WO2016029686A1 - 一种预编码的方法、装置及系统 - Google Patents

一种预编码的方法、装置及系统 Download PDF

Info

Publication number
WO2016029686A1
WO2016029686A1 PCT/CN2015/074919 CN2015074919W WO2016029686A1 WO 2016029686 A1 WO2016029686 A1 WO 2016029686A1 CN 2015074919 W CN2015074919 W CN 2015074919W WO 2016029686 A1 WO2016029686 A1 WO 2016029686A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data center
matrix
frequency selectivity
primary
Prior art date
Application number
PCT/CN2015/074919
Other languages
English (en)
French (fr)
Inventor
吴涛
吕林军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15834991.0A priority Critical patent/EP3179653B1/en
Publication of WO2016029686A1 publication Critical patent/WO2016029686A1/zh
Priority to US15/444,582 priority patent/US10171135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/164Feedback from the receiver or from the transmission channel

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device and system for precoding.
  • the wireless communication network has evolved from the original macro station macro cell networking to today's high power dense networking. Regardless of the networking mode, signal interference between different cells is always a problem that needs to be addressed.
  • the terminal In a high-power dense networked wireless communication system, there are no cells and sectors centered on the base station, because there is overlap of signal coverage areas between different base stations. Therefore, the terminal is jointly covered by multiple base stations.
  • the prior art generally feeds back the channel of the terminal to the coordinated base station for cooperation, thereby reducing interference.
  • the embodiments of the present invention provide a method, a device, and a system for precoding, which can reduce the complexity of cooperative communication calculation and improve the cooperative gain of the wireless network in a scenario of high power dense networking.
  • a first aspect of an embodiment of the present invention discloses a method for precoding, the method comprising:
  • the secondary data center Receiving, by the secondary data center, primary channel information sent by at least two primary data centers, where the primary channel information includes a channel matrix between the terminal and the primary data center;
  • the secondary data center performs calculation according to the channel matrix to obtain a secondary precoding matrix
  • the secondary data center generates a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and sends the secondary signal to the primary data center.
  • the primary channel information further includes a primary precoding matrix
  • the secondary data center performs calculation according to the channel matrix, and acquiring the secondary precoding matrix includes:
  • the secondary data center performs calculation according to the channel matrix and the primary precoding matrix to obtain a secondary precoding matrix.
  • a second aspect of an embodiment of the present invention discloses another method of precoding, the method comprising:
  • a primary data center acquires a channel between the terminal and the primary data center, the channel including a channel matrix
  • the primary data center encodes the channel matrix according to a precoding matrix to obtain an equivalent channel
  • the primary data center sends the equivalent channel to the secondary data center;
  • the primary data center transmits the channel matrix and the precoding matrix to the secondary data center.
  • the primary data center encodes the channel matrix according to a precoding matrix, and before the obtaining the equivalent channel, the method further includes:
  • the primary data center performs calculation according to the channel matrix to obtain the precoding matrix.
  • the method further includes:
  • the determining the frequency selectivity of the equivalent channel and the frequency selectivity of the channel includes:
  • a third aspect of the embodiments of the present invention discloses a data center, where the data center includes:
  • a receiving unit configured to receive first-level channel information sent by at least two primary data centers, where The primary channel information includes a channel matrix between the terminal and the primary data center;
  • a calculating unit configured to perform calculation according to the channel matrix, and acquire a secondary precoding matrix
  • a generating unit configured to generate a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and send the secondary signal to the primary data center.
  • the primary channel information further includes a primary precoding matrix
  • the calculating unit is specifically configured to calculate, according to the channel matrix and the precoding matrix, the secondary data center to obtain a secondary precoding matrix.
  • a fourth aspect of an embodiment of the present invention discloses another data center, where the data center includes:
  • An acquiring unit configured to acquire a channel between the terminal and the primary data center, where the channel includes a channel matrix
  • a coding unit configured to encode the channel matrix according to a precoding matrix to obtain an equivalent channel
  • a sending unit configured to send the equivalent channel to the secondary data center when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel;
  • the sending unit is further configured to: when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, send the channel matrix and the precoding matrix to the secondary data center.
  • the data center further includes a computing unit:
  • the calculating unit is configured to perform calculation according to the channel matrix, and acquire the precoding matrix.
  • the data center further includes a determining unit and a comparing unit;
  • the determining unit is configured to determine frequency selectivity of the equivalent channel and frequency selectivity of the channel;
  • the comparing unit is configured to compare the frequency selectivity of the equivalent channel and the frequency selectivity of the channel.
  • the determining unit is specifically configured to calculate a variance of the channel, determine a frequency selectivity of the channel according to a variance of the channel, calculate a variance of the equivalent channel, and determine the variance according to the variance of the equivalent channel.
  • the frequency selectivity of the equivalent channel is specifically configured to calculate a variance of the channel, determine a frequency selectivity of the channel according to a variance of the channel, calculate a variance of the equivalent channel, and determine the variance according to the variance of the equivalent channel.
  • a fifth aspect of the embodiments of the present invention discloses a precoding system, where the precoding system includes:
  • the secondary data center generates a secondary signal according to a signal sent to the terminal and the secondary precoding matrix, and The primary data center transmits the secondary signal; the secondary data center reduces the complexity of the collaborative communication calculation as a whole, and improves the synergy of the wireless communication.
  • the method and apparatus for precoding provided by the embodiment of the present invention, when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, the first level data The center sends the equivalent channel to the secondary data center; when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, the primary data center sends the channel to the secondary data center Matrix; the first-level data center compares the frequency selectivity of the channel and the frequency selectivity of the equivalent channel, and feeds the frequency selectivity to the secondary data center, thereby reducing the feedback amount and reducing the communication cooperation process.
  • the complexity of the calculation when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, the first level data The center sends the equivalent channel to the secondary data center; when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, the primary data center sends the channel to the secondary data center Matrix; the first-level data center compares the frequency selectivity of the channel and the frequency selectivity of the equivalent channel
  • FIG. 1 is a schematic diagram of a cooperative communication architecture according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for precoding according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for precoding according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for precoding according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a data center according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of another data center according to another embodiment of the present invention.
  • FIG. 6 is a structural diagram of another data center according to another embodiment of the present invention.
  • FIG. 7 is a precoding system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a data center according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another data center according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a cooperative communication architecture provided by an embodiment of the present invention.
  • the architecture diagram includes at least two levels of architecture, a primary data center and a secondary data center.
  • the primary data center may be a base station, and each base station has a multiple antenna array.
  • each user is guaranteed to receive the maximum synergy gain while reducing interference to other users. Therefore, the secondary data center can perform cooperative weighting through the channel fed back by the primary data center.
  • FIG. 2 illustrates a method for precoding according to an embodiment of the present invention, and the method specifically includes steps 101 to 104.
  • the secondary data center receives primary channel information sent by at least two primary data centers, where the primary channel information includes a channel matrix between the terminal and the primary data center.
  • the primary data center may be a device such as a base station.
  • the base station can perform channel estimation on the subcarrier where the uplink pilot is located by using an algorithm such as the MMSE (Minimum Mean Square Error) algorithm or the LS (Least Square) algorithm, so as to obtain a channel between the base station and the terminal. matrix.
  • MMSE Minimum Mean Square Error
  • LS Least Square
  • the base station can feed back the channel matrix between the base station and the multiple terminals to the secondary data center.
  • the secondary data center can receive a channel matrix fed back by multiple base stations.
  • the terminal may be an electronic device with a communication function such as a smart phone or a tablet computer.
  • the channel matrix may be an original channel obtained by estimating the uplink pilot by using the MMSE algorithm or the LS algorithm in the primary data center, and the channel matrix may also be obtained after the primary channel is pre-coded by the primary data center. Equivalent channel.
  • the secondary data center performs calculation according to the channel matrix to obtain a secondary precoding moment.
  • the secondary data center After receiving the channel matrix sent by the multiple primary data centers, the secondary data center will be matrix-connected by the received channel matrix to obtain a connection matrix. The secondary data center acquires a secondary precoding matrix according to the connection matrix.
  • the secondary data center not only receives the channel matrix sent by the multiple primary data centers, but also receives the primary precoding matrix sent by the multiple primary data centers, and the secondary data center and the channel matrix
  • the precoding matrix is calculated to obtain secondary channel information, and the secondary data center calculates the secondary channel to obtain a secondary precoding matrix.
  • the secondary data center generates a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and sends the secondary signal to the primary data center.
  • the secondary data center encodes the signal sent to the terminal according to the obtained secondary precoding matrix to generate a secondary signal; and then sends the signal to the same primary data center according to the correspondence between the primary data center and the terminal.
  • the secondary signals are superimposed, and the superposed secondary signals are sent to the primary data center, so that the primary data center processes the superposed secondary signals and sends them to the terminal.
  • the signal sent to the terminal is sent by the network side to the secondary data center, sent to the primary data center through the secondary data center, and sent to the terminal through the primary data center.
  • the secondary data center generates a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and sends the secondary signal to the primary data center.
  • the secondary signal; the secondary data center reduces the computational complexity as a whole and improves the gain of wireless communication coordination.
  • the primary channel information further includes a primary precoding matrix
  • Step 103 The secondary data center performs calculation according to the channel matrix to obtain a secondary precoding matrix, and specifically includes:
  • the secondary data center performs calculation according to the channel matrix and the primary precoding matrix to obtain a secondary precoding matrix.
  • the primary precoding matrix may be calculated by the primary data center according to the channel matrix.
  • FIG. 3 illustrates another method of precoding according to an embodiment of the present invention, and the method specifically includes steps 201 to 204.
  • the primary data center acquires a channel between the terminal and the primary data center, where the channel includes a channel matrix.
  • the primary data center may be a device such as a base station.
  • the base station may perform channel estimation on the subcarrier where the uplink pilot is located by using an algorithm such as the MMSE algorithm or the LS algorithm, thereby acquiring a channel matrix between the base station and the terminal.
  • the primary data center encodes the channel matrix according to a precoding matrix to obtain an equivalent channel.
  • the primary data center may encode the channel matrix according to a precoding matrix to obtain an array gain to obtain an equivalent channel.
  • the primary data center sends the equivalent channel to the secondary data center.
  • the primary data center may calculate the frequency selectivity of the channel and the frequency selectivity of the equivalent channel, and then compare the frequency selectivity of the channel with the frequency selectivity of the equivalent channel.
  • the frequency selectivity of the equivalent channel when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, it indicates that the equivalent channel is relatively stable, and the equivalent channel with less feedback can achieve the purpose of the feedback channel.
  • the primary data center sends the channel matrix and the precoding matrix to the secondary data center.
  • the frequency selectivity of the equivalent channel when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, it indicates that the channel is relatively stable, and the channel with less feedback can achieve the purpose of the feedback channel.
  • the primary data center when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, the primary data center sends to the secondary data center.
  • the equivalent channel when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, the primary data center sends the channel matrix to the secondary data center;
  • the center compares the frequency selectivity of the channel and the frequency selectivity of the equivalent channel, and feeds the frequency selectivity to the secondary data center, thereby reducing the feedback amount and reducing the complexity of the calculation in the communication cooperation process. degree.
  • step 202 the primary data center encodes the channel matrix according to a precoding matrix, and further includes steps before obtaining an equivalent channel.
  • the primary data center performs calculation according to the channel matrix to obtain the precoding matrix.
  • step 204 After obtaining the equivalent channel, step 302 is further included:
  • determining the frequency selectivity of the equivalent channel and the frequency selectivity of the channel on the basis of FIG. 3 includes:
  • the primary data center compares the frequency selectivity of the channel and the frequency selectivity of the equivalent channel.
  • FIG. 4 illustrates a method for precoding according to an embodiment of the present invention, and the method specifically includes steps 401 to 408.
  • the base station acquires primary channel information between the base station and the terminal, where the primary channel information includes a channel matrix between the base station and the terminal.
  • the base station calculates a primary precoding matrix according to the primary channel information.
  • the base station sends the channel matrix and the first-level precoding matrix to a secondary data center.
  • the secondary data center calculates the channel matrix and the primary precoding matrix to obtain secondary channel information.
  • the secondary data center calculates the secondary channel information to obtain a secondary precoding matrix.
  • the secondary data center generates a secondary signal according to the secondary precoding matrix and a signal that needs to be sent to the terminal, and sends the secondary signal to the base station.
  • the base station generates a first-level signal according to the first-level precoding matrix and the second-level terminal sending signal, and sends the first-level signal to the terminal.
  • the terminal solves the primary signal by receiving a precoding technique.
  • a precoding matrix is obtained according to a signal matrix between each terminal and a base station in a secondary data center, and a signal sent to the terminal is encoded according to the precoding matrix, thereby The complexity of wireless communication coordination is reduced as a whole, and the synergy gain is improved.
  • the terminal 90 includes a receiving unit 501, a calculating unit 502, and a generating unit 503.
  • the receiving unit 501 is configured to receive primary channel information that is sent by at least two primary data centers, where the primary channel information includes a channel matrix between the terminal and the primary data center;
  • the calculating unit 502 is configured to perform calculation according to the channel matrix to obtain a secondary precoding matrix
  • the generating unit 503 is configured to generate a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and send the secondary signal to the primary data center.
  • the secondary data center generates a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and sends the secondary signal to the primary data center.
  • the secondary data center of the secondary signal reduces the computational complexity as a whole and improves the gain of wireless communication coordination.
  • the primary channel information further includes a primary precoding matrix
  • the calculating unit 502 is specifically configured to calculate, according to the channel matrix and the precoding matrix, the secondary data center to obtain a secondary precoding matrix.
  • FIG. 6 depicts a data center 60 for performing the precoding method shown in FIG. 3 described above in accordance with an embodiment of the present invention.
  • the data center 60 includes an obtaining unit 601, an encoding unit 602, and a transmitting unit 603.
  • An obtaining unit 601 configured to acquire a channel between the terminal and the primary data center, where the channel includes a channel matrix
  • the encoding unit 602 is configured to encode the channel matrix according to a precoding matrix to obtain an equivalent channel;
  • the sending unit 603 is configured to: when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, send the equivalent channel to the secondary data center;
  • the sending unit 603 is further configured to: when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, send the channel matrix to the secondary data center.
  • the primary data center when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, the primary data center sends the An equivalent channel; when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, the one The level data center sends the channel matrix to the secondary data center; the first-level data center compares the frequency selectivity of the channel and the frequency selectivity of the equivalent channel, and feeds the frequency selectivity to the secondary data Center, which reduces the amount of feedback and reduces the computational complexity of communication coordination.
  • the data center 60 further includes a computing unit 604:
  • the calculating unit 604 is configured to perform calculation according to the channel matrix to obtain the precoding matrix.
  • the data center 60 further includes a determining unit 605 and a comparing unit 606;
  • the determining unit 605 is configured to determine frequency selectivity of the equivalent channel and frequency selectivity of the channel;
  • the comparing unit 606 is configured to compare the frequency selectivity of the equivalent channel and the frequency selectivity of the channel.
  • the determining unit 605 is specifically configured to calculate a variance of the channel, determine a frequency selectivity of the channel according to a variance of the channel, and further calculate a variance of the equivalent channel, and determine a variance according to the equivalent channel.
  • the frequency selectivity of the equivalent channel is specifically configured to calculate a variance of the channel, determine a frequency selectivity of the channel according to a variance of the channel, and further calculate a variance of the equivalent channel, and determine a variance according to the equivalent channel. The frequency selectivity of the equivalent channel.
  • FIG. 7 is a precoding system according to an embodiment of the present invention.
  • the precoding system includes the data center shown in FIG. 5 and the data center shown in FIG. 6.
  • FIG. 8 illustrates a structure of a data center according to another embodiment of the present invention, including at least one processor 801 (eg, a CPU), a memory 802, at least one network interface 803, at least one communication bus 804, and at least one receiver 805. To achieve connection communication between these devices.
  • the processor 801 is configured to execute executable modules, such as computer programs, stored in the memory 802.
  • the memory 802 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least an eMMC (Embedded Multi Media Card) memory.
  • RAM Random Access Memory
  • eMMC embedded Multi Media Card
  • the communication connection between the network device and at least one other network element is implemented by at least one network interface 803 (which may be wired or wireless), and may use an Internet, a wide area network, a local network, a metropolitan area network, or the like.
  • the terminal is configured to perform the transmission method of the channel feedback information shown in FIG. 2.
  • the memory 802 stores a program 8021, and the program 8021 can be executed by the processor 801.
  • the program includes:
  • the secondary data center Receiving, by the secondary data center, primary channel information sent by at least two primary data centers, where the primary channel information includes a channel matrix between the terminal and the primary data center;
  • the secondary data center performs calculation according to the channel matrix to obtain a secondary precoding matrix
  • the secondary data center generates a secondary signal according to the signal sent to the terminal and the secondary precoding matrix, and sends the secondary signal to the primary data center.
  • the primary channel information further includes a primary precoding matrix
  • the secondary data center performs calculation according to the channel matrix, and acquiring the secondary precoding matrix includes:
  • the secondary data center performs calculation according to the channel matrix and the primary precoding matrix to obtain a secondary precoding matrix.
  • FIG. 9 depicts a structure of a base station according to another embodiment of the present invention, including at least one processor 901. (e.g., CPU), memory 902, at least one network interface 903, at least one communication bus 904, and at least one receiver 905 for enabling connection communication between these devices.
  • the processor 901 is configured to execute an executable module, such as a computer program, stored in the memory 902.
  • Memory 902 may include RAM and may also include non-volatile memory, such as at least eMMC memory.
  • the communication connection between the network device and at least one other network element is implemented by at least one network interface 903 (which may be wired or wireless), and may use an Internet, a wide area network, a local network, a metropolitan area network, or the like.
  • the base station is configured to perform the transmission method of the channel feedback information shown in FIG.
  • the memory 902 stores a program 9021, and the program 9021 can be executed by the processor 901.
  • the program includes:
  • a primary data center acquires a channel between the terminal and the primary data center, the channel including a channel matrix
  • the primary data center encodes the channel matrix according to a precoding matrix to obtain an equivalent channel
  • the primary data center transmits the channel matrix and the precoding matrix to the secondary data center.
  • the primary data center encodes the channel matrix according to a precoding matrix, and before the obtaining the equivalent channel, the method further includes:
  • the primary data center performs calculation according to the channel matrix to obtain the precoding matrix.
  • the method further includes:
  • the determining the frequency selectivity of the equivalent channel and the frequency selectivity of the channel includes:
  • the primary data center when the frequency selectivity of the equivalent channel is less than or equal to the frequency selectivity of the channel, the primary data center sends to the secondary data center.
  • the equivalent channel when the frequency selectivity of the equivalent channel is greater than the frequency selectivity of the channel, the primary data center sends the channel matrix to the secondary data center;
  • the center compares the frequency selectivity of the channel and the frequency selectivity of the equivalent channel, and feeds the frequency selectivity to the secondary data center, thereby reducing the feedback amount and reducing the complexity of the calculation in the communication cooperation process. degree.
  • a precoding system in another embodiment, includes the data center shown in FIG. 8 and the data center shown in FIG.
  • the content is based on the same concept as the method embodiment of the present invention.
  • the description in the method embodiment of the present invention and details are not described herein again.
  • the above storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM: Read-Only Memory), or a RAM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及通信领域,具体涉及一种预编码的方法。该方法包括:二级数据中心接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵;所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,从整体上减少了计算的复杂度,提高了无线通信协同的增益。

Description

一种预编码的方法、装置及系统 技术领域
本发明涉及通信领域,具体涉及一种预编码的方法、装置及系统。
背景技术
无线通信网络从最初的宏站宏蜂窝组网发展到如今的大功率密集组网。无论是哪一种组网方式,不同小区之间的信号干扰始终是一个需要处理的问题。
在大功率密集组网的无线通信系统中,没有以基站为中心的小区和扇区,因为不同的基站之间会有信号覆盖区域的重叠。因此,终端会被多个基站共同覆盖,现有技术通常将终端的信道反馈到协同基站进行协同,从而降低干扰。
但是,在这种大功率密集组网的场景下,由于网络覆盖的协同节点数很多,导致协同节点计算协同通信的复杂度大大增加,从而影响无线网络协同增益。
发明内容
本发明实施例提供了一种预编码的方法、装置及系统,可以在大功率密集组网的场景下,降低协同通信计算的复杂度,提升无线网络的协同增益。
本发明实施例的第一方面公开了一种预编码的方法,所述方法包括:
二级数据中心接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵;
所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
结合第一方面,在第一方面的第一种可能的实现方式中,所述一级信道信息还包括一级预编码矩阵;
所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵包括:
所述二级数据中心根据所述信道矩阵和所述一级预编码矩阵进行计算,获取二级预编码矩阵。
本发明实施例的第二方面公开了另一种预编码的方法,所述方法包括:
一级数据中心获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;
当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵和所述预编码矩阵。
结合第二方面,在第二方面的第一种可能的实现方式中,所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道之前还包括:
所述一级数据中心根据所述信道矩阵进行计算,获取所述预编码矩阵。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述获得等效信道之后,还包括:
确定所述等效信道的频选性和所述信道的频选性,并比较所述等效信道的频选性和所述信道的频选性的大小。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述确定所述等效信道的频选性和所述信道的频选性包括:
计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;
计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
本发明实施例的第三方面公开了一种数据中心,所述数据中心包括:
接收单元,用于接收至少两个一级数据中心发送的一级信道信息,所述 一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
计算单元,用于根据所述信道矩阵进行计算,获取二级预编码矩阵;
生成单元,用于根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
结合第三方面,在第三方面的第一种可能的实现方式中,所述一级信道信息还包括一级预编码矩阵;
所述计算单元,具体用于所述二级数据中心根据所述信道矩阵和所述以及预编码矩阵进行计算,获取二级预编码矩阵。
本发明实施例的第四方面公开了另一种数据中心,所述数据中心包括:
获取单元,用于获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
编码单元,用于根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
发送单元,用于当所述等效信道的频选性小于或等于所述信道的频选性时,向二级数据中心发送所述等效信道;
所述发送单元,还用于当所述等效信道的频选性大于所述信道的频选性时,向所述二级数据中心发送所述信道矩阵和所述预编码矩阵。
结合第四方面,在第四方面的第一种可能的实现方式中,所述数据中心还包括计算单元:
所述计算单元,用于根据所述信道矩阵进行计算,获取所述预编码矩阵。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述数据中心还包括确定单元和比较单元;
所述确定单元,用于确定所述等效信道的频选性和所述信道的频选性;
所述比较单元,用于比较所述等效信道的频选性和所述信道的频选性的大小。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,
所述确定单元,具体用于计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
本发明实施例的第五方面公开了一种预编码系统,所述预编码系统包括:
第三方面或第三方面的第一种可能的实现方式中描述的数据中心;
以及
第四方面或第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式或第四方面的第三种可能的实现方式描述的数据中心。
结合第一方面和第三方面,使用本发明实施例提供的预编码的方法和装置,所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号;该二级数据中心从整体上减少了协同通信计算的复杂度,提高了无线通信协同的增益。
结合第二方面和第四方面,使用本发明实施例提供的预编码的方法和装置,当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵;所述一级数据中心比较信道的频选性和等效信道的频选性的大小,将频选性小的反馈给二级数据中心,从而减少了反馈量,降低了通信协同过程中计算的复杂度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的一个协同通信架构图;
图2为本发明一实施例提供的一种预编码的方法流程图;
图3为本发明一实施例提供的另一种预编码的方法流程图;
图4为本发明一实施例提供的另一种预编码的方法流程图;
图5为本发明一实施例提供的一种数据中心的结构图;
图6为本发明另一实施例提供的另一种数据中心的结构图;
图6a为本发明另一实施例提供的另一种数据中心的结构图;
图7为本发明一实施例提供的一种预编码系统;
图8为本发明另一实施例提供的一种数据中心的实体结构图;
图9为本发明另一实施例提供的另一种数据中心的实体结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,该图1是本发明实施例提供的一个协同通信架构图。该架构图至少包括两级架构,分别为一级数据中心和二级数据中心。其中,一级数据中心可以是基站,每个基站都有一个多天线阵列。为了能够让多个用户进行协同通信,保证每个用户接收最大的协同增益的同时,降低对其他用户的干扰。因此二级数据中心通过一级数据中心反馈的信道,可以进行协同加权。
如图2所示,该图2描述了本发明实施例的一种预编码的方法,该方法具体包括步骤101至步骤104。
101、二级数据中心接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
其中,一级数据中心可以是基站等设备。基站可以通过MMSE(Minimum Mean Square Error,最小均方误差)算法或LS(Least Square,最小二乘法)算法等算法对上行导频所在的子载波进行信道估计,从而获取基站与终端之间的信道矩阵。
其中,基站可以向二级数据中心反馈该基站与多个终端之间的信道矩阵。
其中,二级数据中心可以接收多个基站反馈的信道矩阵。
其中,终端可以是智能手机、平板电脑等具有通讯功能的电子设备。
其中,该信道矩阵可以是一级数据中心利用MMSE算法或LS算法对上行导频进行估计后获得的原始信道,该信道矩阵也可以是经过一级数据中心对该原始信道进行预编码之后获得的等效信道。
102、所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩 阵;
其中,二级数据中心在收到多个一级数据中心发送的信道矩阵之后,将是接收到的信道矩阵进行矩阵联结,从而获得一个联结矩阵。二级数据中心根据该联结矩阵获取二级预编码矩阵。
其中,二级数据中心不仅会收到多个一级数据中心发送的信道矩阵,也会收到多个一级数据中心发送的一级预编码矩阵,该二级数据中心对该信道矩阵和一级预编码矩阵进行计算,获取二级信道信息,该二级数据中心对该二级信道进行计算,获取二级预编码矩阵。
103、所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
其中,二级数据中心根据获取的二级预编码矩阵对向终端发送的信号进行编码,生成二级信号;然后,根据一级数据中心和终端的对应关系,向同个一级数据中心发送的二级信号进行迭加,将迭加后的二级信号向一级数据中心发送,以使得一级数据中心将该迭加的二级信号处理后发送至终端。
其中,该向终端发送的信号是网络侧发送给二级数据中心的,通过二级数据中心向一级数据中心发送,在通过一级数据中心向终端发送。
从上可知,使用本发明实施例提供的预编码的方法,所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号;该二级数据中心从整体上减少了计算的复杂度,提高了无线通信协同的增益。
可选的,在本发明的另一个实施例中,在图2的基础上,所述一级信道信息还包括一级预编码矩阵;
步骤103:所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵,具体包括:
所述二级数据中心根据所述信道矩阵和所述一级预编码矩阵进行计算,获取二级预编码矩阵。
其中,一级预编码矩阵可以是一级数据中心根据所述信道矩阵计算得到的。
如图3所示,该图3描述了本发明实施例的另一种预编码的方法,该方法具体包括步骤201至步骤204。
201、一级数据中心获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
其中,一级数据中心可以是基站等设备。基站可以通过MMSE算法或LS算法等算法对上行导频所在的子载波进行信道估计,从而获取基站与终端之间的信道矩阵。
202、所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
其中,一级数据中心可以根据预编码矩阵对所述信道矩阵进行编码,获得阵列增益,得到等效的信道。
203、当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;
其中,一级数据中心可以计算出所述信道的频选性和所述等效信道的频选性,然后将所述信道的频选性和所述等效信道的频选性的比较大小。
其中,当所述等效信道的频选性小于或等于所述信道的频选性时,说明等效信道比较稳定,反馈较少的等效信道就可以达到反馈信道的目的。
204、当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵和所述预编码矩阵。
其中,当所述等效信道的频选性大于所述信道的频选性时,说明所述信道比较稳定,反馈较少的所述信道就可以达到反馈信道的目的。
从上可知,使用本发明实施例提供的预编码的方法,当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵;所述一级数据中心比较所述信道的频选性和所述等效信道的频选性的大小,将频选性小的反馈给二级数据中心,从而减少了反馈量,降低了通信协同过程中计算的复杂度。
可选的,在本发明的另一个实施例中,在图3的基础上,步骤202:所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道之前还包括步骤301:
所述一级数据中心根据所述信道矩阵进行计算,获取所述预编码矩阵。
可选的,在本发明的另一个实施例中,在图3的基础上,步骤204:所述 获得等效信道之后,还包括步骤302:
确定所述等效信道的频选性和所述信道的频选性,并比较所述等效信道的频选性和所述信道的频选性的大小。
可选的,在本发明的另一个实施例中,在图3的基础上,确定所述等效信道的频选性和所述信道的频选性包括:
计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;
计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
其中,一级数据中心比较所述信道的频选性和所述等效信道的频选性的大小。
如图4所示,该图4描述了本发明实施例的一种预编码的方法,该方法具体包括步骤401至步骤408。
401、基站获取该基站到终端之间的一级信道信息,所述的一级信道信息包括该基站到终端之间的信道矩阵;
402、该基站根据所述一级信道信息计算一级预编码矩阵;
403、该基站向二级数据中心发送该信道矩阵和该一级预编码矩阵;
404、该二级数据中心对该信道矩阵和该一级预编码矩阵进行计算,获取二级信道信息;
405、该二级数据中心对该二级信道信息进行计算,获取二级预编码矩阵;
406、该二级数据中心根据所述二级预编码矩阵以及需要向终端发送的信号生成二级信号,并向该基站发送该二级信号;
407、所述基站根据所述一级预编码矩阵以及二级终端发送信号生成一级信号,并向终端发送该一级信号;
408、终端通过接收预编码技术解出该一级信号。
从上可知,使用本发明实施例提供的预编码的方法,在二级数据中心根据各终端与基站之间的信号矩阵获取预编码矩阵,根据预编码矩阵对向终端发送的信号进行编码,从而从整体上降低了无线通信协同的复杂度,提升了协同增益。
如图5所示,该据图5描述本发明实施例的数据中心50,该数据中心50用于执行前述图2所示的预编码的方法。终端90包括:接收单元501,计算单元502,生成单元503。
接收单元501,用于接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
计算单元502,用于根据所述信道矩阵进行计算,获取二级预编码矩阵;
生成单元503,用于根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
从上可知,使用本发明实施例提供的数据中心,所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号所述二级数据中心从整体上减少了计算的复杂度,提高了无线通信协同的增益。
可选的,如图5所示,在本发明的另一实施例中,所述一级信道信息还包括一级预编码矩阵;
计算单元502,具体用于所述二级数据中心根据所述信道矩阵和所述以及预编码矩阵进行计算,获取二级预编码矩阵。
如图6所示,该图6描述本发明实施例的数据中心60,该数据中心60用于执行前述图3所示的预编码的方法。数据中心60包括:获取单元601,编码单元602、发送单元603。
获取单元601,用于获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
编码单元602,用于根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
发送单元603,用于当所述等效信道的频选性小于或等于所述信道的频选性时,向二级数据中心发送所述等效信道;
发送单元603,还用于当所述等效信道的频选性大于所述信道的频选性时,向所述二级数据中心发送所述信道矩阵。
从上可知,使用本发明实施例提供的数据中心,当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;当所述等效信道的频选性大于所述信道的频选性时,所述一 级数据中心向所述二级数据中心发送所述信道矩阵;所述一级数据中心比较信道的频选性和等效信道的频选性的大小,将频选性小的反馈给二级数据中心,从而减少了反馈量,降低了通信协同过程中计算的复杂度。
可选的,在图6的基础上,如图6a所示,数据中心60还包括计算单元604:
计算单元604,用于根据所述信道矩阵进行计算,获取所述预编码矩阵。
可选的,如图6所示,所述数据中心60还包括确定单元605和比较单元606;
所述确定单元605,用于确定所述等效信道的频选性和所述信道的频选性;
所述比较单元606,用于比较所述等效信道的频选性和所述信道的频选性的大小。
可选的,如图6a所示,
确定单元605,具体用于计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;还用于计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
如图7所示,该图7为本发明实施例提供的一种预编码系统,该预编码系统包括图5所述的数据中心和图6所示的数据中心。
图8描述了本发明另一个实施例提供的数据中心的结构,包括至少一个处理器801(例如CPU),存储器802,至少一个网络接口803,至少一个通信总线804以及至少一个接收器805,用于实现这些装置之间的连接通信。处理器801用于执行存储器802中存储的可执行模块,例如计算机程序。存储器802可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非易失性存储器(non-volatile memory),例如至少eMMC(Embedded Multi Media Card,嵌入式多媒体卡)存储器。通过至少一个网络接口803(可以是有线或者无线)实现该网络设备与至少一个其他网元之间的通信连接,可以使用互联网,广域网、本地网、城域网等。该终端用于执行图2所示的信道反馈信息的传输方法。
在一些实施方式中,存储器802存储了程序8021,程序8021可以被处理器801执行,这个程序包括:
二级数据中心接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵;
所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
具体的实施步骤与图2所示的实施例相同,此处不再赘述。
可选的,所述一级信道信息还包括一级预编码矩阵;
所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵包括:
所述二级数据中心根据所述信道矩阵和所述一级预编码矩阵进行计算,获取二级预编码矩阵。
从上可知,使用本发明实施例提供的预编码的方法,所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号;该二级数据中心从整体上减少了计算的复杂度,提高了无线通信协同的增益图9描述了本发明另一个实施例提供的基站的结构,包括至少一个处理器901(例如CPU),存储器902,至少一个网络接口903,至少一个通信总线904以及至少一个接收器905,用于实现这些装置之间的连接通信。处理器901用于执行存储器902中存储的可执行模块,例如计算机程序。存储器902可能包含RAM,也可能还包括non-volatile memory,例如至少eMMC存储器。通过至少一个网络接口903(可以是有线或者无线)实现该网络设备与至少一个其他网元之间的通信连接,可以使用互联网,广域网、本地网、城域网等。该基站用于执行图3所示的信道反馈信息的传输方法。
在一些实施方式中,存储器902存储了程序9021,程序9021可以被处理器901执行,这个程序包括:
一级数据中心获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数 据中心向二级数据中心发送所述等效信道;
当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵和所述预编码矩阵。
具体的实施步骤与图3所示的实施例相同,此处不再赘述。
可选的,所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道之前还包括:
所述一级数据中心根据所述信道矩阵进行计算,获取所述预编码矩阵。
可选的,所述获得等效信道之后,还包括:
确定所述等效信道的频选性和所述信道的频选性,并比较所述等效信道的频选性和所述信道的频选性的大小。
可选的,所述确定所述等效信道的频选性和所述信道的频选性包括:
计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;
计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
从上可知,使用本发明实施例提供的预编码的方法,当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵;所述一级数据中心比较所述信道的频选性和所述等效信道的频选性的大小,将频选性小的反馈给二级数据中心,从而减少了反馈量,降低了通信协同过程中计算的复杂度。
在本发明的另一个实施例中,提供了一种预编码系统。该系统包括图8所示的数据中心和图9所示的数据中心。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
上述装置和系统内的各模块之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁碟、光盘、只读存储记忆体(ROM:Read-Only Memory)或RAM等。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种预编码的方法,其特征在于,所述方法包括:
    二级数据中心接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
    所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵;
    所述二级数据中心根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
  2. 如权利要求1所述的方法,其特征在于,所述一级信道信息还包括一级预编码矩阵;
    所述二级数据中心根据所述信道矩阵进行计算,获取二级预编码矩阵包括:
    所述二级数据中心根据所述信道矩阵和所述一级预编码矩阵进行计算,获取二级预编码矩阵。
  3. 一种预编码的方法,其特征在于,所述方法包括:
    一级数据中心获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
    所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
    当所述等效信道的频选性小于或等于所述信道的频选性时,所述一级数据中心向二级数据中心发送所述等效信道;
    当所述等效信道的频选性大于所述信道的频选性时,所述一级数据中心向所述二级数据中心发送所述信道矩阵和所述预编码矩阵。
  4. 如权利要求3所述的方法,其特征在于,所述一级数据中心根据预编码矩阵对所述信道矩阵进行编码,获得等效信道之前还包括:
    所述一级数据中心根据所述信道矩阵进行计算,获取所述预编码矩阵。
  5. 如权利要求3或4所述的方法,其特征在于,所述获得等效信道之后,还包括:
    确定所述等效信道的频选性和所述信道的频选性,并比较所述等效信道 的频选性和所述信道的频选性的大小。
  6. 如权利要求5所述的方法,其特征在于,所述确定所述等效信道的频选性和所述信道的频选性包括:
    计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;
    计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
  7. 一种数据中心,其特征在于,所述数据中心包括:
    接收单元,用于接收至少两个一级数据中心发送的一级信道信息,所述一级信道信息包括终端与所述一级数据中心之间的信道矩阵;
    计算单元,用于根据所述信道矩阵进行计算,获取二级预编码矩阵;
    生成单元,用于根据向终端发送的信号以及所述二级预编码矩阵生成二级信号,并向所述一级数据中心发送所述二级信号。
  8. 如权利要求7所述的方法,其特征在于,所述一级信道信息还包括一级预编码矩阵;
    所述计算单元,具体用于所述二级数据中心根据所述信道矩阵和所述以及预编码矩阵进行计算,获取二级预编码矩阵。
  9. 一种数据中心,其特征在于,所述数据中心包括:
    获取单元,用于获取终端与所述一级数据中心之间的信道,所述信道包括信道矩阵;
    编码单元,用于根据预编码矩阵对所述信道矩阵进行编码,获得等效信道;
    发送单元,用于当所述等效信道的频选性小于或等于所述信道的频选性时,向二级数据中心发送所述等效信道;
    所述发送单元,还用于当所述等效信道的频选性大于所述信道的频选性时,向所述二级数据中心发送所述信道矩阵和所述预编码矩阵。
  10. 如权利要求9所述的数据中心,其特征在于,所述数据中心还包括计算单元:
    所述计算单元,用于根据所述信道矩阵进行计算,获取所述预编码矩阵。
  11. 如权利要求9或10所述的数据中心,其特征在于,所述数据中心还 包括确定单元和比较单元;
    所述确定单元,用于确定所述等效信道的频选性和所述信道的频选性;
    所述比较单元,用于比较所述等效信道的频选性和所述信道的频选性的大小。
  12. 如权利要求11所述数据中心,其特征在于,
    所述确定单元,具体用于计算所述信道的方差,根据所述信道的方差确定所述信道的频选性;计算所述等效信道的方差,根据所述等效信道的方差确定所述等效信道的频选性。
  13. 一种预编码系统,其特征在于,所述预编码系统包括:
    权7或8所述的数据中心;以及权利9至权12任一所述的数据中心。
PCT/CN2015/074919 2014-08-30 2015-03-24 一种预编码的方法、装置及系统 WO2016029686A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15834991.0A EP3179653B1 (en) 2014-08-30 2015-03-24 Precoding method, apparatus and system
US15/444,582 US10171135B2 (en) 2014-08-30 2017-02-28 Precoding method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410438821.3A CN105450343B (zh) 2014-08-30 2014-08-30 一种预编码的方法、装置及系统
CN201410438821.3 2014-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/444,582 Continuation US10171135B2 (en) 2014-08-30 2017-02-28 Precoding method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016029686A1 true WO2016029686A1 (zh) 2016-03-03

Family

ID=55398718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074919 WO2016029686A1 (zh) 2014-08-30 2015-03-24 一种预编码的方法、装置及系统

Country Status (4)

Country Link
US (1) US10171135B2 (zh)
EP (1) EP3179653B1 (zh)
CN (1) CN105450343B (zh)
WO (1) WO2016029686A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837674A (zh) * 2021-11-29 2021-12-24 江西省水利科学院 一种基于权重模型的堤防险情敏感性分析方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395259B (zh) * 2016-05-13 2020-04-21 华为技术有限公司 一种二级预编码方法及装置
WO2019098897A1 (en) * 2017-11-20 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods, systems and units of a distributed base staton system for handling of downlink communication
CN111512562A (zh) * 2017-12-27 2020-08-07 瑞典爱立信有限公司 用于处理下行链路通信的分布式基站系统的方法、系统和单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820405A (zh) * 2009-02-27 2010-09-01 富士通株式会社 多输入多输出合作通信方法、预编码装置和无线通信系统
CN102412939A (zh) * 2010-09-21 2012-04-11 普天信息技术研究院有限公司 一种采用双码本进行信道信息反馈的方法和系统
EP2469917A1 (en) * 2009-08-17 2012-06-27 Fujitsu Limited Method and apparatus for generating a precoding matrix codebook group

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
CN100340077C (zh) * 2005-11-29 2007-09-26 东南大学 多天线无线传输系统中信道环境自适应传输方法
WO2007105977A1 (en) * 2006-03-13 2007-09-20 Intel Corporation Scheduler and method for allocating time and frequency dimensions of downlink bursts in broadband wireless access networks
BRPI0809746B1 (pt) * 2007-04-20 2020-06-16 Interdigital Technology Corporation Método e aparelho para sinalização de informações de controle em modo MIMO
CN101861705B (zh) * 2007-09-20 2013-05-15 法国电信公司 用于在实施空间预编码多天线系统中发送接收信号的方法、对应发送器、接收器
ATE535063T1 (de) * 2008-02-25 2011-12-15 Ericsson Telefon Ab L M Verfahren und einrichtung zum vorcodieren von sendedatensignalen in einem drahtlosen mimo- kommunikationssystem
US8879602B2 (en) * 2009-07-24 2014-11-04 At&T Mobility Ii Llc Asymmetrical receivers for wireless communication
CN102035585B (zh) * 2009-09-28 2015-03-11 华为技术有限公司 协作中继系统中预编码方法、通信装置和中继装置
EP2556597B1 (en) * 2010-04-07 2017-06-07 Telefonaktiebolaget LM Ericsson (publ) A precoder structure for mimo precoding
EP2583382A1 (en) * 2010-06-18 2013-04-24 Nec Corporation Precoding techniques for downlink coordinated multipoint transmission in radio communications system
US9930677B2 (en) * 2010-12-07 2018-03-27 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
US8965430B2 (en) 2011-06-30 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling channel quality reporting modes used by wireless communication network users
WO2013005984A2 (ko) * 2011-07-04 2013-01-10 엘지전자 주식회사 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치
WO2013017902A1 (en) * 2011-08-01 2013-02-07 Research In Motion Limited Joint transmission using interference alignment
JP2013042263A (ja) * 2011-08-12 2013-02-28 Sharp Corp 端末、基地局、通信システムおよび通信方法
CN103797725B (zh) * 2011-09-14 2018-07-06 李尔登公司 在无线系统中利用同调性区域的系统及方法
KR101892688B1 (ko) * 2011-11-07 2018-10-05 삼성전자 주식회사 다중 안테나를 위한 제어 채널 검색 방법 및 장치
JP2013135271A (ja) * 2011-12-26 2013-07-08 Sharp Corp 通信装置、通信方法、通信プログラム、プロセッサ、及び通信システム
EP2822314A4 (en) * 2012-02-29 2015-10-28 Kyocera Corp COMMUNICATION CONTROL PROCEDURE, USER DEVICE AND BASE STATION
US9538410B2 (en) * 2012-03-22 2017-01-03 Lg Electronics Inc. Method for transmitting or receiving uplink signal
US9729273B2 (en) * 2012-03-30 2017-08-08 Sharp Kabushiki Kaisha Collision resolution among transmission schedules of uplink control information (UCI)
JP6093120B2 (ja) * 2012-07-13 2017-03-08 シャープ株式会社 移動局装置、基地局装置及び通信方法
CN103580782B (zh) * 2012-07-24 2017-10-17 华为技术有限公司 无线通信系统的基带处理装置和无线通信系统
WO2014109682A1 (en) * 2013-01-11 2014-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Interference alignment based precoding method for reducing bandwidth of the backhaul network
US9698887B2 (en) * 2013-03-08 2017-07-04 Qualcomm Incorporated Systems and methods for enhanced MIMO operation
US9532256B2 (en) * 2013-08-07 2016-12-27 Broadcom Corporation Receiver-aided multi-user MIMO and coordinated beamforming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820405A (zh) * 2009-02-27 2010-09-01 富士通株式会社 多输入多输出合作通信方法、预编码装置和无线通信系统
EP2469917A1 (en) * 2009-08-17 2012-06-27 Fujitsu Limited Method and apparatus for generating a precoding matrix codebook group
CN102412939A (zh) * 2010-09-21 2012-04-11 普天信息技术研究院有限公司 一种采用双码本进行信道信息反馈的方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113837674A (zh) * 2021-11-29 2021-12-24 江西省水利科学院 一种基于权重模型的堤防险情敏感性分析方法

Also Published As

Publication number Publication date
EP3179653A1 (en) 2017-06-14
US20170170880A1 (en) 2017-06-15
US10171135B2 (en) 2019-01-01
CN105450343A (zh) 2016-03-30
EP3179653B1 (en) 2019-05-01
CN105450343B (zh) 2018-11-06
EP3179653A4 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
US20230019669A1 (en) Systems and methods for enhanced feedback for cascaded federated machine learning
WO2022078276A1 (zh) Ai网络参数的配置方法和设备
US20220123809A1 (en) Generic reciprocity based channel state information acquisition frameworks for advanced networks
WO2015109774A1 (zh) 获取方法、波束发送方法、通信节点、系统和存储介质
WO2016029686A1 (zh) 一种预编码的方法、装置及系统
WO2021001032A1 (en) Transmission system with channel estimation based on a neural network
CN114946133A (zh) 通信的方法、设备和计算机可读介质
CN105704721B (zh) 一种提高频谱利用率的d2d-p复用蜂窝网络通信方法
WO2021238634A1 (zh) 一种下行预编码方法、装置及基站
TW202211645A (zh) 用於通道狀態壓縮和回饋的可配置度量
TW201635736A (zh) 一種信號檢測方法及裝置
WO2016007757A1 (en) Systems and methods for optimized beamforming and compression for uplink mimo cloud radio access networks
US10064197B2 (en) Network assisted interference suppression
US9634744B2 (en) Sparsity enhanced mismatch model for heterogeneous networks with doubly-selective fading channels
WO2017114513A1 (zh) 一种csi反馈方法及装置
Zhang et al. Interference coordination via power domain channel estimation
CN114008931A (zh) 用于执行预编码的电子装置及其操作方法
WO2022083619A1 (zh) 通信信息的发送、接收方法及通信设备
JP2014507094A (ja) 複数の宛先デバイスの中の少なくとも1つの宛先デバイスによって受信される信号の品質を高めるための方法
CN108631829B (zh) 联合功率分配、预编码与解码方法及其基站
CN108282201B (zh) 一种用户终端调度方法及装置、通信系统
KR20190093019A (ko) 클라우드 무선 접속 네트워크의 수신 간섭 상관도에 따른 신호 송수신 방법 및 장치
CN108512583B (zh) 多个移动设备间计算协作方法、装置及移动设备
WO2023137641A1 (zh) 信道估计方法、训练信道估计模型的方法和通信设备
US20240022455A1 (en) Ai-based channel estimation method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015834991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834991

Country of ref document: EP