WO2016027628A1 - Electronic component production method - Google Patents

Electronic component production method Download PDF

Info

Publication number
WO2016027628A1
WO2016027628A1 PCT/JP2015/071316 JP2015071316W WO2016027628A1 WO 2016027628 A1 WO2016027628 A1 WO 2016027628A1 JP 2015071316 W JP2015071316 W JP 2015071316W WO 2016027628 A1 WO2016027628 A1 WO 2016027628A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
electrode
electronic component
film
pattern shape
Prior art date
Application number
PCT/JP2015/071316
Other languages
French (fr)
Japanese (ja)
Inventor
秀彦 佐々木
敏夫 萩
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016543884A priority Critical patent/JP6380540B2/en
Publication of WO2016027628A1 publication Critical patent/WO2016027628A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a method of manufacturing an electronic component including a photoresist coating process, a photoresist exposure process, and a photoresist development process. More specifically, the present invention relates to a high characteristic by correcting a pattern shape in the photoresist exposure process. The present invention relates to a method for manufacturing an electronic component capable of manufacturing an accurate electronic component with a high yield.
  • electronic parts such as semiconductor devices are generally manufactured by repeating a photolithography process, a film forming process, an etching process, and the like as necessary to form a desired circuit pattern on a substrate such as a semiconductor. ing.
  • FIGS. 11 (a) to 11 (c) show a method for manufacturing the semiconductor device 200 as a method for manufacturing a general electronic component.
  • a conductive film 104A is formed on the substrate 101, and then a photoresist 105 is applied to the conductive film 104A.
  • the substrate 101 includes a semiconductor part 102 and an insulator part 103.
  • a positive type photoresist 105 is used.
  • a negative photoresist can be used instead of the positive photoresist.
  • the photoresist 105 is exposed to a predetermined pattern shape.
  • the photoresist 105 is developed.
  • the conductive film 104 ⁇ / b> A is etched using the photoresist 105.
  • the gate electrode 104 is formed from the conductive film 104A.
  • the photoresist 105 is removed. Thereafter, a general photolithography process, a film forming process, an etching process, and the like are further repeated to complete the semiconductor device 200.
  • the photoresist 105 is exposed in a predetermined pattern shape using the photomask 106 in the photoresist exposure step shown in FIG.
  • the exposure of photoresist has been often performed using a reduction projection exposure apparatus called a stepper.
  • a reduction projection exposure apparatus called a stepper.
  • the reduced projection exposure apparatus divides the photoresist on the wafer into a plurality of regions, Each region of the photoresist is exposed in turn while shifting the wafer.
  • an electron beam emitted from an electron gun is passed through an electron lens, an aperture, a deflector, etc., and the photoresist is exposed to a desired pattern shape while being finely controlled.
  • a DMD having a large number of micromirrors for example, hundreds of thousands is used, and the DMD is irradiated with light from a light source while controlling the inclination of each micromirror of the DMD. Exposure is performed by irradiating the wafer (photoresist) with the reflected light through a focus lens.
  • the photoresist can be exposed to a desired pattern shape (exposure by a direct drawing method) without using a photomask.
  • Patent Document 1 uses a DLP (Digital Light Processing) element that is a kind of DMD described above, and applies a method of exposing a photoresist by a direct drawing method.
  • a method for forming an electrode on a substrate is disclosed. In this electrode forming method on a piezoelectric substrate, the material characteristics of each piezoelectric substrate are measured in advance, and the exposure pattern on the photoresist is corrected according to the characteristics.
  • the electronic component manufacturing method of the present invention includes a parameter measuring step for measuring parameters of the electronic component element produced in the previous step, and A photoresist coating process, a photoresist exposure process using a direct drawing method, and a photoresist development process, and the photoresist exposure process reduces parameter variations based on the parameters obtained in the parameter measurement process. Corrected pattern data was prepared, and pattern exposure was performed using the pattern data.
  • the photoresist exposure process is performed by a direct drawing method, the exposure pattern shape can be easily corrected.
  • the electronic component to be manufactured includes, for example, an MIM type capacitor in which a first electrode, an interlayer insulating film, and a second electrode are stacked.
  • the film thickness of the interlayer insulating film can be used, and the pattern shape for forming the second electrode can be corrected in the photoresist exposure process.
  • the shape of the second electrode is smaller than a predetermined value in the photoresist exposure process.
  • the shape of the second electrode in the photoresist exposure process is By correcting the size of the pattern shape so as to be larger than a predetermined value, the size of the capacitance of the MIM capacitor can be strictly maintained within the specified value range.
  • the electronic component to be manufactured includes, for example, a vibrator and a vibrator that is formed on the vibrator and has an excitation part for vibrating the vibrator, and is measured in the parameter measurement process.
  • the parameter is the thickness of the vibration part, and the pattern shape for specifying the shape of the vibration part can be corrected in the photoresist exposure process.
  • the parameter measuring step divides the wafer into a plurality of regions, measures the parameters of the electronic component elements for each category,
  • the pattern shape may be corrected for each section.
  • the pattern shape of the photoresist exposure process can be corrected for each wafer section.
  • device characteristics can be corrected continuously within the wafer surface. Therefore, the characteristic accuracy of the manufactured electronic component can be further increased.
  • the parameter of the electronic component element may be measured for each section where each electronic component (one electronic component) of the wafer is formed, and the pattern shape of the photoresist exposure process may be corrected for each section. .
  • the pattern shape is corrected in the photoresist exposure process based on the parameters obtained in the parameter measurement process, it is possible to manufacture electronic components with high characteristic accuracy with a high yield.
  • FIGS. 1A to 1D are cross-sectional views showing steps performed in the manufacturing method according to Embodiment 1 of the present invention.
  • 2 (a) to 2 (d) are continuations of FIG. 1 (d) and are cross-sectional views showing steps performed in the manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing a vibration device according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. 5 (a) to 5 (d) are cross-sectional views illustrating steps performed in the manufacturing method according to Embodiment 2 of the present invention.
  • 6 (a) to 6 (c) are diagrams subsequent to FIG.
  • FIGS. 7 (a) and 7 (b) are diagrams continuing from FIG. 6 (c) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention.
  • 8 (a) and 8 (b) are diagrams subsequent to FIG. 7 (b) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention.
  • FIG. 9 is a plan view showing a state in which the photoresist is patterned in FIG. 10 (a) to 10 (c) are cross-sectional views showing steps performed in the conventional manufacturing method.
  • 11 (a) to 11 (c) are continuations of FIG. 10 (c), and are cross-sectional views showing steps performed in the conventional manufacturing method.
  • a wafer having a diameter of 150 mm ⁇ is prepared as the substrate 1, and 7000 electronic components 100 including the MIM type capacitor 8 are formed on the wafer.
  • the description will focus on the MIM type capacitor 8 portion of one of the electronic components 100.
  • an insulating film 2 is formed on a substrate 1.
  • the material and type of the substrate 1 are arbitrary. Further, the material, film thickness, formation method, and the like of the insulating film 2 are arbitrary. However, as a material of the insulating film 2, for example, SiO 2 , SiN, Al 2 O 3 or the like can be used. Moreover, as a formation method of the insulating film 2, sputtering, CVD, etc. can be used, for example.
  • a conductive film 3 having a predetermined shape is formed on the insulating film 2.
  • the material, film thickness, formation method, and the like of the conductive film 3 are arbitrary. However, as a material, for example, Ti, Al, Ta, Au, Cu, W, or the like can be used. A part of the conductive film 3 constitutes the first electrode 13 of the MIM capacitor 8.
  • the insulating film 4 is formed on the insulating film 2 and the first electrode 13 (conductive film 3).
  • the material, formation method, and the like of the insulating film 4 can be the same as the material, formation method, and the like of the insulating film 2, for example.
  • a strict value is separately determined for the film thickness of the insulating film 4.
  • the in-plane distribution of the film thickness of the interlayer insulating film 14 (insulating film 4) of the MIM capacitor 8 is measured. That is, in the present embodiment, the film thickness of the interlayer insulating film 14 (insulating film 4) is measured as a parameter of the electronic component element manufactured in the previous process. The film thickness is measured using, for example, an optical film thickness meter.
  • 7000 electronic components 100 including the MIM capacitor 8 are formed on one wafer.
  • the film thickness of the interlayer insulating film 14 (insulating film 4) of the MIM capacitor 8 may vary due to processing variations and the like. This variation in film thickness may occur between wafers, but may also occur from region to region within a single wafer.
  • one wafer is divided into a plurality of regions, and the film thickness of the interlayer insulating film 14 (insulating film 4) is measured for each of the sections.
  • the pattern shape of the exposed photoresist is corrected. If the above division is set for each region where each MIM type capacitor 8 of each electronic component of the wafer is formed, the pattern shape of the photoresist can be corrected for each MIM type capacitor 8, and the MIM type capacitor can be corrected. The characteristic accuracy of 8 can be remarkably improved.
  • C is a capacitance (F).
  • V is a voltage (V).
  • is the dielectric constant of the interlayer insulating film 14.
  • S is an opposing area (m 2 ) between the first electrode 13 and the second electrode 15 (to be described later) facing each other across the interlayer insulating film 14.
  • d is the film thickness (m) of the interlayer insulating film 14.
  • the size of the second electrode 15 is corrected in accordance with the processing variation of the film thickness of the interlayer insulating film 14, and the first electrode 13 is corrected. What is necessary is just to correct the facing area S between the first electrode 15 and the second electrode 15. Specifically, when the thickness of the interlayer insulating film 14 is smaller than a predetermined specified value, the size of the second electrode 15 is reduced and the first electrode 13 and the second electrode 15 are opposed to each other. What is necessary is just to make the area S small. On the contrary, when the film thickness of the interlayer insulating film 14 is larger than a predetermined value, the size of the second electrode 15 is increased and the facing area S between the first electrode 13 and the second electrode 15 is increased. Should be increased.
  • the capacitance C of the capacitor is proportional to the facing area S between the first electrode and the second electrode, and inversely proportional to the film thickness d of the interlayer insulating film. Therefore, in order to form a capacitor having a large capacitance C in a space-saving manner, the facing area S between the first electrode and the second electrode cannot be increased so much, and the film thickness d of the interlayer insulating film is reduced. I had to. For this reason, if the film thickness d of the interlayer insulating film has a variation in processing, the capacitance C varies greatly, and it is easy to easily deviate from the specified value range. That is, the variation in processing of the film thickness d of the interlayer insulating film is a major cause of a decrease in the yield of the MIM type capacitor.
  • the present invention contributes to solving such problems.
  • a conductive film 5 is formed on the insulating film 4 (interlayer insulating film 14).
  • the material, film thickness, formation method, and the like of the conductive film 5 can be the same as the material, film thickness, formation method, and the like of the conductive film 3, for example.
  • the conductive film 5 is etched to become the second electrode 15 of the MIM type capacitor.
  • a photoresist 6 is formed on the conductive film 5.
  • the material, film thickness, formation method, and the like of the photoresist 6 are arbitrary. Further, it is optional whether the photoresist 6 is a positive type or a negative type. The photoresist 6 is used for etching the conductive film 5 as will be described later.
  • the photoresist 6 is exposed to a desired pattern shape by a direct drawing method without using a photomask.
  • the following correction process is performed. First, based on the thickness of the interlayer insulating film 14 (insulating film 4) obtained by measurement, the pattern of the second electrode 15 is corrected so that the variation in capacitance due to the variation in film thickness is reduced. For this purpose, DMD pattern data is prepared. Then, pattern exposure is performed using the pattern data. By this step, the MIM type capacitor 8 having a capacitance that does not depend on the film thickness variation of the interlayer insulating film 14 (insulating film 4) can be obtained.
  • This step is a photoresist exposure step which is a characteristic step of the present invention, and is obtained in the parameter measurement step described above, depending on the thickness of the interlayer insulating film 14 (insulating film 4) for each of the sections. This is performed while correcting the pattern shape exposed for each section.
  • the thickness of the interlayer insulating film 14 (insulating film 4) is smaller than a predetermined value, the interlayer insulating film is reduced so that the size of the second electrode 15 is reduced.
  • the pattern shape to be exposed is corrected so that the size of the second electrode 15 is increased.
  • the photoresist exposure process is performed using the direct drawing type exposure apparatus 7.
  • details of the exposure apparatus 7 are arbitrary, for example, a light source 7a, a DMD 7b, and a focus lens 7c are provided.
  • the DMD 7b includes a large number of micromirrors (for example, hundreds of thousands), and a desired exposure pattern shape can be created by electronically controlling the inclination of each micromirror.
  • the photoresist 6 is developed.
  • the conductive film 5 is etched using the photoresist 6 to form the second electrode 15 of the MIM capacitor 8.
  • the conductive film 5 is formed first, and then the conductive film 5 is etched using the photoresist 6 to form the second electrode 15 of the MIM type capacitor 8.
  • the pattern shape formed on the photoresist 6 can be reversed, and the second electrode 15 of the MIM capacitor 8 can be formed by a lift-off process.
  • the photoresist 6 is removed, and the MIM capacitor 8 is completed. Since the MIM type capacitor 8 corrects the pattern shape of the second electrode 15 based on the processing variation of the film thickness of the interlayer insulating film 14, the MIM type capacitor 8 has an appropriate capacitance characteristic within a specified value range. .
  • the electronic component 100 including the MIM type capacitor 8 is completed.
  • the method for manufacturing the electronic component 100 including the MIM type capacitor 8 is shown.
  • the type of the electronic component manufactured by the present invention is arbitrary and is not limited thereto.
  • a semiconductor device or a piezoelectric device may be used.
  • the film thickness of the interlayer insulating film 14 of the MIM capacitor is measured in the parameter measurement process, and the photoconductive film 5 is etched to form the second electrode 15 in the photoresist exposure process.
  • the pattern shape of the resist 6 is corrected, the electronic component element parameter measured in the parameter measurement process and the photoresist corrected in the photoresist exposure process are used for forming the photoresist.
  • FIG. 3 is a perspective view showing a vibration device according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. With reference to FIG. 3 and FIG. 4, the vibration apparatus 40 which concerns on this embodiment is demonstrated.
  • the vibration device 40 is a resonance-type vibrator including the support portion 20 and the vibrating arms 30a, 30b, and 30c.
  • the base ends of the vibrating arms 30 a, 30 b, and 30 c are connected to the support unit 20.
  • the vibrating arms 30a, 30b, and 30c are provided so as to extend from the support portion 20.
  • the vibrating arms 30a, 30b, and 30c have a cantilever structure.
  • the tips of the vibrating arms 30a, 30b, and 30c are free ends. Therefore, the vibrating arms 30a, 30b, and 30c are configured to be able to vibrate.
  • Side frames 50 and 60 are connected to both ends of the support portion 20 in the direction in which the vibrating arms 30a, 30b, and 30c are arranged so as to extend in parallel with the vibrating arms 30a, 30b, and 30c.
  • the support part 20 and the side frames 50 and 60 are integrally formed by a photolithography method or the like.
  • the vibrating arms 30a, 30b, 30c are composed of a silicon oxide film 32, a Si layer 31 as a vibrating part, a silicon oxide film 33, and an exciting part 34.
  • the silicon oxide film 32, the Si layer 31, the silicon oxide film 33, and the excitation unit 34 are stacked in this order.
  • Si layer 31 is made of, for example, an n-type Si semiconductor that is a degenerate semiconductor.
  • the doping concentration of the n-type dopant is 1 ⁇ 10 19 / cm 3 or more.
  • a fifteenth element such as P, As, or Sb can be employed.
  • the Si layer 31 is sandwiched between the silicon oxide film 32 and the silicon oxide film 33.
  • a silicon oxide film 32 is provided on the lower surface of the Si layer 31.
  • a silicon oxide film 33 is provided on the upper surface of the Si layer 31.
  • the silicon oxide film 32 and the silicon oxide film 33 are made of, for example, SiO 2 .
  • the silicon oxide film 32 and the silicon oxide film 33 are not limited to SiO 2 and can be formed of a silicon oxide material having an appropriate composition of SiaOb (a and b are integers). Further, the silicon oxide film 32 and the silicon oxide film 33 may be omitted.
  • the excitation unit 34 is provided above the silicon oxide film 33.
  • the excitation unit 34 includes a first electrode 36, a piezoelectric thin film 35, and a second electrode 37.
  • the first electrode 36, the piezoelectric thin film 35, and the second electrode 37 are stacked in this order.
  • the first electrode 36 and the second electrode 37 are provided so as to sandwich the piezoelectric thin film 35 therebetween.
  • a piezoelectric thin film 35 a is provided on the upper surface of the silicon oxide film 33. Further, a piezoelectric thin film 35 b is provided on the upper surface of the piezoelectric thin film 35 so as to cover the second electrode 37.
  • the piezoelectric thin film 35a functions as a seed layer.
  • the piezoelectric thin film 35b functions as a protective layer.
  • the piezoelectric thin films 35a and 35b do not constitute the excitation unit 34, and may be omitted.
  • the piezoelectric material which comprises the piezoelectric thin film 35 is not specifically limited, In the vibration apparatus using a bulk wave, it is preferable that Q value is high. For this reason, AlN having a small electromechanical coupling coefficient k 2 but a high Q value is preferably used.
  • the Sc-substituted AlN film preferably has an atomic concentration of Sc and Al of about 100 at% to 50 at%.
  • ScAlN has an electromechanical coupling coefficient k 2 larger than that of AlN and a mechanical Qm larger than that of PZT and KNN. Therefore, ScAlN has the following advantages when applied to a resonance type resonator.
  • a signal from a built-in temperature sensor is fed back to a variable capacitance element connected in series with a vibrator to change the capacitance value of the variable capacitance element. Thereby, the oscillation frequency can be adjusted.
  • the specific band of the resonant vibrator is expanded. Thereby, the adjustment range of the oscillation frequency can be expanded.
  • the first electrode 36 and the second electrode 37 can be formed of an appropriate metal such as Mo, Ru, Pt, Ti, Cr, Al, Cu, Ag, or an alloy thereof.
  • the piezoelectric thin film 35 is polarized in the thickness direction. For this reason, by applying an alternating electric field between the first electrode 36 and the second electrode 37, the excitation unit 34 is excited by the piezoelectric effect. As a result, the vibrating arms 30a, 30b, 30c bend and vibrate in the vertical direction.
  • the side frames 50 and 60 are configured by laminating the silicon oxide film 22, the Si substrate 21, the silicon oxide film 32, the Si layer 31, the silicon oxide film 33, and the piezoelectric thin film 35.
  • the support portion 20 is configured similarly to the side frames 50 and 60.
  • a recess 21 a is formed on the upper surface of the Si substrate 21.
  • the vibrating arms 30a, 30b, and 30c are disposed above the recess 21a.
  • the Si substrate 21 is a support substrate that constitutes a part of the support unit 20 and the side frames 50 and 60.
  • the silicon oxide film 22 is a protective film and is provided on the lower surface of the Si substrate 21.
  • FIGS. 5A to 5D are cross-sectional views showing steps performed in the manufacturing method according to Embodiment 2 of the present invention.
  • 6 (a) to 6 (c) are diagrams subsequent to FIG. 5 (d) and showing steps performed in the manufacturing method according to the embodiment of the present invention.
  • FIGS. 7 (a) and 7 (b) are diagrams continuing from FIG. 6 (c) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention.
  • 8 (a) and 8 (b) are diagrams subsequent to FIG. 7 (b) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention.
  • vibration as an electronic component A method for manufacturing the device 40 will be described.
  • a Si substrate 21 is prepared.
  • a recess 21a is formed on the upper surface of the Si substrate 21 by etching.
  • the depth of the recess 21a may be about 10 ⁇ m to 30 ⁇ m.
  • a Si layer 31 having a doping concentration of 1 ⁇ 10 19 / cm 3 or more and doped with P is prepared, and a silicon oxide film 32 is formed on the upper and lower surfaces of the Si layer 31.
  • 33A is formed.
  • the silicon oxide films 32 and 33A are formed by a thermal oxidation method.
  • a silicon oxide film formed by a thermal oxidation method is preferable because the Q value hardly deteriorates.
  • the thickness of the silicon oxide films 32 and 33A is 0.4 ⁇ m.
  • the Si layer 31 on which the silicon oxide films 32 and 33 ⁇ / b> A are formed is laminated on the Si substrate 21.
  • the silicon oxide film 32 is brought into contact with the surface of the Si substrate 21 on which the concave portion 21a is provided.
  • the silicon oxide film 33A is removed by polishing, and the thickness of the Si layer 31 is further reduced. Thereby, the thickness of the Si layer 31 is set to about 10 ⁇ m.
  • the in-plane thickness distribution of the Si layer 31 is measured as a parameter measurement process that is a characteristic process of the present invention. That is, in this embodiment, the film thickness of the Si layer 31 as the vibration part is measured as a parameter of the electronic component element produced in the previous process. The film thickness is measured using, for example, an optical film thickness system.
  • the Si layer 31 of the vibration device 40 may vary in film thickness due to processing variations or the like. This variation in film thickness may occur between wafers, but may also occur from region to region within a single wafer.
  • one wafer is divided into a plurality of regions, the film thickness of the Si layer 31 is measured for each of the regions, and in the photoresist exposure process described later, the photoresist exposed for each of the regions is measured. Correct the pattern shape.
  • the pattern shape of the photoresist can be corrected for each vibration device 40, and the characteristics of the vibration device 40 can be corrected.
  • the accuracy can be greatly improved.
  • the resonance frequency fr of the vibrating arms 30a, 30b, and 30c included in the vibrating device 40 is expressed by the following mathematical formula (1).
  • the lengths of the vibrating arms 30a, 30b, and 30c are corrected according to the variation in the film thickness of the Si layer 31. do it.
  • the resonance frequency fr varies greatly between the plurality of vibrating devices 40 according to the film thickness distribution of the Si layer 31, and it is easy from the specified value range. It was easy to come off. That is, the variation in the film thickness of the Si layer 31 is a major cause of a decrease in the yield of the vibration device 40.
  • the present invention contributes to solving such problems.
  • a silicon oxide film 33 is formed on the upper surface of the Si layer 31 and a silicon oxide film 22 is formed on the lower surface of the Si substrate 21 by thermal oxidation.
  • the thickness of the silicon oxide film 33 is 0.4 ⁇ m.
  • the first electrode 36 is formed on the upper surface of the piezoelectric thin film 35a.
  • the first electrode 36 is a laminated electrode in which a first layer made of Mo and a second layer made of Al are laminated.
  • the piezoelectric thin film 35a is a seed layer, and by providing the piezoelectric thin film 35a, the first layer made of Mo in the first electrode 36 is formed with high orientation.
  • the second electrode 37 is formed on the upper surface of the piezoelectric thin film 35.
  • the second electrode 37 is a laminated electrode in which a first layer made of Mo and a second layer made of Al are laminated.
  • the first electrode 36 and the second electrode 37 are formed by, for example, a lift-off process using a sputtering method.
  • a piezoelectric thin film 35b made of AlN is formed on the upper surface of the piezoelectric thin film 35 and the second electrode 37 to a thickness of about 30 nm to 100 nm.
  • a photoresist 70 is applied on the piezoelectric thin film 35b in a photoresist application process.
  • the material, film thickness, formation method, and the like of the photoresist 70 are arbitrary. Further, it is optional whether the photoresist 70 is a positive type or a negative type.
  • the photoresist 70 is used to etch the piezoelectric thin films 35b, 35, 35a, the silicon oxide film 33, the Si layer 31, and the silicon oxide film 32, as will be described later.
  • the photoresist 70 is exposed to a desired pattern shape by a direct drawing method without using a photomask.
  • the following correction process is performed. First, based on the film thickness of the Si layer 31 obtained by the measurement, the lengths of the vibrating arms 30a, 30b, and 30c are corrected so that the variation in the resonance frequency fr due to the film thickness variation is reduced. DMD pattern data is created. Then, pattern exposure is performed using the pattern data.
  • This step is a photoresist exposure step which is a characteristic step of the present invention, and exposure is performed for each section according to the film thickness of the Si layer 31 for each section obtained in the parameter measurement step described above. This is performed while correcting the pattern shape.
  • the pattern shape to be exposed is set so that the lengths of the vibrating arms 30a, 30b, and 30c are shortened. to correct.
  • the exposed pattern shape is corrected so that the lengths of the vibrating arms 30a, 30b, and 30c are increased.
  • the photoresist exposure process is performed using the direct drawing type exposure apparatus 7.
  • details of the exposure apparatus 7 are arbitrary, for example, a light source 7a, a DMD 7b, and a focus lens 7c are provided.
  • the DMD 7b includes a large number of micromirrors (for example, hundreds of thousands), and a desired exposure pattern shape can be created by electronically controlling the inclination of each micromirror.
  • FIG. 8A the photoresist 70 is developed in a development process. Thereby, the photoresist 70 is panned into a desired shape.
  • FIG. 9 is a plan view showing a state in which the photoresist is patterned in FIG.
  • the photoresist 70 is patterned so as to cover portions corresponding to the support portion 20, the side frames 50, 60, and the vibrating arms 30a, 30b, 30c.
  • the length from the proximal end to the distal end of the portion of the photoresist 70 corresponding to the vibrating arms 30a, 30b, 30c can be adjusted.
  • the vibrating arms 30a, 30b, 30c and the side having a predetermined length are formed by dry etching or wet etching using a photoresist 70 patterned in a desired shape.
  • the frames 50 and 60 are formed, and the vibration device 40 is manufactured.
  • the thickness of the Si layer is measured, and the exposed pattern shape is corrected for each region where the vibration device 40 is formed according to the measured thickness.
  • the length of the vibrating arms 30a, 30b, 30c can be adjusted.
  • variation in the resonant frequency fr between the oscillating devices 40 can be suppressed, and characteristic accuracy can be improved significantly.
  • a decrease in yield of the vibration device 40 can be suppressed.
  • the case where the pattern shape to be exposed is corrected for each region where the vibration device 40 is formed is described as an example.
  • the present invention is not limited to this, and one vibration device 40 is formed.
  • the pattern shape to be exposed may be corrected so that the lengths of the vibrating arms 30a, 30b, and 30c are different depending on the thickness of the Si layer.

Abstract

An electronic component production method comprising: a parameter measurement step for measuring parameters of an electronic-component element prepared in a previous step; a photoresist application step; a photoresist exposure step in which a direct writing method is employed; and a photoresist development step. In the photoresist exposure step, pattern data corrected so as to reduce the variation in the parameters are prepared on the basis of the parameters obtained in the parameter measurement step, and pattern exposure is performed using the pattern data.

Description

電子部品の製造方法Manufacturing method of electronic parts
 本発明は、フォトレジスト塗布工程と、フォトレジスト露光工程と、フォトレジスト現像工程と、を含む電子部品の製造方法に関し、更に詳しくは、フォトレジスト露光工程においてパターン形状を補正することにより、高い特性精度の電子部品を高い歩留まりで製造することができる電子部品の製造方法に関する。 The present invention relates to a method of manufacturing an electronic component including a photoresist coating process, a photoresist exposure process, and a photoresist development process. More specifically, the present invention relates to a high characteristic by correcting a pattern shape in the photoresist exposure process. The present invention relates to a method for manufacturing an electronic component capable of manufacturing an accurate electronic component with a high yield.
 従来から、一般的に、半導体デバイス等の電子部品は、フォトリソグラフィー工程、成膜工程、エッチング工程等を必要に応じて繰り返し、所望の回路パターンを半導体等の基板上に形成することによって製造されている。 Conventionally, electronic parts such as semiconductor devices are generally manufactured by repeating a photolithography process, a film forming process, an etching process, and the like as necessary to form a desired circuit pattern on a substrate such as a semiconductor. ing.
 図10(a)~図10(c)、および図11(a)~図11(c)に、一般的な電子部品の製造方法として、半導体デバイス200の製造方法を示す。 10 (a) to 10 (c) and FIGS. 11 (a) to 11 (c) show a method for manufacturing the semiconductor device 200 as a method for manufacturing a general electronic component.
 まず、図10(a)に示すように、基板101に導電膜104Aを成膜し、続いて導電膜104Aにフォトレジスト105を塗布する。 First, as shown in FIG. 10A, a conductive film 104A is formed on the substrate 101, and then a photoresist 105 is applied to the conductive film 104A.
 基板101は、半導体部102と絶縁体部103とを備えている。
 フォトレジスト105には、この製造方法では、ポジ型のものを使用している。なお、ポジ型のフォトレジストに代えて、ネガ型のフォトレジストを使用することもできる。ただし、この場合には、露光に用いるフォトマスクのパターン形状を、後述するものから反転させることが必要になる。
The substrate 101 includes a semiconductor part 102 and an insulator part 103.
In this manufacturing method, a positive type photoresist 105 is used. Note that a negative photoresist can be used instead of the positive photoresist. However, in this case, it is necessary to reverse the pattern shape of the photomask used for exposure from that described later.
 次に、図10(b)に示すように、フォトマスク106を用いて、フォトレジスト105を所定のパターン形状に露光する。 Next, as shown in FIG. 10B, using a photomask 106, the photoresist 105 is exposed to a predetermined pattern shape.
 次に、図10(c)に示すように、フォトレジスト105を現像する。
 次に、図11(a)に示すように、フォトレジスト105を用いて、導電膜104Aをエッチングする。この結果、導電膜104Aからゲート電極104が形成される。
Next, as shown in FIG. 10C, the photoresist 105 is developed.
Next, as illustrated in FIG. 11A, the conductive film 104 </ b> A is etched using the photoresist 105. As a result, the gate electrode 104 is formed from the conductive film 104A.
 続いて、図11(b)に示すように、フォトレジスト105を用いて、イオンインプランテーションを行う。この結果、半導体部102に能動層102aが形成される。 Subsequently, as shown in FIG. 11B, ion implantation is performed using the photoresist 105. As a result, an active layer 102 a is formed in the semiconductor unit 102.
 次に、図11(c)に示すように、フォトレジスト105を除去する。
 この後、更に、一般的なフォトリソグラフィー工程、成膜工程、エッチング工程等を繰り返して、半導体デバイス200を完成させる。
Next, as shown in FIG. 11C, the photoresist 105 is removed.
Thereafter, a general photolithography process, a film forming process, an etching process, and the like are further repeated to complete the semiconductor device 200.
 この従来の製造方法においては、図10(b)に示すフォトレジスト露光工程において、フォトマスク106を用いて、フォトレジスト105を所定のパターン形状に露光している。 In this conventional manufacturing method, the photoresist 105 is exposed in a predetermined pattern shape using the photomask 106 in the photoresist exposure step shown in FIG.
 ところで、これまで、フォトレジストの露光は、ステッパーと呼ばれる縮小投影露光装置を用いておこなうことが多かった。一般に、半導体デバイスの製造工程においては、1つのウエハに数百個、あるいはそれ以上の個数の素子が製造されるが、縮小投影露光装置は、ウエハ上のフォトレジストを複数の領域に区分し、ウエハをずらしながら、フォトレジストの各領域を順番に露光する。 By the way, until now, the exposure of photoresist has been often performed using a reduction projection exposure apparatus called a stepper. Generally, in a semiconductor device manufacturing process, hundreds or more elements are manufactured on one wafer, but the reduced projection exposure apparatus divides the photoresist on the wafer into a plurality of regions, Each region of the photoresist is exposed in turn while shifting the wafer.
 しかしながら、フォトマスクを使用するこの方法では、フォトマスクが予め所定のパターン形状に作製されているため、途中でパターン形状を補正することができなかった。 However, in this method using a photomask, since the photomask is prepared in a predetermined pattern shape in advance, the pattern shape cannot be corrected halfway.
 これに対し、近年、半導体デバイス等の微細化に対応するため、電子ビーム露光やDMD(Digital Micromirror Device)投影露光に代表される、フォトマスクを使用しない直接描画方式による露光も行われている。 On the other hand, in recent years, in order to cope with miniaturization of semiconductor devices and the like, exposure by a direct drawing method not using a photomask, which is typified by electron beam exposure and DMD (Digital Micromirror Device) projection exposure, is also performed.
 電子ビーム露光は、電子銃から発せられた電子線を、電子レンズやアパーチャー、デフレクタ等を通し、微細に制御しながらフォトレジストを所望のパターン形状に露光する。 In electron beam exposure, an electron beam emitted from an electron gun is passed through an electron lens, an aperture, a deflector, etc., and the photoresist is exposed to a desired pattern shape while being finely controlled.
 DMD投影露光は、多数枚(例えば数十万枚)の微小なマイクロミラーを備えたDMDを用い、DMDの個々のマイクロミラーの傾きを制御しながら、光源から光をDMDに照射し、DMDから反射した光をフォーカスレンズを介してウエハ(フォトレジスト)に照射して露光する。 In DMD projection exposure, a DMD having a large number of micromirrors (for example, hundreds of thousands) is used, and the DMD is irradiated with light from a light source while controlling the inclination of each micromirror of the DMD. Exposure is performed by irradiating the wafer (photoresist) with the reflected light through a focus lens.
 いずれの方法も、フォトマスクを使用することなく、フォトレジストを所望のパターン形状に露光(直接描画方式による露光)することができる。 In any of the methods, the photoresist can be exposed to a desired pattern shape (exposure by a direct drawing method) without using a photomask.
 直接描画方式による露光の場合、フォトマスクを使用しないため、フォトレジストを露光するパターン形状を変更することが可能である。 In the case of exposure by the direct drawing method, since a photomask is not used, it is possible to change the pattern shape for exposing the photoresist.
 例えば、特開2002-40670号公報(特許文献1)には、上述したDMDの一種であるDLP(Degital Light Processing)素子を利用し、直接描画方式によりフォトレジストを露光する方式を適用した、圧電基板上への電極形成方法が開示されている。この圧電基板上への電極形成方法では、予め個々の圧電基板の材料特性を測定しておき、この特性に応じて、フォトレジストへの露光パターンを補正することが行われている。 For example, Japanese Patent Laid-Open No. 2002-40670 (Patent Document 1) uses a DLP (Digital Light Processing) element that is a kind of DMD described above, and applies a method of exposing a photoresist by a direct drawing method. A method for forming an electrode on a substrate is disclosed. In this electrode forming method on a piezoelectric substrate, the material characteristics of each piezoelectric substrate are measured in advance, and the exposure pattern on the photoresist is corrected according to the characteristics.
特開2002-40670号公報JP 2002-40670 A
 しかしながら、半導体デバイス等の高性能化に伴い回路の微細化が進み、加工ばらつきがデバイスの特性に大きく影響を与えるようになり、製品の歩留まりに大きく関係するようになってきている。 However, as the performance of semiconductor devices and the like increases, circuit miniaturization advances, and processing variations have a great influence on device characteristics, and are greatly related to product yield.
 このため、歩留まりを基準以上に維持するためには、前述の特許文献1に開示されているような、基板の特性をその基板を使った製品の製造に反映させて補正するだけでは不十分であり、その製品の製造工程において発生した加工ばらつきを、その製品のその後の製造工程にフィードバックさせ、補正を行うことにより、要求されたデバイス特性を満たすことが求められている。 For this reason, in order to maintain the yield above the standard, it is not sufficient to correct the characteristics of the substrate by reflecting the characteristics of the substrate in the manufacture of a product using the substrate, as disclosed in Patent Document 1 described above. There is a need to satisfy the required device characteristics by feeding back and correcting the processing variations generated in the manufacturing process of the product to the subsequent manufacturing process of the product.
 本発明は上述した課題を解決するためになされたものであり、その手段として本発明の電子部品の製造方法は、前の工程において作製された電子部品要素のパラメータを測定するパラメータ測定工程と、フォトレジスト塗布工程と、直接描画方式を用いるフォトレジスト露光工程と、フォトレジスト現像工程と、を含み、フォトレジスト露光工程は、パラメータ測定工程で得られたパラメータに基づき、パラメータのばらつきを減じるように補正されたパターンデータを作製し、そのパターンデータを用いてパターン露光を行うようにした。 The present invention has been made in order to solve the above-described problems, and as a means therefor, the electronic component manufacturing method of the present invention includes a parameter measuring step for measuring parameters of the electronic component element produced in the previous step, and A photoresist coating process, a photoresist exposure process using a direct drawing method, and a photoresist development process, and the photoresist exposure process reduces parameter variations based on the parameters obtained in the parameter measurement process. Corrected pattern data was prepared, and pattern exposure was performed using the pattern data.
 本発明においては、フォトレジスト露光工程が、直接描画方式により行われるため、露光パターン形状の補正を容易に行うことができる。 In the present invention, since the photoresist exposure process is performed by a direct drawing method, the exposure pattern shape can be easily corrected.
 また、本発明においては、製造される電子部品を、例えば、第1電極と、層間絶縁膜と、第2電極とが積層されたMIM型キャパシタを含むものとし、パラメータ測定工程で測定されるパラメータを、層間絶縁膜の膜厚とし、フォトレジスト露光工程で、第2電極を形成するためのパターン形状を補正することができる。この場合には、パラメータ測定工程で測定された層間絶縁膜の膜厚が、予め定められた値よりも小さい場合には、フォトレジスト露光工程において第2電極の形状が予め定められた値よりも小さくなるようにパターン形状の大きさを補正し、パラメータ測定工程で測定された層間絶縁膜の膜厚が予め定められた値よりも大きい場合には、フォトレジスト露光工程において第2電極の形状が予め定められた値よりも大きくなるようにパターン形状の大きさを補正することにより、MIM型キャパシタの静電容量の大きさを厳格に規定値の範囲内に維持することができる。 In the present invention, the electronic component to be manufactured includes, for example, an MIM type capacitor in which a first electrode, an interlayer insulating film, and a second electrode are stacked. The film thickness of the interlayer insulating film can be used, and the pattern shape for forming the second electrode can be corrected in the photoresist exposure process. In this case, when the film thickness of the interlayer insulating film measured in the parameter measurement process is smaller than a predetermined value, the shape of the second electrode is smaller than a predetermined value in the photoresist exposure process. When the size of the pattern shape is corrected so as to be small, and the film thickness of the interlayer insulating film measured in the parameter measurement process is larger than a predetermined value, the shape of the second electrode in the photoresist exposure process is By correcting the size of the pattern shape so as to be larger than a predetermined value, the size of the capacitance of the MIM capacitor can be strictly maintained within the specified value range.
 また、本発明においては、製造される電子部品を、例えば、振動部と、振動部上に形成され振動部を振動させるための励振部を有する振動子を含むものとし、パラメータ測定工程で測定されるパラメータを、振動部の厚みとし、フォトレジスト露光工程で、振動部の形状を特定するためのパターン形状を補正することができる。 In the present invention, the electronic component to be manufactured includes, for example, a vibrator and a vibrator that is formed on the vibrator and has an excitation part for vibrating the vibrator, and is measured in the parameter measurement process. The parameter is the thickness of the vibration part, and the pattern shape for specifying the shape of the vibration part can be corrected in the photoresist exposure process.
 また、本発明においては、1個のウエハに複数個の電子部品を製造することとし、パラメータ測定工程は、ウエハを複数の領域に区分し、区分ごとに電子部品要素のパラメータを測定し、フォトレジスト露光工程は、区分ごとにパターン形状を補正するようにしても良い。この場合には、ウエハの区分ごとに、フォトレジスト露光工程のパターン形状を補正することができる。すなわち、ウエハの面内で連続的にデバイス特性の補正を行うことができる。したがって、製造される電子部品の特性精度をより高くすることができる。例えば、ウエハの各電子部品(1個の電子部品)が形成される区分ごとに電子部品要素のパラメータを測定し、その区分ごとに、フォトレジスト露光工程のパターン形状を補正するようにしても良い。 In the present invention, a plurality of electronic components are manufactured on one wafer, and the parameter measuring step divides the wafer into a plurality of regions, measures the parameters of the electronic component elements for each category, In the resist exposure process, the pattern shape may be corrected for each section. In this case, the pattern shape of the photoresist exposure process can be corrected for each wafer section. In other words, device characteristics can be corrected continuously within the wafer surface. Therefore, the characteristic accuracy of the manufactured electronic component can be further increased. For example, the parameter of the electronic component element may be measured for each section where each electronic component (one electronic component) of the wafer is formed, and the pattern shape of the photoresist exposure process may be corrected for each section. .
 本発明によれば、パラメータ測定工程で得られたパラメータに基づき、フォトレジスト露光工程においてパターン形状を補正するので、高い特性精度の電子部品を高い歩留まりで製造することができる。 According to the present invention, since the pattern shape is corrected in the photoresist exposure process based on the parameters obtained in the parameter measurement process, it is possible to manufacture electronic components with high characteristic accuracy with a high yield.
図1(a)~(d)は、それぞれ、本発明の実施形態1に係る製造方法において施される工程を示す断面図である。FIGS. 1A to 1D are cross-sectional views showing steps performed in the manufacturing method according to Embodiment 1 of the present invention. 図2(a)~(d)は、図1(d)の続きであり、それぞれ、本発明の実施形態1に係る製造方法において施される工程を示す断面図である。2 (a) to 2 (d) are continuations of FIG. 1 (d) and are cross-sectional views showing steps performed in the manufacturing method according to Embodiment 1 of the present invention. 図3は、本発明の実施形態2に係る振動装置を示す斜視図である。FIG. 3 is a perspective view showing a vibration device according to Embodiment 2 of the present invention. 図4は、図3に示すIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. 図5(a)~(d)は、本発明の実施形態2に係る製造方法において施される工程を示す断面図である。5 (a) to 5 (d) are cross-sectional views illustrating steps performed in the manufacturing method according to Embodiment 2 of the present invention. 図6(a)~(c)は、図5(d)の続きであり、本発明の実施形態2に係る製造方法において施される工程を示す図である。6 (a) to 6 (c) are diagrams subsequent to FIG. 5 (d) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention. 図7(a),(b)は、図6(c)の続きであり、本発明の実施形態2に係る製造方法において施される工程を示す図である。FIGS. 7 (a) and 7 (b) are diagrams continuing from FIG. 6 (c) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention. 図8(a),(b)は、図7(b)の続きであり、本発明の実施形態2に係る製造方法において施される工程を示す図である。8 (a) and 8 (b) are diagrams subsequent to FIG. 7 (b) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention. 図9は、図8(a)においてフォトレジストがパターニングされた状態を示す平面図である。FIG. 9 is a plan view showing a state in which the photoresist is patterned in FIG. 図10(a)~(c)は、それぞれ、従来の製造方法において施される工程を示す断面図である。10 (a) to 10 (c) are cross-sectional views showing steps performed in the conventional manufacturing method. 図11(a)~(c)は、図10(c)の続きであり、それぞれ、従来の製造方法において施される工程を示す断面図である。11 (a) to 11 (c) are continuations of FIG. 10 (c), and are cross-sectional views showing steps performed in the conventional manufacturing method.
 以下、図面を参照しながら、本発明を実施するための形態について説明する。
 (実施形態1)
 図1(a)~図1(d)、および図2(a)~図2(d)に、本発明の電子部品の製造方法の実施形態1に係る、MIM型キャパシタ8を含む電子部品100の製造方法を示す。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
1 (a) to 1 (d) and FIGS. 2 (a) to 2 (d), an electronic component 100 including an MIM capacitor 8 according to Embodiment 1 of the method for manufacturing an electronic component of the present invention is shown. The manufacturing method of is shown.
 なお、本実施形態においては、基板1として直径150mmφのウエハを用意し、そのウエハに、MIM型キャパシタ8を含む電子部品100を7000個形成する。ただし、以下においては、便宜上、そのうちの1個の電子部品100のMIM型キャパシタ8部分を中心に説明する。 In the present embodiment, a wafer having a diameter of 150 mmφ is prepared as the substrate 1, and 7000 electronic components 100 including the MIM type capacitor 8 are formed on the wafer. However, in the following, for the sake of convenience, the description will focus on the MIM type capacitor 8 portion of one of the electronic components 100.
 まず、図1(a)に示すように、基板1上に絶縁膜2を成膜する。基板1の材質、種類は任意である。また、絶縁膜2の材質、膜厚、形成方法等も任意である。ただし、絶縁膜2の材質としては、例えば、SiO、SiN、Al等を用いることができる。また、絶縁膜2の形成方法としては、例えば、スパッタリング、CVD等を用いることができる。 First, as shown in FIG. 1A, an insulating film 2 is formed on a substrate 1. The material and type of the substrate 1 are arbitrary. Further, the material, film thickness, formation method, and the like of the insulating film 2 are arbitrary. However, as a material of the insulating film 2, for example, SiO 2 , SiN, Al 2 O 3 or the like can be used. Moreover, as a formation method of the insulating film 2, sputtering, CVD, etc. can be used, for example.
 次に、同じく図1(a)に示すように、絶縁膜2上に、所定の形状からなる導電膜3を形成する。導電膜3の材質、膜厚、形成方法等は任意である。ただし、材質としては、例えば、Ti、Al、Ta、Au、Cu、W等を用いることができる。導電膜3は、その一部分が、MIM型キャパシタ8の第1電極13を構成する。 Next, as shown in FIG. 1A, a conductive film 3 having a predetermined shape is formed on the insulating film 2. The material, film thickness, formation method, and the like of the conductive film 3 are arbitrary. However, as a material, for example, Ti, Al, Ta, Au, Cu, W, or the like can be used. A part of the conductive film 3 constitutes the first electrode 13 of the MIM capacitor 8.
 次に、図1(b)に示すように、絶縁膜2及び第1電極13(導電膜3)上に、絶縁膜4を形成する。絶縁膜4の材質、形成方法等は、例えば、絶縁膜2の材質、形成方法等と同一にすることができる。ただし、絶縁膜4の一部分は、MIM型キャパシタの容量を形成する層間絶縁膜14を構成するため、絶縁膜4の膜厚については、別途、厳格な値が定められる。 Next, as shown in FIG. 1B, the insulating film 4 is formed on the insulating film 2 and the first electrode 13 (conductive film 3). The material, formation method, and the like of the insulating film 4 can be the same as the material, formation method, and the like of the insulating film 2, for example. However, since a part of the insulating film 4 constitutes the interlayer insulating film 14 that forms the capacitance of the MIM capacitor, a strict value is separately determined for the film thickness of the insulating film 4.
 次に、図示しないが、本発明の特徴的な工程であるパラメータ測定工程として、MIM型キャパシタ8の層間絶縁膜14(絶縁膜4)の膜厚面内分布を測定する。すなわち、本実施形態においては、それよりも前の工程において作製された電子部品要素のパラメータとして、層間絶縁膜14(絶縁膜4)の膜厚を測定する。膜厚の測定は、例えば、光学式膜厚計を使用しておこなう。 Next, although not shown, as a parameter measurement process that is a characteristic process of the present invention, the in-plane distribution of the film thickness of the interlayer insulating film 14 (insulating film 4) of the MIM capacitor 8 is measured. That is, in the present embodiment, the film thickness of the interlayer insulating film 14 (insulating film 4) is measured as a parameter of the electronic component element manufactured in the previous process. The film thickness is measured using, for example, an optical film thickness meter.
 上述の通り、本実施形態においては、1個のウエハに、MIM型キャパシタ8を含む電子部品100を7000個形成する。MIM型キャパシタ8の層間絶縁膜14(絶縁膜4)は、加工ばらつき等により膜厚がばらつく場合がある。この膜厚のばらつきは、ウエハ間で発生する場合もあるが、1個のウエハ内においても領域ごとに発生する場合がある。 As described above, in the present embodiment, 7000 electronic components 100 including the MIM capacitor 8 are formed on one wafer. The film thickness of the interlayer insulating film 14 (insulating film 4) of the MIM capacitor 8 may vary due to processing variations and the like. This variation in film thickness may occur between wafers, but may also occur from region to region within a single wafer.
 そこで、本実施形態においては、1個のウエハを複数の領域に区分し、区分ごとに層間絶縁膜14(絶縁膜4)の膜厚を測定し、後述するフォトレジスト露光工程において、区分ごとに露光されるフォトレジストのパターン形状を補正する。なお、上記区分を、ウエハの各電子部品の各MIM型キャパシタ8が形成される領域ごとに設定すれば、MIM型キャパシタ8ごとにフォトレジストのパターン形状の補正をすることができ、MIM型キャパシタ8の特性精度を格段に向上させることができる。 Therefore, in this embodiment, one wafer is divided into a plurality of regions, and the film thickness of the interlayer insulating film 14 (insulating film 4) is measured for each of the sections. The pattern shape of the exposed photoresist is corrected. If the above division is set for each region where each MIM type capacitor 8 of each electronic component of the wafer is formed, the pattern shape of the photoresist can be corrected for each MIM type capacitor 8, and the MIM type capacitor can be corrected. The characteristic accuracy of 8 can be remarkably improved.
 ところで、MIM型キャパシタに蓄えられる電気量Q(C)は、Q=CVで表される。ここにCは静電容量(F)である。Vは電圧(V)である。 Incidentally, the quantity of electricity Q (C) stored in the MIM type capacitor is represented by Q = CV. Here, C is a capacitance (F). V is a voltage (V).
 そして、コンデンサの静電容量C(F)は、C=εS/dで表される。ここにεは層間絶縁膜14の誘電率である。Sは層間絶縁膜14を挟んで対向する第1電極13と後述する第2電極15との対向面積(m)である。dは層間絶縁膜14の膜厚(m)である。 The capacitance C (F) of the capacitor is expressed by C = εS / d. Here, ε is the dielectric constant of the interlayer insulating film 14. S is an opposing area (m 2 ) between the first electrode 13 and the second electrode 15 (to be described later) facing each other across the interlayer insulating film 14. d is the film thickness (m) of the interlayer insulating film 14.
 したがって、コンデンサの静電容量Cを予め定められた規定値に保つためには、層間絶縁膜14の膜厚の加工ばらつきに応じて、第2電極15の大きさを補正し、第1電極13と第2電極15との対向面積Sを補正すれば良い。具体的には、層間絶縁膜14の膜厚が予め定められた規定値よりも小さい場合には、第2電極15の大きさを小さくして、第1電極13と第2電極15との対向面積Sを小さくすれば良い。逆に、層間絶縁膜14の膜厚が予め定められた規定値よりも大きい場合には、第2電極15の大きさを大きくして、第1電極13と第2電極15との対向面積Sを大きくすれば良い。 Therefore, in order to keep the capacitance C of the capacitor at a predetermined specified value, the size of the second electrode 15 is corrected in accordance with the processing variation of the film thickness of the interlayer insulating film 14, and the first electrode 13 is corrected. What is necessary is just to correct the facing area S between the first electrode 15 and the second electrode 15. Specifically, when the thickness of the interlayer insulating film 14 is smaller than a predetermined specified value, the size of the second electrode 15 is reduced and the first electrode 13 and the second electrode 15 are opposed to each other. What is necessary is just to make the area S small. On the contrary, when the film thickness of the interlayer insulating film 14 is larger than a predetermined value, the size of the second electrode 15 is increased and the facing area S between the first electrode 13 and the second electrode 15 is increased. Should be increased.
 なお、上述の通り、キャパシタの静電容量Cは、第1電極と第2電極との対向面積Sに比例し、層間絶縁膜の膜厚dに反比例する。したがって、静電容量Cが大きいキャパシタを省スペースで形成するためには、第1電極と第2電極との対向面積Sをあまり大きくすることはできず、層間絶縁膜の膜厚dを小さくしなければならなかった。そのため、層間絶縁膜の膜厚dに加工ばらつきがあると、静電容量Cが大きくばらついてしまい、規定値の範囲から容易に外れてしまいやすかった。すなわち、層間絶縁膜の膜厚dの加工ばらつきが、MIM型キャパシタの歩留まりの低下の大きな原因になっていた。本発明は、このような問題を解決するのに寄与するものである。 As described above, the capacitance C of the capacitor is proportional to the facing area S between the first electrode and the second electrode, and inversely proportional to the film thickness d of the interlayer insulating film. Therefore, in order to form a capacitor having a large capacitance C in a space-saving manner, the facing area S between the first electrode and the second electrode cannot be increased so much, and the film thickness d of the interlayer insulating film is reduced. I had to. For this reason, if the film thickness d of the interlayer insulating film has a variation in processing, the capacitance C varies greatly, and it is easy to easily deviate from the specified value range. That is, the variation in processing of the film thickness d of the interlayer insulating film is a major cause of a decrease in the yield of the MIM type capacitor. The present invention contributes to solving such problems.
 次に、図1(c)に示すように、絶縁膜4(層間絶縁膜14)上に、導電膜5を形成する。導電膜5の材質、膜厚、形成方法等は、例えば、導電膜3の材質、膜厚、形成方法等と同一にすることができる。この導電膜5は、後述するように、エッチングされてMIM型キャパシタの第2電極15になる。 Next, as shown in FIG. 1C, a conductive film 5 is formed on the insulating film 4 (interlayer insulating film 14). The material, film thickness, formation method, and the like of the conductive film 5 can be the same as the material, film thickness, formation method, and the like of the conductive film 3, for example. As will be described later, the conductive film 5 is etched to become the second electrode 15 of the MIM type capacitor.
 次に、図1(d)に示すように、導電膜5上に、フォトレジスト6を形成する。フォトレジスト6の材質、膜厚、形成方法等は任意である。また、フォトレジスト6が、ポジ型であるか、ネガ型であるかも任意である。なお、フォトレジスト6は、後述するように、導電膜5をエッチングするため使用される。 Next, as shown in FIG. 1D, a photoresist 6 is formed on the conductive film 5. The material, film thickness, formation method, and the like of the photoresist 6 are arbitrary. Further, it is optional whether the photoresist 6 is a positive type or a negative type. The photoresist 6 is used for etching the conductive film 5 as will be described later.
 次に、図2(a)に示すように、フォトマスクを使用しない直接描画方式により、フォトレジスト6を所望のパターン形状に露光する。 Next, as shown in FIG. 2A, the photoresist 6 is exposed to a desired pattern shape by a direct drawing method without using a photomask.
 具体的には、以下のような補正工程を行う。
 まず、測定することにより得られた層間絶縁膜14(絶縁膜4)の膜厚に基づいて、膜厚のばらつきによる静電容量のばらつきが小さくなるように、第2電極15のパターンを補正するための、DMDパターンデータを作製する。そして、該パターンデータを用いてパターン露光を行う。この工程により、層間絶縁膜14(絶縁膜4)の膜厚ばらつきに拠らない静電容量を有するMIM型キャパシタ8を得ることができる。
Specifically, the following correction process is performed.
First, based on the thickness of the interlayer insulating film 14 (insulating film 4) obtained by measurement, the pattern of the second electrode 15 is corrected so that the variation in capacitance due to the variation in film thickness is reduced. For this purpose, DMD pattern data is prepared. Then, pattern exposure is performed using the pattern data. By this step, the MIM type capacitor 8 having a capacitance that does not depend on the film thickness variation of the interlayer insulating film 14 (insulating film 4) can be obtained.
 この工程は、本発明の特徴的な工程であるフォトレジスト露光工程であり、上述したパラメータ測定工程において得られた、前記区分ごとの層間絶縁膜14(絶縁膜4)の膜厚に応じて、区分ごとに露光されるパターン形状を補正しながら行う。上述した通り、各区分において、層間絶縁膜14(絶縁膜4)の膜厚が予め定められた規定値よりも小さい場合には、第2電極15の大きさが小さくなるように、層間絶縁膜14(絶縁膜4)の膜厚が予め定められた規定値よりも大きい場合には、第2電極15の大きさが大きくなるように、露光されるパターン形状を補正する。 This step is a photoresist exposure step which is a characteristic step of the present invention, and is obtained in the parameter measurement step described above, depending on the thickness of the interlayer insulating film 14 (insulating film 4) for each of the sections. This is performed while correcting the pattern shape exposed for each section. As described above, in each section, when the thickness of the interlayer insulating film 14 (insulating film 4) is smaller than a predetermined value, the interlayer insulating film is reduced so that the size of the second electrode 15 is reduced. When the film thickness of 14 (insulating film 4) is larger than a predetermined value, the pattern shape to be exposed is corrected so that the size of the second electrode 15 is increased.
 なお、フォトレジスト露光工程は、直接描画方式の露光装置7を用いて行う。露光装置7の詳細は任意であるが、例えば、光源7aと、DMD7bとフォーカスレンズ7cとを備える。DMD7bは、多数枚(例えば数十万枚)の微小なマイクロミラーを備え、それらの傾きをそれぞれ電子制御することにより、所望の露光パターン形状を造り出すことができる。 The photoresist exposure process is performed using the direct drawing type exposure apparatus 7. Although details of the exposure apparatus 7 are arbitrary, for example, a light source 7a, a DMD 7b, and a focus lens 7c are provided. The DMD 7b includes a large number of micromirrors (for example, hundreds of thousands), and a desired exposure pattern shape can be created by electronically controlling the inclination of each micromirror.
 次に、図2(b)に示すように、フォトレジスト6を現像する。
 次に、図2(c)に示すように、フォトレジスト6を用いて、導電膜5をエッチングし、MIM型キャパシタ8の第2電極15を形成する。
Next, as shown in FIG. 2B, the photoresist 6 is developed.
Next, as shown in FIG. 2C, the conductive film 5 is etched using the photoresist 6 to form the second electrode 15 of the MIM capacitor 8.
 なお、本実施形態においては、まず導電膜5を形成し、次にフォトレジスト6を用いて導電膜5をエッチングすることによりMIM型キャパシタ8の第2電極15を形成しているが、これに代えて、フォトレジスト6に形成されるパターン形状を反転させておき、リフトオフ工程によりMIM型キャパシタ8の第2電極15を形成することも可能である。 In the present embodiment, the conductive film 5 is formed first, and then the conductive film 5 is etched using the photoresist 6 to form the second electrode 15 of the MIM type capacitor 8. Alternatively, the pattern shape formed on the photoresist 6 can be reversed, and the second electrode 15 of the MIM capacitor 8 can be formed by a lift-off process.
 次に、図2(d)に示すように、フォトレジスト6を除去し、MIM型キャパシタ8を完成させる。MIM型キャパシタ8は、層間絶縁膜14の膜厚の加工ばらつきに基づいて、第2電極15のパターン形状を補正しているため、規定値の範囲内の適正な静電容量特性を備えている。 Next, as shown in FIG. 2D, the photoresist 6 is removed, and the MIM capacitor 8 is completed. Since the MIM type capacitor 8 corrects the pattern shape of the second electrode 15 based on the processing variation of the film thickness of the interlayer insulating film 14, the MIM type capacitor 8 has an appropriate capacitance characteristic within a specified value range. .
 この後、図示しないが、更に、必要に応じて、成膜工程、フォトリソグラフィー工程、エッチング工程、ウエハのカット工程等を実施して、第1電極13、層間絶縁膜14、第2電極15からなるMIM型キャパシタ8を含む電子部品100を完成させる。 Thereafter, although not shown, a film forming process, a photolithography process, an etching process, a wafer cutting process, and the like are further performed as necessary, and the first electrode 13, the interlayer insulating film 14, and the second electrode 15 are used. The electronic component 100 including the MIM type capacitor 8 is completed.
 以上、本発明の実施形態に係る電子部品100の製造方法について説明した。
 しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更を加えることができる。
The method for manufacturing the electronic component 100 according to the embodiment of the present invention has been described above.
However, the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
 例えば、上述した実施形態では、MIM型キャパシタ8を内部に含んだ電子部品100の製造方法を示したが、本発明によって製造される電子部品の種類は任意であり、これには限定されない。例えば、半導体デバイスや圧電デバイス等であっても良い。 For example, in the above-described embodiment, the method for manufacturing the electronic component 100 including the MIM type capacitor 8 is shown. However, the type of the electronic component manufactured by the present invention is arbitrary and is not limited thereto. For example, a semiconductor device or a piezoelectric device may be used.
 また、上述した実施形態では、パラメータ測定工程でMIM型キャパシタの層間絶縁膜14の膜厚を測定し、フォトレジスト露光工程で、導電膜5をエッチングして第2電極15を形成するためのフォトレジスト6のパターン形状を補正しているが、パラメータ測定工程で測定される電子部品要素のパラメータや、フォトレジスト露光工程で補正されるフォトレジストが何を形成するために使用されるフォトレジストであるか等も任意であり、上述した内容には限定されない。 In the above-described embodiment, the film thickness of the interlayer insulating film 14 of the MIM capacitor is measured in the parameter measurement process, and the photoconductive film 5 is etched to form the second electrode 15 in the photoresist exposure process. Although the pattern shape of the resist 6 is corrected, the electronic component element parameter measured in the parameter measurement process and the photoresist corrected in the photoresist exposure process are used for forming the photoresist. These are also arbitrary, and are not limited to the above-described contents.
 (実施形態2)
 本実施形態においては、電子部品が振動装置を含むものを例示して、電子部品の製造方法について説明する。
(Embodiment 2)
In the present embodiment, an electronic component manufacturing method will be described by exemplifying an electronic component including a vibration device.
 図3は、本発明の実施形態2に係る振動装置を示す斜視図である。図4は、図3に示すIV-IV線に沿った断面図である。図3および図4を参照して、本実施形態に係る振動装置40について説明する。 FIG. 3 is a perspective view showing a vibration device according to Embodiment 2 of the present invention. FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. With reference to FIG. 3 and FIG. 4, the vibration apparatus 40 which concerns on this embodiment is demonstrated.
 図3および図4に示すように、振動装置40は、支持部20と、振動腕30a,30b,30cとを備える共振型振動子である。振動腕30a,30b,30cの基端は、支持部20に接続されている。 As shown in FIGS. 3 and 4, the vibration device 40 is a resonance-type vibrator including the support portion 20 and the vibrating arms 30a, 30b, and 30c. The base ends of the vibrating arms 30 a, 30 b, and 30 c are connected to the support unit 20.
 振動腕30a,30b,30cは、支持部20から延出するように設けられている。振動腕30a,30b,30cは、片持ち梁構造を有する。振動腕30a,30b,30cの先端は、自由端となる。したがって、振動腕30a,30b,30cは、振動可能に構成されている。 The vibrating arms 30a, 30b, and 30c are provided so as to extend from the support portion 20. The vibrating arms 30a, 30b, and 30c have a cantilever structure. The tips of the vibrating arms 30a, 30b, and 30c are free ends. Therefore, the vibrating arms 30a, 30b, and 30c are configured to be able to vibrate.
 振動腕30a,30b,30cが並ぶ方向における支持部20の両端には、振動腕30a,30b,30cと平行に延びるように側枠50,60が接続されている。支持部20および側枠50,60は、フォトリソ法等によって一体に形成されている。 Side frames 50 and 60 are connected to both ends of the support portion 20 in the direction in which the vibrating arms 30a, 30b, and 30c are arranged so as to extend in parallel with the vibrating arms 30a, 30b, and 30c. The support part 20 and the side frames 50 and 60 are integrally formed by a photolithography method or the like.
 図4に示すように、振動腕30a,30b,30cは、酸化ケイ素膜32、振動部としてのSi層31、酸化ケイ素膜33、および励振部34により構成されている。酸化ケイ素膜32、Si層31、酸化ケイ素膜33、および励振部34は、この順で積層されている。 As shown in FIG. 4, the vibrating arms 30a, 30b, 30c are composed of a silicon oxide film 32, a Si layer 31 as a vibrating part, a silicon oxide film 33, and an exciting part 34. The silicon oxide film 32, the Si layer 31, the silicon oxide film 33, and the excitation unit 34 are stacked in this order.
 Si層31は、たとえば縮退半導体であるn型Si半導体によって構成されている。n型ドーパントのドーピング濃度は、1×1019/cm以上である。上記n型ドーパントとしては、P、AsまたはSbなどの第15元素を採用することができる。 Si layer 31 is made of, for example, an n-type Si semiconductor that is a degenerate semiconductor. The doping concentration of the n-type dopant is 1 × 10 19 / cm 3 or more. As the n-type dopant, a fifteenth element such as P, As, or Sb can be employed.
 Si層31は、酸化ケイ素膜32と酸化ケイ素膜33とによって挟まれている。Si層31の下面には酸化ケイ素膜32が設けられている。Si層31の上面には酸化ケイ素膜33が設けられている。酸化ケイ素膜32および酸化ケイ素膜33は、たとえばSiOによって構成される。 The Si layer 31 is sandwiched between the silicon oxide film 32 and the silicon oxide film 33. A silicon oxide film 32 is provided on the lower surface of the Si layer 31. A silicon oxide film 33 is provided on the upper surface of the Si layer 31. The silicon oxide film 32 and the silicon oxide film 33 are made of, for example, SiO 2 .
 なお、酸化ケイ素膜32および酸化ケイ素膜33は、SiOに限定されず、SiaOb(a、bは整数)の適宜の組成を有する酸化ケイ素材料により構成することができる。また、酸化ケイ素膜32と酸化ケイ素膜33とは、省略されていてもよい。 Note that the silicon oxide film 32 and the silicon oxide film 33 are not limited to SiO 2 and can be formed of a silicon oxide material having an appropriate composition of SiaOb (a and b are integers). Further, the silicon oxide film 32 and the silicon oxide film 33 may be omitted.
 酸化ケイ素膜33の上方には、励振部34が設けられている。励振部34は、第1電極36、圧電薄膜35、および第2電極37を有する。第1電極36、圧電薄膜35、および第2電極37は、この順で積層されている。第1電極36および第2電極37は、圧電薄膜35を挟むように設けられている。 An excitation unit 34 is provided above the silicon oxide film 33. The excitation unit 34 includes a first electrode 36, a piezoelectric thin film 35, and a second electrode 37. The first electrode 36, the piezoelectric thin film 35, and the second electrode 37 are stacked in this order. The first electrode 36 and the second electrode 37 are provided so as to sandwich the piezoelectric thin film 35 therebetween.
 また、酸化ケイ素膜33の上面には、圧電薄膜35aが設けられている。さらに、第2電極37を覆うように、圧電薄膜35の上面に圧電薄膜35bが設けられている。圧電薄膜35aは、シード層として機能する。圧電薄膜35bは、保護層として機能する。圧電薄膜35a,35bは、励振部34を構成するものではなく、省略されていてもよい。 Further, a piezoelectric thin film 35 a is provided on the upper surface of the silicon oxide film 33. Further, a piezoelectric thin film 35 b is provided on the upper surface of the piezoelectric thin film 35 so as to cover the second electrode 37. The piezoelectric thin film 35a functions as a seed layer. The piezoelectric thin film 35b functions as a protective layer. The piezoelectric thin films 35a and 35b do not constitute the excitation unit 34, and may be omitted.
 圧電薄膜35を構成する圧電材料は、特に限定されないが、バルク波を利用した振動装置では、Q値が高いことが好ましい。このため、電気機械結合係数kは小さいが、Q値が高い、AlNが好適に用いられる。 Although the piezoelectric material which comprises the piezoelectric thin film 35 is not specifically limited, In the vibration apparatus using a bulk wave, it is preferable that Q value is high. For this reason, AlN having a small electromechanical coupling coefficient k 2 but a high Q value is preferably used.
 もっとも、ZnO,Sc置換AlN、PZT、KNNなどを用いてもよい。Sc置換AlN膜(ScAlN)は、ScとAlの原子濃度を100at%から50at%程度であることが好ましい。 However, ZnO, Sc-substituted AlN, PZT, KNN, etc. may be used. The Sc-substituted AlN film (ScAlN) preferably has an atomic concentration of Sc and Al of about 100 at% to 50 at%.
 ScAlNは、AlNよりも電気機械結合係数kが大きく、PZTやKNNよりも機械的なQmが大きいため、共振型振動子に適用することで以下の利点がある。共振型振動子の用途として発振器がある。たとえば、TCXO(温度補償型発振器)では、内蔵する温度センサの信号を、振動子と直列接続された可変容量素子にフィードバックし、可変容量素子の容量値を変化させる。それによって、発振周波数を調整することができる。この際、圧電薄膜としてAlNの代わりにScAlNを用いると、共振型振動子の比帯域が広がる。これにより、発振周波数の調整範囲を広げることができる。 ScAlN has an electromechanical coupling coefficient k 2 larger than that of AlN and a mechanical Qm larger than that of PZT and KNN. Therefore, ScAlN has the following advantages when applied to a resonance type resonator. There is an oscillator as an application of the resonance type vibrator. For example, in a TCXO (temperature compensated oscillator), a signal from a built-in temperature sensor is fed back to a variable capacitance element connected in series with a vibrator to change the capacitance value of the variable capacitance element. Thereby, the oscillation frequency can be adjusted. At this time, if ScAlN is used instead of AlN as the piezoelectric thin film, the specific band of the resonant vibrator is expanded. Thereby, the adjustment range of the oscillation frequency can be expanded.
 同様にScAlNをVCXO(電圧制御発振器)に用いる場合は、発振周波数の調整範囲が広がるため、共振型振動子の初期の周波数ばらつきを可変容量素子で調整することができ、周波数調整工程のコストが大幅に削減される。 Similarly, when ScAlN is used in a VCXO (voltage controlled oscillator), since the adjustment range of the oscillation frequency is widened, the initial frequency variation of the resonance type vibrator can be adjusted by the variable capacitance element, and the cost of the frequency adjustment process is reduced. Significantly reduced.
 第1電極36および第2電極37は、Mo、Ru、Pt、Ti、Cr、Al、Cu、Ag、またはこれらの合金などの適宜の金属により形成することができる。 The first electrode 36 and the second electrode 37 can be formed of an appropriate metal such as Mo, Ru, Pt, Ti, Cr, Al, Cu, Ag, or an alloy thereof.
 圧電薄膜35は、厚み方向に分極している。このため、第1電極36および第2電極37間に交番電界を印加することにより、励振部34が圧電効果により励振される。その結果、振動腕30a,30b,30cは、上下方向に屈曲振動する。 The piezoelectric thin film 35 is polarized in the thickness direction. For this reason, by applying an alternating electric field between the first electrode 36 and the second electrode 37, the excitation unit 34 is excited by the piezoelectric effect. As a result, the vibrating arms 30a, 30b, 30c bend and vibrate in the vertical direction.
 中央に位置する振動腕30bと、その両側に位置する振動腕30a,30cとは、逆位相で上下方向に屈曲振動する。これは、振動腕30a,30cに印加される交番電界の位相と、振動腕30bに印加される交番電界の位相とを逆位相とすることにより達成し得る。あるいは、圧電薄膜35における分極方向を、中央に位置する振動腕30bと、その両側に位置する振動腕30a,30cとで逆方向としてもよい。 The vibrating arm 30b located in the center and the vibrating arms 30a and 30c located on both sides of the vibrating arm 30b bend and vibrate in the vertical direction with opposite phases. This can be achieved by setting the phase of the alternating electric field applied to the vibrating arms 30a and 30c and the phase of the alternating electric field applied to the vibrating arm 30b to opposite phases. Alternatively, the polarization direction of the piezoelectric thin film 35 may be reversed between the vibrating arm 30b located in the center and the vibrating arms 30a and 30c located on both sides thereof.
 側枠50,60は、酸化ケイ素膜22、Si基板21、酸化ケイ素膜32、Si層31、酸化ケイ素膜33、および圧電薄膜35が積層されることにより構成されている。支持部20も側枠50,60同様に構成されている。 The side frames 50 and 60 are configured by laminating the silicon oxide film 22, the Si substrate 21, the silicon oxide film 32, the Si layer 31, the silicon oxide film 33, and the piezoelectric thin film 35. The support portion 20 is configured similarly to the side frames 50 and 60.
 Si基板21の上面には、凹部21aが形成されている。振動腕30a,30b,30cは、凹部21aの上方に配置されている。Si基板21は、支持部20及び側枠50,60の一部を構成する支持基板である。酸化ケイ素膜22は、保護膜であり、Si基板21の下面に設けられている。 A recess 21 a is formed on the upper surface of the Si substrate 21. The vibrating arms 30a, 30b, and 30c are disposed above the recess 21a. The Si substrate 21 is a support substrate that constitutes a part of the support unit 20 and the side frames 50 and 60. The silicon oxide film 22 is a protective film and is provided on the lower surface of the Si substrate 21.
 図5(a)~(d)は、本発明の実施形態2に係る製造方法において施される工程を示す断面図である。図6(a)~(c)は、図5(d)の続きであり、本発明の実施形態に係る製造方法において施される工程を示す図である。図7(a),(b)は、図6(c)の続きであり、本発明の実施形態2に係る製造方法において施される工程を示す図である。図8(a),(b)は、図7(b)の続きであり、本発明の実施形態2に係る製造方法において施される工程を示す図である。 FIGS. 5A to 5D are cross-sectional views showing steps performed in the manufacturing method according to Embodiment 2 of the present invention. 6 (a) to 6 (c) are diagrams subsequent to FIG. 5 (d) and showing steps performed in the manufacturing method according to the embodiment of the present invention. FIGS. 7 (a) and 7 (b) are diagrams continuing from FIG. 6 (c) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention. 8 (a) and 8 (b) are diagrams subsequent to FIG. 7 (b) and showing steps performed in the manufacturing method according to Embodiment 2 of the present invention.
 図5(a)~(d)、図6(a)~(c)、図7(a),(b)、および図8(a),(b)を参照して、電子部品としての振動装置40の製造方法について説明する。 With reference to FIGS. 5 (a) to (d), FIGS. 6 (a) to (c), FIGS. 7 (a) and (b), and FIGS. 8 (a) and 8 (b), vibration as an electronic component A method for manufacturing the device 40 will be described.
 まず、図5(a)に示すように、Si基板21を用意する。Si基板21の上面にエッチングにより凹部21aを形成する。凹部21aの深さは10μm~30μm程度とすればよい。 First, as shown in FIG. 5A, a Si substrate 21 is prepared. A recess 21a is formed on the upper surface of the Si substrate 21 by etching. The depth of the recess 21a may be about 10 μm to 30 μm.
 次に、図5(b)に示すように、ドーピング濃度が1×1019/cm以上でPがドープされたSi層31を用意し、Si層31の上面及び下面に酸化ケイ素膜32,33Aを形成する。酸化ケイ素膜32,33Aは熱酸化法により形成する。熱酸化法により形成された酸化ケイ素膜はQ値の劣化が生じ難いため好ましい。酸化ケイ素膜32,33Aの厚みは、0.4μmとする。 Next, as shown in FIG. 5B, a Si layer 31 having a doping concentration of 1 × 10 19 / cm 3 or more and doped with P is prepared, and a silicon oxide film 32 is formed on the upper and lower surfaces of the Si layer 31. 33A is formed. The silicon oxide films 32 and 33A are formed by a thermal oxidation method. A silicon oxide film formed by a thermal oxidation method is preferable because the Q value hardly deteriorates. The thickness of the silicon oxide films 32 and 33A is 0.4 μm.
 続いて、図5(c)に示すように、Si基板21上に、酸化ケイ素膜32,33Aが形成されているSi層31を積層する。積層に際しては、Si基板21の凹部21aが設けられている側の面に、酸化ケイ素膜32を接触させる。 Subsequently, as shown in FIG. 5C, the Si layer 31 on which the silicon oxide films 32 and 33 </ b> A are formed is laminated on the Si substrate 21. At the time of stacking, the silicon oxide film 32 is brought into contact with the surface of the Si substrate 21 on which the concave portion 21a is provided.
 次に、図5(d)に示すように、研磨により、酸化ケイ素膜33Aを除去し、さらにSi層31の厚みを薄くする。それによって、Si層31の厚みを、10μm程度とする。 Next, as shown in FIG. 5D, the silicon oxide film 33A is removed by polishing, and the thickness of the Si layer 31 is further reduced. Thereby, the thickness of the Si layer 31 is set to about 10 μm.
 続いて、図示しないが、本発明の特徴的な工程であるパラメータ測定工程として、Si層31の膜厚面内分布を測定する。すなわち、本実施形態においては、それよりも前の工程において作製された電子部品要素のパラメータとして、振動部としてのSi層31の膜厚を測定する。膜厚測定は、たとえば、光学式膜厚系を使用して行なう。 Subsequently, although not shown, the in-plane thickness distribution of the Si layer 31 is measured as a parameter measurement process that is a characteristic process of the present invention. That is, in this embodiment, the film thickness of the Si layer 31 as the vibration part is measured as a parameter of the electronic component element produced in the previous process. The film thickness is measured using, for example, an optical film thickness system.
 本実施形態においては、1個のウエハに、振動装置40を含む電子部品100をたとえば、数千個形成する。振動装置40のSi層31は、加工ばらつき等により膜厚がばらつく場合がある。この膜厚のばらつきは、ウエハ間で発生する場合もあるが、1個のウエハ内においても領域ごとに発生する場合がある。 In this embodiment, for example, several thousand electronic parts 100 including the vibration device 40 are formed on one wafer. The Si layer 31 of the vibration device 40 may vary in film thickness due to processing variations or the like. This variation in film thickness may occur between wafers, but may also occur from region to region within a single wafer.
 そこで、本実施形態においては、1個のウエハを複数の領域に区分し、区分ごとにSi層31の膜厚を測定し、後述するフォトレジスト露光工程において、区分ごとに露光されるフォトレジストのパターン形状を補正する。 Therefore, in this embodiment, one wafer is divided into a plurality of regions, the film thickness of the Si layer 31 is measured for each of the regions, and in the photoresist exposure process described later, the photoresist exposed for each of the regions is measured. Correct the pattern shape.
 なお、上記区分を、ウエハの各電子部品の各振動装置40が形成される領域ごとに設定すれば、振動装置40毎にフォトレジストのパターン形状の補正をすることができ、振動装置40の特性精度を格段に向上させることができる。 If the above division is set for each region where each vibration device 40 of each electronic component of the wafer is formed, the pattern shape of the photoresist can be corrected for each vibration device 40, and the characteristics of the vibration device 40 can be corrected. The accuracy can be greatly improved.
 ところで、振動装置40が有する振動腕30a,30b,30cの共振周波数frは、下記数式(1)により示される。 By the way, the resonance frequency fr of the vibrating arms 30a, 30b, and 30c included in the vibrating device 40 is expressed by the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このため、複数の振動装置40間で共振周波数frを予め定められた規定値に保つためには、Si層31の膜厚のばらつきに応じて、振動腕30a,30b,30cの長さを補正すればよい。 For this reason, in order to maintain the resonance frequency fr between the plurality of vibration devices 40 at a predetermined specified value, the lengths of the vibrating arms 30a, 30b, and 30c are corrected according to the variation in the film thickness of the Si layer 31. do it.
 具体的には、Si層31の膜厚が予め定められた規定値よりも小さい場合には、振動腕30a,30b,30cの長さを短くする。逆に、Si層31の膜厚が予め定められた規定値よりも大きい場合には、振動腕30a,30b,30cの長さを長くする。なお、振動腕30a,30b,30cの長さを補正する方法については、図8(a),(b)および図9を用いて、後述する。 Specifically, when the thickness of the Si layer 31 is smaller than a predetermined value, the lengths of the vibrating arms 30a, 30b, and 30c are shortened. Conversely, when the film thickness of the Si layer 31 is larger than a predetermined value, the lengths of the vibrating arms 30a, 30b, and 30c are increased. A method for correcting the length of the vibrating arms 30a, 30b, and 30c will be described later with reference to FIGS. 8A, 8B, and 9. FIG.
 振動腕30a,30b,30cの長さを補正しない場合には、Si層31の膜厚分布に応じて、複数の振動装置40間で共振周波数frが大きくばらついてしまい、規定値の範囲から容易に外れてしまい易かった。すなわち、Si層31の膜厚のばらつきが、振動装置40の歩留りの低下の大きな原因となっていた。本発明は、このような問題を解決するのに寄与するものである。 When the lengths of the vibrating arms 30a, 30b, and 30c are not corrected, the resonance frequency fr varies greatly between the plurality of vibrating devices 40 according to the film thickness distribution of the Si layer 31, and it is easy from the specified value range. It was easy to come off. That is, the variation in the film thickness of the Si layer 31 is a major cause of a decrease in the yield of the vibration device 40. The present invention contributes to solving such problems.
 次に、図6(a)に示すように、熱酸化法により、Si層31の上面に酸化ケイ素膜33を形成するとともに、Si基板21の下面に酸化ケイ素膜22を形成する。酸化ケイ素膜33の厚みは0.4μmとする。 Next, as shown in FIG. 6A, a silicon oxide film 33 is formed on the upper surface of the Si layer 31 and a silicon oxide film 22 is formed on the lower surface of the Si substrate 21 by thermal oxidation. The thickness of the silicon oxide film 33 is 0.4 μm.
 続いて、図6(b)に示すように、酸化ケイ素膜33の上面に、30nm~100nm程度の厚みでAlNからなる圧電薄膜35aを形成した後に、圧電薄膜35aの上面に第1電極36を形成する。第1電極36は、Moからなる第1の層とAlからなる第2の層とが積層された積層電極である。圧電薄膜35aはシード層であり、圧電薄膜35aが設けられていることにより、第1電極36におけるMoからなる第1の層が高い配向性で形成される。 Subsequently, as shown in FIG. 6B, after the piezoelectric thin film 35a made of AlN having a thickness of about 30 nm to 100 nm is formed on the upper surface of the silicon oxide film 33, the first electrode 36 is formed on the upper surface of the piezoelectric thin film 35a. Form. The first electrode 36 is a laminated electrode in which a first layer made of Mo and a second layer made of Al are laminated. The piezoelectric thin film 35a is a seed layer, and by providing the piezoelectric thin film 35a, the first layer made of Mo in the first electrode 36 is formed with high orientation.
 次に、図6(c)に示すように、圧電薄膜35aと第1電極36との上面にAlNからなる圧電薄膜35を形成した後に、圧電薄膜35の上面に第2電極37を形成する。第2電極37は、Moからなる第1の層とAlからなる第2の層とが積層された積層電極である。第1電極36と第2電極37とは、例えば、スパッタリング法を用いたリフトオフ・プロセスにより形成する。 Next, as shown in FIG. 6C, after the piezoelectric thin film 35 made of AlN is formed on the upper surfaces of the piezoelectric thin film 35 a and the first electrode 36, the second electrode 37 is formed on the upper surface of the piezoelectric thin film 35. The second electrode 37 is a laminated electrode in which a first layer made of Mo and a second layer made of Al are laminated. The first electrode 36 and the second electrode 37 are formed by, for example, a lift-off process using a sputtering method.
 続いて、図7(a)に示すように、圧電薄膜35と第2電極37との上面に、30nm~100nm程度の厚みでAlNからなる圧電薄膜35bを形成する。 Subsequently, as shown in FIG. 7A, a piezoelectric thin film 35b made of AlN is formed on the upper surface of the piezoelectric thin film 35 and the second electrode 37 to a thickness of about 30 nm to 100 nm.
 次に、図示しないが、フォトレジスト塗布工程にて、圧電薄膜35b上にフォトレジスト70を塗布する。フォトレジスト70の材質、膜厚、形成方法等は任意である。また、フォトレジスト70が、ポジ型であるか、ネガ型であるかも任意である。なお、フォトレジスト70は、後述するように、圧電薄膜35b,35,35a、酸化ケイ素膜33、Si層31および酸化ケイ素膜32をエッチングするために使用される。 Next, although not shown, a photoresist 70 is applied on the piezoelectric thin film 35b in a photoresist application process. The material, film thickness, formation method, and the like of the photoresist 70 are arbitrary. Further, it is optional whether the photoresist 70 is a positive type or a negative type. The photoresist 70 is used to etch the piezoelectric thin films 35b, 35, 35a, the silicon oxide film 33, the Si layer 31, and the silicon oxide film 32, as will be described later.
 次に、図7(b)に示すように、フォトマスクを使用しない直接描画方式により、フォトレジスト70を所望のパターン形状に露光する。 Next, as shown in FIG. 7B, the photoresist 70 is exposed to a desired pattern shape by a direct drawing method without using a photomask.
 具体的には、以下のような補正工程を行う。
 まず、測定することにより得られたSi層31の膜厚に基づいて、膜厚のばらつきによる共振周波数frのばらつきが小さくなるように、振動腕30a,30b,30cの長さを補正するためのDMDパターンデータを作製する。そして、該パターンデータを用いてパターン露光を行う。
Specifically, the following correction process is performed.
First, based on the film thickness of the Si layer 31 obtained by the measurement, the lengths of the vibrating arms 30a, 30b, and 30c are corrected so that the variation in the resonance frequency fr due to the film thickness variation is reduced. DMD pattern data is created. Then, pattern exposure is performed using the pattern data.
 この工程は、本発明の特徴的な工程であるフォトレジスト露光工程であり、上述したパラメータ測定工程において得られた、前記区分ごとのSi層31の膜厚に応じて、区分ごとに露光されるパターン形状を補正しながら行う。上述した通り、各区分において、Si層31の膜厚が予め定められた規定値よりも小さい場合には、振動腕30a,30b,30cの長さが短くなるように、露光されるパターン形状を補正する。一方、Si層31の膜厚が予め定められた規定値よりも大きい場合には、振動腕30a,30b,30cの長さが長くなるように、露光されるパターン形状を補正する。 This step is a photoresist exposure step which is a characteristic step of the present invention, and exposure is performed for each section according to the film thickness of the Si layer 31 for each section obtained in the parameter measurement step described above. This is performed while correcting the pattern shape. As described above, in each section, when the thickness of the Si layer 31 is smaller than a predetermined value, the pattern shape to be exposed is set so that the lengths of the vibrating arms 30a, 30b, and 30c are shortened. to correct. On the other hand, when the thickness of the Si layer 31 is larger than a predetermined value, the exposed pattern shape is corrected so that the lengths of the vibrating arms 30a, 30b, and 30c are increased.
 なお、フォトレジスト露光工程は、直接描画方式の露光装置7を用いて行う。露光装置7の詳細は任意であるが、例えば、光源7aと、DMD7bとフォーカスレンズ7cとを備える。DMD7bは、多数枚(例えば数十万枚)の微小なマイクロミラーを備え、それらの傾きをそれぞれ電子制御することにより、所望の露光パターン形状を造り出すことができる。 The photoresist exposure process is performed using the direct drawing type exposure apparatus 7. Although details of the exposure apparatus 7 are arbitrary, for example, a light source 7a, a DMD 7b, and a focus lens 7c are provided. The DMD 7b includes a large number of micromirrors (for example, hundreds of thousands), and a desired exposure pattern shape can be created by electronically controlling the inclination of each micromirror.
 次に、図8(a)に示すように、現像工程にてフォトレジスト70を現像する。これにより、フォトレジスト70が所望の形状にパーニングされる。図9は、図8(a)においてフォトレジストがパターニングされた状態を示す平面図である。 Next, as shown in FIG. 8A, the photoresist 70 is developed in a development process. Thereby, the photoresist 70 is panned into a desired shape. FIG. 9 is a plan view showing a state in which the photoresist is patterned in FIG.
 図9に示すように、フォトレジスト70は、支持部20、側枠50,60および振動腕30a,30b,30cに対応する部分を覆うようにパターンニングされている。上述のように露光されるパターン形状を補正することにより、フォトレジスト70のうち振動腕30a,30b,30cに対応する部分における基端から先端までの長さを調整することができる。 As shown in FIG. 9, the photoresist 70 is patterned so as to cover portions corresponding to the support portion 20, the side frames 50, 60, and the vibrating arms 30a, 30b, 30c. By correcting the exposed pattern shape as described above, the length from the proximal end to the distal end of the portion of the photoresist 70 corresponding to the vibrating arms 30a, 30b, 30c can be adjusted.
 続いて、図8(b)に示すように、所望の形状にパターンニングされたフォトレジスト70を用いて、ドライエッチングまたはウェットエッチングにより、所定の長さを有する振動腕30a,30b,30cおよび側枠50,60が形成されるとともに、振動装置40が製造される。 Subsequently, as shown in FIG. 8B, the vibrating arms 30a, 30b, 30c and the side having a predetermined length are formed by dry etching or wet etching using a photoresist 70 patterned in a desired shape. The frames 50 and 60 are formed, and the vibration device 40 is manufactured.
 以上のように、本実施形態においては、Si層の厚みを測定し、測定された厚みに応じて、振動装置40が形成される領域ごとに、露光されるパターン形状を補正して、所望の形状にフォトレジスト70をパターニングすることにより、振動腕30a,30b,30cの長さを調整することができる。これにより、振動装置40間の共振周波数frのばらつきを抑制させることができ、特性精度を格段に向上させることができる。この結果、振動装置40の歩留りの低下を抑制することができる。 As described above, in the present embodiment, the thickness of the Si layer is measured, and the exposed pattern shape is corrected for each region where the vibration device 40 is formed according to the measured thickness. By patterning the photoresist 70 in the shape, the length of the vibrating arms 30a, 30b, 30c can be adjusted. Thereby, the dispersion | variation in the resonant frequency fr between the oscillating devices 40 can be suppressed, and characteristic accuracy can be improved significantly. As a result, a decrease in yield of the vibration device 40 can be suppressed.
 上述した実施形態2においては、振動装置40が形成される領域ごとに、露光されるパターン形状を補正する場合を例示して説明したが、これに限定されず、一つの振動装置40が形成される領域内にて、Si層の厚みに応じて、各振動腕30a,30b,30cの長さが異なるように露光されるパターン形状を補正してもよい。 In Embodiment 2 described above, the case where the pattern shape to be exposed is corrected for each region where the vibration device 40 is formed is described as an example. However, the present invention is not limited to this, and one vibration device 40 is formed. The pattern shape to be exposed may be corrected so that the lengths of the vibrating arms 30a, 30b, and 30c are different depending on the thickness of the Si layer.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all changes within the scope.
 1 基板、2,4 絶縁膜、5 導電膜、6 レジスト、7 直接描画方式の露光装置、8 MIM型キャパシタ、13 第1電極(導電膜3から形成されたもの)、14 層間絶縁膜(絶縁膜4から形成されたもの)、15 第2電極(導電膜5から形成されたもの)、20 支持部、21 基板、21a 凹部、22 酸化ケイ素膜、30a,30b,30c 振動腕、31 Si層、32,33,33A 酸化ケイ素膜、34 励振部、35,35a,35b 圧電薄膜、36 第1電極、37 第2電極、40 振動装置、50,60 側枠、100 電子部品、101 基板、102 半導体部、102a 能動層、103 絶縁体部、104 ゲート電極、104A 導電体、106 フォトマスク、200 半導体デバイス。 1 substrate, 2, 4 insulating film, 5 conductive film, 6 resist, 7 direct drawing type exposure apparatus, 8 MIM type capacitor, 13 first electrode (formed from conductive film 3), 14 interlayer insulating film (insulating) 15 formed from the film 4), 15 second electrode (formed from the conductive film 5), 20 support part, 21 substrate, 21a recess, 22 silicon oxide film, 30a, 30b, 30c vibrating arm, 31 Si layer , 32, 33, 33A silicon oxide film, 34 excitation part, 35, 35a, 35b piezoelectric thin film, 36 first electrode, 37 second electrode, 40 vibration device, 50, 60 side frame, 100 electronic component, 101 substrate, 102 Semiconductor part, 102a active layer, 103 insulator part, 104 gate electrode, 104A conductor, 106 photomask, 200 semiconductor device

Claims (5)

  1.  前の工程において作製された電子部品要素のパラメータを測定するパラメータ測定工程と、
     フォトレジスト塗布工程と、
     直接描画方式を用いるフォトレジスト露光工程と、
     フォトレジスト現像工程と、を含み、
     前記フォトレジスト露光工程は、前記パラメータ測定工程で得られたパラメータに基づき、前記パラメータのばらつきを減じるように補正されたパターンデータを作製し、前記パターンデータを用いてパターン露光を行う、電子部品の製造方法。
    A parameter measuring step for measuring parameters of the electronic component element produced in the previous step;
    A photoresist coating process;
    A photoresist exposure process using a direct drawing method;
    A photoresist development process,
    The photoresist exposure step creates pattern data corrected so as to reduce the variation in the parameter based on the parameter obtained in the parameter measurement step, and performs pattern exposure using the pattern data. Production method.
  2.  前記電子部品が、第1電極と、層間絶縁膜と、第2電極とが積層されたMIM型キャパシタを含み、
     前記パラメータ測定工程で測定されるパラメータが、前記層間絶縁膜の膜厚であり、
     前記フォトレジスト露光工程で補正されるパターン形状が、前記第2電極を形成するためのパターン形状である、請求項1に記載された電子部品の製造方法。
    The electronic component includes a MIM type capacitor in which a first electrode, an interlayer insulating film, and a second electrode are stacked.
    The parameter measured in the parameter measurement step is the film thickness of the interlayer insulating film,
    The method for manufacturing an electronic component according to claim 1, wherein the pattern shape corrected in the photoresist exposure step is a pattern shape for forming the second electrode.
  3.  前記フォトレジスト露光工程は、
     前記パラメータ測定工程で測定された前記層間絶縁膜の前記膜厚が、予め定められた値よりも小さい場合には、前記第2電極の形状が予め定められた値よりも小さくなるように、前記パターン形状の大きさを補正し、
     前記パラメータ測定工程で測定された前記層間絶縁膜の前記膜厚が、予め定められた値よりも大きい場合には、前記第2電極の形状が予め定められた値よりも大きくなるように、前記パターン形状の大きさを補正する、請求項2に記載された電子部品の製造方法。
    The photoresist exposure process includes
    When the film thickness of the interlayer insulating film measured in the parameter measurement step is smaller than a predetermined value, the shape of the second electrode is made smaller than a predetermined value. Correct the size of the pattern shape,
    When the film thickness of the interlayer insulating film measured in the parameter measurement step is larger than a predetermined value, the shape of the second electrode is set to be larger than a predetermined value. The method for manufacturing an electronic component according to claim 2, wherein the size of the pattern shape is corrected.
  4.  前記電子部品が、振動部と、前記振動部上に形成され前記振動部を振動させるための励振部を有する振動子を含み、
     前記パラメータ測定工程で測定されるパラメータが、前記振動部の厚みであり、
     前記フォトレジスト露光工程で補正されるパターン形状が、前記振動部の形状を特定するためのパターン形状である、請求項1に記載された電子部品の製造方法。
    The electronic component includes a vibrator and a vibrator that is formed on the vibrator and has an excitation unit for vibrating the vibrator.
    The parameter measured in the parameter measurement step is the thickness of the vibrating part,
    The method for manufacturing an electronic component according to claim 1, wherein the pattern shape corrected in the photoresist exposure step is a pattern shape for specifying the shape of the vibrating portion.
  5.  1個のウエハに複数個の前記電子部品を形成することとし、
     前記パラメータ測定工程は、前記ウエハを複数の領域に区分し、区分ごとに前記電子部品要素のパラメータを測定し、
     前記フォトレジスト露光工程は、前記区分ごとに前記パターン形状を補正する、請求項1ないし4のいずれか1項に記載された電子部品の製造方法。
    A plurality of the electronic components are formed on one wafer;
    In the parameter measurement step, the wafer is divided into a plurality of regions, and the parameters of the electronic component elements are measured for each division.
    5. The method of manufacturing an electronic component according to claim 1, wherein the photoresist exposure step corrects the pattern shape for each of the sections. 6.
PCT/JP2015/071316 2014-08-18 2015-07-28 Electronic component production method WO2016027628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016543884A JP6380540B2 (en) 2014-08-18 2015-07-28 Manufacturing method of electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166022 2014-08-18
JP2014-166022 2014-08-18

Publications (1)

Publication Number Publication Date
WO2016027628A1 true WO2016027628A1 (en) 2016-02-25

Family

ID=55350574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071316 WO2016027628A1 (en) 2014-08-18 2015-07-28 Electronic component production method

Country Status (2)

Country Link
JP (1) JP6380540B2 (en)
WO (1) WO2016027628A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040670A (en) * 2000-07-21 2002-02-06 Murata Mfg Co Ltd Resist exposure device
JP2004304135A (en) * 2003-04-01 2004-10-28 Nikon Corp Exposure device, exposing method and manufacturing method of micro-device
JP2004319899A (en) * 2003-04-18 2004-11-11 Nikon Corp Exposure device and exposure method
JP2005173563A (en) * 2003-11-07 2005-06-30 Asml Netherlands Bv Lithography device and device manufacturing method
JP2007027613A (en) * 2005-07-21 2007-02-01 Fujitsu Ltd Parameter extraction method
WO2007094443A1 (en) * 2006-02-17 2007-08-23 Nikon Corporation Adjusting method, substrate treating method, substrate treating device, exposure device, inspection device, measurement inspection system, treating device, computer system, program, and information recording medium
JP2011158718A (en) * 2010-02-01 2011-08-18 Hitachi High-Technologies Corp Exposure apparatus, exposure method and method for manufacturing panel substrate for display
JP2012042587A (en) * 2010-08-17 2012-03-01 Dainippon Screen Mfg Co Ltd Direct drawing method and direct drawing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040670A (en) * 2000-07-21 2002-02-06 Murata Mfg Co Ltd Resist exposure device
JP2004304135A (en) * 2003-04-01 2004-10-28 Nikon Corp Exposure device, exposing method and manufacturing method of micro-device
JP2004319899A (en) * 2003-04-18 2004-11-11 Nikon Corp Exposure device and exposure method
JP2005173563A (en) * 2003-11-07 2005-06-30 Asml Netherlands Bv Lithography device and device manufacturing method
JP2007027613A (en) * 2005-07-21 2007-02-01 Fujitsu Ltd Parameter extraction method
WO2007094443A1 (en) * 2006-02-17 2007-08-23 Nikon Corporation Adjusting method, substrate treating method, substrate treating device, exposure device, inspection device, measurement inspection system, treating device, computer system, program, and information recording medium
JP2011158718A (en) * 2010-02-01 2011-08-18 Hitachi High-Technologies Corp Exposure apparatus, exposure method and method for manufacturing panel substrate for display
JP2012042587A (en) * 2010-08-17 2012-03-01 Dainippon Screen Mfg Co Ltd Direct drawing method and direct drawing device

Also Published As

Publication number Publication date
JP6380540B2 (en) 2018-08-29
JPWO2016027628A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
CN107005224B (en) Temperature compensation plate resonator
US20070139140A1 (en) Frequency tuning of film bulk acoustic resonators (FBAR)
US7876177B2 (en) Resonator having an output electrode underneath first and second electrode arms
JP6094671B2 (en) Vibration device
US20140117815A1 (en) Temperature compensated resonator device having low trim sensitivy and method of fabricating the same
US20070262831A1 (en) Electromechanical Transducer and Electrical Device
JP2008072691A (en) Resonator, apparatus having the same and fabrication method of resonator
CN105874709B (en) Piezoelectric vibrator and piezoelectric vibrating device
WO2014185282A1 (en) Vibrating device
JP6292486B2 (en) MEMS element
US6741147B2 (en) Method and apparatus for adjusting the resonant frequency of a thin film resonator
JP5468444B2 (en) Manufacturing method of tuning fork type crystal piece
JP6380540B2 (en) Manufacturing method of electronic parts
JP2008301111A (en) Edge mode piezoelectric vibration chip and frequency adjustment method thereof
JP2011217039A (en) Method of manufacturing tuning fork type quartz piece
JP2007173906A (en) Method of manufacturing piezoelectric resonator chip and piezoelectric device
US20130334929A1 (en) Resonator electrodes and related methods and apparatus
TW200945640A (en) Piezoelectric oscillator and method of the same
WO2016098868A1 (en) Piezoelectric vibrator and piezoelectric vibration device
JP2006042005A (en) Electromechanical resonator
JP2010187059A (en) Walk type vibration piece and method of manufacturing the same
US8669687B2 (en) Method of adjusting the resonance frequency of a micro-machined vibrating element
JP5864140B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP2008199438A (en) Piezoelectric vibrator and manufacturing method of piezoelectric vibrator
JP5231907B2 (en) Electrostatic vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834232

Country of ref document: EP

Kind code of ref document: A1