WO2016027905A1 - Pcr法およびpcrキット - Google Patents

Pcr法およびpcrキット Download PDF

Info

Publication number
WO2016027905A1
WO2016027905A1 PCT/JP2015/073755 JP2015073755W WO2016027905A1 WO 2016027905 A1 WO2016027905 A1 WO 2016027905A1 JP 2015073755 W JP2015073755 W JP 2015073755W WO 2016027905 A1 WO2016027905 A1 WO 2016027905A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
probe
polynucleotide sequence
bulge structure
pcr
Prior art date
Application number
PCT/JP2015/073755
Other languages
English (en)
French (fr)
Inventor
中谷 和彦
史恵 坂本
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to US15/505,480 priority Critical patent/US10487355B2/en
Priority to EP15833348.4A priority patent/EP3184636B1/en
Publication of WO2016027905A1 publication Critical patent/WO2016027905A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates

Definitions

  • the present invention relates to a PCR method and a PCR kit.
  • Examples of the real-time PCR (real-time polymerase chain reaction) method widely used for gene detection include TaqMan (registered trademark) method and SYBR (registered trademark) Green method.
  • the TaqMan (registered trademark) method is a very sensitive method, but has the problems that the design and synthesis of the probe used for detection is complicated and the detection cost is high.
  • the SYBR (registered trademark) Green method is a simple method that uses a dye whose fluorescence intensity increases when bound to double-stranded DNA.
  • non-specifically amplified double-stranded DNA is also “positive”. As a result, the detection error is large.
  • the SYBR (registered trademark) Green method has a problem that it is difficult to design a primer with high detection accuracy.
  • Patent Document 1 The technique described in Patent Document 1 is a primer that can form a double strand in a molecule and can form a cytosine bulge structure in the double strand, and a 2,7-diamino-1 in the bulge structure.
  • 8-naphthyridine (DANP) is used as a primer that fluoresces when bound.
  • the cytosine bulge structure is a characteristic structure formed by cytosine without a complementary nucleotide pair.
  • the primer is bound to the template, and the complementary strand of the template is extended from the primer as a starting point (see FIG. 26 (a)).
  • the duplex formed by the complementary strand and the template is converted into a single strand consisting of a complementary strand (hereinafter referred to as single strand A) and a single strand consisting of a template by high-temperature treatment. To be separated.
  • the above-described prior art requires the use of a long primer to form a bulge structure, and as a result, the primer may bind to the template non-specifically, resulting in non-specific gene amplification. I can't deny it.
  • the above-described conventional technique is a method for detecting a PCR reaction by measuring the amount of decrease in fluorescence intensity, there is a tendency that the dynamic range is small and the detection accuracy is low.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a simple PCR method and PCR kit with higher detection accuracy.
  • the PCR method of the present invention forms a primer set including a first primer and a second primer, a template amplified by the primer set, and a double strand with the first primer.
  • a bulge structure that loses its bulge structure and forms a bulge structure by dissociating from the double strand with the first primer, and a bulge structure-binding molecule that emits a signal by binding to the bulge structure Including a step of subjecting a sample containing a PCR reaction to a PCR reaction.
  • the first probe comprises a first polynucleotide sequence and a second polynucleotide sequence that form a double strand with nucleotides other than the nucleotide that forms the bulge structure, and a part of the first primer.
  • a third polynucleotide sequence forming a double strand and the third polynucleotide sequence preferably includes at least a part of the first polynucleotide sequence or the second polynucleotide sequence.
  • the melting temperature of the double strand formed by the third polynucleotide sequence and the first primer is Tm 1 , and the first polynucleotide sequence and the second polynucleotide sequence are formed.
  • the melting temperature of the duplex when Tm 2 and that is preferably Tm 1> Tm 2.
  • the first probe preferably forms a plurality of bulge structures.
  • the sample further loses its bulge structure by forming a double strand with the second primer, and dissociates from the double strand with the second primer to thereby release the bulge structure.
  • a second probe is formed.
  • the second probe includes a fourth polynucleotide sequence and a fifth polynucleotide sequence that form a double strand with nucleotides other than the nucleotide that forms the bulge structure, and a part of the second primer.
  • a sixth polynucleotide sequence forming a double strand, and the sixth polynucleotide sequence preferably includes at least a part of the fourth polynucleotide sequence or the fifth polynucleotide sequence.
  • the melting temperature of the double strand formed by the sixth polynucleotide sequence and the second primer is Tm 3
  • the fourth polynucleotide sequence and the fifth polynucleotide sequence are formed. It is preferable that Tm 3 > Tm 4 when the melting temperature of the double strand is Tm 4 .
  • the second probe preferably forms a plurality of bulge structures.
  • the bulge structure is preferably a cytosine bulge structure or a thymine bulge structure.
  • the bulge structure binding molecule is preferably a compound having a naphthyridine ring.
  • the sample further contains a competitor primer
  • the competitor primer is a nucleotide in which at least one nucleotide is a different nucleotide in a region in the first primer that forms a double strand with the template. It is preferable that it has the 7th polynucleotide sequence substituted by.
  • the PCR kit of the present invention is a PCR kit for amplifying a template with a primer set including a first primer and a second primer in order to solve the above problems, and forms a double strand with the first primer.
  • a bulge structure that loses the bulge structure and forms a bulge structure by dissociating from the double strand with the first primer, and a bulge structure-binding molecule that emits a signal by binding to the bulge structure; It is characterized by having.
  • the PCR kit of the present invention further forms a bulge structure by losing the bulge structure by forming a double strand with the second primer and dissociating from the double strand with the second primer.
  • a probe is preferably provided.
  • the PCR kit of the present invention further comprises a seventh polynucleotide sequence in which at least one nucleotide is substituted with another nucleotide in a region in the first primer that forms a double strand with the template. It is preferable to provide a competitor primer.
  • the present invention is a technique for detecting the intensity of an increasing signal (for example, fluorescence), the progress of the PCR reaction (for example, the amount of the PCR reaction product) compared to the technique for detecting the intensity of a decreasing signal. It is possible to easily and accurately grasp the above.
  • an increasing signal for example, fluorescence
  • the progress of the PCR reaction for example, the amount of the PCR reaction product
  • the present invention does not require electrophoresis of PCR products, the progress of the PCR reaction can be easily grasped.
  • the intensity of the decreasing signal is measured based on a strong signal that already exists (in other words, high background). Therefore, in this technique, it is difficult to accurately measure the intensity of the decreasing signal, and it is difficult to accurately grasp the progress of the PCR reaction. In particular, in this technique, when the intensity of the decreasing signal is small, it is difficult to accurately grasp the progress of the PCR reaction.
  • the intensity of the increasing signal is measured based on a nonexistent signal (in other words, low background). Therefore, in the present invention, it is easy to accurately measure the intensity of the increasing signal, and the progress of the PCR reaction can be accurately grasped. In the present invention, even when the intensity of the increasing signal is small, the progress of the PCR reaction can be accurately grasped.
  • the present invention has an effect that it can be used for any gene with high versatility.
  • a tag that can bind to a probe and change the bulge structure of the probe may be linked to an arbitrary primer for detecting an arbitrary gene. Therefore, the present invention can be used for PCR targeting all genes.
  • the present invention does not require the use of chemically modified (for example, fluorescently modified) probes and primers, so that they can be synthesized easily and are inexpensive.
  • the present invention has an effect that it can be carried out using a conventional apparatus (for example, a PCR apparatus or a fluorescence detection apparatus) without requiring a special apparatus.
  • a conventional apparatus for example, a PCR apparatus or a fluorescence detection apparatus
  • the probe can be prevented from functioning as a primer.
  • the probe can be prevented from functioning as a primer.
  • a probe that can form a bulge structure in the molecule and emits a signal (for example, fluorescence) when a bulge structure-binding molecule is bound to the bulge structure is used (see DNA probe in FIG. 1).
  • the “bulge structure” means a bulge that occurs due to the presence of excess nucleotides in one strand of polynucleotide in a double-stranded region of a polynucleotide (eg, DNA).
  • cytosine bulge structure a bulge structure formed when the excess base is C (cytosine) is referred to as a “cytosine bulge structure” in this specification.
  • a (adenine), G (guanine), and T (thymine) are also expressed as “adenine bulge structure”, “guanine bulge structure”, and “thymine bulge structure”.
  • the probe and primer (see DNA-TAG in FIG. 1) bind to each other to change the three-dimensional structure of the probe. As a result, the bulge structure in the probe is lost. Therefore, no signal derived from the bulge structure binding molecule is generated at the time when the PCR reaction is started (see (d) of FIG. 1).
  • the complex of the probe and primer is bound to the template, and the complementary strand of the template is extended from the primer as a starting point (see FIG. 1A).
  • the double strand formed by the complementary strand and the template is separated into a strand containing at least the complementary strand (hereinafter referred to as strand B) and a single strand comprising the template by high-temperature treatment. .
  • Another primer (not shown in FIG. 1) binds to the strand B, and the complementary strand of the strand B is extended from the other primer (see (b) of FIG. )reference).
  • the probe dissociated in the PCR reaction solution forms a bulge structure in the probe by an interaction through a hydrogen bond or the like in the probe molecule, and the bulge structure binding molecule is further bonded to the bulge structure.
  • a signal for example, fluorescence
  • the PCR reaction proceeds, the number of dissociated probes (in other words, the number of bulge structures) increases, and as a result, the signal intensity increases (see (d) in FIG. 1).
  • the PCR reaction is detected by observing an increase in signal intensity.
  • the dynamic range is large, a PCR method with high detection accuracy can be realized.
  • the PCR method of the present embodiment has a structure (specifically, a bulge according to the binding state of a primer set including a first primer and a second primer, a template amplified by the primer set, and the first primer.
  • the method includes a step of subjecting a sample containing a first probe that changes in structure) and a bulge structure-binding molecule that changes a signal generated according to a binding state of the bulge structure to a PCR reaction.
  • the first probe loses its bulge structure by forming a double strand with the first primer, and forms a bulge structure by dissociating from the double strand with the first primer (specifically, Polynucleotide (eg, DNA)).
  • first primer specifically, Polynucleotide (eg, DNA)
  • the first probe when the first probe is present alone, it forms a bulge structure in the first probe, and its steric structure is changed by forming a double strand with the first primer. The structure is lost.
  • the first probe is not particularly limited as long as it has the above-described properties.
  • the first probe may have a first polynucleotide sequence and a second polynucleotide sequence that form a double strand with each other nucleotide other than the nucleotide that forms the bulge structure.
  • nucleotides other than the nucleotide forming the bulge structure may be completely complementary or partially complementary.
  • “complementary” means that adenine (A) and thymine (T) face each other through specific hydrogen bonds, and specific hydrogen bonds between guanine (G) and cytosine (C). Intend to face each other through.
  • the first polynucleotide sequence and the second polynucleotide sequence are 50% or more, preferably 60% or more, more preferably 70% or more, more preferably 80% or more of nucleotides other than the nucleotide forming the bulge structure. % Or more, more preferably 90% or more, more preferably 95% or more, more preferably 98% or more, and most preferably 100% may be complementary.
  • a 1st polynucleotide sequence and a 2nd polynucleotide sequence will form a double strand within a 1st probe through a specific hydrogen bond. Then, extra nucleotides for which there is no paired nucleotide form a bulge structure.
  • the first probe preferably has a third polynucleotide sequence that forms a double strand with a portion of the first primer.
  • a part of the first primer and the third polynucleotide sequence may be completely complementary or partly complementary.
  • a portion of the first primer and the third polynucleotide sequence are 50% or more, preferably 60% or more, more preferably 70% or more, more preferably 80% or more of the nucleotides forming the double strand. More preferably 90% or more, more preferably 95% or more, more preferably 98% or more, and most preferably 100%.
  • a 1st probe can form a part of 1st primer and a double strand via a 3rd polynucleotide sequence. Then, when a double strand is formed with the first primer via the third polynucleotide sequence, the three-dimensional structure of the first probe changes and the bulge structure in the first primer is lost. The portion of the first primer that does not form a double strand with the first probe functions when the first primer forms a double strand with the template.
  • the third polynucleotide sequence includes at least a part of the first polynucleotide sequence or the second polynucleotide sequence. Further, the third polynucleotide may include the entire first polynucleotide sequence or second polynucleotide sequence.
  • the specific base sequences of the first polynucleotide sequence, the second polynucleotide sequence, and the third polynucleotide sequence are not particularly limited, and can be appropriately designed as desired.
  • Tm 1 is the melting temperature of the duplex formed by the third polynucleotide sequence and the first primer
  • Tm is the melting temperature of the duplex formed by the first polynucleotide sequence and the second polynucleotide sequence.
  • the base sequences of the first polynucleotide sequence, the second polynucleotide sequence, and the third polynucleotide sequence may be designed so that the relational expression “Tm 1 > Tm 2 ” is satisfied.
  • the melting temperature can be calculated using a known calculation program such as OligoCalc (Inc 50 mM Na + , “http://www.basic.northwestern.edu/biotools/oligocalc.html”).
  • the duplex formed by the third polynucleotide sequence and the first primer is more stable than the duplex formed by the first polynucleotide sequence and the second polynucleotide sequence. become. That is, the double strand formed by the third polynucleotide sequence and the first primer is preferentially formed over the double strand formed by the first polynucleotide sequence and the second polynucleotide sequence, Signal noise is reduced. As a result, the PCR detection accuracy can be further improved with the above configuration, as demonstrated in the examples described later.
  • the base sequences of the first polynucleotide sequence, the second polynucleotide sequence, and the third polynucleotide sequence are designed so that the relational expression “Tm 1 > Tm 2 > signal measurement temperature” is satisfied. It is preferable.
  • the signal measurement temperature (for example, fluorescence measurement temperature) is not particularly limited, and may be, for example, 25 ° C. or 30 ° C.
  • the PCR detection accuracy can be further improved because the formation of double strands in the first probe at the time of signal measurement (in other words, the generation of fluorescence) is not hindered.
  • the base sequence of the first polynucleotide sequence and the second polynucleotide sequence can be designed so as to form one or a plurality (for example, 2 to 4) of bulge structures in the first probe. From the viewpoint of increasing the signal intensity and increasing the detection accuracy of PCR, it is more preferable to design the bulge structure to form a plurality of bulge structures.
  • the bulge structure-binding molecules cannot bind well to each of the bulge structures, and the signal intensity tends to decrease.
  • the distance between the bulge structures is too long, the total length of the first probe becomes long, and the production cost of the first probe tends to increase.
  • the bulge structure formed in the first probe is not particularly limited, and examples thereof include a cytosine bulge structure, a thymine bulge structure, an adenine bulge structure, and a guanine bulge structure.
  • the bulge structure is preferably a cytosine bulge structure, a thymine bulge structure, or an adenine bulge structure, and may be a cytosine bulge structure or a thymine bulge structure. More preferred is a cytosine bulge structure.
  • the type of nucleotide adjacent to the bulge structure is not particularly limited, but adenine, cytosine, or thymine is preferable.
  • the bulge structure binding molecule is a molecule that emits fluorescence
  • the fluorescence intensity tends to decrease
  • adenine, cytosine or thymine is adjacent to the bulge structure, the fluorescence intensity tends to increase. Indicates.
  • the length of the first polynucleotide sequence and the second polynucleotide sequence is not particularly limited, but is preferably 7 to 17, for example, 8 to 17 is more preferable, and 8 to 12 is more preferable.
  • the first polynucleotide sequence and the second polynucleotide sequence are formed by 17 nucleotides, three or more bulge structures can be formed.
  • the length of the third polynucleotide sequence is not particularly limited, but is preferably 17 to 25, and more preferably 18 to 22.
  • the above configuration can effectively prevent the probe from forming a bulge structure, so that the detection accuracy of PCR can be further increased.
  • the first probe may have one or a plurality of (for example, 3 to 7, preferably 4) nucleotides between the first polynucleotide sequence and the second polynucleotide sequence.
  • the type of nucleotide is not particularly limited, but thymine is preferable.
  • the structure of the first probe can be efficiently changed to a desired structure (for example, a single strand or a hairpin structure).
  • the 3 'end of the first probe is preferably capped with non-natural DNA. If it is the said structure, even if a 1st probe couple
  • dideoxyribose is arranged at the 3 'end of the first probe, the dideoxyribose does not have "-OH" necessary for the extension reaction, so that the first probe does not function as a primer.
  • the primer set includes a first primer (for example, a reverse primer) and a second primer (for example, a forward primer), and a desired template is amplified by the primer set.
  • a first primer for example, a reverse primer
  • a second primer for example, a forward primer
  • the template is not particularly limited and may be appropriately selected depending on the detection target.
  • body fluids such as blood, lymph, runny nose, sputum, urine, feces, ascites, skin, mucous membranes, various organs, tissues such as bones, nasal cavity, bronchi, skin, various organs, bones, etc.
  • a polynucleotide derived from a microorganism, etc. eg, DNA or RNA
  • the present invention is not limited to these.
  • the first primer includes a region that forms a double strand with the third polynucleotide sequence in the first probe, and a region that forms a double strand with the template.
  • the region in the first primer that forms a double strand with the third polynucleotide sequence in the first probe can be designed as a polynucleotide that is substantially complementary or complementary to the third polynucleotide sequence described above. Since the specific configuration of the third polynucleotide sequence has already been described in detail, from the description, the region of the first primer that forms a double strand with the third polynucleotide sequence in the first probe. Specific configurations may also be understood.
  • the region in the first primer that forms a double strand with the template can be appropriately designed according to the detection target. That is, the region in the first primer that forms a double strand with the template can be designed as a polynucleotide that is approximately complementary or complementary to the template, and the specific configuration is not limited.
  • the second primer may be any primer that can form a double strand with the extended polynucleotide from the first primer, and its specific configuration is not limited.
  • the complementary strand of the polynucleotide extended from the first primer is extended from the second primer.
  • the second primer is not particularly limited as long as it can pair with the first primer and amplify a desired template.
  • the specific configuration is not limited, but the second primer has the same configuration as the first primer described above. This is true.
  • the PCR reaction sample loses its bulge structure by forming a double strand with the second primer, and forms a bulge structure by dissociating from the double strand with the second primer.
  • a second probe is preferably included.
  • the signal can be generated not only by the first probe but also by the second probe, the detection accuracy of PCR can be further increased.
  • the second probe comprises a fourth polynucleotide sequence and a fifth polynucleotide sequence that form a double strand with each other nucleotide other than a nucleotide that forms a bulge structure, a portion of the second primer, and a double strand. And a sixth polynucleotide sequence to be formed.
  • the sixth polynucleotide sequence includes at least a part of the fourth polynucleotide sequence or the fifth polynucleotide sequence.
  • the melting temperature of the duplex formed by the sixth polynucleotide sequence and the second primer is Tm 3
  • the melting temperature of the duplex formed by the fourth polynucleotide sequence and the fifth polynucleotide sequence is Tm 3 . 4
  • the relational expression “Tm 3 > Tm 4 ” is satisfied
  • it is further preferable that the relational expression “Tm 1 > Tm 2 > signal measurement temperature” is satisfied.
  • the signal measurement temperature is not particularly limited, and may be, for example, 25 ° C. or 30 ° C.
  • the second primer, the second probe, the fourth polynucleotide sequence, the fifth polynucleotide sequence, and the sixth polynucleotide sequence are respectively the first primer, the first probe, the first polynucleotide sequence, and the second polynucleotide sequence.
  • each of the third polynucleotide sequences are respectively the first primer, the first probe, the first polynucleotide sequence, and the second polynucleotide sequence.
  • each of the first primer, the first probe, the first polynucleotide sequence, the second polynucleotide sequence, and the third polynucleotide sequence in other words, the second primer, the second probe, the fourth poly Specific configurations of each of the nucleotide sequence, the fifth polynucleotide sequence, and the sixth polynucleotide sequence have already been described in [2-1. Since it was explained in the column of “First Probe”, the explanation is omitted here.
  • the specific configurations of the second primer, the second probe, the fourth polynucleotide sequence, the fifth polynucleotide sequence, and the sixth polynucleotide sequence are described in [2-1.
  • the configuration described in the section of the “first probe” is sufficient, the first primer and the second primer, the first probe and the second probe, the first polynucleotide sequence and the fourth polynucleotide sequence,
  • the second polynucleotide sequence and the fifth polynucleotide sequence may be completely the same or different from each other in the third polynucleotide sequence and the sixth polynucleotide sequence.
  • the bulge structure binding molecule only needs to emit a signal by binding to the bulge structure, and the specific configuration is not limited.
  • the bulge structure binding molecule is, for example, (i) a substance that emits fluorescence by binding to a bulge structure, (ii) a substance that shifts the wavelength of the emitted fluorescence, or (iii) a substance that quenches fluorescence. Etc. are preferably used. By detecting these fluorescences, the bulge structure can be easily detected.
  • a bulge structure binding molecule it is also possible to use a substance that is not capable of emitting a signal by itself and labeled with a substance capable of emitting a signal (for example, a fluorescent substance).
  • bulge structure binding molecule examples include compounds having a naphthyridine ring.
  • a compound having a naphthyridine ring exhibits strong fluorescence when bound to a bulge structure (particularly preferably, a cytosine bulge structure and a thymine bulge structure). By detecting the fluorescence, the bulge structure (in other words, the progress of the PCR reaction) can be easily detected.
  • a sample containing the compound having a naphthyridine ring can be directly subjected to the PCR reaction.
  • a sample for PCR reaction is prepared in one reaction container, and a compound having a naphthyridine ring is mixed with the sample in advance.
  • the fluorescence of the sample is measured in advance, and the sample is directly subjected to the PCR reaction.
  • the bulge structure can be detected by measuring the fluorescence of the sample over time as the PCR reaction proceeds.
  • R 1 and R 2 each independently represent a primary amine residue, a secondary amine residue, or a tertiary amine residue.
  • R 1 and R 2 each independently represent a primary amine residue, a secondary amine residue, or a tertiary amine residue.
  • Examples of the primary amine residue include —NH 2 .
  • Examples of the secondary amine residue include —NH (CH 2 ) NH 2 , —NH (CH 2 ) 2 NH 2 , —NH (CH) 2 NH (CH 3 ), and the like.
  • Examples of the tertiary amine residue include —N (CH 3 ) (CH 2 ) 2 NH 2 .
  • R 1 and R 2 it is preferable that at least one of which is a secondary amine residue, more preferably both R 1 and R 2 is a secondary amine residue. If it is the said structure, the coupling
  • 2,7-diaminonaphthyridine derivatives include the following formula (2): And 2,7-diamino-1,8-naphthyridine represented by the formula:
  • 2,7-diamino-1,8-naphthyridine binds to the bulge structure, the absorption maximum wavelength of the emitted fluorescence is shifted, and strong fluorescence is emitted at that wavelength. Structure detection can be performed. Specifically, 2,7-diamino-1,8-naphthyridine alone has an absorption maximum detected at 376 nm under the condition of 10 mM sodium phosphate buffer (pH 7.0), and binds to the cytosine bulge structure. To shift to 396 nm.
  • a compound having a naphthyridine ring may be synthesized by a conventionally known method. For example, it may be synthesized by the method described in Japanese Patent Publication “JP 2004-262827 A”.
  • the above-described sample further includes a competitor primer.
  • a competitor primer In the above configuration, templates having different base sequences can be distinguished with high sensitivity, so that the PCR method of the present embodiment can be used for detection of SNPs and the like.
  • a first primer (“reverse primer” in the figure), a second primer (not shown), a first probe (“probe” in the figure), a template, and A competitor primer may be included.
  • FIG. 21 (a) shows a template having a single nucleotide polymorphism of “G” or “T” as an example of the template.
  • a primer whose nucleotide that forms a double strand with the nucleotide of the single nucleotide polymorphism of the template is “C” is selected as the first primer, and the single nucleotide polymorphism of the template is selected as the competitor primer.
  • a primer having a nucleotide “A” that forms a double strand with a nucleotide at a position can be selected.
  • the first primer can form a duplex with the template preferentially over the competitor primer. As a result, a PCR reaction using the first primer occurs preferentially.
  • the probe that has lost its partner that forms a double strand dissociates in the PCR reaction solution to form a bulge structure, and a bulge structure-binding molecule binds to the bulge structure, generating a signal (for example, fluorescence). To do.
  • the competitor primer can form a duplex with the template preferentially rather than the first primer.
  • a PCR reaction using a competitor primer occurs preferentially.
  • the probe since the probe does not lose the partner that forms a double strand, the probe does not dissociate in the PCR reaction solution to form a bulge structure. That is, no signal (for example, fluorescence) is generated.
  • each of the first primer and the competitor primer appropriately functions as a primer can also be confirmed by subjecting the PCR reaction product to electrophoresis and observing the amplified DNA.
  • the PCR method of the present embodiment can be suitably used for SNP detection and the like.
  • nucleotide A At least one nucleotide (hereinafter referred to as nucleotide A) is substituted with another nucleotide (hereinafter referred to as nucleotide B) in a region within the first primer that forms a double strand with the template. It has at least a seventh polynucleotide sequence.
  • nucleotides A and B described above correspond to, for example, substituted nucleotides in gene polymorphisms (for example, SNP). That is, nucleotide A corresponds to the DNA sequence of one genotype, and nucleotide B corresponds to the DNA sequence of the other genotype. For example, in FIG. 21A, nucleotide A corresponds to “C” and nucleotide B corresponds to “A”.
  • the number of nucleotides constituting the competitor primer is not particularly limited, and may be appropriately designed according to the configuration of the first primer and / or the configuration of the template.
  • the number of nucleotides B in the seventh polynucleotide is not particularly limited and may be a desired number. For example, it may be 1 to 10, 1 to 5, 1 to 3, 1 or 2 or 1 There may be. From the viewpoint of detecting SNP more accurately, the smaller the number, the better.
  • nucleotide B in the seventh polynucleotide is not particularly limited, and may be a desired position.
  • nucleotide B may be located at the 5 ′ end of the seventh polynucleotide, or may be located at any position between the 5 ′ end and the 3 ′ end of the seventh polynucleotide. , May be located at the 3 ′ end of the seventh polynucleotide. From the viewpoint of detecting SNP with higher accuracy, it is preferably arranged at the 3 'end of the seventh polynucleotide.
  • the competitor primer further has at least one (eg, 1 to 5, or 1 to 3) nucleotides (specifically, a template and a double strand) at the 5 ′ end of the seventh polynucleotide sequence described above. Are preferably linked.
  • the number of nucleotides in the region in the first primer that forms a duplex with the template is the same as the number of nucleotides in the region in the competitor primer that forms a duplex with the template, the number of cycles of the PCR reaction is As the number increases, the first primer that should not be used for the PCR reaction is used for the PCR reaction, and a false positive signal is generated. On the other hand, according to the said structure, generation
  • the competitor primer has been described as a primer that competes with the first primer.
  • the competitor primer can be configured as a primer that competes with the first primer, a primer that competes with the second primer, or a primer that competes with the first primer and the second primer. It is.
  • PCR reaction In the PCR method of the present embodiment, a sample containing the primer set, template, probe, and bulge structure-binding molecule described above, or the primer set, template, probe, bulge structure-binding molecule, and competitor primer described above are PCR-PCR. It includes a process for reaction.
  • the PCR method of the present embodiment may include a step of detecting a signal (for example, fluorescence) derived from the sample after the above step.
  • a signal for example, fluorescence
  • the step of subjecting the sample to the PCR reaction can be performed using a commercially available PCR reaction apparatus according to a known protocol.
  • the pH of the sample is preferably 5 or more, more preferably 6 or more, and even more preferably 6.5 or more, at least in the step of detecting a signal derived from the sample.
  • the upper limit of the pH is preferably 9 or less, more preferably 8 or less, and more preferably 7.5 or less. If the pH is 5 or more and 9 or less, the DNA is stable, and the bulge structure binding molecule binds well to the bulge structure. Thereby, the signal can be detected satisfactorily.
  • the concentration of each probe in the sample is preferably 0.5 to 1.0 times the concentration of the primer forming the double strand, more preferably 0.75 to 1.0 times, More preferably, it is 1.0 times. If it is the said structure, a detection of a signal can be performed favorably.
  • the concentration of the bulge structure binding molecule in the sample is preferably 2 to 40 times the concentration of the probe to be bound, more preferably 5 to 20 times, and more preferably 10 times. If it is the said structure, a detection of a signal can be performed favorably.
  • the specific configuration of the process for detecting the signal derived from the sample may be appropriately selected according to the type of signal.
  • detection of fluorescence emitted when a bulge structure-binding molecule is bound to a bulge structure is not limited as long as it can be detected, but a wavelength of 400 nm to 480 nm is preferable, and a wavelength of 430 nm to 460 nm is preferred. Is more preferable. If the fluorescence wavelength is 400 nm to 480 nm, the bulge structure binding molecule (for example, 2,7-diamino-1,8-naphthyridine) is bound to the bulge structure and the fluorescence generated when it is not bound to the bulge structure. It is possible to clearly distinguish the fluorescence generated in some cases.
  • the bulge structure binding molecule for example, 2,7-diamino-1,8-naphthyridine
  • the PCR kit of the present embodiment is a PCR kit for amplifying a template with a primer set including a first primer and a second primer, and the bulge structure is lost by forming a double strand with the first primer. And a first probe that forms a bulge structure by dissociating from the double strand with the first primer, and a bulge structure-binding molecule that emits a signal by binding to the bulge structure.
  • the PCR kit of this embodiment may further include a primer set including a first primer and a second primer.
  • the PCR kit of the present embodiment further loses the bulge structure by forming a double strand with the second primer, and forms the bulge structure by dissociating from the double strand with the second primer.
  • a probe may be provided.
  • the PCR kit of the present embodiment further has a seventh polynucleotide sequence in which at least one nucleotide is replaced with another nucleotide in a region within the first primer that forms a double strand with the template.
  • Competitive primers may be provided.
  • the PCR kit of the present embodiment may further include other reagents and instruments.
  • PCR-related reagents and instruments DNA polymerase, dNTP, PCR buffer, PCR tubes, etc.
  • reagents and instruments for purifying amplified nucleic acids and reagents and buffer solutions for stably holding DNA fragments
  • a reagent or a buffer for stably holding the bulge structure binding molecule may be included.
  • Electrophoretic analysis and fluorescence analysis of PCR reaction products (Discussion on types of bulge structure)> Perform PCR reaction using two types of combinations of reverse primer, forward primer, and probe, detect each PCR reaction product by electrophoresis, and how the fluorescence intensity increases as each PCR reaction product increases Tested to see if it changed.
  • DANP 2,7-diamino-1,8-naphthyridine
  • the probe of this example is designed so as to form a double strand within the probe with the base sequence indicated by “bold capital letters”.
  • the part indicated by “underline” is a region where no base corresponding to “C” or “T” of the complementary strand exists, and “C” or “T” of the complementary strand forms a bulge structure. .
  • the probe (C-probe 1) in this example is a probe that forms a cytosine bulge structure in one place in the probe, and the probe (T-probe 1) in this example is in two places in the probe. It is a probe that forms a thymine bulge structure.
  • the reverse primer of this example formed a double strand with the probe with the base sequence indicated by “single underline” and indicated by “double underline”. It is designed to form a double strand with the template in the base sequence.
  • the melting temperature was calculated using OligoCalc (Inc 50 mM Na + , “http://www.basic.northwestern.edu/biotools/oligocalc.html”).
  • reaction solution As a reaction solution, the above-mentioned 0.5 ⁇ M concentration forward primer, 0.5 ⁇ M concentration reverse primer, 0.5 ⁇ M concentration probe, 5 ⁇ M concentration bulge structure-binding molecule, and 100 pg / ⁇ L template were used.
  • the containing reaction solution (total 40 ⁇ L) was used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • reaction solution was collected as the PCR reaction program progressed, and the reaction solution was subjected to electrophoresis analysis (specifically, Native PAGE (8% polyacrylamide gel, SYBR gold staining)) and fluorescence analysis. Electrophoretic analysis was performed using a commercially available electrophoresis apparatus and gel, and fluorescence analysis was performed using BERTHOLD Mithras LB940 (excitation wavelength: 400 nm, emission wavelength: 450 nm) manufactured by Berthold Technologies.
  • electrophoresis analysis specifically, Native PAGE (8% polyacrylamide gel, SYBR gold staining)
  • fluorescence analysis was performed using BERTHOLD Mithras LB940 (excitation wavelength: 400 nm, emission wavelength: 450 nm) manufactured by Berthold Technologies.
  • test results of (A. Combination 1) are shown in FIGS. 3 and 4, and the test results of (B. Combination 2) are shown in FIGS. 5 and 6.
  • the band indicated by “Band A” corresponds to the PCR product
  • the band indicated by “Band B” corresponds to the complex of the probe and the reverse primer
  • “Band C” corresponds to the complex of the probe and the reverse primer
  • Electrophoretic analysis and fluorescence analysis of PCR reaction products (Discussion on the number of bulge structures)>
  • a test was performed using a probe that forms one cytosine bulge structure in the probe.
  • tests were performed using probes that form cytosine bulge structures at two locations in the probe, and how the fluorescence intensity changed was examined.
  • the reverse primer, forward primer, and probe sequences used in the PCR reaction were as follows.
  • pUC18 was used as a template for PCR reaction
  • DANP 2,7-diamino-1,8-naphthyridine
  • M13M3 ⁇ Reverse primer (M13RV-TAG + 1): 5′-GTAGATGATAATACGTCACTTCACAGGAAACAGCTATGAC-3 ′ (SEQ ID NO: 6), Probe (HP-3-C + 2): 5'-GTGACGTATTATCATCTACAACTTTTGTCTGTAATGATCTC-3 '(SEQ ID NO: 7) The relationship between the components will be described in more detail with reference to FIG.
  • the probe of this example is designed to form a double strand within the probe with the base sequence indicated by "bold capital letters".
  • the portion indicated by “underline” is a region where no base corresponding to “C” of the complementary strand exists, and “C” of the complementary strand forms a bulge structure. That is, the probe of the present embodiment is a probe that forms two cytosine bulge structures in the probe.
  • the reverse primer of this example forms a double strand with the probe with the base sequence indicated by “single underline”, and is indicated by “double underline”. It is designed to form a double strand with the template in the base sequence.
  • reaction solution As a reaction solution, the above-mentioned 0.5 ⁇ M concentration forward primer, 0.5 ⁇ M concentration reverse primer, 0.5 ⁇ M concentration probe, 5 ⁇ M concentration bulge structure-binding molecule, and 100 pg / ⁇ L template were used.
  • the containing reaction solution (total 40 ⁇ L) was used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • Tm 1 50.9 ° C.
  • Tm 1 52.3 ° C.
  • Tm 1 It was 53.4 ° C.
  • the probe of this example is designed to form a double strand within the probe with the base sequence indicated by "bold capital letters".
  • the portion indicated by “underline” is a region where no base corresponding to “C” of the complementary strand exists, and “C” of the complementary strand forms a bulge structure. That is, the probe of the present embodiment is a probe that forms two cytosine bulge structures in the probe.
  • the reverse primer of this example forms a double strand with the probe with the base sequence indicated by “single underline”, and is indicated by “double underline”. It is designed to form a double strand with the template in the base sequence.
  • forward primer M13M3
  • probe HP-3-C + 2
  • pUC18 pUC18
  • DANP 2,7-diamino-1,8-naphthyridine
  • the reaction solution includes a forward primer having a concentration of 0.5 ⁇ M, a reverse primer having a concentration of 0.5 ⁇ M, a probe having a concentration of 0.5 ⁇ M, a bulge structure-binding molecule having a concentration of 5 ⁇ M, and 100 pg / ⁇ L.
  • the reaction solution containing the template (total 40 ⁇ L) was used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • test results are shown in FIG.
  • the test results shown in FIG. 11 show that “M13RV-TAG”, “M13RV-TAG + 1”, “M13RV-TAG + 2”, and “M13RV-TAG + 3” are in descending order of the fluorescence intensity when “PCR cycle” is 40 cycles. It is a test result.
  • the following eight types of reverse primers differ in the length of the base sequence forming a double strand from the new probe (Short C + 2).
  • the probe of this example is designed so as to form a double strand within the probe with the base sequence shown in “bold capital letters”.
  • the portion indicated by “underline” is a region where no base corresponding to “C” of the complementary strand exists, and “C” of the complementary strand forms a bulge structure. That is, the probe of the present embodiment is a probe that forms two cytosine bulge structures in the probe.
  • the reverse primer of this example formed a double strand with the probe with the base sequence indicated by “single underline” and indicated by “double underline”. It is designed to form a double strand with the template in the base sequence.
  • PCR using the above 8 types of reverse primer, forward primer (M13M3), probe (Short C + 2), pUC18 as a template, and 2,7-diamino-1,8-naphthyridine (DANP) as a bulge structure binding molecule Reaction was performed.
  • the reaction solution includes a forward primer having a concentration of 0.5 ⁇ M, a reverse primer having a concentration of 0.5 ⁇ M, a probe having a concentration of 0.5 ⁇ M, a bulge structure-binding molecule having a concentration of 5 ⁇ M, and 100 pg / ⁇ L.
  • the reaction solution containing the template (total 40 ⁇ L) was used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • Reverse primer M13RV-TAG + 1
  • forward primer M13M3
  • probe HP-3-C + 2
  • pUC18 as template
  • DANP 2,7-diamino-1,8-naphthyridine
  • the reaction solution includes a forward primer having a concentration of 0.5 ⁇ M, a reverse primer having a concentration of 0.5 ⁇ M, a probe having a concentration of 0.5 ⁇ M, a bulge structure-binding molecule having a concentration of 5 ⁇ M, and 1.8 ⁇ M, Reaction solutions (total 40 ⁇ L) containing 0.18 ⁇ M, 18 pM, 1.8 pM, 0.18 pM, 18 fM or 1.8 fM template were used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • FIG. 15 shows the measurement result of the fluorescence intensity in each PCR cycle
  • FIG. 16 plots the template concentration against the number of PCR cycles based on the test result at the fluorescence intensity 2000 (AU) in FIG. Data is shown.
  • the data obtained by plotting the concentration of the template against the number of PCR cycles shows a substantially straight line, which indicates that the PCR method of the present embodiment can be suitably used as quantitative PCR.
  • Reverse primer M13RV-TAG, M13RV-TAG + 1, M13RV-TAG + 2 or M13RV-TAG + 3
  • forward primer M13M3
  • probe HP-3-C + 2
  • template pUC18 template pUC18
  • bulge structure binding molecule 2 PCR reaction was performed using 7-diamino-1,8-naphthyridine (DANP).
  • Taq polymerase (manufactured by QIAGEN), which is a PolI type PCR enzyme, or KOD-FX polymerase (manufactured by TOYOBO), which is an ⁇ type PCR enzyme, was used.
  • the PolI-type PCR enzyme Taq polymerase is an enzyme derived from Bacteria, does not have 3 ′ ⁇ 5 ′ exonuclease activity, and has 5 ′ ⁇ 3 ′ exonuclease activity and TdT activity. Is an enzyme.
  • KOD-FX polymerase which is an ⁇ -type PCR enzyme, is an enzyme derived from Archea, has 3 ′ ⁇ 5 ′ exonuclease activity, and has 5 ′ ⁇ 3 ′ exonuclease activity and TdT activity. It is not an enzyme.
  • the reaction solution includes a forward primer having a concentration of 0.5 ⁇ M, a reverse primer having a concentration of 0.5 ⁇ M, a probe having a concentration of 0.5 ⁇ M, a bulge structure-binding molecule having a concentration of 5 ⁇ M, and 100 pg / ⁇ L.
  • the reaction solution containing the template (total 40 ⁇ L) was used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • FIG. 17 shows the test results of Taq polymerase
  • FIG. 18 shows the test results of KOD-FX polymerase.
  • test results shown in FIG. 17 indicate that “M13RV-TAG”, “M13RV-TAG + 1”, “M13RV-TAG + 2”, and “M13RV-TAG + 3” are in descending order of the fluorescence intensity when “PCR cycle” is 35 cycles. It is a test result.
  • test results shown in FIG. 18 show that “M13RV-TAG + 2”, “M13RV-TAG + 3”, “M13RV-TAG + 1”, and “M13RV-TAG” are in descending order of the fluorescence intensity when “PCR cycle” is 35 cycles. It is a test result.
  • Test using forward primer and reverse primer that form double strand with probe> Perform PCR reaction using two types of combinations of reverse primer, forward primer, and probe, detect each PCR reaction product by electrophoresis, and how the fluorescence intensity increases as each PCR reaction product increases Tested to see if it changed.
  • DANP 2,7-diamino-1,8-naphthyridine
  • the probe of this example is designed to form a double strand within the probe with the base sequence indicated by “bold capital letters”.
  • the portion indicated by “underline” is a region where no base corresponding to “C” of the complementary strand exists, and “C” of the complementary strand forms a bulge structure. That is, the probe of the present embodiment is a probe that forms two cytosine bulge structures in the probe.
  • each of the reverse primer and the forward primer of this example forms a double strand with the probe at the base sequence indicated by “single underline”, and “double underline”. It is designed to form a double strand with the template with the indicated base sequence.
  • reaction solution in the case of (Combination 3), the above-mentioned forward primer at a concentration of 0.5 ⁇ M, reverse primer at a concentration of 0.5 ⁇ M, a probe at a concentration of 1 ⁇ M, a bulge structure-binding molecule at a concentration of 5 ⁇ M , And a reaction solution (total 40 ⁇ L) containing 100 pg / ⁇ L template.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 40 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • test results are shown in FIG.
  • the test results shown in FIG. 20 indicate that “PCR cycle” is in the order of strong fluorescence intensity at the 40th cycle, “when a probe of 1 ⁇ M concentration is used in combination 3”, “0 in combination 4”.
  • the test results are “when a probe with a concentration of 5 ⁇ M is used” and “when a probe with a concentration of 0.5 ⁇ M is used in combination 3”.
  • the PCR can be compared with the structure in which the probe can bind only to the forward primer. It was revealed that the fluorescence intensity (in other words, background) before the reaction was greatly reduced.
  • the fluorescence intensity before the PCR reaction in other words, background
  • the amount of change in fluorescence intensity in other words, the difference in fluorescence intensity before and after the PCR reaction
  • the higher the probe amount the higher the PCR detection sensitivity.
  • pUC18 allele “G”, allele “T”, or a mixture of allele “G” and allele “T”
  • DANP 2,7-diamino-1,8-naphthyridine
  • the probe of this example is designed to form a double strand in the probe with the base sequence indicated by “bold capital letters”.
  • the portion indicated by “underline” is a region where no base corresponding to “C” of the complementary strand exists, and “C” of the complementary strand forms a bulge structure. That is, the probe of the present embodiment is a probe that forms two cytosine bulge structures in the probe.
  • each of the reverse primer and the forward primer of this example forms a double strand with the probe in the base sequence indicated by “one underline”, and “double underline”. It is designed to form a double strand with the template with the indicated base sequence.
  • the reverse primer of this example is designed to form a template and a double strand with the base sequence indicated by “double underline”.
  • the competitor primer CP-A
  • the reverse primer has one nucleotide that can form a double strand with the template compared to the reverse primer (Short TAG + 1) (competitor primer (CP-A)). (See “A” at the 5 ′ end.)
  • a forward primer having a concentration of 0.5 ⁇ M As a reaction solution of the above (Combination 6) and (Combination 8), a forward primer having a concentration of 0.5 ⁇ M, a reverse primer having a concentration of 0.5 ⁇ M, a probe having a concentration of 0.5 ⁇ M, and a bulge structure binding having a concentration of 5 ⁇ M.
  • a reaction solution (total 40 ⁇ L) containing molecules and 100 pg / ⁇ L template was used.
  • reaction solution of (Combination 5) and (Combination 7) the above-described forward primer having a concentration of 0.5 ⁇ M, reverse primer having a concentration of 0.5 ⁇ M, a probe having a concentration of 0.5 ⁇ M, and a concentration of 0.5 ⁇ M.
  • the reaction solution (total 40 ⁇ L) containing 5 ⁇ M bulge structure binding molecules and 100 pg / ⁇ L template was used.
  • PCR reaction program As a PCR reaction program, first, a denaturation reaction at 95 ° C. for 2 minutes was performed, followed by a denaturation reaction at 95 ° C. for 10 seconds, an annealing reaction at 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. A PCR reaction program was used in which 35 reaction cycles consisting of extension reactions were performed. In addition, the concrete PCR reaction was performed using TP600 PCR Thermal Cycler (TAKARA).
  • TAKARA TP600 PCR Thermal Cycler
  • FIG. 22 shows the result of fluorescence analysis when the template of the allele “G” is used
  • FIG. 23 shows the result of fluorescence analysis when the template of the allele is “T”.
  • FIG. 24 shows the results of fluorescence analysis when a mixture of a template having an allele “G” and a template having an allele “T” was used.
  • FIG. 25 shows the result of electrophoresis analysis.
  • the band indicated by “Band D” corresponds to the PCR reaction product amplified by the reverse primer (Short TAG + 1) or reverse primer (Short TAG1-T) and the forward primer (M13M3).
  • the band indicated by “Band E” corresponds to the PCR reaction product amplified by the competitor primer (CP-A) or the competitor primer (CP-C) and the forward primer (M13M3).
  • the present invention can be used for various PCRs (for example, real-time PCR, allele-specific PCR, quantitative PCR, and RT (reverse transcription) -PCR).
  • PCRs for example, real-time PCR, allele-specific PCR, quantitative PCR, and RT (reverse transcription) -PCR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 より検出精度が高く、かつ、簡便なPCR法およびPCRキットを提供する。本発明のPCR法では、第1プライマーおよび第2プライマーを含むプライマーセットと、プライマーセットによって増幅される鋳型と、第1プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、第1プライマーとの二本鎖から解離することによってバルジ構造を形成する、第1プローブと、バルジ構造に結合することによってシグナルを発するバルジ構造結合分子と、を含む試料をPCR反応にかける。

Description

PCR法およびPCRキット
 本発明は、PCR法およびPCRキットに関する。
 遺伝子の検出に広く利用されているリアルタイムPCR(real time polymerase chainreaction)法として、TaqMan(登録商標)法およびSYBR(登録商標)Green法を挙げることができる。
 TaqMan(登録商標)法は、非常に感度の高い方法ではあるが、検出に用いるプローブの設計および合成が煩雑であるとともに、検出コストが高いという問題点を有している。
 一方、SYBR(登録商標)Green法は、二本鎖DNAに結合すると蛍光強度が増大する色素を利用する簡便な方法であるが、非特異的に増幅された二本鎖DNAをも“ポジティブ”として検出してしまうことから、検出エラーが大きいという問題点を有している。更に、SYBR(登録商標)Green法は、検出精度の高いプライマーの設計が難しいという問題点を有している。
 上述したTaqMan(登録商標)法およびSYBR(登録商標)Green法の問題点を解決するべく、現在までに、新たなPCR法が開発されてきた(例えば、特許文献1参照)。
 図26を用いて、特許文献1に記載の技術の基本概念を説明する。
 特許文献1に記載の技術は、分子内で二本鎖を形成し得るとともに、当該二本鎖中にシトシンバルジ構造を形成し得るプライマーであって、当該バルジ構造に2,7-ジアミノ-1,8-ナフチリジン(DANP)が結合した時に蛍光を発するプライマーを用いている。なお、シトシンバルジ構造は、対になる相補的なヌクレオチドが存在しないシトシンによって形成される特徴的な構造である。
 PCR反応が開始される前の時点では、上記プライマー中のシトシンバルジ構造にはDANPが結合しており、強い蛍光が発生している(図26の(d)参照)。
 PCR反応が開始されると、まず、上記プライマーが鋳型に結合するとともに、当該プライマーを起点として鋳型の相補鎖が伸長される(図26の(a)参照)。
 次いで、上記相補鎖と上記鋳型とによって形成されている二本鎖は、高温処理によって、相補鎖からなる一本鎖(以下、一本鎖Aと呼ぶ)と、鋳型からなる一本鎖とに分離される。
 次いで、一本鎖Aに対して別のプライマー(図26には、別のプライマーを図示せず)が結合し、当該別のプライマーを起点として一本鎖Aの相補鎖が伸長される(図26の(b)参照)。
 一本鎖Aの相補鎖が伸長される過程において、当該相補鎖中に、上記シトシンに対応する相補的なヌクレオチドが形成される。そして、その結果、シトシンバルジ構造が失われることになる(図26の(c)参照)。
 特許文献1に記載の技術では、PCR反応が進むにつれてシトシンバルジ構造の数が減少し、その結果、蛍光強度が減少することになる(図26の(d)参照)。そして、特許文献1に記載の技術では、蛍光強度の低下を観察することによって、PCR反応の検出を行っている。
WO2008/026582 A1(2008年3月6日公開)
 しかしながら、上述した従来技術は、十分な検出精度を有する簡便な技術ではあるが、更に高い検出精度と簡便性とを求める要求があった。
 例えば、上述した従来技術は、バルジ構造を形成するために長いプライマーを用いる必要があり、その結果、当該プライマーが非特異的に鋳型に結合して非特異的な遺伝子の増幅をもたらす可能性が否定できない。
 また、上述した従来技術は、蛍光強度の減少量を測定することによってPCR反応を検出する方法であるため、ダイナミックレンジが小さく、検出精度が低くなる傾向があった。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、より検出精度が高く、かつ、簡便なPCR法およびPCRキットを提供することにある。
 本発明のPCR法は、上記課題を解決するために、第1プライマーおよび第2プライマーを含むプライマーセットと、上記プライマーセットによって増幅される鋳型と、上記第1プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、上記第1プライマーとの二本鎖から解離することによってバルジ構造を形成する、第1プローブと、上記バルジ構造に結合することによってシグナルを発するバルジ構造結合分子と、を含む試料をPCR反応にかける工程を含むことを特徴としている。
 本発明のPCR法では、上記第1プローブは、上記バルジ構造を形成するヌクレオチド以外のヌクレオチドで互いに二本鎖を形成する第1ポリヌクレオチド配列および第2ポリヌクレオチド配列と、上記第1プライマーの一部分と二本鎖を形成する第3ポリヌクレオチド配列と、を有し、上記第3ポリヌクレオチド配列は、上記第1ポリヌクレオチド配列または上記第2ポリヌクレオチド配列の少なくとも一部分を含んでいることが好ましい。
 本発明のPCR法では、上記第3ポリヌクレオチド配列と上記第1プライマーとによって形成される二本鎖の融解温度をTm、上記第1ポリヌクレオチド配列と上記第2ポリヌクレオチド配列とによって形成される二本鎖の融解温度をTm、としたときに、Tm>Tmであることが好ましい。
 本発明のPCR法では、上記第1プローブは、複数のバルジ構造を形成するものであることが好ましい。
 本発明のPCR法では、上記試料は、更に、上記第2プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、上記第2プライマーとの二本鎖から解離することによってバルジ構造を形成する、第2プローブを含むことが好ましい。
 本発明のPCR法では、上記第2プローブは、上記バルジ構造を形成するヌクレオチド以外のヌクレオチドで互いに二本鎖を形成する第4ポリヌクレオチド配列および第5ポリヌクレオチド配列と、上記第2プライマーの一部分と二本鎖を形成する第6ポリヌクレオチド配列と、を有し、上記第6ポリヌクレオチド配列は、上記第4ポリヌクレオチド配列または上記第5ポリヌクレオチド配列の少なくとも一部分を含んでいることが好ましい。
 本発明のPCR法では、上記第6ポリヌクレオチド配列と上記第2プライマーとによって形成される二本鎖の融解温度をTm、上記第4ポリヌクレオチド配列と上記第5ポリヌクレオチド配列とによって形成される二本鎖の融解温度をTm、としたときに、Tm>Tmであることが好ましい。
 本発明のPCR法では、上記第2プローブは、複数のバルジ構造を形成するものであることが好ましい。
 本発明のPCR法では、上記バルジ構造は、シトシンバルジ構造、または、チミンバルジ構造であることが好ましい。
 本発明のPCR法では、バルジ構造結合分子は、ナフチリジン環を有する化合物であることが好ましい。
 本発明のPCR法では、上記試料は、更に、コンペティタープライマーを含み、上記コンペティタープライマーは、上記鋳型と二本鎖を形成する上記第1プライマー内の領域にて、少なくとも1つのヌクレオチドが別のヌクレオチドに置換されている第7ポリヌクレオチド配列を有するものであることが好ましい。
 本発明のPCRキットは、上記課題を解決するために、第1プライマーおよび第2プライマーを含むプライマーセットによって鋳型を増幅するためのPCRキットであって、上記第1プライマーと二本鎖を形成することによってバルジ構造が失われ、上記第1プライマーとの二本鎖から解離することによってバルジ構造を形成する、第1プローブと、上記バルジ構造に結合することによってシグナルを発するバルジ構造結合分子と、を備えていることを特徴としている。
 本発明のPCRキットは、更に、上記第2プライマーと二本鎖を形成することによってバルジ構造が失われ、上記第2プライマーとの二本鎖から解離することによってバルジ構造を形成する、第2プローブを備えていることが好ましい。
 本発明のPCRキットは、更に、上記鋳型と二本鎖を形成する上記第1プライマー内の領域にて、少なくとも1つのヌクレオチドが別のヌクレオチドに置換されている第7ポリヌクレオチド配列を有しているコンペティタープライマーを備えていることが好ましい。
 本発明は、増大するシグナル(例えば、蛍光)の強度を検出する技術であるので、減少するシグナルの強度を検出する技術と比較して、PCR反応の進捗状況(例えば、PCR反応産物の量)を、簡単かつ正確に把握することができるという効果を奏する。
 具体的に、本発明は、PCR産物を電気泳動する必要がないので、PCR反応の進捗状況を簡単に把握することができる。
 また、減少するシグナルの強度を検出する技術の場合、既に存在する強いシグナル(換言すれば、高いバックグラウンド)をベースとして、減少するシグナルの強度を測定する。それ故に、当該技術では、減少するシグナルの強度を正確に測定することが難しく、PCR反応の進捗状況を正確に把握することが難しい。特に、当該技術では、減少するシグナルの強度が小さい場合には、PCR反応の進捗状況を正確に把握することが難しくなる。
 一方、本発明の場合、存在しないシグナル(換言すれば、低いバックグラウンド)をベースとして、増大するシグナルの強度を測定する。それ故に、本発明では、増大するシグナルの強度を正確に測定することが容易であり、PCR反応の進捗状況を正確に把握することができる。本発明では、増大するシグナルの強度が小さい場合であっても、PCR反応の進捗状況を正確に把握することができる。
 更に、本発明は、任意の遺伝子に対して、汎用性高く用いることができるという効果を奏する。
 具体的に、本発明では、プローブに結合してプローブのバルジ構造を変化させ得るタグを、任意の遺伝子を検出するための任意のプライマーに連結すればよい。それ故に、本発明は、あらゆる遺伝子を対象としたPCRに用いることができる。
 本発明は、化学修飾(例えば、蛍光修飾)されたプローブおよびプライマーを用いる必要がないので、これらの合成が容易であるとともに、これらが安価であるという効果を奏する。
 本発明は、特別な装置を必要とせず、従来の装置(例えば、PCR装置、蛍光検出装置)を用いて実施することができるという効果を奏する。
 また、プローブの3’末端を非天然型DNAでキャップすることにより、プローブが目的としない配列に結合したとしても、当該プローブによってDNAが増幅されることがない。つまり、プローブがプライマーとして機能することを防ぐことができる。例えば、プローブの3’末端をジデオキシリボースにすれば、伸長反応に必要な「-OH」がないので、プローブがプライマーとして機能することを防ぐことができる。
本発明の基本原理を示す図である。 本発明の実施例に用いたプローブおよびプライマーの構造を示す図である。 本発明の実施例における、蛍光解析の結果を示すグラフである。 本発明の実施例における、電気泳動解析の結果を示す写真である。 本発明の実施例における、蛍光解析の結果を示すグラフである。 本発明の実施例における、電気泳動解析の結果を示す写真である。 本発明の別の実施例に用いたプローブおよびプライマーの構造を示す図である。 本発明の別の実施例における、電気泳動解析の結果を示す写真である。 本発明の別の実施例における、蛍光解析の結果を示すグラフである。 本発明の別の実施例に用いたプローブおよびプライマーの構造を示す図である。 本発明の別の実施例における、蛍光解析の結果を示すグラフである。 本発明の別の実施例に用いたプローブおよびプライマーの構造を示す図である。 本発明の別の実施例における、蛍光解析の結果を示すグラフである。 本発明の別の実施例における、蛍光解析の結果を示すグラフである。 本発明の別の実施例において、鋳型の濃度を変化させたときの蛍光解析の結果を示すグラフである。 本発明の別の実施例において、PCRサイクル数に対して鋳型の濃度をプロットしたグラフである。 本発明の別の実施例における、Taq polymeraseを用いた場合の蛍光解析の結果を示すグラフである。 本発明の別の実施例における、KOD-FX polymeraseを用いた場合の蛍光解析の結果を示すグラフである。 本発明の別の実施例に用いたプローブおよびプライマーの構造を示す図である。 本発明の別の実施例における、蛍光解析の結果を示すグラフである。 本発明の別の実施例に用いたプローブ、プライマーおよびコンペティタープライマーの構造を示す図である。 本発明の別の実施例における蛍光解析の結果を示すグラフであって、アレルが「G」の鋳型を用いた場合の蛍光解析の結果を示すグラフである。 本発明の別の実施例における蛍光解析の結果を示すグラフであって、アレルが「T」の鋳型を用いた場合の蛍光解析の結果を示すグラフである。 本発明の別の実施例における蛍光解析の結果を示すグラフであって、アレルが「G」の鋳型とアレルが「T」の鋳型との混合物を用いた場合の蛍光解析の結果を示すグラフである。 本発明の別の実施例における、電気泳動解析の結果を示す写真である。 従来技術の基本原理を示す図である。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。
 また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意味する。
 〔1.本発明の基本原理〕
 まず、図1を用いて、本発明の基本原理を説明する。
 本発明では、分子内にバルジ構造を形成し得るプローブであって、当該バルジ構造にバルジ構造結合分子が結合した時にシグナル(例えば、蛍光)を発するプローブを用いる(図1のDNA probe参照)。
 本明細書において「バルジ構造」とは、ポリヌクレオチド(例えば、DNA)の二本鎖領域において、一方の鎖のポリヌクレオチドに余剰のヌクレオチドが存在するために生じるふくらみ(バルジ)を意図する。
 例えば、「TCT」と「AA」とが向かい合って二本鎖を形成する場合、「TCT」の中の2つの「T」と「AA」の中の2つの「A」とがそれぞれ対合して二本鎖を形成する。このとき、2つの「T」の間に存在する「C」には対合するヌクレオチドが無いため、当該「C」が膨らむこととなる。そして、この膨らんだ構造が、バルジ構造である。
 なお、上述した例のように、余剰の塩基がC(シトシン)であることにより形成されるバルジ構造を、本明細書において「シトシンバルジ構造」と表記する。A(アデニン)、G(グアニン)、T(チミン)についても同様に、「アデニンバルジ構造」、「グアニンバルジ構造」、「チミンバルジ構造」と表記する。
 PCR反応が開始される時点では、上記プローブとプライマー(図1のDNA-TAG参照)とが結合することによってプローブの立体構造が変化し、その結果、プローブ中のバルジ構造が失われている。それ故に、PCR反応が開始される時点では、バルジ構造結合分子に由来するシグナルは発生していない(図1の(d)参照)。
 PCR反応が開始されると、まず、上記プローブとプライマーとの複合体が鋳型に結合するとともに、当該プライマーを起点として鋳型の相補鎖が伸長される(図1の(a)参照)。
 次いで、上記相補鎖と上記鋳型とによって形成されている二本鎖は、高温処理によって、少なくとも相補鎖を含む鎖(以下、鎖Bと呼ぶ)と、鋳型からなる一本鎖とに分離される。
 次いで、鎖Bに対して別のプライマー(図1には、別のプライマーを図示せず)が結合し、当該別のプライマーを起点として鎖Bの相補鎖が伸長される(図1の(b)参照)。
 鎖Bの相補鎖が伸長される過程において、当該相補鎖中に、プローブ内のプライマー結合領域に対応する相補的なヌクレオチドが形成される。そして、その結果、結合する相手を失ったプローブは、PCR反応溶液中に解離することになる(図1の(c)参照)。
 PCR反応溶液中に解離したプローブは、プローブ分子内の水素結合などを介した相互作用によって、当該プローブ内にバルジ構造を形成し、更に、当該バルジ構造にバルジ構造結合分子が結合する。そして、その結果、シグナル(例えば、蛍光)が発生する(図1の(c)参照)。
 本発明では、PCR反応が進むにつれて解離したプローブの数(換言すれば、バルジ構造の数)が増加し、その結果、シグナル強度が増加することになる(図1の(d)参照)。そして、本願発明では、シグナル強度の増加を観察することによって、PCR反応の検出を行う。なお、本発明では、ダイナミックレンジが大きいので、検出精度の高いPCR法を実現することができる。
 〔2.PCR法〕
 本実施の形態のPCR法は、第1プライマーおよび第2プライマーを含むプライマーセットと、当該プライマーセットによって増幅される鋳型と、第1プライマーとの結合状態に応じて構造(具体的には、バルジ構造)が変化する第1プローブと、バルジ構造との結合状態に応じて発するシグナルを変化させるバルジ構造結合分子と、を含む試料をPCR反応にかける工程を含んでいる。
 以下に、各構成について説明する。
  〔2-1.第1プローブ〕
 第1プローブは、第1プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、第1プライマーとの二本鎖から解離することによってバルジ構造を形成するもの(具体的には、ポリヌクレオチド(例えば、DNA))である。
 つまり、第1プローブは、単独で存在している時には第1プローブ内にバルジ構造を形成し、第1プライマーと二本鎖を形成することによって自身の立体構造が変化して、その結果、バルジ構造が失われるものである。
 上記第1プローブは、上述した性質を有するものであればよく、その具体的な塩基配列は限定されない。
 更に具体的に、第1プローブは、バルジ構造を形成するヌクレオチド以外のヌクレオチドで互いに二本鎖を形成する第1ポリヌクレオチド配列および第2ポリヌクレオチド配列を有するものであってもよい。
 この場合、第1ポリヌクレオチド配列および第2ポリヌクレオチド配列は、バルジ構造を形成するヌクレオチド以外のヌクレオチドが、完全に相補的であってもよいし、一部が相補的であってもよい。
 なお、本明細書において「相補的」とは、アデニン(A)とチミン(T)とが特異的な水素結合を介して向かい合い、グアニン(G)とシトシン(C)と特異的な水素結合を介して向かい合う関係を意図する。
 より具体的に、第1ポリヌクレオチド配列および第2ポリヌクレオチド配列は、バルジ構造を形成するヌクレオチド以外のヌクレオチドの、50%以上、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは98%以上、最も好ましくは100%が相補的であり得る。
 上記構成であれば、第1ポリヌクレオチド配列と、第2ポリヌクレオチド配列とが、特異的な水素結合を介して、第1プローブ内で二本鎖を形成することになる。そして、対になるヌクレオチドが存在しない余分なヌクレオチドが、バルジ構造を形成することになる。
 第1プローブは、第1プライマーの一部分と二本鎖を形成する第3ポリヌクレオチド配列を有していることが好ましい。
 この場合、第1プライマーの一部分および第3ポリヌクレオチド配列は、完全に相補的であってもよいし、一部が相補的であってもよい。
 より具体的に、第1プライマーの一部分および第3ポリヌクレオチド配列は、二本鎖を形成するヌクレオチドの、50%以上、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは98%以上、最も好ましくは100%が相補的であり得る。
 上記構成であれば、第1プローブは、第3ポリヌクレオチド配列を介して、第1プライマーの一部分と二本鎖を形成することができる。そして、第3ポリヌクレオチド配列を介して第1プライマーと二本鎖を形成している時には、第1プローブの立体構造が変化して、第1プライマー内のバルジ構造が失われることになる。なお、第1プローブと二本鎖を形成しない第1プライマーの部分は、第1プライマーが鋳型と二本鎖を形成する時に、機能することになる。
 第3ポリヌクレオチド配列は、第1ポリヌクレオチド配列または第2ポリヌクレオチド配列の少なくとも一部分を含むものであることが好ましい。また、第3ポリヌクレオチドは、第1ポリヌクレオチド配列または第2ポリヌクレオチド配列の全体を含むものであってもよい。
 上記構成であれば、第1プライマーと第3ポリヌクレオチドとが結合して二本鎖を形成すると、既に形成された結合によって、第1ポリヌクレオチド配列と第2ポリヌクレオチド配列とが結合して二本鎖を形成することを効果的に阻害することができる。その結果、上記構成であれば、シグナルのバックグラウンドを下げることによって、PCRの検出精度をより高めることができる。
 上記第1ポリヌクレオチド配列、第2ポリヌクレオチド配列、および、第3ポリヌクレオチド配列の具体的な塩基配列は特に限定されず、適宜、所望の塩基配列に設計することができる。
 例えば、第3ポリヌクレオチド配列と第1プライマーとによって形成される二本鎖の融解温度をTm、第1ポリヌクレオチド配列と第2ポリヌクレオチド配列とによって形成される二本鎖の融解温度をTm、としたときに、「Tm>Tm」の関係式が成り立つように、上記第1ポリヌクレオチド配列、第2ポリヌクレオチド配列、および、第3ポリヌクレオチド配列の塩基配列を設計することが好ましい。なお、融解温度は、周知の計算プログラム、例えば、OligoCalcを用いて計算することができる(Inc50mM Na、「http://www.basic.northwestern.edu/biotools/oligocalc.html」)。
 上記構成であれば、第3ポリヌクレオチド配列と第1プライマーとによって形成される二本鎖の方が、第1ポリヌクレオチド配列と第2ポリヌクレオチド配列とによって形成される二本鎖よりも、安定になる。つまり、第1ポリヌクレオチド配列と第2ポリヌクレオチド配列とによって形成される二本鎖よりも、第3ポリヌクレオチド配列と第1プライマーとによって形成される二本鎖の方が優先的に形成され、シグナルのノイズが低下する。その結果、後述する実施例でも実証しているように、上記構成であれば、PCRの検出精度をより高めることができる。
 更に具体的に、上記第1ポリヌクレオチド配列、第2ポリヌクレオチド配列、および、第3ポリヌクレオチド配列の塩基配列は、「Tm>Tm>シグナル測定温度」の関係式が成り立つように設計されていることが好ましい。なお、シグナル測定温度(例えば、蛍光測定温度)は特に限定されず、例えば、25℃または30℃であり得る。
 上記構成であれば、シグナル測定時に第1プローブ内で二本鎖が形成されること(換言すれば、蛍光の発生)を阻害することがないので、PCRの検出精度をより高めることができる。
 また、上記第1ポリヌクレオチド配列、および、第2ポリヌクレオチド配列の塩基配列は、第1プローブ内に1つまたは複数(例えば、2~4個)のバルジ構造を形成するように設計され得る。シグナルの強度を上げてPCRの検出精度を高めるという観点からは、複数のバルジ構造を形成するように設計されることが、より好ましい。
 第1プローブ内に形成されるバルジ構造が複数である場合、隣り合うバルジ構造の間には、好ましくは2~5個、更に好ましくは3~4個の塩基が存在することが好ましい。バルジ構造の間の距離が短すぎると、バルジ構造結合分子がバルジ構造の各々に良好に結合できず、シグナル強度が低下する傾向を示す。一方、バルジ構造の間の距離が長すぎると、第1プローブの全長が長くなり、第1プローブの作製コストが高くなる傾向を示す。
 第1プローブ内に形成されるバルジ構造としては、特に限定されないが、例えば、シトシンバルジ構造、チミンバルジ構造、アデニンバルジ構造、および、グアニンバルジ構造を挙げることができる。
 シグナル強度を増してPCRの検出精度を高めるという観点からは、バルジ構造は、シトシンバルジ構造、チミンバルジ構造、または、アデニンバルジ構造であることが好ましく、シトシンバルジ構造、または、チミンバルジ構造であることが更に好ましく、シトシンバルジ構造であることが最も好ましい。
 バルジ構造に隣接するヌクレオチドの種類は特に限定されないが、アデニン、シトシン、または、チミンが好ましい。バルジ構造結合分子が蛍光を発する分子である場合、バルジ構造にグアニンが隣接すると、蛍光の強度が低下する傾向を示し、バルジ構造にアデニン、シトシンまたはチミンが隣接すると、蛍光の強度が上昇する傾向を示す。
 上記第1ポリヌクレオチド配列、および、第2ポリヌクレオチド配列の長さ(換言すれば、ポリヌクレオチドを形成するヌクレオチドの数)は特に限定されないが、例えば、7個~17個が好ましく、8個~17個がより好ましく、8個~12個がより好ましい。例えば、上記第1ポリヌクレオチド配列、および、第2ポリヌクレオチド配列が、17個のヌクレオチドによって形成されていれば、バルジ構造を3個以上形成することができる。
 上記構成であれば、安定したバルジ構造を形成し得るプローブを実現することができるとともに、安価なプローブを実現することができる。
 上記第3ポリヌクレオチド配列の長さ(換言すれば、ポリヌクレオチドを形成するヌクレオチドの数)は特に限定されないが、例えば、17個~25個が好ましく、18個~22個がより好ましい。
 上記構成であれば、プローブがバルジ構造を形成することを効果的に阻害することができるので、PCRの検出精度をより高めることができる。
 第1プローブは、第1ポリヌクレオチド配列と第2ポリヌクレオチド配列との間に、1個または複数(例えば、3~7個、好ましくは4個)のヌクレオチドが存在するものであってもよい。ヌクレオチドの種類は特に限定されないが、チミンであることが好ましい。
 上記構成であれば、第1プローブの構造を所望の構造(例えば、一本鎖、または、ヘアピン構造)へ効率よく変化させることができる。
 第1プローブの3’末端は、非天然型DNAでキャップされていることが好ましい。上記構成であれば、第1プローブが目的としない配列に結合したとしても、当該第1プローブによってDNAが増幅されることがない。つまり、第1プローブがプライマーとして機能することがないので、第1プローブによる非特異的なDNA増幅を防ぐことができる。
 例えば、第1プローブの3’末端にジデオキシリボースを配置すれば、ジデオキシリボースには、伸長反応に必要な「-OH」がないので、第1プローブがプライマーとして機能することがない。
 〔2-2.プライマーセットおよび鋳型〕
 プライマーセットには第1プライマー(例えば、リバースプライマー)および第2プライマー(例えば、フォワードプライマー)が含まれており、当該プライマーセットによって、所望の鋳型が増幅される。
 鋳型としては特に限定されず、検出対象に応じて適宜選択され得る。例えば、血液、リンパ液、鼻水、喀痰、尿、糞便、腹水等の体液、皮膚、粘膜、各種臓器、骨等の組織、鼻腔、気管支、皮膚、各種臓器、骨等を洗浄した後の洗浄液、植物、微生物、などに由来するポリヌクレオチド(例えば、DNAまたはRNA)を鋳型として用いることができる。勿論、本発明は、これらに限定されない。
 第1プライマーは、第1プローブ内の第3ポリヌクレオチド配列と二本鎖を形成する領域と、鋳型と二本鎖を形成する領域と、を備えている。
 第1プローブ内の第3ポリヌクレオチド配列と二本鎖を形成する、第1プライマー内の領域は、上述した第3ポリヌクレオチド配列に略相補的または相補的なポリヌクレオチドとして設計され得る。なお、第3ポリヌクレオチド配列の具体的な構成については既に詳細に説明したので、当該説明から、第1プローブ内の第3ポリヌクレオチド配列と二本鎖を形成する、第1プライマー内の領域の具体的な構成も理解され得るであろう。
 鋳型と二本鎖を形成する、第1プライマー内の領域は、検出対象に応じて、適宜設計され得る。つまり、鋳型と二本鎖を形成する、第1プライマー内の領域は、鋳型に対して略相補的または相補的なポリヌクレオチドとして設計され得、具体的な構成は限定されない。
 第2プライマーは、第1プライマーを起点として伸長されたポリヌクレオチドと二本鎖を形成し得るプライマーであればよく、その具体的な構成は限定されない。第1プライマーを起点として伸長されたポリヌクレオチドの相補鎖が、当該第2プライマーを起点として伸長されることになる。
 第2プライマーは、第1プライマーと対になって所望の鋳型を増幅し得るものであればよく、具体的な構成は限定されないが、上述した第1プライマーと同様の構成を備えていることがこのましい。そして、この場合、PCR反応の試料は、第2プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、第2プライマーとの二本鎖から解離することによってバルジ構造を形成する、第2プローブを含むことが好ましい。
 上記構成によれば、第1プローブのみならず、第2プローブによってもシグナルを発生させることができるので、PCRの検出精度をより高めることができる。
 更に具体的に、第2プローブは、バルジ構造を形成するヌクレオチド以外のヌクレオチドで互いに二本鎖を形成する第4ポリヌクレオチド配列および第5ポリヌクレオチド配列と、第2プライマーの一部分と二本鎖を形成する第6ポリヌクレオチド配列と、を有していることが好ましい。
 この場合、第6ポリヌクレオチド配列は、第4ポリヌクレオチド配列または第5ポリヌクレオチド配列の少なくとも一部分を含んでいることが好ましい。
 更に、第6ポリヌクレオチド配列と第2プライマーとによって形成される二本鎖の融解温度をTm、第4ポリヌクレオチド配列と第5ポリヌクレオチド配列とによって形成される二本鎖の融解温度をTm、としたときに、「Tm>Tm」の関係式が成り立つことが好ましく、「Tm>Tm>シグナル測定温度」の関係式が成り立つことが更に好ましい。なお、シグナル測定温度は特に限定されず、例えば、25℃または30℃であり得る。
 第2プライマー、第2プローブ、第4ポリヌクレオチド配列、第5ポリヌクレオチド配列、および、第6ポリヌクレオチド配列の各々は、第1プライマー、第1プローブ、第1ポリヌクレオチド配列、第2ポリヌクレオチド配列、および、第3ポリヌクレオチド配列の各々と同様に構成することができる。
 第1プライマー、第1プローブ、第1ポリヌクレオチド配列、第2ポリヌクレオチド配列、および、第3ポリヌクレオチド配列の各々の具体的な構成、換言すれば、第2プライマー、第2プローブ、第4ポリヌクレオチド配列、第5ポリヌクレオチド配列、および、第6ポリヌクレオチド配列の各々の具体的な構成は、既に〔2-1.第1プローブ〕の欄にて説明したので、ここではその説明を省略する。
 なお、第2プライマー、第2プローブ、第4ポリヌクレオチド配列、第5ポリヌクレオチド配列、および、第6ポリヌクレオチド配列の各々の具体的な構成は、〔2-1.第1プローブ〕の欄にて説明した構成であればよく、第1プライマーと第2プライマーとが、第1プローブと第2プローブとが、第1ポリヌクレオチド配列と第4ポリヌクレオチド配列とが、第2ポリヌクレオチド配列と第5ポリヌクレオチド配列とが、第3ポリヌクレオチド配列と第6ポリヌクレオチド配列とが、完全に同一の構成であってもよいし、互いに異なる構成であってもよい。
 〔2-3.バルジ構造結合分子〕
 バルジ構造結合分子は、バルジ構造に結合することによってシグナルを発するものであればよく、具体的な構成は限定されない。
 上記バルジ構造結合分子は、例えば、バルジ構造に結合することによって、(i)蛍光を発光する物質、(ii)発光する蛍光の波長がシフトする物質、または、(iii)蛍光が消光する物質、等を用いることが好ましい。これらの蛍光を検出することで、容易にバルジ構造を検出できる。なお、バルジ構造結合分子として、自身ではシグナルを発する能力がない物質を、シグナルを発する能力を有する物質(例えば、蛍光物質)にて標識化したものを用いることも可能である。
 上記バルジ構造結合分子の具体例としては、ナフチリジン環を有する化合物を挙げることができる。
 ナフチリジン環を有する化合物は、バルジ構造(特に好ましくは、シトシンバルジ構造、および、チミンバルジ構造)に結合すると、強い蛍光を示す。当該蛍光を検出することによって、簡便にバルジ構造(換言すれば、PCR反応の進捗状況)を検出することができる。
 更に、ナフチリジン環を有する化合物は、PCR反応に用いるDNAポリメラーゼ等の酵素を阻害しないので、ナフチリジン環を有する化合物を含む試料を、そのままPCR反応に供することができる。
 例えば、一つの反応容器に、PCR反応用の試料を調製し、当該試料に予めナフチリジン環を有する化合物を混合する。PCR反応を開始する前に、事前に試料の蛍光を測定し、当該試料を、そのままPCR反応に供する。PCR反応の進行に伴って経時的に試料の蛍光を測定することで、バルジ構造の検出を行うことができる。
 ナフチリジン環を有する化合物の具体例としては、下記(1)式、つまり、
Figure JPOXMLDOC01-appb-C000001
 (R、Rは、それぞれ独立して、第1級アミン残基、第2級アミン残基、または、第3級アミン残基を示す。)
にて示される、2,7-ジアミノナフチリジン誘導体を挙げることができる。
 上記第1級アミン残基としては、例えば、-NHを挙げることができる。上記第2級アミン残基としては、例えば、-NH(CH)NH、-NH(CHNH、-NH(CH)NH(CH)等を挙げることができる。上記第3級アミン残基としては、例えば、-N(CH)(CHNH等を挙げることができる。
 上記構成の中では、RおよびRの内、少なくとも一方が第2級アミン残基であることが好ましく、RおよびRの両方が第2級アミン残基であることがさらに好ましい。当該構成であれば、第2級アミン残基を備えることによって、バルジ構造結合分子とバルジ構造との結合を、より安定化させることができる。
 2,7-ジアミノナフチリジン誘導体の具体例としては、下記(2)式、つまり、
Figure JPOXMLDOC01-appb-C000002
にて示される、2,7-ジアミノ-1,8-ナフチリジンを挙げることができる。
 2,7-ジアミノ-1,8-ナフチリジンは、バルジ構造に結合すると、発光する蛍光の吸収極大波長がシフトし、当該波長において強い強度の蛍光を発光するため、高感度かつ特異的に、バルジ構造の検出を行うことができる。具体的に、2,7-ジアミノ-1,8-ナフチリジンは、10mMリン酸ナトリウム緩衝液(pH7.0)の条件下において、単独では吸収極大が376nmで検出され、シトシンバルジ構造と結合することにより、396nmにシフトする。
 ナフチリジン環を有する化合物(例えば、2,7-ジアミノナフチリジン誘導体、2,7-ジアミノ-1,8-ナフチリジン)は、従来公知の方法により合成すればよい。例えば、日本国公開特許公報「特開2004-262827号公報」に記載の方法により合成すればよい。
 上記ナフチリジン環を有する化合物の別の具体例としては、下記(3)式、つまり、
Figure JPOXMLDOC01-appb-C000003
 (R、Rは、それぞれ独立して、水素原子またはアミノ基であり、l、m、nは、それぞれ独立して、1~6の自然数を示す)
にて示される化合物を挙げることができる。
 また、上記バルジ構造結合分子の別の具体例としては、下記(4)式、つまり、
Figure JPOXMLDOC01-appb-C000004
 (R、Rは、それぞれ独立して、水素原子またはアミノ基であり、o、pは、それぞれ独立して、1~6の自然数を示す)
にて示される化合物を挙げることができる。
 〔2-4.コンペティタープライマー〕
 本実施の形態のPCR法では、上述した試料が、更に、コンペティタープライマーを含んでいることが好ましい。上記構成によれば、塩基配列が異なる鋳型を感度よく識別することができるので、本実施の形態のPCR法を、SNPの検出などに用いることができる。
 図21(a)を用いて、コンペティタープライマーの機能の概要を説明する。
 本実施の形態のPCR法では、試料中に、第1プライマー(図中の「リバースプライマー」)、第2プライマー(図示せず)、第1プローブ(図中の「プローブ」)、鋳型、および、コンペティタープライマーが含まれ得る。
 図21(a)では、鋳型の一例として、「G」または「T」の一塩基多型を有する鋳型を示す。この場合、例えば、第1プライマーとして、鋳型の一塩基多型の箇所のヌクレオチドと二本鎖を形成するヌクレオチドが「C」であるプライマーを選択し、コンペティタープライマーとして、鋳型の一塩基多型の箇所のヌクレオチドと二本鎖を形成するヌクレオチドが「A」であるプライマーを選択することができる。
 鋳型の一塩基多型の箇所のヌクレオチドが「G」であれば、コンペティタープライマーよりも第1プライマーの方が、優先的に鋳型と二本鎖を形成することができる。その結果、第1プライマーを用いたPCR反応が優先的に生じることになる。そして、二本鎖を形成する相手を失ったプローブは、PCR反応溶液中に解離してバルジ構造を形成し、当該バルジ構造にバルジ構造結合分子が結合して、シグナル(例えば、蛍光)が発生する。
 一方、鋳型の一塩基多型の箇所のヌクレオチドが「T」であれば、第1プライマーよりもコンペティタープライマーの方が、優先的に鋳型と二本鎖を形成することができる。その結果、コンペティタープライマーを用いたPCR反応が優先的に生じることになる。この場合、プローブは、二本鎖を形成する相手を失うことがないので、プローブが、PCR反応溶液中に解離してバルジ構造を形成することはない。つまり、シグナル(例えば、蛍光)が発生することはない。
 なお、第1プライマー、または、コンペティタープライマーの各々がプライマーとして適切に機能したか否かは、PCR反応産物を電気泳動に供し、増幅されたDNAを観察することによっても、確認することができる。
 上述したように、遺伝子配列の型によって、シグナルが発生するか否かが決まる。それ故に、本実施の形態のPCR法は、SNPの検出などに好適に用いることができる。
 次いで、コンペティタープライマーの具体的な構成について説明する。
 コンペティタープライマーは、鋳型と二本鎖を形成する第1プライマー内の領域にて、少なくとも1つのヌクレオチド(以下、ヌクレオチドAと呼ぶ)が別のヌクレオチド(以下、ヌクレオチドBと呼ぶ)に置換されている第7ポリヌクレオチド配列を、少なくとも有するものである。
 上述したヌクレオチドAおよびBが、例えば、遺伝子の多型(例えば、SNP)における置換されているヌクレオチドに対応する。つまり、ヌクレオチドAが、一方の遺伝子型のDNA配列に対応し、ヌクレオチドBが、他方の遺伝子型のDNA配列に対応する。例えば、図21(a)では、ヌクレオチドAが「C」に対応し、ヌクレオチドBが「A」に対応している。
 コンペティタープライマーを構成するヌクレオチドの数は、特に限定されず、第1プライマーの構成、および/または、鋳型の構成に応じて適宜設計すればよい。
 第7ポリヌクレオチド内のヌクレオチドBの数は、特に限定されず、所望の数であり得る。例えば、1~10個であってもよいし、1~5個であってもよいし、1~3個であってもよいし、1個または2個であってもよいし、1個であってもよい。より精度よくSNPの検出を行うという観点からは、少ないほど好ましい。
 第7ポリヌクレオチド内におけるヌクレオチドBの位置は、特に限定されず、所望の位置であり得る。例えば、ヌクレオチドBは、第7ポリヌクレオチドの5’末端に配置されていてもよいし、第7ポリヌクレオチドの5’末端と3’末端との間の任意の位置に配置されていてもよいし、第7ポリヌクレオチドの3’末端に配置されていてもよい。より精度よくSNPの検出を行うという観点からは、第7ポリヌクレオチドの3’末端に配置されていることが好ましい。
 コンペティタープライマーは、上述した第7ポリヌクレオチド配列の5’末端に、更に、少なくとも1個(例えば、1~5個、または、1~3個)のヌクレオチド(具体的には、鋳型と二本鎖を形成し得る少なくとも1個のヌクレオチド)が連結されたものであることが好ましい。
 鋳型と二本鎖を形成する第1プライマー内の領域のヌクレオチドの数と、鋳型と二本鎖を形成するコンペティタープライマー内の領域のヌクレオチドの数とが同じである場合、PCR反応のサイクル数が増加するにつれて、本来PCR反応に利用されるはずのない第1プライマーがPCR反応に利用されて、偽陽性のシグナルが発生してしまう。一方、上記構成によれば、このような偽陽性のシグナルの発生を抑制することができる。
 上述した説明では、コンペティタープライマーを、第1プライマーと競合するプライマーとして説明した。しかしながら、第2プローブを用いる構成においては、コンペティタープライマーを、第1プライマーと競合するプライマー、第2プライマーと競合するプライマー、または、第1プライマーおよび第2プライマーと競合するプライマーとして構成することも可能である。
 〔2-5.PCR反応〕
 本実施の形態のPCR法は、上述したプライマーセット、鋳型、プローブ、および、バルジ構造結合分子を含む試料、または、上述したプライマーセット、鋳型、プローブ、バルジ構造結合分子、および、コンペティタープライマーをPCR反応にかける工程を含んでいる。
 更に、本実施の形態のPCR法は、上記工程の後に、試料に由来するシグナル(例えば、蛍光)を検出する工程を含んでいてもよい。
 上記試料をPCR反応にかける工程は、周知のプロトコールにしたがって、市販のPCR反応装置を用いて行うことができる。
 上記試料のpHは、少なくとも試料に由来するシグナルを検出する工程において、好ましくはpHが5以上、より好ましくは6以上、さらに好ましくは6.5以上である。また、当該pHの上限は、好ましくは9以下、より好ましくは8以下、より好ましくは7.5以下である。pHが5以上、9以下であれば、DNAは安定であるため、バルジ構造結合分子は良好にバルジ構造に結合する。これによりシグナルの検出を良好に行なうことができる。
 試料中の各プローブの濃度は、二本鎖を形成するプライマーの濃度の0.5倍~1.0倍であることが好ましく、0.75倍~1.0倍であることがより好ましく、1.0倍であることがより好ましい。上記構成であれば、シグナルの検出を良好に行なうことができる。
 試料中のバルジ構造結合分子の濃度は、結合するプローブの濃度の2倍~40倍であることが好ましく、5倍~20倍であることがより好ましく、10倍であることがより好ましい。上記構成であれば、シグナルの検出を良好に行なうことができる。
 試料に由来するシグナルを検出する工程の具体的な構成は、シグナルの種類に応じて適宜選択すればよい。
 例えば、バルジ構造結合分子が、バルジ構造に結合したときに発光する蛍光の検出は、これを検出可能である限り限定されるものではないが、400nm~480nmの波長が好ましく、430nm~460nmの波長が更に好ましい。400nm~480nmの蛍光波長であれば、バルジ構造結合分子(例えば、2,7-ジアミノ-1,8-ナフチリジン)がバルジ構造に結合していない場合に生じる蛍光と、バルジ構造に結合している場合に生じる蛍光とを、明確に区別することができる。
 〔3.PCRキット〕
 本実施の形態のPCRキットは、第1プライマーおよび第2プライマーを含むプライマーセットによって鋳型を増幅するためのPCRキットであって、第1プライマーと二本鎖を形成することによってバルジ構造が失われ、第1プライマーとの二本鎖から解離することによってバルジ構造を形成する、第1プローブと、バルジ構造に結合することによってシグナルを発するバルジ構造結合分子と、を備えている。
 第1プローブおよびバルジ構造結合分子の詳細については既に説明したので、ここでは、その説明を省略する。
 本実施の形態のPCRキットは、更に、第1プライマーおよび第2プライマーを含むプライマーセットを備えていてもよい。
 プライマーセットの詳細については既に説明したので、ここでは、その説明を省略する。
 本実施の形態のPCRキットは、更に、第2プライマーと二本鎖を形成することによってバルジ構造が失われ、第2プライマーとの二本鎖から解離することによってバルジ構造を形成する、第2プローブを備えていてもよい。
 第2プローブの詳細については既に説明したので、ここでは、その説明を省略する。
 本実施の形態のPCRキットは、更に、鋳型と二本鎖を形成する第1プライマー内の領域にて、少なくとも1つのヌクレオチドが別のヌクレオチドに置換されている第7ポリヌクレオチド配列を有しているコンペティタープライマーを備えていてもよい。
 コンペティタープライマーの詳細については既に説明したので、ここでは、その説明を省略する。
 本実施の形態のPCRキットは、更に、他の試薬や器具を含んでもよい。例えば、PCR関連試薬・器具(DNAポリメラーゼ、dNTP、PCR用バッファー、PCR用チューブ等)、増幅核酸精製用試薬・器具を含んでもよいし、DNA断片を安定的に保持するための試薬や緩衝液、バルジ構造結合分子を安定的に保持するための試薬や緩衝液を含んでもよい。
 <1.PCR反応産物の電気泳動解析および蛍光解析(バルジ構造の種類についての考察)>
 リバースプライマー、フォワードプライマー、および、プローブの2種類の組み合わせを用いてPCR反応を行い、各PCR反応産物を電気泳動法によって検出するとともに、各PCR反応産物の増加にともなって蛍光強度がどのように変化するか試験を行った。
 PCR反応に用いたリバースプライマー、フォワードプライマー、および、プローブの組み合わせとしては、以下の2つの組み合わせを用いた。また、PCR反応の鋳型としては、pUC18を用い、バルジ構造結合分子としては、2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いた。
  (A.組み合わせ1)
・フォワードプライマー(M13M3):
 5’-GTTGTAAAACGACGGCCAGT-3’  (配列番号1)、
・リバースプライマー(C-bulge 1):
 5’-TCATTACAAAAGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号2)、
・プローブ(C-probe 1):
 5’-ATCATCTACTTTTGTAATGATCTC-3’  (配列番号3)。
  (B.組み合わせ2)
・フォワードプライマー(M13M3)、
・リバースプライマー(T-bulge 1):
 5’-GCTATCAAAAGAAGCTATCTATTTCACAGGAAACAGCTATGAC-3’  (配列番号4)、
・プローブ(T-probe 1):
 5’-ATAGATAGCTTCTTTTGATAGCTTCTATCTC-3’  (配列番号5)。
 図2を用いて、より詳細に各構成の関係を説明する。
 図2(b)に示すように、本実施例のプローブは、「太字の大文字」にて示した塩基配列にて、プローブ内で二本鎖を形成するように設計されている。なお、「下線」にて示した箇所は相補鎖の「C」または「T」に対応する塩基が存在しない領域であって、相補鎖の「C」または「T」が、バルジ構造を形成する。
 つまり、本実施例のプローブ(C-probe 1)は、プローブ内で1カ所のシトシンバルジ構造を形成するプローブであり、本実施例のプローブ(T-probe 1)は、プローブ内で2カ所のチミンバルジ構造を形成するプローブである。
 図2(b)に示すように、本実施例のリバースプライマーは、「一本下線」にて示した塩基配列にて、プローブと二本鎖を形成し、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。
 なお、リバースプライマー(C-bulge 1)とプローブ(C-probe 1)とが形成する二本鎖の融解温度(Tm)は、Tm1=48.2℃であり、プローブ(C-probe 1)内で形成される二本鎖の融解温度(Tm)は、Tm=42.4℃であった。
 一方、リバースプライマー(T-bulge 1)とプローブ(T-probe 1)とが形成する二本鎖の融解温度(Tm)は、Tm1=54.7℃であり、プローブ(T-probe 1)内で形成される二本鎖の融解温度(Tm)は、Tm=45.3℃であった。
 なお、融解温度は、OligoCalcを用いて計算した(Inc50mM Na、「http://www.basic.northwestern.edu/biotools/oligocalc.html」)。
 反応溶液としては、上述した0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 PCR反応プログラムの進行に伴って反応溶液を採取し、当該反応溶液を、電気泳動解析(具体的には、Native PAGE(8%ポリアクリルアミドゲル、SYBR gold染色))および蛍光解析にかけた。電気泳動解析は、市販の電気泳動装置およびゲルを用いて行い、蛍光解析は、Berthold Technologies社製のBERTHOLD Mithras LB940(励起波長:400nm、発光波長:450nm)を用いて行った。
 (A.組み合わせ1)の試験結果を図3および図4に示し、(B.組み合わせ2)の試験結果を図5および図6に示す。なお、図4および図6中、「Band A」にて示すバンドは、PCR産物に対応し、「Band B」にて示すバンドは、プローブとリバースプライマーとの複合体に対応し、「Band C」にて示すバンドは、プローブ内で二本鎖を形成しているプローブに対応している。また、図4および図6中、「M1」は、20bpのラダーマーカーを示し、「M2」は、100bpのラダーマーカーを示している。
 図4および6に示すように、プローブが形成するバルジ構造の種類に関わらず、PCR反応が進むにつれて、プローブとリバースプライマーとの複合体の量が減少するとともに、PCR産物の量、および、プローブ内で二本鎖を形成しているプローブの量が増加することが明らかになった。
 そして、図3および図5に示すように、プローブが形成するバルジ構造の種類に関わらず、PCR反応が進むにつれて、PCR反応溶液の蛍光強度が増すことが明らかになった。
 <2.PCR反応産物の電気泳動解析および蛍光解析(バルジ構造の数に関する考察)>
 上述した<1>の実施例では、プローブ内で1カ所のシトシンバルジ構造を形成するプローブを用いて試験を行った。本試験では、プローブ内で2カ所のシトシンバルジ構造を形成するプローブを用いて試験を行い、蛍光強度がどのように変化するか検討した。
 PCR反応に用いたリバースプライマー、フォワードプライマー、および、プローブの配列は、以下のとおりであった。また、PCR反応の鋳型としては、pUC18を用い、バルジ構造結合分子としては、2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いた。
・フォワードプライマー(M13M3):
・リバースプライマー(M13RV-TAG+1):
 5’-GTAGATGATAATACGTCACTTCACAGGAAACAGCTATGAC-3’  (配列番号6)、
・プローブ(HP-3-C+2):
 5’-GTGACGTATTATCATCTACAACTTTTGTCTGTAATGATCTC-3’  (配列番号7)
 図7を用いて、より詳細に各構成の関係を説明する。
 図7(b)に示すように、本実施例のプローブは、「太字の大文字」にて示した塩基配列にて、プローブ内で二本鎖を形成するように設計されている。なお、「下線」にて示した箇所は相補鎖の「C」に対応する塩基が存在しない領域であって、相補鎖の「C」が、バルジ構造を形成する。つまり、本実施例のプローブは、プローブ内で2カ所のシトシンバルジ構造を形成するプローブである。
 図7(b)に示すように、本実施例のリバースプライマーは、「一本下線」にて示した塩基配列にて、プローブと二本鎖を形成し、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。
 反応溶液としては、上述した0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、電気泳動解析および蛍光解析を行った。
 試験結果を、図8および図9に示す。
 図8に示すように、PCR反応が進むにつれて、プローブとリバースプライマーとの複合体の量が減少するとともに、PCR産物の量、および、プローブ内で二本鎖を形成しているプローブの量が増加することが明らかになった。そして、図9に示すように、PCR反応が進むにつれて、PCR反応溶液の蛍光強度が増すことが明らかになった。
 更に、図3と図9とを比較した結果、プローブ内に形成されるバルジ構造の数が多いほど、PCRの検出感度が増すことが明らかになった。
 <3.リバースプライマーおよびプローブのデザインに関する検討-1>
 リバースプライマーとして、以下の4種類のプライマーを準備した。
 なお、以下の4種類のリバースプライマーは、上述したプローブ(HP-3-C+2)と二本鎖を形成する塩基配列の長さが異なっている。
 なお、以下の4種類のプライマーの各々と、上述したプローブとが形成する二本鎖の融解温度(Tm)は、「M13RV-TAG」の場合が、Tm=46.9℃であり、「M13RV-TAG+1」の場合が、Tm=50.9℃であり、「M13RV-TAG+2」の場合が、Tm=52.3℃であり、「M13RV-TAG+3」の場合が、Tm=53.4℃であった。
 また、プローブ(HP-3-C+2)内で形成される二本鎖の融解温度(Tm)は、Tm=42.8℃であった(mfoldにより計算)。
 なお、融解温度は、OligoCalcを用いて計算した(Inc50mM Na、「http://www.basic.northwestern.edu/biotools/oligocalc.html」)。
・リバースプライマー(M13RV-TAG):
 5’-TAGATGATAATACGTCACTTCACAGGAAACAGCTATGAC-3’  (配列番号8)、
・リバースプライマー(M13RV-TAG+1):
 5’-GTAGATGATAATACGTCACTTCACAGGAAACAGCTATGAC-3’  (配列番号9)、
・リバースプライマー(M13RV-TAG+2):
 5’-TGTAGATGATAATACGTCACTTCACAGGAAACAGCTATGAC-3’  (配列番号10)、
・リバースプライマー(M13RV-TAG+3):
 5’-TTGTAGATGATAATACGTCACTTCACAGGAAACAGCTATGAC-3’  (配列番号11)。
 図10を用いて、より詳細に各構成の関係を説明する。
 図10(b)に示すように、本実施例のプローブは、「太字の大文字」にて示した塩基配列にて、プローブ内で二本鎖を形成するように設計されている。なお、「下線」にて示した箇所は相補鎖の「C」に対応する塩基が存在しない領域であって、相補鎖の「C」が、バルジ構造を形成する。つまり、本実施例のプローブは、プローブ内で2カ所のシトシンバルジ構造を形成するプローブである。
 図10(b)に示すように、本実施例のリバースプライマーは、「一本下線」にて示した塩基配列にて、プローブと二本鎖を形成し、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。
 上述した4種類のリバースプライマー、フォワードプライマー(M13M3)、プローブ(HP-3-C+2)、鋳型としてpUC18、および、バルジ構造結合分子として2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いて、PCR反応を行った。
 具体的に、反応溶液としては、0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、蛍光解析を行った。
 試験結果を、図11に示す。なお、図11に示す試験結果は、「PCR cycle」が40サイクルの時点で蛍光強度が強い順に、「M13RV-TAG」、「M13RV-TAG+1」、「M13RV-TAG+2」、「M13RV-TAG+3」の試験結果である。
 図11に示すように、何れのリバースプライマーであっても、PCR反応が進むにつれてPCR反応溶液の蛍光強度が増したが、「M13RV-TAG+1」が、最もPCRの検出感度が高かった。
 <4.リバースプライマーおよびプローブのデザインに関する検討-2>
 リバースプライマーとして、以下の8種類のプライマーを準備した。また、新たなプローブを準備した。
 なお、以下の8種類のリバースプライマーは、新たなプローブ(Short C+2)と二本鎖を形成する塩基配列の長さが異なっている。
 なお、以下の8種類のプライマーの各々と、新たなプローブとが形成する二本鎖の融解温度(Tm)は、「Short TAG+3」の場合が、Tm=54.7℃であり、「Short TAG+2」の場合が、Tm=53.4℃であり、「Short TAG+1」の場合が、Tm=50.2℃であり、「Short TAG-0」の場合が、Tm=48.9℃であり、「Short TAG-1」の場合が、Tm=44.8℃であり、「Short TAG-2」の場合が、Tm=42.6℃であり、「Short TAG-3」の場合が、Tm=37.9℃であり、「Short TAG-4」の場合が、Tm=35.3℃であった。
 また、プローブ(Short C+2)内で形成される二本鎖の融解温度(Tm)は、Tm=42.8℃であった(mfoldにより計算)。
 なお、融解温度は、OligoCalcを用いて計算した(Inc50mM Na、「http://www.basic.northwestern.edu/biotools/oligocalc.html」)。
・リバースプライマー(Short TAG+3):
 5’-ACAGACAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号12)、・リバースプライマー(Short TAG+2):
 5’-CAGACAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号13)、
・リバースプライマー(Short TAG+1):
 5’-AGACAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号14)、
・リバースプライマー(Short TAG-0):
 5’-GACAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号15)、
・リバースプライマー(Short TAG-1):
 5’-ACAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号16)、
・リバースプライマー(Short TAG-2):
 5’-CAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号17)、
・リバースプライマー(Short TAG-3):
 5’-AAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号18)、
・リバースプライマー(Short TAG-4):
 5’-AAAGTTGTAGATGATTTCACAGGAAACAGCTATGAC-3’  (配列番号19)、
・プローブ(Short C+2):
 5’-ATCATCTACAACTTTTGTCTGTAATGATCTC-3’  (配列番号20)
 図12を用いて、より詳細に各構成の関係を説明する。
 図12(b)に示すように、本実施例のプローブは、「太字の大文字」にて示した塩基配列にて、プローブ内で二本鎖を形成するように設計されている。なお、「下線」にて示した箇所は相補鎖の「C」に対応する塩基が存在しない領域であって、相補鎖の「C」が、バルジ構造を形成する。つまり、本実施例のプローブは、プローブ内で2カ所のシトシンバルジ構造を形成するプローブである。
 図12(b)に示すように、本実施例のリバースプライマーは、「一本下線」にて示した塩基配列にて、プローブと二本鎖を形成し、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。
 上述した8種類のリバースプライマー、フォワードプライマー(M13M3)、プローブ(Short C+2)、鋳型としてpUC18、および、バルジ構造結合分子として2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いて、PCR反応を行った。
 具体的に、反応溶液としては、0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、蛍光解析を行った。
 試験結果を、図13および図14に示す。
 図13および図14から明らかなように、「Tm>Tm」の関係を満たすプローブとリバースプライマーとの組み合わせの場合、単位PCRサイクルあたりの蛍光強度の変化量が大きいことが明らかになった。このことは、「Tm>Tm」の関係を満たすプローブとリバースプライマーとの組み合わせであれば、PCRの検出感度がより高くなることを示している。
 <5.鋳型の濃度に関する検討>
 鋳型の濃度を変化させてPCR反応を行い、PCR反応産物の増加にともなって蛍光強度がどのように変化するか試験を行った。
 リバースプライマー(M13RV-TAG+1)、フォワードプライマー(M13M3)、プローブ(HP-3-C+2)、鋳型としてpUC18、および、バルジ構造結合分子として2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いて、PCR反応を行った。
 具体的に、反応溶液としては、0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、1.8μM、0.18μM、18pM、1.8pM、0.18pM、18fMまたは1.8fMの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、蛍光解析を行った。
 図15に、各PCRサイクルにおける蛍光強度の測定結果を示し、図16に、図15の蛍光強度2000(A.U.)における試験結果に基づいて、PCRサイクル数に対して鋳型濃度をプロットしたデータを示す。
 図16に示すように、PCRサイクル数に対して鋳型の濃度をプロットしたデータが、略直線を示すことから、本実施のPCR法を定量PCRとして好適に利用できることが明らかになった。
 <6.ポリメラーゼに関する検討>
 複数の種類のポリメラーゼを用いてPCR反応を行い、PCR反応産物の増加にともなって蛍光強度がどのように変化するか試験を行った。
 リバースプライマー(M13RV-TAG、M13RV-TAG+1、M13RV-TAG+2、または、M13RV-TAG+3)、フォワードプライマー(M13M3)、プローブ(HP-3-C+2)、鋳型としてpUC18、および、バルジ構造結合分子として2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いて、PCR反応を行った。
 また、ポリメラーゼとしては、PolI型のPCR酵素であるTaq polymerase(QUIAGEN株式会社製)、または、α型のPCR酵素であるKOD-FX polymerase(TOYOBO株式会社製)を用いた。
 なお、PolI型のPCR酵素であるTaq polymeraseは、Bacteria由来の酵素であって、3’→5’ Exonuclease活性を有しておらず、かつ、5’→3’ Exonuclease活性およびTdT活性を有している酵素である。
 一方、α型のPCR酵素であるKOD-FX polymeraseは、Archaea由来の酵素であって、3’→5’ Exonuclease活性を有しており、かつ、5’→3’ Exonuclease活性およびTdT活性を有していない酵素である。
 具体的に、反応溶液としては、0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、蛍光解析を行った。
 図17に、Taq polymeraseの試験結果を示し、図18に、KOD-FX polymeraseの試験結果を示す。
 なお、図17に示す試験結果は、「PCR cycle」が35サイクルの時点で蛍光強度が強い順に、「M13RV-TAG」、「M13RV-TAG+1」、「M13RV-TAG+2」、「M13RV-TAG+3」の試験結果である。また、図18に示す試験結果は、「PCR cycle」が35サイクルの時点で蛍光強度が強い順に、「M13RV-TAG+2」、「M13RV-TAG+3」、「M13RV-TAG+1」、「M13RV-TAG」の試験結果である。
 図17および図18から明らかなように、異なるタイプの酵素を用いた場合であっても、PCR反応が進むにつれて、PCR反応溶液の蛍光強度が増すことが明らかになった。
 <7.プローブと二本鎖を形成するフォワードプライマーおよびリバースプライマーを用いる場合に関する試験>
 リバースプライマー、フォワードプライマー、および、プローブの2種類の組み合わせを用いてPCR反応を行い、各PCR反応産物を電気泳動法によって検出するとともに、各PCR反応産物の増加にともなって蛍光強度がどのように変化するか試験を行った。
 PCR反応に用いたリバースプライマー、フォワードプライマー、および、プローブの組み合わせとしては、以下の2つの組み合わせを用いた。また、PCR反応の鋳型としては、pUC18を用い、バルジ構造結合分子としては、2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いた。
  (A.組み合わせ3)
・フォワードプライマー(Short TAG1-M13M3):
 5’-AGACAAAAGTTGTAGATGATTTCAGTTGTAAAACGACGGCCAGT-3’  (配列番号21)、
・リバースプライマー(Short TAG+1):
・プローブ(Short C+2)。
  (B.組み合わせ4)
・フォワードプライマー(M13M3):
・リバースプライマー(Short TAG+1):
・プローブ(Short C+2)。
 図19を用いて、より詳細に各構成の関係を説明する。
 図19に示すように、本実施例のプローブは、「太字の大文字」にて示した塩基配列にて、プローブ内で二本鎖を形成するように設計されている。なお、「下線」にて示した箇所は相補鎖の「C」に対応する塩基が存在しない領域であって、相補鎖の「C」が、バルジ構造を形成する。つまり、本実施例のプローブは、プローブ内で2カ所のシトシンバルジ構造を形成するプローブである。
 図19に示すように、本実施例のリバースプライマーおよびフォワードプライマーの各々は、「一本下線」にて示した塩基配列にて、プローブと二本鎖を形成し、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。
 上記(組み合わせ3)および(組み合わせ4)の場合の反応溶液として、上述した0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 更に、上記(組み合わせ3)の場合の別の反応溶液として、上述した0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、1μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを40サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、蛍光解析を行った。
 試験結果を、図20に示す。なお、図20に示す試験結果は、「PCR cycle」が40サイクルの時点で蛍光強度が強い順に、「組み合わせ3にて、1μMの濃度のプローブを用いた場合」、「組み合わせ4にて、0.5μMの濃度のプローブを用いた場合」、「組み合わせ3にて、0.5μMの濃度のプローブを用いた場合」の試験結果である。
 図20に示すように、プローブの濃度が同じである場合、フォワードプライマーおよびリバースプライマーの両方にプローブが結合し得る構成であれば、フォワードプライマーのみにプローブが結合し得る構成と比較して、PCR反応を行う前の蛍光強度(換言すれば、バックグラウンド)が大きく減少することが明らかになった。
 更に、図20に示すように、プローブ量が高い場合(例えば、2倍)には、プローブの濃度が低い場合と比較して、PCR反応を行う前の蛍光強度(換言すれば、バックグラウンド)が若干高いものの、蛍光強度の変化量(換言すれば、PCR反応の前後における蛍光強度の差)が大きくなる(約1.5倍)ことが明らかになった。このことは、プローブ量が高い方が、PCRの検出感度がより高くなることを示している。
 <8.コンペティタープライマーを用いた遺伝子多型の識別>
 リバースプライマー、フォワードプライマー、および、プローブの2種類の組み合わせ、並びに、リバースプライマー、フォワードプライマー、コンペティタープライマー、および、プローブの2種類の組み合わせ(合計4種類の組み合わせ)を用いてPCR反応を行い、各PCR反応産物を電気泳動法によって検出するとともに、各PCR反応産物の増加にともなって蛍光強度がどのように変化するか試験を行った。
 上述した4種類の組み合わせの具体的な構成を以下に示す。また、PCR反応の鋳型としては、pUC18(アレルが「G」のもの、アレルが「T」のもの、または、アレルが「G」のものとアレルが「T」のものとの混合物)を用い、バルジ構造結合分子としては、2,7-ジアミノ-1,8-ナフチリジン(DANP)を用いた。
  (A.組み合わせ5)
・フォワードプライマー(M13M3):
・リバースプライマー(Short TAG+1):
・プローブ(Short C+2):
・コンペティタープライマー(CP-A):
 5’-ACACAGGAAACAGCTATGAA-3’  (配列番号22)。
  (B.組み合わせ6)
・フォワードプライマー(M13M3):
・リバースプライマー(Short TAG+1):
・プローブ(Short C+2)。
  (C.組み合わせ7)
・フォワードプライマー(M13M3):
・リバースプライマー(Short TAG1-T):
 5’-AGACAAAAGTTGTAGATGATTTCACAGGAAACAGCTATGAA-3’  (配列番号23)、
・プローブ(Short C+2):
・コンペティタープライマー(CP-C):
 5’-CACAGGAAACAGCTATGAC-3’  (配列番号24)。
  (D.組み合わせ8)
・フォワードプライマー(M13M3):
・リバースプライマー(Short TAG1-T):
・プローブ(Short C+2)。
 図21を用いて、より詳細に各構成の関係を説明する。
 図21に示すように、本実施例のプローブは、「太字の大文字」にて示した塩基配列にて、プローブ内で二本鎖を形成するように設計されている。なお、「下線」にて示した箇所は相補鎖の「C」に対応する塩基が存在しない領域であって、相補鎖の「C」が、バルジ構造を形成する。つまり、本実施例のプローブは、プローブ内で2カ所のシトシンバルジ構造を形成するプローブである。
 図21に示すように、本実施例のリバースプライマーおよびフォワードプライマーの各々は、「一本下線」にて示した塩基配列にて、プローブと二本鎖を形成し、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。
 また、本実施例のリバースプライマーは、「二本下線」にて示した塩基配列にて、鋳型と二本鎖を形成するように設計されている。なお、コンペティタープライマー(CP-A)は、リバースプライマー(Short TAG+1)と比較して、鋳型と二本鎖を形成し得るヌクレオチドが1つ多い構成になっている(コンペティタープライマー(CP-A)の5’末端の「A」参照。)。
 上記(組み合わせ6)および(組み合わせ8)の反応溶液として、上述した0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 一方、上記(組み合わせ5)および(組み合わせ7)の反応溶液として、上述した0.5μMの濃度のフォワードプライマー、0.5μMの濃度のリバースプライマー、0.5μMの濃度のプローブ、0.5μMの濃度のコンペティタープライマー、5μMの濃度のバルジ構造結合分子、および、100pg/μLの鋳型を含む反応溶液(合計40μL)を用いた。
 PCR反応プログラムとしては、まず95℃にて2分間の変性反応を行った後、95℃にて10秒間の変性反応、55℃にて30秒間のアニーリング反応、および、72℃にて30秒間の伸長反応からなる反応サイクルを35サイクル行う、PCR反応プログラムを用いた。なお、具体的なPCR反応は、TP600 PCR Thermal Cycler(TAKARA)を用いて行った。
 次いで、上述した<1>の実施例と同様に、電気泳動解析および蛍光解析を行った。
 試験結果を、図22~図25に示す。
 具体的に、図22は、アレルが「G」の鋳型を用いた場合の蛍光解析の結果を示し、図23は、アレルが「T」の鋳型を用いた場合の蛍光解析の結果を示し、図24は、アレルが「G」の鋳型とアレルが「T」の鋳型との混合物を用いた場合の蛍光解析の結果を示している。
 また、図25は、電気泳動解析の結果を示している。なお、図25中、「Band D」にて示すバンドは、リバースプライマー(Short TAG+1)またはリバースプライマー(Short TAG1-T)と、フォワードプライマー(M13M3)と、によって増幅されたPCR反応産物に対応し、「Band E」にて示すバンドは、コンペティタープライマー(CP-A)またはコンペティタープライマー(CP-C)と、フォワードプライマー(M13M3)と、によって増幅されたPCR反応産物に対応している。
 図22~25から、コンペティタープライマーを用いれば、塩基配列が異なる鋳型を感度よく識別することができることが明らかになった。
 本発明は、各種PCR(例えば、リアルタイムPCR、アレル特異的PCR、定量PCR、および、RT(逆転写)-PCR)に利用することができる。

Claims (14)

  1.  第1プライマーおよび第2プライマーを含むプライマーセットと、
     上記プライマーセットによって増幅される鋳型と、
     上記第1プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、上記第1プライマーとの二本鎖から解離することによってバルジ構造を形成する、第1プローブと、
     上記バルジ構造に結合することによってシグナルを発するバルジ構造結合分子と、を含む試料をPCR反応にかける工程を含むことを特徴とするPCR法。
  2.  上記第1プローブは、上記バルジ構造を形成するヌクレオチド以外のヌクレオチドで互いに二本鎖を形成する第1ポリヌクレオチド配列および第2ポリヌクレオチド配列と、上記第1プライマーの一部分と二本鎖を形成する第3ポリヌクレオチド配列と、を有し、
     上記第3ポリヌクレオチド配列は、上記第1ポリヌクレオチド配列または上記第2ポリヌクレオチド配列の少なくとも一部分を含んでいることを特徴とする請求項1に記載のPCR法。
  3.  上記第3ポリヌクレオチド配列と上記第1プライマーとによって形成される二本鎖の融解温度をTm、上記第1ポリヌクレオチド配列と上記第2ポリヌクレオチド配列とによって形成される二本鎖の融解温度をTm、としたときに、Tm>Tmであることを特徴とする請求項2に記載のPCR法。
  4.  上記第1プローブは、複数のバルジ構造を形成するものであることを特徴とする請求項1~3の何れか1項に記載のPCR法。
  5.  上記試料は、更に、上記第2プライマーと二本鎖を形成することによってバルジ構造が失われ、かつ、上記第2プライマーとの二本鎖から解離することによってバルジ構造を形成する、第2プローブを含むことを特徴とする請求項1~4の何れか1項に記載のPCR法。
  6.  上記第2プローブは、上記バルジ構造を形成するヌクレオチド以外のヌクレオチドで互いに二本鎖を形成する第4ポリヌクレオチド配列および第5ポリヌクレオチド配列と、上記第2プライマーの一部分と二本鎖を形成する第6ポリヌクレオチド配列と、を有し、
     上記第6ポリヌクレオチド配列は、上記第4ポリヌクレオチド配列または上記第5ポリヌクレオチド配列の少なくとも一部分を含んでいることを特徴とする請求項5に記載のPCR法。
  7.  上記第6ポリヌクレオチド配列と上記第2プライマーとによって形成される二本鎖の融解温度をTm、上記第4ポリヌクレオチド配列と上記第5ポリヌクレオチド配列とによって形成される二本鎖の融解温度をTm、としたときに、Tm>Tmであることを特徴とする請求項6に記載のPCR法。
  8.  上記第2プローブは、複数のバルジ構造を形成するものであることを特徴とする請求項5~7の何れか1項に記載のPCR法。
  9.  上記バルジ構造は、シトシンバルジ構造、または、チミンバルジ構造であることを特徴とする請求項1~8の何れか1項に記載のPCR法。
  10.  バルジ構造結合分子は、ナフチリジン環を有する化合物であることを特徴とする請求項1~9の何れか1項に記載のPCR法。
  11.  上記試料は、更に、コンペティタープライマーを含み、
     上記コンペティタープライマーは、上記鋳型と二本鎖を形成する上記第1プライマー内の領域にて、少なくとも1つのヌクレオチドが別のヌクレオチドに置換されている第7ポリヌクレオチド配列を有するものであることを特徴とする請求項1~10の何れか1項に記載のPCR法。
  12.  第1プライマーおよび第2プライマーを含むプライマーセットによって鋳型を増幅するためのPCRキットであって、
     上記第1プライマーと二本鎖を形成することによってバルジ構造が失われ、上記第1プライマーとの二本鎖から解離することによってバルジ構造を形成する、第1プローブと、
     上記バルジ構造に結合することによってシグナルを発するバルジ構造結合分子と、を備えていることを特徴とするPCRキット。
  13.  更に、上記第2プライマーと二本鎖を形成することによってバルジ構造が失われ、上記第2プライマーとの二本鎖から解離することによってバルジ構造を形成する、第2プローブを備えていることを特徴とする請求項12に記載のPCRキット。
  14.  更に、上記鋳型と二本鎖を形成する上記第1プライマー内の領域にて、少なくとも1つのヌクレオチドが別のヌクレオチドに置換されている第7ポリヌクレオチド配列を有しているコンペティタープライマーを備えていることを特徴とする請求項12または13に記載のPCRキット。
PCT/JP2015/073755 2014-08-22 2015-08-24 Pcr法およびpcrキット WO2016027905A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/505,480 US10487355B2 (en) 2014-08-22 2015-08-24 PCR method and PCR kit
EP15833348.4A EP3184636B1 (en) 2014-08-22 2015-08-24 Pcr method and pcr kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169900A JP6440997B2 (ja) 2014-08-22 2014-08-22 Pcr法およびpcrキット
JP2014-169900 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027905A1 true WO2016027905A1 (ja) 2016-02-25

Family

ID=55350844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073755 WO2016027905A1 (ja) 2014-08-22 2015-08-24 Pcr法およびpcrキット

Country Status (4)

Country Link
US (1) US10487355B2 (ja)
EP (1) EP3184636B1 (ja)
JP (1) JP6440997B2 (ja)
WO (1) WO2016027905A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026582A1 (en) * 2006-09-01 2008-03-06 Osaka University Dna fragment used in the form attached to 5'-terminus of primer for use in amplification reaction of nucleic acid, and use thereof
JP2011182763A (ja) * 2010-03-11 2011-09-22 Osaka Univ 一塩基多型を検出する方法および試薬キット
WO2013133402A1 (ja) * 2012-03-08 2013-09-12 株式会社古河電工アドバンストエンジニアリング 核酸中の一塩基多型の検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9725237D0 (en) * 1997-11-29 1998-01-28 Secr Defence Amplification system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026582A1 (en) * 2006-09-01 2008-03-06 Osaka University Dna fragment used in the form attached to 5'-terminus of primer for use in amplification reaction of nucleic acid, and use thereof
JP2011182763A (ja) * 2010-03-11 2011-09-22 Osaka Univ 一塩基多型を検出する方法および試薬キット
WO2013133402A1 (ja) * 2012-03-08 2013-09-12 株式会社古河電工アドバンストエンジニアリング 核酸中の一塩基多型の検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUMIE TAKEI ET AL.: "Hairpin-gata Probe o Tsukatta Keiko Zodaigata PCR-ho no Kaihatsu", THE 95TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2015) KOEN YOKOSHU III, 11 March 2015 (2015-03-11), pages 900, XP009500256, ISSN: 0285-7626 *
KAIKAI YU ET AL.: "DNA-Cytosine Bulge Kozo ni Ketsugo suru Keiko Bunshi o Mochiita Keiko Zokagata PCR no Kaihatsu", THE 93RD ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2013) KOEN YOKOSHU III, 8 March 2013 (2013-03-08), pages 925, XP009500273, ISSN: 0285-7626 *
See also references of EP3184636A4 *

Also Published As

Publication number Publication date
EP3184636A4 (en) 2018-01-24
EP3184636B1 (en) 2018-10-17
JP6440997B2 (ja) 2018-12-19
JP2016042830A (ja) 2016-04-04
US10487355B2 (en) 2019-11-26
US20170268042A1 (en) 2017-09-21
EP3184636A1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
US11208688B2 (en) Small RNA capture, detection and quantification
AU2011319755B2 (en) Compositions of toehold primer duplexes and methods of use
JP2019216722A (ja) 核酸プローブ
JP3844996B2 (ja) 反復性pcr産物の融解曲線解析方法
US9845495B2 (en) Method and kit for detecting target nucleic acid
JP6144623B2 (ja) 核酸測定用の核酸プローブ
US20130084568A1 (en) Probe, and polymorphism detection method using the same
JP2019522959A (ja) 等温核酸増幅のためのレポーター染料、クエンチャーが含まれる等温ベースの二重機能性オリゴヌクレオチド及びそれを用いた核酸増幅並びに測定方法
JP2017521056A (ja) 鎖侵入に基づくdna増幅法
JP5593582B2 (ja) 核酸の迅速な検出方法
JP5239853B2 (ja) 変異遺伝子の検出方法
JP5647936B2 (ja) 修飾ヌクレオチド及びこれを用いたリアルタイムポリメラーゼ反応
JP3970816B2 (ja) バックグラウンドを下げる蛍光ハイブリダイゼーションプローブ
US9587280B2 (en) Method for detecting a c-Met gene using cleavable probe
WO2018183621A1 (en) Quantification of ngs dna by adapter sequence
CN114592042B (zh) 一种微rna检测方法及试剂盒
JP6440997B2 (ja) Pcr法およびpcrキット
Zhang et al. Target-activated T7 transcription circuit-mediated multiple cycling signal amplification for monitoring of flap endonuclease 1 activity in cancer cells
JP6205216B2 (ja) 変異検出用プローブ、変異検出方法、薬効判定方法及び変異検出用キット
JP5930825B2 (ja) Egfrエクソン19多型検出試験用試薬キット及びその用途
JP5401634B1 (ja) 核酸中の一塩基多型の検出方法
WO2023135998A1 (ja) 構造多型変異検出法
JP2018088883A (ja) 上皮成長因子受容体遺伝子変異の検出方法
JP6523874B2 (ja) 核酸増幅基板、該基板を用いた核酸増幅方法、及び核酸検出キット
WO2023200406A2 (en) Method of detecting a polynucleotide analyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15505480

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015833348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833348

Country of ref document: EP