WO2016030956A1 - Sprinkler head - Google Patents

Sprinkler head Download PDF

Info

Publication number
WO2016030956A1
WO2016030956A1 PCT/JP2014/072214 JP2014072214W WO2016030956A1 WO 2016030956 A1 WO2016030956 A1 WO 2016030956A1 JP 2014072214 W JP2014072214 W JP 2014072214W WO 2016030956 A1 WO2016030956 A1 WO 2016030956A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprinkler head
nozzle
point alloy
melting point
heat
Prior art date
Application number
PCT/JP2014/072214
Other languages
French (fr)
Japanese (ja)
Inventor
蔵寿 佐々木
Original Assignee
千住スプリンクラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住スプリンクラー株式会社 filed Critical 千住スプリンクラー株式会社
Priority to PCT/JP2014/072214 priority Critical patent/WO2016030956A1/en
Priority to TW104124704A priority patent/TW201607583A/en
Publication of WO2016030956A1 publication Critical patent/WO2016030956A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • A62C37/10Releasing means, e.g. electrically released
    • A62C37/11Releasing means, e.g. electrically released heat-sensitive
    • A62C37/12Releasing means, e.g. electrically released heat-sensitive with fusible links

Definitions

  • an object of the present invention is to provide a sprinkler head that has strength, durability, or thermal conductivity and is reduced in weight.
  • the present invention provides the following sprinkler head. That is, it comprises a main body having a nozzle through which fire-extinguishing water passes, a valve that closes the outlet of the nozzle, and a thermal decomposition section that is locked to the main body and holds the valve at the outlet of the nozzle.
  • a sprinkler head that uses a low melting point alloy that melts by the heat of a fire and uses a material containing carbon nanotubes as a component of the thermal decomposition part.
  • the effect of achieving both durability and weight reduction and improving the heat conduction performance can be obtained.
  • the effects of carbon nanotubes include improved heat conduction performance, improved mechanical strength, improved corrosion resistance, and the like.
  • the coating formed by applying carbon nanotubes to a component is brought into direct contact with a low melting point alloy, or a coating made of carbon nanotubes is formed on the surface of the component, so that Can be improved, and heat transfer loss between a plurality of components can be reduced.
  • the thermal conductivity is improved. Furthermore, when a metal plate is embedded in the above-described material having good thermal conductivity and a part is molded, heat absorbed by the surface of the part can be transmitted to the metal plate. Further, a part of the metal plate can be exposed on the surface of the component, and the exposed portion can be joined to another component by a low melting point alloy.
  • the strength of the component can be improved by mixing fine steel pieces such as stainless steel or glass fiber as the metal contained in the resin material. Further, stainless steel and glass fiber have a heat insulating effect because they have poor heat conduction performance compared to iron and copper.
  • Parts coated with carbon nanotubes as described above and parts formed from resin materials containing carbon nanotubes are not only used for sprinkler head components but also for sprinkler head accessories, such as sprinkler head covers and sealing plates. Is also applicable.
  • a sprinkler head cover attached to a sprinkler head includes a retainer connected to the sprinkler head and a cover plate that covers the sprinkler head, and the cover plate and the retainer are low melting point alloys that are melted by the heat of a fire. Therefore, by using a material containing carbon nanotubes for the cover plate, it is possible to improve the thermal conductivity to the low melting point alloy and to reduce the weight of the cover plate.
  • Sectional drawing of the sprinkler head of 1st Embodiment. The exploded sectional view of a valve, a holder, and an elastic member.
  • the principal part sectional drawing of FIG. FIG. 6 is an exploded cross-sectional view of FIG. 5.
  • Sectional drawing of the Example which provided the film on the surface of the lower piece.
  • Sectional drawing of the sprinkler head of 3rd Embodiment Sectional drawing of the sprinkler head of 3rd Embodiment.
  • the main body 1 is cylindrical and has a nozzle 11 inside.
  • a male screw 12 is formed outside the main body 1, and the male screw 12 is screwed into a female screw of a fire extinguishing equipment pipe (not shown).
  • a valve seat 13 is formed at the discharge side end portion 11 a of the nozzle 11.
  • the valve seat 13 is formed as a recess 13 that is recessed on the nozzle 11 side, and includes a bottom surface 13a and an inner peripheral surface 13b.
  • the main body 1 is provided with two arms 14 and 14 extending in the direction of discharging water as “extinguishing liquid” discharged from the nozzle 11 from the vicinity of the valve seat 13.
  • the arms 14, 14 are curved and extend from the vicinity of the valve seat 13 and are connected on the extension of the central axis of the nozzle 11, and the connecting portion is a boss 15.
  • the boss 15 has a female screw 16 formed on a line AA that is the central axis of the nozzle 11.
  • a set screw 17 having no screw head is screwed to the female screw 16.
  • the valve 2 has a disk shape, and a sealing material 21 is provided on the surface on the nozzle 11 side.
  • a sealing material 21 made of a fluororesin sheet is attached to the valve 2 with an adhesive and is configured integrally with the valve 2.
  • the thermal decomposition unit 3 includes a link 32, a low melting point alloy 33, a lever 34, and a support column 35.
  • a coating containing carbon nanotubes is applied to the surface of the link 32 and a coating 130 is applied. Since the heat conduction performance is improved by the coating 130, the low melting point alloy 33 is melted and the sprinkler head S1 can be operated at an early stage after the occurrence of a fire. Further, since the corrosion resistance is improved by the coating 130, it is possible to prevent the corrosion product from being generated in the link 32.
  • the lever 34 is L-shaped, one end of which is bent and the hole 32b of the link 32 is locked.
  • the set screw 17 is engaged with the recess 34a formed at the other end, and the support column 35 is engaged with the groove 34b formed on the opposite surface of the recess 34a.
  • the holder 4 has a disk shape and is installed between the valve 2 and the thermal decomposition unit 3.
  • a concave portion 41 supported by one end side of the thermal decomposition unit 3 is formed on one side of the holder (upper surface in the drawing).
  • a convex portion 42 inserted through the hole 23 of the valve 2 is formed on the surface opposite to the surface where the concave portion 41 is formed. In the drawing, the convex portion 42 is inserted into the hole portion 23, and a movable gap 6 is provided between the tip of the convex portion 42 and the bottom surface of the hole portion 23.
  • the elastic member 5 is a disc spring and has an action of pressing the valve 2 to the nozzle 11 side and pressing the holder 4 to the thermal decomposition unit 3 side.
  • a load is applied to the elastic member 5 by a set screw 17. That is, when the set screw 17 is screwed in the direction of the nozzle 11, the elastic member 5 is pressed from the tip of the set screw 17 through the thermal decomposition part 3 and the holder 4, and the elastic member 5 is completely crushed by elastic deformation. Although it is not, it will be in the state crushed by the predetermined pressure with which the movable gap 6 remains. When the elastic member 5 is in the crushed state in this way, it is possible to obtain a state in which a closing load is applied to the valve 2 and the discharge side end portion 11a of the nozzle 11 is closed by the valve 2.
  • the disk spring which comprises the elastic member 5 is small in size, there exists an advantage which can be easily integrated in the sprinkler head S1 and can be elastically deformed with a big load. Specifically, when the pressure receiving area from the nozzle 11 of the valve 2 is 1 cm 2 , if the load by which the disc spring 5 is displaced is set to about 500 N, the disc spring will be when the water pressure in the nozzle 11 reaches about 5 MPa. 5 is elastically deformed so that the valve 2 can be separated from the valve seat 13 and the fire extinguishing liquid in the nozzle 11 can escape to the outside.
  • the second embodiment is a sprinkler head in which a coating containing carbon nanotubes is applied to the components of the thermal decomposition section.
  • the sprinkler head S2 of the second embodiment shown in FIG. 4 includes a main body 101, a frame 102, a valve 103, a deflector unit 104, a thermal decomposition unit 105, and a pressing piece 106.
  • symbol is attached
  • the configuration of the sprinkler head S2 of the second embodiment is the same as that described in Japanese Patent Application Laid-Open No. 2000-79182, and description of portions that are not very relevant to the present invention is omitted.
  • the sprinkler head S2 only the thermal decomposition unit 105 and the pressing piece 106 are disposed so as to protrude from the ceiling to the indoor side.
  • the thermal decomposition unit 105 includes a cylinder 110, a plunger 111, and a low melting point alloy 112.
  • the cylinder 110 has a cylindrical shape, and the upper end is closed by a flat surface.
  • a low melting point alloy 112 is accommodated in the cylinder 110.
  • a hole 113 formed through the low melting point alloy 112 is formed at the center of the upper end plane of the cylinder 110.
  • the plunger 111 has a shaft portion 114 and a disc-shaped flange portion 115 formed at the lower end thereof.
  • the shaft portion 114 is inserted into the hole 113 so that the upper surface of the flange portion 115 is in contact with the surface of the low melting point alloy 112.
  • a male screw 116 is provided at the upper end of the shaft portion 114.
  • the holding piece 106 includes an upper piece 121, a lower piece 122, and a leaf spring 123.
  • the diameters of the circular upper piece 121 and the circular lower piece 122 are the same, and are slightly smaller than the inner diameter of the inner flange 124 formed at the lower end of the cylindrical frame 102.
  • a female screw 125 that is screwed with the male screw 116 of the shaft portion 114 of the plunger 111 is screwed.
  • a hole through which the shaft portion 114 can be easily inserted is formed in the center of the lower piece 122.
  • the upper part of the lower piece 122 is recessed, and the leaf spring 123 is accommodated therein.
  • a circular recess 126 for accommodating the cylinder 110 is formed in the lower part.
  • the leaf spring 123 has a hole through which the shaft portion 114 can be inserted at the center of the disc-shaped bottom surface 127.
  • a plurality of spring portions 128 are installed from the periphery of the bottom surface 127 so as to extend obliquely at equal intervals.
  • the spring parts 128 are spaced apart by a gap. In the unloaded state, the tip of the spring portion 128 is disposed inside the outer edges of the upper piece 121 and the lower piece 122.
  • the leaf spring 123 is installed between the upper piece 121 and the lower piece 122, and the shaft portion 114 of the plunger 111 is inserted into each center hole.
  • the male screw 116 of the shaft portion 114 is screwed into the female screw 125 of the upper piece 121, the spring portion 128 of the leaf spring 123 is crushed between the upper piece 121 and the lower piece 122, and the tip of the spring portion 128 is moved. It will be in the state which protruded from the outer edge of the upper piece 121 and the lower piece 122.
  • the protruding spring portion 128 is engaged with the inner flange 124 of the frame 102 as shown in FIGS.
  • FIG. 8 A modification of the second embodiment shown in FIG. 8 is a sprinkler head described in Japanese Patent Laid-Open No. 11-299921.
  • a coating film 130 (not shown) of carbon nanotubes is applied to the surfaces of the cylinder 52 containing the low melting point alloy 51 contained in the thermal decomposition section 50, the cover 53 connected to the cylinder 52, and the heat collecting plate 54.
  • the heat conduction performance is improved.
  • heat transfer loss can be reduced by the close contact of the coating 130 of each component at the connecting portion between the cylinder 52, the cover 53, and the heat collecting plate 54.
  • the sprinkler head of the third embodiment shown in FIG. 9 includes a main body 61, a frame part 62, a valve 63, a deflector part 64, a thermal decomposition part 65, a support cup 66, and a cover plate part 7.
  • the configuration of the sprinkler head according to the third embodiment is the same as that described in Japanese Patent Application Laid-Open No. 2011-218062, and description of portions that are not very relevant to the present invention is omitted.
  • symbol is attached
  • the resin material a resin pellet in which carbon nanotubes or metal are mixed is used, or the resin pellet is mixed with carbon nanotubes or metal powder and molded by a mold. In any method, after molding, the carbon nanotube and the metal are mixed in the resin.
  • the surface of the cover plate 71 is exposed in the room. Therefore, the cover plate 71 colored in an arbitrary color can be manufactured by mixing the pigment at the time of molding.
  • a metal plate 73 is embedded and installed on the back surface of the cover plate 71. Copper or brass is used as the metal plate 73, and in the drawing, it is installed at three locations at equal intervals in the vicinity of the periphery of the cover plate 71.
  • the metal plate 73 is joined to a leg 74 formed at the lower end of the retainer 72 by a low melting point alloy 75.
  • the heat absorbed on the surface of the cover plate 71 can be transmitted to the metal plate 73 through the metal component inside the cover plate 71, and the low temperature bonded to the surface of the metal plate 73 can be obtained. Melting of the melting point alloy 75 can be promoted.
  • the retainer 72 has a cylindrical shape as described above, and a leg 74 joined to the lower end of the retainer 72 via the low melting point alloy 75 and the metal plate 73 of the cover plate 71 is provided.
  • the legs 74 are installed corresponding to the positions of the metal plates 73 and are arranged at equal intervals in the same manner as the cover plate 71 of FIG.
  • a flange 77 extended outward is formed between the leg 74 and the claw 76 of the retainer 72.
  • a slight gap is provided between the flange 77 and the edge of the cover plate 71. The position is adjusted by rotating the cover plate portion 7 so that the flange 77 is close to the lower surface of the ceiling board C.
  • the cover plate portion 7 configured as described above is installed on the sprinkler head S3.
  • the low-melting-point alloy 75 has heat absorbed from the surface and heat absorbed from the surface of the cover plate 71 transmitted to the metal plate 73 by the carbon nanotubes and metal components inside the cover plate 71, and the low-melting-point alloy 75 Promotes melting of 75.
  • the cover plate 71 is made of a resin material containing carbon nanotubes.
  • the coating 130 can be applied to the components of the thermal decomposition portion 65.

Abstract

The present invention addresses the problem of providing a sprinkler head that has strength, durability or thermal conductivity and has been made lighter. A sprinkler head (S1, S2, S3), which is provided with a main body (1, 61, 101) inside which a nozzle for passing fire-extinguishing water is formed, a valve (2, 63, 103) for closing the outlet of the nozzle, and a heat-sensitive decomposing section (3, 50, 65, 105) secured to the main body for holding the valve on the outlet of the nozzle and in which the heat-sensitive decomposing section comprises a low melting point alloy (33, 51, 75, 112) that melts due to the heat of a fire. In the sprinkler head, a material comprising carbon nanotubes is used for a constituent part of the heat-sensitive decomposing section. As a result, it is possible to configure a part that is lighter than prior metal parts and for which strength and thermal conductivity performance have been improved over prior resins.

Description

スプリンクラーヘッドSprinkler head
本発明は、消火用のスプリンクラーヘッドに関するものである。 The present invention relates to a fire extinguishing sprinkler head.
スプリンクラーヘッドは建物内の天井面や壁面に設置されている。スプリンクラーヘッドは、一端側に天井裏や壁の内側に敷設された配管と接続可能なノズルを有しており、他端側には感熱分解部が設けられている。平時において感熱分解部はノズルを閉止する弁を支持している。ノズルの放出方向の延長上にはノズルから放出された消火液を周囲に飛散させるデフレクターを備えている。 The sprinkler head is installed on the ceiling or wall in the building. The sprinkler head has a nozzle that can be connected to a pipe installed on the back of the ceiling or the inside of the wall on one end side, and a thermal decomposition section is provided on the other end side. During normal times, the thermal decomposition part supports a valve for closing the nozzle. On the extension of the discharge direction of the nozzle, a deflector that scatters the fire extinguishing liquid discharged from the nozzle around is provided.
こうした従来のスプリンクラーヘッドは、火災が発生すると、先ず火災の熱によって感熱分解部が分解作動する。感熱分解部によって押圧支持されていた弁は、その支持力を失い配管内の水圧を受けて弁座から離脱し、本体の外部に脱落する。開放したノズルからは配管内の水が放出され、放出された水がデフレクターに衝突して周囲に飛散することで消火を行う。従来のスプリンクラーヘッドの一例として特許文献1に記載されたものがある。 In such a conventional sprinkler head, when a fire occurs, first, the thermal decomposition section is decomposed by the heat of the fire. The valve that has been pressed and supported by the thermal decomposition unit loses its supporting force, receives the water pressure in the piping, and is detached from the valve seat and falls off the outside of the main body. The water in the pipe is discharged from the open nozzle, and the discharged water collides with the deflector and scatters to the surroundings to extinguish the fire. One example of a conventional sprinkler head is described in Patent Document 1.
スプリンクラーヘッドは数十年程の耐用年数や、火災時における耐熱性能、火災の熱を吸収して感熱分解部に伝える熱伝導性等が要求されることから、主に金属材料にて構成されている。 Sprinkler heads are mainly composed of metallic materials because they require a service life of several decades, heat resistance in the event of a fire, and thermal conductivity that absorbs heat from the fire and transfers it to the thermal decomposition unit. Yes.
一方、近年において、建築業界における施工作業の省力化・短納期化が進み、スプリンクラーヘッドについても小型・軽量化により作業者の負担軽減や輸送コスト、施工コストの削減が要望されている。 On the other hand, in recent years, construction work in the construction industry has been labor-saving and shortened in delivery time, and sprinkler heads have been demanded to reduce the burden on workers and to reduce transportation costs and construction costs by reducing the size and weight.
スプリンクラーヘッドを軽量化するための一つの手段として、樹脂製部品を採用することが考えられるが、樹脂材料の使用は強度や耐久性、耐熱性能、熱伝導性等に問題があり実用化には至っていない。
 
As a means to reduce the weight of the sprinkler head, it is conceivable to use resin parts, but the use of resin materials has problems in strength, durability, heat resistance, thermal conductivity, etc. Not reached.
特開平7-284545号公報Japanese Patent Laid-Open No. 7-284545
上記問題に鑑みて本発明では、強度や耐久性、あるいは熱伝導性を有しており且つ軽量化されたスプリンクラーヘッドを提供することを目的としている。 In view of the above problems, an object of the present invention is to provide a sprinkler head that has strength, durability, or thermal conductivity and is reduced in weight.
上記の目的を達成するために、本発明は以下のスプリンクラーヘッドを提供する。
すなわち、内部に消火水が通るノズルが形成された本体と、ノズルの出口を塞ぐ弁と、本体に係止され弁をノズルの出口に保持する感熱分解部と、を備えており、感熱分解部には火災の熱によって溶融する低融点合金を含み、感熱分解部の構成部品にカーボンナノチューブを含む材料を用いたスプリンクラーヘッドである。
In order to achieve the above object, the present invention provides the following sprinkler head.
That is, it comprises a main body having a nozzle through which fire-extinguishing water passes, a valve that closes the outlet of the nozzle, and a thermal decomposition section that is locked to the main body and holds the valve at the outlet of the nozzle. Is a sprinkler head that uses a low melting point alloy that melts by the heat of a fire and uses a material containing carbon nanotubes as a component of the thermal decomposition part.
スプリンクラーヘッドの構成部品にカーボンナノチューブを含む材料を用いることで、耐久性と軽量化の両立と熱伝導性能が向上する効果が得られる。カーボンナノチューブの効果は、熱伝導性能の向上、機械的強度の向上、耐腐食性能の向上、等があげられる。カーボンナノチューブの具体的な実施形態としては、部品にカーボンナノチューブを塗布して形成した被膜を低融点合金と直接接触させたり、部品の表面にカーボンナノチューブによる被膜を形成することで、火災時の熱を吸収する効率を向上させたり、複数の部品間の熱伝達ロスを低減することができる。 By using a material containing carbon nanotubes for the component parts of the sprinkler head, the effect of achieving both durability and weight reduction and improving the heat conduction performance can be obtained. The effects of carbon nanotubes include improved heat conduction performance, improved mechanical strength, improved corrosion resistance, and the like. As a specific embodiment of carbon nanotubes, the coating formed by applying carbon nanotubes to a component is brought into direct contact with a low melting point alloy, or a coating made of carbon nanotubes is formed on the surface of the component, so that Can be improved, and heat transfer loss between a plurality of components can be reduced.
さらにスプリンクラーヘッドは長期間に渡って建物内に設置されており、腐食によって感熱分解部の部品の表面に腐食生成物が発生すると、それによって部品同士が固着して感熱分解部の分解動作を妨げるおそれがある。これに対して、カーボンナノチューブによる被膜を施すことで腐食生成物の発生を防止することができ、長期間に渡ってスプリンクラーヘッドの作動信頼性を維持することが可能となる。 Furthermore, the sprinkler head has been installed in the building for a long period of time, and if corrosion products are generated on the surface of the parts of the thermal decomposition part due to corrosion, the parts adhere to each other and prevent the decomposition operation of the thermal decomposition part. There is a fear. On the other hand, the generation of corrosion products can be prevented by applying a coating of carbon nanotubes, and the operational reliability of the sprinkler head can be maintained over a long period of time.
また、感熱分解部には常時、ノズルを閉塞するための荷重が印加されていることから、その荷重に耐えられる機械的強度を有する必要があるため、従来においては金属部品が用いられていたが、カーボンナノチューブを含有させた樹脂材料を使用することで強度と軽量化を両立することができる。さらに強度を向上させるために微細な金属を樹脂材料に含有させることもできる。微細な金属として低融点合金を用いると、成型時の熱で低融点合金が溶融して液状となるので金型内部での材料の流動性が良好となり、成形性が良好で寸法精度の高い部品を製造することができる。 In addition, since a load for closing the nozzle is always applied to the thermal decomposition part, it is necessary to have a mechanical strength that can withstand the load, so conventionally metal parts have been used. The use of a resin material containing carbon nanotubes can achieve both strength and weight reduction. Further, in order to improve the strength, a fine metal can be contained in the resin material. When a low-melting-point alloy is used as a fine metal, the low-melting-point alloy melts and becomes liquid due to heat during molding, so that the fluidity of the material inside the mold is good, the moldability is good, and the parts have high dimensional accuracy Can be manufactured.
一方、上記の樹脂材料に含まれる微細な金属として銅や黄銅、アルミニウム等の熱伝導性能が良好な材料を混ぜると熱伝導性が良くなる。さらに上記の熱伝導性が良い材料に金属板を埋め込んで部品を成型すると、部品の表面で吸収した熱を金属板に伝播することができる。また、金属板の一部を部品の表面に露出させ、露出部分を低融点合金によって他の部品と接合することができる。 On the other hand, when a material having a good thermal conductivity such as copper, brass, or aluminum is mixed as the fine metal contained in the resin material, the thermal conductivity is improved. Furthermore, when a metal plate is embedded in the above-described material having good thermal conductivity and a part is molded, heat absorbed by the surface of the part can be transmitted to the metal plate. Further, a part of the metal plate can be exposed on the surface of the component, and the exposed portion can be joined to another component by a low melting point alloy.
あるいは、上記の樹脂材料に含まれる金属として微細な小片にしたステンレス鋼やガラス繊維等を混ぜると部品の強度を向上することができる。またステンレス鋼やガラス繊維は鉄や銅と比較して熱伝導性能が良くないことから断熱作用を有する。 Alternatively, the strength of the component can be improved by mixing fine steel pieces such as stainless steel or glass fiber as the metal contained in the resin material. Further, stainless steel and glass fiber have a heat insulating effect because they have poor heat conduction performance compared to iron and copper.
上記の断熱作用を有する部品の表面に熱伝導性を有する被膜を形成すると、被膜の表面で吸収した熱を部品に伝わりにくくすることができる。被膜の具体例として、銅メッキやカーボンナノチューブによる被膜を用いることができる。 When a coating film having thermal conductivity is formed on the surface of the component having the above-described heat insulating action, it is possible to make it difficult for heat absorbed by the surface of the coating film to be transmitted to the component. As a specific example of the coating, a coating made of copper plating or carbon nanotubes can be used.
上記に説明したカーボンナノチューブによる被膜を施した部品や、カーボンナノチューブを含有した樹脂材料から形成した部品は、スプリンクラーヘッドの構成品のみでなく、スプリンクラーヘッドの付属品であるスプリンクラーヘッドカバーやシーリングプレート等にも適用可能である。具体的事例として、スプリンクラーヘッドに装着されるスプリンクラーヘッドカバーは、スプリンクラーヘッドに連結されるリテーナーと、スプリンクラーヘッドを覆い隠すカバープレートを含んでおり、カバープレートとリテーナーは火災の熱によって溶融する低融点合金によって接合していることから、カバープレートにカーボンナノチューブを含む材料を用いることで低融点合金への熱伝導性の向上や、カバープレートの軽量化を図ることができる。
 
 
Parts coated with carbon nanotubes as described above and parts formed from resin materials containing carbon nanotubes are not only used for sprinkler head components but also for sprinkler head accessories, such as sprinkler head covers and sealing plates. Is also applicable. As a specific example, a sprinkler head cover attached to a sprinkler head includes a retainer connected to the sprinkler head and a cover plate that covers the sprinkler head, and the cover plate and the retainer are low melting point alloys that are melted by the heat of a fire. Therefore, by using a material containing carbon nanotubes for the cover plate, it is possible to improve the thermal conductivity to the low melting point alloy and to reduce the weight of the cover plate.

上記に説明したスプリンクラーヘッドによれば、カーボンナノチューブを含む材料をスプリンクラーヘッドの部品に用いることで、強度や耐久性、あるいは熱伝導性を有しており且つ軽量化されたスプリンクラーヘッドを実現することができる。
 
According to the sprinkler head described above, by using a material containing carbon nanotubes for the sprinkler head components, it is possible to realize a sprinkler head that has strength, durability, or thermal conductivity and is reduced in weight. Can do.
第1実施形態のスプリンクラーヘッドの断面図。Sectional drawing of the sprinkler head of 1st Embodiment. 弁、ホルダー、弾性部材の分解断面図。The exploded sectional view of a valve, a holder, and an elastic member. (a)リンクの分解斜視図、(b)リンクの斜視図(低融点合金にて貼り付け後)。(A) Exploded perspective view of link, (b) Perspective view of link (after pasting with low melting point alloy). 第2実施形態のスプリンクラーヘッドの断面図。Sectional drawing of the sprinkler head of 2nd Embodiment. 図4の要部断面図。The principal part sectional drawing of FIG. 図5の分解断面図。FIG. 6 is an exploded cross-sectional view of FIG. 5. 下片の表面に被膜を設けた実施例の断面図。Sectional drawing of the Example which provided the film on the surface of the lower piece. 第2実施形態の変形例のスプリンクラーヘッドの断面図。Sectional drawing of the sprinkler head of the modification of 2nd Embodiment. 第3実施形態のスプリンクラーヘッドの断面図。Sectional drawing of the sprinkler head of 3rd Embodiment. 図9のスプリンクラーヘッドのカバープレートの平面図。The top view of the cover plate of the sprinkler head of FIG. 図9のスプリンクラーヘッドのカバープレート部の接続前の断面図。Sectional drawing before the connection of the cover plate part of the sprinkler head of FIG.
  第1実施形態(図1~図3)
 本発明のスプリンクラーヘッドS1は、本体1、弁2、感熱分解部3、ホルダー4、弾性部材5から構成される。
First embodiment (FIGS. 1 to 3)
The sprinkler head S1 of the present invention includes a main body 1, a valve 2, a thermal decomposition unit 3, a holder 4, and an elastic member 5.
 本体1は筒状であり内部にノズル11を有する。本体1の外部は牡ネジ12が形成されており、牡ネジ12は図示しない消火設備配管の牝ネジと螺合する。ノズル11の放出側端部11aには弁座13が形成されている。弁座13はノズル11側に凹んだ凹部13として形成されており、底面13aと内周面13bとで構成されている。 The main body 1 is cylindrical and has a nozzle 11 inside. A male screw 12 is formed outside the main body 1, and the male screw 12 is screwed into a female screw of a fire extinguishing equipment pipe (not shown). A valve seat 13 is formed at the discharge side end portion 11 a of the nozzle 11. The valve seat 13 is formed as a recess 13 that is recessed on the nozzle 11 side, and includes a bottom surface 13a and an inner peripheral surface 13b.
 本体1には、弁座13の近傍からノズル11から放出される「消火液」としての水の放出方向に伸びる2本のアーム14、14が設置されている。アーム14、14は弁座13の近傍から湾曲して伸長してノズル11の中心軸の延長上で連結しており、連結部分はボス15となっている。ボス15はノズル11の中心軸である線A-A上に形成された牝ネジ16を有する。牝ネジ16にはネジ頭の無い止めネジ17が螺合される。 The main body 1 is provided with two arms 14 and 14 extending in the direction of discharging water as “extinguishing liquid” discharged from the nozzle 11 from the vicinity of the valve seat 13. The arms 14, 14 are curved and extend from the vicinity of the valve seat 13 and are connected on the extension of the central axis of the nozzle 11, and the connecting portion is a boss 15. The boss 15 has a female screw 16 formed on a line AA that is the central axis of the nozzle 11. A set screw 17 having no screw head is screwed to the female screw 16.
 ボス15の先端には、円盤状のデフレクター18が設置されている。デフレクター18の周縁部18aには波状に連続する爪が形成されている。 A disc-shaped deflector 18 is installed at the tip of the boss 15. A claw that is continuous in a wavy shape is formed on the peripheral edge 18 a of the deflector 18.
 弁2は円盤状であり、ノズル11側の面にはシール材21が設置されている。本実施形態ではフッ素樹脂シートでなるシール材21を接着剤で弁2に貼り付けて弁2と一体に構成している。 The valve 2 has a disk shape, and a sealing material 21 is provided on the surface on the nozzle 11 side. In the present embodiment, a sealing material 21 made of a fluororesin sheet is attached to the valve 2 with an adhesive and is configured integrally with the valve 2.
 シール材21が設置された面の反対側には、段部22および穴部23が形成されている。段部22には弾発体5が載置されている。段部22の表面には穴部23が穿設されており、穴部23には後述するホルダー4の凸部42が挿通される。 A step 22 and a hole 23 are formed on the opposite side of the surface on which the sealing material 21 is installed. The bullet body 5 is placed on the stepped portion 22. A hole 23 is formed in the surface of the stepped portion 22, and a convex portion 42 of the holder 4 described later is inserted into the hole 23.
 感熱分解部3は、リンク32、低融点合金33、レバー34、支柱35から構成される。 The thermal decomposition unit 3 includes a link 32, a low melting point alloy 33, a lever 34, and a support column 35.
リンク32は、2枚の金属の薄板32aを低融点合金33で貼り合わせて構成されている。リンク32が貼り合わされた状態で2つの穴32bを有する(図3(b)参照)。この穴32bにはレバー34と支柱35が挿通されて、穴32bの縁と係合されている。 The link 32 is configured by bonding two thin metal plates 32 a with a low melting point alloy 33. It has two holes 32b in a state where the link 32 is bonded (see FIG. 3B). The lever 32 and the support column 35 are inserted into the hole 32b and engaged with the edge of the hole 32b.
リンク32の表面にはカーボンナノチューブを含む塗料が塗布され、被膜130が施されている。被膜130によって熱伝導性能が向上するので火災が発生してから早い段階で低融点合金33が溶融してスプリンクラーヘッドS1を作動させることができる。また、被膜130によって耐食性が向上するのでリンク32に腐食生成物が発生することを防止できる。 A coating containing carbon nanotubes is applied to the surface of the link 32 and a coating 130 is applied. Since the heat conduction performance is improved by the coating 130, the low melting point alloy 33 is melted and the sprinkler head S1 can be operated at an early stage after the occurrence of a fire. Further, since the corrosion resistance is improved by the coating 130, it is possible to prevent the corrosion product from being generated in the link 32.
レバー34はL字状をしており、一方の先端が屈曲してリンク32の穴32bが係止されている。他方の先端に形成された凹み34aには止めネジ17が係合されており、凹み34aの反対側の面に形成された溝34bには支柱35が係合している。 The lever 34 is L-shaped, one end of which is bent and the hole 32b of the link 32 is locked. The set screw 17 is engaged with the recess 34a formed at the other end, and the support column 35 is engaged with the groove 34b formed on the opposite surface of the recess 34a.
支柱35は短冊形をしており、上端はレバー34の溝34bと係合しており、下端は弁2の上に設置されたホルダー4の凹部41と係合している。支柱35の中間部には、リンク32の穴32bを係止するための突起(図示しない)が設けられている。図1において、止めネジ17とレバー34の凹み34a、ホルダー4、弁2はノズルの中心軸である線A-Aの上に設置されているが、レバー34の凹み34aに対して溝34bの位置が若干離れており、支柱35は線A-Aに対して若干傾いて設置されている。 The support column 35 has a strip shape, the upper end is engaged with the groove 34 b of the lever 34, and the lower end is engaged with the recess 41 of the holder 4 installed on the valve 2. A protrusion (not shown) for locking the hole 32 b of the link 32 is provided at the intermediate portion of the support column 35. In FIG. 1, the set screw 17 and the recess 34a of the lever 34, the holder 4 and the valve 2 are installed on the line AA which is the central axis of the nozzle. The position is slightly separated, and the column 35 is installed with a slight inclination with respect to the line AA.
止めネジ17をレバー34側に移動させると、レバー34を介して支柱35がホルダー4と弁2をノズル11側に押圧してノズル11を閉塞する。また、レバー34には支柱35と係合している溝34を支点として時計回りに回転する力が作用する。これによりレバー34のリンク32と係合している端には左上方向に回転移動する力が作用するが、リンク32と係合しているのでレバー34は回転移動しない。 When the set screw 17 is moved to the lever 34 side, the support column 35 presses the holder 4 and the valve 2 toward the nozzle 11 via the lever 34 to close the nozzle 11. Further, a force that rotates clockwise with the groove 34 engaged with the column 35 acting as a fulcrum acts on the lever 34. As a result, a force that rotates in the upper left direction acts on the end of the lever 34 engaged with the link 32, but the lever 34 does not rotate because it is engaged with the link 32.
火災の熱によって低融点合金33が溶融すると、リンク32を構成する2枚の金属板32a、32aが移動可能となり、レバー34が時計回りに回転して金属板32a、32aを引き離す。これにより感熱分解部3が分解作動して弁2がノズル11から離れて、ノズル11が開放される。 When the low melting point alloy 33 is melted by the heat of the fire, the two metal plates 32a, 32a constituting the link 32 become movable, and the lever 34 rotates clockwise to pull the metal plates 32a, 32a apart. As a result, the thermal decomposition unit 3 is decomposed and the valve 2 is separated from the nozzle 11 and the nozzle 11 is opened.
 ホルダー4は円盤形状をしており、弁2と感熱分解部3の間に設置される。ホルダーの一面側(図中上面)には感熱分解部3の一端側が支持する凹部41が形成されている。凹部41が形成された面と反対側の面には、弁2の穴部23に挿通される凸部42が形成されている。図中において凸部42は穴部23内に挿通されており、凸部42の先端と穴部23の底面との間には可動隙間6が設けられている。 The holder 4 has a disk shape and is installed between the valve 2 and the thermal decomposition unit 3. A concave portion 41 supported by one end side of the thermal decomposition unit 3 is formed on one side of the holder (upper surface in the drawing). A convex portion 42 inserted through the hole 23 of the valve 2 is formed on the surface opposite to the surface where the concave portion 41 is formed. In the drawing, the convex portion 42 is inserted into the hole portion 23, and a movable gap 6 is provided between the tip of the convex portion 42 and the bottom surface of the hole portion 23.
 弾性部材5は、皿ばねであり弁2をノズル11側へ押圧するとともに、ホルダー4を感熱分解部3側に押圧する作用を有する。弾性部材5は止めネジ17により荷重が印加される。つまり止めネジ17をノズル11の方向に螺入させると、止めネジ17の先端から感熱分解部3およびホルダー4を介して弾性部材5が押圧されて、弾性部材5が弾性変形により完全には潰れていないが可動隙間6が残る所定の圧力で潰された状態となる。弾性部材5がこのように潰された状態となることで、弁2に閉止荷重を与えて弁2によってノズル11の放出側端部11aが閉止された状態を得ることができる。 The elastic member 5 is a disc spring and has an action of pressing the valve 2 to the nozzle 11 side and pressing the holder 4 to the thermal decomposition unit 3 side. A load is applied to the elastic member 5 by a set screw 17. That is, when the set screw 17 is screwed in the direction of the nozzle 11, the elastic member 5 is pressed from the tip of the set screw 17 through the thermal decomposition part 3 and the holder 4, and the elastic member 5 is completely crushed by elastic deformation. Although it is not, it will be in the state crushed by the predetermined pressure with which the movable gap 6 remains. When the elastic member 5 is in the crushed state in this way, it is possible to obtain a state in which a closing load is applied to the valve 2 and the discharge side end portion 11a of the nozzle 11 is closed by the valve 2.
 なお、弾性部材5を構成する皿ばねはサイズが小さいのでスプリンクラーヘッドS1に組み込みやすく、また大きな荷重で弾性変形させることができる利点がある。具体的には、弁2のノズル11からの受圧面積を1cmとした場合、皿ばね5が変位する荷重を500N程度に設定すると、ノズル11内の水圧が略5MPaに達したときに皿ばね5が弾性変形して弁2が弁座13から離れてノズル11内の消火液を外部に逃すことができる。
 
In addition, since the disk spring which comprises the elastic member 5 is small in size, there exists an advantage which can be easily integrated in the sprinkler head S1 and can be elastically deformed with a big load. Specifically, when the pressure receiving area from the nozzle 11 of the valve 2 is 1 cm 2 , if the load by which the disc spring 5 is displaced is set to about 500 N, the disc spring will be when the water pressure in the nozzle 11 reaches about 5 MPa. 5 is elastically deformed so that the valve 2 can be separated from the valve seat 13 and the fire extinguishing liquid in the nozzle 11 can escape to the outside.
  第2実施形態(図4~図7)
 第2実施形態は、感熱分解部の構成部品にカーボンナノチューブを含有する被膜を施したスプリンクラーヘッドである。図4に示す第2実施形態のスプリンクラーヘッドS2は、本体101、フレーム102、弁103、デフレクター部104、感熱分解部105、押さえ片106から構成される。尚、第1実施形態と構造が同じ部分については同符号を付して説明は省略する。
Second Embodiment (FIGS. 4 to 7)
The second embodiment is a sprinkler head in which a coating containing carbon nanotubes is applied to the components of the thermal decomposition section. The sprinkler head S2 of the second embodiment shown in FIG. 4 includes a main body 101, a frame 102, a valve 103, a deflector unit 104, a thermal decomposition unit 105, and a pressing piece 106. In addition, about the part with the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
第2実施形態のスプリンクラーヘッドS2の構成は、特開2000-79182号公報に記載されているものと同様であり、本発明とあまり関連性の無い部分の説明は省略する。スプリンクラーヘッドS2は、感熱分解部105と押さえ片106のみが天井から室内側に突出して配置される。 The configuration of the sprinkler head S2 of the second embodiment is the same as that described in Japanese Patent Application Laid-Open No. 2000-79182, and description of portions that are not very relevant to the present invention is omitted. In the sprinkler head S2, only the thermal decomposition unit 105 and the pressing piece 106 are disposed so as to protrude from the ceiling to the indoor side.
感熱分解部105は、シリンダー110、プランジャー111、低融点合金112から構成されている。シリンダー110は筒状をしており上端は平面によって塞がれている。シリンダー110の内部には低融点合金112が収容されている。シリンダー110の上端平面の中心には低融点合金112を貫いて穿設された穴113が形成されている。 The thermal decomposition unit 105 includes a cylinder 110, a plunger 111, and a low melting point alloy 112. The cylinder 110 has a cylindrical shape, and the upper end is closed by a flat surface. A low melting point alloy 112 is accommodated in the cylinder 110. A hole 113 formed through the low melting point alloy 112 is formed at the center of the upper end plane of the cylinder 110.
プランジャー111は、軸部114とその下端に円盤状の鍔部115が形成されている。軸部114は穴113に挿通され、鍔部115の上面が低融点合金112の表面と接触した状態となる。軸部114の上端には牡ネジ116が設けられている。 The plunger 111 has a shaft portion 114 and a disc-shaped flange portion 115 formed at the lower end thereof. The shaft portion 114 is inserted into the hole 113 so that the upper surface of the flange portion 115 is in contact with the surface of the low melting point alloy 112. A male screw 116 is provided at the upper end of the shaft portion 114.
押さえ片106は、上片121、下片122、板バネ123から構成される。 The holding piece 106 includes an upper piece 121, a lower piece 122, and a leaf spring 123.
円形の上片121と円形の下片122の直径は同一径であり、円筒状のフレーム102の下端に形成された内側フランジ124の内径よりも少し小径である。上片121の中央には前述プランジャー111の軸部114の牡ネジ116と螺合する牝ネジ125が螺設されている。 The diameters of the circular upper piece 121 and the circular lower piece 122 are the same, and are slightly smaller than the inner diameter of the inner flange 124 formed at the lower end of the cylindrical frame 102. At the center of the upper piece 121, a female screw 125 that is screwed with the male screw 116 of the shaft portion 114 of the plunger 111 is screwed.
下片122の中央には軸部114を容易に挿通することのできる穴が穿設されている。下片122の上部は凹みとなっており内部に板バネ123が収容される。下部にはシリンダー110を収容する円形の凹み126が形成されている。 A hole through which the shaft portion 114 can be easily inserted is formed in the center of the lower piece 122. The upper part of the lower piece 122 is recessed, and the leaf spring 123 is accommodated therein. A circular recess 126 for accommodating the cylinder 110 is formed in the lower part.
板バネ123は、円盤状の底面127の中心に軸部114を挿通可能な穴を有する。底面127の周縁からは、均等間隔で斜め方向に延出されたバネ部128が複数設置されている。バネ部128は間隙によって離間して設置されている。無負荷状態においてバネ部128の先端は、上片121および下片122の外縁よりも内側に配置される。 The leaf spring 123 has a hole through which the shaft portion 114 can be inserted at the center of the disc-shaped bottom surface 127. A plurality of spring portions 128 are installed from the periphery of the bottom surface 127 so as to extend obliquely at equal intervals. The spring parts 128 are spaced apart by a gap. In the unloaded state, the tip of the spring portion 128 is disposed inside the outer edges of the upper piece 121 and the lower piece 122.
板バネ123は上片121と下片122の間に設置され、それぞれの中心穴にはプランジャー111の軸部114が挿通されている。上片121の牝ネジ125に軸部114の牡ネジ116を螺合させると上片121と下片122に挟まれて板バネ123のバネ部128が押し潰されて、バネ部128の先端が上片121と下片122の外縁からはみ出した状態となる。このはみ出したバネ部128が図4、図5に示すようにフレーム102の内側フランジ124と係合している。 The leaf spring 123 is installed between the upper piece 121 and the lower piece 122, and the shaft portion 114 of the plunger 111 is inserted into each center hole. When the male screw 116 of the shaft portion 114 is screwed into the female screw 125 of the upper piece 121, the spring portion 128 of the leaf spring 123 is crushed between the upper piece 121 and the lower piece 122, and the tip of the spring portion 128 is moved. It will be in the state which protruded from the outer edge of the upper piece 121 and the lower piece 122. FIG. The protruding spring portion 128 is engaged with the inner flange 124 of the frame 102 as shown in FIGS.
下片122は、樹脂にカーボンナノチューブと微細な小片にしたステンレス鋼やガラス繊維等の部材を混在した樹脂にて形成している。これにより、一般の樹脂と比較して強度や耐熱性能が向上されている。下片122は板バネ123によって常時負荷を受けている部分であるが、強度を向上したことで一般の樹脂よりも耐久性を有している。 The lower piece 122 is formed of a resin in which carbon nanotubes and fine pieces such as stainless steel and glass fiber are mixed. Thereby, compared with a general resin, strength and heat resistance are improved. The lower piece 122 is a part that is constantly subjected to a load by the leaf spring 123, but has higher durability than general resin due to its improved strength.
また、下片122の表面および凹み126の内側表面に被膜130を形成することで、熱伝導部を設けることができる。被膜130が吸収した熱はシリンダー110を介して低融点合金112に伝えることができ、熱伝導性能が向上する。被膜130の具体例として、銅メッキやカーボンナノチューブ層を用いることができる。 Further, by forming the coating 130 on the surface of the lower piece 122 and the inner surface of the recess 126, a heat conducting portion can be provided. The heat absorbed by the coating 130 can be transferred to the low melting point alloy 112 through the cylinder 110, and the heat conduction performance is improved. As a specific example of the coating 130, a copper plating or a carbon nanotube layer can be used.
さらに図7に示すように、下片122の凹み126の内側表面とその周囲に熱伝導性を有する被膜130を形成して凹み126の内部に低融点合金112を充填すると、被膜130から直接低融点合金112へ熱が伝導して効率よく熱を低融点合金122に伝えることができる。これにより凹み126と被膜130によってシリンダー110を無くすことが可能である。 Further, as shown in FIG. 7, when a coating 130 having thermal conductivity is formed on and around the inner surface of the recess 126 of the lower piece 122 and the inside of the recess 126 is filled with the low melting point alloy 112, the low temperature is directly reduced from the coating 130. Heat is conducted to the melting point alloy 112 so that the heat can be efficiently transferred to the low melting point alloy 122. Thereby, the cylinder 110 can be eliminated by the recess 126 and the coating 130.
  第2実施形態の変形例(図8)
図8に示す第2実施形態の変形例は、特開平11-299921号公報に記載されているスプリンクラーヘッドである。図8において、感熱分解部50に含まれる低融点合金51を収容するシリンダー52や、シリンダー52と接続されるカバー53、集熱板54の表面にカーボンナノチューブによる被膜130(図示しない)を施すことで、熱伝導性能が向上する。特に、シリンダー52とカバー53、集熱板54との接続部において、各々の部品の被膜130が密接することで熱伝達ロスを低減することができる。
Modified example of the second embodiment (FIG. 8)
A modification of the second embodiment shown in FIG. 8 is a sprinkler head described in Japanese Patent Laid-Open No. 11-299921. In FIG. 8, a coating film 130 (not shown) of carbon nanotubes is applied to the surfaces of the cylinder 52 containing the low melting point alloy 51 contained in the thermal decomposition section 50, the cover 53 connected to the cylinder 52, and the heat collecting plate 54. Thus, the heat conduction performance is improved. In particular, heat transfer loss can be reduced by the close contact of the coating 130 of each component at the connecting portion between the cylinder 52, the cover 53, and the heat collecting plate 54.
さらに、低融点合金51を円柱状に形成してシリンダー52の内部に収容する場合には、低融点合金51の表面にもカーボンナノチューブによる被膜130を形成しておくことで低融点合金51とシリンダー52の間の熱伝達ロスを低減することができる。
 
Further, when the low melting point alloy 51 is formed in a cylindrical shape and accommodated in the cylinder 52, the coating 130 made of carbon nanotubes is also formed on the surface of the low melting point alloy 51, whereby the low melting point alloy 51 and the cylinder are formed. The heat transfer loss between 52 can be reduced.
  第3実施形態(図9~図11)
 図9に示す第3実施形態のスプリンクラーヘッドは、本体61、フレーム部62、弁63、デフレクター部64、感熱分解部65、サポートカップ66、カバープレート部7から構成される。
Third Embodiment (FIGS. 9 to 11)
The sprinkler head of the third embodiment shown in FIG. 9 includes a main body 61, a frame part 62, a valve 63, a deflector part 64, a thermal decomposition part 65, a support cup 66, and a cover plate part 7.
第3実施形態のスプリンクラーヘッドの構成は、特開2011-218062号公報に記載されているものと同様であり、本発明とあまり関連性の無い部分の説明は省略する。尚、第1実施形態と構造が同じ部分については同符号を付して説明は省略する。 The configuration of the sprinkler head according to the third embodiment is the same as that described in Japanese Patent Application Laid-Open No. 2011-218062, and description of portions that are not very relevant to the present invention is omitted. In addition, about the part with the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図9のスプリンクラーヘッドS3には、カバープレート部7が備えられている。カバープレート部7は、円盤状のカバープレート71と、筒状のリテーナー72から構成される。カバープレート71は、カーボンナノチューブと微細な金属を混ぜ込んだ樹脂材料から形成されている。 The sprinkler head S3 of FIG. The cover plate portion 7 includes a disc-shaped cover plate 71 and a cylindrical retainer 72. The cover plate 71 is formed from a resin material in which carbon nanotubes and fine metals are mixed.
上記の樹脂材料は、樹脂ペレットの状態で内部にカーボンナノチューブや金属が混入されているものを使用するか、または樹脂ペレットとカーボンナノチューブや金属粉末を混ぜ合わせて金型により成型する方法がある。いずれの方法でも成型後には樹脂の内部にカーボンナノチューブと金属が混在した状態となる。 As the resin material, a resin pellet in which carbon nanotubes or metal are mixed is used, or the resin pellet is mixed with carbon nanotubes or metal powder and molded by a mold. In any method, after molding, the carbon nanotube and the metal are mixed in the resin.
また上記の樹脂材料として低融点合金を使用すると、成型時の熱で低融点合金が溶融するので金型内部での材料の流動性が良好となり、成形性が良くなる。一方、銅や黄銅、アルミニウム等の熱伝導性能が良好な材料を混ぜると熱伝導性が良くなる。このような材料で構成されたカバープレート71は、金属板から構成される従来品よりも厚みを有しており、変形しにくいので取付けの際にカバープレート71を変形させてしまうことを防止できる。また、カバープレート71の形状を金型によって自在に形成することができ、通常の円盤形状の他に四角形や六角形等、多角形状のカバープレートや、ドーム形状等の立体的な形状にすることもできる。 Further, when a low melting point alloy is used as the resin material, the low melting point alloy is melted by heat during molding, so that the fluidity of the material inside the mold is improved and the moldability is improved. On the other hand, when a material having a good thermal conductivity such as copper, brass, or aluminum is mixed, the thermal conductivity is improved. The cover plate 71 made of such a material has a thickness larger than that of a conventional product made of a metal plate and is hard to be deformed, so that it is possible to prevent the cover plate 71 from being deformed during mounting. . Further, the shape of the cover plate 71 can be freely formed by a mold, and in addition to a normal disk shape, it can be a three-dimensional shape such as a rectangular or hexagonal cover plate or a dome shape. You can also.
カバープレート71の表面は、室内に露出して設置される。そのため、成型時に顔料を混ぜて成型することで任意の色に着色されたカバープレート71を製造することができる。 The surface of the cover plate 71 is exposed in the room. Therefore, the cover plate 71 colored in an arbitrary color can be manufactured by mixing the pigment at the time of molding.
カバープレート71の裏面には、金属板73が埋め込まれて設置されている。金属板73として銅や黄銅が用いられており、図中においてはカバープレート71の周縁付近に3箇所均等間隔で設置されている。金属板73はリテーナー72の下端に形成された脚74と低融点合金75によって接合される。 A metal plate 73 is embedded and installed on the back surface of the cover plate 71. Copper or brass is used as the metal plate 73, and in the drawing, it is installed at three locations at equal intervals in the vicinity of the periphery of the cover plate 71. The metal plate 73 is joined to a leg 74 formed at the lower end of the retainer 72 by a low melting point alloy 75.
金属板73を設置したことで、カバープレート71の表面で吸収した熱をカバープレート71の内部の金属成分を介して金属板73に伝播することができ、金属板73の表面に接合された低融点合金75の溶融を促進することができる。 By installing the metal plate 73, the heat absorbed on the surface of the cover plate 71 can be transmitted to the metal plate 73 through the metal component inside the cover plate 71, and the low temperature bonded to the surface of the metal plate 73 can be obtained. Melting of the melting point alloy 75 can be promoted.
リテーナー72は前述のように筒状をしており、下端にカバープレート71の金属板73と低融点合金75を介して接合される脚74が設けられている。脚74は、金属板73の位置に対応して設置されており、図10のカバープレート71と同様に箇所均等間隔で配置されている。 The retainer 72 has a cylindrical shape as described above, and a leg 74 joined to the lower end of the retainer 72 via the low melting point alloy 75 and the metal plate 73 of the cover plate 71 is provided. The legs 74 are installed corresponding to the positions of the metal plates 73 and are arranged at equal intervals in the same manner as the cover plate 71 of FIG.
リテーナー72の筒状部の外側には、サポートカップ6の側面に形成された螺旋溝68と係合可能な爪76が複数突出して設置されている。爪76をサポートカップ6の内部にはめ込むことで爪76が螺旋溝68と係合される。この状態でカバープレート部7を回転させると、爪76が螺旋溝68に沿って移動することでリテーナー72がサポートカップ6の内部に収容されていく。 On the outer side of the cylindrical portion of the retainer 72, a plurality of claws 76 that can be engaged with the spiral groove 68 formed on the side surface of the support cup 6 are provided so as to protrude. The claw 76 is engaged with the spiral groove 68 by fitting the claw 76 into the support cup 6. When the cover plate portion 7 is rotated in this state, the retainer 72 is accommodated inside the support cup 6 by moving the claw 76 along the spiral groove 68.
リテーナー72の脚74と爪76の間には外側に拡張されたフランジ77が形成されている。フランジ77とカバープレート71の縁の間には僅かな隙間が設けられている。フランジ77が天井ボードCの下面に近接するようにカバープレート部7を回転させて位置を調整する。 A flange 77 extended outward is formed between the leg 74 and the claw 76 of the retainer 72. A slight gap is provided between the flange 77 and the edge of the cover plate 71. The position is adjusted by rotating the cover plate portion 7 so that the flange 77 is close to the lower surface of the ceiling board C.
上記のように構成したカバープレート部7は、スプリンクラーヘッドS3に設置される。火災が発生すると、低融点合金75はその表面から吸収した熱と、カバープレート71の表面から吸収された熱がカバープレート71の内部のカーボンナノチューブや金属成分により金属板73に伝わり、低融点合金75の溶融を促進させる。 The cover plate portion 7 configured as described above is installed on the sprinkler head S3. When a fire occurs, the low-melting-point alloy 75 has heat absorbed from the surface and heat absorbed from the surface of the cover plate 71 transmitted to the metal plate 73 by the carbon nanotubes and metal components inside the cover plate 71, and the low-melting-point alloy 75 Promotes melting of 75.
低融点合金75が溶融するとカバープレート71は脱落して、スプリンクラーヘッドS3のデフレクター部64および感熱分解部65が露出される。感熱分解部65に火災の熱が晒されることで感熱分解部65の作動が促進され、感熱分解部65は分解作動する。すると感熱分解部65により支持されていた弁63が脱落して給水配管と接続された本体61の内部のノズル11から水が放出され、水はデフレクター部64に衝突して四方へ飛散して火災を鎮圧する。 When the low melting point alloy 75 is melted, the cover plate 71 is dropped, and the deflector portion 64 and the thermal decomposition portion 65 of the sprinkler head S3 are exposed. The operation of the thermal decomposition unit 65 is promoted by exposure of the heat of the fire to the thermal decomposition unit 65, and the thermal decomposition unit 65 is decomposed. Then, the valve 63 supported by the thermal decomposition unit 65 drops and water is discharged from the nozzle 11 inside the main body 61 connected to the water supply pipe, and the water collides with the deflector unit 64 and scatters in all directions to cause a fire. Crush.
上記実施形態においては、カバープレート71をカーボンナノチューブを含有した樹脂材料から構成したものであるが、感熱分解部65の構成部品に被膜130を施すことも可能である。
 
In the above embodiment, the cover plate 71 is made of a resin material containing carbon nanotubes. However, the coating 130 can be applied to the components of the thermal decomposition portion 65.
S1、S2、S3 スプリンクラーヘッド 
1、61、101 本体 
2、63、103 弁 
3、50、65、105 感熱分解部 
4 ホルダー 
5 弾性部材 
6 可動隙間 
7 カバープレート部 
32 リンク 
33、51、75、112 低融点合金 
34 レバー 
35 支柱 
52、110 シリンダー 
53 カバー 
54 集熱板 
62、102 フレーム 
64、104 デフレクター部 
66 サポートカップ 
71 カバープレート 
72 リテーナー 
73 金属板 
74 脚 
76 爪 
77 フランジ 
106 押さえ片 
111 プランジャー 
121 上片 
122 下片 
123 板バネ 
130 被膜 
 
S1, S2, S3 Sprinkler head
1, 61, 101 body
2, 63, 103 Valve
3, 50, 65, 105 Thermal decomposition section
4 Holder
5 Elastic members
6 Movable gap
7 Cover plate
32 links
33, 51, 75, 112 Low melting point alloy
34 lever
35 props
52, 110 cylinders
53 Cover
54 Heat collecting plate
62, 102 frames
64, 104 Deflector part
66 Support Cup
71 Cover plate
72 Retainer
73 Metal plate
74 legs
76 nails
77 Flange
106 Presser piece
111 Plunger
121 Upper piece
122 Lower piece
123 leaf spring
130 coating

Claims (10)

  1. 内部に消火水が通るノズルが形成された本体と、
    ノズルの出口を塞ぐ弁と、
    本体に係止され弁をノズルの出口に保持する感熱分解部とを備えており、
    感熱分解部には火災の熱によって溶融する低融点合金を含み、感熱分解部の構成部品にカーボンナノチューブを含む材料を用いたことを特徴とするスプリンクラーヘッド。
    A body with a nozzle through which fire-extinguishing water passes
    A valve that closes the outlet of the nozzle;
    A thermal decomposition part that is locked to the main body and holds the valve at the outlet of the nozzle,
    A sprinkler head characterized in that the thermal decomposition part includes a low-melting-point alloy that melts by the heat of a fire, and a material containing carbon nanotubes is used as a component of the thermal decomposition part.
  2. 内部に消火水が通るノズルが形成された本体と、
    ノズルの出口を塞ぐ弁と、
    本体に係止され弁をノズルの出口に保持する感熱分解部と、を備えたスプリンクラーヘッドには、スプリンクラーヘッドカバーが着脱可能に装着され、
    スプリンクラーヘッドカバーは、スプリンクラーヘッドに連結されるリテーナーと、スプリンクラーヘッドを覆い隠すカバープレートを含み、
    カバープレートとリテーナーは火災の熱によって溶融する低融点合金によって接合しており、
    カバープレートにカーボンナノチューブを含む材料を用いたことを特徴とするスプリンクラーヘッド。
    A main body formed with a nozzle through which fire-extinguishing water passes,
    A valve that closes the outlet of the nozzle;
    A sprinkler head cover is detachably attached to a sprinkler head that includes a thermal decomposition section that is locked to the main body and holds the valve at the nozzle outlet.
    The sprinkler head cover includes a retainer coupled to the sprinkler head and a cover plate that covers the sprinkler head,
    The cover plate and retainer are joined by a low melting point alloy that melts by the heat of the fire.
    A sprinkler head characterized in that a material containing carbon nanotubes is used for a cover plate.
  3. 前記カーボンナノチューブを含む材料として、カーボンナノチューブを含む塗料を前記低融点合金に熱を伝える伝熱部材の表面に塗布して被膜を施した請求項1または請求項2記載のスプリンクラーヘッド。 The sprinkler head according to claim 1 or 2, wherein a coating containing a carbon nanotube is applied to the surface of a heat transfer member that conducts heat to the low melting point alloy as the material containing the carbon nanotube.
  4.  前記感熱分解部に含まれる低融点合金によって接合されたリンクの表面に前記被膜を施す請求項3記載のスプリンクラーヘッド。 The sprinkler head according to claim 3, wherein the coating is applied to a surface of a link joined by a low melting point alloy included in the thermal decomposition portion.
  5.  前記感熱分解部に含まれる低融点合金を収容する部品の表面に前記被膜を施す請求項3記載のスプリンクラーヘッド。 The sprinkler head according to claim 3, wherein the coating is applied to the surface of a part containing a low melting point alloy contained in the thermal decomposition part.
  6.  前記低融点合金の表面に前記被膜を施す請求項1~請求項5記載の何れか1項記載のスプリンクラーヘッド。 The sprinkler head according to any one of claims 1 to 5, wherein the coating is applied to a surface of the low melting point alloy.
  7. 前記カーボンナノチューブを含む材料として、樹脂にカーボンナノチューブと微細な金属を含有させた請求項1または請求項2記載のスプリンクラーヘッド。 The sprinkler head according to claim 1 or 2, wherein a carbon nanotube and a fine metal are contained in a resin as the material containing the carbon nanotube.
  8. 前記金属として低融点合金を用いた請求項7記載のスプリンクラーヘッド。 The sprinkler head according to claim 7, wherein a low melting point alloy is used as the metal.
  9. 前記カバープレートには金属板が埋め込まれている請求項2~請求項8何れか1項記載のスプリンクラーヘッド。 The sprinkler head according to any one of claims 2 to 8, wherein a metal plate is embedded in the cover plate.
  10. 前記金属板の一部は前記カバープレートの表面に露出している請求項9記載のスプリンクラーヘッド。
     
     
    The sprinkler head according to claim 9, wherein a part of the metal plate is exposed on a surface of the cover plate.

PCT/JP2014/072214 2014-08-26 2014-08-26 Sprinkler head WO2016030956A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/072214 WO2016030956A1 (en) 2014-08-26 2014-08-26 Sprinkler head
TW104124704A TW201607583A (en) 2014-08-26 2015-07-30 Sprinkler head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072214 WO2016030956A1 (en) 2014-08-26 2014-08-26 Sprinkler head

Publications (1)

Publication Number Publication Date
WO2016030956A1 true WO2016030956A1 (en) 2016-03-03

Family

ID=55398901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072214 WO2016030956A1 (en) 2014-08-26 2014-08-26 Sprinkler head

Country Status (2)

Country Link
TW (1) TW201607583A (en)
WO (1) WO2016030956A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150687A1 (en) * 2018-02-05 2019-08-08 千住スプリンクラー株式会社 Sprinkler head
CN111699025A (en) * 2018-03-27 2020-09-22 千住灭火器株式会社 Sprinkler head

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107366767A (en) * 2017-08-17 2017-11-21 张家港市艾罗执行器有限公司 The meltable hydraulic relief valve of fast-response
JP2020031755A (en) * 2018-08-28 2020-03-05 ヤマトプロテック株式会社 Fire-fighting head

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284545A (en) * 1994-04-15 1995-10-31 Senju Sprinkler Kk Sprinkler head
JPH11299921A (en) * 1998-04-23 1999-11-02 Senju Sprinkler Kk Sprinkler head
JP2000079182A (en) * 1998-09-07 2000-03-21 Senju Sprinkler Kk Sprinkler head
JP2004158227A (en) * 2002-11-05 2004-06-03 Anzen Dengu Kk Thermal fuse
JP2009294138A (en) * 2008-06-06 2009-12-17 Horiba Ltd Inline flammable gas sensor
JP2011112330A (en) * 2009-11-30 2011-06-09 Shinko Electric Ind Co Ltd Heat radiation component and method for manufacturing the same
JP2011218062A (en) * 2010-04-14 2011-11-04 Senju Sprinkler Kk Sprinkler head
JP2014028900A (en) * 2012-07-31 2014-02-13 Showa Denko Kk Conductive resin composition, and conductive coating material and conductive adhesive using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284545A (en) * 1994-04-15 1995-10-31 Senju Sprinkler Kk Sprinkler head
JPH11299921A (en) * 1998-04-23 1999-11-02 Senju Sprinkler Kk Sprinkler head
JP2000079182A (en) * 1998-09-07 2000-03-21 Senju Sprinkler Kk Sprinkler head
JP2004158227A (en) * 2002-11-05 2004-06-03 Anzen Dengu Kk Thermal fuse
JP2009294138A (en) * 2008-06-06 2009-12-17 Horiba Ltd Inline flammable gas sensor
JP2011112330A (en) * 2009-11-30 2011-06-09 Shinko Electric Ind Co Ltd Heat radiation component and method for manufacturing the same
JP2011218062A (en) * 2010-04-14 2011-11-04 Senju Sprinkler Kk Sprinkler head
JP2014028900A (en) * 2012-07-31 2014-02-13 Showa Denko Kk Conductive resin composition, and conductive coating material and conductive adhesive using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150687A1 (en) * 2018-02-05 2019-08-08 千住スプリンクラー株式会社 Sprinkler head
JPWO2019150687A1 (en) * 2018-02-05 2021-01-14 千住スプリンクラー株式会社 Sprinkler head
US11324980B2 (en) 2018-02-05 2022-05-10 Senju Sprinkler Co., Ltd. Sprinkler head
JP7241407B2 (en) 2018-02-05 2023-03-17 千住スプリンクラー株式会社 sprinkler head
CN111699025A (en) * 2018-03-27 2020-09-22 千住灭火器株式会社 Sprinkler head

Also Published As

Publication number Publication date
TW201607583A (en) 2016-03-01

Similar Documents

Publication Publication Date Title
WO2016030956A1 (en) Sprinkler head
JP5901728B2 (en) Sprinkler head
JP5713674B2 (en) Valve device opened by abnormally high temperature
TWI549718B (en) Fire sprinkler head
KR101680547B1 (en) Sprinkler head
KR101821829B1 (en) Sprinkler head
JPH11253570A (en) Sprinkler head
KR101926695B1 (en) Sprinkler head
JP2004141647A (en) Sprinkler head
JP2019187774A (en) Sprinkler head
JP2016106656A (en) Sprinkler head
JP2631197B2 (en) Sprinkler head
JP2007301183A (en) Sprinkler head
JP2011218062A (en) Sprinkler head
JP2000317009A (en) Sprinkler head
JP6450602B2 (en) Sprinkler head
JP2013240414A (en) Sprinkler head
JP6279934B2 (en) Sprinkler head
JP3184305U (en) Sprinkler head
JP4605618B2 (en) Sprinkler head
JP2011244969A (en) Sprinkler head
JP2014014583A (en) Sprinkler head cover
JP2009142375A (en) Sprinkler head
JP2000079182A (en) Sprinkler head
JP2015223248A (en) Sprinkler head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14900555

Country of ref document: EP

Kind code of ref document: A1