WO2016026214A1 - 低速大扭矩电动机外转子、电动机及相关起重机 - Google Patents

低速大扭矩电动机外转子、电动机及相关起重机 Download PDF

Info

Publication number
WO2016026214A1
WO2016026214A1 PCT/CN2014/089978 CN2014089978W WO2016026214A1 WO 2016026214 A1 WO2016026214 A1 WO 2016026214A1 CN 2014089978 W CN2014089978 W CN 2014089978W WO 2016026214 A1 WO2016026214 A1 WO 2016026214A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
stator
central shaft
air
mounting hole
Prior art date
Application number
PCT/CN2014/089978
Other languages
English (en)
French (fr)
Inventor
喻连生
彭祖军
喻立号
喻林
Original Assignee
江西工埠机械有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410414146.0A external-priority patent/CN104158325B/zh
Priority claimed from CN201410414157.9A external-priority patent/CN104158375B/zh
Application filed by 江西工埠机械有限责任公司 filed Critical 江西工埠机械有限责任公司
Priority to EP14900291.7A priority Critical patent/EP3258572A4/en
Publication of WO2016026214A1 publication Critical patent/WO2016026214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/12Driving gear incorporating electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/165Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the invention relates to an outer rotor adapted to a low speed (ultra low speed) high torque outer rotor permanent magnet synchronous motor, a low speed high torque outer rotor permanent magnet synchronous motor and a rotor casing directly using the outer rotor of the motor ( Rotor housing) is a direct drive type high torque crane for its hoisting mechanism reel.
  • the existing electric motor includes a rotor and a stator, and generally adopts a structure in which the stator is in the outer rotor, and some motors are in the outer rotor and the stator, and the electric motor is called an outer rotor motor.
  • the stator core of the outer rotor motor is mounted on a fixed central shaft, and the stator winding is embedded in the iron core.
  • the shell of the rotor is cylindrical and surrounds the outer side of the stator.
  • the inner wall of the rotor shell is distributed with permanent magnets. A rotating magnetic field is generated to act on the permanent magnet mounted on the inner wall of the rotor to drive the rotor to rotate.
  • One of the objects of the present invention is to provide an outer rotor that can be used in a low-speed, high-torque permanent magnet motor to form a good permanent magnetic field to reduce harmonic torque, simplify the mounting structure of the permanent magnet, and improve the robustness of the permanent magnet. And reliability, and help reduce costs.
  • Another object of the present invention is to provide an ultra low speed high torque permanent magnet motor which can operate normally under low speed (ultra low speed) high torque, and which is stable in operation, small in vibration, low in noise, and low in temperature rise.
  • a third object of the present invention is to provide a crane using the above-mentioned ultra-low speed high-torque motor, which does not need to provide a gear box, has a small volume, low production cost and maintenance cost, is convenient to use, and can be at a low speed (ultra-low speed). Normal operation under high torque.
  • An outer rotor of an electric motor includes a cylindrical rotor housing, and a plurality of permanent magnets are mounted on an inner wall of the rotor housing
  • the plurality of permanent magnets have the same tile-shaped hexahedral structure, and the permanent magnets are regularly arranged in two directions of circumferential direction and axial direction, and the two circumferential sides of the permanent magnet have an obliquely planar shape with an inner side chamfered shape.
  • the angle of the chamfer of the circumferential side of the permanent magnet is 5 to 35 degrees.
  • the number of said permanent magnets arranged in any circumferential direction and in any axial direction is plural.
  • the permanent magnets are circumferentially aligned and evenly distributed in the circumferential direction, aligned in a straight line in the axial direction and uniformly distributed.
  • the permanent magnet has a length in the axial direction of between 30 and 95 mm, and the permanent magnet has a thickness of between 8 and 18 mm.
  • the two axial sides of the permanent magnet are planar and are located on a plane perpendicular to the axis of the central axis, and the adjacent permanent magnets in the axial direction are close together without gaps or only slight gaps therebetween.
  • the circumferentially adjacent permanent magnets are spaced apart from each other and are provided with axially extending fixed beadings, the fixed bead being fixedly coupled to the rotor housing, and circumferential sides of the fixed bead They are respectively pressed on the circumferential sides of adjacent permanent magnets.
  • the fixed bead has a rectangular, trapezoidal, circular or elliptical cross-sectional shape, and the fixed bead is fastened to the rotor housing by screw fastening, bonding or plugging.
  • a strip fastening gap is left between the fixed bead and the inner wall of the rotor housing, the bead fastening gap is empty, or the bead fastening gap is filled with a non-magnetically bonded bond.
  • a non-magnetic pad is disposed in the agent or the bead fastening gap.
  • the outer edge of the permanent magnet cross section in a radial direction is a circular arc line centered on the axis of the rotor housing, and the inner edge of the permanent magnet cross section in the radial direction adopts any one of the following forms:
  • the inner edge is an arc, the center of the arc is located on the axis of the rotor housing, and both ends of the inner edge are directly connected to the corresponding circumferential sides of the cross section of the permanent magnet;
  • the inner edge is an arc having a radius equal to a radius of the outer edge, and a center of the circle is located on an extension line of a connecting line between a midpoint of the outer edge and a center of the outer edge, Both ends of the inner edge are directly connected to respective circumferential sides of the cross section of the permanent magnet;
  • the inner edge is an arc having a center on the axis of the rotor housing, and both ends of the inner edge pass through a small concave arc line and a corresponding circumferential side of the cross section of the permanent magnet Side connection
  • the inner edge is an arc having a radius equal to a radius of the outer edge, and a center of the circle is located on an extension line of a connecting line between a midpoint of the outer edge and a center of the outer edge, Both ends of the inner edge are connected to respective circumferential sides of the cross section of the permanent magnet by a small concave circular arc.
  • a low speed high torque motor comprising an outer rotor and a stator, the stator comprising a central shaft, a stator core fixedly mounted on the central shaft, and a stator winding fixedly mounted on the stator core, the outer rotor being the above Any of the outer rotors, the two ends of the rotor housing are fixedly mounted with a fixed disc, and the fixed disc is rotatably connected to the central shaft through a corresponding rotor bearing, and the right end of the central shaft is connected from the corresponding end
  • the bearing extends out and is fixedly mounted on the right rigid support.
  • the right rigid support is provided with a shaft mounting hole, and the right end of the central shaft is inserted into the shaft mounting hole of the right rigid support and the right
  • An anti-rotation structure for preventing relative rotation of the two is provided between the rigid supports.
  • the stator core is provided with a stator slot for inserting the winding
  • the stator slot is a pear-shaped slot
  • the slot size k is between 2.5-4.5 mm
  • the winding has a pitch of 1.
  • the stator adopts a pole slot matching manner of an 8-pole 9-slot, a 10-pole 12-slot, a 20-pole 24-slot, a 30-pole 36-slot, a 22-pole 24-slot, a 16-pole 18-slot or a 32-pole 36-slot. It is 0.8-0.9, and the permanent magnet is made of neodymium iron boron material, the length is 30-95 mm, and the thickness is 8-18 mm.
  • the stator is provided with a stator temperature sensor for collecting a temperature signal in the stator.
  • the motor is provided with an internal cooling structure comprising any one of the following cooling air ducts or a combination of any of a plurality of heat dissipating air passages:
  • the central axis is a hollow shaft, and the shaft hole of the central shaft constitutes an in-shaft cooling air passage cooled in the shaft;
  • annular gap is formed between the outer side surface of the stator core and the inner side surface of the outer rotor, and the annular gap constitutes an outer cooling air duct of the stator cooled outside the stator;
  • stator core is provided with an axial through hole, the axial through hole constitutes a cooling air duct in the stator cooled in the stator, and the axial through hole on the stator core is composed of a stator constituting the stator core
  • the corresponding heat dissipation air passage holes punched out on the punching piece are connected;
  • the ventilation channels of the above heat dissipation ducts are natural ventilation and/or forced ventilation.
  • the internal cooling structure adopts any of the following forced ventilation structures:
  • the shaft hole of the central shaft is provided with an in-shaft ventilation fan, and the in-shaft ventilation fan is the central shaft shaft located at the outlet end An in-shaft exhaust fan of the bore and/or an in-shaft blower fan located in the central shaft bore of the inlet end;
  • the inner cooling structure includes the in-shaft heat dissipation air passage and includes the stator outer heat dissipation air passage and/or the stator inner heat dissipation air passage, both ends of the stator core and the corresponding end respectively
  • a gap constituting the end uniform pressure air gap band is left, and the two ends of the stator outer heat dissipation air channel and/or the inner heat dissipation air channel of the stator are respectively connected with the end portion uniform pressure air gap band of the corresponding end
  • the side walls at both ends of the central shaft are respectively provided with a shaft hole communicating with the central shaft and a central shaft side hole of the end portion of the corresponding end portion of the air gap belt, and one end of the shaft hole of the central shaft is closed, and the other end is closed
  • An in-shaft ventilation fan is provided, the shaft
  • the internal ventilation fan is an in-shaft exhaust fan of the central shaft shaft hole at the air outlet end and/or an in-shaft air supply fan located in the central shaft shaft hole
  • both ends of the stator core are respectively A gap constituting the end uniform pressure air gap band is left between the fixed disk and the fixed end, and the two ends of the stator outer heat dissipation air channel and/or the inner heat dissipation air channel of the stator are respectively aligned with the end portion of the corresponding end
  • the pressure air gap is connected to the air, and the fixed disk on the air outlet end is provided with an air outlet duct connecting the air outlet end of the air outlet, and the number of the air outlet ducts is one or more, and the air inlet end is
  • the fixed disk is provided with an air inlet duct that is connected to the air inlet end of the air inlet end, and the number of the air inlet air passages is one or more, and the air inlet air passage is connected with the air inlet
  • the air pump is
  • the cylinder body is provided with a piston matched thereto, and the piston connection extends to the inner side of the fixed plate a piston rod, the cavity in the cylinder is divided by the piston into a rod chamber and a rodless chamber, the rod chamber is located inside the rodless chamber, and the central shaft is provided at the inlet end
  • the end portion is a plurality of cams in the air gap belt and forming a cam mechanism with the piston rod, and the multi-stage cam rotates to reciprocate the piston rod, and the air inlet and the air outlet of the air inlet pump Provided at the bottom of the rodless chamber, when the in-shaft heat dissipating duct is further included, the side wall of the central shaft of the air inlet end or the air outlet end is provided with an axis connecting the central shaft of the corresponding end
  • the hole and the end portion of the central shaft side hole of the air gap belt are closed, and the shaft hole of the central shaft of the air inlet end is closed, partially closed or not closed.
  • an encoder is connected to the left end of the rotor housing, and the connection manner is any one of the following:
  • the encoder is an outer rotor encoder comprising an inner sleeve and a sleeve rotatably coupled to each other, the left end of the central shaft extending from the rotor bearing connected thereto, and being fixedly mounted on the left rigid support.
  • the left rigid support is provided with a shaft mounting hole, and the left end of the central shaft is inserted into the shaft mounting hole of the left rigid support and is provided with the left rigid support for preventing relative rotation between the two.
  • the anti-rotation structure the inner sleeve is fixedly connected to the left end of the central shaft, the outer sleeve is fixedly connected to the fixed disc of the left end, and the central shaft, the rotor shell, the inner sleeve and the outer sleeve are coaxial;
  • the encoder is an inner rotor encoder and is provided with a stepped shaft for coupling and a bearing support, including an inner sleeve and a sleeve which are rotatably coupled to each other, and the stepped shaft for the connection is mounted to the bearing support through an outer bearing
  • the right end of the connecting stepped shaft is provided with a radial flange coaxially fastened on the fixed disc at the left end, and the inner sleeve of the encoder is fixedly sleeved at the connection Coaxially connected to the left end of the connecting stepped shaft by a left end of the stepped shaft or by a coupling, the outer casing of the encoder is fixedly connected to the bearing support through a connecting member, preferably the single bearing or the double bearing Column alignment bearings.
  • the rigid support (right rigid support and / or left rigid support) adopts any one of the following:
  • the shaft mounting hole on the rigid support is a polygonal hole, and the central axis of the corresponding end connected thereto is the same In the shape of an edge, the shaft mounting hole has an interference fit or a transition fit with the central shaft shaft segment inserted therein, and the corresponding polygonal structure constitutes the anti-rotation structure, and the shaft mounting hole is directly disposed on the rigid branch
  • the body of the seat is disposed on the adjusting sleeve, and when disposed on the adjusting sleeve, the outer edge of the adjusting sleeve is cylindrical, and the shaft mounting hole is disposed at the center of the adjusting sleeve, the rigid branch
  • An adjustment sleeve mounting hole corresponding to the outer edge of the adjusting sleeve is disposed on the body of the seat, and the adjusting sleeve is inserted into the adjusting sleeve mounting hole to form a transition fit or an interference fit with the adjusting sleeve mounting hole, and With or without fasten
  • the shaft mounting hole on the rigid support is a cylindrical hole, the central shaft shaft section of the corresponding end is cylindrical, and the rigid support is provided with a plurality of pins penetrating the side wall of the shaft mounting hole a plurality of pin blind holes respectively corresponding to the plurality of pin through holes respectively, and a plurality of pins or pins are respectively wedged into the mutually opposite pin through holes and pin blind holes
  • the pin or pin and its supporting structure constitute the anti-rotation structure
  • the shaft mounting hole on the rigid support is a cylindrical hole, the central shaft shaft section of the corresponding end is cylindrical, the shaft mounting hole and the central shaft shaft section inserted into the shaft mounting hole
  • the shaft mounting hole is directly disposed on the body of the rigid support or disposed on the adjusting sleeve, when disposed at the When the adjusting sleeve is sleeved, the outer edge of the adjusting sleeve is cylindrical, the shaft mounting hole is disposed at the center of the adjusting sleeve, and the body of the rigid bearing is disposed corresponding to the outer edge of the adjusting sleeve
  • Adjusting a sleeve mounting hole the adjusting sleeve is inserted on the adjusting sleeve mounting hole, and has a transition fit or an interference fit with the adjusting sleeve mounting hole, and is provided with or without a fastening bolt;
  • the shaft mounting hole on the rigid support is a drum-shaped hole, and the central shaft shaft section of the corresponding end connected thereto has the same drum shape, the shaft mounting hole and the central shaft shaft section inserted therein
  • An interference fit or a transition fit constitutes the anti-rotation structure
  • the shaft mounting hole is directly disposed on the body of the rigid support or is disposed on the adjustment sleeve when the adjustment is set
  • the outer edge of the adjusting sleeve is cylindrical
  • the shaft mounting hole is disposed at the center of the adjusting sleeve
  • the adjusting sleeve corresponding to the outer edge of the adjusting sleeve is disposed on the body of the rigid bearing a mounting hole
  • the adjusting sleeve is inserted on the adjusting sleeve mounting hole, and has a transition fit or an interference fit with the adjusting sleeve mounting hole, and is provided with or without a fastening bolt;
  • the shaft mounting hole on the rigid support is a spline hole
  • the central shaft shaft segment of the corresponding end connected thereto is a spline shaft
  • the above-mentioned spline structure adopted between the two constitutes the anti-rotation structure.
  • the stator is provided with a stator temperature sensor for collecting a temperature signal in the stator, and the real-time temperature in the stator is collected by the stator temperature sensor, and the fatigue state of the motor is determined according to the collected real-time temperature in the stator.
  • the upper limit of the working temperature corresponding to the temperature collecting portion of the stator temperature sensor is determined, and when the temperature collected by the corresponding stator temperature sensor reaches or exceeds the corresponding upper limit of the working temperature, it is determined that the motor is fatigued and judged accordingly The control is stopped.
  • the collected temperature is lower than the corresponding upper limit of the working temperature, it is judged that the motor is not fatigued and the motor is allowed to work.
  • such a motor is provided with a current signal acquisition device for obtaining motor current online, the current signal acquisition device being a current sensor for collecting a current input signal of the stator winding and/or a frequency conversion capable of outputting its current output signal
  • the current signal is obtained by the current signal collecting device, and the current signal is used as a load sensing signal or the load signal is calculated and obtained from the current signal.
  • such a motor is provided with a voltage signal acquisition device for obtaining a motor voltage on-line, the voltage signal acquisition device being a voltage sensor for collecting a voltage input signal of a stator winding and/or a frequency conversion capable of outputting a voltage output signal thereof
  • the voltage signal is obtained by the voltage signal collecting device, and the voltage signal is used as a sensing signal of a rotating speed or the speed signal is calculated and obtained by the voltage signal.
  • a crane comprising any of the above-described ultra low speed high torque motors, the rotor case of the ultra low speed high torque motor being used as a reel of the lifting mechanism of the crane for connecting and winding the hoisting mechanism Wire rope.
  • the fixed disk at one end of the motor is connected with a rotary encoder, and the fixed disk at the other end is provided with a brake caliper device which is matched with a disk brake, and the fixed disk constitutes the disc brake system.
  • a moving plate through which a flange extending radially beyond the circumference of the outer rotor housing (an extended disk body edge) or a brake flange fixedly coupled to the fixed disk and the brake caliper device The friction block fits.
  • the outer rotor adopts a plurality of tile-shaped permanent magnets regularly arranged in the circumferential direction and the axial direction, which is advantageous for selecting the size and shape of the permanent magnets and the distribution manner of the plurality of permanent magnets in the corresponding directions according to requirements. Optimization, by limiting the length of the permanent magnet, etc., the influence of higher harmonics is obviously eliminated or suppressed, which is beneficial to avoid or reduce the distortion of the magnetic field, and is also convenient for processing and manufacturing; since the circumferential side of the permanent magnet is set to an oblique plane and passed The optimized chamfer angle design can greatly reduce the magnetic field distortion.
  • the above permanent magnet structure is combined with other optimized designs of the present invention, and the air gap magnetic field waveform is
  • the distortion rate can be reduced by 50%-80%, the distortion rate of the air gap magnetic field waveform is controlled to be 15% or less, and the distortion rate of the back electromotive force waveform is controlled to be 10% or less, thereby greatly improving the motor's Smooth running, reduced noise, reduced torque ripple and increased torque output; thanks to the axially extended fixed bead, more
  • the permanent magnet is pressed, thereby simplifying the installation process and facilitating the installation work, and the fixed bead can be made of a suitable non-magnetic material to reduce the processing difficulty, reduce the process requirements, and ensure the quality of the permanent magnet installation.
  • the shape of a small concave circular arc connected to the corresponding circumferential side can significantly improve the air gap magnetic field waveform and reduce the distortion rate.
  • This type of motor is advantageous for high torque output due to the external rotor structure; since the stator temperature sensor is provided, the actual temperature inside the stator can be obtained, which is relative to the external surface temperature or the base temperature of the motor used in the prior art. It can more accurately reflect the fatigue degree of the motor or the influence of temperature rise on the motor.
  • the influence of temperature rise on the motor is mainly manifested by the different characteristics of the stator core at different temperatures, and whether the stator core reaches a certain temperature limit is the motor can Whether the main influencing factors and necessary qualifications of the work continue, and the temperature of the outer surface of the motor is different from the internal temperature of the stator, there is not a strict linear relationship between the two, so the temperature inside the stator collected by the stator temperature sensor can be more accurate and timely. Judging the fatigue state of the motor, avoiding misjudgment caused by temperature inaccuracy, effectively and reliably ensuring that the motor operates within a reasonable or safe temperature range, and avoids stopping the stator temperature without reaching the shutdown limit.
  • Waste while avoiding the cause The user neglects the motor working system, causing damage to the motor caused by excessive temperature rise of the motor stator; for occasions requiring high torque output, for example, when the motor is used for the hoisting mechanism of the gantry crane, the rotor and the stator are operated.
  • the interaction torque between the two can reach more than 200kNm.
  • the prior art shaft end mounting and fixing method is prone to the problem of unsettlement, and is provided between the right end of the central shaft and the right rigid support to prevent the central axis and
  • the anti-rotation structure of the relative rotation of the support effectively ensures the stability of the motor installation, and avoids the phenomenon that the central shaft is easy to slip and rotate under the existing installation technology; since the heat dissipation air passage is arranged inside the motor, and the forced air ventilation can be adopted
  • the method of air cooling is beneficial to greatly improve the heat dissipation capacity and control the temperature rise, especially since the automatic air pump can be used for ventilation, the air pump automatically operates when the rotor rotates, and the air pump also stops when the rotor stops, which is convenient for operation, and There is no need to plug in the power supply separately; since the encoder is set and the outer rotor encoder and inner rotor The encoder can be used to provide conditions for accurately collecting the rotor rotation and position signals through the encoder, which is beneficial to control the power supply performance of the
  • the motor speed can be as low as 0.001r/min-30r/min
  • the torque density can be as high as 80kN ⁇ m/m 3 or more
  • the instantaneous overload capability can be as high as 1.5-2.0 times.
  • the crane directly uses the housing of the outer rotor of the low-speed high-torque motor as the wire rope reel of the hoisting mechanism, and can meet the operation requirements without providing a reduction gear, thereby greatly simplifying the structure, reducing the material consumption, and reducing the amount of material. Production costs increase control accuracy and reduce energy consumption.
  • FIG. 1 is a schematic view showing the overall structure of an ultra low speed high torque motor of the present invention
  • FIG. 2(a), 2(b) and 2(c) are schematic views respectively showing three embodiments of a permanent magnet cross-sectional shape according to the present invention.
  • Figure 3 is an axial schematic view of one embodiment of the permanent magnet mounting structure of the present invention.
  • Figure 4 is an axial schematic view of another embodiment of the permanent magnet mounting structure of the present invention.
  • Figure 5 is a schematic structural view of a hollow shaft of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a plurality of heat dissipating air passages according to the present invention.
  • Figure 7 is a schematic view of a cooling structure of the present invention.
  • FIG. 8 is a schematic view of another cooling structure of the present invention.
  • Figure 9 is a schematic view of a third cooling structure of the present invention.
  • Figure 10 is a schematic view showing the structure of an outer rotor encoder
  • Figure 11 is a schematic view showing the structure of an inner rotor encoder according to the present invention.
  • Figure 12 is a schematic view of a rigid support of the present invention.
  • Figure 13 is a schematic view of another rigid support of the present invention.
  • Figure 14 is a schematic view of a third rigid support of the present invention.
  • Figure 15 is a schematic view of a fourth rigid support of the present invention.
  • Figure 16 is a schematic view of a fifth rigid support of the present invention.
  • Figure 17 is a schematic view of a sixth rigid support of the present invention.
  • Figure 18 is a graph showing the relationship between the current I and the lifting load G according to the present invention (the motor is used for the lifting mechanism of the crane, and the rotor housing of the motor is used as the wire rope reel of the crane wire rope winding system, and the wire rope is directly wound, and the load is Lifting weight of the crane);
  • Figure 19 is a graph showing the relationship between the voltage U and the operating speed V according to the present invention (the motor is used for the lifting mechanism of the crane, the rotor housing of the motor is used as the wire rope reel of the crane wire rope winding system, and the wire rope is directly wound);
  • Figure 20 is a schematic view showing the structure of the hoisting mechanism in the crane of the present invention.
  • the present invention discloses an outer rotor of a low-speed, high-torque motor and a low-speed, high-torque motor using the outer rotor.
  • the motor can be a three-phase permanent magnet synchronous motor or a single-phase permanent motor. Magnetic synchronous motor.
  • the so-called electric motor includes the electric motor itself in the usual sense, and also includes an electric device with other specific application functions based on the structure and working principle of the electric motor.
  • the ultra low speed high torque motor includes an outer rotor and a stator (see FIG. 1) located in the outer rotor, the stator mainly composed of a stator core 1, a stator winding and a central shaft 2, which may be a solid shaft Or a hollow shaft, the stator core is fixedly mounted on the central shaft, the stator core is provided with a stator slot, and the stator winding is fixedly embedded in the stator
  • the outer rotor includes a cylindrical rotor housing 3 (generally referred to as an outer cylinder), and fixed ends 4 are fixedly coupled to both ends of the rotor housing, and the fixed disc passes through the rotor bearing 5 and
  • the central shaft is rotatably connected, and a plurality of permanent magnets 6 are fixedly mounted in the rotor housing, and the plurality of permanent magnets adopt the same tile-shaped hexahedral structure and are regularly arranged in two directions of circumferential direction and axial direction, and any one of the circumferential directions
  • the number
  • a permanent magnet magnetic field is formed by using a plurality of permanent magnets arranged regularly in the circumferential direction and the axial direction, it is advantageous to optimize the magnetic field structure, especially since a plurality of permanent magnets are used in the circumferential direction and the two circumferential sides of the permanent magnet are 5 -35 degrees of the inner chamfered oblique plane shape, greatly reducing the distortion rate of the magnetic field waveform; due to the use of a plurality of permanent magnets in the axial direction, it is also advantageous to reduce the length of the permanent magnet, which is obviously eliminated or suppressed. Higher harmonics.
  • the regular distribution of the plurality of permanent magnets in the circumferential direction and the axial direction is circumferentially aligned and evenly distributed in the circumferential direction, linearly aligned and evenly distributed in the axial direction, thereby not only facilitating the rational arrangement of the circumferences of the permanent magnets.
  • a space is left between the circumferentially adjacent permanent magnets, thereby facilitating optimization of the magnetic field and ease of installation.
  • the mounting and fixing manner of the permanent magnet in the rotor housing may adopt any one of the following methods:
  • the inner surface of the rotor housing is provided with a plurality of dovetail slots extending axially and circumferentially spaced and adapted to the shape and size of the permanent magnets, the permanent magnets being embedded in Corresponding in the dovetail slot;
  • an axially extending fixed bead 7 is disposed between the circumferentially adjacent permanent magnets, and the axially extending fixed bead is fastened to the rotor housing by screws and with the permanent The sides of the magnet are pressed against each other.
  • the permanent magnets embedded in the corresponding dovetail slots and the dovetail slots may be bonded to each other.
  • the axial extension The cross section of the fixed bead may be rectangular or trapezoidal, and a non-magnetic adhesive 8 may also be provided between the radially outer side of the axially extending fixed bead and the inner wall of the rotor housing, thereby improving
  • the mounting is robust and does not adversely affect the magnetic field.
  • the fixed bead is easy to process by using a rectangular cross section, and the trapezoidal cross section can make the two sides closely conform to the corresponding side faces of the corresponding permanent magnets, which is advantageous for improving the firmness and reliability.
  • the axially extending fixed bead is fastened to the rotor housing by screws And pressing on both sides of the permanent magnet, the axially extending fixed bead has a rectangular or trapezoidal cross section, thereby further improving the firmness of the installation and further optimizing the magnetic field.
  • the radially outer surface of the permanent magnet may be a cylindrical curved surface whose axis coincides with the central axis, the permanent magnet
  • the radially inner surface of the body is a cylindrical curved surface whose axis coincides or is parallel with the central axis or a curved surface formed by a plurality of cylindrical curved surfaces parallel to each other, and the connecting lines of the plurality of cylindrical curved surfaces may be located at the axis On a cylindrical surface that coincides with the axis of the central axis.
  • the permanent magnet cross section (a section perpendicular to the central axis axis direction) is centered on the central axis axis at a radially outer edge 61 (radially away from the edge of the central axis)
  • the central axis of the axis appears as a point, the same as the arc of a circle
  • the cross section of the permanent magnet has a single inner edge 62 in the radial direction (the edge near the central axis in the radial direction).
  • the circular arc shape is a curve formed by connecting a plurality of arcs to each other.
  • Figures 2(a)-(c) show several embodiments relating to the shape of the inner edge of the permanent magnet cross section in the radial direction:
  • the inner edge of the permanent magnet cross section has a single arc shape in the radial direction, the center of the circle is located on the central axis axis, and the outer edge and the inner edge have radii respectively R1 and R2, forming permanent magnets of equal thickness in the radial direction, such that the radially inner and outer surfaces of each permanent magnet are respectively located on corresponding cylindrical surfaces coaxial with the rotor housing (the rotor housing is coaxial with the central axis), And spacing the inner surface of the permanent magnet in the radial direction from the outer surface of the stator;
  • the inner edge of the permanent magnet cross section has a single circular arc shape with a radius equal to the radius of the outer edge of the permanent magnet cross section in the radial direction.
  • R1 the center of the circle is located on a line defined by the midpoint of the outer edge of the cross section of the permanent magnet and the axis of the central axis, thereby forming a thin structure on both sides of the central portion of the permanent magnet, which is advantageous for eliminating edge harmonics;
  • the inner edge of the permanent magnet cross section in the radial direction may adopt the shape of the embodiment of FIG. 2(a), or the shape of the embodiment of FIG. 2(b), which is special.
  • the inner edge of the cross section of the permanent magnet in the radial direction and the circumferential side of the cross section of the permanent magnet pass through a small concave circular arc (the radius is R3) Connections, rather than direct connections in the usual case or through convex rounded corners, can thus reduce edge harmonics more effectively.
  • the length (axial length) of the permanent magnet may be between 30 and 95 mm, and the thickness of the permanent magnet (when the permanent magnet is of an unequal thickness, the maximum thickness) is between 8 and 18 mm, thereby Under the premise of ensuring mechanical strength and magnetic field strength, the influence of higher harmonics can be significantly reduced.
  • the permanent magnet may be made of a neodymium iron boron material to improve magnetic properties.
  • a preferred permanent magnet material satisfies the following conditions to ensure normal operation of the motor and improve adaptability:
  • the residual magnetism is above 1.25T, and the intrinsic coercive force is between 20-30kOe;
  • the demagnetization curve at 150-180 °C is a straight line, no demagnetization inflection point or demagnetization inflection point occurs, but its maximum demagnetization working point b mh is higher than its demagnetization inflection point.
  • the permanent magnet should be selected from SH, UH or EH NdFeB materials, or other possible grades of NdFeB materials with comparable or better performance.
  • the use of the permanent magnet material with the above characteristics can eliminate the irreversible demagnetization risk that the permanent magnet of the conventional low-speed and high-torque motor must be generated under the operating condition of the crane, and is an important guarantee for the invention to achieve low speed or ultra low speed and high torque. .
  • the stator slot can adopt a pear-shaped groove, the slot size k is between 2.5-4.5 mm, and the winding pitch is 1, thereby significantly optimizing the stator magnetic field, eliminating or reducing high-order harmonics, and improving frequency characteristics. Improve output, save materials and reduce copper consumption.
  • the optimized arc coefficient of this motor is 0.8-0.9, and the optimized pole slot is matched with 8-pole 9-slot, 10-pole 12-slot, 20-pole 24-slot, 30-pole 36-slot, 22-pole 24-slot, 16-pole 18-slot or 32-pole. 36-slot fit for optimized air gap magnetic field and eliminate cogging torque.
  • the distortion rate of the air gap magnetic field waveform of the motor of the present invention can be reduced by 50%-80%, and the air gap magnetic field waveform distortion rate is improved.
  • the control is below 15% or 10%, and the distortion rate of the back electromotive force waveform is controlled to be 10% or less, thereby greatly improving the running smoothness of the motor, reducing the noise, reducing the torque ripple and contributing to Increases the torque output and helps control the temperature rise, so it can still operate normally under the condition of ultra-low speed and high torque. It is especially suitable for the crane hoisting mechanism of the reel direct drive (with the rotor casing as the reel) and others. Similar occasions.
  • a heat dissipation air passage can be arranged inside the motor, and the air is directly ventilated and cooled inside the motor through natural ventilation or forced ventilation.
  • any one or more of the following internal cooling structures may be provided (see Figures 5-8):
  • the central axis is a hollow shaft, and the shaft hole 9 of the central shaft constitutes an in-shaft heat dissipation air passage for cooling in the shaft (see FIG. 5);
  • annular gap constituting the outer heat dissipation air passage 10 of the stator is disposed between the outer side surface of the stator core and the inner side surface of the outer rotor (see FIG. 6);
  • the stator core may be composed of a plurality of axially stacked stator punches of the same structure. In this case, a plurality of heat dissipation air passage holes are punched in the stator punch to form a heat dissipation air passage in the stator.
  • the desired stator heat dissipation air passage can be formed without substantially increasing the processing process or the process difficulty.
  • a plurality of heat dissipating air passage holes on the stator punching piece can be evenly distributed along the same circumference, thereby balancing the heat dissipation effect everywhere.
  • a plurality of heat dissipation air passage holes on the stator punching piece may be distributed along a plurality of circumferences, and a plurality of heat dissipation air passage holes of each circumference are evenly distributed.
  • the plurality of heat dissipating air passage holes distributed on the same circumference of the stator punching piece have the same shape and size, and are arc-shaped elongated holes centered on the center of the stator punching piece, thereby ensuring the strength of the stator core. In this case, the heat dissipation area of the air duct is effectively increased.
  • the distance of the heat dissipating air passage hole on the stator punching piece from the inner edge of the stator punching piece is smaller than the distance from the outer edge of the stator punching piece, thereby forming an outer cooling air duct of the integrated stator
  • the overall heat dissipation efficiency and heat dissipation capability are improved.
  • any of the following forced ventilation structures may be used:
  • the central shaft is a hollow shaft
  • the shaft hole of the air outlet end of the central shaft is open, and an axial exhaust fan is arranged in the shaft hole of the air outlet end of the central shaft
  • the stator is further provided with a heat dissipation wind
  • a gap constituting the end uniform pressure air gap band 12 is left between the stator core and/or the heat dissipation air channel in the stator, and the stator outer heat dissipation air channel and/or Or two ends of the heat dissipation air passage in the stator are respectively communicated with the end portion uniform pressure air gap belt of the corresponding end
  • the side wall of the air outlet end of the central shaft is provided with a shaft hole communicating with the central shaft and the end portion of the corresponding end a central axis side hole 13 of the air gap belt, the in-shaft exhaust fan is located outside the central shaft side hole;
  • stator outer heat dissipating duct and/or a stator inner heat dissipating duct When a stator outer heat dissipating duct and/or a stator inner heat dissipating duct is provided, a gap between the two ends of the stator core and the fixed end of the corresponding end is formed to form an end uniformizing air gap belt 12
  • the two ends of the stator outer heat dissipating air passage and/or the inner heat dissipating air duct of the stator are respectively communicated with the end portion uniform pressure air gap belt of the corresponding end, and the air inlet duct is disposed on the fixed disc of the air inlet end,
  • the number of the inlet air ducts is one or more, and the inlet air duct is connected with an intake air pump in series, and the inlet air ducts at both ends of the inlet air pump are provided with an air inlet check valve
  • the inlet air pump includes a cylinder body axially disposed on the corresponding fixed disc,
  • the side wall of the air inlet end of the center shaft is provided with a shaft hole communicating with the center shaft and a central shaft side of the end portion uniform pressure air gap belt of the corresponding end The holes thereby connect the heat dissipating air passages to each other.
  • ventilation and heat dissipation in the motor can be performed through the outer heat dissipation air duct of the stator and the heat dissipation air passage in the stator.
  • the two end uniform pressure air gaps 12 should respectively communicate with the respective ventilation air ducts 14, which can be opened on the fixed discs of the respective ends and connected to the end uniform pressure air gap belts of the respective ends (see Figure 7), to simplify the structure, reduce the wind resistance and improve the efficiency
  • the ventilation duct on one fixed disc (such as the fixed disc on the right end) is used as the air inlet duct, and the other fixed disc (such as the fixed disc on the left end)
  • the ventilation duct is used to make a wind duct.
  • the ventilation duct on at least one of the fixed discs is provided with a forced ventilation device, and the ventilation (forced in and/or extracted) by the forced ventilation device is
  • the heat dissipation air channel in the stator and the heat dissipation air channel outside the stator form a gas flow having a required air volume and pressure, and the heat on the stator core is dispersed by the heat exchange to the air flow in the stator and the air flow in the heat dissipation air channel outside the stator. Out, thereby achieving the purpose of efficient forced cooling.
  • stator outer heat dissipating air passage and the end uniform air gap belt may all be corresponding gaps of the existing electric motor, and the size and shape can be improved according to the heat dissipating and the uniformizing pressure without additional resetting, which is advantageous for simplifying the structure.
  • the number of the inlet air duct and the air outlet duct may be several, and may be one as needed, and the number of the inlet ducts may or may not be equal to the number of the ducts.
  • the air inlet duct and the air outlet duct are respectively disposed on the fixed disk at the corresponding end, and the air outlet air passage is provided with an air outlet check valve 15, and the forced air device is an intake air pump 16,
  • the number of the inlet air pump is several, which are respectively connected in series with the corresponding inlet air ducts, and the inlet air ducts at both ends of the inlet air pump are provided with corresponding air inlet check valves (for example, relative to the air pump) Intake valve 17 and exhaust valve 18).
  • the drive and mode of operation of the air pump can be controlled by any suitable existing and other possible suitable techniques.
  • the inlet air pump includes a cylinder body axially disposed on the corresponding fixed disk, the cylinder body is provided with a matching piston, and the piston is connected with a piston extending to the inner side of the fixed disk a rod, the cylinder cavity is divided by the piston into a rod chamber and a rodless chamber, the rod chamber is located inside the rodless chamber, and the central shaft is provided with a pressure at the corresponding end portion a multi-stage cam 19 in the gap belt and forming a cam mechanism with the piston rod, the multi-stage cam rotates to reciprocate the piston rod, and the air inlet and the air outlet of the inlet air pump are both disposed The bottom of the rodless chamber, whereby the rodless chamber forms part of the inlet duct, achieving a series connection of the air pump on the inlet duct.
  • a wheel that cooperates with the cam may be disposed at the top end of the piston rod, and the boss of the cam may also adopt a curved structure in which a top arc is smoothly connected with two inner arcs to reduce friction.
  • the fixed disk rotates with the outer rotor and drives the piston rods of the respective air pumps to reciprocate through the multi-stage cam, thereby driving the pistons of the respective air pumps to reciprocate, and relying on the air inlet as the piston moves
  • the air inlet check valve on the air inlet ducts at both ends of the air pump enters the rodless chamber, and then enters the uniform pressure air gap belt from the rodless chamber to the corresponding end, after passing through the heat dissipation air passage in the stator and the heat dissipation air passage outside the stator.
  • the amount of air pump (the number of air inlet ducts), the parameters of the air pump and the number of bosses on the cam can be used to meet the requirements of air volume and wind pressure of the motor.
  • This kind of air pump does not need to be connected to external power, in electricity It is very convenient to start work automatically when the motive is working and stop automatically when the motor stops.
  • the ventilation ducts may also be opened on the central axis of the corresponding end (as shown in FIG. 8), or the ventilation ducts at one end are opened on the fixed disc.
  • the ventilation duct at the other end is installed on the fixed plate ( Figure 9).
  • Opening the ventilation duct on the central shaft facilitates the adaptability to the forced ventilation device, simplifies the connection structure with the forced ventilation device, and improves the ventilation capability
  • the ventilation duct opened on the central shaft can be opened a central shaft axial hole at the end of the central shaft (corresponding to a central shaft shaft hole extending inward from the shaft end by a certain length) 20 and a central shaft side hole provided on a side wall of the axial hole of the central shaft 21, the outer end of the axial hole of the central shaft is open, the inner end is blocked (including blocking by a blocking member or is set as a blind hole), and one end of the central shaft side hole communicates with the end of the corresponding end to even the air gap The other end is connected to the central shaft axial hole.
  • an air inlet duct is opened on the central axis of the air inlet end, and the air outlet of the air blower communicates with the air inlet duct or directly installs a suitable air blower.
  • the air outlet duct may be opened on the fixed plate at the corresponding end, or may be opened on the central axis of the corresponding end, when the air outlet duct is opened correspondingly
  • the number of the air outlet ducts on the fixed disks opened at the corresponding ends may be plural to improve the ventilation capability.
  • the air outlet air passage is disposed on a central axis of the corresponding end, and the air inlet of the air exhaust fan communicates with the air outlet air passage or directly installs a suitable air exhaust fan.
  • the air inlet duct in accordance with the forced airing manner, may be opened on the fixed disc of the corresponding end, or may be opened on the central shaft of the corresponding end, when the air inlet duct is opened in On the fixed disk of the corresponding end, the number of the inlet air ducts formed on the fixed disks at the corresponding ends may be plural to improve the ventilation capability.
  • the above cooling method is provided on the central shaft, if the inlet air duct and the air outlet duct on the central shaft are connected (actually, the through-center shaft shaft hole is adopted), Forming an in-shaft heat dissipation air passage, and appropriately setting the size of the central shaft side hole 13 of the air inlet end and the air outlet end, so that the air flow rate in the stator outer heat dissipation air passage, the stator inner heat dissipation air passage and the shaft inner heat dissipation air passage meets the requirements,
  • the heat dissipation air passage outside the stator, the heat dissipation air passage in the stator, and the heat dissipation air passage in the shaft can be simultaneously realized.
  • the air inlet end of the central shaft hole is blocked (closed) by the blocking plate 22, and the central axis shaft of the air outlet end is provided with an induced draft fan 23 or a central axis of the air outlet end.
  • An air intake fan is connected to the hole.
  • the external cold air enters the end of the air inlet air duct from the air inlet duct to the end of the air pressure belt, and a part of the air duct passes through the outer air duct and then enters the end of the air outlet to uniformly press the air gap belt, and then passes through
  • the central shaft side hole of the corresponding end enters the central shaft shaft hole, and the other part enters the central shaft shaft hole of the end through the central shaft side hole of the air inlet end, and flows into the air outlet end along the central shaft shaft hole, and the two parts of the air flow are at the center end of the air outlet end. Converging in the shaft hole, and sending out the central shaft through the induced draft fan, thereby forming the outer surface of the stator and the inner portion of the central shaft Forced air cooling, thereby achieving the goal of efficient forced cooling.
  • the encoder of the motor may be an outer rotor encoder or a common inner rotor encoder.
  • the encoder is a rotary encoder comprising an inner sleeve 24 and a jacket 25 that are rotatably coupled to each other, a gap is left between the inner sleeve and the outer sleeve, and the inner sleeve and the outer sleeve are provided with corresponding position sensing elements. In order to ensure the rotation of the outer sleeve relative to the inner sleeve, to obtain a corresponding sensing signal.
  • the encoder is an outer rotor encoder mounted on the left end of the rotor housing (see FIG. 10)
  • the inner sleeve is sleeved on the central shaft extending from the left end and fixedly connected to the central shaft
  • the outer sleeve is fixedly connected to the rotor housing (either directly or indirectly by means of other structural members), and the central shaft, the rotor housing, the inner sleeve and the outer sleeve are coaxial.
  • the inner sleeve is fixed together with the central shaft, the outer sleeve rotates completely synchronously with the rotor housing, and angular displacement, rotational speed, rotational acceleration and the like of the outer casing and the rotor shell
  • the body is exactly the same, which is beneficial to ensure the reliability of the test data and improve the detection accuracy.
  • the inner sleeve is fixedly connected to the central shaft in a manner that a coupling key 26 is disposed between the inner sleeve and the central shaft that is sleeved on the central shaft.
  • the connection is fixed in a simple manner. Easy to install and reliable.
  • a journal at a left end of the central shaft for connecting the inner sleeve is a stepped journal, a right end of the inner sleeve is positioned by a corresponding stop on the stepped journal, and a left end of the inner sleeve is fixedly sleeved at
  • the thrust collar 27 of the stepped journal is positioned, whereby the positioning and fixing of the inner sleeve in the axial direction is ensured by a simple structure.
  • the stepped journal may also be sleeved with a spacer sleeve 28, the spacer sleeve being located between the inner sleeve and the inner sleeve stop located on the left side of the inner sleeve for positioning, the spacer sleeve The right end is in contact with the end surface of the opening, the left end of the spacer is in contact with the right end of the inner sleeve, and the right end of the thrust ring is connected to the left end of the inner sleeve, and the spacer is disposed through In order to facilitate positioning the inner sleeve at a suitable axial position.
  • the spacer sleeve may be composed of a length of sleeve structure, the axial middle portion of the sleeve structure is provided with an annular partition plate, the annular partition plate is located at the left end of the left side of the rotor bearing, and the outer diameter thereof is larger than the rotor bearing The inner diameter of the rotor bearing can also be protected against the corresponding end.
  • the outer edge portion of the fixed disk at the left end is fastened to the annular flange 29 at the corresponding port of the rotor housing by bolts, the inner circumference of which is fixedly connected to the outer ring of the corresponding rotor bearing, whereby The sealing of the left end port of the rotor housing and the connection between the rotor housing and the rotor bearing are conveniently and efficiently realized.
  • the outer diameter of the bearing that can generally be used as the rotor bearing is larger than the outer diameter of the outer casing. Therefore, the outer casing is provided with an outer casing flange 30, and the outer casing flange is located at a connecting flange.
  • the left side of the disk 31 is fastened to the inner edge portion of the connecting flange by bolts, and the connecting flange is located on the left side of the fixed disk of the left end, and the outer edge portion of the connecting flange Fastened to the inner edge portion of the fixed disk at the left end by bolts,
  • the left end of the central shaft is mounted on its corresponding left rigid support 32, like the right end, and the left rigid support is mounted on the outer side of the outer rotor encoder. This not only facilitates the installation of the encoder, simplifies the connection structure, but also facilitates use and maintenance.
  • a small bore inner rotor encoder is generally employed, and the small bore inner rotor encoder is provided with a stepped shaft for connection. 34 and a bearing support, the connecting stepped shaft is mounted on the bearing support via an outer bearing 35, the right end of the connecting stepped shaft is provided with a radial flange, and the radial flange is coaxially connected.
  • the fixed end plate 4 of the left end, the inner sleeve of the encoder is fixedly sleeved at the left end of the connecting stepped shaft or coaxially connected to the left end of the connecting stepped shaft by a coupling 36 or the like.
  • the outer casing of the encoder is fixedly connected to the bearing support by a connecting piece. Since the inner sleeve of the encoder is coaxially connected to the rotor housing 3 by a stepped shaft for connection, the outer sleeve is fixed by the corresponding connecting member, whereby the inner rotor encoder of the conventional art can be used for a larger diameter. Detection of an outer rotor motor, such as the ultra low speed high torque motor disclosed herein.
  • the bearing support is preferably formed by abutting two parts of the upper seat 37 and the lower seat 38.
  • the upper and lower seats are fastened together by bolts for convenient processing, installation and maintenance.
  • the outer bearing preferably uses a single row or double row self-aligning bearing to improve and improve the force performance.
  • a retaining ring 39 and a bearing cover 40 for axially limiting the outer ring of the bearing are fixed on the bearing support, the retaining ring is located on the right side of the outer bearing, and the bearing cover is located on the left side of the outer bearing On the side, a gap is left between the retaining ring and the bearing cap and the connecting stepped shaft to achieve reliable positioning and avoid obstruction of the connecting stepped shaft.
  • each of the shaft segments on the connecting stepped shaft is decremented from right to left to adapt to the mounting dimensions of the corresponding parts of the rotor housing and the encoder.
  • the connecting step shaft may be a solid or hollow rotating body structural member, and when a hollow structure is adopted, threading and ventilation may be performed through the middle hole.
  • the connecting member between the encoder casing and the bearing support comprises a profiled flange 41 for transitional connection, and the two ends of the profiled flange are respectively an outer edge annular connecting portion and an inner edge annular connecting portion, A portion between the outer edge annular connecting portion and the inner edge annular connecting portion has a cylindrical shape with an annular step, and the outer edge annular connecting portion is located at a right end of the profiled flange, and is connected to the bearing cover, and the inner edge is annular
  • the connecting portion is located at the left end of the profiled flange and is connected with the mounting flange on the outer casing, thereby not only adapting to the axial and radial dimension connection requirements of the corresponding components on the motor and the encoder, but also the outer bearing The pieces serve as an effective protection.
  • the rigid support (right rigid support and, if any, left rigid support) may take any suitable shape Since the friction between the cylindrical optical axis and the cylindrical optical hole is limited, when the torque of the central shaft is large, slippage is apt to occur, and therefore, it is possible to mount the mutually cooperating central shaft shaft segments and shafts.
  • the holes 42 are arranged in a non-circular shape, such as a polygonal hole (see Fig. 12) and a drum hole (Fig. 16), or radially through a pin 43 or a bolt or the like through a hole in the rigid support and the central shaft (see figure).
  • the shaft mounting hole may be directly disposed on the rigid support, that is, disposed on the body of the rigid support.
  • the rigid support may adopt a split structure of the body and the adjustment sleeve 45 of the rigid support.
  • the shaft mounting hole is disposed at a center of the adjusting sleeve, the outer side of the adjusting sleeve is cylindrical, and the body of the rigid bearing is provided with an adjusting sleeve mounting hole corresponding to an outer edge of the adjusting sleeve,
  • the adjusting sleeve is inserted into the adjusting sleeve mounting hole, and has a transition fit or an interference fit with the adjusting sleeve mounting hole, and is provided with or without a fastening bolt, and the adjusting sleeve and the central shaft can be installed during installation.
  • the adjusting sleeve mounting hole is a cylindrical hole, which is convenient for the central axis to be aligned, which reduces the difficulty of adjusting the circumferential angle when the central shaft is installed and the rigidity of the two rigid supports.
  • the difficulty of coaxial adjustment also reduces the processing requirements of the rigid support and the central shaft journal.
  • the number of the stator temperature sensors is one or more, and the set position of the stator temperature sensor (refer to the position of the collected temperature, corresponding to the temperature collecting part) may be one or more, thereby being able to be processed according to different needs and Convenient operation, flexible setting of the number of stator temperature sensors and installation position.
  • stator temperature sensor can be placed at any of the following locations:
  • stator temperature sensor is disposed in the stator slot on the stator core, between the corresponding stator slot wall and the winding in the stator slot, and the collected temperature substantially reflects the temperature of the stator core, Can be regarded or used as the temperature of the stator core;
  • stator temperature sensor mounting hole is disposed inside the stator core, and the stator temperature sensor is embedded in the mounting hole of the stator temperature sensor, so that the temperature inside the stator core can be collected more accurately, and the The stator temperature sensor mounting hole is arranged at the highest temperature part of the stator core to obtain the highest temperature on the stator core, so as to avoid that the internal temperature of the stator core is lower than the maximum temperature thereof, so that the temperature exceeds the working temperature of the core due to the temperature.
  • the limit value is faulty; generally, the stator temperature sensor mounting hole can be punched out during the punching process of the corresponding core piece;
  • the stator temperature sensor is disposed inside the windings in the stator slots of the stator core, whereby the internal temperature of the windings can be directly collected.
  • the stator temperature sensor disposed inside the winding is also preferably disposed at The highest temperature in the winding;
  • the stator shaft temperature sensor for collecting the central shaft temperature may or may not be provided in the central shaft, and the central shaft temperature can be obtained by the stator temperature sensor for collecting the central shaft temperature, so as to be compared with other temperatures. Study the temperature gradient changes on the motor and use it as a basis for control if the control requirements are relatively low or as a basis for control after correction.
  • the temperature probe does not reflect the heat and temperature inside the motor.
  • the copper loss of the stator winding and the iron loss of the stator core are the main causes of heat generation, and the thermal energy first causes the temperature rise of the stator core and the stator winding, and reaches after a long path.
  • the outer casing or bearing therefore, the temperature measured from the outer casing or bearing can not truly reflect the temperature inside the stator, is not conducive to making an accurate judgment of the motor state, and is not conducive to precise control of the motor.
  • people define the working level of the motor through time trials, in the actual running process, the user generally does not count the running time of the motor.
  • the motor After running to the maximum working time limited by the working level, the motor may often appear incorrectly.
  • the phenomenon of continuing operation after shutdown and other processes is prone to accidents when people do not know the internal temperature of the motor. If the work is completely based on the work system, although it is usually safe to operate, there are often cases where the motor does not reach the shutdown.
  • the phenomenon that the internal temperature is stopped before the internal temperature is lowered causes the utilization rate of the motor to decrease, and the working efficiency can be determined by the stator temperature to determine the fatigue state of the motor. Therefore, the fatigue state and degree of the motor are more accurately determined by the stator temperature, and can be set on the stator.
  • the upper limit of the working temperature corresponding to the temperature collection part.
  • the temperature collected by the stator temperature sensor is lower than the corresponding upper limit of the working temperature, calculate the continuous working time of the motor that reaches the corresponding upper limit of the operating temperature, and use this as the maximum allowable continuous operation of the motor.
  • the length of time so that the user understands and grasps the actual situation of the motor, and knows the follow-up working time of the motor.
  • the calculation of the maximum duration may be performed periodically or under certain conditions according to a set program, or may be performed according to manually input instructions.
  • Such a motor can also be provided with a current signal acquisition device for obtaining the motor current online and/or a voltage signal acquisition device for obtaining the motor voltage online, the current signal acquisition device being the current for collecting the current input signal of the stator winding. a sensor and/or a frequency converter capable of outputting a current output signal thereof, the voltage signal acquisition device being a voltage sensor for collecting a voltage input signal of a stator winding and/or a frequency converter capable of outputting a voltage output signal thereof, when When the signals are obtained by the frequency converter, the frequency converter that outputs the current signal and the voltage signal may be the same frequency converter, and the current signal is obtained by the current signal collecting device, and the current signal is used as the load sensing signal or by the current.
  • the signal calculates and obtains load data, and the voltage signal is obtained by the voltage signal acquisition device, and the voltage signal is used as a sensing signal of the rotational speed or the rotational speed data is calculated and obtained from the voltage signal.
  • the motor operates in this mode, and there is a definite positive correlation between the motor load and the winding supply current and between the motor operating speed and the winding supply voltage (ie, the stator voltage). Therefore, directly acquiring the motor voltage information and current information is equivalent to knowing the motor running speed and the motor load.
  • various direct detection motor running speeds and motor load detection methods are more reliable and realized. It's easier and faster.
  • Figure 18 is a diagram showing the current load curve of a high-torque low-speed permanent magnet synchronous motor used as a crane gearless hoisting mechanism in the above vector control state, which corresponds to a determined load (lifting weight) at an arbitrarily determined current,
  • the collected current signal can be directly used as the sensing signal to reflect the hoist according to actual needs.
  • the relationship between the settings determines the threshold of the current signal of the hoist overload.
  • the overload protection action is activated to stop the motor operation, thereby greatly facilitating the hoisting signal.
  • the acquisition and the confirmation of the motor overload greatly simplify the data processing, avoiding the reality of the sling data distortion caused by the weight sensor and the inaccurate sling overload control, and also help to reduce and eliminate the shielded weighing instrument. The security risks brought about.
  • Figure 19 shows the voltage/speed curve of a high torque low speed permanent magnet synchronous motor used as a gearless hoisting mechanism of the crane in the above vector control state.
  • the curve is a rising single curve and corresponds to any determined voltage.
  • the motor running speed of the motor can be calculated according to the winding supply voltage, and the collected voltage signal can be directly used as a sensing signal reflecting the running speed of the motor to be sent to the corresponding monitoring device according to actual needs.
  • Monitor or control the running state of the motor but when it is necessary to limit the maximum motor speed, the voltage signal threshold for confirming the motor running speed overspeed can be set according to the relationship between the motor running speed and the voltage. When the collected voltage signal reaches or exceeds the given value. When the voltage signal threshold is reached, the overspeed protection action is initiated, thereby providing a convenient way for online detection of the motor running speed.
  • the motor of the present invention can be used as a hoisting motor of a crane hoisting mechanism, in which the rotor casing of the electric motor directly winds the wire rope 49 of the hoisting mechanism to eliminate the huge size provided for the reduction transmission. Gear box.
  • Figure 20 shows an embodiment of a crane trolley in this application, the crane trolley comprising a small frame consisting of left and right end beams and balance beams respectively connected to the left and right end beams, respectively, Lifting motor and wire rope winding mechanism, the left and right end beams are respectively equipped with corresponding active wheel/active wheel set and passive wheel/passive wheel
  • the active wheel/active wheel set is provided with a wheel drive motor that employs any of the ultra low speed high torque motors disclosed in the present invention, the hoist motor passing through rigid supports 46 at the left and right ends Mounted on the left and right end beams, an anti-rotation structure for preventing relative rotation between the rigid support and the mounting shaft of the motor, the mounting shaft is usually a central axis of the motor, and rigid A fixed connection between the supports, the rotor housing 3 of the electric motor is used for winding a steel wire rope to form a reel of the wire rope winding mechanism, and the wire rope winding mechanism further comprises a pulley block matched with the steel wire rope, the pulle
  • the gearbox of the prior art is omitted, thereby not only avoiding various defects caused by the gearbox, but also making full use of the outer rotor permanent magnet synchronous motor. It is a variety of superior performance of low speed (including ultra low speed) high torque outer rotor permanent magnet synchronous motor.
  • the fixed disk at one end of the hoisting motor is connected with a rotary encoder, whereby position information and motion information of the outer rotor can be collected by a rotary encoder, and the fixed disk at the other end is equipped with a disc brake matched with it.
  • a brake caliper device which constitutes a brake disc of the disc brake and through which a disc body extending radially outside the housing of the outer rotor (which may also be fixedly connected to a fixed disc at a corresponding end)
  • the movable flange cooperates with the friction block of the brake caliper device, whereby the operation of the hoisting motor can be controlled, and the position of the hoisting motor after braking and/or braking is maintained by the disc brake.
  • the disc brake is preferably an electric disk brake for convenient control, since the fixed disc connected to one end of the rotor housing is directly connected to the encoder, and the fixed disc at the other end is directly used as a brake disc of the caliper brake, This is not only simple in structure, but also improves accuracy and reliability.
  • the tile-shaped hexahedron of the present invention refers to a cylinder whose main body portion is similar to a tile, and includes two radial surfaces, two circumferential surfaces and two axial surfaces, wherein the two surfaces in the radial direction are The two circumferential surfaces are connected to each other at two to two to form the sides of the cylinder, and the two axial surfaces constitute the top and bottom of the cylinder, which are approximately fan-shaped.
  • Either edge of the cylinder may be an intersection of plane intersection, curved surface intersection, intersection of plane and curved surface, smooth transition surface or any other suitable structure.
  • the oblique plane shape in which a certain surface of the permanent magnet is chamfered in the inner side of the present invention means a state in which the inner side in the radial direction is inclined toward the middle of the radially inner surface of the permanent magnet.
  • the angle of chamfering of the two circumferential sides of the permanent magnet referred to in the present invention means that the circumferential side of the cross section of the permanent magnet is measured by the line connecting the end points of the outer edge of the permanent magnet cross section and the axis of the central axis. The angle of the above connection on the corresponding side.
  • the concave arc line referred to in the present invention refers to the body of the entity whose bending direction is relative to the entity in which it is located.
  • the numerical range "A-B" includes both A and B end values.
  • plying refers to a manner in which a groove is placed in one of two objects to insert a portion of the other member into the groove to connect the two.
  • the present invention relates to a central shaft and a member such as a rotor housing and a stator extending in the same direction as the central axis.
  • the two ends or the left and right ends refer to both ends along the central axis axis, wherein " The left and right limits are only for the convenience of expression. They express any end along the axis of the central axis and the other end opposite to each other, so as to avoid confusion between the two ends due to unclear expression, and do not constitute the actual use.
  • the bearing connection referred to in the present invention is a rotatable movable connection realized by a bearing.
  • the structure referred to in the present invention includes a structure formed of one piece and a structure formed of a plurality of pieces, and the structure provided between the two pieces refers to a structure that affects the connection relationship or mode of action of the two pieces, including
  • the structure in which the two members or any of the members themselves are formed also includes such a structure formed by adding other members.
  • the cylindrical curved surface referred to in the present invention is a partial curved surface constituting a side surface of the cylinder, and the axis of the cylindrical curved surface is an axis corresponding to the cylindrical surface of the cylindrical curved surface.
  • the circumferential direction of the present invention is in the circumferential direction, any point on the circumference, the tangential direction of the point, the radial direction is the diameter direction of the circle, the said axial direction is the central axis axis or parallel to the central axis axis.
  • the way to extend when referring to a permanent magnet or to a rotor housing and a stator and portions thereof, the so-called axial and radial involved circumferences are on a plane perpendicular to the axis of the spool axis and the center of the circle is on the central axis axis.
  • the circumference when referring to a permanent magnet or to a rotor housing and a stator and portions thereof, the so-called axial and radial involved circumferences are on a plane perpendicular to the axis of the spool axis and the center of the circle is on the central axis axis. The circumference.
  • the outer and inner aspects referred to in the present invention are relative concepts, in the radial direction, the direction near the central axis is inner, and vice versa; in the axial direction, the direction extending toward both ends of the central axis is outer, and vice versa.
  • the stator core is located inside the fixed disk.
  • annular gap as used in the present invention means that the slit has a circular cross section.
  • the exhaust fan referred to in the present invention refers to a gas conveying machine for extracting air, and can select an appropriate type according to factors such as temperature, air volume and resistance.
  • polygonal hole or drum-shaped hole refers to a hole having a polygonal or drum-shaped cross section.
  • a polygonal column (or other three-dimensional structure) drum column (or other three-dimensional structure) means that the outer contour of the cross section is a polygon.
  • the drum shape is a figure surrounded by two parallel straight line segments and two arcs connecting the same-side end points on both sides of the two straight line segments, two arcs
  • the line is an arc that is convex toward the middle with respect to the figure.
  • the figure is mirror-symmetrical with respect to the midpoint line of the two straight lines, and is also mirror-symmetrical with respect to the center line of the two arcs.
  • the wire rope referred to in the present invention includes a flexible rope twisted from a plurality of or a plurality of thin steel wires, and is also used for any other suitable Suitable ropes for the same purpose.
  • the trapezoid of the present invention includes geometrically known trapezoids and contours similar to those of geometrically known trapezoids, consisting of four sides, the upper and lower bottom edge lines may be curved, and the line joints may be angular. It can also be in the form of a smooth transition curve.
  • the rectangle includes a geometry called a trapezoid and a contour that approximates the shape of a geometrically called rectangle.
  • any one of the preferred embodiments of the present invention may be limited to any one of the technical means. Any one of any other technical means defines any combination to form a corresponding technical solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种电动机外转子、低速大扭矩电动机以及起重机,外转子包括筒状的转子壳体(3),永磁体(6)在转子壳体(3)内沿周向和轴向两个方向上规则排列,永磁体(6)的两个周向侧面呈内侧削角状的斜平面,永磁体(6)长度为30-95mm,厚度为8-18mm,电动机采用上述外转子,转子壳体(3)的两端均固定安装有固定盘(4),定子铁心(1)上的定子槽为梨形槽,中心轴(2)的右端固定安装在设有防转结构的右刚性支座上。起重机以电动机的转子壳体(3)作为起升机构的卷筒,用于连接和卷绕起升机构的钢丝绳(49)。电动机有利于降低谐波转矩,简化结构,运行稳定,振动小,噪音小,温升低,能够在低速(超低速)大扭矩下正常运行。

Description

低速大扭矩电动机外转子、电动机及相关起重机 技术领域
本发明涉及一种适应于低速(超低速)大扭矩外转子永磁同步电机的外转子、一种低速大扭矩外转子永磁同步电机及一种直接以这种电动机外转子的转子壳体(转子壳体)作为其起升机构卷筒的直驱式大扭矩起重机。
背景技术
现有电动机包括转子和定子,通常采用定子在外转子在内的结构,也有部分电动机为转子在外而定子在内,这种电动机被称为外转子电动机。外转子电动机的定子铁心安装在固定的中心轴上,铁心上嵌装有定子绕组,转子的壳体呈筒状,包围在定子外侧,转子壳体的内壁上分布有永磁体,定子绕组通电后产生旋转磁场,与安装在转子内壁上的永磁体相作用,驱动转子旋转。现有这种电动机在速度较高时运行良好,但当需要低速(包括超低速)运行时,谐波转矩和齿槽转矩等负面影响就会变得非常明显,导致温度上升,振动和噪音加大,出力下降,当温升达到一定程度时,则可能出现不可逆的退磁现象,这些缺陷严重妨碍着外转子电动机在低速下的应用。而许多设备的执行机构经常会需要在很低的速度下运行,因此,对于高速的电动机而言,通常需要设置减速机构,例如常见的齿轮减速箱进行变速,以适应设备执行机构的需要。例如,对于用于驱动起重机卷筒的电动机而言,往往需要设置庞大的齿轮箱进行减速,不仅体积大,结构复杂,生产成本和维护费用高,而且还带来了不必要的动力消耗。
发明内容
本发明的目的之一是提供一种外转子,可用于低速大扭矩永磁电动机,以形成良好的永磁场,以利于降低谐波转矩,简化永磁体的安装结构,提高永磁体的牢固性和可靠性,并有利于降低成本。
本发明的目的之二是提供一种超低速大扭矩永磁电动机,其能够在低速(超低速)大扭矩下正常运行,并且运行稳定,振动小,噪音小,温升低。
本发明的目的之三是提供一种采用上述超低速大扭矩电动机的起重机,其起升机构不需要设置齿轮箱,体积小,生产成本和维护费用低,使用方便,能够在低速(超低速)大扭矩下正常运行。
本发明所采用的技术方案为:
一种电动机的外转子,包括筒状的转子壳体,所述转子壳体的内壁上安装有多个永磁体,所 述多个永磁体采用相同的瓦形六面体结构,所述永磁体在周向和轴向两个方向上规则排列,所述永磁体的两个周向侧面呈内侧削角状的斜平面状。
优选的,所述永磁体周向侧面的削角角度为5-35度。
优选的,任一周向上和任一轴向上排列的所述永磁体的数量都是多个。
优选的,所述永磁体在周向上沿圆周对齐且均匀分布,在轴向上沿直线对齐且均匀分布。
优选的,所述永磁体在轴向上的长度在30-95mm之间,所述永磁体的厚度在8-18mm之间。
通常,所述永磁体的两个轴向侧面为平面状,位于垂直于中心轴轴线的平面上,轴向上的相邻永磁体紧挨在一起,相互间没有间隙或仅有微小间隙。
优选的,周向上相邻的所述永磁体之间留有间距且设有轴向延伸的固定压条,所述固定压条固定连接在所述转子壳体上,所述固定压条的周向两侧分别压紧在相邻永磁体的周向侧面上。
优选的,所述固定压条的截面形状呈矩形、梯形、圆形或椭圆形,所述固定压条采用螺钉紧固、粘结或插接方式固定在所述转子壳体上。
优选的,所述固定压条与所述转子壳体的内壁之间留有压条紧固间隙,所述压条紧固间隙是空的,或者所述压条紧固间隙内填充有非导磁的粘结剂,或者所述压条紧固间隙内设有非导磁的垫。
优选的,所述永磁体横截面在径向上的外边缘呈圆心位于所述转子壳体的轴线上的圆弧线形,所述永磁体横截面在径向上的内边缘采用以下任意一种形式:
(1)所述内边缘为一圆弧,该圆弧的圆心位于所述转子壳体的轴线上,该内边缘的两端均与所述永磁体横截面的相应周向侧边直接连接;
(2)所述内边缘为一圆弧,该圆弧的半径等于所述外边缘的半径,圆心位于所述外边缘的中点与所述外边缘的圆心的连接线的延长线上,该内边缘的两端与所述永磁体横截面的相应周向侧边均直接连接;
(3)所述内边缘为一圆弧,圆心位于所述转子壳体的轴线上,该内边缘的两端均通过一个小的凹圆弧线与所述永磁体横截面的相应周向侧边连接;
(4)所述内边缘为一圆弧,该圆弧的半径等于所述外边缘的半径,圆心位于所述外边缘的中点与所述外边缘的圆心的连接线的延长线上,该内边缘的两端均通过一个小的凹圆弧线与所述永磁体横截面的相应周向侧边连接。
一种低速大扭矩电动机,包括外转子和定子,所述定子包括中心轴、固定安装在所述中心轴上的定子铁心以及固定安装在所述定子铁心上的定子绕组,所述外转子为上述任意一种外转子,所述转子壳体的两端均固定安装有固定盘,所述固定盘通过相应的转子轴承与所述中心轴旋转连接,所述中心轴的右端从与其连接的相应端轴承内延伸出来,固定安装在右刚性支座上,所述右刚性支座上设有轴安装孔,所述中心轴的右端部插入所述右刚性支座的轴安装孔且与所述右刚性支座之间设有用于防止两者相对转动的防转结构。
优选的,所述定子铁心上设有用于嵌装所述绕组的定子槽,所述定子槽为梨形槽,槽口尺寸k在2.5-4.5mm之间,所述绕组的节距为1。
优选的,所述定子采用8极9槽、10极12槽、20极24槽、30极36槽、22极24槽、16极18槽或32极36槽的极槽配合方式,极弧系数为0.8-0.9,所述永磁体采用钕铁硼材料,长度为30-95mm,厚度为8-18mm。
优选的,所述定子设有用于采集定子内温度信号的定子温度传感器。
优选的,这种电动机设有内冷却结构,所述内冷却结构包括下列任意一种散热风道或任意多种散热风道的组合:
(1)所述中心轴为中空轴,所述中心轴的轴孔构成轴内冷却的轴内散热风道;
(2)所述定子铁心的外侧面与所述外转子的内侧面之间设有环形缝隙,所述环形缝隙构成定子外冷却的定子外散热风道;
(3)所述定子铁心内设有轴向通孔,所述轴向通孔构成定子内冷却的定子内散热风道,所述定子铁心上的轴向通孔由组成所述定子铁心的定子冲片上冲出的相应散热风道孔连接而成;
上述各散热风道的通风方式为自然通风和/或强制通风。
优选的,所述内冷却结构采用下列任意一种强制通风结构:
(1)当所述内冷却结构为所述轴内散热风道时,所述中心轴的轴孔内设有轴内通风风机,所述轴内通风风机为位于出风端的所述中心轴轴孔的轴内抽风风机和/或位于进风端的所述中心轴轴孔内的轴内送风风机;
(2)当所述内冷却结构包括所述轴内散热风道、且包括所述定子外散热风道和/或所述定子内散热风道时,所述定子铁心的两端分别与相应端的所述固定盘之间留有构成端部匀压气隙带的间隙,所述定子外散热风道和/或定子内散热风道的两端分别与相应端的所述端部匀压气隙带连通,所述中心轴两端的侧壁上均设有连通所述中心轴的轴孔和相应端的所述端部匀压气隙带的中心轴侧孔,所述中心轴的轴孔的一端封闭,另一端设有轴内通风风机,所述轴 内通风风机为位于出风端的所述中心轴轴孔的轴内抽风风机和/或位于进风端的所述中心轴轴孔内的轴内送风风机,所述轴内通风风机位于相应端的所述中心轴的侧孔的外侧;
(3)当所述内冷却结构包括所述定子外散热风道和/或所述定子内散热风道、且包括或者不包括所述轴内散热风道时,所述定子铁心的两端分别与相应端的所述固定盘之间留有构成端部匀压气隙带的间隙,所述定子外散热风道和/或所述定子内散热风道的两端分别与相应端的所述端部匀压气隙带连通,出风端的所述固定盘上设有连通出风端的所述端部均压气隙带的出风风道,所述出风风道的数量为一个或多个,进风端的所述固定盘上设有连通进风端的所述端部均压气隙带的进风风道,所述进风风道的数量为一个或多个,所述进风风道内串接有进风气泵,位于所述进风气泵两端的所述进风风道上均设有进风单向阀,所述进风气泵包括缸体,所述缸体轴向设置在相应的所述固定盘上,所述缸体内设有与其配套的活塞,所述活塞连接有延伸到所述固定盘内侧的活塞杆,所述缸体内的空腔由所述活塞分隔为有杆腔和无杆腔,所述有杆腔位于所述无杆腔的内侧,所述中心轴上设有位于进风端的所述端部匀压气隙带内且与所述活塞杆构成凸轮机构的多级凸轮,所述多级凸轮转动时推动所述活塞杆往复移动,所述进风气泵的进气口和出气口均设置在所述无杆腔的底部,当还包括所述轴内散热风道时,进风端和或出风端的所述中心轴的侧壁上设有连通相应端的所述中心轴的轴孔和所述端部匀压气隙带的中心轴侧孔,进风端的所述中心轴的轴孔封闭、部分封闭或者不封闭。
优选的,所述转子壳体的左端连接有编码器,其连接方式为下列任意一种:
(1)所述编码器为外转子编码器,包括相互旋转连接的内套和外套,所述中心轴的左端从与其连接的所述转子轴承内延伸出来,固定安装在左刚性支座上,所述左刚性支座上设有轴安装孔,所述中心轴的左端插入所述左刚性支座的轴安装孔内且与所述左刚性支座之间设有用于防止两者相对转动的防转结构,所述内套固定连接所述中心轴的左端,所述外套固定连接左端的所述固定盘,所述中心轴、转子壳体、内套和外套同轴;
(2)所述编码器为内转子编码器并配有连接用阶梯轴和轴承支座,包括相互旋转连接的内套和外套,所述连接用阶梯轴通过外轴承安装在所述轴承支座上,所述连接用阶梯轴的右端设有径向凸缘,所述径向凸缘同轴紧固在左端的所述固定盘上,所述编码器的内套固定套接在所述连接用阶梯轴的左端部或通过联轴器与所述连接用阶梯轴的左端同轴连接,所编码器的外套通过连接件与所述轴承支座固定连接,所述外轴承优选为单列或双列调心轴承。
优选的,所述刚性支座(右刚性支座和/或左刚性支座)采用下列任意一种:
(1)所述刚性支座上的轴安装孔为多边形孔,与其连接的相应端的中心轴轴段呈相同的多 边形,所述轴安装孔与插入其中的所述中心轴轴段过盈配合或过渡配合,相应的多边形结构构成了所述的防转结构,所述轴安装孔直接设置在所述刚性支座的本体上或者设置在调整套上,当设置在所述调整套上时,所述调整套的外缘呈圆柱形,所述轴安装孔设置在所述调整套的中央,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓;
(2)所述刚性支座上的轴安装孔为圆柱形孔,相应端的所述中心轴轴段呈圆柱状,所述刚性支座上设有若干穿透所述轴安装孔侧壁的销钉通孔,所述中心轴的相应轴段上设有若干分别与所述若干销钉通孔对接的若干销钉盲孔,若干销钉或销轴分别楔入所述相互对接的销钉通孔和销钉盲孔,所述销钉或销轴及其配套结构构成了所述防转结构;
(3)所述刚性支座上的轴安装孔为圆柱形孔,相应端的所述中心轴轴段呈圆柱状,所述轴安装孔和插入所述轴安装孔内的所述中心轴轴段之间设有多个键,所述键及其配套结构构成了所述防转结构,所述轴安装孔直接设置在所述刚性支座的本体上或者设置在调整套上,当设置在所述调整套上时,所述调整套的外缘呈圆柱形,所述轴安装孔设置在所述调整套的中央,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓;
(4)所述刚性支座上的轴安装孔为鼓形孔,与其连接的相应端的所述中心轴轴段呈相同的鼓形,所述轴安装孔与插入其中的所述中心轴轴段过盈配合或过渡配合,相应的鼓形结构构成了所述的防转结构,所述轴安装孔直接设置在所述刚性支座的本体上或者设置在调整套上,当设置在所述调整套上时,所述调整套的外缘呈圆柱形,所述轴安装孔设置在所述调整套的中央,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓;
(5)所述刚性支座上的轴安装孔为花键孔,与其连接的相应端的所述中心轴轴段为花键轴,二者间所采用的上述花键结构构成了所述防转结构。
优选的,所述定子设有用于采集定子内温度信号的定子温度传感器,通过所述定子温度传感器采集定子内的实时温度,依据采集到的所述定子内的实时温度判定电动机的疲劳状态,设定与所述定子温度传感器的温度采集部位相对应的工作温度上限值,当相应定子温度传感器采集到的温度达到或超过相应的工作温度上限值时,判断为电动机疲劳并依此判断 控制停机,当所采集到的温度低于相应的工作温度上限值时,判断为电动机未疲劳并允许电动机进行工作。
优选的,这种电动机设有用于在线获得电动机电流的电流信号采集装置,所述电流信号采集装置为用于采集定子绕组的电流输入信号的电流传感器和/或为能够输出其电流输出信号的变频器,通过电流信号采集装置获得电流信号,以所述电流信号为荷载传感信号或者由所述电流信号计算并获得荷载数据。
优选的,这种电动机设有用于在线获得电动机电压的电压信号采集装置,所述电压信号采集装置为用于采集定子绕组的电压输入信号的电压传感器和/或为能够输出其电压输出信号的变频器,通过所述电压信号采集装置获得电压信号,以所述电压信号为旋转速度的传感信号或者由所述电压信号计算并获得转速数据。
一种起重机,包括上述任意一种超低速大扭矩电动机,所述超低速大扭矩电动机的转子壳体用作所述起重机的起升机构的卷筒,用于连接和卷绕所述起升机构的钢丝绳。
优选的,所述电动机一端的所述固定盘连接有旋转编码器,另一端的所述固定盘设有与其配套组成盘式制动器的制动钳装置,该固定盘构成所述盘式制动器的制动盘,通过其径向延伸在所述外转子的壳体圆周之外的凸缘(延伸出来的盘体边缘)或与该固定盘固定连接的制动法兰盘与所述制动钳装置的摩擦块配合。
本发明的有益效果为:
这种外转子由于采用了在周向和轴向上规则排列的多个瓦形的永磁体,有利于根据需要选择永磁体的大小、形状以及在相应方向上多个永磁体的分布方式进行磁场优化,通过限定永磁长度等方式明显地消除或抑制了高次谐波的影响,有利于避免或减小磁场畸变,还便于加工制造;由于将永磁体的周向侧面设置成斜平面并通过优化的削角角度设计,可以大幅度减小磁场畸变,根据申请人的实验,相对于现有技术下的常规设计,采用上述永磁体结构并结合本发明的其他优化设计,气隙磁场波形的畸变率可降低了50%—80%,使气隙磁场波形畸变率控制在15%或10%以下,反电动势波形的畸变率控制在10%或8%以下,由此大幅度提高了电机的运行平稳性、降低了噪音、减小了转矩脉动且有助于增加转矩输出;由于采用了轴向延伸的固定压条,可以同时将多个永磁体紧压,由此不仅简化了安装工艺,方便了安装作业,而且可以采用适宜的非磁性材料制成固定压条,以减小加工难度,降低工艺要求,保证永磁体安装的质量,同时还避免了因在永磁体上打孔等产生的负面影响,有助于改善电动机的电磁性能;由于所述永磁体横截面在径向上的内边缘可以采用多种形状,有利于实现电磁性能的优化,有利于根据电动机性能和加工需要灵活选择,特别是通过该内边缘的两端各设 置一个小的凹圆弧线与相应周向侧边连接的形状,可以明显地改善气隙磁场波形,减小畸变率。
这种电动机由于采用外转子构造,有利于大扭矩输出;由于设置了定子温度传感器,能够获得定子内部的真实温度,这个温度相对于现有技术下采用的电动机外表面温度或机座温度而言,可以更准确地体现电动机的疲劳程度或者温升对电动机的影响,由于温升对电动机的影响主要表现为定子铁心在不同温度下的不同特性,并且定子铁心是否达到一定温度限值是电动机能否继续工作的主要影响因素和必要限定条件,而电动机外表面温度与定子内部温度不同,两者之间也并非严格的线性关系,因此通过定子温度传感器采集的定子内温度能够更精确、更及时地判断出电动机的疲劳状态,避免因温度不准确导致的误判漏判,既有效且可靠地保证了电动机运行在合理或安全的温度范围内,又避免在定子温度未达到停机限值而停机造成的浪费,同时还避免了因使用者忽视电动机工作制导致电动机定子温升过高给电动机带来的损害;对于需要大扭矩输出的场合,例如当这种电动机用于桥门式起重机的起升机构时,工作时转子与定子之间相互作用力矩可达200kNm以上,采用现有技术的轴端安装固定方式易于出现固定不住的问题,而通过在中心轴右端与右刚性支座之间设有了用于防止中心轴和支座相对转动的防转结构,有效地保证了了电动机安装的稳定性,避免了现有安装技术下中心轴易于打滑旋转的现象;由于在电动机内部设置了散热风道,并可以通过强制通风的方式进行风冷,有利于大幅度提高散热能力,控制温升,特别是由于可以采用自动气泵进行通风,在转子转动时气泵自动动作,转子停止时气泵也停止动作,不仅方便了操作,而且还无需另行接入电源;由于设置了编码器,并且外转子编码器和内转子编码器均可以使用,为准确地通过编码器采集转子转动和位置信号提供了条件,有利于控制变频器的供电性能与实际需要相一致,提高运行质量;由于设置了电流传感器和电压传感器,并通过电流信号获得荷载信号,通过电压信号获得转速信号,由此极大地减小了相应数据采集的难度,简化了控制设备控制过程;由于采用了优化的转子和定子设计,使电动机的电磁性能得到很大的改善,在上述优选的实施方式下,电动机转速可低至0.001r/min-30r/min,转矩密度可高达80kN·m/m3以上,瞬时过载能力可高达1.5-2.0倍过载。
这种起重机以低速大扭矩电动机的外转子的壳体直接作为起升机构的钢丝绳卷筒,无需设置减速装置就能够满足运行要求,由此极大地简化了结构,减少了材料消耗量,降低了生产成本,提高了控制精度,降低了能耗。
附图说明
图1是本发明超低速大扭矩电动机的总体结构示意图;
图2(a)、2(b)和2(c)分别为本发明涉及永磁体横截面形状的三种实施例的示意图;
图3是本发明永磁体安装结构的一个实施例的轴向示意图;
图4是本发明永磁体安装结构的另一个实施例的轴向示意图;
图5是本发明一种空心轴的结构示意图;
图6是本发明涉及若干散热风道的截面结构示意图;
图7是本发明一种冷却结构的示意图;
图8是本发明另一种冷却结构的示意图;
图9是本发明第三种冷却结构的示意图;
图10本发明涉及外转子编码器的结构示意图;
图11是本发明涉及内转子编码器的结构示意图;
图12是本发明一种刚性支座的示意图;
图13是本发明另一种刚性支座的示意图;
图14是本发明第三种刚性支座的示意图;
图15是本发明第四种刚性支座的示意图;
图16是本发明第五种刚性支座的示意图;
图17是本发明第六种刚性支座的示意图;
图18是本发明涉及的电流I与起重负载G的关系曲线(电动机用于起重机的起升机构,电动机的转子壳体作为起重机钢丝绳卷绕系统的钢丝绳卷筒,直接卷绕钢丝绳,负载为起重机的吊重);
图19是本发明涉及的电压U与运行速度V的关系曲线(电动机用于起重机的起升机构,电动机的转子壳体作为起重机钢丝绳卷绕系统的钢丝绳卷筒,直接卷绕钢丝绳);
图20为本发明起重机中涉及起升机构的结构示意图。
具体实施方式
参见图1-17,本发明公开了一种低速大扭矩电动机的外转子以及采用这种外转子的低速大扭矩电动机,这种电动机通常可以为三相永磁同步电动机,也可以为单相永磁同步电动机。所称电动机包括通常意义下的这类电动机本身,也包括在这种电动机结构和工作原理的基础上附加其他具体应用功能的电动装置。
这种超低速大扭矩电动机包括外转子和位于所述外转子内的定子(参见图1),所述定子主要由定子铁心1、定子绕组和中心轴2构成,所述中心轴可以是实心轴或空心轴,所述定子铁心固定安装在中心轴上,所述定子铁心上设有定子槽,定子绕组固定嵌装在所述定 子槽上,所述外转子包括筒状的转子壳体3(通常可被称为外筒),所述转子壳体的两端固定连接有固定盘4,所述固定盘通过转子轴承5与所述中心轴旋转连接,所述转子壳体内固定安装有若干永磁体6,所述若干永磁体采用相同的瓦形六面体结构且沿周向和轴向两个方向规则排列,任一周向和任一轴向上排列的所述永磁体数量均为多个,所述永磁体的两个周向侧面呈内侧削角状的斜平面状,其削角角度θ为5-35度(参见图2)。当定子绕组通电后,产生的旋转磁场与永磁体产生的磁场相互作用,驱动转子同步旋转,由此将电能转换为机械能。由于采用了周向和轴向上规则排列的若干永磁体形成永磁磁场,有利于实现磁场结构的优化,特别是由于周向上采用了多个永磁体且永磁体的两个周向侧面呈5-35度的内侧削角状的斜平面状,大幅度减小了磁场波形的畸变率;由于轴向上采用多个永磁体,也有利于减小永磁体的长度,明显地消除或抑制了高次谐波。
所述若干永磁体在周向上和轴向上的规则分布方式为在周向上沿圆周对齐且均匀分布,在轴向上沿直线对齐且均匀分布,由此不仅有利于合理安排各永磁体的周向分布和轴向分布,实现磁场优化,而且结构简单,便于加工、安装和维护。
周向相邻的所述永磁体之间留有间距,由此有利于优化磁场和便于安装。
所述永磁体在所述转子壳体内的安装固定方式可以采用下列任意一种方式:
(1)参见图3,所述转子壳体的内表面设有若干轴向延伸、周向间隔排列的且与所述永磁体的形状和尺寸相适应的燕尾槽,所述永磁体嵌装在相应的燕尾槽内;
(2)参见图4,周向相邻的所述永磁体之间设有轴向延伸的固定压条7,所述轴向延伸的固定压条通过螺钉紧固在所述转子壳体上并与所述永磁体的两侧侧面紧压。
对于上述第(1)种安装方式,所述嵌装在相应的燕尾槽内的永磁体与所述燕尾槽之间可以相互粘结,对于上述第(2)种安装方式,所述轴向延伸的固定压条的横截面可以呈矩形或梯形,所述轴向延伸的固定压条的径向外侧面与所述转子壳体的内壁之间也可以设有不导磁粘结剂8,由此提高安装的牢固性且不会对磁场产生负面影响。所述固定压条采用矩形截面易于加工,而梯形截面可以使两侧与相应永磁体的相应侧面密切贴合,有利于提高牢固性和可靠性。
对于上述第(2)种安装方式(即当周向相邻的所述永磁体之间设有轴向延伸的固定压条时),所述轴向延伸的固定压条通过螺钉紧固在所述转子壳体上并与所述永磁体的两侧侧面紧压,所述轴向延伸的固定压条的横截面呈矩形或梯形,由此可以进一步提高安装的牢固性并进一步优化磁场。
所述永磁体的径向外表面可以为轴线与所述中心轴轴线重合的圆柱曲面,所述永磁 体的径向内表面为轴线与所述中心轴轴线重合或平行的圆柱曲面或者为由多个轴线相互平行的圆柱曲面相接而成的曲面,所述多个圆柱曲面的连接线可以位于轴线与所述中心轴轴线重合的圆柱曲面上。
作为进一步的优选结构,所述永磁体横截面(垂直于中心轴轴线方向上的截面)在径向上的外边缘61(径向上远离中心轴的边缘)呈圆心位于所述中心轴轴线上(在永磁体横截面所在平面上,所述中心轴轴线表现为一个点,下同)的圆弧线形,所述永磁体横截面在径向上的内边缘62(径向上靠近中心轴的边缘)呈单一的圆弧形或者为由多段圆弧相互连接成的曲线,通过这些曲线表面的优化设计,可以明显地改善气隙磁场波形,减小畸变率。
图2(a)-(c)给出涉及永磁体横截面在径向上的内边缘形状的几个实施例:
图2(a)给出的实施例中:所述永磁体横截面在径向上的内边缘呈单一的圆弧形,其圆心位于所述中心轴轴线上,外边缘和内边缘的半径分别为R1和R2,形成在径向上等厚的永磁体,使各永磁体径向内、外表面分别位于与所述转子壳体同轴的相应圆柱面上(转子壳体与中心轴同轴),并使永磁体在径向上的内表面与定子的外表面之间间距相等;
图2(b)给出的实施例中:所述永磁体横截面在径向上的内边缘呈单一的圆弧形,其半径与所述永磁体横截面在径向上的外边缘的半径相等,均为R1,其圆心位于所述永磁体横截面外边缘中点与所述中心轴轴线所确定的直线上,由此形成永磁体中央厚两侧薄的结构,有利于消除边缘谐波;
图2(c)的实施例中,所述永磁体横截面在径向上的内边缘可以采用图2(a)实施例的形状,也可以采用图2(b)实施例的形状,其特殊之处在于将图2(a)实施例和图2(b)实施例中永磁体横截面在径向上的内边缘与永磁体横截面的周向侧边通过一个小的凹圆弧线(半径为R3)连接,而不是通常情况下的直接连接或者通过凸形圆角连接,由此可以更有效地减小边缘谐波。两边圆弧的设置起到了类似“削角”的效果,有利于进一步减小转矩脉动,优化磁场,明显地消除或减小高次谐波的作用力,为电动机在低速/超低速、大扭矩下稳定工作提供基础保证。
所述永磁体的长度(轴向长度)可以在30-95mm之间,所述永磁体的厚度(当永磁体为不等厚结构时,指最大厚度)在8-18mm之间,由此在保证机械强度和磁场强度的前提下,可以明显地减小高次谐波的影响。
所述永磁体可以采用钕铁硼材料,以提高磁性能。
一种优选的所述永磁体材料满足下列条件,以保证电动机正常运行,提高适应性:
(1)剩磁在1.25T以上,内禀矫顽力在20-30kOe之间;
(2)150-180℃时的去磁曲线为一条直线,不出现去磁拐点或者出现去磁拐点但其最大去磁工作点bmh高于其去磁拐点。
由此,所述永磁体应选取牌号为SH、UH或EH钕铁硼材料,或者性能相当或更优的其他可能牌号的钕铁硼材料。采用具有上述特点的永磁材料,可以消除传统的低速大扭矩电动机的永磁体在起重机运行工况下必将产生的不可逆去磁风险,是本发明能够实现低速或超低速、大扭矩的重要保证。
所述定子槽可以采用梨形槽,槽口尺寸k在2.5-4.5mm之间,绕组节距为1,由此可以明显地优化定子磁场,消除或减小高次谐波,改善频率特性,提高出力,节省材料,降低铜耗。
这种电动机的优化极弧系数为0.8-0.9,优化极槽配合采用8极9槽、10极12槽、20极24槽、30极36槽、22极24槽、16极18槽或32极36槽配合方式,以获得优化的气隙磁场,消除齿槽转矩。
经过上述改进,在优选的实施例下并结合其他配套的优化装置(例如优质变频器),本发明电动机的气隙磁场波形的畸变率可降低50%—80%,使气隙磁场波形畸变率控制在15%或10%以下,反电动势波形的畸变率控制在10%或8%以下,由此大幅度提高了电动机的运行平稳性、降低了噪音、减小了转矩脉动且有助于增加转矩输出,并有助于控制温升,因此在超低速大扭矩的情形下依然能够正常运行,特别适用于卷筒直驱(以转子壳体作为卷筒)的起重机起升机构及其他类似场合。
为提高散热能力,改善散热效果,特别是对于某些产热量大的使用场合,可以在电动机内部设置散热风道,通过自然通风或强制通风的方式,直接在电动机内部通风降温。
例如,可以设有下列任意一种或多种内冷却结构(参见图5-8):
(1)所述中心轴为中空轴,所述中心轴的轴孔9构成用于轴内冷却的轴内散热风道(参见图5);
(2)所述定子铁心的外侧面与所述外转子的内侧面之间设有构成定子外散热风道10的环形缝隙(参见图6);
(3)所述定子铁心内设有构成定子内散热风道11的轴向通孔(参见图6)。
所述定子铁心可以由若干相同结构的沿轴向叠置的定子冲片组成,在此情况下,在所述定子冲片上冲制有若干散热风道孔以叠成所述定子内散热风道,由此可以在基本上不增加加工工艺或工艺难度的情况下,形成所需的定子内散热风道。
所述定子冲片上的若干散热风道孔可以沿同一圆周均匀分布,由此可以均衡各处的散热效果。当需要设置多层散热风道孔时,所述定子冲片上的若干散热风道孔可以沿多个圆周分布,各圆周的若干散热风道孔均匀分布。
所述定子冲片上分布于同一圆周上的的若干散热风道孔的形状和大小相同,均为以所述定子冲片的中心为圆心的弧形长条孔,由此可以保证定子铁心强度的情况下有效地提高风道的散热面积。
所述定子冲片上的散热风道孔距该定子冲片内边缘(位于中央的中心轴安装孔的边缘)的距离小于距该定子冲片外边缘的距离,由此在综合定子外散热风道和定子内散热风道作用的情况下,提高总体散热效率和散热能力。
当需要强制通风时,可以采用下列任意一种强制通风结构:
(1)当所述中心轴为中空轴时,所述中心轴出风端的轴孔敞口,所述中心轴出风端的轴孔内设有轴内抽风风机,当还设有定子外散热风道和/或定子内散热风道时,所述定子铁心的两端分别与相应端的所述固定盘之间留有构成端部匀压气隙带12的间隙,所述定子外散热风道和/或定子内散热风道的两端分别与相应端的所述端部匀压气隙带连通,所述中心轴出风端的侧壁上设有连通所述中心轴的轴孔和相应端的所述端部匀压气隙带的中心轴侧孔13,所述轴内抽风风机位于该中心轴侧孔的外侧;
(2)当设有定子外散热风道和/或定子内散热风道时,所述定子铁心的两端分别与相应端的所述固定盘之间留有构成端部匀压气隙带12的间隙,所述定子外散热风道和/或定子内散热风道的两端分别与相应端的所述端部匀压气隙带连通,所述进风端的固定盘上设有进风风道,所述进风风道的数量为一个或多个,所述进风风道内串接有进风气泵,位于所述进风气泵两端的所述进风风道上均设有进风单向阀,所述进风气泵包括缸体,所述缸体轴向设置在相应的所述固定盘上,所述缸体内设有与其配套的活塞,所述活塞连接有延伸到所述固定盘内侧的活塞杆,所述缸体内的空腔由所述活塞分隔为有杆腔和无杆腔,所述有杆腔位于所述无杆腔的内侧,所述中心轴上设有位于相应端的所述端部匀压气隙带内且与所述活塞杆构成凸轮机构的多级凸轮,所述多级凸轮转动时推动所述活塞杆往复移动,所述进风气泵的进气口和出气口均设置在所述无杆腔的底部。当在上述情况下还设有轴内散热风道时,所述中心轴进风端的侧壁上设有连通所述中心轴的轴孔和相应端的所述端部匀压气隙带的中心轴侧孔,由此使各散热风道相互连通。
下面给出几种散热冷却的具体实施方式:
例如,可以通过所述定子外散热风道和定子内散热风道进行电动机内的通风散热,在此情况 下,两个所述端部匀压气隙带12应分别连通各自的通风风道14,所述通风风道可以开设在相应端的固定盘上并与相应端的端部匀压气隙带相连接(参见图7),以简化结构,降低风阻和提高效率,其中一个固定盘(例如右端的固定盘)上的通风风道用作进风风道,另一个固定盘(例如左端的固定盘)上的通风风道用作出风风道,当需要进行强制通风时,至少一个所述固定盘上的通风风道设有强制通风装置,通过强制通风装置的通风作用(鼓入和/或抽出),在所述定子内散热风道和定子外散热风道形成具有所需风量和压力的气流,定子铁心上的热量通过热交换散到定子内散热风道和定子外散热风道的气流中被气流带出,由此实现高效强制散热的目的。上述定子外散热风道和端部匀压气隙带均可以是现有电动机的相应间隙,可以根据散热和匀压的需要进行尺寸和形状上的改进而无需另外重新设置,有利于简化结构。
所述进风风道和出风风道的数量可以均为若干个,根据需要也可以是一个,所述进风风道的数量与所述出风风道的数量可以相等也可以不相等。
所述进风风道和所述出风风道分别开设在相应端的固定盘上,所述出风风道上设有出风单向阀15,所述强制通风装置为进风气泵16,所述进风气泵的数量为若干个,分别串接各自对应的所述进风风道中,所述进风气泵两端的进风风道上均设有相应的进风单向阀(例如相对于所述气泵而言的进气阀17、排气阀18)。对所述气泵的驱动和工作方式控制可以通过任意适宜的现有和其他可能的适宜技术。
所述进风气泵包括缸体,所述缸体轴向设置在相应的所述固定盘上,所述缸体内设有配套的活塞,所述活塞连接有延伸到所述固定盘内侧的活塞杆,所述缸体内空腔由所述活塞分隔为有杆腔和无杆腔,所述有杆腔位于所述无杆腔的内侧,所述中心轴上设有位于相应端部匀压气隙带内且与所述活塞杆构成凸轮机构的多级凸轮19,所述多级凸轮转动时推动所述活塞杆往复移动,所述进风气泵的进气口和出气口均设在所述无杆腔的底部,由此所述无杆腔构成所述进风风道的一部分,实现所述气泵在所述进风风道上的串接。通常在活塞杆顶端可以设置与所述凸轮配合的轮子,所述凸轮的凸台也可以采用一个顶弧与两个内弧平滑连接的曲面结构,以减小摩擦。电动机工作时,所述固定盘随外转子转动并通过所述多级凸轮带动所述各个气泵的活塞杆往复移动,进而带动各个气泵的活塞往复移动,随着活塞的移动,依靠所述进风气泵两端进风风道上的进风单向阀的作用,外部空气进入无杆腔,再从无杆腔进入相应端的匀压气隙带,经过定子内散热风道和定子外散热风道后,经另一端的出风口流出。根据实际需要,可以通过适宜的气泵数量(进风风道数量)、气泵参数及凸轮上的凸台数量等,可以满足电动机散热对风量和风压的要求。这种气泵无需另接外部动力,在电 动机工作时自动开始工作,电动机停止时自动停止,非常方便。
作为上述两端通风风道均开设在固定盘上的替代方案,所述通风风道也可以均开设在相应端的中心轴上(如图8),或者一端的通风风道开设在固定盘上,另一端的通风风道开设在固定盘上(如图9)。将通风风道开设在中心轴上有利于提高对强制通风装置的适应性,简化与强制通风装置之间的连接结构,并提高通风能力,所述开设在中心轴上的通风风道可以由开设在所述中心轴端部的中心轴轴向孔(相当于从轴端向内延伸一定长度的中心轴轴孔)20和设置在所述中心轴轴向孔的侧壁上的中心轴侧孔21构成,所述中心轴轴向孔的外端开口,里端封堵(包括采用封堵件封堵或设置成盲孔),所述中心轴侧孔的一端连通相应端的端部匀压气隙带,另一端连通所述中心轴轴向孔。
当采用送风风机作为强制通风装置时,在进风端的中心轴上开设进风风道,所述送风风机的出风口连通所述进风风道或者直接将适宜的送风风机安装在所述进风风道内,与这种强制通风方式相适应,所述出风风道可以开设在相应端的固定盘上,也可以开设在相应端的中心轴上,当所述出风风道开设在相应端的固定盘上,所述开设在相应端的固定盘上的出风风道的数量通常可以为多个,以提高通风能力。
当采用抽风风机作为所述强制通风装置时,将所述出风风道设在相应端的中心轴上,所述抽风风机的进风口连通所述出风风道或者直接将适宜的抽风风机安装在所述出风风道内,与这种强制通风方式相适应,所述进风风道可以开设在相应端的固定盘上,也可以开设在相应端的中心轴上,当所述进风风道开设在相应端的固定盘上,所述开设在相应端的固定盘上的进风风道的数量通常可以为多个,以提高通风能力。
对于进风风道和出风风道均设置在中心轴上的上述冷却方式,如果将中心轴上的进风风道和出风风道连通(实际上就是采用贯通的中心轴轴孔),形成轴内散热风道,并适当设置进风端和出风端的中心轴侧孔13的大小,使定子外散热风道、定子内散热风道及轴内散热风道中的空气流量符合要求,就可以同时实现定子外散热风道、定子内散热风道及轴内散热风道同时散热的目的。
如图9所示,所述中心轴轴孔的进风端通过堵板22封堵(封闭),所述出风端的中心轴轴孔内设有引风机23或者所述出风端的中心轴轴孔连接有引风机。引风机启动后,外部冷空气从进风端固定盘上的进风风道进入该端的端部匀压气隙带,一部分经过外散热风道后进入出风端的端部匀压气隙带,然后通过相应端的中心轴侧孔进入中心轴轴孔,另一部分经过进风端的中心轴侧孔进入该端的中心轴轴孔,沿中心轴轴孔流入出风端,两部分空气流在出风端中心轴轴孔内汇合,经引风机送出中心轴,由此形成对定子外表面和中心轴内部的 强制风冷,由此实现高效强制散热的目的。
所述电动机的编码器可以采用外转子编码器,也可以采用常见的内转子编码器。
通常,所述编码器为旋转编码器,包括相互旋转连接的内套24和外套25,所述内套和外套之间留有间隙,所述内套和外套上设有对应的位置感应元件,以保证外套相对于内套的转动,以获得相应的传感信号。
当所述编码器为安装在所述转子壳体左端的外转子编码器时(参见图10),所述内套套接在从左端延伸出来的所述中心轴上并与所述中心轴固定连接,所述外套与所述转子壳体固定连接(可以直接固定,也可以借助其他结构件间接固定),所述中心轴、转子壳体、内套和外套同轴。工作时,所述内套与所述中心轴一起固定不动,所述外套与所述转子壳体完全同步地转动,所述外套的角位移、旋转速度、旋转加速度等参数与所述转子壳体完全相同,有利于保证检测数据的可靠性和提高检测精度。
所述内套与所述中心轴固定连接的方式可以为套接在所述中心轴上的所述内套与所述中心轴之间设有联接键26,这种连接固定的方式结构简单,安装方便,可靠性好。
所述中心轴左端用于连接所述内套的轴颈为阶梯轴颈,所述内套的右端由所述阶梯轴颈上的相应止口定位,所述内套的左端由固定套接在所述阶梯轴颈的止推环27定位,由此通过简单的结构保证内套在轴向上的定位和固定。
所述阶梯轴颈上还可以套接有隔套28,所述隔套位于所述内套与位于所述内套左侧用于定位的所述内套止口之间,所述隔套的右端与所述止口的端面相接,所述隔套的左端与所述内套的右端相接,所述止推环的右端与所述内套的左端相接,通过隔套的设置,以利于将内套定位在适宜的轴向位置上。
所述隔套可以由一段套筒结构构成,所述套筒结构的轴向中部设有环形隔板,所述环形隔板位于左端的所述转子轴承的左侧,其外径大于该转子轴承的内径,由此还可以对相应端的转子轴承起到防护作用。
位于左端的所述固定盘的外边缘部位通过螺栓紧固在所述转子壳体相应端口处的环形凸缘29上,所述固定盘的内圆与相应转子轴承的外圈固定连接,由此方便有效地实现了所述转子壳体左端端口的封堵以及转子壳体与转子轴承之间的连接。
由于现有技术背景下,通常能够用作所述转子轴承的轴承外径大于所述外套的外径,因此,所述外套上设有外套法兰30,所述外套法兰位于一连接用法兰盘31的左侧,并通过螺栓紧固在该连接用法兰盘的内边缘部位上,所述连接用法兰盘位于所述左端的固定盘的左侧,所述连接用法兰盘的外边缘部位通过螺栓紧固在所述左端的固定盘的内边缘部位, 由此实现所述外套与所述转子壳体之间的固定连接。由此方便有效地解决了因所述编码器外套大小和位置等因素无法直接与固定盘连接的问题。
在上述外转子编码器的安装方式下,所述中心轴的左端与右端一样,安装在其对应的左刚性支座32上,所述左刚性支座安装在所述外转子编码器的外侧,由此不仅方便了编码器的安装,简化连接结构,也便于使用和维护。
当所述编码器为安装在所述转子壳体左端的内转子编码器33时(参见图11),通常采用小孔径内转子编码器,所述小孔径内转子编码器设有连接用阶梯轴34和轴承支座,所述连接用阶梯轴通过外轴承35安装在所述轴承支座上,所述连接用阶梯轴的右端设有径向凸缘,所述径向凸缘同轴连接所述左端的固定盘4,所述编码器的内套固定套接在所述连接用阶梯轴的左端部或通过联轴器36或类似连接件与所述连接用阶梯轴的左端同轴连接,所编码器的外套通过连接件与所述轴承支座固定连接。由于编码器的内套通过连接用阶梯轴与所述转子壳体3同轴连接,通过相应的连接件使外套固定不动,由此可以将常规技术下的内转子编码器用于直径较大的外转子电动机的检测,例如本发明公开的超低速大扭矩电动机。
所述轴承支座优选由上座37和下座38两部分对接而成,所述上座和下座通过螺栓紧固在一起,以方便加工、安装和维护。
所述外轴承优选采用单列或双列调心轴承,以改善和提高受力性能。
所述轴承支座上固定设有用于轴承外圈轴向限位的挡环39和轴承盖40,所述挡环位于所述外轴承的右侧,所述轴承盖位于所述外轴承的左侧,所述挡环和轴承盖与所述连接用阶梯轴之间留有间隙,以实现可靠的定位并避免对连接用阶梯轴的妨碍。
所述连接用阶梯轴上各轴段的直径由右到左逐段递减,以适应于转子壳体和编码器上相应件的安装尺寸要求。
所述连接用阶梯轴可以为实心或空心的回转体结构件,当采用空心结构时,可以通过中孔进行穿线和通风等。
所述编码器外套与所述轴承支座之间的连接件包括过渡连接用的异型法兰41,所述异型法兰的两端分别为外缘环形连接部和内缘环形连接部,所述外缘环形连接部和内缘环形连接部之间的部分呈带有环形阶梯的筒状,所述外缘环形连接部位于所述异型法兰的右端,与轴承盖连接,所述内缘环形连接部位于所述异型法兰的左端,与所述外套上的安装法兰连接,由此不仅适应了电动机和编码器上相应件的轴向位置和径向尺寸的连接要求,而且还对外轴承等件起到有效的保护作用。
所述刚性支座(右刚性支座和,如果有的话,左刚性支座)可以采用任意适宜的形 式,由于圆柱形的光轴和圆柱形的光孔之间的摩擦力有限,因此当中心轴的扭矩很大时,易于出现打滑,因此,可以通过将相互配合的中心轴轴段和轴安装孔42设置成非圆形,例如多边形孔(参见图12)和鼓形孔(图16),或者通过销43或螺栓等沿径向穿过位于刚性支座和中心轴上的孔(参见图14),使其一部分位于刚性支座内,另一部分位于中心轴内,由此阻止中心轴相对刚性支座转动,还可以通过将轴安装孔设置成花键孔(参见图17)、或者在中心轴和轴安装孔之间设置联接键44(参见图15)等方式阻止中心轴相对刚性支座旋转。
所述轴安装孔可以直接设置在所述刚性支座上,即设置在所述刚性支座的本体上,优选地,刚性支座可以采用由刚性支座的本体和调整套45分体结构,所述轴安装孔设置在所述调整套的中央,所述调整套的外侧呈圆柱形,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓上,安装时可以将所述调整套与中心轴作为整体安装到刚性支座的本体的调整套安装孔中,而调整套安装孔为圆柱形孔,方便中心轴找正,降低了中心轴安装时周向角度调整的难度和两刚性支座的同轴调整难度,还降低了刚性支座和中心轴轴颈的加工要求,当中心轴的两端均安装在刚性支座上时,通常至少有一个刚性支座为上述设置有调整套的刚性支座。
所述定子温度传感器的数量为一个或多个,所述定子温度传感器的设置位置(是指采集温度的位置,对应温度采集部位)可以为一个或多个,由此可以根据不同需要以及加工和操作上的便利,灵活设置定子温度传感器的数量和安装位置。
例如,所述定子温度传感器可以设置在下列任意位置上:
a)所述定子温度传感器设置在所述定子铁心上的定子槽内,位于相应定子槽槽壁和该定子槽内的绕组之间,由此采集到的温度基本上体现出定子铁心的温度,可视为或用作定子铁心的温度;
b)所述定子铁心内部设有定子温度传感器安装孔,所述定子温度传感器嵌装在所述定子温度传感器安装孔内,由此可以更为精准地采集到定子铁心内部的温度,可以将所述定子温度传感器安装孔设置在定子铁心的最高温度部位,以获得定子铁心上的最高温度,避免因实际采集到的定子铁心内部温度低于其最高温度致使这些部位因温度超过铁心的工作温度上限值而出现故障;通常,所述定子温度传感器安装孔可以在相应铁心片的冲制过程中冲制出来;
c)所述定子温度传感器设置在所述定子铁心的定子槽内的绕组内部,由此可以直接采集到绕组的内部温度。基于与前面所述同样的理由,绕组内部设置的定子温度传感器也优选设置在 绕组内的温度最高部位;
d)所述中心轴内还可以设有或不设有用于采集中心轴温度的定子温度传感器,通过用于采集中心轴温度的定子温度传感器可以获得中心轴温度,以便与其他温度相比较,分析研究电动机上的温度梯度变化,并可以在控制要求相对较低的情况下作为控制依据或者通过修正后作为控制依据。
如果将测温探头放置于电动机轴承或者电动机外壳上进行测温,不能反映出电动机内部的产热和温度状况。特别是对应外转子永磁同步电动机而言,定子绕组的铜损和定子铁心的铁损是发热的主要原因,而这些热能首先引发定子铁心和定子绕组的温度上升,经过较长的路径才到达外壳或轴承,因此,从外壳或轴承测得的温度不能真实地体现定子内部的温度,不利于对电动机状态作出准确的判断,也不利于对电动机进行精确的控制。另外由于人们是通过时间试验而定义电动机的工作级别,但在实际的运行过程中,使用者一般不会去统计电动机运行的时间,运行到工作级别限定的最大工作时间后,经常会出现不对电动机进行停机等处理而继续运行的现象,在人们不掌握电动机内部温度的情况下,易于导致事故发生,而如果完全依据工作制工作,尽管通常可以保证安全运行,但往往也存在电动机未达到应停机的内部温度之前就停机的现象,导致电动机的利用率下降,影响工作效率可以通过定子温度判定电动机的疲劳状态,因此,通过定子温度判断电动机疲劳状态和程度更为准确,可以设定与定子上温度采集部位相对应的工作温度上限值,当采集到的温度达到或超过相对应的工作温度上限值时,判断电动机疲劳并依此判断控制停机,当所采集到的温度低于相对应的工作温度上限值时,判断电动机未疲劳并允许电动机进行工作。
当所述定子温度传感器所采集到的温度低于相对应的工作温度上限值时,计算达到相对应的工作温度上限值的电动机持续工作时间,并以此作为允许电动机继续持续工作的最大时长,由此使使用者了解和掌握电动机的实际情况,对电动机后续的工作时间做到心中有数。所述最大时长的计算,可以依据设定的程序,周期性或在一定条件下计算,也可以依据人工输入的指令进行相应的温度采集和计算。
这种电动机还可以设有用于在线获得电动机电流的电流信号采集装置和/或用于在线获得电动机电压的电压信号采集装置,所述电流信号采集装置为用于采集定子绕组的电流输入信号的电流传感器和/或为能够输出其电流输出信号的变频器,所述电压信号采集装置为用于采集定子绕组的电压输入信号的电压传感器和/或为能够输出其电压输出信号的变频器,当两种信号都通过变频器获得时,输出电流信号和电压信号的变频器可以是同一变频器,通过电流信号采集装置获得电流信号,以所述电流信号为荷载传感信号或者由所述电流 信号计算并获得荷载数据,通过所述电压信号采集装置获得电压信号,以所述电压信号为旋转速度的传感信号或者由所述电压信号计算并获得转速数据。
分别利用电流信号和电压信号确定电动机荷载和电动机运行速度的原理如下:对所述永磁同步电动机进行Id=0的矢量控制,在控制器的作用下,定子绕组供电电流(即定子电流)只有纯转矩电流Iq,而没有励磁电流Id。电动机运行在这种模式下,电动机荷载与绕组供电电流之间以及电动机运行速度与绕组供电电压(即定子电压)之间存在确定的正相关关系。因此,直接获取到电动机电压信息和电流信息,就相当于知道了电动机运行速度和电动机荷载,相比现有技术下的各种直接检测电动机运行速度和电动机荷载的检测方式更为可靠,且实现起来更为简单、快捷。
图18显示了上述矢量控制状态下一种用作起重机无齿轮起升机构的大力矩低速永磁同步电动机的电流负载曲线,在任意确定的电流下都对应于确定的载荷(吊重),因此根据绕组供电电流就可以计算得出电动机的吊重,也可以根据实际需要直接将所采集的电流信号用作体现吊重的传感信号,在电动机/起重机超载控制中,根据吊重与电流之间的关系设定确认吊重超载的电流信号阈值,当所采集的电流信号达到或超过给定的电流信号阈值时,启动超载保护动作,停止电动机工作,由此极大的方便了吊重信号的采集以及电动机超载的确认,极大地简化了数据处理量,避免了现实中因重量传感器导致的吊重数据失真和吊重超载控制不准确的缺陷,也有助于减小和消除因屏蔽称重仪所带来的安全隐患。
图19显示了上述矢量控制状态下一种用作起重机无齿轮起升机构的大力矩低速永磁同步电动机的电压/转速曲线,该曲线为一上升的单曲线,在任意确定的电压下都对应于确定的电动机运行速度,因此依据绕组供电电压可以计算得出电动机的电动机运行速度,也可以根据实际需要直接将所采集的电压信号用作体现电动机运行速度的传感信号送入相应的监控装置,监视或控制电动机的运行状态,但需要限定电动机最高转速时,可以根据电动机运行速度与电压之间的关系设定确认电动机运行速度超速的电压信号阈值,当所采集的电压信号达到或超过给定的电压信号阈值时,启动超速保护动作,由此为电动机运行速度的在线检测提供了一种便捷的方式。
作为本发明电动机的一个重要的应用方式,可以用作起重机起升机构的起升电动机,以这种电动机的转子壳体直接卷绕起升机构的钢丝绳49,以消除为减速传动而设置的庞大的齿轮箱。图20给出了在这种应用下的起重机小车的实施例,该起重小车包括由左、右端梁和两端分别与所述左、右端梁连接的平衡梁构成的小车架,还包括起升电动机和钢丝绳卷绕机构,所述左、右端梁分别安装有相应的主动车轮/主动车轮组和被动车轮/被动车轮 组,所述主动车轮/主动车轮组配有车轮驱动电动机,所述起升电动机采用本发明公开的任意一种超低速大扭矩电动机,所述起升电动机通过左、右两端的刚性支座46安装在所述左、右端梁上,所述刚性支座与所述电动机的安装轴之间设有用于防止两者相对转动的防转结构,所述安装轴通常为电动机的中心轴,与刚性支座间固定连接,所述电动机的转子壳体3用于缠绕钢丝绳,构成所述钢丝绳卷绕机构的卷筒,所述钢丝绳卷绕机构还包括与所述钢丝绳配套的滑轮组,所述滑轮组由动滑轮和定滑轮组成,所述定滑轮的数量和所述动滑轮的数量分别为一个或多个,所述定滑轮安装在所述平衡梁上,而所述动滑轮则安装在动滑轮支架内,所述动滑轮支架内设有动滑轮心轴,所述动滑轮通过轴承或者轴套安装在所述动滑轮心轴上,所述动滑轮支架上安装有吊钩48。由于起升电动机的外转子直接作为卷筒,省去了现有技术下的齿轮箱,由此不仅避免了因齿轮箱带来的各种缺陷,而且还可以充分利用外转子永磁同步电动机特别是低速(含超低速)大扭矩外转子永磁同步电动机所具有的各种优越性能。
所述起升电动机一端的所述固定盘连接有旋转编码器,由此可以通过旋转编码器采集外转子的位置信息和运动信息,另一端的所述固定盘配有与其配套形成盘式制动器的制动钳装置,该固定盘构成所述盘式制动器的制动盘并通过其径向延伸在所述外转子的壳体之外的盘体(也可以是与相应端的固定盘固定连接的制动法兰盘)与所述制动钳装置的摩擦块配合,由此可以对起升电动机的工作进行控制,通过盘式制动器进行起升电动机的制动和/或制动后的位置保持,所述盘式制动器优选电磁盘式制动器,以方便控制,由于直接采用安装在所述转子壳体一端的固定盘连接编码器,另一端的固定盘直接用作钳式制动器的制动盘,由此不仅结构简单,而且可以提高了精度和可靠性。
本发明所称瓦形六面体是指其主体部分呈类似于瓦的柱体,包括两个径向的表面、两个周向的表面和两个轴向的表面,其中径向的两个表面和周向的两个表面相互间隔两两连接形成柱体的侧面,轴向的两个表面构成该柱体的顶和底,呈近似扇形。柱体的任一棱边既可以是平面相交、曲面相交、平面和曲面相交形成的棱边,也可以是平滑过渡的曲面或其他任意适宜的结构。
本发明所称的永磁体上某个表面呈内侧削角状的斜平面状是指其径向的内侧向永磁体径向内表面中间倾斜的状态。
本发明所称的永磁体的两个周向侧面的削角角度是指以永磁体横截面的外边缘两端点与中心轴轴线的连线为度量基准,永磁体横截面的周向侧边与相应侧的上述连线的夹角。
本发明所称的凹圆弧线是指相对于其所在的实体来说,其弯曲方向使所述实体的体 积或面积变小的圆弧线。
本发明中数值范围“A-B”包含A、B两个端值。
本发明所称的插接方式是指通过在两件物体中的一件上设置凹槽,使另一件的某个部分插入到该凹槽中从而使二者相连接的方式。
本发明涉及中心轴以及转子壳体和定子等延伸方向与中心轴延伸方向相同的件时,除另有说明,所称两端或左右两端是指沿中心轴轴线方向的两端,其中“左”和“右”限定仅仅是为了表述上的便利,分别表述沿中心轴轴线方向的任意一端和与其相对的另一端,避免因表述不清导致两端相互混淆,不构成对实际使用时左右方向的限定。
本发明所称轴承连接为通过轴承实现的可旋转的活动连接。
本发明所称结构包括由一个件形成的结构和由多个件形成的结构,所称两个件之间设有的结构指对两个件相互间连接关系或作用方式产生影响的结构,包括这两个件或其中任一件本身形成的这种结构,也包括增加其他件后形成的这种结构。
本发明所称圆柱曲面为构成圆柱侧面的部分曲面,所称圆柱曲面的轴线为该圆柱曲面对应圆柱的轴。
本发明所称周向为沿圆周方向,对圆周上的任意一点,为该点的切线方向,所述径向为沿圆的直径方向,所称轴向为中心轴轴线或平行于中心轴轴线的延伸方式。除另有说明外,当涉及永磁体或涉及转子壳体和定子及其各部分时,所称轴向和径向涉及的圆周为在与中线轴轴线垂直的平面上且圆心在中心轴轴线上的圆周。
本发明所称的外和内是相对概念,在径向方向上,靠近中心轴轴线的方向为内,反之为外;在轴向方向上,向中心轴的两端延伸的方向为外,反之为内,例如,定子铁心位于固定盘的内侧。
本发明所称环形缝隙是指该缝隙的横截面呈环形。
本发明所称抽风风机指用于抽取空气的气体输送机械,可依据温度、风量和阻力等因素选用适宜的型式。
本发明所称多边形孔或鼓形孔指其横截面为多边形或鼓形的孔,同样,多边形柱(或其他立体结构)鼓形柱(或其他立体结构)指其横截面的外轮廓为多边形或鼓形的柱(或其他立体结构),所称鼓形为由两条平行直线段以及分别连接这两条直线段两侧的同侧端点的两条弧线围成的图形,两条弧线相对于该该图形为中部向外凸的弧线,该图形相对于两直线段的中点连线镜像对称,相对于两弧线的中心连线也镜像对称。
本发明所称钢丝绳包括由多根或多股细钢丝拧成的挠性绳索,也包括用于其他任意适 宜材料制成的同用途绳索。
本发明所称梯形包括几何学所称的梯形和轮廓近似于几何学所称梯形的形状,由四条边组成,其上底和下底边缘线可以呈弧形,各线连接处可以呈角状,也可以呈平滑的过渡曲线状,同样,所述矩形包括几何学所称的梯形和轮廓近似于几何学所称矩形的形状。
本发明任意独立权利要求的各从属权利要求要求的附加技术特征作为独立的优化技术手段,既可以单独存在,也可以与该独立权利要求下的其他从属权利要求的附加技术特征组合,除非其中一个从属权利要求的某一(某些)附加技术特征是对另一个从属权利要求的某一(某些)附加技术特征的进一步限定。
除本发明明确记载或依据公知常识可以得出本发明对任意一个技术手段的任意一个优选/限定依赖于对另一个技术手段的限定外,本发明对任意一个技术手段的任意一个限定可以与对任意另一个技术手段的任意一个限定任意组合以形成相应的技术方案。

Claims (21)

  1. 一种电动机的外转子,包括筒状的转子壳体,所述转子壳体的内壁上安装有多个永磁体,所述多个永磁体采用相同的瓦形六面体结构,其特征在于所述永磁体在周向和轴向两个方向上规则排列,所述永磁体的两个周向侧面呈内侧削角状的斜平面状。
  2. 如权利要求1所述的外转子,其特征在于所述永磁体周向侧面的削角角度为5-35度。
  3. 如权利要求2所述的外转子,其特征在于任一周向上和任一轴向上排列的所述永磁体的数量都是多个,所述永磁体在周向上沿圆周对齐且均匀分布,在轴向上沿直线对齐且均匀分布。
  4. 如权利要求3所述的外转子,其特征在于所述永磁体在轴向上的长度在30-95mm之间,所述永磁体的厚度在8-18mm之间。
  5. 如权利要求4所述的外转子,其特征在于周向上相邻的所述永磁体之间留有间距且设有轴向延伸的固定压条,所述固定压条固定连接在所述转子壳体上,所述固定压条的周向两侧分别压紧在相邻永磁体的周向侧面上。
  6. 如权利要求5所述的外转子,其特征在于所述固定压条的截面形状呈矩形、梯形、圆形或椭圆形,所述固定压条采用螺钉紧固、粘结或插接方式固定在所述转子壳体上。
  7. 如权利要求5所述的外转子,其特征在于所述固定压条与所述转子壳体的内壁之间留有压条紧固间隙,所述压条紧固间隙是空的,或者所述压条紧固间隙内填充有非导磁的粘结剂,或者所述压条紧固间隙内设有非导磁的垫。
  8. 如权利要求1、2、3、4、5、6或7所述的外转子,其特征在于所述永磁体横截面在径向上的外边缘呈圆心位于所述转子壳体的轴线上的圆弧线形,所述永磁体横截面在径向上的内边缘采用以下任意一种形式:
    (1)所述内边缘为一圆弧,该圆弧的圆心位于所述转子壳体的轴线上,该内边缘的两端均与所述永磁体横截面的相应周向侧边直接连接;
    (2)所述内边缘为一圆弧,该圆弧的半径等于所述外边缘的半径,圆心位于所述外边缘的中点与所述外边缘的圆心的连接线的延长线上,该内边缘的两端与所述永磁体横截面的相应周向侧边均直接连接;
    (3)所述内边缘为一圆弧,圆心位于所述转子壳体的轴线上,该内边缘的两端均通过一个小的凹圆弧线与所述永磁体横截面的相应周向侧边连接;
    (4)所述内边缘为一圆弧,该圆弧的半径等于所述外边缘的半径,圆心位于所述外边缘的中点与所述外边缘的圆心的连接线的延长线上,该内边缘的两端均通过一个小的凹圆弧线与所述永磁体横截面的相应周向侧边连接。
  9. 一种低速大扭矩电动机,包括外转子和定子,所述定子包括中心轴、固定安装在所述中心轴上的定子铁心以及固定安装在所述定子铁心上的定子绕组,其特征在于所述外转子为权利要求1-8中任意一项权利要求所述的外转子,所述转子壳体的两端均固定安装有固定盘,所述固定盘通过相应的转子轴承与所述中心轴旋转连接,所述中心轴的右端从与其连接的相应端轴承内延伸出来,固定安装在右刚性支座上,所述右刚性支座上设有轴安装孔,所述中心轴的右端部插入所述右刚性支座的轴安装孔且与所述右刚性支座之间设有用于防止两者相对转动的防转结构。
  10. 如权利要求9所述的超低速大扭矩电动机,其特征在于所述定子铁心上设有用于嵌装所述绕组的定子槽,所述定子槽为梨形槽,槽口尺寸k在2.5-4.5mm之间,所述绕组的节距为1。
  11. 如权利要求10所述的超低速大扭矩电动机,其特征在于所述定子采用8极9槽、10极12槽、20极24槽、30极36槽、22极24槽、16极18槽或32极36槽的极槽配合方式,极弧系数为0.8-0.9,所述永磁体采用钕铁硼材料,长度为30-95mm,厚度为8-18mm。
  12. 如权利要求11所述的超低速大扭矩电动机,其特征在于所述定子设有用于采集定子内温度信号的定子温度传感器。
  13. 如权利要求9、10、11或12所述的超低速大扭矩电动机,其特征在于设有内冷却结构,所述内冷却结构包括下列任意一种散热风道或任意多种散热风道的组合:
    (1)所述中心轴为中空轴,所述中心轴的轴孔构成轴内冷却的轴内散热风道;
    (2)所述定子铁心的外侧面与所述外转子的内侧面之间设有环形缝隙,所述环形缝隙构成定子外冷却的定子外散热风道;
    (3)所述定子铁心内设有轴向通孔,所述轴向通孔构成定子内冷却的定子内散热风道,所述定子铁心上的轴向通孔由组成所述定子铁心的定子冲片上冲出的相应散热风道孔连接而成;
    上述各散热风道的通风方式为自然通风和/或强制通风。
  14. 如权利要求13所述的超低速大扭矩电动机,其特征在于所述内冷却结构采用下列任意一种强制通风结构:
    (1)当所述内冷却结构为所述轴内散热风道时,所述中心轴的轴孔内设有轴内通风风机,所述轴内通风风机为位于出风端的所述中心轴轴孔的轴内抽风风机和/或位于进风端的所述中心轴轴孔内的轴内送风风机;
    (2)当所述内冷却结构包括所述轴内散热风道、且包括所述定子外散热风道和/或所述定子 内散热风道时,所述定子铁心的两端分别与相应端的所述固定盘之间留有构成端部匀压气隙带的间隙,所述定子外散热风道和/或定子内散热风道的两端分别与相应端的所述端部匀压气隙带连通,所述中心轴两端的侧壁上均设有连通所述中心轴的轴孔和相应端的所述端部匀压气隙带的中心轴侧孔,所述中心轴的轴孔的一端封闭,另一端设有轴内通风风机,所述轴内通风风机为位于出风端的所述中心轴轴孔的轴内抽风风机和/或位于进风端的所述中心轴轴孔内的轴内送风风机,所述轴内通风风机位于相应端的所述中心轴的侧孔的外侧;
    (3)当所述内冷却结构包括所述定子外散热风道和/或所述定子内散热风道、且包括或者不包括所述轴内散热风道时,所述定子铁心的两端分别与相应端的所述固定盘之间留有构成端部匀压气隙带的间隙,所述定子外散热风道和/或所述定子内散热风道的两端分别与相应端的所述端部匀压气隙带连通,出风端的所述固定盘上设有连通出风端的所述端部均压气隙带的出风风道,所述出风风道的数量为一个或多个,进风端的所述固定盘上设有连通进风端的所述端部均压气隙带的进风风道,所述进风风道的数量为一个或多个,所述进风风道内串接有进风气泵,位于所述进风气泵两端的所述进风风道上均设有进风单向阀,所述进风气泵包括缸体,所述缸体轴向设置在相应的所述固定盘上,所述缸体内设有与其配套的活塞,所述活塞连接有延伸到所述固定盘内侧的活塞杆,所述缸体内的空腔由所述活塞分隔为有杆腔和无杆腔,所述有杆腔位于所述无杆腔的内侧,所述中心轴上设有位于进风端的所述端部匀压气隙带内且与所述活塞杆构成凸轮机构的多级凸轮,所述多级凸轮转动时推动所述活塞杆往复移动,所述进风气泵的进气口和出气口均设置在所述无杆腔的底部,当还包括所述轴内散热风道时,进风端和或出风端的所述中心轴的侧壁上设有连通相应端的所述中心轴的轴孔和所述端部匀压气隙带的中心轴侧孔,进风端的所述中心轴的轴孔封闭、部分封闭或者不封闭。
  15. 如权利要求9、10、11或12所述的超低速大扭矩电动机,其特征在于所述转子壳体的左端连接有编码器,其连接方式为下列任意一种:
    (1)所述编码器为外转子编码器,包括相互旋转连接的内套和外套,所述中心轴的左端从与其连接的所述转子轴承内延伸出来,固定安装在左刚性支座上,所述左刚性支座上设有轴安装孔,所述中心轴的左端插入所述左刚性支座的轴安装孔内且与所述左刚性支座之间设有用于防止两者相对转动的防转结构,所述内套固定连接所述中心轴的左端,所述外套固定连接左端的所述固定盘,所述中心轴、转子壳体、内套和外套同轴;
    (2)所述编码器为内转子编码器并配有连接用阶梯轴和轴承支座,包括相互旋转连接的内套和外套,所述连接用阶梯轴通过外轴承安装在所述轴承支座上,所述连接用阶梯轴的右端 设有径向凸缘,所述径向凸缘同轴紧固在左端的所述固定盘上,所述编码器的内套固定套接在所述连接用阶梯轴的左端部或通过联轴器与所述连接用阶梯轴的左端同轴连接,所编码器的外套通过连接件与所述轴承支座固定连接,所述外轴承优选为单列或双列调心轴承。
  16. 如权利要求15所述的超低速大扭矩电动机,其特征在于所述刚性支座采用下列任意一种:
    (1)所述刚性支座上的轴安装孔为多边形孔,与其连接的相应端的中心轴轴段呈相同的多边形,所述轴安装孔与插入其中的所述中心轴轴段过盈配合或过渡配合,相应的多边形结构构成了所述的防转结构,所述轴安装孔直接设置在所述刚性支座的本体上或者设置在调整套上,当设置在所述调整套上时,所述调整套的外缘呈圆柱形,所述轴安装孔设置在所述调整套的中央,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓;
    (2)所述刚性支座上的轴安装孔为圆柱形孔,相应端的所述中心轴轴段呈圆柱状,所述刚性支座上设有若干穿透所述轴安装孔侧壁的销钉通孔,所述中心轴的相应轴段上设有若干分别与所述若干销钉通孔对接的若干销钉盲孔,若干销钉或销轴分别楔入所述相互对接的销钉通孔和销钉盲孔,所述销钉或销轴及其配套结构构成了所述防转结构;
    (3)所述刚性支座上的轴安装孔为圆柱形孔,相应端的所述中心轴轴段呈圆柱状,所述轴安装孔和插入所述轴安装孔内的所述中心轴轴段之间设有多个键,所述键及其配套结构构成了所述防转结构,所述轴安装孔直接设置在所述刚性支座的本体上或者设置在调整套上,当设置在所述调整套上时,所述调整套的外缘呈圆柱形,所述轴安装孔设置在所述调整套的中央,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓;
    (4)所述刚性支座上的轴安装孔为鼓形孔,与其连接的相应端的所述中心轴轴段呈相同的鼓形,所述轴安装孔与插入其中的所述中心轴轴段过盈配合或过渡配合,相应的鼓形结构构成了所述的防转结构,所述轴安装孔直接设置在所述刚性支座的本体上或者设置在调整套上,当设置在所述调整套上时,所述调整套的外缘呈圆柱形,所述轴安装孔设置在所述调整套的中央,所述刚性支座的本体上设有与所述调整套外缘对应的调整套安装孔,所述调整套插接在所述调整套安装孔上,与所述调整套安装孔过渡配合或过盈配合,并设有或者不设有紧固螺栓;
    (5)所述刚性支座上的轴安装孔为花键孔,与其连接的相应端的所述中心轴轴段为花键轴,二者间所采用的上述花键结构构成了所述防转结构。
  17. 如权利要求9、10、11或12所述的超低速大扭矩电动机,其特征在于所述定子设有用于采集定子内温度信号的定子温度传感器,通过所述定子温度传感器采集定子内的实时温度,依据采集到的所述定子内的实时温度判定电动机的疲劳状态,设定与所述定子温度传感器的温度采集部位相对应的工作温度上限值,当相应定子温度传感器采集到的温度达到或超过相应的工作温度上限值时,判断为电动机疲劳并依此判断控制停机,当所采集到的温度低于相应的工作温度上限值时,判断为电动机未疲劳并允许电动机进行工作。
  18. 如权利要求9、10、11或12所述的超低速大扭矩电动机,其特征在于设有用于在线获得电动机电流的电流信号采集装置,所述电流信号采集装置为用于采集定子绕组的电流输入信号的电流传感器和/或为能够输出其电流输出信号的变频器,通过电流信号采集装置获得电流信号,以所述电流信号为荷载传感信号或者由所述电流信号计算并获得荷载数据。
  19. 如权利要求9、10、11或12所述的超低速大扭矩电动机,其特征在于设有用于在线获得电动机电压的电压信号采集装置,所述电压信号采集装置为用于采集定子绕组的电压输入信号的电压传感器和/或为能够输出其电压输出信号的变频器,通过所述电压信号采集装置获得电压信号,以所述电压信号为旋转速度的传感信号或者由所述电压信号计算并获得转速数据。
  20. 一种起重机,其特征在于包括如权利要求9-19中任意一项权利要求所述的超低速大扭矩电动机,所述超低速大扭矩电动机的转子壳体用作所述起重机的起升机构的卷筒,用于连接和卷绕所述起升机构的钢丝绳。
  21. 如权利要求20所述的起重机,其特征在于所述电动机一端的所述固定盘连接有旋转编码器,另一端的所述固定盘设有与其配套组成盘式制动器的制动钳装置,该固定盘构成所述盘式制动器的制动盘,通过其径向延伸在所述外转子的壳体圆周之外的凸缘或与该固定盘固定连接的制动法兰盘与所述制动钳装置的摩擦块配合。
PCT/CN2014/089978 2014-08-21 2014-10-31 低速大扭矩电动机外转子、电动机及相关起重机 WO2016026214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14900291.7A EP3258572A4 (en) 2014-08-21 2014-10-31 ELECTRIC MOTOR EXTERNAL ROTOR WITH LOW SPEED AND HIGH TORQUE, ELECTRIC MOTOR AND ASSOCIATED CRANE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410414146.0A CN104158325B (zh) 2014-08-21 2014-08-21 外转子电机的永磁体安装结构
CN201410414157.9 2014-08-21
CN201410414146.0 2014-08-21
CN201410414157.9A CN104158375B (zh) 2014-08-21 2014-08-21 超低速大扭矩电机及采用这种电机的起重机

Publications (1)

Publication Number Publication Date
WO2016026214A1 true WO2016026214A1 (zh) 2016-02-25

Family

ID=55350138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089978 WO2016026214A1 (zh) 2014-08-21 2014-10-31 低速大扭矩电动机外转子、电动机及相关起重机

Country Status (2)

Country Link
EP (1) EP3258572A4 (zh)
WO (1) WO2016026214A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298416A (zh) * 2018-03-30 2018-07-20 中科矿山设备有限公司 内装剖分式大型永磁矿井提升机
CN108425956A (zh) * 2018-05-16 2018-08-21 嘉兴市乍浦杭湾重型机械有限公司 一种双转子水力发电机锻件
CN108808940A (zh) * 2018-04-26 2018-11-13 深圳市固胜智能科技有限公司 云台电机及用于图像采集装置的云台
CN109538571A (zh) * 2018-12-18 2019-03-29 武长山 扒胎机驱动装置
CN111327135A (zh) * 2018-12-14 2020-06-23 Tdk株式会社 永磁铁和旋转电机
CN113964997A (zh) * 2021-11-04 2022-01-21 江苏锐生祥电气智能科技有限公司 一种涡流启动三相稀土永磁同步电动机
CN113965015A (zh) * 2021-12-23 2022-01-21 承德盛乾特种电机制造有限公司 一种外转子永磁电机的风冷结构
CN114459764A (zh) * 2022-03-10 2022-05-10 中国人民解放军空军工程大学 一种可旋转的总压畸变发生装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112157B2 (ja) * 2018-01-31 2022-08-03 三菱電機株式会社 巻線試験装置
JP7024856B2 (ja) * 2018-03-23 2022-02-24 株式会社アイシン 回転電機用ロータ
DE202018103154U1 (de) 2018-06-06 2019-09-09 Otto Christ Ag Antriebstechnik für Fahrzeugbehandlungsanlagen, insbesondere Waschanlagen
TWI687602B (zh) * 2018-08-09 2020-03-11 已久工業股份有限公司 空氣壓縮機之防脫落的軸承結構
FI20216034A1 (en) * 2021-10-06 2023-04-07 Mirka Ltd Device comprising an electric motor
CN114142648B (zh) * 2021-12-07 2023-09-15 江苏集萃智能制造技术研究所有限公司 一种无框力矩电机及其测试方法
CN115231460B (zh) * 2022-09-19 2023-01-17 杭州未名信科科技有限公司 一种智能塔机的卷扬无级减速动力系统及智能塔机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215749A (ja) * 1998-01-27 1999-08-06 Nakagawa Seimitsu Kogyo Kk アウターロータ型電動機
CN202009300U (zh) * 2011-04-01 2011-10-12 喻连生 外筒的转速为0.001r/min-30r/min的低速外转子永磁驱动装置
DE102011087014A1 (de) * 2011-11-24 2013-05-29 Siemens Aktiengesellschaft Rotor für eine Elektromaschine
CN103236757A (zh) * 2013-05-07 2013-08-07 宁夏天地西北煤机有限公司 带式输送机用外转子直驱电机滚筒
CN103312067A (zh) * 2013-05-23 2013-09-18 新誉集团有限公司 一种外转子永磁发电机磁极结构及装配方法
CN203691162U (zh) * 2013-12-09 2014-07-02 武汉计算机外部设备研究所 一种起重机电机用旋转编码器的安装结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746781A (ja) * 1993-08-03 1995-02-14 Mitsuba Electric Mfg Co Ltd 磁石発電機の回転子
US6879078B2 (en) * 2000-01-12 2005-04-12 Neodrive Llc Electric motor with external rotor
US20050104470A1 (en) * 2003-11-13 2005-05-19 Perkins William P. Integrated stator-axle for in-wheel motor of an electric vehicle
US7548006B2 (en) * 2007-01-17 2009-06-16 Tang Yung Yu Motor magnet fixing device
DK2348619T3 (da) * 2010-01-20 2014-10-13 Siemens Ag Magnetenhed
JP5146698B2 (ja) * 2010-03-16 2013-02-20 株式会社安川電機 回転電機
EP2670026A1 (en) * 2012-06-01 2013-12-04 Siemens Aktiengesellschaft Spacer-less air duct

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215749A (ja) * 1998-01-27 1999-08-06 Nakagawa Seimitsu Kogyo Kk アウターロータ型電動機
CN202009300U (zh) * 2011-04-01 2011-10-12 喻连生 外筒的转速为0.001r/min-30r/min的低速外转子永磁驱动装置
DE102011087014A1 (de) * 2011-11-24 2013-05-29 Siemens Aktiengesellschaft Rotor für eine Elektromaschine
CN103236757A (zh) * 2013-05-07 2013-08-07 宁夏天地西北煤机有限公司 带式输送机用外转子直驱电机滚筒
CN103312067A (zh) * 2013-05-23 2013-09-18 新誉集团有限公司 一种外转子永磁发电机磁极结构及装配方法
CN203691162U (zh) * 2013-12-09 2014-07-02 武汉计算机外部设备研究所 一种起重机电机用旋转编码器的安装结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258572A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298416A (zh) * 2018-03-30 2018-07-20 中科矿山设备有限公司 内装剖分式大型永磁矿井提升机
CN108808940A (zh) * 2018-04-26 2018-11-13 深圳市固胜智能科技有限公司 云台电机及用于图像采集装置的云台
CN108425956A (zh) * 2018-05-16 2018-08-21 嘉兴市乍浦杭湾重型机械有限公司 一种双转子水力发电机锻件
CN111327135A (zh) * 2018-12-14 2020-06-23 Tdk株式会社 永磁铁和旋转电机
CN111327135B (zh) * 2018-12-14 2022-12-16 Tdk株式会社 永磁铁和旋转电机
CN109538571A (zh) * 2018-12-18 2019-03-29 武长山 扒胎机驱动装置
CN109538571B (zh) * 2018-12-18 2024-06-07 武长山 扒胎机驱动装置
CN113964997A (zh) * 2021-11-04 2022-01-21 江苏锐生祥电气智能科技有限公司 一种涡流启动三相稀土永磁同步电动机
CN113965015A (zh) * 2021-12-23 2022-01-21 承德盛乾特种电机制造有限公司 一种外转子永磁电机的风冷结构
CN113965015B (zh) * 2021-12-23 2022-03-15 承德盛乾特种电机制造有限公司 一种外转子永磁电机的风冷结构
CN114459764A (zh) * 2022-03-10 2022-05-10 中国人民解放军空军工程大学 一种可旋转的总压畸变发生装置
CN114459764B (zh) * 2022-03-10 2023-12-08 中国人民解放军空军工程大学 一种可旋转的总压畸变发生装置

Also Published As

Publication number Publication date
EP3258572A4 (en) 2019-04-03
EP3258572A1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2016026214A1 (zh) 低速大扭矩电动机外转子、电动机及相关起重机
CN104158375B (zh) 超低速大扭矩电机及采用这种电机的起重机
US8350434B2 (en) Permanent magnet type rotary electric machine
CN201934324U (zh) 永磁磁悬浮轴向电动泵
CN204271862U (zh) 空心轴电机
CN204089544U (zh) 外转子电机
CN103208881B (zh) 一种轴向开关磁阻无齿轮曳引机
CN105703498A (zh) 一种内置式盘式电机的定子浸油循环冷却结构
CN204089545U (zh) 超低速大扭矩电机及采用这种电机的起重机
CN203545411U (zh) 结构改进的永磁同步无齿轮曳引机
WO2011094916A1 (zh) 高效大功率垂直轴风力发电机
CN113014055A (zh) 顶驱交流永磁同步电机
CN111404341A (zh) 一种应用在起重机上的盘式永磁电机
CN103693537A (zh) 准Halbach阵列外转子式永磁同步无齿轮曳引机
CN113708596B (zh) 一种永磁传动装置
CN211830520U (zh) 一种应用在起重机上的盘式永磁电机
CN2821196Y (zh) 分体式外定子风力发电机
CN209676025U (zh) 一种电机
CN203794416U (zh) 准Halbach阵列外转子式永磁同步无齿轮曳引机
CN204258480U (zh) 高速永磁电机转子
CN206060488U (zh) 一种盘式轮毂永磁同步电机
CN111711327A (zh) 一种双电机对称分布桥式驱控一体化电梯曳引装置
CN203457012U (zh) 双定子平衡直驱电动轮
CN111077450A (zh) 电机测试可变负载装置
CN204089477U (zh) 轴和定子双冷却电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900291

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014900291

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900291

Country of ref document: EP