WO2016029823A1 - 基站、ue中的laa通信中的扰码方法和设备 - Google Patents

基站、ue中的laa通信中的扰码方法和设备 Download PDF

Info

Publication number
WO2016029823A1
WO2016029823A1 PCT/CN2015/087739 CN2015087739W WO2016029823A1 WO 2016029823 A1 WO2016029823 A1 WO 2016029823A1 CN 2015087739 W CN2015087739 W CN 2015087739W WO 2016029823 A1 WO2016029823 A1 WO 2016029823A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
carrier
base station
specific identifier
determining
Prior art date
Application number
PCT/CN2015/087739
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2016029823A1 publication Critical patent/WO2016029823A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a scheme for utilizing unlicensed spectrum communication in a wireless communication system, and more particularly to a scrambling code method and apparatus for LAA (Licensed Assisted Access) communication based on LTE (Long Term Evolution).
  • LAA Licensed Assisted Access
  • LTE Long Term Evolution
  • the serving cell deployed on the licensed spectrum is deployed as a Primary Component Carrier (PCC) on the unlicensed spectrum.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • LAA Local Area Network Assisted Access
  • the PCI is indicated by a sequence of features consisting of a PSS (Primary Synchronization Sequence) and an SSS (Secondary Synchronization Sequence).
  • PSS Primary Synchronization Sequence
  • SSS Secondary Synchronization Sequence
  • a base station device deployed by multiple operators may transmit a wireless signal on the same frequency band, and a PCI (Physical Cell Indentifier) collision may occur in the shared frequency band, that is, the adjacent base station is in the shared frequency band.
  • PCI Physical Cell Indentifier
  • the same PCI is configured. Because PCI is used for scrambling of physical layer data and generation of RS (Reference Signal) sequence, PCI collision may cause serious inter-cell interference.
  • RS Reference Signal
  • the present invention discloses a scrambling code method and apparatus in LAA communication.
  • the invention discloses a scrambling code method in LAA communication in a base station, which comprises the following steps:
  • Step A Determining a first sequence, the determining parameters of the initial values of the generators of the first sequence comprising a specific identifier, the specific identifier being operator-specific
  • Step B Send the first RS on a given subframe on the first carrier.
  • the first carrier is deployed in the unlicensed spectrum, the first sequence is a pseudo random sequence, and the RS sequence of the first RS is the first sequence.
  • the carrier-specific means that the values of the specific identifiers are different for base stations of different operators (the specific identifiers may have different values in different base stations of one operator).
  • the generator of the first sequence uses a pseudo-random sequence generator of LTE, as described in detail in TS 36.211, section 7.2.
  • the determining parameter of the initial value of the generator of the first sequence further includes one or both of the following:
  • the specific identifier is a PLMN (Public Land Mobi le Network) to which the base station belongs.
  • the specific identifier is a center frequency of the second carrier, the second carrier is deployed in the licensed spectrum, the serving cell corresponding to the second carrier is a scheduling cell of the first carrier, and the second carrier is a downlink carrier or a TDD. (Time Division Duplex) carrier, the scheduling cell of the first carrier is UE-specific or cell-specific.
  • the specific identifier is an ECGI (E-UTRAN Cell Global Identifier) of the serving cell corresponding to the second carrier.
  • the first RS is transmitted by K1 different antenna ports in the LTE antenna ports ⁇ 15, 16, 17, 18, 19, 20, 21, 22 ⁇ , where K1 is ⁇ One of 1,2,4,8 ⁇ .
  • the antenna port ⁇ 15, 16, 17, 18, 19, 20, 21, 22 ⁇ corresponds to a CSI-RS (Channel Status Indicator RS) in LTE.
  • the determining parameter of the initial value of the generator of the first sequence further includes mapping by the first RS
  • the OFDM (Orthogonal Frequency Division Multiplexing) symbol is indexed in the slot and the antenna port index of the first RS is transmitted.
  • the mapping of the initial value of the generator of the specific identifier I, f csi (I, n s ) to the first sequence reuses the initial value mapping relationship of the generator of n s to the CSI-RS sequence in LTE (If the bandwidth of the first carrier is a value other than the system bandwidth defined by LTE, only the number of elements in the first sequence needs to be adjusted accordingly), f csi (I, n s ) is a function of I and n s , f csi (I, n s ) is a non-negative integer less than 20.
  • N CP is an initial value of the generator of the first sequence, an OFDM symbol index in the slot, a PCI (or higher layer signaling configuration), and a CP (Cyclic Prefix) identifier, respectively.
  • N CP Cyclic Prefix
  • a detailed description of N CP refers to section 6.10.5.1 of 3GPP TS 36.211. This embodiment fully considers compatibility with existing systems, which are only used for sequence hopping in the time domain (sequence hopping in a conventional LTE system is limited to a transmission slot in a radio frame).
  • n s The index n s ), compared with the conventional LTE scheme, the CSI-RS sequence corresponding to multiple (hopped in time domain) corresponding to a given PCI is the same, so that the traditional scheme can be reused to avoid the same
  • the step B comprises the following steps:
  • Step B Transmitting physical layer data on the given sub-frame on the first carrier
  • the first RS is a DMRS (Demodulation RS) of the physical layer data. That is, the target UE (User Equipment) of the physical layer data obtains channel parameters according to the first RS, and then performs channel equalization on the received signal by using the channel parameters to recover the physical layer data.
  • DMRS Demodulation RS
  • the first RS is sent by K2 different antenna ports in the LTE antenna ports ⁇ 5, 7, 8, 9, 10, 11, 12, 13, 14 ⁇ , the K2 is no more than 8.
  • a positive integer The ⁇ 5, 7, 8, 9, 10, 11, 12, 13, 14 ⁇ antenna port corresponds to a UE-specific RS in LTE.
  • the determining parameter of the initial value of the generator of the first sequence further includes a first RNTI (Radio Network Temporary Identifier), and the first RNTI is allocated by the base station to the target receiving of the first RS.
  • UE User Equipment
  • the mapping of the initial value of the generator of the specific identifier I, f dmrs (I, n s ) to the first sequence reuses the initial value mapping relationship of the generator of n s to the DMRS sequence in LTE, f Dmrs (I, n s ) is a function of I and n s , and f dmrs (I, n s ) is a non-negative integer less than 20.
  • the initial value of the generator of the n s to DMRS sequence is referred to 3GPP TS 36.211 6.10.3.1.
  • the UE-specific RS sequence multiple hopping in the time domain
  • the base station is sharing interference on the unlicensed spectrum.
  • f dmrs (I, n s ) mod (X dmrs / I + n s, 20), said X dmrs is a predetermined constant or may be configurable.
  • the elements in the first sequence corresponding to each antenna port of the first RS and the mapping to the time-frequency resource reuse the scheme in LTE and the specific description refers to section 6.10.3.2 of TS36.211 (if the first The bandwidth of the carrier is a value other than the system bandwidth defined by LTE, and only the number of elements in the first sequence needs to be adjusted accordingly).
  • the step A comprises the following steps:
  • Step A1 Determining a second sequence, the determining parameters of the initial values of the generators of the second sequence comprising the specific identification.
  • the step B further includes the following steps:
  • Step B2 Scrambling the original data using the second sequence to obtain the physical layer data.
  • the second sequence is a pseudo-random sequence.
  • the determining parameter of the initial value of the generator of the second sequence further includes a first RNTI (Radio Network Temporary Identifier), and the first RNTI is a scheduling DCI of the physical layer data (Dowlink Control) Information, downlink control information) identification RNTI.
  • first RNTI Radio Network Temporary Identifier
  • the first RNTI is a scheduling DCI of the physical layer data (Dowlink Control) Information, downlink control information) identification RNTI.
  • the generator of the second sequence uses a pseudo-random sequence generator of LTE, as described in detail in TS 36.211, section 7.2.
  • the mapping of the initial value of the generator whose specific identifier is I, f scrambling (I, n s ) to the generator of the second sequence reuses the mapping relationship between the initial value of the generator of n s to the scrambling code sequence in LTE.
  • f scrambling (I, n s ) is a function of I and n s
  • f scrambling (I, n s ) is a non-negative integer less than 20.
  • the mapping relationship between the n s to the initial value of the generator of the scrambling code sequence is referred to 3GPP TS 36.2115.3.1.
  • the scrambling code sequence of the PDSCH Physical Downlink Share Channel
  • PDSCH Physical Downlink Share Channel
  • f scrambling (I, n s ) mod (X scrambling / I + n s, 20)
  • said X scrambling is a predetermined constant or may be configurable.
  • the initial value G1_1 of the generator of the first sequence determined and the initial value G2_1 of the generator of the second sequence; when the value of the specific identifier is V2, The determined initial value G1_2 of the generator of the first sequence and the initial value G2_2 of the generator of the second sequence; at least one of ⁇ G1_1-G1_2, G2_1-G2_2 ⁇ is not zero.
  • the invention discloses a scrambling code method in LAA communication in a UE, comprising the following steps:
  • Step A Determining a first sequence, the determining parameters of the initial values of the generators of the first sequence comprising a specific identifier, the specific identifier being operator-specific
  • Step B Receive a first RS on a given subframe on the first carrier.
  • the first carrier is deployed in the unlicensed spectrum, the first sequence is a pseudo random sequence, and the RS sequence of the first RS is the first sequence.
  • the step B comprises the following steps:
  • Step B0 Obtain a downlink CSI (Channel Status Indicator), where the reference resource of the downlink CSI includes the first RS
  • the first RS is sent by K1 different antenna ports in the LTE antenna ports ⁇ 15, 16, 17, 18, 19, 20, 21, 22 ⁇ , the K1 is ⁇ 1, 2, 4, 8 ⁇ one of the.
  • the determining parameter of the initial value of the generator of the first sequence further includes an index of the OFDM (Orthogonal Frequency Division Multiplexing) symbol mapped by the first RS in the time slot and transmitting the first The antenna port index of the RS.
  • the downlink CSI includes a ⁇ PTI (Precoding Type Indicator), an RI (Rank Indicator), a PMI (Precoding Matrix Indicator), and a CQI (Channel Quality Indicator, One or more of the channel quality indicators) ⁇ .
  • the step B further includes the following steps:
  • Step B Receiving physical layer data in the given sub-frame on the first carrier
  • the first RS is a DMRS of the physical layer data.
  • the step A comprises the following steps:
  • Step A1 Determining a second sequence, the determining parameters of the initial values of the generators of the second sequence comprising the specific identification.
  • the step B further includes the following steps:
  • Step B2 Desmuting the physical layer data using the second sequence to obtain raw data.
  • the second sequence is a pseudo-random sequence.
  • the present invention discloses a base station device, where the base station device includes:
  • a first module a determining parameter for determining a first sequence, an initial value of a generator of the first sequence, comprising a specific identifier, the specific identifier being carrier-specific
  • the second module is configured to send the first RS to a given subframe on the first carrier.
  • the first carrier is deployed in the unlicensed spectrum, the first sequence is a pseudo random sequence, and the RS sequence of the first RS is the first sequence.
  • the second module is further configured to send physical layer data in the given subframe on the first carrier.
  • the first RS is a DMRS of the physical layer data.
  • the first module is further configured to determine a second sequence, the determining parameter of the initial value of the generator of the second sequence including the specific identifier.
  • the second module is further configured to perform the scrambling operation on the original data using the second sequence to obtain the physical layer data.
  • the second sequence is a pseudo-random sequence.
  • the invention discloses a user equipment, and the user equipment comprises:
  • a first module a determining parameter for determining a first sequence, an initial value of a generator of the first sequence, comprising a specific identifier, the specific identifier being carrier-specific
  • the second module is configured to receive the first RS on a given subframe on the first carrier.
  • the first carrier is deployed in the unlicensed spectrum, the first sequence is a pseudo random sequence, and the RS sequence of the first RS is the first sequence.
  • the second module is further configured to obtain downlink CSI, where the reference resource of the downlink CSI includes the first RS.
  • the first RS is sent by K1 different antenna ports in the LTE antenna ports ⁇ 15, 16, 17, 18, 19, 20, 21, 22 ⁇ , the K1 is ⁇ 1, 2, 4, 8 ⁇ one of the.
  • the second module is further configured to receive physical layer data in the given subframe on the first carrier.
  • the first RS is a DMRS of the physical layer data.
  • the first module is further configured to determine a second sequence, the determining parameter of the initial value of the generator of the second sequence including the specific identifier.
  • the first module is further configured to perform the descrambling operation on the physical layer data by using the second sequence to obtain the original data.
  • the second sequence is a pseudo-random sequence.
  • the solution of the present invention generates one or two of the ⁇ RS sequence of the downlink RS and the scrambling sequence of the downlink physical layer data ⁇ by using the specific identifier specific to the operator, thereby avoiding the neighboring
  • the base station configures the same PCI on the shared spectrum to generate the same RS sequence and scrambling sequence, thereby avoiding serious inter-cell interference.
  • the present invention is compatible with existing LTE protocols as much as possible, and has better compatibility.
  • Figure 1 shows a flow chart of a downlink transmission in accordance with one embodiment of the present invention
  • FIG. 2 shows a flow chart of downlink data scrambling and transmission according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of downlink transmission, as shown in FIG.
  • base station N1 is the serving base station of UE U2
  • the steps in block F1 are optional steps.
  • step S11 a first sequence is determined, the determining parameter of the initial value of the generator of the first sequence comprising a specific identifier, the specific identifier being operator-specific; in step S12, in the first carrier The first RS is sent to the given sub-frame.
  • step S21 the first sequence is determined, the first sequence of the generator
  • the determined value of the initial value includes a specific identification that is carrier-specific; in step S22, the first RS is received on a given subframe on the first carrier.
  • the first carrier is deployed in the unlicensed spectrum
  • the first sequence is a pseudo-random sequence
  • the RS sequence of the first RS is the first sequence.
  • the specific identifier is one of ⁇ the PLMN to which the base station belongs, the center frequency of the second carrier, and the ECGI of the serving cell corresponding to the second carrier ⁇ .
  • the second carrier is deployed in the licensed spectrum, and the serving cell corresponding to the second carrier is the scheduling cell of the first carrier, and the scheduling cell of the first carrier is UE-specific or cell-specific.
  • the base station N1 transmits physical layer data in the given subframe on the first carrier in step S13; the UE U2 in the given carrier on the first carrier in step S23
  • the frame receives physical layer data.
  • the first RS is a DMRS of the physical layer data.
  • Embodiment 2 illustrates a flow chart of downlink data scrambling and transmission, as shown in FIG.
  • base station N3 is the serving base station of UE U4.
  • step S31 the first sequence and the second sequence are determined; in step S32, the original data is scrambled using the second sequence to obtain physical layer data; in step S33, on the first carrier The first RS and the physical layer data are transmitted to the subframe.
  • step S41 determining the first sequence and the second sequence; in step S42, transmitting the first RS and the physical layer data in a given subframe on the first carrier; in step S43, using the first The second sequence performs a descrambling operation on the physical layer data to obtain original data.
  • the first carrier is deployed in the unlicensed spectrum
  • the RS sequence of the first RS is the first sequence.
  • the first sequence is a pseudo-random sequence
  • the generator of the first sequence uses a pseudo-random sequence generator of LTE
  • the determining parameters of the initial values of the generator of the first sequence include a specific identifier.
  • the second sequence is a pseudo-random sequence
  • the generator of the second sequence uses a pseudo-random sequence generator of LTE
  • the determining parameters of the initial values of the generator of the second sequence include the specific identifier.
  • the specific identification is proprietary to the operator.
  • the first RS is a DMRS of the physical layer data.
  • the specific identifier is one of ⁇ the PLMN to which the base station belongs, the center frequency of the second carrier, and the ECGI of the serving cell corresponding to the second carrier ⁇ .
  • the second carrier is deployed in the licensed spectrum, and the serving cell corresponding to the second carrier is the scheduling cell of the first carrier.
  • Embodiment 3 exemplifies a structural block diagram of a processing device in a base station, as shown in FIG.
  • the base station processing apparatus 300 is mainly composed of a first determining module 301 and a transmitting module 302.
  • the first determining module 301 is configured to determine a first sequence, where the determining parameter of the initial value of the generator of the first sequence includes a specific identifier, where the specific identifier is carrier-specific; and the sending module 302 is configured to be used on the first carrier.
  • the first RS is transmitted to the subframe.
  • the first carrier is deployed in the unlicensed spectrum
  • the first sequence is a pseudo random sequence
  • the RS sequence of the first RS is the first sequence.
  • the generator of the first sequence uses a pseudo-random sequence generator of LTE.
  • the sending module 302 is further configured to send physical layer data in the given subframe on the first carrier.
  • the first RS is a DMRS of the physical layer data.
  • the first RS is transmitted by the CSI-RS antenna port.
  • the first determining module 301 is further configured to determine a second sequence
  • the sending module 302 is further configured to perform scrambling operation on the original data by using the second sequence to obtain physical layer data and on the first carrier.
  • the physical layer data is sent by the given subframe.
  • the first RS is a DMRS of the physical layer data
  • the determining parameter of the initial value of the generator of the second sequence includes the specific identifier.
  • the second sequence is a pseudo-random sequence.
  • Embodiment 4 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 400 is mainly composed of a second determining module 401 and a receiving module 402.
  • the second determining module 401 is configured to determine a first sequence, the determining parameter of the initial value of the generator of the first sequence includes a specific identifier, the specific identifier being operator-specific.
  • the receiving module 402 is configured to receive the first RS in a given subframe on the first carrier.
  • the first carrier is deployed in the unlicensed spectrum
  • the first sequence is a pseudo random sequence
  • the RS sequence of the first RS is the first sequence.
  • the generator of the first sequence uses a pseudo-random sequence generator of LTE.
  • the receiving module 402 is further configured to obtain downlink CSI, where the reference resource of the downlink CSI includes the first RS.
  • the first RS is sent by K1 different antenna ports in the LTE antenna ports ⁇ 15, 16, 17, 18, 19, 20, 21, 22 ⁇ , the K1 is ⁇ 1, 2, 4, 8 ⁇ one of the.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种基站、UE中的LAA通信中的扰码方法和设备。在步骤一中,基站确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的。在步骤二中,基站在第一载波上的给定子帧发送第一RS。其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。第二载波部署于授权频谱,第二载波对应的服务小区是第一载波的调度小区。本发明的方案避免了由于相邻的基站在共享的频谱上配置了相同的PCI而生成相同的RS序列和扰码序列,进而避免了严重的小区间干扰。此外,本发明尽可能兼容现有的LTE协议,具有较好的兼容性。

Description

基站、UE中的LAA通信中的扰码方法和设备 技术领域
本发明涉及无线通信系统中利用非授权频谱通信的方案,特别是涉及基于LTE(Long Term Evolution,长期演进)的针对LAA(Licensed Assisted Access,授权辅助接入)通信的扰码方法和装置。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。3GPP RAN(Radio Access Network,无线接入网)的62次全会讨论了一个新的研究课题,即非授权频谱综合的研究(RP-132085),主要目的是研究利用在非授权频谱上的LTE的非独立(Non-standalone)部署,所谓非独立是指在非授权频谱上的通信要和授权频谱上的服务小区相关联。一个直观的方法是尽可能重用现有系统中的CA(Carrier Aggregation,载波聚合)的概念,即部署在授权频谱上的服务小区作为PCC(Primary Component Carrier,主载波),部署在非授权频谱上的服务小区作为SCC(Secondary Component Carrier,辅载波)。在RAN#64次全会(研讨会)上,非授权频谱上的通信被统一命名为LAA(License Assisted Access,授权频谱辅助接入)。
LTE系统中,由于PCI是通过PSS(Primary Synchronization Sequence,主同步序列)和SSS(Secondary Synchronization Sequence,辅同步序列)组成的特征序列来指示的。在LAA通信中,多个运营商部署的基站设备可能在相同的频带上传输无线信号,则共享频带上可能会产生PCI(Physical Cell Indentifier,物理小区标识)冲突,即相邻的基站在共享频带上配置了相同的PCI,由于PCI用于物理层数据的扰码以及RS(Reference Signal,参考信号)序列的生成,所以PCI冲突可能会带来严重的小区间干扰。
针对上述问题,本发明公开了一种LAA通信中的扰码方法和装置。
发明内容
本发明公开了一种基站中的LAA通信中的扰码方法,包括如下步骤:
-步骤A.确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
-步骤B.在第一载波上的给定子帧发送第一RS。
其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
所述运营商专有的是指:对于不同运营商的基站,所述特定标识的取值不同(所述特定标识在一个运营商的不同基站可能有不同的取值)。作为一个实施例,第一序列的生成器使用LTE的伪随机序列生成器,详细描述见TS36.211 7.2节。
作为一个实施例,第一序列的生成器的初始值的确定参数还包括以下的一种或者两种:
-第一RS的发送小区的PCI(Physical Cell Identifier,物理小区标识)
-第一RS的RS序列中元素所映射的传输时隙在无线帧内的索引,即第一RS的RS序列的两个元素可能对应不同的生成器的初始值,如果所述两个元素映射到所述给定子帧中的两个时隙。作为一个实施例,所述特定标识是所述基站所属的PLMN(Publ ic Land Mobi le Network,公共陆地网)。作为一个实施例,所述特定标识是第二载波的中心频点,第二载波部署于授权频谱,第二载波对应的服务小区是第一载波的调度小区,第二载波是下行载波或者是TDD(Time Division Duplex,时分双工)载波,第一载波的调度小区是UE特定的或者是小区特定的。作为一个实施例,所述特定标识是所述第二载波对应的服务小区的ECGI(E-UTRAN Cell Global Identifier,小区全球标识)。
具体的,根据本发明的一个方面,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
所述天线端口{15,16,17,18,19,20,21,22}对应LTE中的CSI-RS(Channel Status Indicator RS,信道状态信息参考信号)。作为一个实施例,第一序列的生成器的初始值的确定参数还包括第一RS所映射 的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号在时隙内的索引和发送第一RS的天线端口索引。
作为一个实施例,所述特定标识为I,fcsi(I,ns)到第一序列的生成器的初始值的映射重用LTE中ns到CSI-RS序列的生成器的初始值映射关系(如果第一载波的带宽是LTE定义的系统带宽之外的值,只需要相应调整第一序列中的元素个数即可),fcsi(I,ns)是I和ns的函数,fcsi(I,ns)是小于20的非负整数。以公式描述,即
Figure PCTCN2015087739-appb-000001
cinit,l,
Figure PCTCN2015087739-appb-000002
NCP分别是第一序列的生成器的初始值、时隙内的OFDM符号索引、PCI(或者高层信令配置)、CP(Cyclic Prefix,循环前缀)标识。cinit,l,
Figure PCTCN2015087739-appb-000003
NCP的详细介绍参考3GPP TS36.211 6.10.5.1节。本实施例充分考虑了和现有系统的兼容性,所述特定标识仅用于时域上的序列跳跃(Sequence Hopping)(传统的LTE系统中的序列跳跃受限于传输时隙在无线帧中的索引ns),本实施例和传统的LTE方案相比,一个给定PCI对应的(多个在时域上跳跃的)CSI-RS序列是相同的,这样就能够重用传统的方案避免同一个运营商的相邻基站在共享非授权频谱上的干扰。作为一个子实施例,fcsi(I,ns)=mod(Xcsi/I+ns,20),所述Xcsi是预确定的常数或者是可配置的,mod(M,N)表示M处以N的余数。
具体的,根据本发明的一个方面,所述步骤B包括如下步骤:
-步骤B1.在第一载波上的所述给定子帧发送物理层数据
其中,第一RS是所述物理层数据的DMRS(Demodulation RS,解调参考信号)。即所述物理层数据的目标UE(User Equipment,用户设备)根据第一RS进行信道估计获得信道参数,然后利用所述信道参数对接收信号进行信道均衡以恢复所述物理层数据。
作为一个实施例,第一RS由LTE天线端口{5,7,8,9,10,11,12,13,14}中的K2个不同的天线端口所发送,所述K2是不大于8的正整数。所述{5,7,8,9,10,11,12,13,14}天线端口对应LTE中的UE特定RS。
作为一个实施例,第一序列的生成器的初始值的确定参数还包括第一RNTI(Radio Network Temporary Identifier,无线网络暂定标识),第一RNTI被所述基站分配给第一RS的目标接收UE(User Equipment, 用户设备)。作为一个实施例,所述特定标识为I,fdmrs(I,ns)到第一序列的生成器的初始值的映射重用LTE中ns到DMRS序列的生成器的初始值映射关系,fdmrs(I,ns)是I和ns的函数,fdmrs(I,ns)是小于20的非负整数。所述ns到DMRS序列的生成器的初始值参考3GPP TS36.211 6.10.3.1节。本实施例和传统的LTE方案相比,一个给定PCI对应的(多个在时域上跳跃的)UE特定RS序列是相同的,这样就能够重用传统的方案避免同一个运营商的相邻基站在共享非授权频谱上的干扰。作为一个子实施例,fdmrs(I,ns)=mod(Xdmrs/I+ns,20),所述Xdmrs是预确定的常数或者是可配置的。
作为一个实施例,第一RS的每个天线端口所对应的第一序列中的元素以及到时频资源的映射重用LTE中的方案,具体描述参考TS36.211的6.10.3.2节(如果第一载波的带宽是LTE定义的系统带宽之外的值,只需要相应调整第一序列中的元素个数即可)。
具体的,根据本发明的上述方面,所述步骤A包括如下步骤:
-步骤A1.确定第二序列,第二序列的生成器的初始值的确定参数包括所述特定标识。
所述步骤B还包括如下步骤:
-步骤B2.使用第二序列对原始数据进行加扰操作得到所述物理层数据。
其中,第二序列是伪随机序列。
作为一个实施例,第二序列的生成器的初始值的确定参数还包括第一RNTI(Radio Network Temporary Identifier,无线网络暂定标识),第一RNTI是所述物理层数据的调度DCI(Dowlink Control Information,下行控制信息)的标识RNTI。
作为一个实施例,第二序列的生成器使用LTE的伪随机序列生成器,详细描述见TS36.211 7.2节。
作为一个实施例,所述特定标识为I,fscrambling(I,ns)到第二序列的生成器的初始值的映射重用LTE中ns到扰码序列的生成器的初始值的映射关系,fscrambling(I,ns)是I和ns的函数,fscrambling(I,ns)是小于20的非负整数。所述ns到扰码序列的生成器的初始值的映射关系参考3GPPTS36.2115.3.1节。本实施例和传统的LTE方案相比,一个给定PCI对 应的(多个在时域上跳跃的)PDSCH(Physical Downlink Share Channel,物理下行共享信道)的扰码序列是相同的,这样就能够重用传统的方案避免同一个运营商的相邻基站在共享非授权频谱上的干扰。作为一个子实施例,fscrambling(I,ns)=mod(Xscrambling/I+ns,20),所述Xscrambling是预确定的常数或者是可配置的。
作为一个实施例,所述特定标识的值为V1时,所确定的第一序列的生成器的初始值G1_1和第二序列的生成器的初始值G2_1;所述特定标识的值为V2时,所确定的第一序列的生成器的初始值G1_2和第二序列的生成器的初始值G2_2;{G1_1-G1_2,G2_1-G2_2}中至少有一个不为零。
本发明公开了一种UE中的LAA通信中的扰码方法,包括如下步骤:
-步骤A.确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
-步骤B.在第一载波上的给定子帧接收第一RS。
其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
具体的,根据本发明的上述方面,所述步骤B包括如下步骤:
-步骤B0.获得下行CSI(Channel Status Indicator,信道状态指示),所述下行CSI的参考资源包括第一RS
其中,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
作为一个实施例,第一序列的生成器的初始值的确定参数还包括第一RS所映射的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号在时隙内的索引和发送第一RS的天线端口索引。作为一个实施例,所述下行CSI包括{PTI(Precoding Type Indicator,预编码类型指示),RI(Rank Indicator,秩指示),PMI(Precoding Matrix Indicator,预编码矩阵指示),CQI(Channel Quality Indicator,信道质量指示)}中的一种或者多种。
具体的,根据本发明的一个方面,所述步骤B还包括如下步骤:
-步骤B1.在第一载波上的所述给定子帧接收物理层数据
其中,第一RS是所述物理层数据的DMRS。
具体的,根据本发明的上述方面,所述步骤A包括如下步骤:
-步骤A1.确定第二序列,第二序列的生成器的初始值的确定参数包括所述特定标识。
所述步骤B还包括如下步骤:
-步骤B2.使用第二序列对所述物理层数据进行解扰操作得到原始数据。
其中,第二序列是伪随机序列。
本发明公开了一种基站设备,所述基站设备包括:
第一模块:用于确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
第二模块:用于在第一载波上的给定子帧发送第一RS。
其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
作为一个实施例,第二模块还用于在第一载波上的所述给定子帧发送物理层数据。其中,第一RS是所述物理层数据的DMRS。
作为一个实施例,第一模块还用于确定第二序列,第二序列的生成器的初始值的确定参数包括所述特定标识。第二模块还用于使用第二序列对原始数据进行加扰操作得到所述物理层数据。其中,第二序列是伪随机序列。
本发明公开了一种用户设备,所述用户设备包括:
第一模块:用于确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
第二模块:用于在第一载波上的给定子帧接收第一RS。
其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
作为一个实施例,第二模块还用于获得下行CSI,所述下行CSI的参考资源包括第一RS。其中,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
作为一个实施例,第二模块还用于在第一载波上的所述给定子帧接收物理层数据。其中,第一RS是所述物理层数据的DMRS。
作为一个实施例,第一模块还用于确定第二序列,第二序列的生成器的初始值的确定参数包括所述特定标识。第一模块还用于使用第二序列对所述物理层数据进行解扰操作得到原始数据。其中,第二序列是伪随机序列。
针对LAA通信中的PCI冲突问题,本发明的方案利用运营商专有的特定标识生成{下行RS的RS序列,下行物理层数据的扰码序列}中的一个或者两个,避免了由于相邻的基站在共享的频谱上配置了相同的PCI而生成相同的RS序列和扰码序列,进而避免了严重的小区间干扰。此外,本发明尽可能兼容现有的LTE协议,具有较好的兼容性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的下行传输的流程图;
图2示出了根据本发明的一个实施例的下行数据扰码及传输的流程图;
图3示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
图4示出了根据本发明的一个实施例的UE中的处理装置的结构框图。
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了下行传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务基站,方框F1中的步骤是可选步骤。
对于基站N1,在步骤S11中,确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的;在步骤S12中,在第一载波上的给定子帧发送第一RS。
对于UE U2,在步骤S21中,确定第一序列,第一序列的生成器的初 始值的确定参数包括特定标识,所述特定标识是运营商专有的;在步骤S22中,在第一载波上的给定子帧接收第一RS。
实施例1中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
作为实施例1的子实施例1,所述特定标识是{所述基站所属的PLMN,第二载波的中心频点,第二载波对应的服务小区的ECGI}中的一个。第二载波部署于授权频谱,第二载波对应的服务小区是第一载波的调度小区,第一载波的调度小区是UE特定的或者是小区特定的。
作为实施例1的子实施例2,基站N1在步骤S13中,在第一载波上的所述给定子帧发送物理层数据;UE U2在步骤S23中,在第一载波上的所述给定子帧接收物理层数据。其中,第一RS是所述物理层数据的DMRS。
实施例2
实施例2示例了下行数据扰码及传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务基站。
对于基站N3,在步骤S31中,确定第一序列和第二序列;在步骤S32中,使用第二序列对原始数据进行加扰操作得到物理层数据;在步骤S33中,在第一载波上的给定子帧发送第一RS和所述物理层数据。
对于UE U4,在步骤S41中,确定第一序列和第二序列;在步骤S42中,在第一载波上的给定子帧发送第一RS和所述物理层数据;在步骤S43中,使用第二序列对所述物理层数据进行解扰操作得到原始数据。
实施例2中,第一载波部署于非授权频谱,第一RS的RS序列是第一序列。第一序列是伪随机序列,第一序列的生成器使用LTE的伪随机序列生成器,第一序列的生成器的初始值的确定参数包括特定标识。第二序列是伪随机序列,第二序列的生成器使用LTE的伪随机序列生成器,第二序列的生成器的初始值的确定参数包括所述特定标识。所述特定标识是运营商专有的。第一RS是所述物理层数据的DMRS。
作为实施例2的子实施例1,所述特定标识是{所述基站所属的PLMN,第二载波的中心频点,第二载波对应的服务小区的ECGI}中的一个。第二载波部署于授权频谱,第二载波对应的服务小区是第一载波的调度小区。
实施例3
实施例3示例了基站中的处理装置的结构框图,如附图3所示。附图3中,基站处理装置300主要由第一确定模块301和发送模块302组成。
第一确定模块301用于确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的;发送模块302用于在第一载波上的给定子帧发送第一RS。
实施例3中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。第一序列的生成器使用LTE的伪随机序列生成器。
作为实施例3的子实施例1,发送模块302还用于在第一载波上的所述给定子帧发送物理层数据。其中,第一RS是所述物理层数据的DMRS。
作为实施例3的子实施例2,第一RS由CSI-RS天线端口发送。
作为实施例3的子实施例3,第一确定模块301还用于确定第二序列,发送模块302还用于使用第二序列对原始数据进行加扰操作得到物理层数据以及在第一载波上的所述给定子帧发送所述物理层数据。其中,第一RS是所述物理层数据的DMRS,第二序列的生成器的初始值的确定参数包括所述特定标识。其中,第二序列是伪随机序列。
实施例4
实施例4示例了一个UE中的处理装置的结构框图,如附图4所示。附图4中,UE处理装置400主要由第二确定模块401和接收模块402组成。
第二确定模块401用于确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的。接收模块402用于在第一载波上的给定子帧接收第一RS。
实施例4中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。第一序列的生成器使用LTE的伪随机序列生成器。
作为实施例4的子实施例1,接收模块402还用于获得下行CSI,所述下行CSI的参考资源包括第一RS。其中,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以 通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种基站中的LAA通信中的扰码方法,其特征在于,包括如下步骤:
    -步骤A.确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
    -步骤B.在第一载波上的给定子帧发送第一RS;
    其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
  2. 根据权利要求1所述的基站中的LAA通信中的扰码方法,其特征在于,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
  3. 根据权利要求1所述的基站中的LAA通信中的扰码方法,其特征在于,所述步骤B包括如下步骤:
    -步骤B1.在第一载波上的所述给定子帧发送物理层数据;
    其中,第一RS是所述物理层数据的DMRS。
  4. 根据权利要求3所述的基站中的LAA通信中的扰码方法,其特征在于,所述步骤A包括如下步骤:
    -步骤A1.确定第二序列,第二序列的生成器的初始值的确定参数包括所述特定标识;
    所述步骤B还包括如下步骤:
    -步骤B2.使用第二序列对原始数据进行加扰操作得到所述物理层数据;
    其中,第二序列是伪随机序列。
  5. 一种UE中的LAA通信中的扰码方法,其特征在于,包括如下步骤:
    -步骤A.确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
    -步骤B.在第一载波上的给定子帧接收第一RS;
    其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
  6. 根据权利要求5所述的UE中的LAA通信中的扰码方法,其特征在于,所述步骤B包括如下步骤:
    -步骤B0.获得下行CSI,所述下行CSI的参考资源包括第一RS
    其中,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
  7. 根据权利要求5所述的UE中的LAA通信中的扰码方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B1.在第一载波上的所述给定子帧接收物理层数据
    其中,第一RS是所述物理层数据的DMRS。
  8. 根据权利要求7所述的UE中的LAA通信中的扰码方法,其特征在于,所述步骤A包括如下步骤:
    -步骤A1.确定第二序列,第二序列的生成器的初始值的确定参数包括所述特定标识;
    所述步骤B还包括如下步骤:
    -步骤B2.使用第二序列对所述物理层数据进行解扰操作得到原始数据;
    其中,第二序列是伪随机序列。
  9. 一种基站设备,其特征在于,所述基站设备包括:
    第一模块:用于确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
    第二模块:用于在第一载波上的给定子帧发送第一RS;
    其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
  10. 根据权利要求9所述的基站设备,其特征在于,第二模块还用于在第一载波上的所述给定子帧发送物理层数据;其中,第一RS是所述物理层数据的DMRS。
  11. 一种用户设备,其特征在于,所述用户设备包括:
    第一模块:用于确定第一序列,第一序列的生成器的初始值的确定参数包括特定标识,所述特定标识是运营商专有的
    第二模块:用于在第一载波上的给定子帧接收第一RS;
    其中,第一载波部署于非授权频谱,第一序列是伪随机序列,第一RS的RS序列是第一序列。
  12. 根据权利要求11所述的用户设备,其特征在于,第二模块还 用于获得下行CSI,所述下行CSI的参考资源包括第一RS;其中,第一RS由LTE天线端口{15,16,17,18,19,20,21,22}中的K1个不同的天线端口所发送,所述K1是{1,2,4,8}中的一个。
PCT/CN2015/087739 2014-08-26 2015-08-21 基站、ue中的laa通信中的扰码方法和设备 WO2016029823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422599.8A CN105376188B (zh) 2014-08-26 2014-08-26 Laa通信中的扰码方法和装置
CN201410422599.8 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016029823A1 true WO2016029823A1 (zh) 2016-03-03

Family

ID=55378003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087739 WO2016029823A1 (zh) 2014-08-26 2015-08-21 基站、ue中的laa通信中的扰码方法和设备

Country Status (2)

Country Link
CN (1) CN105376188B (zh)
WO (1) WO2016029823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143898A (zh) * 2018-12-10 2022-03-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231693B (zh) * 2016-03-25 2019-03-15 中兴通讯股份有限公司 上行信息的发送、接收方法、装置及系统
WO2017162022A1 (zh) * 2016-03-25 2017-09-28 中兴通讯股份有限公司 上行信息的发送、接收方法、装置、系统及存储介质
CN110995629B (zh) * 2016-07-15 2022-06-21 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN108111285B (zh) * 2017-11-17 2021-10-26 中兴通讯股份有限公司 一种传输参考信号的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034064A1 (en) * 2011-08-05 2013-02-07 Samsung Electronics Co., Ltd. Apparatus and method for ue-specific demodulation reference signal scrambling
CN103181114A (zh) * 2012-09-04 2013-06-26 华为技术有限公司 一种参考信号的传输方法和装置
CN103733583A (zh) * 2011-08-05 2014-04-16 瑞典爱立信有限公司 参考信号生成技术

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268910A1 (en) * 2008-04-28 2009-10-29 Samsung Electronics Co., Ltd. Apparatus and method for initialization of a scrambling sequence for a downlink reference signal in a wireless network
KR101321311B1 (ko) * 2008-12-26 2013-10-28 샤프 가부시키가이샤 기지국 장치, 이동국 장치, 통신 시스템 및 통신 방법
CN101958865B (zh) * 2009-07-13 2013-12-11 重庆无线绿洲通信技术有限公司 解调参考信号的生成方法及装置
US20150043520A1 (en) * 2011-11-17 2015-02-12 Broadcom Corporation Methods and Apparatuses for Provision of Reference Signal Design for Downlink Tracking in Occupied Shared Band

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034064A1 (en) * 2011-08-05 2013-02-07 Samsung Electronics Co., Ltd. Apparatus and method for ue-specific demodulation reference signal scrambling
CN103733583A (zh) * 2011-08-05 2014-04-16 瑞典爱立信有限公司 参考信号生成技术
CN103181114A (zh) * 2012-09-04 2013-06-26 华为技术有限公司 一种参考信号的传输方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143898A (zh) * 2018-12-10 2022-03-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
CN105376188B (zh) 2019-08-09
CN105376188A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
US10805863B2 (en) Method and apparatus for generating and using reference signal for broadcast channel for radio system
JP7125064B2 (ja) リソース指示方法、端末デバイス、及びネットワークデバイス
CN110072290B (zh) 一种laa系统的通信方法和装置
WO2017185915A1 (zh) 分配时频资源的方法和装置
WO2015135456A1 (zh) 一种ue、基站中在非授权频谱上的通信方法和设备
WO2015135496A1 (zh) 一种ue、基站中非授权频谱上的传输方法和设备
US10742465B2 (en) Systems and methods for multi-physical structure system
EP3554116B1 (en) Data transmission method, terminal, and base station
JP2022122973A (ja) システムメッセージの伝送方法及び装置
WO2016029823A1 (zh) 基站、ue中的laa通信中的扰码方法和设备
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
CN110166216B (zh) 一种laa资源分配的方法和装置
CN103796314B (zh) 用户设备及其搜索空间的物理资源块配置方法、系统侧
WO2012163306A1 (zh) 导频序列配置方法和网络设备
TWI682642B (zh) 用於發信及判定參考信號偏移之方法及設備
CN104662979A (zh) 终端装置、基站装置、无线通信方法以及集成电路
WO2017133010A1 (zh) 一种物理下行信道的传输方法、装置及系统
WO2019095338A1 (zh) 系统消息传输方法、装置及系统
WO2014008771A1 (zh) 传输信号的发送、接收方法及终端、基站
WO2019062647A1 (zh) 探测参考信号的资源分配方法及装置
CN109219052B (zh) 一种资源信息传输方法、相关设备和系统
US20220224481A1 (en) Method for obtaining configuration information of demodulation reference signal, configuration method, and apparatus
JP2018207520A (ja) データを伝送するための方法およびデバイス
CN109451590B (zh) 一种非授权频谱上的通信方法、用户装置和基站装置
CN109831813B (zh) Laa通信中的小区搜索方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC. EPO FORM 1205A DATED 12.07.2017.

122 Ep: pct application non-entry in european phase

Ref document number: 15836117

Country of ref document: EP

Kind code of ref document: A1