WO2016026390A1 - 一种用于激光扫平仪的电机控制电路 - Google Patents

一种用于激光扫平仪的电机控制电路 Download PDF

Info

Publication number
WO2016026390A1
WO2016026390A1 PCT/CN2015/086364 CN2015086364W WO2016026390A1 WO 2016026390 A1 WO2016026390 A1 WO 2016026390A1 CN 2015086364 W CN2015086364 W CN 2015086364W WO 2016026390 A1 WO2016026390 A1 WO 2016026390A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
control circuit
voltage
motor control
Prior art date
Application number
PCT/CN2015/086364
Other languages
English (en)
French (fr)
Inventor
张瓯
牛青
王建勇
Original Assignee
常州华达科捷光电仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州华达科捷光电仪器有限公司 filed Critical 常州华达科捷光电仪器有限公司
Publication of WO2016026390A1 publication Critical patent/WO2016026390A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the present invention relates to the field of optoelectronic device control circuits, and more particularly to a motor control circuit for a laser leveling device.
  • a laser leveling device is a device that forms a laser surface by horizontally rotating a visible semiconductor laser beam as a horizontal reference surface for a wide range of construction. According to the different construction sites, the laser leveling device is required to have multiple gears for rotational speed regulation, and the speed needs to be stable.
  • the speed control technology commonly used in the industry mainly achieves speed regulation and steady speed through PWM pulse width modulation and software PID parameter adjustment. The process of speed regulation and steady speed in the above manner has the following drawbacks:
  • the invention discloses a motor control circuit for a laser leveling device, which is connected to two ends of a motor, the motor control circuit comprises a motor speed control module, and the motor control circuit further comprises a motor speed stabilization module,
  • the motor steady speed module comprises a single chip microcomputer and a motor steady speed chip, wherein the single chip computer controls an operating state of the motor stable speed chip, the motor steady speed chip is connected to two ends of the motor;
  • the motor speed control module comprises a a resistance adjustable device, wherein the resistance adjustable device is connected to the motor steady speed chip as a load of the motor steady speed chip, and changing a resistance value of the resistance adjustable device can adjust a rotation of the motor speed.
  • the motor control circuit further includes a reference voltage circuit for providing a reference voltage; a load resistor is connected to the motor; the motor speed stabilization chip includes: a voltage follower connected to the reference voltage circuit, Outputting an output voltage consistent with the voltage and phase of the reference voltage; a transistor coupled to the motor to control current flow through the motor; a comparator coupled to the transistor and the load resistor to compare the load resistor The voltage across the two ends with the reference voltage and controls the conduction angle of the transistor.
  • a reference voltage circuit for providing a reference voltage
  • a load resistor is connected to the motor
  • the motor speed stabilization chip includes: a voltage follower connected to the reference voltage circuit, Outputting an output voltage consistent with the voltage and phase of the reference voltage; a transistor coupled to the motor to control current flow through the motor; a comparator coupled to the transistor and the load resistor to compare the load resistor The voltage across the two ends with the reference voltage and controls the conduction angle of the transistor.
  • the pin of the motor steady speed chip comprises: a voltage input end, a ground end, a load voltage input end, a motor control input end and a motor negative connection end; the voltage input end and the ground end are respectively connected to the reference Both ends of the voltage circuit; the load voltage input end and the motor control input end are led out from two inputs of the comparator and connected to both ends of the load resistor; the negative electrode connection end of the motor is set by the transistor The electrode is led out and connected to the negative pole of the motor.
  • the motor control circuit further includes a MOS transistor to control activation of the motor or Stopping; a gate of the MOS transistor is connected to the single chip; a source of the MOS transistor is grounded; and a drain of the MOS transistor is connected to a ground end of the motor stable chip.
  • a MOS transistor to control activation of the motor or Stopping; a gate of the MOS transistor is connected to the single chip; a source of the MOS transistor is grounded; and a drain of the MOS transistor is connected to a ground end of the motor stable chip.
  • the motor control circuit further includes a first filter regulator capacitor and a second filter regulator capacitor; the first filter regulator capacitor is connected to the load resistor; the second filter regulator capacitor One end is connected to the negative pole of the motor, and the other end is grounded.
  • the resistance adjustable device is a digital potentiometer.
  • the digital potentiometer is connected to the single chip microcomputer, and the resistance value of the digital potentiometer is controlled by the single chip microcomputer.
  • the motor rotates at 600 rpm; when the digital potentiometer has a resistance of 4.7 K ⁇ , the motor rotates at 300 rpm.
  • the motor control circuit further includes a motor speed measuring unit; the motor speed measuring unit is connected to the single chip microcomputer and the motor, detects the rotation speed of the motor, and feeds back the rotation speed to the single chip microcomputer.
  • the motor speed regulation is simple.
  • the digital potentiometer is used as an adjustable resistor for adjusting the external speed of the steady speed chip. It is convenient to adjust the resistance of the digital potentiometer.
  • FIG. 1 is a circuit diagram of a motor control circuit in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a block diagram of a motor steady speed chip in a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the equivalent speed of a motor in a preferred embodiment of the present invention.
  • FIG. 4 is a schematic view of a pin of a motor steady speed chip according to an embodiment of the invention.
  • the motor control circuit is connected to both ends of the motor of the laser leveling device for controlling the rotational speed of the motor.
  • the motor control circuit includes a motor steady speed module and a motor speed control module, and the motor steady speed module adopts a configuration of a single chip and a motor steady speed chip, and the motor steady speed chip is connected at both ends of the motor, and utilizes its own nature and function. , the motor speed is stabilized and constant speed adjustment.
  • the single chip microcomputer is connected with the motor steady speed chip, and controls the working state of the motor steady speed chip working or not.
  • the device includes a resistance adjustable device, and the resistance adjustable device is connected with the motor steady speed chip to serve as a load of the motor steady speed chip, thereby, when the resistance value of the resistance adjustable device is When a change occurs, the current flowing through the motor's steady-speed chip also changes accordingly. Further, the current flowing through the motor is changed, thereby achieving the function of speed regulation.
  • the motor speed changes the motor stabilizes the chip. The speed of the motor is gradually stabilized (constant speed), that is, the speed regulation of the motor speed is adjusted and constant.
  • the model of the motor steady speed chip may be a common motor speed chip for a floppy disk drive, a magnetic tape, etc., such as NJM2606, TDA7274, LA5521D, KA2402, D5521D, etc. It can be understood that the chip itself has a stable motor speed. It can be applied to the motor steady speed chip in the present invention. Because the prior art optical disk drive and the magnetic motor are in a state of constant rotation during operation, the motor stable speed chip commonly used for the floppy disk drive and the magnetic tape only needs to have the function of stabilizing the motor speed, and does not need to change the rotation speed of the motor during use. Therefore, in the prior art, there is no way in which the resistance adjustable device and the motor steady speed chip are used together.
  • the resistance adjustable device can be configured as a digital potentiometer, which itself has a larger number of taps, thereby selecting a digital potentiometer having a suitable number of taps according to different speed regulation requirements.
  • the digital potentiometer is used as a device with adjustable resistance, and its connection mode with the motor steady speed chip can adopt I2C, SPI and other interface modes.
  • the digital potentiometer is connected with the single chip microcomputer, and the resistance adjustment of the digital potentiometer can be converted into operation on the single chip microcomputer, whereby the control of the motor steady speed chip and the digital potentiometer can be performed on the single chip microcomputer. Completed, it is convenient for the user to complete the steady speed operation at the same time.
  • the user can also adjust the resistance directly on the digital potentiometer, depending on the actual working environment.
  • the resistance adjustable device is not limited to the configuration of the digital potentiometer, and the user understands that other devices having adjustable resistance properties, such as a resistance box, a thermistor, etc., can be applied to the present invention.
  • the digital potentiometer is small in size and convenient to adjust, and is described as a preferred embodiment.
  • the rotation speed of the motor can be 600 rpm; if the resistance of the digital potentiometer is 4.7 K ⁇ , the rotation speed of the motor is 300 rpm.
  • the relationship between the resistance value of the digital potentiometer and the motor rotation speed in the above embodiment is only a reference, and different users can adjust the relationship between the resistance value and the motor rotation speed according to actual working conditions.
  • the relationship between the resistance value and the motor rotation speed will be described together with the principle of steady speed operation.
  • FIG. 2 a block diagram of a motor speed stabilization chip in accordance with a preferred embodiment of the present invention.
  • motor control The circuit further includes a reference voltage circuit coupled to the motor steady speed chip to provide a reference voltage.
  • the reference voltage circuit can be obtained by directly connecting to the power supply.
  • a voltage dividing resistor R1 and a load resistor R2 are connected at both ends of the motor, and the voltage dividing resistor R1 and the load resistor R2 are connected in series with the resistance adjustable device R3 (the digital potentiometer R3 in this embodiment) and are connected in parallel to the motor. Both ends.
  • the motor speed stabilization chip includes a voltage follower, an input terminal is connected to the reference voltage circuit, and an output voltage corresponding to the voltage and phase of the reference voltage is input; and a transistor whose collector is connected to the motor, The current flowing through the transistor will flow to the motor at the same time, that is, the current of the transistor directly determines the current of the motor; a comparator whose output is connected to the source of the transistor, and the two input terminals are respectively connected to the ends of the load resistor R2, The input voltage of the comparator is the voltage across the load resistor R2, the comparator compares the voltage across the load resistor R2, and compares the voltage with the reference voltage, and determines whether to change the conduction angle of the transistor by the result of the comparison. After the conduction angle is changed, the current value flowing through the transistor is changed.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the equivalent speed of the motor and the pin diagram of the motor steady speed chip in a preferred embodiment of the present invention.
  • the pins of the motor steady speed chip include a voltage input terminal (3 pins), a ground terminal (5 pins), a load voltage input terminal (6 pins), a motor control input terminal (8 pins), and a motor negative connection terminal (4 pins). .
  • the voltage input terminal (3 pins) and the ground terminal (5 pins) are connected to both ends of the reference voltage circuit, and the reference voltage circuit in the figure is the power supply voltage.
  • the load voltage input terminal (6-pin) and the motor control input terminal (8-pin) are led out from the two input terminals of the comparator and connected to both ends of the load resistor R2.
  • the negative terminal of the motor (pin 4) is led out from the collector of the transistor and connected to the negative pole of the motor.
  • the motor steady speed chip further includes a MOS transistor Q1 for controlling the starting and stopping of the motor.
  • the gate of the MOS transistor Q1 is connected to the single chip microcomputer, and is connected to the single chip microcomputer.
  • the conduction state of the MOS transistor Q1 is controlled, the source thereof is grounded, and the drain is connected to the ground terminal of the motor stable chip.
  • the high level is sent to the gate of the MOS transistor Q1 through the single chip microcomputer, then the MOS transistor Q1 is turned on, the motor stable speed chip starts normal operation, and the driving motor rotates; and the single chip sends a low level to the gate of the MOS transistor Q1.
  • the MOS tube Q1 is turned off, the motor steady speed chip stops working, and the drive motor stops.
  • the motor control circuit further includes a first filter voltage stabilizing capacitor C1 and a second filter voltage stabilizing capacitor C2, wherein the first filter voltage stabilizing capacitor C1 is connected to both ends of the voltage dividing resistor R1 or the load resistor R2 (The figure shows the voltage dividing resistor R1 at both ends), one end of the second filter regulator capacitor C2 is connected to the negative pole of the motor, and the other end is grounded.
  • the setting of two filter voltage regulators further filters and stabilizes the voltage across the motor, reducing the time required for the motor to stabilize the motor voltage.
  • the motor control circuit further includes a motor speed measuring unit connected to the single chip and the motor to detect the rotational speed of the motor and send the detected result to the single chip microcomputer.
  • the user can visually observe the change of the motor speed from the single-chip microcomputer. If the required speed is not reached, the resistance-adjustable device can be operated and the resistance value can be adjusted to finally complete the purpose of adjusting the motor speed.
  • the resistance of the digital potentiometer R3 is first changed by the single-chip microcomputer, because the digital potentiometer R3 is connected in parallel at both ends of the motor steady speed chip, and The voltage across the load resistor R2 remains constant. After the resistance of the digital potentiometer R3 changes, the voltage across the digital potentiometer R3 will also change, causing the voltage across the motor to change.
  • the voltage across the load resistor R2 is defined as the reference voltage V ref
  • the current flowing through the load resistor R2 is the reference current I ref
  • the input of the comparator is the reference voltage V ref
  • the comparator compares the reference voltage V ref with the magnitude of the reference voltage. If the two are the same size, the conduction angle of the transistor is not changed, and the existing motor speed is maintained; If the reference current I ref changes due to the change of the resistance of the digital potentiometer R3, here the digital resistance of the digital potentiometer R3 becomes large, the reference current I ref becomes smaller, and the reference voltage V ref also becomes smaller.
  • the reference voltage V ref is made different from the reference voltage.
  • the comparator When the comparator detects that the reference voltage is different from the reference voltage, it controls the transistor connected to the output of the comparator to change its conduction angle to increase the reference current I ref until the reference voltage V ref is equal to the reference voltage. At this time, since the resistance of the digital potentiometer R3 has become larger, the voltage across the R3 becomes larger, so that the voltage at both ends of the control motor becomes larger, and the effect of speed regulation and steady speed is completed. Since the whole steady-speed process is continuous closed-loop speed regulation, the ripple interference of the power supply process to the power supply is greatly reduced, and the stability of the system is improved.
  • the reference voltage setting value may be 0.2V, or between 0.18V and 0.22V, and the specific setting value may be determined by referring to the chip specification.
  • the motor speed is proportional to the reference voltage of the motor's steady-speed chip. Specifically, it is:
  • I ref V ref /R 2 ,
  • the voltage across the motor is only related to the constant K after the resistance values of R1, R2, and R3 are fixed.
  • Those skilled in the art only need to first consult the data to understand the value of K or obtain the test, and then can adjust The resistance of the digital potentiometer R3 is used to obtain the required motor speed.
  • the process of stabilizing the speed of the motor steady speed chip is a closed-loop control process, and the adjustment time is short, the overshoot is low, and the ripple interference generated by the power supply is small.
  • the single-chip microcomputer only serves as the control motor whether the speed-speed chip works, the resistance value of the digital potentiometer, and does not need to modulate the PWM signal for adjustment, and the resources of the part are liberated for other control fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

一种用于激光扫平仪的电机控制电路,包括电机调速模块和稳速模块,稳速模块包括单片机以及电机稳速芯片,单片机控制电机稳速芯片,电机稳速芯片连接于电机两端。电机调速模块包括阻值可调器件,改变阻值可调器件的阻值可调整电机的转动速度。该控制电路提高了单片机的使用效率。

Description

一种用于激光扫平仪的电机控制电路 技术领域
本发明涉及光电设备控制电路领域,尤其涉及一种用于激光扫平仪的电机控制电路。
技术背景
激光扫平仪是将一束可视半导体激光束,通过水平旋转的方式形成一个激光面,作为大范围施工的水平基准面的设备。根据施工现场的不同,需要激光扫平仪要有多档位的旋转调速,且转速需要稳定。现在业界所普遍采用的调速技术,主要是通过PWM脉宽调制和软件PID参数调节的方式来实现调速和稳速。通过上述方式进行调速和稳速的过程,具有以下缺陷:
1.在对电机进行低转速控制时,由于速度检测的反馈时间周期变长,导致超调量增大,速度稳定时间较长。
2.PWM调制时,在电源上产生的纹波较大,对高精度的水平电子传感器的采样精度产生影响;
3.当PWM调制时,若占空比较小,其带载能力差,当负载过大时调整速度较为困难,同时调整的时延迟滞过大;
4.PID运算和PWM调速,占用MCU软、硬件的资源,对单片机的系统要求较高。
因此,亟需一种新型的用于激光扫平仪的电机控制电路,替代PWM调制的方式,以解决上述缺陷。
发明概要
为了克服上述技术缺陷,本实用新型的目的在于提供一种用于激光扫平仪的电机控制电路。
本发明公开了一种用于激光扫平仪的电机控制电路,连接于一电机的两端,所述电机控制电路包括电机调速模块,所述电机控制电路还包括一电机稳速模块,所述电机稳速模块包括一单片机及电机稳速芯片,所述单片机控制所述电机稳速芯片的工作状态,所述电机稳速芯片连接于所述电机的两端;所述电机调速模块包括一阻值可调器件,所述阻值可调器件与所述电机稳速芯片连接以作为所述电机稳速芯片的负载,改变所述阻值可调器件的阻值可调整所述电机的转动速度。
优选地,所述电机控制电路还包括一基准电压电路,提供一基准电压;所述电机两端连接有负载电阻;所述电机稳速芯片包括:电压跟随器,与所述基准电压电路连接,输出一与所述基准电压的电压和相位一致的输出电压;晶体管,与所述电机连接,控制流过所述电机的电流;比较器,与所述晶体管和负载电阻连接,比较所述负载电阻两端电压与所述基准电压,并控制所述晶体管的导通角。
优选地,所述电机稳速芯片的引脚包括:电压输入端、接地端、负载电压输入端、电机控制输入端及电机负极连接端;所述电压输入端与接地端分别连接于所述基准电压电路的两端;所述负载电压输入端、电机控制输入端由所述比较器的两路输入引出,连接于所述负载电阻的两端;所述电机负极连接端由所述晶体管的集电极引出,连接于所述电机的负极。
优选地,所述电机控制电路还包括一MOS管,控制所述电机的启动或 停止;所述MOS管的栅极与所述单片机连接;所述MOS管的源极接地;所述MOS管的漏极与所述电机稳速芯片的接地端连接。
优选地,所述电机控制电路还包括第一滤波稳压电容及第二滤波稳压电容;所述第一滤波稳压电容连接于所述负载电阻两端;所述第二滤波稳压电容的一端连接于所述电机的负极,另一端接地。
优选地,所述阻值可调器件为数字电位器。
优选地,所述数字电位器与所述单片机连接,由所述单片机控制所述数字电位器的阻值。
优选地,所述数字电位器阻值为18KΩ时,所述电机的转速为600rpm;所述数字电位器阻值为4.7KΩ时,所述电机的转速为300rpm。
优选地,所述电机控制电路还包括电机测速单元;所述电机测速单元与所述单片机及电机连接,检测所述电机的转速并将所述转速反馈至所述单片机。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.由于电机稳速芯片内部设有电压和电流闭环调速功能,其调节时稳速时间短,超调量低;
2.电机调速阶段时连续闭环调节,对电源产生的纹波干扰较小,降低对模拟电路部分的干扰;
3.电机调速简单,通过数字电位器作为调整稳速芯片外接的可调电阻,改变数字电位器的阻值可以很方便的进行调速;
4.对单片机资源占用少,只需要利用单片机的普通IO口即可实现调速,不需要占用PWM口及相应的寄存器。
附图说明
图1为本发明一优选实施例中电机控制电路的电路示意图;
图2为本发明一优选实施例中电机稳速芯片的块状图;
图3为本发明一优选实施例中电机稳速等效示意图;
图4为本发明一实施例中电机稳速芯片的引脚示意图。
发明内容
以下结合附图与具体实施例进一步阐述本发明的优点。
参阅图1,为本发明一优选实施例中电机控制电路的电路示意图。本发明中,电机控制电路连接在激光扫平仪的电机两端,用于控制电机的转速。其中电机控制电路包括有电机稳速模块及电机调速模块,电机稳速模块采用的是单片机与电机稳速芯片的配置,电机稳速芯片连接在电机的两端,利用其本身的性质和功能,对电机转速进行稳定和恒速调整。单片机与电机稳速芯片相连接,并控制电机稳速芯片工作与否的工作状态。而对于电机调速模块,其包含有一阻值可调器件,该阻值可调器件与电机稳速芯片连接,以作为电机稳速芯片的负载,由此,当阻值可调器件的阻值发生变化时,流过电机稳速芯片的电流也发生相应的变化,进一步地,便改变了流过电机的电流大小,从而达到调速的功能,待电机的转速变化时,电机稳速芯片便将电机的速度逐渐稳定(恒速),即达到了对电机转速调整并恒定的调速稳速过程。
上述实施例中,电机稳速芯片的型号可以是NJM2606、TDA7274、LA5521D、KA2402、D5521D等常见的用于光盘软驱、磁带等的电机稳速芯片,可以理解的是,本身具有稳定电机转速的芯片均可适用于本发明中的电机稳速芯片。 由于现有技术中光盘软驱、磁带在工作时电机处于恒定转动的状态,因此常用于光盘软驱、磁带的电机稳速芯片仅需要具有稳定电机转速的功能,使用时不需要对电机的转速进行改变,因此,现有技术中并未有阻值可调器件与电机稳速芯片的配合使用的方式。
优选地,阻值可调器件可配置为数字电位器,其本身具有较多的抽头数,从而根据不同的调速需求,选择具有合适抽头数的数字电位器。数字电位器作为阻值可调整的设备,其与电机稳速芯片的连接方式可采用I2C、SPI等接口方式。同时,可选地,将数字电位器与单片机连接,对数字电位器的阻值调节可转化为在单片机上进行操作,由此,对电机稳速芯片和数字电位器的控制均可在单片机上完成,方便使用者同时完成调速稳速的操作。当然,作为可选,使用者也可直接在数字电位器上调整其阻值,视实际工作环境而定。
上述实施例中,阻值可调器件不局限于数字电位器的配置,使用者可理解的是,具有阻值可调性质的其他器件如:电阻箱、热敏电阻等均可适用于本发明中,数字电位器在于其体积较小,调节方便,作为优选实施例说明。
具体地,在对数字电位器的阻值调整时,若数字电位器的阻值为18KΩ,电机的转速可为600rpm;若数字电位器的阻值为4.7KΩ时,电机的转速为300rpm。可以理解的是,上述实施例中数字电位器的阻值与电机转速的关系仅为参考,不同的使用者可根据实际工作情况调整阻值与电机转速间的关系。就本实施例而言,阻值与电机转速间的关系将在后文说明稳速工作原理时一并说明。
参阅图2,为本发明一优选实施例中电机稳速芯片的块状图。电机控制 电路中还包括有一基准电压电路,与电机稳速芯片连接,向其提供一基准电压,该实施例中,基准电压电路可以是通过直接与电源相连得到。在电机两端连接有分压电阻R1及负载电阻R2,同时,分压电阻R1、负载电阻R2与阻值可调器件R3(本实施例中为数字电位器R3)串联,并并联于电机的两端。具体地,电机稳速芯片包括一电压跟随器,其一输入端与基准电压电路连接,并输入一与基准电压的电压和相位一致的输出电压;一晶体管,它的集电极与电机连接,则流过晶体管的电流将同时流至电机,即晶体管电流大小直接决定了电机的电流大小;一比较器,其输出端与晶体管的源极连接,两输入端分别连接在负载电阻R2的两端,使得比较器的输入电压为负载电阻R2两端的电压,比较器将比较负载电阻R2两端的电压,并将该电压与基准电压进行比较,由比较的结果来确定是否改变晶体管的导通角,晶体管的导通角改变后,即改变了流过晶体管的电流值。
参阅图3及图4,分别为本发明一优选实施例中电机稳速等效示意图及电机稳速芯片的引脚示意图。电机稳速芯片的引脚包括有电压输入端(3脚)、接地端(5脚)、负载电压输入端(6脚)、电机控制输入端(8脚)、电机负极连接端(4脚)。其中,电压输入端(3脚)和接地端(5脚)连接在基准电压电路的两端,图示中基准电压电路为电源电压。而负载电压输入端(6脚)、电机控制输入端(8脚)是由比较器的两路输入端引出的,连接在负载电阻R2的两端。电机负极连接端(4脚)由晶体管的集电极引出,连接在电机的负极。
上述实施例中,电机稳速芯片还包括有一MOS管Q1,用于控制电机的启动和停止。具体地,如图1所示,MOS管Q1的栅极与单片机连接,由单片机 控制MOS管Q1的导通状态,其源极接地,漏极与电机稳速芯片的接地端连接。控制时,通过单片机发送高电平到MOS管Q1的栅极,则MOS管Q1导通,电机稳速芯片开始正常工作,驱动电机旋转;而单片机发送低电平到MOS管Q1的栅极时,MOS管Q1关断,电机稳速芯片停止工作,驱动电机停转。
同时,优选或可选地,电机控制电路还包括第一滤波稳压电容C1及第二滤波稳压电容C2,其中第一滤波稳压电容C1连接在分压电阻R1或负载电阻R2的两端(图示中为分压电阻R1两端),第二滤波稳压电容C2的一端连接在电机的负极,另一端接地。两个滤波稳压电容的设置,进一步地对电机两端的电压进行滤波并稳定,减少电机稳速芯片对电机电压的稳定所需要的时间。
优选地或可选地,本发明中,电机控制电路还包括有一电机测速单元,与单片机及电机连接,可检测电机的转速并将检测的结果发送到单片机处。使用者可直观地从单片机处观察到电机转速的变化,若未达到需要的转速,则可继续对阻值可调器件进行操作,调节其阻值,以最终完成调整电机转速的目的。
具有上述优选实施例的配置后,当使用者需要对电机转速进行调节时,首先通过单片机对数字电位器R3的阻值进行改变,由于数字电位器R3并联在电机稳速芯片的两端,且负载电阻R2两端的电压保持恒定,则数字电位器R3的阻值改变后,数字电位器R3两端的电压也将随之变化,从而使得电机两端的电压发生改变。具体地,将负载电阻R2两端的电压定义为参考电压Vref,流过负载电阻R2的电流为参考电流Iref,则比较器一输入端输入的便是该参考电压Vref,同时,比较器另一端输入的为基准电压电路输入的基 准电压,比较器将比较参考电压Vref与基准电压的大小,若两者大小相同,则不会改变晶体管的导通角,保持现有的电机转速;若由于数字电位器R3的阻值变化导致参考电流Iref发生改变,此处以数字电位器R3的阻值变大为例),参考电流Iref变小,参考电压Vref也随之变小,则使得参考电压Vref与基准电压不同。比较器检测到参考电压与基准电压不同时,对连接在比较器输出端的晶体管进行控制,改变其导通角,以增大参考电流Iref,直至参考电压Vref与基准电压相等。此时由于数字电位器R3的阻值已变大,则R3两端的电压随之变大,从而控制电机两端的电压变大,便完成调速、稳速的效果。由于整个稳速过程是连续的闭环调速,从而大大较少了调速过程对电源的纹波干扰,提高系统的稳定性。上述过程中,参考电压的设定值可为0.2V,亦或是在0.18V-0.22V之间,具体设定值可参照芯片规格而定。
由于电机稳速芯片本身的性质,电机转速与电机稳速芯片的参考电压呈比例关系,具体地,为:
Figure PCTCN2015086364-appb-000001
(其中K为电机稳速芯片内设定的电机转速与电压的比值)
而又因为:
Iref=Vref/R2
则可推得:
Figure PCTCN2015086364-appb-000002
可知电机两端的电压在R1、R2、R3的电阻值固定后,仅与常数K有关。本领域技术人员仅需先行查阅资料了解K的取值或是经过试验得到,便可调 节数字电位器R3的阻值来得到需要的电机转速。通过上述过程可理解的是,电机稳速芯片稳定转速的过程是一个闭环控制的过程,其调节时稳速时间短,超调量低,且对电源产生的纹波干扰较小。
在上述配置下,单片机仅作为控制电机稳速芯片是否工作、数字电位器的阻值大小,无须再调制PWM信号进行调节,则该部分的资源被解放出用于其他控制领域。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种用于激光扫平仪的电机控制电路,连接于一电机的两端,所述电机控制电路包括电机调速模块,其特征在于:
    所述电机控制电路还包括一电机稳速模块,所述电机稳速模块包括一单片机及电机稳速芯片,所述单片机控制所述电机稳速芯片的工作状态,所述电机稳速芯片连接于所述电机的两端;
    所述电机调速模块包括一阻值可调器件,所述阻值可调器件与所述电机稳速芯片连接以作为所述电机稳速芯片的负载,改变所述阻值可调器件的阻值可调整所述电机的转动速度。
  2. 如权利要求1所述的电机控制电路,其特征在于:
    所述电机控制电路还包括一基准电压电路,提供一基准电压;
    所述电机两端连接有负载电阻;
    所述电机稳速芯片包括:
    电压跟随器,与所述基准电压电路连接,输出一与所述基准电压的电压和相位一致的输出电压;
    晶体管,与所述电机连接,控制流过所述电机的电流;
    比较器,与所述晶体管和负载电阻连接,比较所述负载电阻两端电压与所述基准电压,并控制所述晶体管的导通角。
  3. 如权利要求2所述的电机控制电路,其特征在于:
    所述电机稳速芯片的引脚包括:电压输入端、接地端、负载电压输入端、电机控制输入端及电机负极连接端;
    所述电压输入端与接地端分别连接于所述基准电压电路的两端;
    所述负载电压输入端、电机控制输入端由所述比较器的两路输入引出,连接于所述负载电阻的两端;
    所述电机负极连接端由所述晶体管的集电极引出,连接于所述电机的负极。
  4. 如权利要求3所述的电机控制电路,其特征在于:
    所述电机控制电路还包括一MOS管,控制所述电机的启动或停止;
    所述MOS管的栅极与所述单片机连接;
    所述MOS管的源极接地;
    所述MOS管的漏极与所述电机稳速芯片的接地端连接。
  5. 如权利要求2所述的电机控制电路,其特征在于:
    所述电机控制电路还包括第一滤波稳压电容及第二滤波稳压电容;
    所述第一滤波稳压电容连接于所述负载电阻两端;
    所述第二滤波稳压电容的一端连接于所述电机的负极,另一端接地。
  6. 如权利要求1所述的电机控制电路,其特征在于:
    所述阻值可调器件为数字电位器。
  7. 如权利要求6所述的电机控制电路,其特征在于:
    所述数字电位器与所述单片机连接,由所述单片机控制所述数字电位器的阻值。
  8. 如权利要求6或7所述的电机控制电路,其特征在于:
    所述数字电位器阻值为18KΩ时,所述电机的转速为600rpm;
    所述数字电位器阻值为4.7KΩ时,所述电机的转速为300rpm。
  9. 如权利要求1所述的电机控制电路,其特征在于:
    所述电机控制电路还包括电机测速单元;
    所述电机测速单元与所述单片机及电机连接,检测所述电机的转速并将所述转速反馈至所述单片机。
PCT/CN2015/086364 2014-08-21 2015-08-07 一种用于激光扫平仪的电机控制电路 WO2016026390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410415702.6 2014-08-21
CN201410415702.6A CN104242751A (zh) 2014-08-21 2014-08-21 一种用于激光扫平仪的电机控制电路

Publications (1)

Publication Number Publication Date
WO2016026390A1 true WO2016026390A1 (zh) 2016-02-25

Family

ID=52230263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086364 WO2016026390A1 (zh) 2014-08-21 2015-08-07 一种用于激光扫平仪的电机控制电路

Country Status (2)

Country Link
CN (1) CN104242751A (zh)
WO (1) WO2016026390A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768744A (zh) * 2019-01-25 2019-05-17 宁波大学 一种直流电机控制装置及控制方法
CN115531730A (zh) * 2022-10-27 2022-12-30 南京大麦医疗科技有限公司 一种毫米波治疗仪波源输出自动调节电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242751A (zh) * 2014-08-21 2014-12-24 常州华达科捷光电仪器有限公司 一种用于激光扫平仪的电机控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1661951A1 (ru) * 1986-05-05 1991-07-07 Новополоцкий Политехнический Институт Им.Ленинского Комсомола Белоруссии Электропривод посто нного тока
CN101311547A (zh) * 2007-05-24 2008-11-26 上海福太隆汽车电子科技有限公司 汽车空调鼓风机控制电路
CN101373944A (zh) * 2008-06-25 2009-02-25 何伟斌 直流无刷电机驱动器
CN104242751A (zh) * 2014-08-21 2014-12-24 常州华达科捷光电仪器有限公司 一种用于激光扫平仪的电机控制电路
CN204103812U (zh) * 2014-08-21 2015-01-14 常州华达科捷光电仪器有限公司 一种用于激光扫平仪的电机控制电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868554A (en) * 1973-12-26 1975-02-25 Gen Electric Current limit system for DC motor control
US4240015A (en) * 1977-08-15 1980-12-16 Exxon Research & Engineering Co. Control system and method for operating a DC motor
CN1801362A (zh) * 2005-01-05 2006-07-12 贺于天 图文画带与其配音磁带同步播放方法及有声图文演播机
CN1980041A (zh) * 2005-12-08 2007-06-13 上海神力科技有限公司 一种燃料电池发动机空气输送装置风机稳速控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1661951A1 (ru) * 1986-05-05 1991-07-07 Новополоцкий Политехнический Институт Им.Ленинского Комсомола Белоруссии Электропривод посто нного тока
CN101311547A (zh) * 2007-05-24 2008-11-26 上海福太隆汽车电子科技有限公司 汽车空调鼓风机控制电路
CN101373944A (zh) * 2008-06-25 2009-02-25 何伟斌 直流无刷电机驱动器
CN104242751A (zh) * 2014-08-21 2014-12-24 常州华达科捷光电仪器有限公司 一种用于激光扫平仪的电机控制电路
CN204103812U (zh) * 2014-08-21 2015-01-14 常州华达科捷光电仪器有限公司 一种用于激光扫平仪的电机控制电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768744A (zh) * 2019-01-25 2019-05-17 宁波大学 一种直流电机控制装置及控制方法
CN109768744B (zh) * 2019-01-25 2023-09-08 宁波大学 一种直流电机控制装置及控制方法
CN115531730A (zh) * 2022-10-27 2022-12-30 南京大麦医疗科技有限公司 一种毫米波治疗仪波源输出自动调节电路
CN115531730B (zh) * 2022-10-27 2024-05-14 南京大麦医疗科技有限公司 一种毫米波治疗仪波源输出自动调节电路

Also Published As

Publication number Publication date
CN104242751A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
TWI527362B (zh) 電子裝置的風扇轉速控制方法及應用其之電子裝置
WO2016026390A1 (zh) 一种用于激光扫平仪的电机控制电路
TW200929824A (en) PWM controller and method therefor
TW201308828A (zh) 充電控制方法、裝置以及充電系統和可擕式設備
TW201422917A (zh) 電腦風扇控制電路
WO2015074288A1 (zh) Led背光驱动电路以及液晶显示器
US8022684B2 (en) External regulator reference voltage generator circuit
WO2018040497A1 (zh) 栅极电压驱动装置、方法、驱动电路以及液晶显示面板
WO2017197844A1 (zh) 光伏逆变器集成系统控制芯片
CN104503482A (zh) 椅子靠背角度自动调节控制装置及调节方法
CN203858849U (zh) 背光调节装置、背光模组及显示装置
CN112399676B (zh) 恒流驱动电路及其校准方法与照明装置
WO2014180056A1 (zh) 一种led背光驱动电路、液晶显示装置和一种驱动方法
CN102158144B (zh) 一种数字胃肠机自动光圈的微电机驱动电路
CN208798256U (zh) 驱动电路、补偿电路及调光系统
CN204103812U (zh) 一种用于激光扫平仪的电机控制电路
TWI473416B (zh) 可調整馬達轉速的馬達驅動裝置及其驅動方法
WO2018192081A1 (zh) 稳压电路及具有该稳压电路的供电电路、遥控器
US20150381028A1 (en) Method and circuit for reducing ripple of current output by current source
WO2021159527A1 (zh) 一种调压系统、片上系统及调压方法
CN206258759U (zh) 电压稳定输出装置
WO2014139188A1 (zh) 一种背光驱动电路及背光驱动方法、液晶显示器
WO2017186104A1 (zh) Pwm的发生电路
CN205071409U (zh) 基于单片机实现驱动电流大小调整的led驱动电路
CN102122495B (zh) 一种用于液晶显示屏的对比度调节电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834252

Country of ref document: EP

Kind code of ref document: A1