WO2016026271A1 - 一种硬盘阵列散热装置 - Google Patents

一种硬盘阵列散热装置 Download PDF

Info

Publication number
WO2016026271A1
WO2016026271A1 PCT/CN2015/071459 CN2015071459W WO2016026271A1 WO 2016026271 A1 WO2016026271 A1 WO 2016026271A1 CN 2015071459 W CN2015071459 W CN 2015071459W WO 2016026271 A1 WO2016026271 A1 WO 2016026271A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard disk
heat
fixing plate
contact
end surface
Prior art date
Application number
PCT/CN2015/071459
Other languages
English (en)
French (fr)
Inventor
钟胜军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016026271A1 publication Critical patent/WO2016026271A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust

Definitions

  • the present invention relates to the field of heat dissipation structures, and in particular, to a heat dissipation device for a hard disk array.
  • the storage capacity per unit volume of devices is often increased by increasing the density of hard disks per unit volume in the device.
  • the commonly used method for increasing the density of a hard disk per unit volume in a device is to form an array arrangement pattern of the hard disks.
  • Embodiments of the present invention provide a heat dissipation device for a hard disk array for improving heat dissipation capability of a hard disk array.
  • a heat dissipation device for a hard disk array includes a substrate and a first fixing plate and a second fixing plate disposed on an upper surface of the substrate, wherein the first fixing plate and the second fixing plate are disposed in parallel.
  • the first fixed board, the second fixed board, and the substrate form at least one hard disk slot, and the hard disk is inserted and removed in the slot of the hard disk, and the bottom surface of the hard disk is provided with a connector, and the connection is
  • the device is electrically connected to the substrate, the first end surface of the hard disk is in contact with the first fixing plate, and the second end surface of the hard disk is in contact with the second fixing plate.
  • a first heat pipe is disposed in a region of the first fixing plate that is in contact with the first end surface
  • a second heat pipe is disposed in a region of the second fixing plate that is in contact with the second end surface
  • a first heat dissipating fin is disposed on an outer side of the first fixing plate
  • a second heat dissipating fin is disposed on an outer side of the second fixing plate
  • One end of the first heat pipe is in contact with the first end surface, and the other end is in contact with the first heat dissipating fin, and the first heat pipe transfers heat of the first end face to the first end Dissipating fins and passing them through the first heat dissipating fins;
  • One end of the second heat pipe is in contact with the second end face, and the other end is in contact with the second heat dissipating fin, and the second heat pipe transfers heat of the second end face to the second end
  • the heat dissipating fins are transmitted through the second heat dissipating fins.
  • the first heat pipe is embedded in a region of the first fixing plate that is in contact with the first end surface along the hard disk insertion and removal direction.
  • the second heat pipe is embedded in the second fixing plate along the hard disk insertion and removal direction The area where the second end faces contact.
  • the length of the first heat pipe along the insertion and removal direction of the hard disk is The first end faces are of equal length.
  • the length of the second heat pipe along the hard disk insertion and removal direction and the first The lengths of the two end faces are equal.
  • a fifth possible implementation manner between the first fixing board, the second fixing board, and the substrate
  • the number of the hard disk insertion slots is two or more
  • the area between the two regions on the first fixing plate that is in contact with the first end faces of the adjacent two hard disks is provided with ventilation holes.
  • the present invention further provides a storage device, including a cascading board, at least one hard disk, and a heat sink array heat sink device as described above, wherein the at least one hard disk is pluggably disposed in a hard disk slot in the heat sink of the hard disk array a connector of the at least one hard disk and the heat dissipation device of the hard disk array
  • the substrate is electrically connected, and the substrate is electrically connected to the cascading board, and the cascading board is configured to read data of the hard disk and control operation of the hard disk.
  • the heat dissipation device of the hard disk array includes a substrate and a first fixing plate and a second fixing plate disposed on the upper surface of the substrate, and the first fixing plate and the second fixing plate are arranged in parallel,
  • a fixing plate, a second fixing plate and a substrate form at least one disk slot.
  • the hard disk is inserted and removed in the slot of the hard disk.
  • the bottom surface of the hard disk is provided with a connector, and the connector is used for electrically connecting to the substrate.
  • the first end surface is in contact with the first fixing plate, and the second end surface of the hard disk is in contact with the second fixing plate; the first fixing plate is in contact with the first end surface, and the first heat conducting tube is disposed on the second fixing plate.
  • a second heat pipe is disposed in a region in contact with the second end surface, a first heat dissipating fin is disposed on an outer side of the first fixing plate, and a second heat dissipating fin is disposed on an outer side of the second fixing plate, wherein the first heat pipe is One end is in contact with the first end surface, and the other end is in contact with the first heat dissipating fin, so that the first heat pipe can transfer heat of the first end surface to the first heat dissipating fin and is transmitted through the first heat dissipating fin
  • One end of the second heat pipe is in contact with the second end surface, and the other end is in contact with the second heat dissipating fin, so that the second heat pipe can transfer heat of the second end face to the second heat dissipating fin and pass the second heat dissipating fin
  • the film is passed out.
  • each end face of each hard disk independently corresponds to one heat pipe, the heat of each end face on each hard disk is transmitted to the heat radiating fin through the heat pipe corresponding to the end face, and then transmitted through the heat radiating fin. Going out, that is, each end of each hard disk in the hard disk array has an independent heat dissipation channel, which improves the heat dissipation capability of the hard disk array and the ability to remove the humidity of the hard disk.
  • FIG. 1 is a schematic structural diagram of a storage device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic perspective structural view of a heat dissipation device for a hard disk array according to an embodiment of the present invention
  • FIG. 3 is a partial perspective structural view of a heat dissipation device for a hard disk array according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a fixing plate of a heat dissipation device for a hard disk array according to an embodiment of the present invention
  • Figure 5 is a side elevational view of the partial perspective structure of Figure 2;
  • FIG. 6 is a schematic structural diagram of a separation component of a heat dissipation device for a hard disk array according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a fastening screw assembly of a heat dissipation device for a hard disk array according to an embodiment of the present invention.
  • the present invention provides a storage device, including a cascading board, at least one hard disk 2, and a heat sink array heat sink. At least one hard disk 2 is pluggably placed in a hard disk slot in the heat sink of the hard disk array.
  • the connector of at least one hard disk 2 is electrically connected to the inner substrate 1 of the heat dissipation device of the hard disk array, and the substrate 1 is electrically connected to the cascading plate, and the cascading plate is used for reading data of the hard disk 2 and controlling the operation of the hard disk 2.
  • a hard disk array heat dissipation device comprises a substrate 1 and a first fixing plate 3, a second fixing plate 4, a first fixing plate 3 and a second fixing plate disposed on the upper surface of the substrate 1.
  • the first fixed board 3, the second fixed board 4 and the substrate 1 form at least one hard disk slot
  • the hard disk 2 is inserted and removed in the hard disk slot
  • the bottom surface of the hard disk 2 is provided with a connector
  • the connector is used for Electrically connected to the substrate 1, the first end surface 5 of the hard disk 2 is in contact with the first fixing plate 3, the second end surface 6 of the hard disk 2 is in contact with the second fixing plate 4, and the first fixing plate 3 is opposite to the first end surface 5.
  • the contact area is provided with a first heat pipe 7 and an area of the second fixing plate 4 that is in contact with the second end face 6
  • a second heat pipe 8 There is a second heat pipe 8 , a first heat dissipating fin 9 is disposed on the outer side of the first fixing plate 3 , and a second heat dissipating fin 10 is disposed on the outer side of the second fixing plate 4 , and one end and the first end surface of the first heat pipe 7 5 contacts, the other end is in contact with the first heat dissipating fins 9, the first heat transfer tube 7 transfers the heat of the first end face 5 to the first heat dissipating fins 9 and is transmitted through the first heat dissipating fins 9; One end of the heat pipe 8 is in contact with the second end face 6, and the other end is in contact with the second heat radiating fin 10, and the second heat pipe 8 transfers the heat of the second end face 6 to the second heat radiating fin 10, and passes through the second The heat radiating fins 10 are transmitted out.
  • first fixing plate 3 and the second fixing plate 4 are arranged in parallel on the substrate 1, and the parallelism here is not strictly parallel in the geometrical sense, due to factors such as manufacturing process and error of the assembly process, The first fixing plate 3 and the second fixing plate 4 are not absolutely parallel, and a certain angle is allowed between the plane where the first fixing plate 3 and the second fixing plate 4 are located.
  • the first fixed plate 3, the second fixed plate 4, and the substrate 1 form at least one disk slot.
  • the first end face 5 of the hard disk 2 is In contact with the first fixing plate 3
  • the second end surface 6 of the hard disk 2 is in contact with the second fixing plate 4.
  • the first fixing plate 3 is provided with a first heat pipe 7 in a region in contact with the first end surface 5
  • a second heat transfer pipe 8 is disposed in a region of the second fixing plate 4 that is in contact with the second end surface 6, and a first heat radiating fin 9 is disposed on an outer side of the first fixing plate 3, and an outer side is disposed on the outer side of the second fixing plate 4.
  • Two heat dissipating fins 10 specifically, one end of the first heat transfer tube 7 is in contact with the first end surface 5, and the other end is in contact with the first heat dissipating fins 9, so that the first heat transfer tube 7 can heat the first end surface 5. It is transmitted to the first heat dissipating fins 9 and is transmitted through the first heat dissipating fins 9; one end of the second heat transfer tube 8 is in contact with the second end surface 6 and the other end is in contact with the second heat dissipating fins 10, so that the second The heat pipe 8 can transfer the heat of the second end face 6 to the second heat dissipating fin 10, and pass the Heat radiation fin 10 to pass out.
  • each end face of each hard disk 2 independently corresponds to one heat pipe, the heat of each end face of each hard disk 2 is transmitted to the heat radiating fin through the heat pipe corresponding to the end face, and then passes through the heat radiating fin.
  • the film is transmitted out, that is, each end surface of each hard disk 2 in the hard disk array has an independent heat dissipation channel, which not only improves the heat dissipation capability of the hard disk array, but also eliminates the humidity of the hard disk, and achieves uniform heat dissipation of the entire hard disk array to a certain extent.
  • the first heat transfer tube 7 is embedded in the area of the first fixed plate 3 in contact with the first end surface 5 along the direction of insertion and removal of the hard disk, and the hard disk 2 is inserted into the slot of the hard disk.
  • the maximum conformity with the first end surface 5 increases the heat transfer area, improves the heat transfer efficiency, and further improves the heat dissipation efficiency of the first heat transfer tube 7, so that the heat dissipation efficiency of the first heat transfer tube 7 is optimized.
  • the second heat pipe 8 is embedded in the area of the second fixing plate 4 in contact with the second end surface 6 along the direction of the hard disk insertion and removal, and the hard disk 2 is inserted into the slot of the hard disk, and the second heat pipe 8 is inserted.
  • the maximum conformity with the second end surface 6 increases the heat transfer area, improves the heat transfer efficiency, and further improves the heat dissipation efficiency of the second heat transfer tube 8, so that the heat dissipation efficiency of the second heat transfer tube 8 is optimized.
  • the length of the first heat pipe 7 along the direction of the hard disk insertion and removal is equal to the length of the first end face 5, and the hard disk 2 is inserted into the slot of the hard disk, and the first heat pipe 7 and the first end face 5 are in the hard disk.
  • the majority of the heat of the hard disk 2 is uniformly transmitted to the first heat transfer pipe 7 through the first end face 5, thereby improving the heat transfer efficiency, thereby improving the heat dissipation efficiency of the first heat pipe 7 and making the first
  • the heat dissipation efficiency of the heat pipe 7 is optimized.
  • the length of the first heat transfer tube 7 along the insertion and removal direction of the hard disk and the length of the first end surface 5 are not absolutely equal, and the length of the first heat transfer tube 7 along the insertion and removal direction of the hard disk may be smaller than the first end surface 5
  • the length of the heat transfer between the first end face 5 and the heat dissipation of the first heat pipe 7 is less than the optimal value.
  • the length of the first heat pipe 7 along the insertion and removal direction of the hard disk is greater than or equal to the first end face 5 In the case of the length, the efficiency of the heat transfer of the first end face 5 and the efficiency of the heat dissipation of the first heat transfer pipe 7 are preferable.
  • the length of the second heat pipe 8 along the insertion and removal direction of the hard disk is equal to the length of the second end face 6, the hard disk 2 is inserted into the slot of the hard disk, and the second heat pipe 8 and the second end face 6 are in the hard disk.
  • the majority of the heat of the hard disk 2 is uniformly transmitted to the second heat transfer tube 8 through the second end surface 6, thereby improving the heat transfer efficiency, thereby improving the heat dissipation efficiency of the second heat transfer tube 8, and making the second
  • the heat dissipation efficiency of the heat pipe 8 is preferably a good value.
  • the length of the second heat transfer tube 8 along the insertion and removal direction of the hard disk and the length of the second end surface 6 are not absolutely equal, and the length of the second heat transfer tube 8 along the insertion and removal direction of the hard disk may be smaller than the second end surface 6
  • the length of the second heat pipe 8 along the insertion and removal direction of the hard disk is greater than or equal to the length of the second end face 6, the efficiency of transferring heat of the second end face 6 and the efficiency of heat dissipation of the second heat pipe 8 are compared. Good value.
  • a region between the two regions in contact with the first end faces 5 of the adjacent two hard disks 2 is provided with a venting opening 11, that is, the position of the venting opening 11 corresponds to a gap formed between the hard disks 2
  • a heat dissipation channel is formed between two adjacent hard disks 2 for heat dissipation of heat on adjacent surfaces of the plurality of rows of hard disks 2 in the hard disk array, and cold air formed by the fan in the device passes through the heat dissipation channel from one end of the heat dissipation device of the hard disk array Throughout to the other end, heat is exchanged with the surface of the hard disk 2 by the flow of air to dissipate heat from the hard disk 2 in the storage device.
  • the first heat dissipating fins 9 and the second heat dissipating fins 10 are composed of a plurality of metal sheets, and the arrangement of the metal sheets adopts a combination of parallel multiple rows to meet the capacity requirements of the device. Moreover, the heat dissipation area of the first heat dissipation fins 9 and the second heat dissipation fins 10 can be increased, and the heat dissipation efficiency of the first heat dissipation fins 9 and the second heat dissipation fins 10 can be improved. It should be noted that the present invention does not limit the specific material of the metal sheet, and any metal having good thermal conductivity can be used as the metal sheet.
  • the materials of the first fixing plate 3 and the second fixing plate 4 may be made of a heat conductive material, so that the structure of the heat dissipation device of the hard disk array also has a heat dissipation function.
  • the heat dissipation path of the heat dissipation device of the hard disk array is not It is limited to the heat dissipation structure specially designed for heat dissipation. Since the material of the previous component itself has good thermal conductivity, part of the heat is dissipated without the heat dissipation structure specially designed for heat dissipation, thereby improving the heat dissipation efficiency of the entire device. It should be noted that the present invention does not limit the specific material of the heat conductive material, and any material having good thermal conductivity can be used as the heat conductive material.
  • the first end surface 5 of the hard disk 2 is ensured.
  • the first heat transfer tube 7, the second end surface 6 and the second heat transfer tube 8 are preferably attached, and a separation assembly 12 is sandwiched between the adjacent first fixed plate 3 and the second fixed plate 4, and the separation assembly 12 is
  • the first separating block 14, the second separating block 15, the separating screw 13 penetrating the first separating block 14 and the second separating block 15 and the nesting separation a screw 13 and a tightening nut attached to the outer side of the first separating block 14 and/or the second separating block 15 can adjust the distance between the first separating block 14 and the second separating block 15 by rotating the tightening nut; among them,
  • the first separating block 14 is located at an upper end of the first fixing plate 3 and the second fixing plate 4 and is in contact with the first fixing plate 3 and the second fixing plate 4, and the second separating block 15 is located at the first fixing plate 3 and the second fixing plate a lower end of the plate 4 and in contact with the first fixing plate 3 and the second fixing plate 4;
  • the first separating block 14 and the first fixing surface of the first fixing plate 3 and the second contact surface of the second fixing plate 4 are both inclined, and the nut is rotated to rotate the first separating block 14 and the second separating block 15
  • the distance between the two is shortened, and the first contact surface and the second contact surface respectively apply thrust to the first fixing plate 3 and the second fixing plate 4, so that the first fixing plate 3 and the second fixing plate 4 respectively move to the corresponding hard disk.
  • the gap between the first fixing plate 3 and the second fixing plate 4 and the corresponding hard disk 2 is reduced;
  • the second separating block 15 and the third contact surface of the first fixing plate 3 and the fourth contact surface of the second fixing plate 4 are both inclined, and the nut is rotated to rotate the first separating block 14 and the second separating block.
  • the distance between the 15 is shortened, and the third contact surface and the fourth contact surface respectively apply a thrust to the first fixing plate 3 and the second fixing plate 4, so that the first fixing plate 3 and the second fixing plate 4 respectively correspond to each other.
  • the hard disk 2 is moved, so that the gap between the first fixed plate 3 and the second fixed plate 4 and the corresponding hard disk 2 is reduced;
  • first contact surface and the second contact surface are both inclined surfaces
  • the third contact surface and the fourth contact surface are also inclined surfaces
  • the nut is rotated to rotate between the first separating block 14 and the second separating block 15
  • the distance is shortened, and the first contact surface and the third contact apply a thrust to the first fixed plate 3, and the second contact surface and the fourth contact face the second slide module to apply a thrust, so that the first fixed plate 3 and the first
  • the two fixing plates 4 are respectively moved to the corresponding hard disks 2, so that the gap between the first fixing plate 3 and the second fixing plate 4 and the corresponding hard disk 2 is reduced.
  • the first fixing plate 3 is first combined with the separating assembly 12, and then the combination of the first fixing plate 3 and the separating assembly 12 is combined with the second fixing plate 4, and the combined overall structure is passed through the fastening screw.
  • the hard disk 2 Fixed to the outer casing 20, the hard disk 2 is inserted into the slot of the hard disk, and the separating component 12 expands the first fixing plate 3 and the second fixing plate 4 outwardly, the first end surface 5 and the first heat conducting pipe 7, the second end surface 6 and the The two heat pipes 8 are tightly fitted; when in use, the hard disk 2 is inserted into the disk slot, and the hard disk 2 is adjusted in the hard disk slot.
  • the cross-sectional shape of the first separating block 14 is trapezoidal or triangular, the two waists of the trapezoid are respectively the first contact surface and the second contact surface, or the two waists of the triangle are the first contact surface and the second contact surface, respectively;
  • the cross-sectional shape of the second separating block 15 is trapezoidal or triangular, and the two waists of the trapezoid are respectively the third contact surface and the fourth contact surface, or the two waists of the triangle are the third contact surface and the fourth contact surface, respectively. Since the contact surface is a sloped surface, the pressing force that can be formed is greater when used, and it is easier to separate the first fixing plate 3 from the second fixing plate 4.
  • the corners of the first fixing plate 3 and the second fixing plate 4 are mounted with fastening screw assemblies 16 for controlling the spacing between the first fixing plate 3 and the second fixing plate 4,
  • the spacing between the first fixing plate 3 and the second fixing plate 4 is as small as possible, so that the hard disk 2 is inserted into the disk slot.
  • the fastening screw assembly 16 can be adjusted to fit the surface of the first fixing plate 3 and the second fixing plate 4 to the hard disk 2 in cooperation with the separating assembly 12.
  • the fastening screw assembly 16 includes a double-headed screw 18, two screw caps, and two pressing springs 17, which pass through the first fixing plate 3 and the second fixing plate 4, and the two screw caps are respectively sleeved
  • a clamping spring 17 is placed on the screw rod between the side of the first fixing plate 3 and the screw cap on the same side of the first fixing plate 3, and the second fixing plate 4 is located at the side of the double-headed screw 18
  • a further compression spring 17 is fitted over the screw rod between the screw caps on the same side of the second fixing plate 4.
  • the pressing spring 17 is in a compressed state, forming a thrust force on the first fixing plate 3 and the second side, and the first fixing plate 3 and the second fixing plate 4 are spaced apart from each other, and the space is reduced.
  • the space of the bit is gradually increased. It is faster to put in the hard disk 2, which prevents the hard disk 2 from being damaged due to friction or bumping during operation, which affects the performance.
  • the fastening screw assembly is made. 16 is still in a tight state, then rotates The distance between the first separating block 14 and the second separating block 15 is adjusted from the screw 13, and the first fixing plate 3 or the second fixing plate 4 is in close contact with the hard disk 2 under the cooperation of the pressing spring 17.
  • the first fixing plate 3 and the second fixing plate 4 are provided with a limiting protrusion 19 for isolating the slot of the hard disk, so that the first fixing plate 3 and the second A hard disk slot suitable for the size of the hard disk 2 is formed between the fixed plate 4 and the substrate 1.
  • the outer portion of the hard disk array heat sink is covered with a casing 20, and the outer casing 20 is provided with a mounting rail matching the sliding rails of the assembly drawer of the external device, and the outer casing 20 is mounted through the rail.
  • the fitting of the drawer slide rail is mounted on the external device so that the follower cable of the hard disk 2 is connected to the external device.
  • the hard disk array heat dissipation device forms at least one disk slot with the first fixed plate 3, the second fixed plate 4, and the substrate 1. After the hard disk 2 is placed in the disk slot, The first end surface 5 of the hard disk 2 is in contact with the first fixing plate 3, and the second end surface 6 of the hard disk 2 is in contact with the second fixing plate 4, and the area of the first fixing plate 3 that is in contact with the first end surface 5 is provided.
  • the first heat transfer tube 7 and the second fixed plate 4 are disposed in a region in contact with the second end surface 6 with a second heat transfer tube 8 , and the outer side of the first fixed plate 3 is provided with a first heat dissipation fin 9 , and the second fixed portion The outer side of the plate 4 is provided with a second heat dissipating fin 10 .
  • first heat transfer tube 7 is in contact with the first end surface 5 , and the other end is in contact with the first heat dissipating fin 9 so that the first heat transfer tube 7 can
  • the heat of the first end surface 5 is transmitted to the first heat dissipating fins 9 and transmitted through the first heat dissipating fins 9
  • one end of the second heat transfer tube 8 is in contact with the second end surface 6, and the other end and the second heat dissipating fins 10 phase contact, so that the second heat pipe 8 can transfer the heat of the second end face 6 to the second heat dissipation
  • the fins 10 are transmitted through the second heat dissipating fins 10.
  • each end face of each hard disk 2 independently corresponds to one heat pipe, the heat of each end face of each hard disk 2 is transmitted to the heat radiating fin through the heat pipe corresponding to the end face, and then passes through the heat radiating fin.
  • the film is transmitted out, that is, each end surface of each hard disk 2 in the hard disk array has an independent heat dissipation channel, which not only improves the heat dissipation capability of the hard disk array, but also eliminates the humidity of the hard disk, and achieves uniform heat dissipation of the entire hard disk array to prevent the hard disk.
  • the thermal level combined effect of the array causes the problem that the temperature of the hard disk 2 located downstream of the air duct is too high.
  • the hard disk array heat dissipation device provided by the embodiment of the invention can implement the method provided above
  • the heat dissipation device of the hard disk array provided by the embodiment of the present invention can be applied to heat dissipation of the hard disk, but is not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种硬盘阵列散热装置,包括基板(1)和设置在基板(1)上表面的第一固定板(3)、第二固定板(4),第一固定板(3)、第二固定板(4)和基板(1)形成至少一个硬盘槽位,硬盘(2)放置在硬盘槽位内,硬盘(2)的底面设置有连接器,硬盘(2)的第一端面(5)与第一固定板(3)相接触,硬盘(2)的第二端面(6)与第二固定板(4)相接触;第一固定板(3)上与第一端面(5)相接触的区域设置有第一导热管(7),第二固定板(4)上与第二端面(6)相接触的区域设置有第二导热管(8),第一固定板(3)的外侧设置有第一散热翅片(9),第二固定板(4)的外侧设置有第二散热翅片(10),第一导热管(7)的一端与第一端面(5)相接触,另一端与第一散热翅片(9)相接触;第二导热管(8)的一端与第二端面(6)相接触,另一端与第二散热翅片(10)相接触。

Description

一种硬盘阵列散热装置
本申请要求于2014年08月19日提交中国专利局、申请号为201410407937.0、发明名称为“一种硬盘阵列散热装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及散热结构技术领域,特别涉及一种硬盘阵列散热装置。
背景技术
随着大数据时代的到来,数据量的持续、快速增长导致对存储容量需求越来越大,目前,经常采用提高设备中单位体积的硬盘密度的方式来增加单位体积设备的存储容量。当前常用的提高设备中单位体积的硬盘密度的方式为:使硬盘形成阵列式的排列格局。
现有技术中至少存在如下问题:当硬盘形成阵列式排列格局时,由于硬盘之间紧密排列有序而使硬盘表面之间相互靠近、单位体积设备中的硬盘密度较大,导致设备中的风扇的冷气流难以通过硬盘表面之间的间隙,导致整个硬盘装置的散热能力较低。
发明内容
本发明的实施例提供一种硬盘阵列散热装置,用于提高硬盘阵列的散热能力。
第一方面,提供一种硬盘阵列散热装置,包括基板和设置在所述基板上表面的第一固定板、第二固定板,所述第一固定板和所述第二固定板平行设置,所述第一固定板、所述第二固定板和所述基板形成至少一个硬盘槽位,硬盘可插拔的放置在所述硬盘槽位内,所述硬盘的底面设置有连接器,所述连接器用于与所述基板电气连接,所述硬盘的第一端面与所述第一固定板相接触,所述硬盘的第二端面与所述第二固定板相接触,
所述第一固定板上与所述第一端面相接触的区域设置有第一导热管,所 述第二固定板上与所述第二端面相接触的区域设置有第二导热管,所述第一固定板的外侧设置有第一散热翅片,所述第二固定板的外侧设置有第二散热翅片,
所述第一导热管的一端与所述第一端面相接触,另一端与所述第一散热翅片相接触,所述第一导热管将所述第一端面的热量传递到所述第一散热翅片,并通过所述第一散热翅片传递出去;
所述第二导热管的一端与所述第二端面相接触,另一端与所述第二散热翅片相接触,所述第二导热管将所述第二端面的热量传递到所述第二散热翅片,并通过所述第二散热翅片传递出去。
结合第一方面,在第一种可能的实现方式中,所述第一导热管沿所述硬盘插拔方向嵌在所述第一固定板上与所述第一端面相接触的区域。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第二导热管沿所述硬盘插拔方向嵌在所述第二固定板上与所述第二端面相接触的区域。
结合第一方面或第一方面的第一种至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述第一导热管沿所述硬盘插拔方向的长度和所述第一端面的长度相等。
结合第一方面或第一方面的第一种至第三种可能的实现方式,在第四种可能的实现方式中,所述第二导热管沿所述硬盘插拔方向的长度和所述第二端面的长度相等。
结合第一方面或第一方面的第一种至第四种可能的实现方式,在第五种可能的实现方式中,所述第一固定板、所述第二固定板和所述基板之间形成的所述硬盘插拔槽位的数目在两个以上时,所述第一固定板上,与相邻两个硬盘的第一端面相接触的两个区域之间的区域,开设有通风孔。
本发明还提供一种存储设备,包括级联板、至少一个硬盘和如上所述的硬盘阵列散热装置,所述至少一个硬盘可插拔的放置在所述硬盘阵列散热装置内的硬盘槽位内,所述至少一个硬盘的连接器与所述硬盘阵列散热装置内 基板电气连接,所述基板与所述级联板电气连接,所述级联板用于读取所述硬盘的数据并控制所述硬盘运行。
与现有技术相比,本发明实施例提供的硬盘阵列散热装置,包括基板和设置在基板上表面的第一固定板、第二固定板,第一固定板和第二固定板平行设置,第一固定板、第二固定板和基板形成至少一个硬盘槽位,硬盘可插拔的放置于硬盘槽位内,硬盘的底面设置有连接器,所述连接器用于与所述基板电气连接,硬盘的第一端面与第一固定板相接触,硬盘的第二端面与第二固定板相接触;第一固定板上与第一端面相接触的区域设置有第一导热管,第二固定板上与第二端面相接触的区域设置有第二导热管,第一固定板的外侧设置有第一散热翅片,第二固定板的外侧设置有第二散热翅片,其中,第一导热管的一端与第一端面相接触,另一端与第一散热翅片相接触,使得第一导热管能够将第一端面的热量传递到第一散热翅片,并通过第一散热翅片传递出去;第二导热管的一端与第二端面相接触,另一端与第二散热翅片相接触,使得第二导热管能够将第二端面的热量传递到第二散热翅片,并通过第二散热翅片传递出去。在此过程中,由于每个硬盘上的每个端面独立对应一个导热管,每个硬盘上的每个端面的热量通过与该端面对应的导热管传递到散热翅片,再通过散热翅片传递出去,即硬盘阵列中的每个硬盘的每个端面均拥有独立的散热通道,提高硬盘阵列的散热能力、祛除硬盘湿度的能力。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的存储设备的结构示意图;
图2为本发明实施例提供的硬盘阵列散热装置的立体结构示意图;
图3为本发明实施例提供的硬盘阵列散热装置的局部立体结构示意图;
图4为本发明实施例提供的硬盘阵列散热装置的固定板的示意图;
图5为图2的提供的局部立体结构的侧面示意图;
图6为本发明实施例提供的硬盘阵列散热装置的分离组件结构示意图;
图7为本发明实施例提供的硬盘阵列散热装置的紧固螺钉组件结构示意图。
附图标记:1-基板,2-硬盘,3-第一固定板,4-第二固定板,5-第一端面,6-第二端面,7-第一导热管,8-第二导热管,9-第一散热翅片,10-第二散热翅片,11-通风孔,12-分离组件,13-分离螺杆,14-第一分离块,15-第二分离块,16-紧固螺钉组件,17-压紧弹簧,18-双头螺钉,,19-限位凸起,20-外壳。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
为使本发明技术方案的优点更加清楚,下面结合附图和实施例对本发明作详细说明。
参照图1所示,本发明提供的一种存储设备,包括级联板、至少一个硬盘2和硬盘阵列散热装置,至少一个硬盘2可插拔的放置在硬盘阵列散热装置内的硬盘槽位内,至少一个硬盘2的连接器与硬盘阵列散热装置内基板1电气连接,基板1与级联板电气连接,级联板用于读取硬盘2的数据并控制硬盘2运行。
参照图2所示,本发明提供的一种硬盘阵列散热装置,包括基板1和设置在基板1上表面的第一固定板3、第二固定板4,第一固定板3和第二固定板4平行设置,第一固定板3、第二固定板4和基板1形成至少一个硬盘槽位,硬盘2可插拔的放置在硬盘槽位内,硬盘2的底面设置有连接器,连接器用于与基板1电气连接,硬盘2的第一端面5与第一固定板3相接触,硬盘2的第二端面6与第二固定板4相接触,第一固定板3上与第一端面5相接触的区域设置有第一导热管7,第二固定板4上与第二端面6相接触的区域设置 有第二导热管8,第一固定板3的外侧设置有第一散热翅片9,第二固定板4的外侧设置有第二散热翅片10,第一导热管7的一端与第一端面5相接触,另一端与第一散热翅片9相接触,第一导热管7将第一端面5的热量传递到第一散热翅片9,并通过第一散热翅片9传递出去;第二导热管8的一端与第二端面6相接触,另一端与第二散热翅片10相接触,第二导热管8将第二端面6的热量传递到第二散热翅片10,并通过第二散热翅片10传递出去。
需要说明的是,第一固定板3和第二固定板4在基板1上平行设置,此处的平行并非是严格的几何意义上的平行,由于制造过程以及装配过程的误差等因素的影响,会导致第一固定板3与第二固定板4之间并非绝对平行,允许第一固定板3与第二固定板4所在的平面之间存在一定的角度。
本发明实施例提供的硬盘阵列散热装置,以第一固定板3、第二固定板4和基板1形成至少一个硬盘槽位,硬盘2放置于硬盘槽位内后,硬盘2的第一端面5与第一固定板3相接触,硬盘2的第二端面6与第二固定板4相接触,由于第一固定板3上与第一端面5相接触的区域设置有第一导热管7,第二固定板4上与第二端面6相接触的区域设置有第二导热管8,并且,第一固定板3的外侧设置有第一散热翅片9,第二固定板4的外侧设置有第二散热翅片10,具体地,第一导热管7的一端与第一端面5相接触,另一端与第一散热翅片9相接触,使得第一导热管7能够将第一端面5的热量传递到第一散热翅片9,并通过第一散热翅片9传递出去;第二导热管8的一端与第二端面6相接触,另一端与第二散热翅片10相接触,使得第二导热管8能够将第二端面6的热量传递到第二散热翅片10,并通过第二散热翅片10传递出去。在此过程中,由于每个硬盘2上的每个端面独立对应一个导热管,每个硬盘2上的每个端面的热量通过与该端面对应的导热管传递到散热翅片,再通过散热翅片传递出去,即硬盘阵列中的每个硬盘2的每个端面均拥有独立的散热通道,不仅提高硬盘阵列的散热能力、祛除硬盘湿度的能力,而且在一定程度上实现整个硬盘阵列的均匀散热,防止由于硬盘阵列的热级联合效应而出现位于风道下游的硬盘温度过高的问题。
优选的,参照图2所示,第一导热管7沿硬盘插拔方向嵌在第一固定板3上与第一端面5相接触的区域,硬盘2插入硬盘槽位内,第一导热管7与第一端面5最大限度的贴合,增大热量传递面积,提高热量传递效率,进而提高第一导热管7的散热效率,使第一导热管7的散热效率达到最佳。
优选的,参照图2所示,第二导热管8沿硬盘插拔方向嵌在第二固定板4上与第二端面6相接触的区域,硬盘2插入硬盘槽位内,第二导热管8与第二端面6最大限度的贴合,增大热量传递面积,提高热量传递效率,进而提高第二导热管8的散热效率,使第二导热管8的散热效率达到最佳。
优选的,参照图2所示,第一导热管7沿硬盘插拔方向的长度和第一端面5的长度相等,硬盘2插入硬盘槽位内,第一导热管7与第一端面5在硬盘插拔方向上对等、贴合,硬盘2的绝大部分热量通过第一端面5均匀传递到第一导热管7,提高热量传递效率,进而提高第一导热管7的散热效率,使第一导热管7的散热效率达到最佳。
需要说明的是,第一导热管7沿硬盘插拔方向的长度和第一端面5的长度实并不要求绝对的相等,第一导热管7沿硬盘插拔方向的长度可以小于第一端面5的长度,此时,第一端面5传递热量的效率与第一导热管7散热的效率均小于最优值,当第一导热管7沿硬盘插拔方向的长度大于或者等于第一端面5的长度时,第一端面5传递热量的效率与第一导热管7散热的效率较佳值。
优选的,参照图2所示,第二导热管8沿硬盘插拔方向的长度和第二端面6的长度相等,硬盘2插入硬盘槽位内,第二导热管8与第二端面6在硬盘插拔方向上对等、贴合,硬盘2的绝大部分热量通过第二端面6均匀传递到第二导热管8,提高热量传递效率,进而提高第二导热管8的散热效率,使第二导热管8的散热效率达到较佳值。
需要说明的是,第二导热管8沿硬盘插拔方向的长度和第二端面6的长度实并不要求绝对的相等,第二导热管8沿硬盘插拔方向的长度可以小于第二端面6的长度,此时,第二端面6传递热量的效率与第二导热管8散热的 效率均小于最优值,当第二导热管8沿硬盘插拔方向的长度大于或者等于第二端面6的长度时,第二端面6传递热量的效率与第二导热管8散热的效率达到较佳值。
参照图3和图4所示,第一固定板3、第二固定板4和基板1之间形成的硬盘插拔槽位的数目在两个以上时,第一固定板3和第二固定板4上,与相邻两个硬盘2的第一端面5相接触的两个区域之间的区域,开设有通风孔11,即该通风孔11的位置与硬盘2之间形成的间隙相对应,在两个相邻硬盘2之间形成一条散热通道,用于硬盘阵列中多排硬盘2相邻表面上热量的散热,设备中的风扇形成的冷空气通过该散热通道从硬盘阵列散热装置的一端贯穿至另一端,通过空气的流动与硬盘2表面进行热交换,对存储设备中的硬盘2进行散热。
优选的,参照图2至图4所示,第一散热翅片9和第二散热翅片10由多个金属片组成,金属片的布置采用平行多排的组合方式,既满足设备的容量要求,又可以增大第一散热翅片9和第二散热翅片10的散热面积,提高第一散热翅片9和第二散热翅片10的散热效率。需要说明的是,本发明不对金属片的具体材质进行限定,凡是具有良好导热性能的金属均可作为金属片使用。
可选的,第一固定板3和第二固定板4的材质可采用导热材料,使硬盘阵列散热装置的结构本身也具有散热功能,与现有技术相比,硬盘阵列散热装置的散热途径不再局限于专门供于散热的散热结构,由于上一个部件本身的材质具有良好导热性,部分热量不经专门供于散热的散热结构便自行散发,提高整个装置的散热效率。需要说明的是,本发明不对导热材料的具体材质进行限定,凡是具有良好导热性能的材质均可作为导热材料使用。
参照图5和图6所示,第一固定板3、第二固定板4和基板1之间形成的硬盘插拔槽位的数目在两个以上时,为保证硬盘2上第一端面5与第一导热管7、第二端面6与第二导热管8的贴合度较佳,在相邻第一固定板3与第二固定板4的中间夹持有分离组件12,该分离组件12包括第一分离块14、第二分离块15、贯穿第一分离块14和第二分离块15的分离螺杆13和套入分离 螺杆13且与第一分离块14和/或第二分离块15的外侧贴合的旋紧螺母,通过旋转旋紧螺母,可以调节第一分离块14和第二分离块15之间的距离;其中,
第一分离块14位于第一固定板3和第二固定板4的上端且与第一固定板3和第二固定板4相接触,第二分离块15位于第一固定板3和第二固定板4的下端且与第一固定板3和第二固定板4相接触;
第一分离块14与第一固定板3的第一接触面和与第二固定板4的第二接触面均为斜面,旋转旋紧螺母以使第一分离块14和第二分离块15之间的距离变短,以及第一接触面和第二接触面分别对第一固定板3和第二固定板4施加推力,使得第一固定板3和第二固定板4分别向对应的硬盘移动,进而实现第一固定板3和第二固定板4分别与对应的硬盘2之间的间隙变小;
或者,第二分离块15与第一固定板3的第三接触面和与第二固定板4的第四接触面均为斜面,旋转旋紧螺母以使第一分离块14和第二分离块15之间的距离变短,以及第三接触面和第四接触面分别对第一固定板3和第二固定板4施加推力,使得第一固定板3和第二固定板4分别向对应的硬盘2移动,进而实现第一固定板3和第二固定板4分别与对应的硬盘2之间的间隙变小;
或者,第一接触面和第二接触面均为斜面,且第三接触面和与第四接触面也均为斜面,旋转旋紧螺母以使第一分离块14和第二分离块15之间的距离变短,以及第一接触面和第三接触面对第一固定板3施加推力,第二接触面和第四接触面对第二滑道模块施加推力,使得第一固定板3和第二固定板4分别向对应的硬盘2移动,进而实现第一固定板3和第二固定板4分别与对应的硬盘2之间的间隙变小。
例如,安装时,先将第一固定板3与分离组件12组合,再将第一固定板3与分离组件12的组合体与第二固定板4组合,将组合后的整体结构通过紧固螺钉固定于外壳20上,硬盘2插入硬盘槽位内,分离组件12使第一固定板3和第二固定板4向外扩张,第一端面5与第一导热管7、第二端面6与第二导热管8紧紧贴合;使用时,硬盘2插入硬盘槽位,调整硬盘2在硬盘槽 位中的放置准确度,旋转分离螺杆13,第一分离块14与第二分离块15发生相对靠近的运动,第一分离块14和第二分离块15均与第一固定板3和第二固定板4通过斜面接触,随着分离螺杆13的旋转,第一分离块14与第二分离块15之间的距离减小,第一固定板3与第二固定板4逐渐向硬盘贴近,旋紧螺母,第一固定板3或第二固定板4与硬盘2在使用时保持良好的紧密接触状态。
优选的,第一分离块14的剖面形状为梯形或三角形,梯形的两腰分别为第一接触面和第二接触面,或者,三角形的两腰分别为第一接触面和第二接触面;
优选的,第二分离块15的剖面形状为梯形或三角形,梯形的两腰分别为第三接触面和第四接触面,或者,三角形的两腰分别为第三接触面和第四接触面。由于接触面为斜面,使用时能够形成的挤压力度更大,更容易使第一固定板3与第二固定板4分离。
参照图7所示,第一固定板3和第二固定板4的边角位置安装有紧固螺钉组件16,用以控制第一固定板3和第二固定板4之间的间距,要求在螺钉完全固定的前提下使第一固定板3和第二固定板4的间距尽量小一些,便于硬盘2插入硬盘槽位。进一步的,紧固螺钉组件16可以配合分离组件12分别调整第一固定板3和第二固定板4的表面与硬盘2的贴合度。具体地,紧固螺钉组件16包括双头螺钉18、两个螺钉帽和两个压紧弹簧17,双头螺钉18贯穿过第一固定板3和第二固定板4,两个螺钉帽分别套设在双头螺钉18的两端,第一固定板3侧和位于第一固定板3同侧的螺钉帽之间的螺钉杆上套入一个压紧弹簧17,第二固定板4侧和位于第二固定板4同侧的螺钉帽之间的螺钉杆上套入另一个压紧弹簧17。在使用时,使压紧弹簧17处于压缩状态,形成对第一固定板3和第二的侧边的推力,第一固定板3和第二固定板4因相互靠近而间距减小,硬盘槽位的空间逐渐增大,此时放入硬盘2会更加快捷,防止操作过程中由于摩擦或磕碰而使硬盘2损坏,影响使用性能;硬盘2放入硬盘槽位内后,使紧固螺钉组件16依旧处于旋紧状态,接着旋转分 离螺杆13,调节第一分离块14与第二分离块15的间距,在压紧弹簧17的配合下,第一固定板3或第二固定板4与硬盘2紧密贴合。
参照图4和图7所示,第一固定板3和第二固定板4上设置有限位凸起19,该限位凸起19用于隔离硬盘槽位,使第一固定板3、第二固定板4与基板1之间形成适于硬盘2的大小的硬盘槽位。
优选的,参照图2所示,所述硬盘阵列散热装置的外部包覆有外壳20,该外壳20上设置有与外部设备的装配抽屉的滑轨相互匹配的安装轨道,外壳20通过安装轨道与抽屉滑轨的配合安装于外部设备上,以使硬盘2的跟随线缆与外部设备就近连接。
与现有技术相比,本发明实施例提供的硬盘阵列散热装置,以第一固定板3、第二固定板4和基板1形成至少一个硬盘槽位,硬盘2放置于硬盘槽位内后,硬盘2的第一端面5与第一固定板3相接触,硬盘2的第二端面6与第二固定板4相接触,由于第一固定板3上与第一端面5相接触的区域设置有第一导热管7,第二固定板4上与第二端面6相接触的区域设置有第二导热管8,并且,第一固定板3的外侧设置有第一散热翅片9,第二固定板4的外侧设置有第二散热翅片10,具体地,第一导热管7的一端与第一端面5相接触,另一端与第一散热翅片9相接触,使得第一导热管7能够将第一端面5的热量传递到第一散热翅片9,并通过第一散热翅片9传递出去;第二导热管8的一端与第二端面6相接触,另一端与第二散热翅片10相接触,使得第二导热管8能够将第二端面6的热量传递到第二散热翅片10,并通过第二散热翅片10传递出去。在此过程中,由于每个硬盘2上的每个端面独立对应一个导热管,每个硬盘2上的每个端面的热量通过与该端面对应的导热管传递到散热翅片,再通过散热翅片传递出去,即硬盘阵列中的每个硬盘2的每个端面均拥有独立的散热通道,不仅提高硬盘阵列的散热能力、祛除硬盘湿度的能力,而且实现整个硬盘阵列的均匀散热,防止由于硬盘阵列的热级联合效应而出现位于风道下游的硬盘2温度过高的问题。
本发明实施例提供的硬盘阵列散热装置可以实现上述提供的方法实施 例,具体功能实现请参见方法实施例中的说明,在此不再赘述。本发明实施例提供的硬盘阵列散热装置可以适用于硬盘的散热,但不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

  1. 一种硬盘阵列散热装置,包括基板和设置在所述基板上表面的第一固定板、第二固定板,所述第一固定板和所述第二固定板平行设置,所述第一固定板、所述第二固定板和所述基板形成至少一个硬盘槽位,硬盘可插拔的放置在所述硬盘槽位内,所述硬盘的底面设置有连接器,所述连接器用于与所述基板电气连接,所述硬盘的第一端面与所述第一固定板相接触,所述硬盘的第二端面与所述第二固定板相接触,
    其特征在于:所述第一固定板上与所述第一端面相接触的区域设置有第一导热管,所述第二固定板上与所述第二端面相接触的区域设置有第二导热管,所述第一固定板的外侧设置有第一散热翅片,所述第二固定板的外侧设置有第二散热翅片,
    所述第一导热管的一端与所述第一端面相接触,另一端与所述第一散热翅片相接触,所述第一导热管将所述第一端面的热量传递到所述第一散热翅片,并通过所述第一散热翅片传递出去;
    所述第二导热管的一端与所述第二端面相接触,另一端与所述第二散热翅片相接触,所述第二导热管将所述第二端面的热量传递到所述第二散热翅片,并通过所述第二散热翅片传递出去。
  2. 根据权利要求1所述的硬盘阵列散热装置,其特征在于,
    所述第一导热管沿所述硬盘插拔方向嵌在所述第一固定板上与所述第一端面相接触的区域。
  3. 根据权利要求1或2所述的硬盘阵列散热装置,其特征在于,
    所述第二导热管沿所述硬盘插拔方向嵌在所述第二固定板上与所述第二端面相接触的区域。
  4. 根据权利要求1至3任一项所述的硬盘阵列散热装置,其特征在于:
    所述第一导热管沿所述硬盘插拔方向的长度和所述第一端面的长度相等。
  5. 根据权利要求1至4任一项所述的硬盘阵列散热装置,其特征在于:
    所述第二导热管沿所述硬盘插拔方向的长度和所述第二端面的长度相等。
  6. 根据权利要求1至5任一项所述的硬盘阵列散热装置,其特征在于,
    所述第一固定板、所述第二固定板和所述基板之间形成的所述硬盘插拔槽位的数目在两个以上时,所述第一固定板上,与相邻两个硬盘的第一端面相接触的两个区域之间的区域,开设有通风孔。
  7. 一种存储设备,包括级联板、至少一个硬盘和如权利要求1至6任一项所述的硬盘阵列散热装置,所述至少一个硬盘可插拔的放置在所述硬盘阵列散热装置内的硬盘槽位内,所述至少一个硬盘的连接器与所述硬盘阵列散热装置内基板电气连接,所述基板与所述级联板电气连接,所述级联板用于读取所述硬盘的数据并控制所述硬盘运行。
PCT/CN2015/071459 2014-08-19 2015-01-23 一种硬盘阵列散热装置 WO2016026271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410407937.0A CN105446437A (zh) 2014-08-19 2014-08-19 一种硬盘阵列散热装置
CN201410407937.0 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016026271A1 true WO2016026271A1 (zh) 2016-02-25

Family

ID=55350151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071459 WO2016026271A1 (zh) 2014-08-19 2015-01-23 一种硬盘阵列散热装置

Country Status (2)

Country Link
CN (1) CN105446437A (zh)
WO (1) WO2016026271A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113157070A (zh) * 2021-03-01 2021-07-23 浙江大华技术股份有限公司 一种硬盘阵列散热装置及服务器
US20230124534A1 (en) * 2020-06-22 2023-04-20 Huawei Technologies Co., Ltd. Storage device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632923B (zh) * 2016-09-30 2020-09-08 华为技术有限公司 一种级联式硬盘及其告警方法
CN106683381A (zh) * 2017-01-18 2017-05-17 国网山东省电力公司荣成市供电公司 一种用电信息采集计量系统
US10412851B2 (en) * 2017-02-23 2019-09-10 Quanta Computer Inc. Inclined storage array for improved cooling
CN110289026A (zh) * 2019-06-26 2019-09-27 英业达科技有限公司 储存模块及其机壳
CN111048127A (zh) * 2019-12-16 2020-04-21 武汉华风电子工程有限公司 一种小型化视频存储结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133961A (ja) * 1998-10-27 2000-05-12 Fujitsu Ltd 電子情報機器及び電子機器ユニット
US6373696B1 (en) * 1998-06-15 2002-04-16 Compaq Computer Corporation Hard drive cooling using finned heat sink and thermally conductive interface pad
DE20306106U1 (de) * 2003-03-04 2003-07-31 Inromatics Inc Chung Ho Festplatten-Kühlkörper und -Geräuschdämpfungsrahmen
JP2005149684A (ja) * 2003-11-20 2005-06-09 Hitachi Ltd ディスクアレイ装置
CN2821784Y (zh) * 2005-08-04 2006-09-27 谢坤祥 硬盘机散热装置
CN100495291C (zh) * 2003-06-27 2009-06-03 株式会社日立制作所 盘存储装置的冷却结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373696B1 (en) * 1998-06-15 2002-04-16 Compaq Computer Corporation Hard drive cooling using finned heat sink and thermally conductive interface pad
JP2000133961A (ja) * 1998-10-27 2000-05-12 Fujitsu Ltd 電子情報機器及び電子機器ユニット
DE20306106U1 (de) * 2003-03-04 2003-07-31 Inromatics Inc Chung Ho Festplatten-Kühlkörper und -Geräuschdämpfungsrahmen
CN100495291C (zh) * 2003-06-27 2009-06-03 株式会社日立制作所 盘存储装置的冷却结构
JP2005149684A (ja) * 2003-11-20 2005-06-09 Hitachi Ltd ディスクアレイ装置
CN2821784Y (zh) * 2005-08-04 2006-09-27 谢坤祥 硬盘机散热装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230124534A1 (en) * 2020-06-22 2023-04-20 Huawei Technologies Co., Ltd. Storage device
CN113157070A (zh) * 2021-03-01 2021-07-23 浙江大华技术股份有限公司 一种硬盘阵列散热装置及服务器

Also Published As

Publication number Publication date
CN105446437A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016026271A1 (zh) 一种硬盘阵列散热装置
US9292058B2 (en) Heat sink for processor
JP5204355B1 (ja) 液体dimm冷却装置
US7640968B2 (en) Heat dissipation device with a heat pipe
US9313923B2 (en) Multi-component heatsink with self-adjusting pin fins
US8004842B2 (en) Heat dissipation device for communication chassis
US20090310295A1 (en) Heat-dissipating mechanism for use with memory module
US7567435B2 (en) Heat sink assembly
US10212859B2 (en) Cooling mechanism of high mounting flexibility
US20100018670A1 (en) Heat Sink Assembly
JP2011066399A (ja) 放熱装置
US10042400B2 (en) Method and system for removing heat from multiple controllers on a circuit board
US20080101035A1 (en) Heat-dissipating assembly structure
US10790215B1 (en) Heat dissipation device
CN209845602U (zh) 弹性导热结构
US20120103564A1 (en) Heat dissipation device
JP4922903B2 (ja) 電子機器用の冷却装置
US8230905B2 (en) Heat dissipation device having a fan holder
JP2006203014A (ja) 放熱部品
US8625275B2 (en) Electronic device with heat dissipation apparatus
US7040389B2 (en) Integrated heat dissipation apparatus
US20110304992A1 (en) Heat dissipation device
US20190079348A1 (en) Backlight module
US11908495B2 (en) Electronic device with heat transfer pedestal having optimized interface surface and associated methods
US20220369500A1 (en) Fixing Structure for a Heat Dissipation Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833637

Country of ref document: EP

Kind code of ref document: A1