiliary vehicle 1 is arranged. The battery unit 25 is, for example, a rechargeable battery. In addition, the attachment position of the control part 10 and the battery part 25 should just be a position which does not become obstructive at the time of a walk, and is not limited to the position shown by FIG. 1 (A) and FIG. 1 (B).
 図1(C)を参照して、制御部10は、CPU(Central Processing Unit)21と、メモリ22と、入力部23と、出力部24とを含む。メモリ22は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)とにより実現される。入力部23は、各種センサから出力される信号の入力を受け付ける。出力部24は、信号をモータ5その他の各部に出力する。 Referring to FIG. 1C, the control unit 10 includes a CPU (Central Processing Unit) 21, a memory 22, an input unit 23, and an output unit 24. The memory 22 is realized by, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The input unit 23 receives input of signals output from various sensors. The output unit 24 outputs a signal to the motor 5 and other units.
 制御部10は、歩行補助車1の作動を制御する。たとえば、制御部10は、モータ5の回転を制御する。モータ5は、たとえば、DC(Direct Current)モータによって実現される。後輪4は、モータ5の回転軸(図示しない)に連接されており、モータ5の回転運動に連動して回転する。本実施の形態では、モータ5が後輪4に設けられており、歩行補助車1は、後輪駆動である。しかしながら、歩行補助車1の駆動形式は、これに限定されず、前輪3が駆動する前輪駆動、または前輪3および後輪4がいずれも駆動する4輪駆動であってもよい。 The control unit 10 controls the operation of the walking auxiliary vehicle 1. For example, the control unit 10 controls the rotation of the motor 5. The motor 5 is realized by, for example, a DC (Direct Current) motor. The rear wheel 4 is connected to a rotating shaft (not shown) of the motor 5 and rotates in conjunction with the rotating motion of the motor 5. In the present embodiment, the motor 5 is provided on the rear wheel 4, and the walking auxiliary vehicle 1 is rear wheel drive. However, the driving type of the walking auxiliary vehicle 1 is not limited to this, and may be front wheel driving in which the front wheels 3 are driven, or four wheel driving in which both the front wheels 3 and the rear wheels 4 are driven.
 なお、本実施の形態では、モータ5のショートブレーキ(短絡制動)を用いることにより、制動力が基体40に作用し得る。ショートブレーキは、モータ5のコイル間をスイッチのON/OFFにより短絡させて制動力を得るものである。 In the present embodiment, the braking force can act on the base body 40 by using the short brake (short circuit braking) of the motor 5. In the short brake, the coil of the motor 5 is short-circuited by ON / OFF of a switch to obtain a braking force.
 ブレーキは、使用者のブレーキレバー7の操作に応答して、自転車のブレーキのように車輪の回転を止める。本実施の形態では、ブレーキレバー7が操作された時には、CPU21は、モータ5への電流供給を停止することで、モータ5に電流が供給された状態でブレーキによる制動力がモータ5に作用して前輪3や後輪4がロックする状態になることを防止する。他の局面において、電池部25のバッテリ切れ等により歩行補助車1の運転制御ができない場合には、歩行補助車1は、モータ5によるアシスト力および抑速力が作用しない通常の歩行器として使用され得る。 ¡In response to the user's operation of the brake lever 7, the brake stops the wheel rotation like a bicycle brake. In the present embodiment, when the brake lever 7 is operated, the CPU 21 stops the current supply to the motor 5 so that the braking force by the brake acts on the motor 5 while the current is supplied to the motor 5. This prevents the front wheel 3 and the rear wheel 4 from being locked. In another aspect, when the driving control of the walking auxiliary vehicle 1 cannot be performed due to the battery running out of the battery unit 25 or the like, the walking auxiliary vehicle 1 is used as a normal walker in which the assist force and the deceleration force by the motor 5 do not act. obtain.
 <使用態様>
 図2を参照して、歩行補助車1の使用について説明する。図2は、使用者が歩行補助車1をつかんでいる状態を表す図である。
<Usage>
With reference to FIG. 2, the use of the walking auxiliary vehicle 1 will be described. FIG. 2 is a diagram illustrating a state in which the user is holding the walking assist vehicle 1.
 歩行時、使用者は、グリップ2を握るように持って、歩行補助車1を進行方向(すなわち、矢印の方向)に押す。このとき、制御部10は、センサ(図示しない)からの信号に基づいて、歩行補助車1に作用する押す力(以下「作用力」ともいう。)を検出する。制御部10は、検出結果からモータ5の回転量(回転方向と角度)を決定し、決定した回転量に従いモータ5を回転させる。モータ5の回転によって後輪4が進行方向に回転すると、この回転に連動して前輪3も回転し、歩行補助車1は、進行方向へ移動する。グリップ2を握った状態の使用者は、この移動に伴って、進行方向への歩行が促されて、すなわち歩行が補助され、安定して歩行することができる。 When walking, the user holds the grip 2 and pushes the walking auxiliary vehicle 1 in the traveling direction (that is, in the direction of the arrow). At this time, the control unit 10 detects a pushing force (hereinafter also referred to as “acting force”) acting on the walking auxiliary vehicle 1 based on a signal from a sensor (not shown). The control unit 10 determines the rotation amount (rotation direction and angle) of the motor 5 from the detection result, and rotates the motor 5 according to the determined rotation amount. When the rear wheel 4 rotates in the traveling direction due to the rotation of the motor 5, the front wheel 3 also rotates in conjunction with this rotation, and the walking assist vehicle 1 moves in the traveling direction. The user in the state of gripping the grip 2 is urged to walk in the traveling direction along with the movement, that is, the walk is assisted and can walk stably.
 <機能構成>
 図3を参照して、本実施の形態に係る歩行補助車1の機能構成について説明する。図3は、歩行補助車1が備える機能を表すブロック図である。歩行補助車1は、作用力検出部11と、速度検出部12と、進行方向検出部13と、移動制御部14と、駆動部15と、安全制御部16とを備える。
<Functional configuration>
With reference to FIG. 3, a functional configuration of walking auxiliary vehicle 1 according to the present embodiment will be described. FIG. 3 is a block diagram showing functions provided in the walking assistance vehicle 1. The walking auxiliary vehicle 1 includes an acting force detection unit 11, a speed detection unit 12, a traveling direction detection unit 13, a movement control unit 14, a drive unit 15, and a safety control unit 16.
 作用力検出部11は、使用者等によって基体40に加えられる力を検出する。より具体的には、作用力検出部11は、グリップ2に内蔵された図示しない力センサの出力から、基体40に加わる力を検出する。たとえば、グリップ2には、力センサ(図示しない)が内蔵されている。当該力センサは、ひずみゲージまたは力覚センサのように、グリップ2にかかる力(押す力あるいは引く力)を検出し、検出結果を電気信号として出力する。作用力検出部11は、力センサによって出力される電気信号から、グリップ2にかかる力の大きさと向きとを検出し、当該力が歩行補助車1を押す力であるか、または引く力であるかを判断する。本実施の形態では、図2の矢印方向の力(進行方向に作用する力)が押す力であり、逆方向の力が引く力である。 The acting force detector 11 detects a force applied to the base body 40 by a user or the like. More specifically, the acting force detector 11 detects the force applied to the base body 40 from the output of a force sensor (not shown) built in the grip 2. For example, the grip 2 includes a force sensor (not shown). The force sensor detects a force (pushing force or pulling force) applied to the grip 2 and outputs the detection result as an electric signal, like a strain gauge or a force sensor. The applied force detection unit 11 detects the magnitude and direction of the force applied to the grip 2 from the electrical signal output by the force sensor, and the force is a force that pushes the walking auxiliary vehicle 1 or a pulling force. Determine whether. In the present embodiment, the force in the arrow direction in FIG. 2 (the force acting in the traveling direction) is a pushing force, and the force in the reverse direction is a pulling force.
 速度検出部12は、歩行補助車1の速度を検出する。
 進行方向検出部13は、歩行補助車1の進行方向(たとえば、前進または後退)を検出する。ある局面において、進行方向検出部13は、移動する基体40の進行方向を検出する。たとえば、進行方向検出部13は、車輪の回転方向に基づいて基体40の進行方向を検出する。進行方向検出部13は、当該制御信号から進行方向(図2の矢印方向、または反対方向)を検出する。なお、進行方向の検出方法は、これに限定されず、たとえば、進行方向検出部13は、車輪あるいは車軸の回転方向を検出するためのセンサを用いて、当該センサの出力から進行方向を検出してもよい。
The speed detector 12 detects the speed of the walking auxiliary vehicle 1.
The traveling direction detection unit 13 detects the traveling direction of the walking auxiliary vehicle 1 (for example, forward or backward). In one aspect, the traveling direction detection unit 13 detects the traveling direction of the moving base body 40. For example, the traveling direction detection unit 13 detects the traveling direction of the base body 40 based on the rotation direction of the wheels. The traveling direction detector 13 detects the traveling direction (the arrow direction in FIG. 2 or the opposite direction) from the control signal. The traveling direction detection method is not limited to this. For example, the traveling direction detection unit 13 uses a sensor for detecting the rotation direction of a wheel or an axle to detect the traveling direction from the output of the sensor. May be.
 移動制御部14は、歩行補助車1を移動させるための制御方法を決定して、歩行補助車1の移動を制御する。より具体的には、移動制御部14は、駆動輪の回転方向や回転トルク、回転速度などを決定する。より詳細には、移動制御部14は、たとえば、作用力検出部11によって検出されるグリップ2にかかる力、および進行方向検出部13によって検出される進行方向に基づいて、駆動輪(たとえば、前輪3および後輪4)に駆動力を伝達するためのモータ5の制御方法を決定する。ある局面において、制御方法は、駆動率を示す。駆動率は、駆動を補助するためにモータ5によって当該駆動輪に伝達される駆動補助力の大きさを示す。具体的には、駆動率は、アシスト力の大きさ(単位:%)と、抑速力の大きさ(単位:%)の組により決定される。ここでは、制御方法は、予め定められた基準の制御方法(アシスト力αまたは抑速力β)に対する割合(単位:%)を用いた駆動率で示される。たとえば、アシスト力αをモータ5の最大駆動力とし、抑速力βをモータ5の最大ブレーキ力(100%)とした場合、駆動率は、どのくらいの割合で歩行補助車1(より特定的には、基体40)に補助駆動力が付加されるかを表す。 The movement control unit 14 determines a control method for moving the walking auxiliary vehicle 1 and controls the movement of the walking auxiliary vehicle 1. More specifically, the movement control unit 14 determines the rotational direction, rotational torque, rotational speed, and the like of the drive wheels. More specifically, for example, the movement control unit 14 determines the driving wheel (for example, the front wheel) based on the force applied to the grip 2 detected by the acting force detection unit 11 and the traveling direction detected by the traveling direction detection unit 13. 3 and the control method of the motor 5 for transmitting the driving force to the rear wheels 4). In one aspect, the control method indicates a driving rate. The driving rate indicates the magnitude of the driving assist force transmitted to the driving wheel by the motor 5 in order to assist the driving. Specifically, the drive rate is determined by a set of the magnitude of the assist force (unit:%) and the magnitude of the speed reduction force (unit:%). Here, the control method is indicated by a driving rate using a ratio (unit:%) to a predetermined reference control method (assist force α or deceleration force β). For example, when the assist force α is the maximum driving force of the motor 5 and the deceleration force β is the maximum braking force (100%) of the motor 5, the driving rate is the walking assist vehicle 1 (more specifically, more specifically). , Whether the auxiliary driving force is applied to the base body 40).
 ある局面において、移動制御部14は、グリップ2にかかる力の方向と進行方向が同じ、または略同じであると判定した場合に、制御方法を、次のケース1~3のいずれかの制御方法から決定する。
(ケース1)歩行補助車1が平地を移動していると判定した場合、予め定められた大きさのアシスト力が補助される制御方法
(ケース2)歩行補助車1が上り坂を移動していると判定された場合、(ケース1)のアシスト力よりも大きいアシスト力が補助される制御方法
(ケース3)歩行補助車1が下り坂を移動していると判定された場合、(ケース1)のアシスト力よりも大きな抑速力が移動方向とは反対の方向に加えられる制御方法。
In one aspect, when the movement control unit 14 determines that the direction of the force applied to the grip 2 and the traveling direction are the same or substantially the same, the movement control unit 14 selects the control method according to any one of the following cases 1 to 3 Determine from.
(Case 1) When it is determined that the walking auxiliary vehicle 1 is moving on a flat ground, a control method in which an assist force having a predetermined magnitude is assisted (Case 2) The walking auxiliary vehicle 1 moves uphill. A control method in which an assist force larger than the assist force in (Case 1) is assisted (Case 3), when it is determined that the walking assistance vehicle 1 is moving downhill (Case 1) A control method in which a deceleration force larger than the assist force is applied in the direction opposite to the movement direction.
 駆動部15は、前輪3および後輪4を駆動する。ある局面において、駆動部15は、移動制御部14からの信号に基づいて、モータ5を回転させるための制御信号を生成する。駆動部15は、たとえば、PWM(Pulse Width Modulation)により制御信号を生成する。 The driving unit 15 drives the front wheel 3 and the rear wheel 4. In one aspect, the drive unit 15 generates a control signal for rotating the motor 5 based on a signal from the movement control unit 14. The drive part 15 produces | generates a control signal by PWM (Pulse Width Modulation), for example.
 安全制御部16は、歩行補助車1の状態と、歩行補助車1に作用力が働く方向とに基づいて、歩行補助車1の駆動を制御する。 The safety control unit 16 controls the driving of the walking assistance vehicle 1 based on the state of the walking assistance vehicle 1 and the direction in which the acting force acts on the walking assistance vehicle 1.
 ある局面において、安全制御部16は、作用力が基体40に働く方向と、基体40の状態とに応じて、駆動部15による基体40の移動を停止する。 In one aspect, the safety control unit 16 stops the movement of the base body 40 by the driving unit 15 according to the direction in which the acting force acts on the base body 40 and the state of the base body 40.
 たとえば、基体40の状態は、基体40の速度を含む。基体40が停止している場合に、安全制御部16は、駆動部15による基体40の移動を停止するように構成されている。作用力を検出しているにも関わらず基体40が停止している場合には、基体40が段差その他の障害物等によりロックされている可能性が高い。そこで、このような場合に、移動制御を停止することで(歩行補助車1の移動を停止することで)、使用者の安全性が高まる。 For example, the state of the substrate 40 includes the speed of the substrate 40. When the base body 40 is stopped, the safety control unit 16 is configured to stop the movement of the base body 40 by the driving unit 15. If the base body 40 is stopped despite the detection of the acting force, the base body 40 is likely to be locked by a step or other obstacle. Therefore, in such a case, the safety of the user is enhanced by stopping the movement control (by stopping the movement of the walking auxiliary vehicle 1).
 他の局面において、作用力の方向と基体40の進行方向が逆の場合に、安全制御部16は、基体40が異常の状態であると検知するように構成されている。通常、基体40は、作用力が検出された方向に移動する。したがって、作用力の方向と基体40の進行方向とが逆の場合は、歩行補助車1の状態が異常であると判断できる。 In another aspect, when the direction of the acting force and the traveling direction of the base body 40 are opposite, the safety control unit 16 is configured to detect that the base body 40 is in an abnormal state. Normally, the base body 40 moves in the direction in which the acting force is detected. Therefore, when the direction of the acting force and the traveling direction of the base body 40 are opposite, it can be determined that the state of the walking assist vehicle 1 is abnormal.
 他の局面において、歩行補助車1のブレーキが作動した場合に、安全制御部16は、駆動部15による基体40の移動を停止するように構成されている。たとえば、安全制御部16は、駆動部15への電力の供給を停止する。このような構成により、ブレーキの作動状態が、使用者の停止したい意志として検出される。使用者がブレーキをかけているにも関わらずモータ5による駆動力が働いている状態をなくすことができる。これにより、歩行補助車1の安全性が高まる。 In another aspect, the safety control unit 16 is configured to stop the movement of the base body 40 by the drive unit 15 when the brake of the walking auxiliary vehicle 1 is activated. For example, the safety control unit 16 stops supplying power to the drive unit 15. With such a configuration, the operating state of the brake is detected as a user's intention to stop. It is possible to eliminate the state in which the driving force by the motor 5 is working even though the user is braking. Thereby, the safety of the walking auxiliary vehicle 1 increases.
 他の局面において、当該ブレーキの作動が検知されてから予め定められた時間の経過後に、基体40の速度が予め定められた速度以上である場合に、安全制御部16は、基体40が異常の状態であると検知するように構成されている。通常、基体40は、ブレーキをかけると停止するように構成されているが、ブレーキの作動時に基体40が停止しない場合には、歩行補助車1は異常状態にあると検知する。 In another aspect, when the speed of the base body 40 is equal to or higher than a predetermined speed after a predetermined time has elapsed since the operation of the brake is detected, the safety control unit 16 determines that the base body 40 is abnormal. It is comprised so that it may detect that it is in a state. Normally, the base body 40 is configured to stop when the brake is applied. However, if the base body 40 does not stop when the brake is activated, the walking auxiliary vehicle 1 detects that the walking auxiliary vehicle 1 is in an abnormal state.
 他の局面において、作用力が検出された場合において基体40の停止状態が予め定められた時間続いたとき、安全制御部16は、基体40が異常の状態であると検知するように構成されている。このような構成により、作用力が検出されているにも関わらず基体40が一定時間動かない場合は、基体40の駆動輪のロックなどが生じている可能性が高いため、歩行補助車1は異常状態にあると検知できる。 In another aspect, when the acting force is detected, the safety control unit 16 is configured to detect that the base body 40 is in an abnormal state when the stop state of the base body 40 continues for a predetermined time. Yes. With such a configuration, when the base body 40 does not move for a certain period of time even though the acting force is detected, there is a high possibility that the driving wheel of the base body 40 is locked. It can be detected that there is an abnormal condition.
 他の局面において、歩行補助車1は、基体が異常の状態であることを通知するための通知部をさらに備える。通知部は、たとえば、LED(Light Emitting Diode)その他の発光装置、ブザーその他の音声出力装置、モニタその他の表示装置によって実現され得る。このような構成により、異常状態を使用者に知らせることで使用者が異常状態に気づきやすくなる。その結果、不具合の修理、点検など歩行補助車1への対応が速やかにできるため、安全性が高まる。 In another aspect, the walking auxiliary vehicle 1 further includes a notification unit for notifying that the base body is in an abnormal state. The notification unit may be realized by, for example, an LED (Light Emitting Diode) or other light emitting device, a buzzer or other audio output device, a monitor or other display device. With such a configuration, the user is easily aware of the abnormal state by notifying the user of the abnormal state. As a result, since the response to the walking auxiliary vehicle 1 such as repair and inspection of defects can be promptly performed, safety is improved.
 他の局面において、歩行補助車1は、モータ5の電磁ブレーキ(図示しない)をさらに備える。基体40が異常の状態である場合に、安全制御部16は、当該電磁ブレーキを作動させるように構成されている。異常状態時に基体40を停止させるようにモータ5を制御することで、歩行補助車1の安全性が高まる。 In another aspect, the walking auxiliary vehicle 1 further includes an electromagnetic brake (not shown) of the motor 5. When the base body 40 is in an abnormal state, the safety control unit 16 is configured to operate the electromagnetic brake. By controlling the motor 5 so as to stop the base body 40 in an abnormal state, the safety of the walking assist vehicle 1 is increased.
 他の局面において、歩行補助車1は、基体40の動力源(たとえば、モータ5)のスイッチ(図示しない)をさらに備える。基体40が異常の状態であることが検知されると、安全制御部16は、スイッチをオフにするように構成されている。このような構成により、異常状態時に歩行補助車1が停止するように移動制御のシステム全体が停止する。これにより、当該システムの暴走等の不具合の発生が防止されるので、当該システムを用いる歩行補助車1の安全性が高まる。 In another aspect, the walking auxiliary vehicle 1 further includes a switch (not shown) of a power source (for example, the motor 5) of the base body 40. When it is detected that the base body 40 is in an abnormal state, the safety control unit 16 is configured to turn off the switch. With such a configuration, the entire movement control system stops so that the walking auxiliary vehicle 1 stops in an abnormal state. Thereby, since occurrence of problems such as runaway of the system is prevented, the safety of the walking assist vehicle 1 using the system is enhanced.
 <制御構造>
 図4を参照して、本実施の形態に係る歩行補助車1の制御構造について説明する。図4は、歩行補助車1が実行する処理の一部を表すフローチャートである。当該処理は、ある局面では、CPU21がプログラムを実行することにより実現される。なお、当該処理の一部または全部が、固有の処理を実現する回路その他のハードウェアによって実現されてもよい。
<Control structure>
With reference to FIG. 4, a control structure of walking auxiliary vehicle 1 according to the present embodiment will be described. FIG. 4 is a flowchart showing a part of processing executed by the walking auxiliary vehicle 1. In a certain aspect, the processing is realized by the CPU 21 executing a program. Note that part or all of the processing may be realized by a circuit or other hardware that implements unique processing.
 まず、歩行補助車1の使用者がグリップ2を把持して、スタート/停止スイッチ2Aを停止からスタートに切り替えると、CPU21は、当該スタートを検出し、各部に電力を供給して、アシスト機能制御を開始する。 First, when the user of the walking assist vehicle 1 holds the grip 2 and switches the start / stop switch 2A from stop to start, the CPU 21 detects the start and supplies power to each part to control the assist function. To start.
 ステップS102にて、CPU21は、作用力検出部11として、グリップ2の力センサの出力に基づいて、使用者の力がグリップ2に加わっているか否かを判断する。CPU21は、当該力がグリップ2に加えられていると判断すると(ステップS102にてYES)、制御をステップS103に切り替える。そうでない場合には(ステップS102にてNO)、CPU21は、制御をステップS108に切り替える。 In step S <b> 102, the CPU 21 determines whether the user's force is applied to the grip 2 based on the output of the force sensor of the grip 2 as the acting force detection unit 11. When CPU 21 determines that the force is applied to grip 2 (YES in step S102), CPU 21 switches control to step S103. If not (NO in step S102), CPU 21 switches control to step S108.
 ステップS103にて、CPU21は、グリップ2への押力および車輪の回転状態(たとえば、回転方向、回転数等)を検出する。 In step S103, the CPU 21 detects the pressing force on the grip 2 and the rotation state of the wheel (for example, the rotation direction, the rotation speed, etc.).
 ステップS104にて、CPU21は、移動制御部14として、検出された基体40の状態に基づいて、歩行補助車1の制御方法を決定する。スタートスイッチがオンのままである場合、歩行補助車1は、決定された制御方法に基づいて、使用者の歩行をアシストするように作動する。グリップを押す力が強い場合には、CPU21は、アシスト力を強くする。たとえば、使用者が平地を移動している場合、CPU21は、制御方法として、アシスト力が上り坂に比べて小さくなるようにアシスト力を決定する。使用者が上り坂を移動する場合には、CPU21は、基体40の傾斜の大きさに応じて、たとえば、大きさに比例してアシスト力を決定する。決定されるアシスト力は、平地の移動時のアシスト力よりも大きくなる。別の局面において、使用者が下り坂を移動する場合には、CPU21は、基体40の傾斜の大きさに比例して、平地の場合のアシスト力よりも大きくなるように移動方向の反対に作用する抑速力を決定する。 In step S104, the CPU 21 determines, as the movement control unit 14, a control method for the walking assist vehicle 1 based on the detected state of the base body 40. When the start switch remains on, the walking assistance vehicle 1 operates to assist the user's walking based on the determined control method. When the force to push the grip is strong, the CPU 21 increases the assist force. For example, when the user is moving on a flat ground, the CPU 21 determines the assist force so that the assist force is smaller than that of the uphill as a control method. When the user moves uphill, the CPU 21 determines the assist force in proportion to the magnitude of the base 40 according to the magnitude of the inclination of the base body 40, for example. The assist force determined is greater than the assist force when moving on a flat ground. In another aspect, when the user moves downhill, the CPU 21 acts in the direction opposite to the moving direction so as to be larger than the assist force in the case of flat ground in proportion to the inclination of the base body 40. Decide what speed to slow.
 ステップS105にて、CPU21は、移動制御部14として、ステップS104において決定した制御方法に従って駆動部15を制御する。駆動部15がモータ5を駆動すると、歩行補助車1は、アシスト力を発生して移動する。 In step S105, the CPU 21 controls the drive unit 15 as the movement control unit 14 according to the control method determined in step S104. When the drive unit 15 drives the motor 5, the walking assist vehicle 1 moves with an assist force.
 ステップS106にて、CPU21は、安全制御部16として、センサからの出力に基づいて、歩行補助車1の基体40が停止しているか否かを判断する。CPU21は、基体40が停止していると判断すると(ステップS106にてYES)、制御をステップS107に切り替える。そうでない場合には(ステップS106にてNO)、CPU21は、制御をステップS102に戻す。 In step S106, the CPU 21 determines, as the safety control unit 16, whether or not the base body 40 of the walking assist vehicle 1 is stopped based on the output from the sensor. When CPU 21 determines that base body 40 is stopped (YES in step S106), control is switched to step S107. If not (NO in step S106), CPU 21 returns control to step S102.
 ステップS107にて、CPU21は、移動制御部14として、停止命令を駆動部15に送り、駆動部15による駆動を停止させる。その後、制御は、ステップS102に戻される。 In step S107, the CPU 21 sends a stop command to the drive unit 15 as the movement control unit 14, and stops the drive by the drive unit 15. Thereafter, the control is returned to step S102.
 ステップS108にて、CPU21は、停止スイッチが押されたか否かを判断する。CPU21は、停止スイッチが押されたと判断すると(ステップS108にてYES)、歩行補助車1の運転を停止し、制御を終了する。そうでない場合には(ステップS108にてNO)、CPU21は、制御をステップS102に切り替える。 In step S108, the CPU 21 determines whether or not the stop switch has been pressed. When CPU 21 determines that the stop switch has been pressed (YES in step S108), CPU 21 stops driving auxiliary walking vehicle 1 and ends the control. If not (NO in step S108), CPU 21 switches control to step S102.
 以上のようにして、本実施の形態によると、歩行補助車1は、停止中にモータ5が駆動して歩行補助車1を前進させることを禁止するので、使用者の意思に反して歩行補助車1が移動しなくなる。これにより、安全性が高まる。 As described above, according to the present embodiment, the walking assistance vehicle 1 prohibits the motor 5 from being driven to advance the walking assistance vehicle 1 while it is stopped. Car 1 stops moving. This increases safety.
 [第2の実施の形態]
 以下、第2の実施の形態について説明する。本実施の形態に係る歩行補助車500は、上り坂を移動している場合に、駆動部15を停止させることなく駆動力を弱くする機能を有する点で、第1の実施の形態に係る歩行補助車1と異なる。すなわち、第1の実施の形態ではグリップに力がかかっていても車輪が停止している場合には駆動力を作用させないのに対し、第2の実施の形態では上り坂であれば、駆動力を軽く作用させる点で、本実施の形態に係る歩行補助車50は、第1の実施の形態に係る歩行補助車1と異なる。
[Second Embodiment]
Hereinafter, a second embodiment will be described. The walking auxiliary vehicle 500 according to the present embodiment has a function of weakening the driving force without stopping the driving unit 15 when moving uphill, and the walking according to the first embodiment. Different from auxiliary vehicle 1. That is, in the first embodiment, the driving force is not applied when the wheel is stopped even if a force is applied to the grip, whereas the driving force is not applied in the second embodiment if it is an uphill. The walk auxiliary vehicle 50 according to the present embodiment is different from the walk auxiliary vehicle 1 according to the first embodiment in that
 <ハードウェア構成>
 図5を参照して、第2の実施の形態に係る歩行補助車500の構成について説明する。図5は、歩行補助車500の外観を表す図である。歩行補助車500は、第1の実施の形態に係る歩行補助車1の構成に加えて、傾斜センサ6をさらに備える。傾斜センサ6は、移動中の歩行補助車500の傾斜の程度を検出する。
<Hardware configuration>
With reference to FIG. 5, the structure of the walking auxiliary vehicle 500 which concerns on 2nd Embodiment is demonstrated. FIG. 5 is a diagram illustrating the appearance of the walking assistance vehicle 500. The walking auxiliary vehicle 500 further includes an inclination sensor 6 in addition to the configuration of the walking auxiliary vehicle 1 according to the first embodiment. The inclination sensor 6 detects the degree of inclination of the walking auxiliary vehicle 500 that is moving.
 歩行補助車500の他のハードウェア構成は、第1の実施の形態に係る歩行補助車1のハードウェア構成と同じである。したがって、ハードウェア構成の説明は、繰り返さない。 Other hardware configurations of the walking assistance vehicle 500 are the same as the hardware configuration of the walking assistance vehicle 1 according to the first embodiment. Therefore, the description of the hardware configuration will not be repeated.
 <機能構成>
 図6を参照して、歩行補助車500によって実現される機能について説明する。図6は、歩行補助車500の機能構成を表す図である。歩行補助車500は、第1の実施の形態に係る歩行補助車1の構成に加えて、傾斜検出部17をさらに備える。傾斜検出部17は、たとえば、傾斜センサ6によって実現される。
<Functional configuration>
With reference to FIG. 6, the function implement | achieved by the walk auxiliary vehicle 500 is demonstrated. FIG. 6 is a diagram illustrating a functional configuration of the walking assist vehicle 500. The walking auxiliary vehicle 500 further includes an inclination detection unit 17 in addition to the configuration of the walking auxiliary vehicle 1 according to the first embodiment. The inclination detection unit 17 is realized by the inclination sensor 6, for example.
 傾斜検出部17は、歩行補助車500の傾斜の程度を検出する。たとえば、傾斜検出部17は、上り5度、あるいは、下り坂10度のように傾斜の程度を検出する。検出された歩行補助車500の傾斜の程度は、安全制御部16に入力される。安全制御部16は、歩行補助車500の傾斜の程度に応じて駆動部15によるモータ5の運転を制御する。 The inclination detector 17 detects the degree of inclination of the walking assist vehicle 500. For example, the inclination detector 17 detects the degree of inclination such as 5 degrees uphill or 10 degrees downhill. The detected degree of inclination of the walking assist vehicle 500 is input to the safety control unit 16. The safety control unit 16 controls the driving of the motor 5 by the driving unit 15 according to the degree of inclination of the walking assist vehicle 500.
 ある局面において、基体40の状態は、基体40の傾きとして検出される。基体40が上り傾斜の状態にあり、基体40の進行方向への作用力が検出された場合に、安全制御部16は、基体40が停止している場合においても、基体40が進行方向に移動するようにたとえば、通常のアシスト時に作用する力よりも弱い力が作用するように移動制御部14を制御する。移動制御部14は、安全制御部16からの信号に基づいて駆動部15を制御する。これにより、歩行補助車500の前進をアシストする力が働くため、上り坂で停止状態からの発進がし易くなる。 In one aspect, the state of the base body 40 is detected as the inclination of the base body 40. When the base body 40 is in an upwardly inclined state and an acting force in the traveling direction of the base body 40 is detected, the safety control unit 16 moves the base body 40 in the traveling direction even when the base body 40 is stopped. For example, the movement control unit 14 is controlled so that a force that is weaker than the force that acts during normal assisting acts. The movement control unit 14 controls the drive unit 15 based on a signal from the safety control unit 16. Thereby, since the force which assists the advance of the walk auxiliary vehicle 500 acts, it becomes easy to start from a stop state on an uphill.
 <制御構造>
 図7を参照して、歩行補助車500の制御構造について説明する。図7は、歩行補助車500が実行する処理の一部を表すフローチャートである。なお、第1の実施の形態に係る処理と同一の処理には同一のステップ番号を付してある。したがって、同一の処理の説明は繰り返さない。
<Control structure>
With reference to FIG. 7, a control structure of walking auxiliary vehicle 500 will be described. FIG. 7 is a flowchart showing a part of processing executed by walking assist vehicle 500. In addition, the same step number is attached | subjected to the process same as the process which concerns on 1st Embodiment. Therefore, the description of the same process will not be repeated.
 ステップS106にて、CPU21は、安全制御部16として、センサからの出力に基づいて、基体40が停止しているか否かを判断する。CPU21は、基体40が停止していると判断すると(ステップS106にてYES)、制御をステップS110に切り替える。そうでない場合には(ステップS106にてNO)、CPU21は、制御をステップS102に戻す。 In step S106, the CPU 21 as the safety control unit 16 determines whether or not the base body 40 is stopped based on the output from the sensor. When CPU 21 determines that base body 40 is stopped (YES in step S106), CPU 21 switches control to step S110. If not (NO in step S106), CPU 21 returns control to step S102.
 ステップS110にて、CPU21は、安全制御部16として、傾斜検出部17の出力に基づいて、歩行補助車500が上り坂にあるか否かを判断する。CPU21は、歩行補助車500が上り坂にあると判断すると(ステップS110にてYES)、制御をステップS111に切り替える。そうでない場合には(ステップS110にてNO)、CPU21は、制御をステップS107に切り替える。 In step S110, the CPU 21 as the safety control unit 16 determines whether or not the walking assistance vehicle 500 is on an uphill, based on the output of the inclination detection unit 17. When CPU 21 determines that walking auxiliary vehicle 500 is on the uphill (YES in step S110), CPU 21 switches control to step S111. If not (NO in step S110), CPU 21 switches control to step S107.
 ステップS111にて、CPU21は、安全制御部16として、モータ5の駆動力を低減するように駆動部15に信号を送る。駆動部15は、その命令に基づいて、モータ5に供給される電力を少なくする。 In step S111, the CPU 21 sends a signal to the driving unit 15 as the safety control unit 16 so as to reduce the driving force of the motor 5. The drive unit 15 reduces the power supplied to the motor 5 based on the command.
 <実施の形態の効果>
 以上のようにして、第2の実施の形態によると、歩行補助車500が上り坂において停止している場合、少なくとも逆行しない程度の駆動力がアシスト力として作用するに留まる。これにより、使用者が上り坂で停止したいという意思に逆らって歩行補助車500が前進すること、あるいは、歩行補助車500が使用者に向かってずり下がることが防止され得る。
<Effect of Embodiment>
As described above, according to the second embodiment, when the walking assist vehicle 500 is stopped on an uphill, at least a driving force that does not reversely acts as an assist force. Thereby, it is possible to prevent the walking assistance vehicle 500 from moving forward against the intention of the user to stop on the uphill, or the walking assistance vehicle 500 from sliding down toward the user.
 [第3の実施の形態]
 以下、第3の実施の形態について説明する。第3の実施の形態に係る歩行補助車800は、ブレーキの作動時に歩行補助車800の駆動を制御する構成を備える点で、歩行補助車1,500と異なる。なお、歩行補助車800のハードウェア構成は、歩行補助車1のハードウェア構成により、あるいは、歩行補助車500のハードウェア構成により実現される。したがって、歩行補助車800のハードウェア構成の説明は、繰り返さない。
[Third Embodiment]
The third embodiment will be described below. The walking auxiliary vehicle 800 according to the third embodiment is different from the walking auxiliary vehicle 1,500 in that it includes a configuration for controlling the driving of the walking auxiliary vehicle 800 when the brake is operated. Note that the hardware configuration of the walking auxiliary vehicle 800 is realized by the hardware configuration of the walking auxiliary vehicle 1 or the hardware configuration of the walking auxiliary vehicle 500. Therefore, description of the hardware configuration of walking assistance vehicle 800 will not be repeated.
 <機能構成>
 図8を参照して、歩行補助車800の構成について説明する。図8は、歩行補助車800によって実現される機能の構成を表すブロック図である。歩行補助車800は、図3に示される構成に加えて、ブレーキ検出部18をさらに備える。
<Functional configuration>
With reference to FIG. 8, the structure of the walking assistance vehicle 800 is demonstrated. FIG. 8 is a block diagram showing a configuration of functions realized by walking auxiliary vehicle 800. The walking assistance vehicle 800 further includes a brake detection unit 18 in addition to the configuration shown in FIG. 3.
 ブレーキ検出部18は、歩行補助車800のブレーキレバー7(図1)が作動したことを検出する。検出結果は、安全制御部16に入力される。 The brake detection unit 18 detects that the brake lever 7 (FIG. 1) of the walking auxiliary vehicle 800 has been operated. The detection result is input to the safety control unit 16.
 <制御構造>
 図9を参照して、歩行補助車800の制御構造について説明する。図9は、歩行補助車900が実行する処理の一部を表すフローチャートである。なお、第1の実施の形態に係る処理と同一の処理には同一のステップ番号を付してある。したがって、同一の処理の説明は繰り返さない。
<Control structure>
With reference to FIG. 9, a control structure of walking auxiliary vehicle 800 will be described. FIG. 9 is a flowchart showing a part of processing executed by walking auxiliary vehicle 900. In addition, the same step number is attached | subjected to the process same as the process which concerns on 1st Embodiment. Therefore, the description of the same process will not be repeated.
 ステップS106にて、CPU21は、安全制御部16として、センサからの出力に基づいて、基体40が停止しているか否かを判断する。CPU21は、基体40が停止していると判断すると(ステップS106にてYES)、制御をステップS107に切り替える。そうでない場合には(ステップS106にてNO)、CPU21は、制御をステップS112に切り替える。 In step S106, the CPU 21 as the safety control unit 16 determines whether or not the base body 40 is stopped based on the output from the sensor. When CPU 21 determines that base body 40 is stopped (YES in step S106), control is switched to step S107. If not (NO in step S106), CPU 21 switches control to step S112.
 ステップS112にて、CPU21は、ブレーキ検出部18からの信号に基づいて、ブレーキレバー7が作動しているかどうかを判断する。CPU21は、ブレーキレバー7が作動していると判断すると(ステップS112にてYES)、制御をステップS107に切り替える。そうでない場合には(ステップS112にてNO)、CPU21は、制御をステップS102に戻す。 In step S112, the CPU 21 determines whether or not the brake lever 7 is operating based on a signal from the brake detection unit 18. When CPU 21 determines that brake lever 7 is operating (YES in step S112), control is switched to step S107. If not (NO in step S112), CPU 21 returns control to step S102.
 ステップS107にて、CPU21は、移動制御部14として、停止命令を駆動部15に送り、駆動部15にモータ5の駆動を停止させる。歩行補助車1は、停止の状態を確実に維持する。その後、制御は、ステップS102に戻される。 In step S107, the CPU 21 sends a stop command to the drive unit 15 as the movement control unit 14, and causes the drive unit 15 to stop driving the motor 5. The walking auxiliary vehicle 1 reliably maintains the stopped state. Thereafter, the control is returned to step S102.
 以上のようにして、本実施の形態によれば、歩行補助車800が停止している場合に(ステップS106にてYES)、ブレーキの作動が検出されると(ステップS112にてYES)、歩行補助車800のモータ5は回転しなくなるので、歩行補助車800が突然動き出すことがなくなる。これにより、使用者の意に反して歩行補助車800が移動することを防止できるので、歩行補助車800の安全性が高まる。 As described above, according to the present embodiment, when walking assist vehicle 800 is stopped (YES in step S106), if the operation of the brake is detected (YES in step S112), walking Since the motor 5 of the auxiliary vehicle 800 does not rotate, the walking auxiliary vehicle 800 does not start suddenly. Thereby, since it can prevent that the walk auxiliary vehicle 800 moves against a user's will, the safety of the walk auxiliary vehicle 800 increases.
 [第4の実施の形態]
 以下、第4の実施の形態について説明する。本実施の形態に係る歩行補助車は、異常状態の検知機能を備える点で、前述の各実施の形態に係る歩行補助車と異なる。より具体的には、本実施の形態に係る歩行補助車は、各センサによって検知される状態と、当該歩行補助車の基体40の動作(速度、進行方向)との相関がないと認められる場合に、歩行補助車が異常の状態であることを検知する。そして、歩行補助車1は、異常の状態が検知された場合に、安全制御を行なう。
[Fourth Embodiment]
Hereinafter, a fourth embodiment will be described. The walking assistance vehicle according to the present embodiment is different from the walking assistance vehicle according to each of the above-described embodiments in that it has an abnormal state detection function. More specifically, when the walking assistance vehicle according to the present embodiment is recognized as having no correlation between the state detected by each sensor and the operation (speed, traveling direction) of the base 40 of the walking assistance vehicle. In addition, it is detected that the walking assistance vehicle is in an abnormal state. Then, the walking assist vehicle 1 performs safety control when an abnormal state is detected.
 なお、本実施の形態に係る歩行補助車のハードウェア構成は、前述の各実施の形態に係る歩行補助車のハードウェア構成と同様である。したがって、以下、前述の実施の形態に係る歩行補助車の構成に基づいて、第4の実施の形態に係る歩行補助車を説明する。 Note that the hardware configuration of the walking assistance vehicle according to the present embodiment is the same as the hardware configuration of the walking assistance vehicle according to each of the embodiments described above. Accordingly, the walking assistance vehicle according to the fourth embodiment will be described below based on the configuration of the walking assistance vehicle according to the above-described embodiment.
 ある局面において、安全制御部16は、各検出部(たとえば、作用力検出部11、速度検出部12、進行方向検出部13)から送られる信号から検知される状態と基体40の動作とが相関しているか否かを判断する。当該状態と当該動作との相関が取れていない場合、安全制御部16は、歩行補助車1が異常状態にあることを検知する。 In one aspect, the safety control unit 16 correlates a state detected from a signal sent from each detection unit (for example, the acting force detection unit 11, the speed detection unit 12, and the traveling direction detection unit 13) with the operation of the base body 40. Judge whether or not. When the correlation between the state and the motion is not obtained, the safety control unit 16 detects that the walking assist vehicle 1 is in an abnormal state.
 たとえば、通常、基体40は、使用者が意図した方向、すなわち、グリップ2が押された方向に進むため、作用力検出部11によって検出された作用力の方向と進行方向検出部13によって検出された基体40の進行方向とが逆の場合、車輪または基体40に何らかの外力がかかっているか、作用力検出部11が故障している等のように、歩行補助車1が異常状態にあると想定される。 For example, the base body 40 normally moves in the direction intended by the user, that is, in the direction in which the grip 2 is pressed, and therefore is detected by the direction of the acting force detected by the acting force detector 11 and the traveling direction detector 13. When the traveling direction of the base body 40 is opposite, it is assumed that the walking auxiliary vehicle 1 is in an abnormal state such that some external force is applied to the wheel or the base body 40 or the acting force detection unit 11 is out of order. Is done.
 また、別の局面において、グリップ2が押されて作用力が検出されているにも関わらず、一定時間、基体40が進行方向に動いていない場合には、車輪が障害物などでロックされた状態にあるか、作用力検出部11が故障している等のように、歩行補助車1が異常状態にあると想定される。 In another aspect, the wheel is locked by an obstacle or the like when the base body 40 has not moved in the traveling direction for a certain period of time despite the fact that the grip 2 is pushed and the acting force is detected. It is assumed that the walking assistance vehicle 1 is in an abnormal state, such as being in a state or having a malfunction in the acting force detector 11.
 さらに別の局面において、ブレーキが一定時間作動しているにも関わらず、基体40が移動している場合は、車輪または基体40に何らかの外力がかかっているか、ブレーキ(図示しない)の故障や作用力検出部11の不具合等のように、歩行補助車1が異常状態にあると想定される。 In still another aspect, when the base body 40 is moving even though the brake has been operating for a certain period of time, some external force is applied to the wheel or the base body 40, or a brake or a malfunction (not shown) is detected. It is assumed that the walking assistance vehicle 1 is in an abnormal state, such as a malfunction of the force detection unit 11.
 安全制御部16は、このような異常状態を検知した場合、安全を確保するための制御を行う。 The safety control unit 16 performs control for ensuring safety when such an abnormal state is detected.
 <制御構造>
 図10を参照して、本実施の形態に係る歩行補助車1の制御構造について説明する。図10は、歩行補助車1が実行する処理の一部を表すフローチャートである。なお、第1の実施の形態に係る処理と同一の処理には同一のステップ番号を付してある。したがって、同一の処理の説明は繰り返さない。
<Control structure>
With reference to FIG. 10, a control structure of walking auxiliary vehicle 1 according to the present embodiment will be described. FIG. 10 is a flowchart showing a part of processing executed by the walking auxiliary vehicle 1. In addition, the same step number is attached | subjected to the process same as the process which concerns on 1st Embodiment. Therefore, the description of the same process will not be repeated.
 ステップS113にて、CPU21は、安全制御部16として、各センサから送られる各信号に基づいて、歩行補助車1の異常状態を検知したか否かを判断する。CPU21は、歩行補助車1の異常状態を検知したと判断すると(ステップS113にてYES)、制御をステップS114に切り替える。そうでない場合には(ステップS113にてNO)、CPU21は、制御をステップS102に戻す。 In step S113, the CPU 21 determines, as the safety control unit 16, whether or not an abnormal state of the walking auxiliary vehicle 1 has been detected based on each signal sent from each sensor. When CPU 21 determines that an abnormal state of walking auxiliary vehicle 1 has been detected (YES in step S113), control is switched to step S114. If not (NO in step S113), CPU 21 returns control to step S102.
 ステップS114にて、CPU21は、安全制御を実行する。たとえば、CPU21は、安全制御部16として、スピーカ(図示しない)からアラーム音等を出力し、使用者に異常の発生を報知する。別の局面において、CPU21は、安全制御部16として、モータ5の電磁ブレーキによるブレーキ力を作動させ得る。さらに別の局面において、CPU21は、歩行補助車1のシステムの電源を強制的にオフし得る。なお、安全制御の態様は、検知される異常状態に応じて異なっていてもよく、あるいは、異常状態が続く時間の経過とともに変更されてもよい。 In step S114, the CPU 21 executes safety control. For example, the CPU 21 outputs an alarm sound or the like from a speaker (not shown) as the safety control unit 16 to notify the user of the occurrence of an abnormality. In another aspect, the CPU 21 can act as a safety control unit 16 and a braking force by an electromagnetic brake of the motor 5. In yet another aspect, the CPU 21 can forcibly turn off the power of the system of the walking assistance vehicle 1. Note that the aspect of the safety control may vary depending on the detected abnormal state, or may be changed with the passage of time that the abnormal state continues.
 以上のようにして、本実施の形態に係る歩行補助車1は、安全制御機能を有するので、異常状態が検出された場合であっても、使用者の安全を担保し得る。 As described above, since the walking auxiliary vehicle 1 according to the present embodiment has a safety control function, it is possible to ensure the safety of the user even when an abnormal state is detected.
 なお、上述の各実施の形態は、適宜選択的に組み合わせてもよい。また、各実施の形態に係る歩行補助車を実現するための機能は、ある局面において、プログラムを格納するメモリおよび当該プログラムに含まれる命令を実行するプロセッサにより実現される。当該プログラムは、歩行補助車1の不揮発性のデータ記録媒体(たとえばフラッシュメモリ)に予め格納されている。別の局面において、歩行補助車が通信機能を有する場合には、当該プログラムは、インターネットその他のネットワークを介して、当該プログラムの提供者からダウンロード可能であってもよい。この場合、通信方式は特に限定されない。さらに別の局面において、当該機能は、各処理を実現する回路の組み合わせによっても実現され得る。 It should be noted that the above-described embodiments may be selectively combined as appropriate. Moreover, the function for implement | achieving the walk auxiliary vehicle which concerns on each embodiment is implement | achieved by the processor which performs the command contained in the memory which stores a program, and the said program in a certain situation. The program is stored in advance in a nonvolatile data recording medium (for example, a flash memory) of the walking assist vehicle 1. In another aspect, when the walking assistance vehicle has a communication function, the program may be downloadable from a provider of the program via the Internet or other networks. In this case, the communication method is not particularly limited. In still another aspect, the function can be realized by a combination of circuits that realize each process.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,500,800,900 歩行補助車、2 グリップ、2A スタート/停止スイッチ、3 前輪、4 後輪、5 モータ、6 傾斜センサ、7 ブレーキレバー、10 制御部、11 作用力検出部、12 速度検出部、13 進行方向検出部、14 移動制御部、15 駆動部、16 安全制御部、17 傾斜検出部、18 ブレーキ検出部、21 CPU、22 メモリ、23 入力部、24 出力部、25 電池部、26 バッグ、40 基体、41 左フレーム、42 右フレーム、43 フレーム。 1,500,800,900 Walk auxiliary vehicle, 2 grip, 2A start / stop switch, 3 front wheel, 4 rear wheel, 5 motor, 6 tilt sensor, 7 brake lever, 10 control unit, 11 acting force detection unit, 12 speed Detection unit, 13 Travel direction detection unit, 14 Movement control unit, 15 Drive unit, 16 Safety control unit, 17 Inclination detection unit, 18 Brake detection unit, 21 CPU, 22 Memory, 23 Input unit, 24 Output unit, 25 Battery unit , 26 bag, 40 base, 41 left frame, 42 right frame, 43 frame.

Claims (12)

  1.  基体と、
     前記基体を移動させるための駆動部と、
     前記基体に作用する作用力を検出するための作用力検出部と、
     前記基体の状態を検出するための状態検出部と、
     前記作用力検出部により検出される作用力に基づいて、前記駆動部による前記基体の移動を制御するための移動制御部と、
     前記作用力が働く方向と、前記基体の状態とに応じて、前記駆動部による前記基体の移動を停止するための安全制御部とを備える、歩行補助装置。
    A substrate;
    A drive unit for moving the substrate;
    An action force detector for detecting an action force acting on the substrate;
    A state detector for detecting the state of the substrate;
    A movement control unit for controlling movement of the base body by the driving unit based on the acting force detected by the acting force detection unit;
    A walking assist device, comprising: a safety control unit for stopping movement of the base body by the driving unit according to a direction in which the acting force works and a state of the base body.
  2.  前記状態は、前記基体の速度を含み、
     前記基体が停止している場合に、前記安全制御部は、前記駆動部による前記基体の移動を停止するように構成されている、請求項1に記載の歩行補助装置。
    The condition includes the speed of the substrate;
    The walking assistance device according to claim 1, wherein the safety control unit is configured to stop the movement of the base body by the driving unit when the base body is stopped.
  3.  前記作用力の方向と前記基体の進行方向が逆の場合に、前記安全制御部は、前記基体が異常の状態であると検知するように構成されている、請求項2に記載の歩行補助装置。 The walking assistance device according to claim 2, wherein the safety control unit is configured to detect that the base body is in an abnormal state when the direction of the acting force is opposite to the traveling direction of the base body. .
  4.  前記状態は、前記基体の傾きを含み、
     前記基体が上り傾斜の状態にあり、前記基体の進行方向への作用力が検出された場合に、前記安全制御部は、前記基体が進行方向に移動するように前記移動制御部を制御する、請求項1に記載の歩行補助装置。
    The state includes the inclination of the substrate,
    The safety control unit controls the movement control unit so that the base body moves in the traveling direction when the base body is in an upwardly inclined state and an acting force in the traveling direction of the base body is detected; The walking assist device according to claim 1.
  5.  前記基体を停止させるブレーキをさらに備え、
     前記状態検出部は、前記ブレーキが作動したことを検知するブレーキ検知部を含み、
     前記ブレーキが作動した場合に、前記安全制御部は、前記駆動部による前記基体の移動を停止するように構成されている、請求項1に記載の歩行補助装置。
    A brake for stopping the base;
    The state detection unit includes a brake detection unit that detects that the brake is operated,
    The walking assistance device according to claim 1, wherein the safety control unit is configured to stop the movement of the base body by the driving unit when the brake is operated.
  6.  前記ブレーキの作動が検知されてから予め定められた時間の経過後に、前記基体の速度が予め定められた速度以上である場合に、前記安全制御部は、前記基体が異常の状態であると検知するように構成されている、請求項5に記載の歩行補助装置。 The safety control unit detects that the substrate is in an abnormal state when the speed of the base body is equal to or higher than a predetermined speed after a predetermined time has elapsed since the operation of the brake was detected. The walking assist device according to claim 5, wherein the walking assist device is configured to perform.
  7.  前記作用力が検出された場合において前記基体の停止状態が予め定められた時間続いたとき、前記安全制御部は、前記基体が異常の状態であると検知するように構成されている、請求項1~5のいずれかに記載の歩行補助装置。 The safety control unit is configured to detect that the base body is in an abnormal state when the stop state of the base body continues for a predetermined time when the acting force is detected. The walking assist device according to any one of 1 to 5.
  8.  前記基体が異常の状態であることを通知するための通知部をさらに備える、請求項6または7に記載の歩行補助装置。 The walking assistance device according to claim 6 or 7, further comprising a notification unit for notifying that the base body is in an abnormal state.
  9.  前記駆動部は、モータを含み、
     前記歩行補助装置は、前記モータの電磁ブレーキをさらに備え、
     前記基体が異常の状態である場合に、前記安全制御部は、前記電磁ブレーキを作動させるように構成されている、請求項6~8のいずれかに記載の歩行補助装置。
    The drive unit includes a motor,
    The walking assist device further includes an electromagnetic brake of the motor,
    The walking assist device according to any one of claims 6 to 8, wherein the safety control unit is configured to operate the electromagnetic brake when the base is in an abnormal state.
  10.  前記基体の動力源のスイッチをさらに備え、
     前記基体が異常の状態であることが検知されると、前記安全制御部は、前記スイッチをオフにするように構成されている、請求項6~9のいずれかに記載の歩行補助装置。
    A power source switch for the base body,
    The walking assistance device according to any one of claims 6 to 9, wherein the safety control unit is configured to turn off the switch when it is detected that the base body is in an abnormal state.
  11.  歩行補助装置を制御するための方法であって、
     前記歩行補助装置を移動させるステップと、
     前記歩行補助装置に作用する作用力を検出するステップと、
     前記歩行補助装置の状態を検出するステップと、
     前記検出される作用力に基づいて、前記歩行補助装置の移動を制御するステップと、
     前記作用力が働く方向と、前記歩行補助装置の状態とに応じて、前記歩行補助装置の移動の停止するステップとを含む、方法。
    A method for controlling a walking assist device, comprising:
    Moving the walking aid device;
    Detecting an acting force acting on the walking assist device;
    Detecting the state of the walking assist device;
    Controlling the movement of the walking assistance device based on the detected acting force;
    The method includes the step of stopping the movement of the walking assistance device according to the direction in which the acting force works and the state of the walking assistance device.
  12.  コンピュータに歩行補助装置を制御させるためのプログラムであって、前記プログラムは前記コンピュータに、
     前記歩行補助装置を移動させるステップと、
     前記歩行補助装置に作用する作用力を検出するステップと、
     前記歩行補助装置の状態を検出するステップと、
     前記検出される作用力に基づいて、前記歩行補助装置の移動を制御するステップと、
     前記作用力が働く方向と、前記歩行補助装置の状態とに応じて、前記歩行補助装置の移動の停止するステップとを実行させる、プログラム。
    A program for causing a computer to control a walking assistance device, wherein the program is
    Moving the walking aid device;
    Detecting an acting force acting on the walking assist device;
    Detecting the state of the walking assist device;
    Controlling the movement of the walking assistance device based on the detected acting force;
    The program which performs the step which stops the movement of the said walking assistance apparatus according to the direction which the said action force works, and the state of the said walking assistance apparatus.
PCT/JP2015/052301 2014-08-27 2015-01-28 Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device WO2016031262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172970 2014-08-27
JP2014172970A JP5922200B2 (en) 2014-08-27 2014-08-27 Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device

Publications (1)

Publication Number Publication Date
WO2016031262A1 true WO2016031262A1 (en) 2016-03-03

Family

ID=55399171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052301 WO2016031262A1 (en) 2014-08-27 2015-01-28 Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device

Country Status (2)

Country Link
JP (1) JP5922200B2 (en)
WO (1) WO2016031262A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10864127B1 (en) 2017-05-09 2020-12-15 Pride Mobility Products Corporation System and method for correcting steering of a vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131377A (en) * 1995-11-07 1997-05-20 Kubota Corp Power-assisted handcart
WO1998041182A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Walking assist device
JP2000024061A (en) * 1998-07-10 2000-01-25 Technol Res Assoc Of Medical & Welfare Apparatus Auxiliary device for walking
JP2000139002A (en) * 1998-10-29 2000-05-16 Japan Airlines Co Ltd Transporter
JP2003290302A (en) * 2002-04-03 2003-10-14 Hitachi Ltd Walking aid device and control program thereof
JP2011072506A (en) * 2009-09-30 2011-04-14 Japan Health Science Foundation Walking assistance device
JP2013169871A (en) * 2012-02-20 2013-09-02 Nec Communication Systems Ltd Brake control device of man-powered vehicle, and man-powered vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131377A (en) * 1995-11-07 1997-05-20 Kubota Corp Power-assisted handcart
WO1998041182A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Walking assist device
JP2000024061A (en) * 1998-07-10 2000-01-25 Technol Res Assoc Of Medical & Welfare Apparatus Auxiliary device for walking
JP2000139002A (en) * 1998-10-29 2000-05-16 Japan Airlines Co Ltd Transporter
JP2003290302A (en) * 2002-04-03 2003-10-14 Hitachi Ltd Walking aid device and control program thereof
JP2011072506A (en) * 2009-09-30 2011-04-14 Japan Health Science Foundation Walking assistance device
JP2013169871A (en) * 2012-02-20 2013-09-02 Nec Communication Systems Ltd Brake control device of man-powered vehicle, and man-powered vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10864127B1 (en) 2017-05-09 2020-12-15 Pride Mobility Products Corporation System and method for correcting steering of a vehicle

Also Published As

Publication number Publication date
JP5922200B2 (en) 2016-05-24
JP2016047123A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
JP5795664B1 (en) Walking assist device
US10800484B2 (en) Scooter, control device and controlling method
JP7295086B2 (en) stroller frames and strollers
US20150066277A1 (en) Manually propelled vehicle
JP6055020B2 (en) Walking assistance vehicle
JP2009183407A (en) Walking aid device
WO2016158558A1 (en) Walking assistance vehicle and program for control of walking assistance vehicle
WO2011108458A1 (en) Vehicle seatbelt device
JP6482349B2 (en) Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device
JP5395276B2 (en) Assist cart and control method thereof
JP5922200B2 (en) Walking assistance device, method for controlling walking assistance device, and program for causing computer to control walking assistance device
JP5905553B1 (en) Walking assistance vehicle
JP2010007818A (en) Brake device
JP5932385B2 (en) Brake control device for man-powered vehicle and man-powered vehicle
JP2010247741A (en) Coaxial motorcycle
WO2016121465A1 (en) Walking assisting vehicle
CN104742887B (en) Complemental brake system and motor vehicle braking system
JP2022105801A (en) Driving method for power-assisted carriage
JP2003320935A (en) Electric-motor vehicle
CN114901233A (en) Electrically controlled vehicle
JP2001010523A (en) Steering control device of fork lift
JP2017036009A (en) Bicycle speed control device and bicycle
JP2001025101A (en) Safety controller of electric vehicle
JP2022541204A (en) stroller
JP4505694B2 (en) Electric car hand control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835754

Country of ref document: EP

Kind code of ref document: A1