WO2013005984A2 - 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치 - Google Patents

이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치 Download PDF

Info

Publication number
WO2013005984A2
WO2013005984A2 PCT/KR2012/005303 KR2012005303W WO2013005984A2 WO 2013005984 A2 WO2013005984 A2 WO 2013005984A2 KR 2012005303 W KR2012005303 W KR 2012005303W WO 2013005984 A2 WO2013005984 A2 WO 2013005984A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
interference
terminal
interfered
feedback information
Prior art date
Application number
PCT/KR2012/005303
Other languages
English (en)
French (fr)
Other versions
WO2013005984A3 (ko
Inventor
박성호
천진영
김기태
김수남
강지원
임빈철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/130,618 priority Critical patent/US9246660B2/en
Publication of WO2013005984A2 publication Critical patent/WO2013005984A2/ko
Publication of WO2013005984A3 publication Critical patent/WO2013005984A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for mitigating interference in a wireless communication system including a heterogeneous network.
  • the node may mean an antenna or a group of antennas separated by a predetermined interval from a distributed antenna system (DAS), but may be used in a broader sense without being limited to this meaning. That is, the node may be a macro base station, a picocell base station (PeNB), a home base station (HeNB), a remote radio head (RRH), a remote radio unit (RRU), a repeater, a distributed antenna (group), or the like.
  • Wireless communication systems with high density nodes can exhibit higher system performance by cooperation between nodes. That is, if each node operates as an antenna or a group of antennas for one cell by receiving and receiving transmission and reception by one control station, each system can perform much better system performance than when each node operates as an independent base station without cooperating with each other. have.
  • each node has a separate cell identifier and can perform scheduling and handover, this can be referred to as a multi-cell system. If multiple cells are configured in such a manner that coverage overlaps, this is called a multi-tier network.
  • Multi-cell systems / multi-layer networks are also commonly referred to as heterogeneous networks.
  • heterogeneous networks unlike a homogeneous network composed of homogeneous cells, a plurality of nodes are mixed and operated in a cell or in the same network, and each node is not the same type of base station (or cell) but is a different type of base station. It means to operate.
  • a macro base station having a wide radius coverage and a plurality of pico / femto base stations, relay stations, etc. having narrow radius coverage may be mixed in the coverage of the macro base station.
  • An object of the present invention is to provide a method and apparatus for mitigating interference in a wireless communication system including a heterogeneous network.
  • an interference mitigation method of an interfering base station in a heterogeneous network includes transmitting information about a threshold to an interfered base station; Receiving second feedback information considering the interference caused by the interfering base station to the interfering terminal from the interfering terminal selected by the interfering base station based on the information on the threshold and the first feedback information; Selecting a precoding matrix that minimizes interference on the interfered terminal based on the second feedback information; And transmitting the signal to the terminal providing the service by the interfering base station by applying the precoding matrix, wherein the first feedback information is transmitted by the interfered terminal to the reference signal of the interfering base station and the interfered base station.
  • the received information is measured by comparing a reference signal, and the interfered terminal selected by the interfered base station is configured such that the first feedback information satisfies the comparison condition with the threshold among the terminals provided by the interfered base station. Characterized in that the terminal.
  • the reference signal of the interfering base station and the reference signal of the interfered base station may be transmitted through radio resources which are distinguished from each other.
  • the second feedback information may include a precoding matrix index selected by the interfered terminal and an amount of interference that the interfering base station exerts on the interfered terminal.
  • the precoding matrix index selected by the interfered terminal may be selected based on the channel matrix between the interfered terminal and the interfered base station and the interference between the interfered terminal and the interfered base station.
  • the interfering base station may be a base station having a larger transmission power than the interfered base station.
  • the first coverage provided by the interfered base station may be located within a second coverage provided by the interfering base station.
  • the interference base station receives the first feedback information from the plurality of terminals, compares the threshold with the first feedback information, and selects a terminal that satisfies a condition. Select and trigger the feedback of the second feedback information to the interfering base station.
  • an interference mitigation device provided by an interference base station includes a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor connected to the RF unit, wherein the processor transmits information on a threshold to an interference base station, and the processor is selected from the interference terminal selected by the interference base station based on the information on the threshold and the first feedback information.
  • RF radio frequency
  • Receive second feedback information in consideration of the interference that the interference base station affects the interference terminal, select a precoding matrix that minimizes interference to the interference terminal based on the second feedback information, and the precoding
  • the interfering base station transmits a signal to a terminal providing a service by applying a matrix, and the first feedback information is obtained by measuring the reference signal of the interfering base station and the reference signal of the interfering base station to receive power.
  • the interference information selected by the interference base station is determined by the interference base station.
  • the first feedback information is a terminal that satisfies a comparison condition with the threshold.
  • SLNR signal to leakage plus noise ratio
  • FIG. 1 illustrates an example of interference received by a macro terminal in a homogeneous network using only a conventional macro base station.
  • FIG. 2 shows an example of interference received by a pico terminal in a heterogeneous network.
  • FIG 3 shows an example of a heterogeneous network in which N pico base stations exist within the coverage of the macro base station.
  • FIG. 4 shows an example of CSI fed back by a pico terminal in a heterogeneous network to apply an SLNR-based interference mitigation technique.
  • 5 is an example of a signaling process of a heterogeneous network for applying a conventional SLNR based interference mitigation technique.
  • FIG. 6 illustrates an interference mitigation method in a heterogeneous network according to an embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and a node. .
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • node a node
  • a macro base station means a base station having a high transmission power and a wide coverage
  • a pico / femto base station means a base station having a narrow coverage and a lower transmission power than a macro base station.
  • the pico / femto base station may also be referred to as a low power node (LPN).
  • LPN low power node
  • a terminal receiving a service from a macro base station among the terminals is called a macro UE (MUE), and a terminal receiving a service from a pico base station as an example of LPN is called a pico UE (PUE).
  • MUE macro UE
  • PUE pico UE
  • FIG. 1 illustrates an example of interference received by a macro terminal in a homogeneous network using only a conventional macro base station.
  • macro base station 1 and macro base station 2 may have the same coverage and may use the same bandwidth.
  • the channel between macro base station 1 and macro terminal 1 (MUE 1) is represented by H 1
  • the channel between macro base station 2 and macro terminal 2 (MUE 2) is represented by H 2
  • the inter-cell interference received by macro terminal 2 from macro base station 1 is G. It is displayed.
  • inter-cell interference (G) received by macro terminal 2 (MUE 2) may represent a strength similar to a signal received from macro base station 2 receiving a service.
  • FIG. 2 shows an example of interference received by a pico terminal in a heterogeneous network.
  • the pico base station is located within the coverage of the macro base station.
  • a pico terminal (PUE) communicating with a pico base station a channel between the pico base station and the pico terminal is represented by H P
  • a channel between the macro base station and the macro terminal is represented by H M.
  • the pico terminal is subjected to inter-cell interference (G) from the macro base station.
  • G inter-cell interference
  • neighboring macro base stations may also receive inter-cell interference.
  • Inter-cell interference received by a pico terminal in a heterogeneous network may be different from inter-cell interference and characteristics received by a macro terminal in a homogeneous network. This is because the transmission power between different cells is almost similar in the homogeneous network, but in the heterogeneous network, the transmission power difference of the different cells may be large (for example, 46 to 49 dBm for a macro base station and 24 to 30 dBm for a pico base station). Can be). Therefore, when the pico terminal is located at the coverage boundary of the pico base station, it may be subjected to inter-cell interference which has a greater effect than the macro terminal. This is because the transmit power of the macro base station is much larger than that of the pico base station.
  • eICIC inter-cell interference cancellation
  • FFR fractional frequency reuse
  • ABS almost blank subframe
  • MBSFN multicast broadcast single frequency network subframes
  • SLNR signal to leakage plus noise ratio
  • FIG 3 shows an example of a heterogeneous network in which N pico base stations exist within the coverage of the macro base station.
  • the macro terminal MUE measures the channel H M with the macro base station to calculate channel state information (CSI), and the channel state information (CSI HM). Is fed back to the macro base station.
  • CSI channel state information
  • CSI HM channel state information
  • the pico terminal n (n is any one of 1 to N) measures a channel H n with the pico base station #n and feeds back channel state information CSI Hn to the pico base station #n.
  • the CSI fed back by the pico terminal may be changed as shown in FIG. 4.
  • FIG. 4 shows an example of CSI fed back by a pico terminal in a heterogeneous network to apply an SLNR-based interference mitigation technique.
  • the pico terminal feeds back channel state information (denoted CSI Hn, Gn ) in consideration of interference received from the macro base station instead of or in addition to the channel state information (CSI Hn ) of FIG. 3 to the pico base station. Then, the pico base station is transmitted to such a channel state information (CSI Hn, Gn) of the macro base station, the macro base station is a macro terminal in a direction to mitigate interference for pico station based on this channel state information (CSI Hn, Gn) Updates scheduling information for.
  • the updated scheduling information may be, for example, a precoding matrix applied to the macro terminal or information indicating the precoding matrix (precoding matrix index (PMI)).
  • This method is called an SLNR based interference mitigation technique.
  • Equation 1 is an expression of SLNR for estimating relative signal strength in consideration of interference from UEs scheduled together in MU-MIMO.
  • Hi is a channel matrix for terminal i
  • Wi is a precoding matrix for terminal i
  • Hk represents a channel matrix for another terminal k scheduled with terminal i.
  • Sigma I is noise.
  • a precoding matrix for the terminal i may be configured in consideration of interference on other N-1 terminals scheduled in the same resource. That is, instead of selecting the precoding matrix that guarantees the maximum capacity for the terminal i, the precoding matrix is selected in the direction of increasing the capacity while lowering the interference to other terminals. Then, although the capacity for the terminal i is somewhat reduced, there is an advantage that the performance of the entire system is improved.
  • Such SLNR may be utilized to mitigate inter-cell interference in heterogeneous networks.
  • MU MIMO in a single cell environment may be deployed in a form similar to SU-MIMO or MU-MIMO in a multi-cell environment. That is, the SLNR can be applied by treating the pico terminal as another terminal scheduled together with the terminal i in Equation 1 above.
  • the SLNR-based interference mitigation method requires explicit channel information for the terminal (terminal i) and other terminals serving in the base station applying the SLNR as shown in Equation 1 above. Therefore, there is a disadvantage that the feedback overhead of the terminals is very large.
  • each terminal has a method of feeding back implicit channel information obtained by estimating a corresponding channel matrix instead of explicit channel information.
  • the implied channel information may be, for example, a PMI indicating a precoding matrix to replace the channel matrix.
  • Equation 2 is an example of applying an existing SLNR based on PMI in a heterogeneous network.
  • C M is a precoding matrix / vector known to the base station by precoder information (PMI) fed back by the macro terminal
  • v n is precoder information (PMI) fed back by the n-th pico terminal scheduled together with the macro terminal.
  • It is a precoding matrix / vector known to the base station by) and is a value calculated by considering the interference received by the n-th pico terminal from the macro base station. That is, instead of the existing channel matrix, the precoding matrix / vector identified by the PMI fed back by the terminal is used.
  • X H represents the hermitian of X.
  • 5 is an example of a signaling process of a heterogeneous network for applying a conventional SLNR based interference mitigation technique.
  • the macro base station is an interfering base station having strong interference with the pico terminal, and the terminal receiving the interference is a pico terminal.
  • the macro terminal may include channel state information (eg, a channel matrix itself, a covariance matrix, an eigen matrix, a PMI, and channel quality) for a channel H M with a macro base station. information), RI (rank indicator), and the like, and the CSI HM may be fed back to the macro base station (S100).
  • channel state information eg, a channel matrix itself, a covariance matrix, an eigen matrix, a PMI, and channel quality
  • RI rank indicator
  • the CSI HM may be fed back to the macro base station (S100).
  • the CSI HM may include a PMI satisfying the following equation.
  • Equation 3 CB represents a set of known precoding matrices between the macro base station and the macro terminal. Equation 3 means that C M is extracted from a precoding matrix that maximizes the square of the absolute value of H M w M.
  • the pico terminal feeds back channel state information (denoted as CSI Hn ) for the channel Hn with the pico base station (S110).
  • CSI Hn may include a PMI satisfying the following equation.
  • Equation 4 CB represents a set of known precoding matrices between a pico base station and a pico terminal.
  • the pico terminal calculates additional channel state information (denoted as CSI Gn ) in consideration of interference (Gn) from the macro base station and feeds it back (S120).
  • CSI Gn channel state information
  • the pico terminal feeds back CSI Gn to the macro base station, but may also feed back to the pico base station.
  • CSI Gn may include Vn satisfying the following conditions.
  • the macro base station updates scheduling information for the macro terminal to mitigate interference with the pico terminal based on the CSI HM fed back from the macro terminal and the CSI Gn fed back from the pico terminal (S130). For example, the macro terminal may be scheduled to reduce interference on the pico terminal based on the PMI for the H M and the PMI considering the interference Gn from the macro base station.
  • the SLNR-based interference mitigation scheme in the heterogeneous network described above resets a precoding matrix applied to the macro terminal to a direction for mitigating interference to the pico terminal based on channel information of the macro terminal and the pico terminal.
  • the overall system performance is improved even though the performance of the macro terminal is slightly degraded.
  • the SLNR-based interference mitigation scheme based on PMI uses only limited channel information, and thus can achieve a performance improvement similar to that of the existing SLNR-based interference mitigation scheme with a small amount of feedback.
  • the SLNR based interference mitigation technique requires additional CSI estimation from the interfered UE (the pico terminal in the above example) and reduces the amount of feedback, additional feedback cannot be avoided.
  • the amount of computation at the interfering base station increases as the number of the interfered terminals increases.
  • the performance of the interference mitigation technique based on SLNR may be degraded because the CSI characteristics of the interference terminals have a uniform distribution.
  • the interference mitigation scheme in the heterogeneous network performs SLNR-based interference mitigation by receiving CSI feedback for an interference base station from some of the interference terminals. That is, according to the present invention, the interference mitigation is performed by receiving CSI feedback for the interfering base station from only some of the terminals which are interfering.
  • the interference terminals may be selected from a serving base station (i.e., a reception base station or a received signal to signal (NRNR) for a signal received from an interfering base station from the serving base station (e.g. Information indicating the relative strength or channel state of the signals received from the serving base station and the interfering base station, such as interference plus noise ratio, is fed back to the interfering base station directly or through the interfered base station. Specifically, the following information may be fed back to the interfering base station.
  • a serving base station i.e., a reception base station or a received signal to signal (NRNR) for a signal received from an interfering base station from the serving base station
  • Reference signal received power that is, the received power for the reference signal received from the interfering base station and the serving base station can be fed back.
  • Reference signal received quality (RSRQ)
  • the reception quality of the reference signal can be quantized and fed back in the form of an index.
  • CSI-RS-based RSRP and CSI-RS mean a UE-specific reference signal transmitted for channel estimation.
  • CSI-RS-based RSRP and CSI-RS channel state information-reference signal
  • the interfering base station or the interfered base station selects the interfered terminal transmitting the CSI to be referenced by the interfering base station using at least one of the above-described information of 1 to 9.
  • a threshold value may be used for a criterion for selecting an interference terminal.
  • the threshold may be selected from one or more of the following.
  • RSRP received powers
  • reception quality eg, reception SINR, RSRQ, CQI
  • the threshold of A to F is merely an example, and the threshold may be freely determined according to what information is fed back from the affected terminal.
  • the interfering base station determines a precoding matrix for interference mitigation by using the CSI fed back from the interfering terminal that satisfies a predetermined condition by comparing the threshold and the information of the 1 to 9 fed back by the interfering terminal.
  • the threshold may inform the interfered base station by the interfering base station. Then, the interfered base station compares the threshold with the information of the 1 to 9 fed back by the interfered terminal to determine whether the condition is satisfied. Subsequently, only the interfered terminal satisfying the condition is instructed to feed back the CSI considering the interference of the interfering base station.
  • the interfering base station or the interfered base station when the interfering base station applies the SLNR-based interference mitigation technique, notifies the affected terminals to trigger CSI feedback for the interfering base station.
  • the interfered terminals may feed back the CSI of the interfering base station to the interfered base station, and may feed back only feedback information satisfying the condition based on the above-described threshold among the feedback information to the interfering base station.
  • FIG. 6 illustrates an interference mitigation method in a heterogeneous network according to an embodiment of the present invention.
  • the macro base station is an interfering base station and the court terminal is an interfering terminal that receives interference from the macro base station.
  • the macro base station is an interfering base station and the jury terminal is an interfering terminal that receives interference from the macro base station.
  • this is merely an example and not limited thereto.
  • the macro base station sets a threshold for selecting a pico terminal to transmit CSI for an interfering base station to the pico base station (S200).
  • the macro base station transmits the first CSI-RS to the pico terminal (S210), and the pico base station also transmits the second CSI-RS to the pico terminal (S220).
  • the pico terminal measures the reception intensity ratio by measuring the first CSI-RS and the second CSI-RS (S230).
  • the reception intensity ratio may be in the form of 3, 4, 7, 8, or 9 of the 1 to 9 information.
  • the pico terminal feeds back a reception strength ratio to the pico base station (S240).
  • the pico base station determines whether or not the CSI feedback for the macro base station based on whether the reception strength ratio is greater than or equal to the threshold (S250). If the reception strength ratio fed back by the pico terminal satisfies a predetermined condition equal to or less than or equal to a threshold, CSI feedback for the macro base station is triggered (S260).
  • the pico terminal feeds back the information on the PMI and the amount of interference considering the interference from the macro base station to the macro base station (S270).
  • some pico terminals are selected based on a predetermined criterion among pico terminals that are interfered by the macro base station, and the interfering base station receives the CSI of the interfering base station only from the selected pico terminals to determine the precoding matrix for the macro terminal. . Therefore, compared to the conventional method, the number of pico terminals to feed back the CSI is reduced.
  • the interference terminal may supplement / enhance the performance of the existing SLNR-based interference mitigation technique by additionally feeding back the interference amount information as well as the PMI information.
  • PMI which is implicit channel information
  • the interference terminal also feeds back information on the interference amount for the interference channel.
  • Equation 2 is expressed as a SLNR concept for the macro terminal, it may be expressed as Equation 6 below.
  • Equation 6 P I, n represents the amount of interference of the interfering base station on the interfered terminal n.
  • P I, n can be derived as follows using Equation 5.
  • the interfered terminal can supplement / enhance the performance of the SLNR based interference mitigation technique using only the existing PMI by additionally feeding back information on the amount of interference in Equation 7 as well as PMI (Vn) in Equation 5.
  • FIG. 7 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • Base station 100 may be an interfering base station.
  • the processor 110 implements the proposed functions, processes and / or methods.
  • the processor 110 transmits the information about the threshold to the interfered base station, and the interference base station is the interference base station from the interference terminal selected by the interference base station based on the information on the threshold and the first feedback information.
  • the first feedback information may be any one of 1 to 9 described above.
  • the first feedback information may be information obtained by comparing the received power by the interference terminal by measuring the reference signal of the interference base station and the reference signal of the interference base station.
  • the information on the threshold may be any one of A to F described above.
  • the processor 110 selects a precoding matrix that minimizes interference with the interfered terminal based on the second feedback information, and applies the precoding matrix to provide a signal to a terminal providing a service to the terminal that provides the service. send.
  • the interfered terminal selected by the interfered base station may be a terminal in which the first feedback information satisfies a comparison condition with the threshold among the terminals provided by the interfered base station.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the terminal 200 may be an interference terminal.
  • the processor 210 implements the proposed functions, processes and / or methods. For example, the processor 210 measures the reference signals transmitted from the interfering base station and the interfered base station, generates first feedback information, and transmits the first feedback information to the interfering base station. If a triggering signal is received from the interfered base station, the second feedback information considering the interference from the interfering base station is transmitted to the interfering base station.
  • the second feedback information may include not only PMI but also information on an interference amount such as Equation 7.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Abstract

이종 네트워크에서의 간섭 기지국의 간섭 완화 방법 및 장치를 제공한다. 상기 방법은 피간섭 기지국으로 문턱치에 대한 정보를 전송하는 단계; 상기 문턱치에 대한 정보 및 제1 피드백 정보를 기반으로 상기 피간섭 기지국이 선택한 피간섭 단말로부터 상기 간섭 기지국이 상기 피간섭 단말에게 미치는 간섭을 고려한 제2 피드백 정보를 수신하는 단계; 상기 제2 피드백 정보를 기반으로 상기 피간섭 단말에 대한 간섭을 최소화하는 프리코딩 행렬을 선택하는 단계; 및 상기 프리코딩 행렬을 적용하여 상기 간섭 기지국이 서비스를 제공하는 단말에게 신호를 전송하는 단계를 포함하되, 상기 제1 피드백 정보는 상기 피간섭 단말이 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호를 측정하여 수신 전력을 비교한 정보이고, 상기 피간섭 기지국이 선택한 피간섭 단말은 상기 피간섭 기지국이 서비스를 제공하는 단말들 중 상기 제1 피드백 정보가 상기 문턱치와의 비교 조건을 만족하는 단말인 것을 특징으로 한다.

Description

이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭을 완화하는 방법 및 장치에 관한 것이다.
최근 무선 통신망의 데이터 전송량이 빠르게 증가하고 있다. 그 이유는 머신 대 머신(Machine-to-Machine,M2M) 통신 및 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등 다양한 디바이스의 출현 및 보급 때문이다. 요구되는 높은 데이터 전송량을 만족시키기 위해 더 많은 주파수 대역을 효율적으로 사용하는 반송파 집성(carrier aggregation : CA) 기술, 인지 무선(cognitive radio: CR) 기술 등과 한정된 주파수 내에서 데이터 용량을 높이기 위해 다중 안테나 기술, 다중 기지국 협력 전송 기술 등이 최근 부각되고 있다.
또한, 무선 통신망은 사용자 주변에 액세스 할 수 있는 노드(node)의 밀도가 높아지는 방향으로 진화하고 있다. 여기서, 노드란 분산 안테나 시스템(distributed antenna system, DAS)에서 일정 간격 이상으로 떨어진 안테나 또는 안테나 그룹을 의미하기도 하지만, 이러한 의미에 한정되지 않고 좀 더 넓은 의미로 사용될 수 있다. 즉, 노드는 매크로 기지국, 피코셀 기지국(PeNB), 홈 기지국(HeNB), RRH(remote radio head), RRU(remote radio unit), 중계기, 분산된 안테나(그룹) 등이 될 수도 있다. 높은 밀도의 노드를 갖춘 무선 통신 시스템은 노드 간의 협력에 의해 더 높은 시스템 성능을 보일 수 있다. 즉, 각 노드가 독립적인 기지국으로 서로 협력하지 않고 동작하는 경우보다, 각 노드가 하나의 제어국에 의해 송수신을 관리받아 하나의 셀에 대한 안테나 또는 안테나 그룹처럼 동작한다면 훨씬 우수한 시스템 성능을 낼 수 있다.
만약, 각 노드가 개별적인 셀 ID(identifier)를 가지고, 스케줄링 및 핸드오버를 수행할 수 있다면 이는 다중 셀 시스템이라 할 수 있다. 만약, 다중 셀이 커버리지가 겹쳐지는 형태로 구성된다면 이를 다중 계층 네트워크(multi-tier network)라 칭한다.
다중 셀 시스템/다중 계층 네트워크는 또한 이종 네트워크(heterogeneous network)로 통칭하기도 한다. 이종 네트워크는 동종의 셀들로 구성된 동종 네트워크(homogeneous network)와 달리 다수의 노드들이 셀 내 또는 동일 네트워크 내에 혼재되어 운용되며, 각 노드들이 동일한 타입의 기지국(또는 셀)이 아니라 서로 다른 타입의 기지국으로 운용됨을 의미한다. 예를 들어, 넓은 반경의 커버리지를 가지는 매크로 기지국과 상기 매크로 기지국의 커버리지 내에 좁은 반경의 커버리지를 가지는 복수의 피코/펨토 기지국, 중계국 등이 혼재할 수 있다.
이종 네트워크에서는 동종 네트워크에서와는 다른 특성을 가지는 간섭을 받게 되는데, 이러한 간섭을 완화시킬 수 있는 방법이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭을 완화하는 방법 및 장치를 제공하는 데 있다.
일 측면에서, 이종 네트워크에서의 간섭 기지국의 간섭 완화 방법을 제공한다. 상기 방법은 피간섭 기지국으로 문턱치에 대한 정보를 전송하는 단계; 상기 문턱치에 대한 정보 및 제1 피드백 정보를 기반으로 상기 피간섭 기지국이 선택한 피간섭 단말로부터 상기 간섭 기지국이 상기 피간섭 단말에게 미치는 간섭을 고려한 제2 피드백 정보를 수신하는 단계; 상기 제2 피드백 정보를 기반으로 상기 피간섭 단말에 대한 간섭을 최소화하는 프리코딩 행렬을 선택하는 단계; 및 상기 프리코딩 행렬을 적용하여 상기 간섭 기지국이 서비스를 제공하는 단말에게 신호를 전송하는 단계를 포함하되, 상기 제1 피드백 정보는 상기 피간섭 단말이 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호를 측정하여 수신 전력을 비교한 정보이고, 상기 피간섭 기지국이 선택한 피간섭 단말은 상기 피간섭 기지국이 서비스를 제공하는 단말들 중 상기 제1 피드백 정보가 상기 문턱치와의 비교 조건을 만족하는 단말인 것을 특징으로 한다.
상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호는 서로 구분되는 무선 자원을 통해 전송될 수 있다.
상기 제2 피드백 정보는 상기 피간섭 단말이 선택한 프리코딩 행렬 인덱스, 상기 간섭 기지국이 상기 피간섭 단말에 미치는 간섭량을 포함할 수 있다.
상기 피간섭 단말이 선택한 프리코딩 행렬 인덱스는 상기 피간섭 단말과 상기 피간섭 기지국 간의 채널 행렬, 상기 피간섭 단말과 상기 간섭 기지국 간의 간섭을 기반으로 선택될 수 있다.
상기 간섭 기지국은 상기 피간섭 기지국보다 전송 전력이 큰 기지국일 수 있다.
상기 피간섭 기지국이 서비스를 제공하는 제1 커버리지는 상기 간섭 기지국이 서비스를 제공하는 제2 커버리지 내에 위치할 수 있다.
상기 피간섭 기지국이 서비스하는 단말이 복수개인 경우, 상기 피간섭 기지국은 상기 복수개의 단말들로부터 상기 제1 피드백 정보를 수신하고, 상기 제1 피드백 정보와 상기 문턱치를 비교하여 조건을 만족하는 단말을 선택하고, 상기 선택한 단말에게 상기 간섭 기지국으로 상기 제2 피드백 정보를 피드백할 것을 트리거링할 수 있다.
다른 측면에서 제공되는 간섭 기지국의 간섭 완화 장치는 무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 피간섭 기지국으로 문턱치에 대한 정보를 전송하고, 상기 문턱치에 대한 정보 및 제1 피드백 정보를 기반으로 상기 피간섭 기지국이 선택한 피간섭 단말로부터 상기 간섭 기지국이 상기 피간섭 단말에게 미치는 간섭을 고려한 제2 피드백 정보를 수신하고, 상기 제2 피드백 정보를 기반으로 상기 피간섭 단말에 대한 간섭을 최소화하는 프리코딩 행렬을 선택하고, 및 상기 프리코딩 행렬을 적용하여 상기 간섭 기지국이 서비스를 제공하는 단말에게 신호를 전송하되, 상기 제1 피드백 정보는 상기 피간섭 단말이 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호를 측정하여 수신 전력을 비교한 정보이고, 상기 피간섭 기지국이 선택한 피간섭 단말은 상기 피간섭 기지국이 서비스를 제공하는 단말들 중 상기 제1 피드백 정보가 상기 문턱치와의 비교 조건을 만족하는 단말인 것을 특징으로 한다.
이종 네트워크를 포함하는 무선 통신 시스템에서 SLNR(signal to leakage plus noise ratio) 기반의 간섭 완화 기법을 적용할 때 제한된 피드백 정보를 이용하여 효율적으로 간섭을 완화시킬 수 있다.
도 1은 종래 매크로 기지국 만으로 동종 네트워크에서 매크로 단말이 받는 간섭의 일 예를 나타낸다.
도 2는 이종 내트워크에서 피코 단말이 받는 간섭의 일 예를 나타낸다.
도 3은 매크로 기지국의 커버리지 내에 N개의 피코 기지국이 존재하는 이종 네트워크의 예를 나타낸다.
도 4는 SLNR 기반의 간섭 완화 기법을 적용하기 위해 이종 네트워크에서 피코 단말이 피드백하는 CSI의 예를 나타낸다.
도 5는 종래의 SLNR 기반의 간섭 완화 기법을 적용하기 위한 이종 네트워크의 시그널링 과정의 예이다.
도 6은 본 발명의 일 실시예에 따른 이종 네트워크에서의 간섭 완화 방법을 나타낸다.
도 7은 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 노드(node) 등 다른 용어로 불릴 수 있다.
기지국에는 다양한 타입이 있다. 예를 들어, 매크로 기지국은 높은 전송 전력을 가지며 넓은 커버리지를 가지는 기지국을 의미하고, 피코/펨토 기지국은 매크로 기지국에 비해 낮은 전송 전력을 가지며 좁은 커버리지를 가지는 기지국을 의미한다. 피코/펨토 기지국은 LPN(low power node)라 칭하기도 한다.
단말 중에서 매크로 기지국으로부터 서비스를 받는 단말을 매크로 단말(macro UE : MUE)이라 칭하고, LPN의 예로써 피코 기지국으로부터 서비스를 받는 단말을 피코 단말(pico UE : PUE)이라 칭한다.
도 1은 종래 매크로 기지국 만으로 동종 네트워크에서 매크로 단말이 받는 간섭의 일 예를 나타낸다.
도 1을 참조하면, 매크로 기지국 1과 매크로 기지국 2는 서로 동일한 커버리지를 가질 수 있으며 동일한 대역폭을 사용할 수 있다. 매크로 기지국 1과 매크로 단말 1(MUE 1)간의 채널을 H1, 매크로 기지국 2와 매크로 단말 2(MUE 2)간의 채널을 H2로 나타내고, 매크로 단말 2가 매크로 기지국 1로부터 받는 셀 간 간섭을 G로 표시하고 있다. 매크로 단말 2가 셀 경계에 위치하는 경우, 매크로 단말 2(MUE 2)가 받는 셀 간 간섭(G)은 서비스를 받는 매크로 기지국 2로부터 받는 신호와 유사한 세기를 나타낼 수 있다.
도 2는 이종 내트워크에서 피코 단말이 받는 간섭의 일 예를 나타낸다.
도 2를 참조하면, 매크로 기지국의 커버리지 내에 피코 기지국이 위치한다. 피코 기지국과 통신하는 피코 단말(PUE)에서, 피코 기지국과 피코 단말 간의 채널을 HP로 나타내고, 매크로 기지국과 매크로 단말 간의 채널을 HM이라 나타낸다. 피코 단말은 매크로 기지국으로부터 셀 간 간섭(G)를 받게 된다. 또한, 도면에 도시하지는 않았지만 이웃한 다른 매크로 기지국으로부터도 셀 간 간섭을 받을 수 있다.
이종 네트워크에서 피코 단말이 받게 되는 셀 간 간섭은 동종 네트워크에서 매크로 단말이 받게 되는 셀 간 간섭과 특성을 달리할 수 있다. 왜냐하면, 동종 네트워크에서는 서로 다른 셀 간 전송 전력이 거의 유사하나, 이종 네트워크에서는 서로 다른 셀의 전송 전력 차이가 클 수 있기 때문이다(일 예로 매크로 기지국은 46 – 49 dBm, 피코 기지국은 24 – 30 dBm일 수 있다). 따라서, 피코 단말이 피코 기지국의 커버리지 경계에 위치할 경우 매크로 단말에 비해 더 큰 영향을 미치는 셀 간 간섭을 받게 될 수 있다. 매크로 기지국의 전송 전력이 피코 기지국에 비해 훨씬 크기 때문이다.
이처럼 이종 네트워크에서 발생하는 셀 간 간섭을 완화하는 방법으로 부분 주파수 재사용(fractional frequency reuse: FFR), ABS(almost blank subframe), MBSFN(multicast broadcast single frequency network) 서브프레임의 활용 등 시간 영역에서의 eICIC(extended inter-cell interference cancellation) 기법이 있다. 이와 함께, MU-MIMO(multi user multi input multi output)에서 활용되는 동일 채널 간섭을 고려하여 상대적인 신호 세기를 산출하는 SLNR(signal to leakage plus noise ratio) 기반의 간섭 완화 기법이 있다.
이하, 도 3 내지 5를 참조하여, 종래 SLNR 기반의 간섭 완화 기법에 대해 설명한다.
도 3은 매크로 기지국의 커버리지 내에 N개의 피코 기지국이 존재하는 이종 네트워크의 예를 나타낸다.
도 3을 참조하면, 편의상 각 피코 기지국 별로 하나의 피코 단말이 있다고 가정한다. CL MIMO(closed loop MIMO)를 가정할 때, 매크로 단말(MUE)은 매크로 기지국과의 채널(HM)을 측정하여 채널 상태 정보(channel state information: CSI)를 산출하고 이 채널 상태 정보(CSI HM 으로 표시)를 매크로 기지국으로 피드백한다.
피코 단말 n(n은 1 내지 N 중 어느 하나)은 피코 기지국 #n과의 채널(Hn)을 측정하여 채널 상태 정보(CSIHn)을 피코 기지국 #n으로 피드백한다.
그런데, 상술한 바와 같이 피코 단말에 미치는 셀 간 간섭에서 중요한 것은 매크로 기지국으로부터의 간섭이다. 이러한 점을 고려하여 다음 도 4와 같이 피코 단말이 피드백하는 CSI를 변경할 수 있다.
도 4는 SLNR 기반의 간섭 완화 기법을 적용하기 위해 이종 네트워크에서 피코 단말이 피드백하는 CSI의 예를 나타낸다.
도 4를 참조하면, 피코 단말은 도 3의 채널 상태 정보(CSIHn) 대신 또는 추가적으로 매크로 기지국으로부터 받는 간섭을 고려한 채널 상태 정보(이를 CSIHn, Gn 이라 표시)를 피코 기지국으로 피드백한다. 그러면, 피코 기지국이 매크로 기지국으로 이러한 채널 상태 정보(CSIHn, Gn )를 전달하고, 매크로 기지국은 이러한 채널 상태 정보(CSIHn, Gn )를 기반으로 피코 단말에 대한 간섭을 완화시키는 방향으로 매크로 단말에 대한 스케줄링 정보를 갱신한다. 갱신하는 스케줄링 정보로는 예를 들어, 매크로 단말에게 적용되는 프리코딩 행렬 또는 상기 프리코딩 행렬을 지시하는 정보(precoding matrix index: PMI)가 있을 수 있다.
이러한 방식을 SLNR 기반의 간섭 완화 기법이라 한다.
다음 식 1은 MU-MIMO에서 함께 스케줄링되는 단말로부터의 간섭을 고려한 상대적 신호 세기를 추정하기 위한 SLNR을 나타내는 식이다.
[식 1]
Figure PCTKR2012005303-appb-I000001
식 1에서, Hi는 단말 i에 대한 채널 행렬이고, Wi는 단말 i에 대한 프리코딩 행렬을 의미한다. Hk는 단말 i와 함께 스케줄링된 다른 단말 k에 대한 채널 행렬을 나타낸다. 그리고, σI는 노이즈이다.
상기 식 1과 같은 단말 i에 대한 SLNR을 이용하여, 동일 자원에 스케줄링된 다른 N-1개의 단말들에 대한 간섭을 고려하여 단말 i에 대한 프리코딩 행렬을 구성할 수 있다. 즉, 단말 i에 대해 최대 용량을 보장하는 프리코딩 행렬을 선택하는 대신, 다른 단말들에게 미치는 간섭을 낮추면서 용량을 높이는 방향으로 프리코딩 행렬을 선택하는 것이다. 그러면, 단말 i에 대한 용량은 다소 줄어들지라도 시스템 전체의 성능이 향상되는 장점이 있다.
이러한 SLNR은 이종 네트워크에서 셀 간 간섭을 완화시키기 위해 활용될 수 있다. 단일 셀 환경에서의 MU MIMO는 다중 셀 환경에서의 SU-MIMO 또는 MU-MIMO와 유사한 형태로 전개될 수 있다. 즉, 피코 단말을 상기 식 1에서 단말 i와 함께 스케줄링되는 다른 단말로 취급함으로써 SLNR을 적용할 수 있다.
그러나, 이러한 SLNR 기반의 간섭 완화 방법은 상기 식 1에서 나타낸 바와 같이 SLNR을 적용하는 기지국에서 서비스하는 단말(단말 i) 및 다른 단말들에 대한 명시적인 채널 정보(explicit channel information)가 요구된다. 따라서, 단말들의 피드백 오버헤드가 매우 커지는 단점이 있다.
이러한 단점을 극복하기 위해, 각 단말에서는 명시적 채널 정보 대신, 해당 채널 행렬을 추정한 묵시적 채널 정보(implicit channel information)를 피드백하는 방법이 있다. 묵시적 채널 정보는 예를 들어, 채널 행렬을 대체할 프리코딩 행렬을 지시하는 PMI일 수 있다.
다음 식 2는 기존 SLNR을 이종 네트워크에서 PMI 기반으로 변경 적용할 때의 예이다.
[식 2]
Figure PCTKR2012005303-appb-I000002
식 2에서 CM은 매크로 단말이 피드백한 프리코더 정보(PMI)에 의해 기지국이 알게되는 프리코딩 행렬/벡터, vn은 매크로 단말과 함께 스케줄링된 n 번째 피코 단말이 피드백한 프리코더 정보(PMI)에 의해 기지국이 알게되는 프리코딩 행렬/벡터이며 n 번째 피코 단말이 매크로 기지국으로부터 받는 간섭을 고려하여 산출된 값이다. 즉, 기존의 채널 행렬 대신 단말이 피드백하는 PMI에 의해 식별되는 프리코딩 행렬/벡터를 사용하는 것이다. XH는 X의 허미션(hermitian)을 나타낸다.
도 5는 종래의 SLNR 기반의 간섭 완화 기법을 적용하기 위한 이종 네트워크의 시그널링 과정의 예이다.
매크로 기지국이 피코 단말에게 강한 간섭을 미치는 간섭 기지국이고, 간섭을 받는 단말은 피코 단말이라고 가정한다.
도 5를 참조하면, 매크로 단말은 매크로 기지국과의 채널(HM)에 대한 채널 상태 정보(예를 들어, 채널 행렬 자체, 공분산(covariance) 행렬, 아이겐(eigen) 행렬, PMI, CQI(channel quality information), RI(rank indicator) 등이 될 수 있으며, CSIHM이라 표시)를 매크로 기지국으로 피드백한다(S100).
CSIHM은 다음 식을 만족하는 PMI를 포함할 수 있다.
[식 3]
Figure PCTKR2012005303-appb-I000003
식 3에서 CB는 매크로 기지국과 매크로 단말 간에 알려진 프리코딩 행렬의 집합을 나타낸다. 식 3은 HMwM의 절대값의 제곱 중 최대가 되게 하는 프리코딩 행렬을 CM으로 추출한다는 의미이다.
피코 단말은 피코 기지국과의 채널(Hn)에 대한 채널 상태 정보(이를 CSIHn으로 표시)를 피드백한다(S110). 예를 들어, CSIHn은 다음 식을 만족하는 PMI를 포함할 수 있다.
[식 4]
Figure PCTKR2012005303-appb-I000004
식 4에서 CB는 피코 기지국과 피코 단말 간에 알려진 프리코딩 행렬의 집합을 나타낸다.
또한, 피코 단말은 매크로 기지국으로부터의 간섭(Gn)을 고려한 추가적인 채널 상태 정보(이를 CSIGn으로 표시)을 산출하고, 이를 피드백한다(S120). 도 5에서는 피코 단말이 매크로 기지국으로 CSIGn을 피드백하는 예를 나타내었으나 피코 기지국으로 피드백할 수도 있다.
CSIGn는 다음 조건을 만족하는 Vn을 포함할 수 있다.
[식 5]
Figure PCTKR2012005303-appb-I000005
매크로 기지국은 매크로 단말로부터 피드백되는 CSIHM와 피코 단말로부터 피드백되는 CSIGn를 기반으로 피코 단말에 대한 간섭을 완화시키도록 매크로 단말에 대한 스케줄링 정보를 갱신한다(S130). 예를 들어, HM에 대한 PMI와 매크로 기지국으로부터의 간섭(Gn)을 고려한 PMI를 기반으로 피코 단말에 미치는 간섭을 줄이도록 매크로 단말을 스케줄링할 수 있다.
상술한 이종 네트워크에서의 SLNR 기반의 간섭 완화 기법은 매크로 단말 및 피코 단말의 채널 정보를 기반으로 매크로 단말에 적용되는 프리코딩 행렬을 피코 단말로의 간섭을 완화시키는 방향으로 재설정한다. 이러한 방법에 의하여 매크로 단말에 대한 성능은 약간 저하될지라도 전체 시스템 성능은 향상시키는 것이다.
특히, PMI를 기반으로 한 SLNR 기반의 간섭 완화 기법은 제한된 채널 정보만을 이용하므로 적은 피드백 량으로 기존 SLNR 기반 간섭 완화 기법에 근사한 성능 향상을 이룰 수 있다.
그러나, SLNR 기반의 간섭 완화 기법은 간섭을 받는 피간섭 단말(상기 예에서 피코 단말)로부터 추가적인 CSI 추정을 요구하고, 피드백 량을 줄였다고는 하나 부가적인 피드백이 발생하는 것은 피할 수 없다. 또한, 피간섭 단말이 증가할수록 간섭 기지국(상기 예에서 매크로 기지국)에서의 계산량이 증가한다. 또한, 피간섭 단말이 매우 많은 경우, 피간섭 단말들의 CSI 특성이 점차 일정한 분산(uniform distribution)을 갖게 되어 SLNR 기반의 간섭 완화 기법 성능이 저하될 수 있다.
이제 본 발명에 따른 이종 네트워크에서의 간섭 완화 기법에 대해 설명한다.
본 발명에 따른 이종 네트워크에서의 간섭 완화 기법은 종래의 방법과 달리 피간섭 단말들 중 일부 피간섭 단말들로부터 간섭 기지국에 대한 CSI 피드백을 받아 SLNR 기반 간섭 완화를 수행한다. 즉, 본 발명에 따르면 간섭을 받는 단말들 중 일부 단말들로부터만 간섭 기지국에 대한 CSI 피드백을 받아 간섭 완화를 수행한다.
피간섭 단말을 선택하기 위해, 피간섭 단말들은 서빙 기지국(즉, 피간섭 기지국, 예컨대, 피코 단말에 대해 피코 기지국이 서빙 기지국)과 간섭 기지국로부터 수신한 신호에 대한 수신 전력 또는 수신 SINR(signal to interference plus noise ratio)와 같이 서빙 기지국과 간섭 기지국으로부터 수신한 신호의 상대적 세기 또는 채널 상태를 알 수 있는 정보를 간섭 기지국으로 직접 또는 피간섭 기지국을 통해 간섭 기지국으로 피드백한다. 구체적으로 다음과 같은 정보를 간섭 기지국으로 피드백할 수 있다.
1. 참조 신호 수신 전력 (reference signal received power: RSRP) 즉, 간섭 기지국 및 서빙 기지국으로부터 받은 참조 신호에 대한 수신 전력을 피드백할 수 있다.
2. 참조 신호 수신 품질 (reference signal received quality: RSRQ), 참조 신호의 수신 품질을 양자화하여 인덱스 형태로 피드백할 수 있다.
3. 서빙 기지국과 간섭 기지국에 대한 RSRP의 비율
4. 서빙 기지국과 간섭 기지국에 대한 RSRQ의 비율
5. CSI-RS 기반의 RSRP, CSI-RS(channel state information-reference signal)는 채널 추정을 위해 전송되는 단말 특정적 참조 신호를 의미한다. 간섭 기지국 및 서빙 기지국이 서로 다른 CSI-RS를 사용하는 경우 서로 다른 기지국을 구분할 수 있어 각 기지국에 대한 RSRP를 피드백할 수 있다.
6. CSI-RS 기반의 RSRQ
7. 서빙 기지국과 간섭 기지국에 대한 CSI-RS 기반의 RSRP의 비율
8. 서빙 기지국과 간섭 기지국에 대한 CSI-RS 기반의 RSRQ의 비율
9. CSI-RS를 이용하여 추정한 서빙 기지국과 간섭 기지국의 채널 전력 비율.
간섭 기지국 또는 피간섭 기지국은 간섭 기지국에서 참조할 CSI를 전송하는 피간섭 단말을 상술한 1 내지 9의 정보들 중 적어도 하나를 이용하여 선택한다. 이 때, 피간섭 단말을 선택하는 기준을 위해, 문턱치(threshold value)가 사용될 수 있다.
문턱치는 다음 중 어느 하나 또는 하나 이상으로 선택될 수 있다.
A. 피간섭 단말들의 간섭 기지국에 대한 수신 전력(RSRP, CSI-RS를 통해 측정한 채널 전력)들 중 소정의 값.
B. 피간섭 단말들의 수신 품질(예를 들어, 수신 SINR, RSRQ, CQI) 들 중 소정의 값
C. 피간섭 단말들의 수신 전력(RSRP, CSI-RS로 측정한 채널 전력) 중 하위 Y개에 해당하는 수신 전력, Y는 채널 상태에 따라 변경 설정될 수 있는 값.
D. 피간섭 단말들의 수신 품질(수신 SINR, RSRQ, CQI) 들 중 하위 Y개에 해당하는 수신 품질
E. 기지국이 임의로 정한 값
F. 시스템에서 미리 정해진 값
상기 A 내지 F의 문턱치는 예시일 뿐이고, 문턱치는 피간섭 단말이 어떤 정보를 피드백하는가에 따라 자유롭게 결정될 수 있다. 상기 문턱치와 피간섭 단말이 피드백하는 상기 1 내지 9의 정보들을 비교하여 미리 정해진 조건을 만족하는 피간섭 단말로부터 피드백되는 CSI를 이용하여 간섭 기지국은 간섭 완화를 위한 프리코딩 행렬을 결정하는 것이다.
상기 문턱치는 간섭 기지국이 피간섭 기지국에게 알려줄 수 있다. 그러면, 피간섭 기지국은 상기 문턱치를 피간섭 단말이 피드백하는 상기 1 내지 9의 정보와 비교하여 조건을 만족하는지 여부를 판단한다. 그 후, 조건을 만족하는 피간섭 단말에 대해서만 간섭 기지국의 간섭을 고려한 CSI를 피드백하도록 지시한다.
또는, 간섭 기지국이 SLNR 기반 간섭 완화 기법을 적용하는 경우, 간섭 기지국 또는 피간섭 기지국이 피간섭 단말들에게 이를 알려주어 간섭 기지국에 대한 CSI 피드백을 트리거링한다. 피간섭 단말들은 간섭 기지국에 대한 CSI를 피간섭 기지국에게 피드백하고, 이러한 피드백 정보들 중 상술한 문턱치를 기준으로 조건을 만족하는 피드백 정보만을 간섭 기지국으로 피드백할 수도 있다.
이제 상술한 방법을 구체적으로 적용하는 예를 설명한다.
도 6은 본 발명의 일 실시예에 따른 이종 네트워크에서의 간섭 완화 방법을 나타낸다. 도 6에서 매크로 기지국은 간섭 기지국, 피고 단말은 매크로 기지국으로부터 간섭을 받는 피간섭 단말이라고 가정한다. 물론 이는 예시일 뿐 이에 제한되는 것은 아니다.
도 6을 참조하면, 매크로 기지국은 피코 기지국에게 간섭 기지국에 대한 CSI를 전송할 피코 단말을 선택하기 위한 문턱치를 설정한다(S200).
매크로 기지국은 제1 CSI-RS를 피코 단말에게 전송하고(S210), 피코 기지국 역시 피코 단말에게 제2 CSI-RS를 전송한다(S220).
피코 단말은 제1 CSI-RS 및 제2 CSI-RS를 측정하여 수신 세기 비율을 측정한다(S230). 수신 세기 비율은 상기 1 내지 9의 정보들 중 3, 4, 7, 8, 또는 9의 형태일 수 있다.
피코 단말은 피코 기지국에게 수신 세기 비율을 피드백한다(S240).
피코 기지국은 수신 세기 비율이 문턱치 이상인지 여부를 기준으로 매크로 기지국에 대한 CSI 피드백 여부를 결정한다(S250). 만약, 피코 단말이 피드백한 수신 세기 비율이 문턱치 이하 또는 이상으로 미리 정해진 조건을 만족하면 매크로 기지국에 대한 CSI 피드백을 트리거링한다(S260).
피코 단말은 매크로 기지국에게 매크로 기지국으로부터의 간섭을 고려한 PMI 및 간섭량에 대한 정보를 피드백한다(S270).
즉, 매크로 기지국으로부터 간섭을 받는 피코 단말들 중 일정한 기준에 의해 일부 피코 단말들이 선택되고, 간섭 기지국은 선택된 피코 단말들로부터만 간섭 기지국에 대한 CSI를 피드백 받아 매크로 단말에 대한 프리코딩 행렬을 결정한다. 따라서, 종래의 방법에 비하여 CSI를 피드백해야 하는 피코 단말의 개수가 줄어들게 된다.
또한, 피간섭 단말(피코 단말)은 PMI 정보 뿐만 아니라 간섭량 정보를 추가적으로 피드백함으로써 기존 SLNR 기반의 간섭 완화 기법의 성능을 보완/향상시킬 수 있다.
상기 식 2의 근사화(approximation)과정을 보면, 명시적 채널 정보의 정보량이 많은 이유로 묵시적 채널 정보인 PMI를 이용한다. 이는 간섭 기지국과 피간섭 단말 간의 간섭 채널에 대한 위상만을 고려한 것이다. 그 결과, 실제 간섭 채널에 대한 정보가 부족하여 SLNR에 양자화 오류로 반영된다. 이를 해결하기 위해, 간섭 채널에 대한 간섭량에 대한 정보도 피간섭 단말이 피드백하는 것이다.
식 2를 매크로 단말에 대한 SLNR 개념으로 표현하면 다음 식 6과 같이 표현할 수 있다.
[식 6]
Figure PCTKR2012005303-appb-I000006

식 6에서, PI,n은 피간섭 단말 n에 미치는 간섭 기지국의 간섭량을 나타낸다.
PI,n은 식 5를 이용하여 다음과 같이 유도될 수 있다.
[식 7]
Figure PCTKR2012005303-appb-I000007
즉, 피간섭 단말은 식 5에서의 PMI(Vn) 뿐만 아니라 식 7에서의 간섭량에 대한 정보를 추가로 피드백함으로써 기존 PMI만을 이용한 SLNR 기반의 간섭 완화 기법의 성능을 보완/향상시킬 수 있다.
도 7은 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 기지국(100)은 간섭 기지국일 수 있다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(110)는 피간섭 기지국으로 문턱치에 대한 정보를 전송하고, 문턱치에 대한 정보 및 제1 피드백 정보를 기반으로 상기 피간섭 기지국이 선택한 피간섭 단말로부터 상기 간섭 기지국이 상기 피간섭 단말에게 미치는 간섭을 고려한 제2 피드백 정보를 수신한다. 여기서, 제1 피드백 정보는 상술한 1 내지 9 중 어느 하나일 수 있다. 일 예로, 제1 피드백 정보는 상기 피간섭 단말이 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호를 측정하여 수신 전력을 비교한 정보일 수 있다. 문턱치에 대한 정보는 상술한 A 내지 F 중 어느 하나일 수 있다. 또한, 프로세서(110)는 제2 피드백 정보를 기반으로 상기 피간섭 단말에 대한 간섭을 최소화하는 프리코딩 행렬을 선택하고, 상기 프리코딩 행렬을 적용하여 상기 간섭 기지국이 서비스를 제공하는 단말에게 신호를 전송한다. 피간섭 기지국이 선택한 피간섭 단말은 상기 피간섭 기지국이 서비스를 제공하는 단말들 중 상기 제1 피드백 정보가 상기 문턱치와의 비교 조건을 만족하는 단말일 수 있다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 단말(200)은 피간섭 단말일 수 있다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(210)는 간섭 기지국 및 피간섭 기지국으로부터 전송되는 참조 신호를 측정하여 제1 피드백 정보를 생성한 후 피간섭 기지국에게 전송한다. 만약, 피간섭 기지국으로부터 트리거링 신호가 수신되면, 간섭 기지국으로부터의 간섭을 고려한 제2 피드백 정보를 간섭 기지국으로 전송한다. 제2 피드백 정보에는 PMI 뿐만 아니라 식 7과 같은 간섭량에 대한 정보를 포함할 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (8)

  1. 이종 네트워크에서의 간섭 기지국의 간섭 완화 방법에 있어서,
    피간섭 기지국으로 문턱치에 대한 정보를 전송하는 단계;
    상기 문턱치에 대한 정보 및 제1 피드백 정보를 기반으로 상기 피간섭 기지국이 선택한 피간섭 단말로부터 상기 간섭 기지국이 상기 피간섭 단말에게 미치는 간섭을 고려한 제2 피드백 정보를 수신하는 단계;
    상기 제2 피드백 정보를 기반으로 상기 피간섭 단말에 대한 간섭을 최소화하는 프리코딩 행렬을 선택하는 단계; 및
    상기 프리코딩 행렬을 적용하여 상기 간섭 기지국이 서비스를 제공하는 단말에게 신호를 전송하는 단계를 포함하되,
    상기 제1 피드백 정보는 상기 피간섭 단말이 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호를 측정하여 수신 전력을 비교한 정보이고,
    상기 피간섭 기지국이 선택한 피간섭 단말은 상기 피간섭 기지국이 서비스를 제공하는 단말들 중 상기 제1 피드백 정보가 상기 문턱치와의 비교 조건을 만족하는 단말인 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호는 서로 구분되는 무선 자원을 통해 전송되는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 제2 피드백 정보는 상기 피간섭 단말이 선택한 프리코딩 행렬 인덱스, 상기 간섭 기지국이 상기 피간섭 단말에 미치는 간섭량을 포함하는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서, 상기 피간섭 단말이 선택한 프리코딩 행렬 인덱스는 상기 피간섭 단말과 상기 피간섭 기지국 간의 채널 행렬, 상기 피간섭 단말과 상기 간섭 기지국 간의 간섭을 기반으로 선택되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 간섭 기지국은 상기 피간섭 기지국보다 전송 전력이 큰 기지국인 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 피간섭 기지국이 서비스를 제공하는 제1 커버리지는 상기 간섭 기지국이 서비스를 제공하는 제2 커버리지 내에 위치하는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서, 상기 피간섭 기지국이 서비스하는 단말이 복수개인 경우, 상기 피간섭 기지국은 상기 복수개의 단말들로부터 상기 제1 피드백 정보를 수신하고,
    상기 제1 피드백 정보와 상기 문턱치를 비교하여 조건을 만족하는 단말을 선택하고,
    상기 선택한 단말에게 상기 간섭 기지국으로 상기 제2 피드백 정보를 피드백할 것을 트리거링하는 것을 특징으로 하는 방법.
  8. 간섭 기지국의 간섭 완화 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되,
    상기 프로세서는 피간섭 기지국으로 문턱치에 대한 정보를 전송하고, 상기 문턱치에 대한 정보 및 제1 피드백 정보를 기반으로 상기 피간섭 기지국이 선택한 피간섭 단말로부터 상기 간섭 기지국이 상기 피간섭 단말에게 미치는 간섭을 고려한 제2 피드백 정보를 수신하고, 상기 제2 피드백 정보를 기반으로 상기 피간섭 단말에 대한 간섭을 최소화하는 프리코딩 행렬을 선택하고, 및 상기 프리코딩 행렬을 적용하여 상기 간섭 기지국이 서비스를 제공하는 단말에게 신호를 전송하되,
    상기 제1 피드백 정보는 상기 피간섭 단말이 상기 간섭 기지국의 참조 신호와 상기 피간섭 기지국의 참조 신호를 측정하여 수신 전력을 비교한 정보이고,
    상기 피간섭 기지국이 선택한 피간섭 단말은 상기 피간섭 기지국이 서비스를 제공하는 단말들 중 상기 제1 피드백 정보가 상기 문턱치와의 비교 조건을 만족하는 단말인 것을 특징으로 하는 간섭 완화 장치.
PCT/KR2012/005303 2011-07-04 2012-07-04 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치 WO2013005984A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/130,618 US9246660B2 (en) 2011-07-04 2012-07-04 Method and apparatus for interference mitigation in wireless communication system including heterogeneous network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161504297P 2011-07-04 2011-07-04
US61/504,297 2011-07-04

Publications (2)

Publication Number Publication Date
WO2013005984A2 true WO2013005984A2 (ko) 2013-01-10
WO2013005984A3 WO2013005984A3 (ko) 2013-04-04

Family

ID=47437559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005303 WO2013005984A2 (ko) 2011-07-04 2012-07-04 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치

Country Status (2)

Country Link
US (1) US9246660B2 (ko)
WO (1) WO2013005984A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148478A1 (en) * 2011-04-29 2012-11-01 Intel Corporation Technology for csi feedback in a mimo communication system
CN104158634B (zh) * 2013-05-13 2017-10-27 华为技术有限公司 异构网协作多点传输的预编码方法及装置
JP6117722B2 (ja) * 2014-01-17 2017-04-19 株式会社Nttドコモ 基地局、ユーザ装置、干渉低減制御情報通知方法、及び干渉低減方法
CN105450343B (zh) * 2014-08-30 2018-11-06 华为技术有限公司 一种预编码的方法、装置及系统
US9559759B2 (en) * 2015-02-04 2017-01-31 Huawei Technologies Co., Ltd. System and method for massive MIMO communication
CN106341168B (zh) * 2015-12-31 2019-12-03 北京智谷睿拓技术服务有限公司 预编码方法、信息发送方法、及其装置
US10298355B2 (en) * 2017-02-28 2019-05-21 Corning Incorporated Supporting cooperative transmission in massive multiple-input multiple-output (MIMO) systems
US11197246B2 (en) * 2018-08-02 2021-12-07 At&T Intellectual Property I, L.P. Power control enhancements for multi-hop integrated access and backhaul
WO2020102971A1 (en) * 2018-11-20 2020-05-28 Qualcomm Incorporated Cross link interference detection systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286562A1 (en) * 2008-05-15 2009-11-19 Qualcomm Incorporated Spatial interference mitigation for wireless communication
WO2010006285A2 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Synchronous tdm-based communication in dominant interference scenarios
WO2011005537A2 (en) * 2009-06-22 2011-01-13 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169931B2 (en) * 2008-05-21 2012-05-01 Airhop Communications, Inc. Method and apparatus for base stations and their provisioning, management, and networking
WO2011047333A1 (en) * 2009-10-15 2011-04-21 Saeid Safavi Methods and apparatus for centralized and coordinated interference mitigation in a wlan network
US8379574B2 (en) * 2010-03-25 2013-02-19 Eden Rock Communications, Llc Systems and methods for mitigating intercell interference by coordinated scheduling amongst neighboring cells
EP2609772A4 (en) * 2010-08-26 2016-08-24 Ericsson Telefon Ab L M METHOD AND NETWORK NODES IN A COMMUNICATION SYSTEM
CN103621155B (zh) * 2011-06-21 2018-09-28 瑞典爱立信有限公司 用于上行链路发送的发送功率控制的用户设备及其方法
US9107173B2 (en) * 2011-07-28 2015-08-11 Blackberry Limited Method and system for access and uplink power control for a wireless system having multiple transmit points
KR101557253B1 (ko) * 2011-10-07 2015-10-02 블랙베리 리미티드 무선 네트워크에서의 간섭 관리

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286562A1 (en) * 2008-05-15 2009-11-19 Qualcomm Incorporated Spatial interference mitigation for wireless communication
WO2010006285A2 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Synchronous tdm-based communication in dominant interference scenarios
WO2011005537A2 (en) * 2009-06-22 2011-01-13 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells

Also Published As

Publication number Publication date
US9246660B2 (en) 2016-01-26
WO2013005984A3 (ko) 2013-04-04
US20140140235A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US11223465B2 (en) Communication apparatus and communication method
US10498416B2 (en) System and method for downlink channel sounding in wireless communications systems
WO2013005984A2 (ko) 이종 네트워크를 포함하는 무선 통신 시스템에서 간섭 완화 방법 및 장치
KR101728544B1 (ko) 다중 입력 다중 출력 통신 시스템에서의 스케줄링 방법 및 장치
US10050734B2 (en) Network node and method for enabling interference alignment of transmissions to user equipments
US8923844B2 (en) Coordinated beam forming and multi-user MIMO
US9974084B2 (en) Network nodes, a user equipment and methods therein for handling cellular and D2D communications in a wireless communications network
US9036586B2 (en) Method of transmitting information about a pre-coding matrix of a terminal in a multiple node system
KR101060857B1 (ko) Mimo 통신 시스템에서의 데이터 전송 방법 및 장치
KR101931711B1 (ko) 다중 노드 시스템에서 간섭 제거 방법 및 이러한 방법을 이용하는 단말
EP2230807B1 (en) Apparatus and method for reducing inter-cell interference in multiple input multiple output system
US9356662B2 (en) Method and apparatus for transmitting feedback information of a terminal in a multi-node system
US20140133325A1 (en) Feedback and Scheduling for Coordinated Multi-Point (CoMP) Joint Transmission (JT) in Orthogonal Frequency Division Multiple Access (OFDMA)
US20110268068A1 (en) Method of Coordinating Precoding Matrixes in a Wireless Communication System
US20150318966A1 (en) Radio communication system and communication control method
CN116114211A (zh) 用于协作传输和反馈的系统和方法
KR20180009776A (ko) 무선 통신 제어 방법, 무선 통신 시스템, 수신 장치 및 송신 장치
EP2587695B1 (en) Method for eliminating interference in multi-node system and terminal using method thereof
WO2011159072A2 (ko) 다중 노드 시스템에서 간섭 제거 방법 및 이러한 방법을 이용하는 단말
Jaramillo-Ramirez et al. Coordinated multi-point transmission with quantized and delayed feedback
KR101188996B1 (ko) 무선 통신 시스템의 협력 전송 방법
Wu et al. Limited feedback for cooperative multicell MIMO systems with multiple receive antennas
Hong et al. Interference management in D2D communication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14130618

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807486

Country of ref document: EP

Kind code of ref document: A2