WO2016026081A1 - 接入节点、调度系统、基站及数据回传方法 - Google Patents
接入节点、调度系统、基站及数据回传方法 Download PDFInfo
- Publication number
- WO2016026081A1 WO2016026081A1 PCT/CN2014/084699 CN2014084699W WO2016026081A1 WO 2016026081 A1 WO2016026081 A1 WO 2016026081A1 CN 2014084699 W CN2014084699 W CN 2014084699W WO 2016026081 A1 WO2016026081 A1 WO 2016026081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio frequency
- access node
- antenna beam
- mobile carrier
- base station
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
Definitions
- the present invention belongs to the field of communication technologies, and particularly relates to the field of data interaction technology for wireless communication in a high-speed mobile environment, and particularly relates to a data backhaul method based on WiFi (Wireless-Fidelity), an access node, and a mobile carrier. , scheduling system, base station.
- WiFi Wireless-Fidelity
- base station base station
- LTE-R Long Term Evolution for Rail
- BBU Base Band Unit, baseband processing unit
- the data transmission rate is low, and it is obviously unable to support the interactive demand of large data volume in the train, and the wireless communication in the train cannot be ensured smoothly.
- the frequency offset estimation algorithm is very complicated and greatly increases the complexity of the entire data backhaul system.
- the technical problem to be solved by the embodiments of the present invention is to provide an access node, a scheduling system, a base station, and a data backhaul method, which can provide a very high data transmission rate and ensure smooth wireless communication in a high-speed driving environment. Meet the passenger's information interaction needs.
- the first aspect provides an access node, including:
- a processing module configured to determine an antenna beam direction of the access node, aligned with an antenna beam direction of the radio frequency front end of the base station in a moving direction of the access node, and the antenna beam indicating that the access node points to the radio frequency front end and the radio frequency front end
- the antenna beam is directed to the access node of the mobile bearer, and the antenna beam of the access node is directed on the same line as the antenna beam pointing of the radio frequency front end;
- the data interaction module is configured to access the wireless local area network through the access node and perform data backhaul with the core network after the processing module performs the alignment.
- the wireless local area network includes a WiFi network
- the access node includes a wireless network access point AP of the WiFi network.
- the second aspect provides a scheduling system, including:
- An obtaining module configured to acquire location information and speed information of the mobile carrier
- a sending module configured to send the location information and the speed information to the base station, so that the base station turns on the radio frequency front end of the mobile carrier in the traveling direction according to the location information, and adjusts the antenna beam direction of the radio frequency front end according to the position information and the speed information, and the mobile carrier Antenna beam pointing alignment of the access node; wherein the alignment indicates that the antenna beam of the access node points to the radio frequency front end, the antenna beam of the radio frequency front end points to the access node of the mobile bearer, and the antenna beam pointing of the access node of the mobile bearer
- the antenna beam directions of the RF front end are on the same line.
- the scheduling system further includes a processing module, and the processing module is configured to monitor the signal that the mobile carrier travels to the radio frequency front end.
- a switching instruction is generated when the boundary of the area is covered. The switching instruction is used to enable the base station to turn on the adjacent next RF front end, and adjust the antenna wave speed direction to point to the boundary of the signal coverage area.
- the sending module is further configured to send a handover instruction to the base station.
- the processing module is further configured to preset a distance threshold; the sending module is further configured to monitor the mobile carrier and the adjacent next RF front end When the distance between the distance is less than or equal to the distance threshold, a handover command is sent to the base station.
- a third aspect provides a base station, including:
- An obtaining module configured to acquire location information and speed information of the mobile carrier
- a processing module configured to turn on a radio frequency front end of the base station of the mobile carrier in the traveling direction according to the location information, and adjust an antenna beam direction of the radio frequency front end according to the position information and the speed information, and align with the antenna beam direction of the access node of the mobile carrier; Aligning the antenna beam indicating the RF front end to the RF front end, the antenna beam of the RF front end is directed to the access node of the mobile carrier, and the antenna beam of the access node of the mobile carrier is in line with the antenna beam pointing of the RF front end.
- the same base station is correspondingly connected to multiple radio frequency front ends, when the mobile carrier travels to the boundary of the signal coverage area of the radio frequency front end, or the mobile carrier and the adjacent
- the acquiring module is further configured to receive a switching instruction sent by the scheduling system
- the processing module is further configured to start the adjacent next RF front end according to the switching instruction, and adjust the antenna wave speed thereof. Point to the boundary that points to the area covered by the signal.
- a fourth aspect provides a mobile bearer, including the access node described above.
- a fifth aspect provides a data backhaul method, including: determining an antenna beam direction of an access node, aligning with an antenna beam direction of a radio frequency front end of a base station in a moving direction of an access node, and aligning an antenna representing the access node
- the beam pointing to the RF front end and the RF front end is directed to the access node, and the antenna beam of the access node is in line with the antenna beam pointing of the RF front end; the access node is connected to the wireless local area network, and is performed with the core network.
- the wireless local area network includes a WiFi network
- the access node includes a wireless network access point AP of the WiFi network.
- the sixth aspect provides a data backhaul method, including:
- Antenna beam pointing alignment of the access node wherein the alignment indicates that the antenna beam of the access node points to the radio frequency front end, the antenna beam of the radio frequency front end points to the access node of the mobile bearer, and the antenna beam pointing of the access node of the mobile bearer
- the antenna beam directions of the RF front end are on the same line.
- the same base station is correspondingly connected to multiple radio frequency front ends
- the data return method further includes: when monitoring the boundary of the signal coverage area of the mobile carrier traveling to the radio frequency front end
- a handover command is generated and sent to the base station, and the handover command is used to enable the base station to turn on the adjacent next RF front end, and adjust its antenna wave velocity to point to the boundary of the signal coverage area.
- the same base station is correspondingly connected to multiple radio frequency front ends
- the data backhaul method further includes: setting a distance threshold in advance; when monitoring the mobile carrier and the adjacent When the distance of a radio frequency front end is less than or equal to a preset distance threshold, a handover command is generated and sent to the base station, and the handover instruction is used to enable the base station to turn on the adjacent next radio frequency front end, and adjust the antenna wave velocity direction to point to the signal coverage area. boundary.
- the seventh aspect provides a data backhaul method, including:
- Receiving position information and speed information of the mobile carrier sent by the dispatching system opening a radio frequency front end of the mobile carrier in the traveling direction according to the position information; adjusting the antenna beam pointing of the radio frequency front end according to the position information and the speed information, and the access node of the mobile carrier Antenna beam pointing alignment; wherein the alignment indicates that the antenna beam of the RF front end points to the RF front end, the antenna beam of the RF front end points to the access node of the mobile carrier, and the antenna beam of the access node of the mobile carrier points to the antenna beam of the RF front end Point to the same line.
- the same base station is correspondingly connected to multiple radio frequency front ends
- the data return method further includes: when monitoring the boundary of the signal coverage area of the mobile carrier traveling to the radio frequency front end Or, when the distance between the mobile carrier and the adjacent next RF front end is less than or equal to a preset distance threshold, receiving a switching instruction sent by the scheduling system, and starting the adjacent next RF front end according to the switching instruction; adjusting the next next neighbor The antenna front speed of the RF front end points to the boundary of the signal coverage area of the current RF front end.
- the beneficial effects generated by the embodiments of the present invention are: when the mobile carrier runs at a high speed, the large signal bandwidth of the wireless local area network and the very high data transmission rate can be utilized, and the LTE-R based on the prior art is overcome.
- the technical solution has a problem of lower data transmission rate.
- the antenna beam orientation of the access node and the radio frequency front end of the base station is adjusted and aligned in real time according to the position information and the speed information of the mobile carrier, thereby avoiding the complicated frequency offset algorithm using the wireless signal when the vehicle is traveling at a high speed, that is, it is not necessary to face
- the complex calculation brought by the frequency offset estimation algorithm greatly reduces the complexity of the entire data backhaul system compared with the prior art.
- FIG. 1 is a schematic block diagram of an access node in accordance with a preferred embodiment of the present invention.
- FIG. 2 is a schematic diagram of a data backhaul network architecture in accordance with a preferred embodiment of the present invention
- FIG. 3 is a first schematic diagram of a data backhaul scenario according to a preferred embodiment of the present invention.
- FIG. 4 is a second schematic diagram of a data backhaul scenario according to a preferred embodiment of the present invention.
- FIG. 5 is a third schematic diagram of a data backhaul scenario according to a preferred embodiment of the present invention.
- FIG. 6 is a schematic block diagram of a scheduling system in accordance with a preferred embodiment of the present invention.
- Figure 7 is a schematic block diagram of a base station in accordance with a preferred embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of hardware of an access node according to a preferred embodiment of the present invention.
- FIG. 9 is a schematic diagram showing the hardware structure of a scheduling system according to a preferred embodiment of the present invention.
- FIG. 10 is a schematic diagram showing the hardware structure of a base station according to a preferred embodiment of the present invention.
- FIG. 11 is a flow chart of a data backhaul method in accordance with a preferred embodiment of the present invention.
- the embodiment of the present invention first provides an access node 11 as shown in FIG. 1 , which is disposed in the mobile carrier 10 and wirelessly implemented through the data backhaul network architecture shown in FIG. 2 and the data backhaul scenario shown in FIG. 3 .
- Backhaul of communication data Referring to FIG. 2 and FIG. 3, the data backhaul scenario includes a mobile carrier 10, a base station 20, and a dispatching system 30.
- the mobile carrier 10 performs high-speed traveling on the traveling track A in the direction indicated by the arrow, and the dispatching system 30 and the mobile carrier 10 and the base station 20 perform information exchange by means of remote wireless communication, and the base station 20 is set along the travel track A.
- the base station 20 constructs the wireless local area network 22 through the three RF front ends 21a, 21b, 21c accessed, and the data backhaul network architecture
- the mobile carrier 10, the wireless local area network 22, and the core network 40 are included.
- the mobile carrier 10 running at a high speed realizes a communication connection with the core network 40 through the wireless local area network 22 constructed by the base station 20, specifically:
- the mobile carrier 10 transmits the wireless communication data (uplink information) requested during communication to the core network 40 via the wireless local area network 22, and the core network 40 transmits the wireless communication data (downlink information) fed back during communication to the mobile carrier through the wireless local area network 22. 10, to complete the data interaction.
- each base station 20 may be correspondingly connected to other numbers of radio frequency front ends, and the number of radio frequency front ends accessed by each base station 20 may be the same or different.
- the access node 11 includes a first processing module 12 and a data interaction module 13, wherein:
- the first processing module 12 is configured to determine the antenna beam direction of the access node 11 such that the antenna beam of the access node 11 points to the radio frequency of the base station 20 in the moving direction of the access node 11 (ie, the traveling direction of the mobile carrier 10).
- the antenna beam of the front end 21a is directed to the alignment.
- the radio frequency front end 21a is the first radio frequency front end in the moving direction of the access node 11, and the base station 20 adjusts the antenna beam pointing of the radio frequency front end (including the first radio frequency front end 21a) according to the position information and the speed information of the mobile carrier 10, and the antenna
- the beam is directed to the angle bisector of the angle of the transmission range of the main beam of the antenna beam, and the antenna beam indicating the access node 11 is directed to the RF front end, the antenna beam of the RF front end is directed to the access node 11, and the access node 11 and the RF front end
- the antenna beams point in the same line.
- the data interaction module 13 is configured to access the wireless local area network 22 through the access node 11 and interact with the core network. 40 data back.
- the mobile carrier 10 can utilize the large signal bandwidth of the wireless local area network 22 when running at a high speed on the trajectory A (for example, the WiFi network supports a maximum of 160). MHz) and very high data transmission rate overcome the problem of low data transmission rate in the prior art using the LTE-R technology based scheme.
- the antenna beam of the access node 11 and the base station 20 (radio frequency front end) is pointed and aligned in real time according to the position information and the speed information of the mobile carrier 10, thereby avoiding a complex frequency offset algorithm using a wireless signal when traveling at high speed and communicating, That is, it is not necessary to face the complicated calculation brought by the frequency offset estimation algorithm, and the complexity of the entire data backhaul system is greatly reduced compared with the prior art.
- FIG. 4 is a second schematic diagram of a data backhaul scenario according to a preferred embodiment of the present invention
- FIG. 5 is a third schematic diagram of a data backhaul scenario according to a preferred embodiment of the present invention.
- the working principle and process of the mobile carrier 10 for data backhaul are described in detail below with reference to FIG. 1 to FIG. 5:
- the scheduling system 30 obtains the location information of the mobile carrier 10 by remote communication or GPS positioning with the mobile carrier 10, and generates a control command to transmit to the base station 20.
- the base station 20 turns on the radio frequency front end closest to the mobile carrier 10, that is, the first radio frequency front end 21a shown in FIG.
- the plurality of radio frequency front ends are connected to the base station 20 by means of a wired connection such as an optical fiber. Therefore, in a specific scenario, the base station 20 can turn on the radio frequency front end 21a by powering on the first radio frequency front end 21a.
- the scheduling system 30 sends the location information of the mobile carrier 10 or the relative location information of the mobile carrier 10 and the RF front end 21a, for example, the distance between the two, to the RF front end 21a.
- Base station 20 adjusts the antenna beam direction of the radio frequency front end 21a, and the first processing module 12 of the mobile carrier 10 also adjusts the antenna beam direction of the access node 11 until the antenna beam of the access node 11 points and the antenna beam direction of the radio frequency front end 21a. alignment.
- the dispatch system 30 will drive the speed information and position information of the mobile carrier 10 and the mobile carrier 10 and the direction of travel.
- the relative position information of the nearest radio frequency front end 21a is sent to the base station 20 to which the radio frequency front end 21a is connected.
- the base station 20 adjusts the antenna beam direction of the radio frequency front end 21a in real time
- the first processing module 12 of the mobile carrier 10 also adjusts the antenna beam direction of the access node 11 in real time to ensure the antenna beam pointing and the radio frequency of the access node 11 in real time.
- the antenna beam of the front end 21a is directed to the alignment.
- the scheduling system 30 automatically generates a switching instruction according to a preset program, and sends the switching instruction to the radio frequency front end 21a.
- the incoming base station 20 is configured to enable the base station 20 to turn on the adjacent next RF front end and adjust its antenna wave velocity to point to the boundary of the signal coverage area. Then, the base station 20 turns on the next RF front end 21b adjacent to the first RF front end 21a according to the switching instruction, and adjusts the antenna wave speed of the RF front end 21b to point to the boundary of the signal coverage area of the first RF front end 21a.
- the base station 20 adjusts the antenna wave speed direction of the next RF front end 21b. It is pointed to the boundary of the signal coverage area of the first RF front end 21a, and may of course also point to the boundary of the signal coverage area of the next RF front end 21b, and may even point to the superimposed area of the signal coverage area of the two RF front ends.
- the base station 20 may or may not The first RF front end 21a is turned off.
- the corresponding RF front end in front of the traveling direction of the mobile carrier 10 may continue to be powered on or under the control of the base station 20 or may be powered off.
- the base station 20 preferably controls the corresponding RF front end power-off in front of the traveling direction to stop the constructed wireless local area network 22, and the base station 20 (the constructed mobile cellular network) communicates with the core network 40. That is to say, at this time, the mobile carrier 10 data interaction module 13 is configured to perform data back-transmission with the core network 22 by the mobile cellular network constructed by the access node 11 accessing the base station 20.
- the scheduling system 60 includes a first obtaining module 61, a sending module 62, and a first processing module 63, where:
- the first obtaining module 61 is configured to acquire location information and speed information of the mobile carrier.
- the sending module 62 is configured to send the location information and the speed information acquired by the first acquiring module 61 to the base station, so that the base station turns on the first radio frequency front end of the mobile carrier in the traveling direction according to the location information, and adjusts the radio frequency according to the location information and the speed information.
- the antenna beam of the front end is pointed to be aligned with the antenna beam of the access node of the mobile carrier, so that the mobile carrier performs data backhaul with the core network through the wireless local area network.
- the antenna beam indicating the access node of the mobile carrier points to the RF front end
- the antenna beam of the RF front end points to the access node of the mobile carrier
- the antenna beam of the access node of the mobile carrier points to the antenna beam pointing of the RF front end
- the first processing module 63 is configured to generate a switching instruction when monitoring the boundary of the signal coverage area of the mobile carrier to the radio frequency front end, and control the sending module 62 to send a switching instruction to the base station, where the switching is performed.
- the command is used to cause the base station to turn on the adjacent next RF front end and adjust its antenna wave velocity to point to the boundary of the signal coverage area.
- the first processing module 63 presets a distance threshold to control the sending module 62 to send a handover to the base station when the distance between the monitoring mobile carrier and the adjacent next RF front end is less than or equal to the distance threshold.
- the instruction is such that the base station turns on the adjacent next RF front end according to the switching instruction, and adjusts its antenna wave speed pointing to point to the boundary of the signal coverage area.
- the embodiment of the invention further provides a base station.
- the base station 70 includes a second obtaining module 71 and a second processing module 72, where:
- the second obtaining module 71 is configured to acquire location information and speed information of the mobile carrier.
- the second processing module 72 is configured to start, according to the location information acquired by the second acquiring module 71, the first radio frequency front end of the base station of the mobile carrier in the traveling direction, and adjust the antenna beam direction of the radio frequency front end according to the position information and the speed information to interact with the mobile carrier.
- the antenna beam of the access node is pointed in alignment, so that the mobile carrier performs data backhaul with the core network through the wireless local area network.
- the alignment indicates that the antenna beam of the RF front end points to the RF front end, and the antenna beam of the RF front end points to the access node of the mobile carrier, and the antenna beam of the access node of the mobile carrier points in the same line as the antenna beam direction of the access node. .
- the same base station accesses a plurality of radio frequency front ends, and performs the data returning process in conjunction with the scheduling system 60 shown in FIG. 6, when the mobile carrier travels to the boundary of the signal coverage area of the radio frequency front end, or moves the carrier and the adjacent one.
- the second acquiring module 71 is further configured to receive the switching instruction sent by the scheduling system, and the second processing module 72 is further configured to enable the adjacent next radio frequency front end according to the switching instruction. And adjust its antenna wave velocity pointing to point to the boundary of the signal coverage area.
- the base station 70 of the present embodiment and the scheduling system 60 of the embodiment shown in FIG. 6 are the same as the working principle and process of the base station 20 and the scheduling system 30 shown in FIG. 3 to FIG. 5, and the first obtaining module 61, the transmitting module 62, and the A processing module 63 and the second obtaining module 71 and the second processing module 72 respectively perform the data backhaul process described in the foregoing embodiment, and details are not described herein again.
- the implementations of the access node 11, the scheduling system 60, and the base station 70 described above are merely illustrative, and the division of the described modules is only a logical function division, and may be further divided in actual implementation. Means, for example, multiple modules may be combined or may be integrated into another system, or some features may be omitted or not performed.
- the coupling or communication connection of the modules to each other may be through some interfaces, or may be electrical or other forms.
- Each of the foregoing functional modules may be implemented in the form of a software function box or may be implemented in the form of a hardware, such as the access node 11, the scheduling system 60, and the base station 70.
- FIG. 8 Figure 10.
- FIG. 8 is a schematic diagram showing the hardware structure of an access node according to a preferred embodiment of the present invention.
- the access node 80 of this embodiment is applicable to the application scenario shown in FIG. 3 to FIG. 5, and includes a first processor 81, a first memory 82, and a first receiver/transmitter 83, where A memory 82 and a first receiver/transmitter 83 are coupled to the first processor 81, specifically:
- the first receiver/transmitter 83 is used to access a wireless local area network constructed by the base station.
- the first memory 82 can be implemented as a floppy disk, a USB flash drive, a mobile hard disk, a read only memory (ROM, Read-Only of a computer). Memory), random access memory (RAM, Random Access One or more of Memory, Disk, and CD.
- the first memory 82 is further stored with an application for being called by the first processor 81 to effect data backhaul.
- the first processor 81 performs the following operations by calling an application stored in the first memory 82:
- the antenna beam pointing of the first receiver/transmitter 83 is determined to be aligned with the antenna beam orientation of the radio frequency front end of the base station in the direction of movement of the access node 80 (i.e., the direction of travel of the mobile carrier).
- the radio frequency front end is the first radio frequency front end in the moving direction of the access node 80
- the base station adjusts the antenna beam direction of the radio frequency front end according to the position information and the speed information of the mobile carrier, and the antenna beam indicating the access node points to the radio frequency front end.
- the antenna beam of the RF front end points to the access node, and the antenna beam of the access node points to the same line as the antenna beam of the RF front end.
- the first receiving/transmitter 83 is further controlled to access the wireless local area network constructed by the base station, and establishes a communication connection with the core network, thereby performing data backhaul.
- FIG. 9 is a schematic diagram showing the hardware structure of a scheduling system according to a preferred embodiment of the present invention.
- the scheduling system 90 of the present embodiment is applicable to the application scenario shown in FIG. 3 to FIG. 5, and includes a second processor 91, a second memory 92, and a second receiving/transmitting device 93, wherein the second The memory 92 and the second receiver/transmitter 93 are connected to the second processor 91, specifically:
- the second receiver/transmitter 93 is configured to acquire location information and speed information of the mobile carrier.
- the second memory 92 can be implemented as a floppy disk, a USB flash drive, a mobile hard disk, a read only memory (ROM, Read-Only) of a computer. Memory), random access memory (RAM, Random Access One or more of Memory, Disk, and CD.
- the second memory 92 is further stored with an application for being called by the second processor 91 to implement data backhaul.
- the second processor 91 performs the following operations by calling an application stored in the second memory 92:
- the antenna beam is directed to be aligned with the antenna beam of the access node of the mobile carrier, such that the mobile carrier performs data backhaul with the core network via the wireless local area network.
- the alignment indicates that the antenna beam of the access node points to the RF front end, and the antenna beam of the RF front end points to the access node of the mobile carrier, and the antenna beam of the access node of the mobile carrier is in line with the antenna beam pointing of the RF front end. .
- the switching instruction is sent to enable the base station to turn on the adjacent next RF front end according to the switching instruction, and adjust its antenna wave speed pointing to point to the boundary of the signal coverage area.
- the distance threshold is preset to control the second receiver/transmitter 93 to send a handover instruction to the base station when the distance between the monitoring mobile carrier and the adjacent next radio frequency front end is less than or equal to the distance threshold, so that the base station according to the handover
- the instruction turns on the adjacent next RF front end and adjusts its antenna wave velocity to point to the boundary of the signal coverage area.
- FIG. 10 is a schematic diagram showing the hardware structure of a base station according to a preferred embodiment of the present invention.
- the base station 10 of this embodiment is applicable to the application scenario shown in FIG. 3 to FIG. 5, which includes a third processor 101, a third memory 102, and a third receiver/transmitter 103, wherein the third memory
- the 102 and the third receiver/transmitter 103 are connected to the third processor 101, specifically:
- the third receiver/transmitter 103 is configured to acquire location information and speed information of the mobile carrier.
- the third memory 102 can be implemented as a floppy disk, a USB disk, a mobile hard disk, a read only memory (ROM, Read-Only of a computer). Memory), random access memory (RAM, Random Access One or more of Memory, Disk, and CD.
- the third memory 102 is further stored with an application for being called by the third processor 101 to implement data backhaul.
- the third processor 101 performs the following operations by calling an application stored in the third memory 102:
- the antenna beam is pointed in alignment so that the mobile carrier performs data backhaul with the core network through the wireless local area network.
- the alignment indicates that the antenna beam of the access node points to the RF front end, and the antenna beam of the RF front end points to the access node of the mobile carrier, and the antenna beam of the access node of the mobile carrier is in line with the antenna beam pointing of the RF front end.
- the third receiving/transmitter 103 is controlled to receive the scheduling system.
- the transmitted switching instruction turns on the adjacent next RF front end by power-on according to the switching instruction received by the third receiving/transmitting unit 103, and adjusts its antenna wave speed pointing to point to the boundary of the signal coverage area.
- the invention finally provides a data return method.
- the data backhaul method in this embodiment is based on the application scenarios shown in FIG. 3 to FIG. 5, and includes the following steps:
- Step S111 The scheduling system acquires location information of the mobile carrier and speed information during traveling, and transmits the information to the base station.
- Step S112 The base station adjusts the antenna beam direction of the radio frequency front end in the traveling direction of the mobile carrier according to the position information of the mobile carrier and the speed information during traveling, and the mobile carrier adjusts the antenna beam direction of the access node until the antenna beam pointing of the access node The antenna beam of the RF front end is pointed.
- the alignment indicates that the antenna beam of the access node points to the RF front end, and the antenna beam of the RF front end points to the access node of the mobile carrier, and the antenna beam of the access node of the mobile carrier is in line with the antenna beam pointing of the RF front end.
- the location information and speed information of the mobile bearer are equivalent to the location information and speed information of the access node.
- Step S113 The mobile carrier accesses the wireless local area network established by the radio frequency front end through the access node, and performs data backhaul with the core network.
- the data backhaul method of this embodiment is the same as the data backhaul process described in the embodiments shown in FIG. 3 to FIG. 5. Moreover, in view of the fact that the same base station is correspondingly connected to multiple radio frequency front ends, similarly, when the scheduling system monitors the boundary of the signal coverage area of the mobile carrier traveling to the radio frequency front end, or the distance between the mobile carrier and the adjacent next RF front end is less than or equal to the preset When the distance is a threshold, the scheduling system generates a handover command and sends it to the base station. The base station turns on the adjacent next RF front end according to the switching instruction, and adjusts its antenna wave speed pointing to point to the boundary of the signal coverage area.
- the large signal bandwidth of the wireless local area network and the very high data transmission rate can be utilized to overcome the problem of low data transmission rate of the LTE-R based solution in the prior art.
- the antenna beam orientation of the access node and the radio frequency front end of the base station is adjusted and aligned in real time according to the position information and the speed information of the mobile carrier, thereby avoiding the complicated frequency offset algorithm using the wireless signal when the vehicle is traveling at a high speed, that is, it is not necessary to face
- the complex calculation brought by the frequency offset estimation algorithm greatly reduces the complexity of the entire data backhaul system compared with the prior art.
- the wireless local area network mentioned in the entire embodiment of the present invention takes a WiFi network as an example, and is of course not limited to a WiFi network, and preferably the access node is a wireless network access point AP (Access) of the WiFi network. Point), preferably the mobile carrier is a train running on a high-speed railway.
- the dispatching system is a railway dispatching system.
- the mobile carrier is not limited to a high-speed train, and may be a carrier that needs to perform data back-transfer in any high-speed driving scene.
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开一种移动载体、调度系统、基站及数据回传方法。该接入节点包括处理模块以及数据交互模块,处理模块用于确定接入节点的天线波束指向,与基站在接入节点的移动方向上的射频前端的天线波束指向对准,其中基站根据移动载体的位置信息和速度信息调整射频前端的天线波束指向,数据交互模块用于通过接入节点接入无线局域网络并与核心网络进行数据回传,以此使得移动载体通过基站构建的无线局域网络实现与核心网络的通信连接。通过上述方案,本发明能够提供非常高的数据传输速率,确保高速行驶环境中无线通信的顺畅,满足乘客的信息交互需求。
Description
【技术领域】
本发明属于通信技术领域,具体涉及高速移动环境中无线通信的数据交互技术领域,特别是涉及一种基于WiFi(Wireless-Fidelity,无线保真技术)的数据回传方法及接入节点、移动载体、调度系统、基站。
【背景技术】
随着高速铁路建设的迅速发展,越来越多的旅客选择高铁作为出行的交通工具,而在列车内大量乘客的移动终端联网时,如何确保无线通信的顺畅,满足乘客的信息交互需求,已变得极为迫切。
当前,一般通过基于LTE-R(Long Term Evolution for
Rail,应用于铁路的长期演进技术系统)技术的方案保障高铁列车内的无线通信。该LTE-R方案利用复杂的频偏估计算法解决列车高速行驶时无线信号的多普勒效应明显导致的大频偏问题,采用RRU(Radio
Remote Unit,射频拉远单元)与BBU(Base Band
Unit,基带处理单元)相配合解决基站覆盖区间的频繁切换导致的影响网络整体性能的问题。
然而,现有技术中基于LTE-R技术的方案的网络,其数据传输速率较低,显然无法支撑列车内大数据量的交互需求,也就无法确保列车内无线通信的顺畅。并且,频偏估计算法十分复杂,会极大的增加整个数据回传系统的复杂度。
【发明内容】
有鉴于此,本发明实施例所要解决的技术问题是提供一种接入节点、调度系统、基站及数据回传方法,能够提供非常高的数据传输速率,确保高速行驶环境中无线通信的顺畅,满足乘客的信息交互需求。
本发明实施例所采用的技术方案是:
第一方面提供一种接入节点,包括:
处理模块,用于确定接入节点的天线波束指向,与基站在接入节点的移动方向上的射频前端的天线波束指向对准,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上;
数据交互模块,用于在处理模块执行对准之后,通过接入节点接入无线局域网络并与核心网络进行数据回传。
结合第一方面的实现方式,在第一种可能的实现方式中,无线局域网络包括WiFi网络,接入节点包括WiFi网络的无线网络接入点AP。
第二方面提供一种调度系统,包括:
获取模块,用于获取移动载体的位置信息和速度信息;
发送模块,用于将位置信息和速度信息发送至基站,使基站根据位置信息开启移动载体在行驶方向上的射频前端,并根据位置信息和速度信息调整射频前端的天线波束指向,与移动载体的接入节点的天线波束指向对准;其中,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
结合第二方面的实现方式,在第一种可能的实现方式中,同一基站对应接入有多个射频前端,调度系统还包括处理模块,处理模块用于在监测移动载体行驶至射频前端的信号覆盖区域的边界时生成切换指令,切换指令用于使基站开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界;发送模块还用于向基站发送切换指令。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,处理模块进一步用于预先设置距离阈值;发送模块还用于在监测移动载体与相邻的下一射频前端之间的距离小于等于距离阈值时,向基站发送切换指令。
第三方面提供一种基站,包括:
获取模块,用于获取移动载体的位置信息和速度信息;
处理模块,用于根据位置信息开启移动载体在行驶方向上基站的射频前端,并根据位置信息和速度信息调整射频前端的天线波束指向,与移动载体的接入节点的天线波束指向对准;其中,对准表示射频前端的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
结合第三方面的实现方式,在第一种可能的实现方式中,同一基站对应接入有多个射频前端,当移动载体行驶至射频前端的信号覆盖区域的边界,或者移动载体与相邻的下一射频前端的距离小于等于预先设置的距离阈值时,获取模块还用于接收调度系统发送的切换指令,处理模块进一步用于根据切换指令开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
第四方面提供一种移动载体,包括上述接入节点。
第五方面提供一种数据回传方法,包括:确定接入节点的天线波束指向,与基站在接入节点的移动方向上的射频前端的天线波束指向对准,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向接入节点,且接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上;通过接入节点接入无线局域网络,并与核心网进行数据回传。
结合第五方面的实现方式,在第一种可能的实现方式中,无线局域网络包括WiFi网络,接入节点包括WiFi网络的无线网络接入点AP。
第六方面提供一种数据回传方法,包括:
获取移动载体的位置信息和速度信息,并发送至基站,使基站根据位置信息开启移动载体在行驶方向上的射频前端,并根据位置信息和速度信息调整射频前端的天线波束指向,与移动载体的接入节点的天线波束指向对准;其中,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
结合第六方面的实现方式,在第一种可能的实现方式中,同一基站对应接入有多个射频前端,数据回传方法还包括:当监测移动载体行驶至射频前端的信号覆盖区域的边界时,生成并向基站发送一切换指令,切换指令用于使基站开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
结合第六方面的实现方式,在第二种可能的实现方式中,同一基站对应接入有多个射频前端,数据回传方法进一步包括:预先设置距离阈值;当监测移动载体与相邻的下一射频前端的距离小于等于预先设置的距离阈值时,生成并向基站发送一切换指令,切换指令用于使基站开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
第七方面提供一种数据回传方法,包括:
接收调度系统发送的移动载体的位置信息和速度信息;根据位置信息开启移动载体在行驶方向上的射频前端;根据位置信息和速度信息调整射频前端的天线波束指向,与移动载体的接入节点的天线波束指向对准;其中,对准表示射频前端的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
结合第七方面的实现方式,在第一种可能的实现方式中,同一基站对应接入有多个射频前端,数据回传方法还包括:当监测移动载体行驶至射频前端的信号覆盖区域的边界,或者移动载体与相邻的下一射频前端的距离小于等于预先设置的距离阈值时,接收调度系统发送的切换指令,并根据切换指令开启相邻的下一射频前端;调整相邻的下一射频前端的天线波速指向,指向当前射频前端的信号覆盖区域的边界。
通过上述技术方案,本发明实施例所产生的有益效果是:移动载体高速运行时,可利用无线局域网络具有的大信号带宽以及非常高的数据传输速率,克服现有技术中利用基于LTE-R技术的方案的数据传输速率较低的问题。并且,根据移动载体的位置信息和速度信息实时调整接入节点与基站的射频前端的天线波束指向并保持对准,避免了高速行驶并通信时采用无线信号的复杂频偏算法,即不必面对利用频偏估计算法所带来的复杂计算,与现有技术相比极大地降低整个数据回传系统的复杂度。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明优选实施例的接入节点的原理框图;
图2是本发明优选实施例的数据回传网络架构的示意图;
图3是本发明优选实施例的数据回传场景的第一示意图;
图4是本发明优选实施例的数据回传场景的第二示意图;
图5是本发明优选实施例的数据回传场景的第三示意图;
图6是本发明优选实施例的调度系统的原理框图;
图7是本发明优选实施例的基站的原理框图;
图8是本发明优选实施例的接入节点的硬件结构示意图;
图9是本发明优选实施例的调度系统的硬件结构示意图;
图10是本发明优选实施例的基站的硬件结构示意图;
图11是本发明优选实施例的数据回传方法的流程图。
【具体实施方式】
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例首先提供一种如图1所示的接入节点11,其设置于移动载体10中并通过图2所示的数据回传网络架构以及图3所示的数据回传场景进行无线通信数据的回传。请参阅图2和图3所示,该数据回传场景包括移动载体10、基站20以及调度系统30,移动载体10在行驶轨迹A上沿箭头所示方向进行高速行驶,调度系统30与移动载体10和基站20通过远程无线通信的方式进行信息交互,基站20沿行驶轨迹A设置,通信时基站20通过接入的三个射频前端21a、21b、21c构建无线局域网络22,数据回传网络架构包括移动载体10、无线局域网络22以及核心网络40。高速行驶的移动载体10通过基站20构建的无线局域网络22实现与核心网络40的通信连接,具体而言:
移动载体10将通信时请求的无线通信数据(上行信息)通过无线局域网络22传输至核心网络40,核心网络40将通信时反馈的无线通信数据(下行信息)通过无线局域网络22传输至移动载体10,以完成数据交互。
应理解,上述基于无线局域网络(Wireless Local Area
Networks,WLAN)的数据回传场景及其所包含的各个实体元件仅供说明举例,本发明实施例可根据实际应用场景中的网络规划特性进行其他设置,例如沿行驶轨迹A设置任意多个基站20,每一基站20可对应接入有其他数量的射频前端,并且各个基站20所接入的射频前端的数量可以相同也可以不相同。
图1是本发明优选实施例的接入节点的原理框图。请参阅图1所示,接入节点11包括第一处理模块12以及数据交互模块13,其中:
第一处理模块12用于确定接入节点11的天线波束指向,以使得接入节点11的天线波束指向与基站20在接入节点11的移动方向(即移动载体10的行驶方向)上的射频前端21a的天线波束指向对准。其中,优选射频前端21a为接入节点11的移动方向上的首个射频前端,基站20根据移动载体10的位置信息和速度信息调整射频前端(包括首个射频前端21a)的天线波束指向,天线波束指向为天线波束主瓣的传输范围夹角的角平分线,对准表示接入节点11的天线波束指向射频前端、射频前端的天线波束指向接入节点11,且接入节点11与射频前端的天线波束指向处于同一直线上。
在第一处理模块12调整接入节点11的天线波束指向与首个射频前端21a的天线波束指向对准之后,数据交互模块13用于通过接入节点11接入无线局域网络22并与核心网络40进行数据回传。
基于上述结构,可知移动载体10在行驶轨迹A上高速运行时,可利用无线局域网络22具有的大信号带宽(例如WiFi网络最大支持160
MHz)以及非常高的数据传输速率,克服现有技术中利用基于LTE-R技术的方案的数据传输速率较低的问题。并且,根据移动载体10的位置信息和速度信息实时调整接入节点11与基站20(射频前端)的天线波束指向并保持对准,避免了高速行驶并通信时采用无线信号的复杂频偏算法,即不必面对利用频偏估计算法所带来的复杂计算,与现有技术相比极大地降低整个数据回传系统的复杂度。
图4是本发明优选实施例的数据回传场景的第二示意图,图5是本发明优选实施例的数据回传场景的第三示意图。下面结合图1~图5详细介绍移动载体10进行数据回传的工作原理及过程:
如图3所示,在移动载体10准备启动的t时刻,调度系统30通过与移动载体10的远程通信或者GPS定位获得移动载体10的位置信息,并产生一控制指令发送至基站20。基站20接收到该控制指令后开启距离移动载体10最近的射频前端,即图3中所示的首个射频前端21a。本实施例优选多个射频前端通过光纤等有线连接的方式接入基站20,因此在具体场景中,基站20可通过对首个射频前端21a上电的方式开启射频前端21a。
在首个射频前端21a上电开启后,调度系统30将移动载体10的位置信息或移动载体10与射频前端21a的相对位置信息,例如两者之间的距离,发送给射频前端21a所接入的基站20。基站20调整射频前端21a的天线波束指向,移动载体10的第一处理模块12也相应地调整接入节点11的天线波束指向,直至接入节点11的天线波束指向与射频前端21a的天线波束指向对准。
结合图4所示,在移动载体10启动之后并在行驶过程中(t时刻至t+t1时刻),调度系统30将移动载体10行驶时的速度信息以及位置信息或移动载体10与行驶方向上最近的射频前端21a的相对位置信息,发送给射频前端21a所接入的基站20。而后,基站20实时调整射频前端21a的天线波束指向,移动载体10的第一处理模块12也相应地实时调整接入节点11的天线波束指向,以实时保证接入节点11的天线波束指向与射频前端21a的天线波束指向对准。
如图5所示,当移动载体10即将驶离射频前端21a的信号覆盖区域的t+t2时刻,调度系统30根据预设程序自动生成切换指令,并将该切换指令发送给射频前端21a所接入的基站20,该切换指令用于使基站20开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。而后,基站20根据该切换指令开启与首个射频前端21a相邻的下一射频前端21b,并调整射频前端21b的天线波速指向以指向首个射频前端21a的信号覆盖区域的边界。
需要说明的是,若相邻两个射频前端(即首个射频前端21a与相邻的下一射频前端21b)的信号覆盖区域相重叠,则基站20调整下一射频前端21b的天线波速指向,使其指向首个射频前端21a的信号覆盖区域的边界,当然也可以指向下一射频前端21b的信号覆盖区域的边界,甚至还可以指向两个射频前端的信号覆盖区域的叠加区域。
当移动载体10驶离首个射频前端21a的信号覆盖区域,进入下一射频前端21b的信号覆盖区域,并且接入节点11与射频前端21b的天线波速指向对准时,基站20可以关闭也可以不关闭首个射频前端21a。
当移动载体10驶入终点或者在行驶途中停止时,移动载体10行驶方向前方对应的射频前端可以在基站20的控制下继续上电开启也可以断电不开启。在断电不开启时,优选基站20控制行驶方向前方对应的射频前端断电,以停止构建的无线局域网络22,而改由基站20(构建的移动蜂窝网络)与核心网络40进行通信。也就是说,此时移动载体10数据交互模块13用于通过接入节点11接入基站20构建的移动蜂窝网络与核心网络22进行数据回传。
本发明实施例其次提供一种调度系统。如图6所示,调度系统60包括第一获取模块61、发送模块62以及第一处理模块63,其中:
第一获取模块61用于获取移动载体的位置信息和速度信息。
发送模块62用于将第一获取模块61获取的位置信息和速度信息发送至基站,以使基站根据位置信息开启移动载体在行驶方向上的首个射频前端,并根据位置信息和速度信息调整射频前端的天线波束指向,以与移动载体的接入节点的天线波束指向对准,从而使得移动载体通过无线局域网络与核心网络进行数据回传。
其中,对准表示移动载体的接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,并且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
鉴于同一基站对应接入多个射频前端,第一处理模块63用于在监测移动载体行驶至射频前端的信号覆盖区域的边界时生成切换指令,并控制发送模块62向基站发送切换指令,该切换指令用于使基站开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
进一步地,在其他实施例中,第一处理模块63预先设置距离阈值,以在监测移动载体与相邻的下一射频前端之间的距离小于等于距离阈值时,控制发送模块62向基站发送切换指令,以使基站根据切换指令开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
本发明实施例进一步提供一种基站。如图7所示,基站70包括第二获取模块71以及第二处理模块72,其中:
第二获取模块71用于获取移动载体的位置信息和速度信息。
第二处理模块72用于根据第二获取模块71获取的位置信息开启移动载体在行驶方向上基站的首个射频前端,并根据位置信息和速度信息调整射频前端的天线波束指向,以与移动载体的接入节点的天线波束指向对准,从而使得移动载体通过无线局域网络与核心网络进行数据回传。
其中,对准表示射频前端的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与接入节点的天线波束指向处于同一直线上。
鉴于同一基站对应接入多个射频前端,并结合图6所示调度系统60进行数据回传的工作过程,当移动载体行驶至射频前端的信号覆盖区域的边界,或者移动载体与相邻的下一射频前端的距离小于等于预先设置的距离阈值时,第二获取模块71还用于接收调度系统发送的切换指令,第二处理模块72进一步用于根据切换指令开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
本实施例的基站70以及图6所示实施例的调度系统60与图3~图5所示的基站20与调度系统30的工作原理及过程相同,第一获取模块61、发送模块62和第一处理模块63以及第二获取模块71和第二处理模块72,对应执行上述实施例所述的数据回传过程,此处不再赘述。
另外,本领域技术人员可以将图1所示的接入节点11、图6所示的调度系统60以及图7所示的基站70所包含的各个模块相结合,完成基于图3~图5所示数据回传场景的数据回传。
应该理解到,以上所描述的接入节点11、调度系统60以及基站70的实施方式仅仅是示意性的,所描述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统中,或一些特征可以忽略,或不执行。另外,模块相互之间的耦合或通信连接可以是通过一些接口,也可以是电性或其它的形式。
上述各个功能模块作为接入节点11、调度系统60以及基站70的组成部分,可以是或者也可以不是物理框,既可以采用软件功能框的形式实现,也可以采用硬件的形式实现,例如图8~图10所示。
图8是本发明优选实施例的接入节点的硬件结构示意图。如图8所示,本实施例的接入节点80适用于如图3~5所示的应用场景,其包括第一处理器81、第一存储器82以及第一接收/发射器83,其中第一存储器82和第一接收/发射器83与第一处理器81连接,具体而言:
第一接收/发射器83用于接入基站构建的无线局域网络。
第一存储器82可以实现为计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only
Memory)、随机存取存储器(RAM,Random Access
Memory)、磁碟以及光盘等的一种或多种。第一存储器82进一步存储有应用程序,用于被第一处理器81调用,以实现数据回传。
第一处理器81通过调用第一存储器82中存储的应用程序,执行如下操作:
确定第一接收/发射器83的天线波束指向,以与基站在接入节点80的移动方向(即移动载体的行驶方向)上的射频前端的天线波束指向对准。其中,优选射频前端为接入节点80的移动方向上的首个射频前端,基站根据移动载体的位置信息和速度信息调整射频前端的天线波束指向,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向接入节点,且接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
进而控制第一接收/发射器83接入基站构建的无线局域网络,并与核心网络建立通信连接,从而进行数据回传。
图9是本发明优选实施例的调度系统的硬件结构示意图。如图9所示,本实施例的调度系统90适用于如图3~5所示的应用场景,其包括第二处理器91、第二存储器92以及第二接收/发射器93,其中第二存储器92和第二接收/发射器93与第二处理器91连接,具体而言:
第二接收/发射器93用于获取移动载体的位置信息和速度信息。
第二存储器92可以实现为计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only
Memory)、随机存取存储器(RAM,Random Access
Memory)、磁碟以及光盘等的一种或多种。第二存储器92进一步存储有应用程序,用于被第二处理器91调用,以实现数据回传。
第二处理器91通过调用第二存储器92中存储的应用程序,执行如下操作:
控制第二接收/发射器93将移动载体的位置信息和速度信息发送至基站,以使基站根据位置信息开启移动载体在行驶方向上的首个射频前端,并根据位置信息和速度信息确定射频前端的天线波束指向,以与移动载体的接入节点的天线波束指向对准,从而使得移动载体通过无线局域网络与核心网络进行数据回传。其中,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
并且,监测移动载体是否行驶至射频前端的信号覆盖区域的边界,并在监测到移动载体是否行驶至射频前端的信号覆盖区域的边界时生成切换指令,并控制第二接收/发射器93向基站发送该切换指令,以使基站根据切换指令开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
进一步地,预先设置距离阈值,以在监测移动载体与相邻的下一射频前端之间的距离小于等于距离阈值时,控制第二接收/发射器93向基站发送切换指令,以使基站根据切换指令开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
图10是本发明优选实施例的基站的硬件结构示意图。如图10所示,本实施例的基站10适用于如图3~5所示的应用场景,其包括第三处理器101、第三存储器102以及第三接收/发射器103,其中第三存储器102和第三接收/发射器103与第三处理器101连接,具体而言:
第三接收/发射器103用于获取移动载体的位置信息和速度信息。
第三存储器102可以实现为计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only
Memory)、随机存取存储器(RAM,Random Access
Memory)、磁碟以及光盘等的一种或多种。第三存储器102进一步存储有应用程序,用于被第三处理器101调用,以实现数据回传。
第三处理器101通过调用第三存储器102中存储的应用程序,执行如下操作:
根据第三接收/发射器103获取的位置信息开启移动载体在行驶方向上基站的首个射频前端,并根据位置信息和速度信息调整射频前端的天线波束指向,以与移动载体的接入节点的天线波束指向对准,从而使得移动载体通过无线局域网络与核心网络进行数据回传。其中,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。
进一步地,当移动载体行驶至射频前端的信号覆盖区域的边界,或者移动载体与相邻的下一射频前端的距离小于等于预先设置的距离阈值时,控制第三接收/发射器103接收调度系统发送的切换指令,根据第三接收/发射器103接收的切换指令通过上电开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
本发明最后提供一种数据回传方法。请参阅图11所示,本实施例的数据回传方法基于图3~图5所示的应用场景,包括以下步骤:
步骤S111:调度系统获取移动载体的位置信息和行驶时的速度信息,并发送至基站。
步骤S112:基站根据移动载体的位置信息和行驶时的速度信息调整移动载体行驶方向上的射频前端的天线波束指向,移动载体调整接入节点的天线波束指向,直至接入节点的天线波束指向与射频前端的天线波束指向对准。
其中,对准表示接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且移动载体的接入节点的天线波束指向与射频前端的天线波束指向处于同一直线上。移动载体的位置信息和速度信息等同于接入节点的位置信息和速度信息。
步骤S113:移动载体通过接入节点接入基站通过射频前端构建的无线局域网络,与核心网进行数据回传。
本实施例的数据回传方法与图3~图5所示实施例所述的数据回传过程相同。并且,鉴于同一基站对应接入多个射频前端,同理,当调度系统监测移动载体行驶至射频前端的信号覆盖区域的边界,或者移动载体与相邻的下一射频前端的距离小于等于预先设置的距离阈值时,调度系统生成一切换指令并发送给基站。基站根据切换指令开启相邻的下一射频前端,并调整其天线波速指向以指向信号覆盖区域的边界。
综上所述,移动载体高速运行时,可利用无线局域网络具有的大信号带宽以及非常高的数据传输速率,克服现有技术中利用基于LTE-R技术的方案的数据传输速率较低的问题。并且,根据移动载体的位置信息和速度信息实时调整接入节点与基站的射频前端的天线波束指向并保持对准,避免了高速行驶并通信时采用无线信号的复杂频偏算法,即不必面对利用频偏估计算法所带来的复杂计算,与现有技术相比极大地降低整个数据回传系统的复杂度。
本发明实施例全文所提及的无线局域网络以WiFi网络为例,当然并不局限于WiFi网络,并且优选接入节点为WiFi网络的无线网络接入点AP(Access
Point),优选移动载体为高速铁路上运行的列车,对应地,调度系统为铁路调度系统,当然移动载体也并不局限于高铁列车,可以是任何高速行驶场景下需要进行数据回传的载体。
再次说明,以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (15)
- 一种接入节点,其特征在于,所述接入节点包括:处理模块,用于确定所述接入节点的天线波束指向,与基站在所述接入节点的移动方向上的射频前端的天线波束指向对准,所述对准表示所述接入节点的天线波束指向射频前端、射频前端的天线波束指向所述接入节点,且所述接入节点的天线波束指向与所述射频前端的天线波束指向处于同一直线上;数据交互模块,用于在所述处理模块执行所述对准之后,通过所述接入节点接入所述无线局域网络并与所述核心网络进行数据回传。
- 根据权利要求1所述的接入节点,其特征在于,所述无线局域网络包括WiFi网络,所述接入节点包括所述WiFi网络的无线网络接入点AP。
- 一种调度系统,其特征在于,所述调度系统包括:获取模块,用于获取移动载体的位置信息和速度信息;发送模块,用于将所述位置信息和所述速度信息发送至基站,使所述基站根据所述位置信息开启所述移动载体在行驶方向上的射频前端,并根据所述位置信息和所述速度信息调整所述射频前端的天线波束指向,与所述移动载体的接入节点的天线波束指向对准;其中,所述对准表示所述接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且所述移动载体的所述接入节点的天线波束指向与所述射频前端的天线波束指向处于同一直线上。
- 根据权利要求3所述的调度系统,其特征在于,同一所述基站对应接入有多个所述射频前端,所述调度系统还包括处理模块,所述处理模块用于在监测所述移动载体行驶至所述射频前端的信号覆盖区域的边界时生成切换指令,所述切换指令用于使所述基站开启相邻的下一所述射频前端,并调整其天线波速指向以指向所述信号覆盖区域的边界;所述发送模块还用于向所述基站发送所述切换指令。
- 根据权利要求4所述的调度系统,其特征在于,所述处理模块进一步用于预先设置距离阈值;所述发送模块还用于在监测所述移动载体与相邻的下一所述射频前端之间的距离小于等于所述距离阈值时,向所述基站发送所述切换指令。
- 一种基站,其特征在于,所述基站包括:获取模块,用于获取所述移动载体的位置信息和速度信息;处理模块,用于根据所述位置信息开启所述移动载体在行驶方向上所述基站的射频前端,并根据所述位置信息和所述速度信息调整所述射频前端的天线波束指向,与所述移动载体的接入节点的天线波束指向对准;其中,所述对准表示所述射频前端的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且所述移动载体的所述接入节点的天线波束指向与所述射频前端的天线波束指向处于同一直线上。
- 根据权利要求6所述的基站,其特征在于,同一所述基站对应接入有多个所述射频前端,当所述移动载体行驶至所述射频前端的信号覆盖区域的边界,或者所述移动载体与相邻的下一所述射频前端的距离小于等于预先设置的距离阈值时,所述获取模块还用于接收所述调度系统发送的切换指令,所述处理模块进一步用于根据所述切换指令开启相邻的下一所述射频前端,并调整其天线波速指向以指向所述信号覆盖区域的边界。
- 一种移动载体,其特征在于,所述移动载体包括上述权利要求1或2所述的接入节点。
- 一种数据回传方法,其特征在于,所述数据回传方法包括:确定接入节点的天线波束指向,与基站在所述接入节点的移动方向上的射频前端的天线波束指向对准,所述对准表示所述接入节点的天线波束指向射频前端、射频前端的天线波束指向所述接入节点,且所述接入节点的天线波束指向与所述射频前端的天线波束指向处于同一直线上;通过所述接入节点接入所述无线局域网络,并与所述核心网进行数据回传。
- 根据权利要求9所述的数据回传方法,其特征在于,所述无线局域网络包括WiFi网络,所述接入节点包括所述WiFi网络的无线网络接入点AP。
- 一种数据回传方法,其特征在于,所述数据回传方法包括:获取移动载体的位置信息和速度信息,并发送至所述基站,使所述基站根据所述位置信息开启所述移动载体在行驶方向上的射频前端,并根据所述位置信息和所述速度信息调整所述射频前端的天线波束指向,与所述移动载体的接入节点的天线波束指向对准;其中,所述对准表示所述接入节点的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且所述移动载体的所述接入节点的天线波束指向与所述射频前端的天线波束指向处于同一直线上。
- 根据权利要求11所述的数据回传方法,其特征在于,同一所述基站对应接入有多个所述射频前端,所述数据回传方法还包括:当监测所述移动载体行驶至所述射频前端的信号覆盖区域的边界时,生成并向所述基站发送一切换指令,所述切换指令用于使所述基站开启相邻的下一所述射频前端,并调整其天线波速指向以指向所述信号覆盖区域的边界。
- 根据权利要求11所述的数据回传方法,其特征在于,同一所述基站对应接入有多个所述射频前端,所述数据回传方法进一步包括:预先设置距离阈值;当监测所述移动载体与相邻的下一所述射频前端的距离小于等于所述预先设置的距离阈值时,生成并向所述基站发送一切换指令,所述切换指令用于使所述基站开启相邻的下一所述射频前端,并调整其天线波速指向以指向所述信号覆盖区域的边界。
- 一种数据回传方法,其特征在于,所述数据回传方法包括:接收调度系统发送的移动载体的位置信息和速度信息;根据所述位置信息开启所述移动载体在行驶方向上的射频前端;根据所述位置信息和所述速度信息调整所述射频前端的天线波束指向,与所述移动载体的接入节点的天线波束指向对准;其中,所述对准表示所述射频前端的天线波束指向射频前端、射频前端的天线波束指向移动载体的接入节点,且所述移动载体的所述接入节点的天线波束指向与所述射频前端的天线波束指向处于同一直线上。
- 根据权利要求14所述的数据回传方法,其特征在于,同一所述基站对应接入有多个所述射频前端,所述数据回传方法还包括:当监测所述移动载体行驶至所述射频前端的信号覆盖区域的边界,或者所述移动载体与相邻的下一所述射频前端的距离小于等于预先设置的距离阈值时,接收所述调度系统发送的切换指令,并根据所述切换指令开启相邻的下一所述射频前端;调整相邻的下一所述射频前端的天线波速指向,指向当前所述射频前端的信号覆盖区域的边界。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/084699 WO2016026081A1 (zh) | 2014-08-19 | 2014-08-19 | 接入节点、调度系统、基站及数据回传方法 |
CN201480081036.5A CN106797072A (zh) | 2014-08-19 | 2014-08-19 | 接入节点、调度系统、基站及数据回传方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/084699 WO2016026081A1 (zh) | 2014-08-19 | 2014-08-19 | 接入节点、调度系统、基站及数据回传方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016026081A1 true WO2016026081A1 (zh) | 2016-02-25 |
Family
ID=55350074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084699 WO2016026081A1 (zh) | 2014-08-19 | 2014-08-19 | 接入节点、调度系统、基站及数据回传方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106797072A (zh) |
WO (1) | WO2016026081A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113242056A (zh) * | 2021-06-15 | 2021-08-10 | Oppo广东移动通信有限公司 | 客户前置设备、天线控制方法及计算机可读存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109327845B (zh) * | 2017-08-01 | 2022-04-01 | 中国移动通信有限公司研究院 | 一种通信方法及网络侧设备 |
CN110022566B (zh) * | 2018-01-10 | 2022-05-27 | 深圳捷豹电波科技有限公司 | 无线通信控制方法、无线电设备以及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880693A (en) * | 1995-11-21 | 1999-03-09 | Diel Gmbh & Co. | Method and apparatus for the wireless exchange of information between stations |
CN1742500A (zh) * | 2002-09-14 | 2006-03-01 | 罗克马诺尔研究有限公司 | 采用定向天线的移动通信系统 |
CN101317394A (zh) * | 2005-11-29 | 2008-12-03 | 诺基亚公司 | 建立和维持可预测移动车辆内的wlan连接的方法、系统以及布置 |
CN103022696A (zh) * | 2012-12-31 | 2013-04-03 | 海能达通信股份有限公司 | 自动定向天线系统、天线的自动定向方法及装置 |
CN103442362A (zh) * | 2013-08-27 | 2013-12-11 | 东南大学 | 一种通信装置以及采用该装置进行干扰协调和节能的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1509002B1 (en) * | 2003-08-19 | 2007-10-24 | Sony Deutschland GmbH | RF Coverage extension for wireless home networking systems |
US9647347B2 (en) * | 2007-05-21 | 2017-05-09 | Spatial Digital Systems, Inc. | Method and apparatus for channel bonding using multiple-beam antennas |
-
2014
- 2014-08-19 CN CN201480081036.5A patent/CN106797072A/zh active Pending
- 2014-08-19 WO PCT/CN2014/084699 patent/WO2016026081A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880693A (en) * | 1995-11-21 | 1999-03-09 | Diel Gmbh & Co. | Method and apparatus for the wireless exchange of information between stations |
CN1742500A (zh) * | 2002-09-14 | 2006-03-01 | 罗克马诺尔研究有限公司 | 采用定向天线的移动通信系统 |
CN101317394A (zh) * | 2005-11-29 | 2008-12-03 | 诺基亚公司 | 建立和维持可预测移动车辆内的wlan连接的方法、系统以及布置 |
CN103022696A (zh) * | 2012-12-31 | 2013-04-03 | 海能达通信股份有限公司 | 自动定向天线系统、天线的自动定向方法及装置 |
CN103442362A (zh) * | 2013-08-27 | 2013-12-11 | 东南大学 | 一种通信装置以及采用该装置进行干扰协调和节能的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113242056A (zh) * | 2021-06-15 | 2021-08-10 | Oppo广东移动通信有限公司 | 客户前置设备、天线控制方法及计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106797072A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021066531A1 (en) | Apparatus and method for supporting tsc | |
WO2011052870A1 (en) | Communication system having network access structure | |
WO2012138157A2 (ko) | 반송파 집적 시스템에서 반송파 활성화 방법 및 장치 | |
WO2013042934A2 (en) | Method and system for implementing mobile relay | |
WO2013168960A1 (ko) | 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치 | |
WO2011084005A2 (ko) | 무선 통신 시스템에서 시간 동기 명령을 수신하는 방법 및 장치 | |
WO2011122778A2 (en) | Mobility cell measurement method and apparatus for mobilecommunications system | |
WO2020071689A1 (ko) | 사설 이동통신망 및 사업자 이동통신망 접속을 지원하는 장치 및 방법 | |
WO2021091353A1 (en) | Method and apparatus for supporting power backoff report while performing power headroom report in wireless communication system | |
WO2013137635A1 (ko) | 단말의 상향 링크 송신 전력을 제어하는 방법 및 장치 | |
WO2020159225A1 (ko) | 사이드링크 그룹캐스트 통신을 위한 방법 및 장치 | |
WO2019216618A1 (en) | Method and apparatus for deprioritizing access on unlicensed band based on ue preference in wireless communication system | |
WO2012057500A2 (en) | Apparatus and method for controlling sleep cycle synchronization for emergency alert service in wireless communication system | |
WO2015020394A1 (ko) | 무선 통신 시스템에서 빠른 다중 기지국 검색 및 접속 방법 및 장치 | |
WO2020091373A1 (ko) | 이동통신 시스템에서 핸드오버 성능을 개선하는 방법 및 장치 | |
WO2020248430A1 (zh) | 一种应用于移动情景的网络通信系统 | |
WO2019098494A1 (ko) | 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말 | |
WO2014182131A1 (ko) | 이중연결을 지원하는 무선 통신 시스템에서 단말 식별자 구성 방법 및 그 장치 | |
KR20160079085A (ko) | Drx의 설정 및 제어 채널의 모니터링 방법, 시스템 및 장치 | |
WO2016026081A1 (zh) | 接入节点、调度系统、基站及数据回传方法 | |
WO2014106999A1 (en) | Apparatus and method for supporting mobility of mobile station in wireless communication system | |
WO2022098022A1 (ko) | 사이드링크 통신에서 sci의 전송 방법 및 장치 | |
WO2021002615A1 (ko) | 통신 시스템에서 그룹 핸드오버를 위한 방법 및 장치 | |
WO2014171724A1 (ko) | 고속 이동 단말의 통신 지원을 위한 핸드오버 방법 및 이를 수행하는 분산 안테나 시스템 | |
KR20110041177A (ko) | 다중채널 기반의 도로기지국 환경에서 차량 단말기의 채널접근 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14900076 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14900076 Country of ref document: EP Kind code of ref document: A1 |