WO2019098494A1 - 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말 - Google Patents

차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말 Download PDF

Info

Publication number
WO2019098494A1
WO2019098494A1 PCT/KR2018/008377 KR2018008377W WO2019098494A1 WO 2019098494 A1 WO2019098494 A1 WO 2019098494A1 KR 2018008377 W KR2018008377 W KR 2018008377W WO 2019098494 A1 WO2019098494 A1 WO 2019098494A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
base station
service
signal
data signal
Prior art date
Application number
PCT/KR2018/008377
Other languages
English (en)
French (fr)
Inventor
김세훈
Original Assignee
티앤아이이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티앤아이이 주식회사 filed Critical 티앤아이이 주식회사
Publication of WO2019098494A1 publication Critical patent/WO2019098494A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a vehicle terminal that provides a 100 Mbps class vehicular communication service capable of interworking with a mobile communication network, and it is an object of the present invention to improve a data transmission rate using an nxn Multiple Input Multiple Output (MIMO)
  • MIMO Multiple Input Multiple Output
  • a vehicle communication service providing method and a vehicle communication service providing terminal capable of seamlessly providing a vehicle communication service such as a next generation intelligent traffic system (ITS), autonomous traveling and cooperative traveling, at high speed in cooperation with a built-in mobile communication network .
  • ITS intelligent traffic system
  • vehicle communication can be divided into V2V (Vehicle to Vehicle), which is a communication between a vehicle and a vehicle, and Vehicle to Infrastructure (V2I), which is a communication between a vehicle and a base station.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • FIG. 1 is a diagram illustrating a process of providing a V2V service and a V2I service through a vehicle terminal according to an embodiment of the present invention.
  • the front and rear vehicles 110 and 120 moving on the road can use the V2V service by data communication through a vehicle terminal mounted on each vehicle 110 and 120 within a predetermined distance.
  • each of the vehicles 110 and 120 can use various V2I services, including road traffic information provided from an external server, through data communication with the base station 130 installed on the roadside.
  • WAVE Wireless Access in Vehicular Environment
  • the embodiment of the present invention enables 100 Mbps high-speed data communication at least four times higher than the existing vehicle communication ('WAVE communication') and supports continuous data communication at a low network construction cost by interworking with a mobile communication network already established , And to provide driving services such as autonomous driving and cooperative driving while maintaining compatibility with existing vehicle communication methods.
  • 'WAVE communication' existing vehicle communication
  • the embodiment of the present invention modifies the High MAC module included in the MAC structure in the protocol of the existing vehicle communication ('WAVE communication') to improve the transmission / reception latency while maintaining compatibility with the existing vehicle communication method. And to improve it.
  • the embodiment of the present invention provides a vehicle communication service in cooperation with a mobile communication network when a signal transmitted by a vehicle base station in the vicinity of a road is not detected, thereby continuously providing a vehicle communication service anywhere in the nation, , And to reduce the installation cost of a base station for a vehicle.
  • the embodiment of the present invention aims at providing high-speed vehicle communication without interruption and providing traveling service such as autonomous driving and cooperative driving.
  • the process of disconnecting and reconnecting after the first connection to the mobile communication network is omitted So as to minimize the switching time between the vehicle communication and the mobile communication network.
  • a method for providing a vehicle communication service includes the steps of detecting a signal transmitted by a first vehicle base station located within a predetermined range from a vehicle as a service request is input from the vehicle, , The method comprising the steps of: operating a vehicle communication module provided to connect to a first vehicle base station, and connecting to a service server from a first vehicle base station through a plurality of service channels established between the first vehicle base station and the connected first vehicle base station And providing the vehicle with a response in response to the service request.
  • the vehicle communication service providing terminal includes a detecting unit that detects a signal transmitted by a first vehicle base station located within a predetermined range from the vehicle when a service request is input from the vehicle, And a control unit that operates the provided vehicle communication module in accordance with the detection of the signal so as to connect the first vehicle base station to the first vehicle base station through a connection unit connected to the first vehicle base station and a plurality of service channels set between the first vehicle base station and the service server And a processing unit for receiving the transmitted data signal from the first base station for vehicle and providing the data signal to the vehicle in response to the service request.
  • various application services such as autonomous driving and cooperative driving can be easily provided to a vehicle in addition to basic information applied to a next generation intelligent transportation system (ITS) by linking high-speed vehicle communication technology and mobile communication technology can do.
  • ITS intelligent transportation system
  • the existing vehicle base station (the second vehicle base station) with high compatibility with the existing vehicle communication ('WAVE')
  • FIG. 1 is a diagram illustrating a process of providing a V2V service and a V2I service using a vehicle terminal according to an embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a process of providing a vehicle communication service using a vehicle communication service providing terminal according to an embodiment of the present invention.
  • FIG. 2B is a diagram illustrating the structure of a communication module included in the vehicle communication service providing terminal shown in FIG. 2A.
  • FIG. 3 is a block diagram illustrating an internal configuration of a vehicle communication service providing terminal according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of the arrangement of a plurality of service channels in a vehicle communication service providing terminal according to an embodiment of the present invention.
  • 5A is a diagram illustrating a structure of a physical layer (PHY) for data communication in an nxn MIMO scheme in a vehicular communication service providing terminal according to an embodiment of the present invention.
  • PHY physical layer
  • 5B is a diagram illustrating an example of modifying a High MAC module included in the MAC structure in accordance with the nxn MIMO scheme data communication shown in FIG. 5A.
  • FIG. 6 is a flowchart illustrating a procedure of a method for providing a vehicle communication service according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a procedure of a method of providing a vehicle communication service according to another embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a process of providing a vehicle communication service using a terminal for providing a vehicle communication service according to an embodiment of the present invention.
  • FIG. 2B is a flowchart illustrating a process of providing a vehicle communication service using a communication module Fig.
  • a terminal for providing a vehicle communication service includes a vehicle communication service (V2I service, V2V service, The V2X terminals 230 and 240 of FIG.
  • the V2X terminals 230 and 240 include a vehicle communication module (WAVE +) 231 and 241 for performing a large-capacity vehicle communication and a structure in which a mobile communication module (LTE) 232 and 242 are combined , It is possible to perform an optimal vehicle communication network connection in the order illustrated in Fig.
  • the V2X terminal 230 preferentially uses the vehicle communication module (WAVE +) 231 capable of transmitting a relatively large-capacity data signal at a high speed, but the V2X terminal 230 uses seamless communication with a plurality of mobile communication base stations
  • a mobile communication module (LTE) 232 capable of transmitting a signal can be complemented to provide a V2I service.
  • the V2X terminal 230 activates the vehicle communication module (WAVE +) 231, and transmits the driving service request associated with the autonomous driving or the cooperative driving from the vehicle 210 to the vehicle base station 201 (N is an integer of 1 or more) from the vehicle-mounted base station 201, for example, a data signal from a service server operated by the next-generation intelligent traffic system (ITS) 6 or less) and provides the vehicle 210 with the service channel.
  • WAVE + vehicle communication module
  • the V2X terminal 230 can display the entire traffic information of the road, the danger area guide, the proximity information of the emergency vehicle, the notice of the area of interest, and the video collected by the other vehicle at a remote distance necessary for autonomous driving or cooperative driving,
  • a data signal associated with at least one of the CCTV photographed images on the road side may be provided by vehicle communication (V2I) between the vehicle and the base station.
  • V2I vehicle communication
  • the V2X terminal 230 transmits the mobile communication module (LTE) 232 to the V2X terminal 230 if the signal transmitted by the vehicle-use base station 201 is not detected because the base station 201 is not located within a certain distance from the vehicle 210 Detects a mobile communication signal (e.g., an 'LTE signal') transmitted from the mobile communication base station 202 and connects the mobile communication base station 202 to the mobile communication base station 202, Data signals may be received and provided to the vehicle 210.
  • LTE mobile communication module
  • the V2X terminal 230 transmits the data signal from the vehicle- And may receive the data signal from the mobile communication base station 202 when the signal transmitted by the vehicular base station 201 is not detected or the reception strength of the signal is weak.
  • the V2X terminal 230 simultaneously connects to the vehicle-mounted base station 201 and the mobile communication base station 202 on the road side using the vehicle communication module (WAVE +) 231 and the mobile communication module 232 in combination, . ≪ / RTI >
  • the V2X terminal 230 operates the vehicle communication module (WAVE +) 231 in conjunction with the input of the traveling service request and transmits the V2X terminal 240 installed in the adjacent vehicle 220 following the vehicle 210, (WAVE +) 241 and is connected to the vehicle communication module (WAVE +) 241 via the vehicle communication (V2V) between the vehicle communication modules (WAVE +) 231, 241 to stop sudden stop of the preceding vehicle, Acquires a data signal associated with at least one of a traffic situation that can not be seen by the obscured view due to the obscured view, a driving condition detection such as a sleepiness of the preceding vehicle and a trailing vehicle driver, can do.
  • a driving condition detection such as a sleepiness of the preceding vehicle and a trailing vehicle driver
  • the vehicle communication service providing terminal is capable of performing high-speed data communication such as LTE (high-speed data communication) while having a high data transmission amount compared to existing low-speed vehicle communication (WAVE + network) can be used in areas with high traffic volume due to high traffic volume, and vehicle communication services can be provided using LTE network in areas with low traffic volume.
  • high-speed data communication such as LTE (high-speed data communication)
  • WAVE + network existing low-speed vehicle communication
  • the vehicle communication service providing terminal is composed of a vehicle communication module (WAVE +) and a mobile communication module and is connected to a vehicle communication module (WAVE +) mounted on another vehicle via a vehicle communication module (WAVE + (ITS) service by providing a V2I service (service between a vehicle and a base station) while being connected to a vehicle base station while providing a V2I service by being connected to a mobile communication base station through a mobile communication module, ) And communication services for cooperative driving and autonomous driving.
  • WAVE + vehicle communication module
  • ITS vehicle communication module
  • the vehicle communication service providing terminal combines vehicle communication (WAVE +) capable of high-speed data communication of 100 Mbps or higher at least four times higher than the existing vehicle communication (WAVE) and existing mobile communication capable of connecting with a large coverage and a plurality of terminals Therefore, it is possible to reduce the construction cost of the expensive base station only for the vehicle communication and maximize the existing commercial mobile communication network, thereby providing high-speed seamless communication service.
  • vehicle communication WAVE +
  • existing vehicle communication WAVE
  • FIG. 3 is a block diagram illustrating an internal configuration of a vehicle communication service providing terminal according to an embodiment of the present invention.
  • the vehicle communication service providing terminal 300 includes a detecting unit 310, a connecting unit 320, a setting unit 330, a processing unit 340, and a communication module 350, As shown in FIG.
  • the vehicle communication service providing terminal 300 may include a communication module 350 so as to simultaneously perform data communication with different types of base stations on the road side.
  • the communication module 350 may have a structure in which the vehicle communication module 351 and the mobile communication module 352 are combined.
  • the detection unit 310 detects a signal transmitted from the vehicle by the first base station for vehicle located in a predetermined range (e.g., '20 m').
  • the detection unit 310 detects a service request from the service server Traffic System (ITS) ').
  • ITS Traffic System
  • the detection unit 310 detects a signal of a predetermined intensity or more emitted from the first vehicle base station to attempt vehicle communication ('WAVE +') capable of transmitting a relatively large-capacity data signal at a high speed, ) Can be searched for.
  • connection unit 320 operates the provided vehicle communication module 351 according to the detection of the signal to connect with the first vehicle base station.
  • the connection unit 320 can connect to the first vehicle base station using a selected wide band frequency ('5 GHz band').
  • the setting unit 330 sets a plurality of service channels for transmitting and receiving data signals with the first base station to be connected.
  • the setting unit 330 is connected to the first vehicle base station using the selected wide band frequency (e.g., '5 GHz' band), and sets n (n is a natural number of 1 to 6) To increase the data communication speed by extending the bandwidth for each service channel.
  • the selected wide band frequency e.g., '5 GHz' band
  • n is a natural number of 1 to 6
  • the setting unit 330 may set n service channels that can be simultaneously used to enable data signals to be transmitted and received in an nxn Multiple Input Multiple Output (MIMO) scheme.
  • MIMO Multiple Input Multiple Output
  • the setting unit 330 arranges each service channel in the same structure as that of the existing WAVE vehicle communication, maintains the connection compatibility with the second vehicle base station installed for existing WAVE vehicle communication, You can disable simultaneous use of control channels and service channels by using TDM channels.
  • the setting unit 330 sets n service channels (where n is a natural number equal to or greater than 1 and less than or equal to 6) on the wide frequency band and sets a control channel for transmitting and receiving a control signal to and from the first vehicle base station as n It is possible to arrange the service channels in a central region corresponding to the center of the set broadband frequency.
  • the control signal may be a signal for controlling and managing the vehicle communication service providing terminal 300 mounted in each vehicle at the first vehicle base station.
  • the setting unit 330 sets up a maximum of six service channels ('Ch 172', 'Ch 172', and 'Ch 172') in each of the regions 410 to 460 on the wide band frequencies (5.855 GHz to 5.925 GHz) Ch ', Ch 180, Ch 182, and Ch 184) in a central region 470 on a wide frequency band not occupied by a service channel, 178 ').
  • a maximum of six service channels ('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182' For example, two, three, four, or five at the same time to transmit and receive data signals to and from the first vehicle base station.
  • the processing unit 340 sets up six service channels (Ch 172, Ch 174, Ch 176, Ch 180, Ch 182, and Ch 184) (For example, 410) among the channels 410 to 460 to transmit and receive the data signal.
  • the processor 340 combines two service channels (410 + 420, 420 + 430, 440 + 450, or 450 + 460, for example) among the six service channels set according to the size of the service capacity, And may simultaneously transmit and receive the data signal.
  • the processor 340 combines three service channels (for example, 410 + 420 + 430 or 440 + 450 + 460) out of the six service channels set according to the size of the service capacity, Data signals may be transmitted and received.
  • the processor 340 combines four service channels (410 + 420 + 430 + 440 or 430 + 440 + 450 + 460) out of the six service channels set according to the size of the service capacity, And may simultaneously transmit and receive the data signal.
  • the processing unit 340 combines five service channels (for example, 410 + 420 + 430 + 440 + 450 or 420 + 430 + 440 + 450 + 460) out of the six service channels set according to the size of the service capacity , And the data signal may be transmitted and received using the combined channel at the same time.
  • five service channels for example, 410 + 420 + 430 + 440 + 450 or 420 + 430 + 440 + 450 + 460
  • the processing unit 340 combines the six service channels 410 + 420 + 430 + 440 + 450 + 460, which are set, when the service to be provided is large, such as a moving image service, It is also possible to send and receive signals.
  • the processing unit 340 uses the service channel and the control channel in a time-division manner. Interference between signals can be prevented by stopping transmission / reception of control signals through the control channel during data signal transmission / reception through the service channel.
  • the processing unit 340 may further use a control channel ('Ch 178') not used for transmission / reception of a control signal for receiving a data signal through a service channel.
  • the processing unit 340 can receive the data signal from the first vehicle-use base station more quickly by using a total of seven channels simultaneously.
  • the setting unit 330 may rearrange the control channel to at least one of the areas where the plurality of service channels are set, and set the central area as a new service channel.
  • the setting unit 330 sets 'Ch 172' or 'Ch 184' corresponding to the regions 410 and 460 at both ends on the wide band frequencies ('5.855 GHz' to '5.925 GHz' Ch 178 corresponding to the central area 470 may be set as the service channel instead of placing the control channel in the service area.
  • control channel can be used in real time, and the service channel can be used by combining a plurality of consecutive channels. That is, the processing unit 340 can simultaneously transmit and receive data signals through each service channel and transmit and receive control signals through the control channel.
  • the setting unit 330 is a unit for setting a MAC (Medium Access Control) on a predetermined existing vehicle communication protocol (e.g., WAVE communication) capable of using any one service channel among the n service channels so that the data signal can be received according to the nxn MIMO scheme.
  • a MAC Medium Access Control
  • WAVE communication e.g., Wi-Fi
  • a predetermined existing vehicle communication protocol e.g., WAVE communication
  • the setting unit 330 changes the physical layer (PHY) and the MAC structure of the existing WAVE communication protocol so that n service channels can be simultaneously used and enables reception of the data signal according to the nxn MIMO scheme .
  • the setting unit 330 sets the structure of the physical layer (PHY) of the vehicle communication (WAVE +) protocol according to the present invention to the Low Mac Block 510, the MIMO Modem Block And a High MAC module 540 that includes a 4 ⁇ 4 MIMO scheme and an RF block 530 that can transmit and receive data signals of 4 ⁇ 4 MIMO scheme and transmits and receives a 4 ⁇ 4 MIMO scheme data signal.
  • PHY physical layer
  • WAVE + vehicle communication
  • the setting unit 330 conforms to the WAVE standard in order to have compatibility with the existing vehicle communication network (WAVE).
  • WAVE vehicle communication network
  • a single service channel of the existing WAVE is composed of six , 4 ⁇ 4 MIMO scheme, or 6 ⁇ 4 MIMO scheme, so that the data signal is transmitted and received at a rate of up to 24 times compared to the existing WAVE communication technique.
  • the MAC layer such a 4 ⁇ 4 MIMO scheme and By implementing the function according to the six service channel configuration and correcting the high MAC, it is possible to improve the service providing speed by making the transmission and reception latency less than about 10 msec compared to the existing WAVE communication technology.
  • the setting unit 330 uses only one channel in the frequency allocation in the 4x4 MIMO scheme, arranges four service channels to use four channels, and configures six service channels to use all six channels It can be configured to use.
  • the processing unit 340 receives the data signal transmitted by the service server through the plurality of service channels set up between the connected first base station for the vehicle and the first base station for vehicle and transmits the data signal in response to the service request To the vehicle.
  • the processing unit 340 may use an n ⁇ n MIMO (Multiple Input Multiple Output ) System, it is possible to receive the data signal from the first base station for vehicle and provide it to the vehicle.
  • n MIMO Multiple Input Multiple Output
  • the processing unit 340 may transmit the data signal from the first vehicle-use base station to the first vehicle-use base station at a communication speed of at least n times or more than the communication speed at which the data signal is received from the second vehicle- And can receive the data signal and provide it to the vehicle.
  • the processing unit 340 transmits the existing second vehicle base station that can use any of the n service channels
  • the data signal can be received and provided to the vehicle at a speed at least n times faster than vehicle communication (WAVE).
  • the processing unit 340 transmits a data signal transmitted / received at a maximum communication speed of 27 Mbps in a 10 MHz bandwidth through a conventional WAVE communication using one of the six service channels shown in FIG. 4 to a 4 ⁇ 4 MIMO Or up to six service channels together to transmit and receive at a rate of approximately 100 Mbps, at least four times faster.
  • the transmission / reception speed of the data signal can be determined at a higher speed in proportion to the number of simultaneously available service channels. That is, when the signals are respectively detected by the detecting unit 310 from a plurality of vehicle-use base stations using different numbers of service channels, the connection unit 320 preferentially transmits, to the vehicle-use base stations using a larger number of service channels And the processing unit 340 can receive the data signal at a high speed proportional to the number of channels.
  • a control channel for transmitting / receiving a control signal to / from the first vehicle base station is arranged in a central region corresponding to the center of the broadband frequency on which the plurality of service channels are set by the setting unit 330, (340) stops transmission and reception of the control signal through the control channel while receiving the data signal using the plurality of service channels, and further uses the control channel as a service channel to transmit the data signal .
  • the processing unit 340 can prevent interference between channels between the data signal and the control signal, and can combine six service channels and one control channel It becomes possible to receive the data signal from the first vehicle base station at a higher speed by using the seven channels simultaneously.
  • the processing unit 340 Receive the data signal using a plurality of service channels further comprising a new service channel and allow transmission and reception of the control signal over the relocated control channel during reception of the data signal.
  • the processing unit 340 may use 'Ch 172' or 'Ch 184' of both end regions 410 and 460 on a wide frequency band used for connection as a control channel,
  • 'Ch 178' of the central area 450 corresponding to the first service channel as a service channel
  • data signals are transmitted / received using up to six service channels at the same time, and the control channel can be continuously used in real time, Management of the vehicle terminal of the vehicle base station can be made easier.
  • the vehicle communication service providing terminal 300 of the present invention can quickly receive information necessary for autonomous driving or cooperative driving from a service server through a high-speed large-capacity vehicle communication (WAVE +) and provide it to a vehicle,
  • WAVE + high-capacity vehicle communication
  • WAVE + it is possible to receive and provide the traffic through the existing low-speed vehicle communication (WAVE) or mobile communication network.
  • the detecting unit 310 detects a mobile communication signal received from the mobile communication base station within a predetermined range .
  • the mobile communication base station is at least one of an LTE base station, a WCDMA base station, and a GSM base station. If a mobile communication signal transmitted by the LTE base station is not detected, the detection unit 310 detects the mobile communication signal by the WCDMA base station or the GSM base station It is possible to detect a mobile communication signal to be transmitted.
  • the detecting unit 310 detects a signal from the first base station base station signal for receiving a data signal through a large-capacity high-speed vehicle communication (WAVE +), and detects a mobile communication signal (LTE signal) Mobile communication signals from a low-speed WCDMA base station or a GSM base station can be sequentially detected as a lane when there is no high-speed LTE network that can be connected.
  • WAVE + large-capacity high-speed vehicle communication
  • LTE signal mobile communication signal
  • the connection unit 320 operates the mobile communication module according to the detection of the mobile communication signal and connects with the mobile communication base station.
  • the processing unit 340 receives the data signal from the mobile communication base station, Can be provided to the vehicle.
  • connection unit 320 may attempt to connect to the mobile communication base station only once for the first time. Thereafter, the idle mode in which the connection state is maintained even when the reception of the data signal is terminated or stopped, Time can be minimized.
  • the processing unit 340 When the signal from the first vehicle base station is detected by the detection unit 310 during reception of the data signal through the mobile communication base station, the processing unit 340 receives the data signal from the mobile communication base station And switches the mode of the mobile communication module to an idle mode for maintaining a connection state with the mobile communication base station and subsequently receives the data signal from the first vehicle base station connected via the vehicle communication module Can be provided to the vehicle.
  • the processing unit 340 monitors the base station signal around the vehicle through the detection unit 310, and when a network capable of high-speed high-speed data transmission is newly identified, Signals can be transmitted and received.
  • the processing unit 340 switches the mobile communication module from the idle mode to the active mode, and resumes reception of the data signal through the mobile communication base station can do.
  • the processing unit 340 operates the mobile communication module 352 in the idle mode and does not need to attempt to reconnect to the mobile communication base station through the connection unit 320,
  • the switching between heterogeneous communication networks can be performed quickly and the data signal being received through the vehicle communication network can be continuously received through the mobile communication network without interruption.
  • the connection unit 320 determines that the signal detected by the detection unit 310 is not the above-mentioned signal from the first vehicle base station signal using the n service channels together, In the case of a transmission signal from a second vehicle base station using any one of the n service channels, even if the mobile communication signal is detected, it is possible to attempt connection with the second vehicle base station.
  • the processing unit 340 can receive the data signal by using the existing vehicle communication (WAVE) capable of high-capacity data transmission even if the speed is lower than that of the mobile communication network, and when there is no second vehicle- And can receive the data signal in conjunction with a communication network.
  • WAVE existing vehicle communication
  • the detection unit 310 can determine the communication method to be one of vehicle communication (WAVE +, WAVE) and mobile communication based on the base station signal detected within the predetermined range from the vehicle, and the connection unit 320 can determine the communication method
  • the mobile communication module 351 operates the vehicle communication module 351 or the mobile communication module 352 to connect to the base station that has transmitted the base station signal and access the upper network via the base station,
  • the processing unit 340 can provide the vehicle with a data signal transmitted by the service server.
  • the processing unit 340 collects information necessary for driving through V2I communication between the vehicle and the base station from the service server, Communication can be carried out to collect more information that can not be obtained through V2I communication, thereby making it possible to carry out autonomous traveling and cooperative traveling more finely and safely.
  • the processing unit 340 determines whether the service request includes at least one of position information of the vehicle, road state information, weather information,
  • the data signal relating to at least one of the information and the safety information can be received from the next generation intelligent traffic system (ITS) through the first vehicle base station connected through the vehicle communication module 351 and provided to the vehicle.
  • ITS intelligent traffic system
  • the processing unit 340 can quickly and continuously receive a high-capacity data signal related to a black box image captured by another remote vehicle or a CCTV shot image on the road side, thereby providing a safe autonomous running / .
  • connection unit 320 connects with the target vehicle communication module provided in the adjacent vehicle via the vehicle communication module 351, A data communication unit for measuring a distance between the vehicle and the adjacent vehicle through data communication with the target vehicle communication module, determining a vehicle collision risk based on the separation distance, To the vehicle and the adjacent vehicle.
  • the processing unit 340 can sense the drowsy driving state of the vehicle driver through reception of the data signal regarding the motion of the adjacent vehicle, and reflect the drowsy driving state during the autonomous driving / cooperative driving.
  • the processing unit 340 may collect the black box image photographed by the adjacent vehicle as a data signal and utilize it in providing the autonomous traveling / cooperative traveling service.
  • connection unit 320 transmits, via the vehicle communication module 351, And the processing unit 340 transmits the input message from the vehicle to the adjacent vehicle through data communication with the target vehicle communication module or transmits the input message from the vehicle to the adjacent vehicle
  • An input message from the vehicle can be provided to the vehicle as a data signal.
  • the processing unit 340 may provide a group communication service through a message exchange through voice, image, and text between the vehicle and adjacent vehicles that perform cooperative traveling, thereby facilitating cooperative traveling among the vehicles.
  • the processing unit 340 periodically checks the connection status with the base station even after connection with the base station of at least one of the first and second vehicle base stations and the mobile communication base station, and while the connection with the base station is maintained, Signal to the vehicle.
  • various application services such as autonomous traveling and cooperative traveling can be easily performed in addition to the basic information applied to the next generation intelligent transportation system (ITS) Can be provided to the vehicle.
  • ITS intelligent transportation system
  • the existing vehicle base station (the second vehicle base station) with high compatibility with the existing vehicle communication ('WAVE')
  • FIG. 4 is a diagram showing an example of the arrangement of a plurality of service channels in a vehicle communication service providing terminal according to an embodiment of the present invention.
  • a terminal for providing a vehicle communication service can selectively receive each channel for high-capacity large-capacity vehicle communication.
  • the vehicle communication service providing terminal arranges each service channel with the same structure as the existing WAVE vehicle communication, maintains the connection compatibility with the second vehicle base station installed for existing WAVE vehicle communication, By using the control channel in TDM mode, it is possible to disable simultaneous use of the control channel and the service channel.
  • the vehicle communication service providing terminal transmits a maximum of six service channels ('Ch 172', 'H') to each of the regions 410 to 460 on the wide band frequencies ('5.855 GHz' to '5.925 GHz' Ch 174 ',' Ch 176 ',' Ch 180 ',' Ch 182 ', and' Ch 184 ') are set in a central region 470 on a broadband frequency not occupied by a service channel, ').
  • the vehicle communication service providing terminal transmits up to six service channels ('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182', and 'Ch 184' 410 to 460) can be used to transmit and receive data signals to and from the first vehicle base station.
  • the vehicle communication service providing terminal may further use a control channel ('Ch 178') not used for transmission / reception of a control signal when receiving a data signal through a service channel, in order to receive a data signal.
  • Channel may be used simultaneously to receive the data signal from the first vehicle base station more quickly.
  • the vehicle communication service providing terminal may be a 'Ch 172' or a 'Ch 184' corresponding to the regions 410 and 460 at both ends on the wide frequency ('5.855 GHz' to 5.925 GHz ' Ch 178 corresponding to the central area 470 may be set as the service channel instead of placing the control channel in the service area.
  • the vehicle communication service providing terminal can receive the control signal through the control channel in real time even during the reception of the data signal through the service channel, so that the vehicle base station can easily manage the plurality of vehicle terminals do.
  • 5A is a diagram showing a structure of a physical layer (PHY) for data communication of n ⁇ n MIMO scheme in a vehicular communication service providing terminal according to an embodiment of the present invention. and the High MAC module included in the MAC structure is modified in accordance with the nxn MIMO data communication.
  • PHY physical layer
  • a vehicle communication service providing terminal can provide high-speed, high-capacity vehicle communication of 100 Mbps or higher in level while ensuring compatibility with the existing vehicle communication system WAVE, It is possible to provide seamless data communication in cooperation with a communication network.
  • a low-MAC block 510 a MIMO modem block 520, and a low-power-consumption module 510 are connected to the vehicle communication service providing terminal, And an RF Block 530 capable of transmitting and receiving data signals of 4x4 MIMO scheme.
  • a High MAC module 540 may be implemented to implement the MAC layer.
  • the vehicle communication service providing terminal conforms to the WAVE standard in order to have compatibility with the existing vehicle communication network (WAVE).
  • the single service channel of the existing WAVE is composed of six , 4 ⁇ 4 MIMO scheme, or 6 ⁇ 4 MIMO scheme, so that the data signal is transmitted and received at a rate of up to 24 times compared to the existing WAVE communication technique.
  • the MAC layer such a 4 ⁇ 4 MIMO scheme and By implementing the function according to the six service channel configuration and correcting the high MAC, it is possible to improve the service providing speed by making the transmission and reception latency less than about 10 msec compared to the existing WAVE communication technology.
  • FIG. 6 is a flowchart illustrating a procedure of a method for providing a vehicle communication service according to an embodiment of the present invention.
  • the vehicle communication service providing method according to the present embodiment can be performed by the vehicle communication service providing terminal 300 described above.
  • step 610 the vehicle communication service providing terminal 300 confirms that a service request is input from the vehicle.
  • the vehicle communication service providing terminal 300 can confirm whether a service request related to at least one of autonomous driving and cooperative driving is input from a vehicle driving on the road.
  • the vehicle communication service providing terminal 300 If the driving service request such as the autonomous driving / cooperative driving is input in step 610, the vehicle communication service providing terminal 300, in step 620, And detects a transmitted signal.
  • the vehicle communication service providing terminal 300 detects a signal of a predetermined intensity or more sent from the first vehicle base station in order to attempt first vehicle communication ('WAVE +') capable of transmitting a relatively large data signal at a high speed, (&Quot; WAVE + ").
  • step 630 the vehicle communication service providing terminal 300 operates the provided vehicle communication module according to the detection of the signal to connect with the first vehicle base station.
  • the vehicle communication service providing terminal 300 can access the first vehicle base station using the selected wide band frequency ('5 GHz band').
  • the vehicle communication service providing terminal 300 can determine the transmission / reception speed of the data signal at a higher speed in proportion to the number of available service channels at the same time, When each of the signals is detected from the base station, it is possible to preferentially request connection to the base station for the vehicle using the larger number of service channels.
  • the vehicle communication service providing terminal 300 does not detect a signal from the first vehicle-use base station signal that uses n service channels at the same time, When an outgoing signal from the base station is detected, the second base station can request a connection.
  • the vehicle communication service providing terminal 300 may try to access the second vehicle base station even if a mobile communication signal is detected from the mobile communication base station within the predetermined range.
  • the vehicle communication service providing terminal 300 can receive the data signal by using the existing vehicle communication (WAVE) capable of high-capacity data transmission even if the speed is lower than that of the mobile communication network. If there is no second vehicle- The mobile communication network can be linked to the mobile communication network.
  • WAVE existing vehicle communication
  • the vehicle communication service providing terminal 300 receives the signal from the mobile communication base station within the predetermined range
  • the mobile communication module detects a mobile communication signal and operates the mobile communication module to receive the data signal through the mobile communication base station seamlessly and request a connection to the mobile communication base station.
  • the mobile communication service providing terminal 300 can switch the mode of the mobile communication module from the idle mode to the active mode to quickly switch between the heterogeneous communication networks.
  • step 640 the vehicle communication service providing terminal 300 transmits a data signal transmitted by the service server through the plurality of service channels set between the first vehicle base station and the first vehicle base station, And provides it to the vehicle in response to the service request.
  • the vehicle communication service providing terminal 300 As the vehicle communication service providing terminal 300 is connected to the first vehicle base station using the selected wide band frequency (e.g., '5 GHz' band), the vehicle communication service providing terminal 300 sets a plurality of service channels on the wide frequency band, To increase data communication speed.
  • the selected wide band frequency e.g., '5 GHz' band
  • the vehicle communication service providing terminal 300 can set n service channels (n is a natural number equal to or greater than 1 and 6) that can be simultaneously used, and receives the data signal in an nxn MIMO (Multiple Input Multiple Output) can do.
  • nxn MIMO Multiple Input Multiple Output
  • the vehicle communication service providing terminal 300 transmits a maximum communication speed of 27 Mbps in a 10 MHz bandwidth through existing WAVE communication using one of the six service channels shown in FIG. 4 Can be transmitted / received at a rate of about 100 Mbps, at least four times, using a 4 ⁇ 4 MIMO scheme or up to six service channels together.
  • FIG. 7 is a flowchart illustrating a procedure of a method of providing a vehicle communication service according to another embodiment of the present invention.
  • the vehicle communication service providing method according to the present embodiment can be performed by the vehicle communication service providing terminal 300 described above.
  • the vehicle communication service providing terminal 300 acquires necessary information (&Quot; Next Generation Intelligent Traffic System (ITS) ") to try to communicate (step 701).
  • ITS Next Generation Intelligent Traffic System
  • the vehicle communication service providing terminal 300 detects a signal (hereinafter referred to as WAVE + signal) transmitted by a first vehicle base station (hereinafter referred to as WAVE + RSE) within a predetermined range from the vehicle (step 702).
  • WAVE + signal a signal transmitted by a first vehicle base station (hereinafter referred to as WAVE + RSE) within a predetermined range from the vehicle (step 702).
  • the vehicle communication service providing terminal 300 operates the vehicle communication module to connect with the WAVE + RSE (step 703), access the upper network via WAVE + RSE (Step 704) and accesses the service server (traffic center) (step 706) while the connection with the WAVE + RSE is maintained (step 705) and receives information necessary for autonomous / cooperative travel from the WAVE + RSE And provides it to the vehicle as a V2I service (step 707).
  • the vehicle communication service providing terminal 300 selects the second vehicle base station (Hereinafter, referred to as WAVE signal) transmitted by the WAVE RSE (step 708).
  • the vehicle communication service providing terminal 300 operates the vehicle communication module to connect with the WAVE RSE (step 709), access the upper network through the WAVE RSE (Step 710) and accesses to the service server (traffic center) (step 706) while the connection with the WAVE RSE is maintained (step 711), and information necessary for autonomous traveling / cooperative travel is received from the WAVE RSE And provides it to the vehicle as a V2I service (step 707).
  • the vehicle communication service providing terminal 300 confirms whether it is connected to the mobile communication base station (step 712).
  • the vehicle communication service providing terminal 300 detects the mobile communication signal transmitted by the mobile communication base station within the predetermined range from the vehicle (step 713).
  • the mobile communication service providing terminal 300 When the mobile communication service providing terminal 300 detects the mobile communication signal in step 713, the mobile communication service providing terminal 300 operates the mobile communication module and connects to the mobile communication base station and the mobile communication service provider upper network (steps 714 to 715) (Step 706), and receives the information necessary for the autonomous traveling / cooperative traveling through the mobile communication base station and provides it to the vehicle as a V2I service (step 707).
  • the mobile communication service providing terminal 300 switches the mode of the mobile communication module from the current idle mode to the active mode (step 716), and if it is connected in step 715 And can access the upper network of the mobile communication carrier.
  • the vehicle communication service providing terminal 300 may return to step 702 to re-detect the WAVE + signal if the mobile communication signal is not detected in step 713.
  • the vehicle communication service providing terminal 300 takes approximately 400 to 500 msec time to access when attempting to connect to the mobile communication network, (WAVE + RSE or WAVE RSE) is disconnected or if it is difficult to connect, the mode is switched to the active mode and the switching between the vehicle communication network and the mobile communication network is performed In this case, the procedure for attempting connection to the mobile communication base station is omitted, and the switching can be performed within about 10 msec.
  • the vehicle communication service providing terminal 300 when the vehicle communication service providing terminal 300 is connected to the mobile communication network and receives a data signal, when the vehicle moves to a region where the vehicle can communicate with the vehicle (WAVE + or WAVE), the mobile communication service providing terminal 300 switches the mobile communication module to the idle mode
  • the service through the communication network is interrupted, and the process returns to step 702 to detect a signal transmitted by the vehicle-use base station and sequentially attempt to access the WAVE + network and the WAVE network.
  • the vehicle communication service providing terminal 300 first searches for the WAVE + signal from the high-speed vehicle communication (WAVE +) base station and then connects to the WAVE + communication network when the WAVE + signal exists, (WAVE) or vehicle communication service associated with autonomous or cooperative driving through the connection of a mobile communication network.
  • the method according to an embodiment of the present invention may be implemented in the form of a program command that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions to be recorded on the medium may be those specially designed and configured for the embodiments or may be available to those skilled in the art of computer software.
  • Examples of computer-readable media include magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and DVDs; magnetic media such as floppy disks; Magneto-optical media, and hardware devices specifically configured to store and execute program instructions such as ROM, RAM, flash memory, and the like.
  • program instructions include machine language code such as those produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말이 개시된다. 본 발명의 일실시예에 따른 차량통신 서비스 제공 방법은, 차량으로부터 서비스 요청이 입력 됨에 따라, 차량으로부터 선정된 범위 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출하는 단계와, 상기 신호의 검출에 따라, 구비된 차량통신 모듈을 동작시켜, 제1 차량용 기지국과 접속하는 단계, 및 접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 제1 차량용 기지국으로부터 서비스 서버에 의해 전송되는 데이터 신호를 수신하여, 상기 서비스 요청에 대한 응답으로 차량에 제공하는 단계를 포함한다.

Description

차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말
본 발명은 이동통신망과의 연동이 가능한 100Mbps급 차량통신 서비스를 제공하는 차량용 단말에 관한 것으로, n×n MIMO(Multiple Input Multiple Output) 방식을 사용하여 데이터 전송 속도를 개선 함과 동시에, 이미 전국에 구축되어 있는 이동통신망과 연동하여, 차세대 지능형 교통시스템(ITS), 자율주행 및 협력주행 등과 같은 차량통신 서비스를 고속으로 끊김 없이 제공할 수 있는 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말에 관한 것이다.
일반적으로 차량통신은, 차량과 차량 간의 통신인 V2V(Vehicle to Vehicle)와, 차량과 기지국 간의 통신인 V2I(Vehicle to Infrastructure)로 구분될 수 있다.
도 1은 종래의 일실시예에 따른 차량 단말을 통한 V2V 서비스 및 V2I 서비스의 제공 과정을 도시한 도면이다.
도 1에 도시된 것처럼, 도로를 이동하는 전후방 차량(110, 120)은, 일정한 이격거리 내에서 각 차량(110, 120)에 장착된 차량 단말을 통해 데이터 통신하여 V2V 서비스를 이용할 수 있다.
또한, 각 차량(110, 120)은 도로 노변에 설치된 기지국(130)과의 데이터 통신을 통해, 외부의 서버에서 제공하는 도로 교통 정보를 포함한 다양한 V2I 서비스를 이용할 수 있다.
한편, 종래에는 V2I 서비스 제공을 위한 다수의 기지국(130)을 도로 노변에 설치해야 하므로 망 구축을 위해 많은 비용이 발생할 수 있다. 또한, 고속으로 이동 중인 차량(110, 120)들의 데이터 통신을 끊김 없이 구현하기 위해서는 핸드오버(hand over)와 같은 난이도 높은 제작 기술이 요구될 수 있다.
기존의 차량통신 기술 중 하나인 WAVE(Wireless Access in Vehicular Environment)는 대략 27Mbps 수준의 최대 전송속도를 가지며 긴급 상황 발생 시 정보를 전달하는 V2I 서비스를 제공할 수 있다.
하지만 자율주행과 협력주행과 같은 주행 서비스를 제공하는 데에는 한계가 있으며, 동영상 전송이 가능할 정도의 고속 데이터 통신과 실시간 제어를 위한 매우 빠른 응답속도가 요구되고 있다.
이에 따라, 고속의 데이터 통신을 끊김 없이 저렴한 비용으로 가능하게 하기 위한 새로운 표준의 차량통신 기술의 개발이 요구되고 있다.
본 발명의 실시예는 기존의 차량통신('WAVE 통신') 대비 최소 4배 이상의 100Mbps급 고속 데이터 통신을 가능하게 하고 이미 구축된 이동통신망과 연동하여 저렴한 망 구축 비용으로 끊임 없는 데이터 통신을 지원하여, 자율주행과 협력주행과 같은 주행 서비스를 기존의 차량통신 방식과의 호환성을 유지하면서 제공할 수 있도록 하는 것을 목적으로 한다.
또한, 본 발명의 실시예는 데이터 신호의 송수신 시 사용하는 서비스 채널을 복수로 설정하여 n×n MIMO 방식으로 차량용 기지국과 데이터 통신 함으로써, 고속의 차량통신 서비스를 제공하는 것을 목적으로 한다.
또한, 본 발명의 실시예는 기존 차량통신('WAVE 통신')의 프로토콜에서 MAC 구조에 포함되는 High MAC 모듈을 수정 함으로써, 기존의 차량통신 방식과의 호환성을 유지하면서, 송수신 지연(Latency)을 개선하는 것을 목적으로 한다.
또한, 본 발명의 실시예는 도로 주변의 차량용 기지국에 의해 송출되는 신호가 검출되지 않을 경우 이동통신망과 연동하여 차량통신 서비스를 제공 함으로써, 전국 어디에서든 차량통신 서비스를 끊김 없이 제공하여 통신 품질을 높이고, 차량용 기지국의 설치 비용을 절감하는 것을 목적으로 한다.
또한, 본 발명의 실시예는 끊김 없는 고속의 차량통신을 지원하여, 자율주행과 협력주행과 같은 주행 서비스를 제공하는 것을 목적으로 한다.
또한, 본 발명의 실시예는 이동통신망을 통한 차량통신 서비스의 대기/종료 시, 이동통신망과의 접속 상태를 유지한 유휴 모드로 전환 함으로써, 이동통신망에의 최초 접속 이후의 단절과 재접속 과정을 생략하여, 차량통신과 이동통신망 간의 절체 시간을 최소화 하는 것을 목적으로 한다.
본 발명의 일실시예에 따른 차량통신 서비스 제공 방법은, 차량으로부터 서비스 요청이 입력 됨에 따라, 차량으로부터 선정된 범위 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출하는 단계와, 상기 신호의 검출에 따라, 구비된 차량통신 모듈을 동작시켜, 제1 차량용 기지국과 접속하는 단계, 및 접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 제1 차량용 기지국으로부터 서비스 서버에 의해 전송되는 데이터 신호를 수신하여, 상기 서비스 요청에 대한 응답으로 차량에 제공하는 단계를 포함한다.
또한, 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말은, 차량으로부터 서비스 요청이 입력 됨에 따라, 상기 차량으로부터 선정된 범위 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출하는 검출부와, 상기 신호의 검출에 따라, 구비된 차량통신 모듈을 동작시켜, 상기 제1 차량용 기지국과 접속하는 접속부, 및 접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 서비스 서버에 의해 전송되는 데이터 신호를 상기 제1 차량용 기지국으로부터 수신하여, 상기 서비스 요청에 대한 응답으로 상기 차량에 제공하는 처리부를 포함한다.
본 발명의 실시예에 따르면, 고속의 차량통신 기술과 이동통신 기술을 연동하여, 차세대 지능형 교통시스템(ITS)에 적용되는 기본적인 정보 외에 자율주행, 협력주행과 같은 다양한 응용 서비스를 용이하게 차량에 제공할 수 있다.
또한, 본 발명의 실시예에 따르면, 기존 차량통신('WAVE')과의 높은 호환성으로 기존 차량용 기지국(제2 차량용 기지국)을 재사용할 수 있고, 이동통신망과 연동에 의해 이미 구축된 이동통신 기지국을 사용할 수 있어, 새로운 고속의 차량통신('WAVE+')을 위한 기지국의 설치를 최소한으로 할 수 있으며 망 구축 비용이 절감되고 서비스 품질을 높일 수 있다.
도 1은 종래의 일실시예에 따른 차량 단말을 이용한 V2V 서비스 및 V2I 서비스의 제공 과정을 도시한 도면이다.
도 2a는 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말을 이용한 차량통신 서비스 제공 과정을 도시한 도면이다.
도 2b는, 도 2a에 도시된 차량통신 서비스 제공 단말의 내부에 포함되는 통신 모듈의 구조를 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말의 내부 구성을 도시한 블록도이다.
도 4는 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말에서, 복수의 서비스 채널의 배치 일례를 도시한 도면이다.
도 5a는 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말에서, n×n MIMO 방식의 데이터 통신을 위한 물리 계층(PHY)의 구조를 도시한 도면이다.
도 5b는, 도 5a에 도시된 n×n MIMO 방식의 데이터 통신에 맞춰, MAC 구조에 포함되는 High MAC 모듈을 수정하는 일례를 도시한 도면이다.
도 6은 본 발명의 일실시예에 따른 차량통신 서비스 제공 방법의 순서를 도시한 흐름도이다.
도 7은 본 발명의 다른 실시예에 따른 차량통신 서비스 제공 방법의 순서를 도시한 흐름도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 일실시예에 따른 응용프로그램 업데이트 장치 및 방법에 대해 상세히 설명한다. 그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 2a는 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말을 이용한 차량통신 서비스 제공 과정을 도시한 도면이고, 도 2b는, 도 2a에 도시된 차량통신 서비스 제공 단말의 내부에 포함되는 통신 모듈의 구조를 도시한 도면이다.
도 2a를 참조하면, 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말은, 도로를 주행하는 차량(210, 220)에 각각 장착되어, 각 차량으로부터 요청되는 차량통신 서비스(V2I 서비스, V2V 서비스)를 제공하는 도 2b의 V2X 단말(230, 240)에 의해 구현될 수 있다.
도 2b를 참조하면, V2X 단말(230, 240)은, 대용량의 차량통신을 수행하는 차량통신 모듈(WAVE+)(231, 241)과, 이동통신 모듈(LTE)(232, 242)이 결합된 구조로, 도 7에 예시된 순서에 따라 최적의 차량통신 네트워크 접속을 수행할 수 있다.
V2X 단말(230)은, 상대적으로 대용량의 데이터 신호를 고속으로 전송이 가능한 차량통신 모듈(WAVE+)(231)을 우선적으로 이용하되, 전국에 설치되어 있는 다수의 이동통신 기지국을 기반으로 끊김 없는 데이터 신호의 전송이 가능한 이동통신 모듈(LTE)(232)을 상호 보완해 이용하여 V2I 서비스를 제공할 수 있다.
구체적으로, V2X 단말(230)은, 차량(210)으로부터 자율주행 또는 협력주행과 연관된 주행 서비스 요청이 입력 됨에 따라, 차량통신 모듈(WAVE+)(231)을 동작시켜, 차량용 기지국(201)에 의해 송출되는 신호를 검출하여 차량용 기지국(201)과 접속하고, 예컨대 차세대 지능형 교통시스템(ITS)에 의해 운영되는 서비스 서버로부터의 데이터 신호를, 차량용 기지국(201)으로부터, n개(상기 n은 1 이상 6 이하의 자연수)의 서비스 채널을 통해 수신하여 차량(210)에 제공할 수 있다.
즉, V2X 단말(230)은 자율주행 또는 협력주행을 위해 필요한, 도로의 전체 교통정보와, 위험 지역 안내, 긴급 차량의 근접 정보, 주의 지역 안내 및 원거리로 이격된 다른 차량이 수집한 동영상, 및 도로 변의 CCTV 촬영 영상 중 적어도 하나와 연관된 데이터 신호를, 차량과 기지국 간의 차량통신(V2I)에 의해 제공할 수 있다.
이때, V2X 단말(230)은, 차량(210)으로부터 일정 거리 이내에 위치한 차량용 기지국(201)이 없어 차량용 기지국(201)에 의해 송출되는 신호가 검출되지 않으면, 이동통신 모듈(LTE)(232)을 동작시켜, 이동통신 기지국(202)에 의해 송출되는 이동통신 신호(예, 'LTE 신호')를 검출하여 이동통신 기지국(202)과 접속하고, 이동통신 기지국(202)으로부터, 상기 서비스 서버로부터의 데이터 신호를, 수신하여 차량(210)에 제공할 수 있다.
또한, V2X 단말(230)은, 이동통신 기지국(202)과의 접속 상태를 유지한 상태에서, 차량용 기지국(201)에 의해 송출되는 신호가 기준치 이상 검출되면 차량용 기지국(201)으로부터 상기 데이터 신호를 수신하고, 차량용 기지국(201)에 의해 송출되는 신호가 검출되지 않거나 신호의 수신 세기가 약하면, 이동통신 기지국(202)으로부터 상기 데이터 신호를 수신할 수도 있다.
즉, V2X 단말(230)은 차량통신 모듈(WAVE+)(231)과 이동통신 모듈(232)을 병용하여 도로 변의 차량용 기지국(201)과 이동통신 기지국(202)에 동시에 접속해 보다 질 높은 V2I 서비스를 제공할 수도 있다.
또한, V2X 단말(230)은 상기 주행 서비스 요청의 입력에 연동하여, 차량통신 모듈(WAVE+)(231)을 동작시켜, 차량(210)에 후행하는 인접 차량(220)에 설치된 V2X 단말(240) 내 차량통신 모듈(WAVE+)(241)과 접속하고, 각 차량통신 모듈(WAVE+)(231, 241) 간의 차량통신(V2V)을 통해, 자율주행 또는 협력주행 시 필요한, 선행 차량의 급정거, 선행 차량으로 인해 가려진 시야로 볼 수 없는 교통상황, 선행 차량 및 후행 차량 운전자의 졸음과 같은 운전 상태 감지, 및 전 후방 차량이 촬영하는 동영상 정보 중 적어도 하나와 연관된 데이터 신호를 획득하여 차량(210)에 제공할 수 있다.
이와 같이, 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말은, 기존의 저속의 차량통신(예컨대 'WAVE') 대비 높은 데이터 전송량을 가지면서도 고속 데이터 통신은 LTE 와 같은 고속 데이터 통신이 가능한 이동통신망과 연동 가능하므로, 교통량이 많아 차량통신 정보 전달량이 많은 지역에서는 차량통신망(WAVE+ 망)을 이용하고, 교통량이 적은 지역에서는 이동통신망(LTE 망)을 이용하여 차량통신 서비스를 제공할 수 있다.
또한, 차량통신 서비스 제공 단말은, 차량통신 모듈(WAVE+)과 이동통신 모듈로 구성되고, 차량통신 모듈(WAVE+)을 통해서는, 다른 차량에 장착된 차량통신 모듈(WAVE+)과 연결되어 V2V 서비스(차량 간 서비스)를 제공하면서, 차량용 기지국과 접속되어 V2I 서비스(차량과 기지국 간 서비스)를 제공하고, 동시에 이동통신 모듈을 통해 이동통신 기지국과 접속되어 V2I 서비스를 제공 함으로써, 차세대 지능형 교통시스템(ITS)과 협력주행 및 자율주행을 위한 통신 서비스에 적용될 수 있다.
또한, 차량통신 서비스 제공 단말은, 기존의 차량통신(WAVE) 대비 최소 4배 이상의 100Mbps 급 고속 데이터 통신이 가능한 차량통신(WAVE+)과, 넓은 커버리지와 다수의 단말이 접속 가능한 기존의 이동통신을 결합하여, 차량통신 만을 위한 고가의 기지국 구축 비용을 절감하고 기존의 상용 이동통신망을 최대한 활용하여 고속의 끊김 없는 차량통신 서비스를 제공할 수 있다.
도 3은 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말의 내부 구성을 도시한 블록도이다.
도 3을 참조하면, 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말(300)은, 검출부(310), 접속부(320), 설정부(330), 처리부(340) 및 통신 모듈(350)를 포함하여 구성할 수 있다.
또한, 차량통신 서비스 제공 단말(300)은 도로 변의 이종의 기지국과의 데이터 통신을 동시에 수행할 수 있도록, 통신 모듈(350)을 포함하여 구성할 수 있다. 통신 모듈(350)은 차량통신 모듈(351)과 이동통신 모듈(352)이 결합된 구조로 구성될 수 있다.
검출부(310)는 차량으로부터 서비스 요청이 입력 됨에 따라, 상기 차량으로부터 선정된 범위(예, '20m') 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출한다.
일례로, 검출부(310)는 도로를 주행 중인 차량으로부터, 자율주행 및 협력주행 중 적어도 하나의 주행에 관련되는 서비스 요청이 입력될 경우, 상기 주행 시 필요한 정보를 획득하기 위해 서비스 서버('차세대 지능형 교통시스템(ITS)')로 통신 서비스를 시도할 수 있다.
검출부(310)는 상대적으로 대용량의 데이터 신호를 고속으로 전송 가능한 차량통신('WAVE+')을 먼저 시도하기 위해, 제1 차량용 기지국으로부터 송출되는 일정 세기 이상의 신호를 검출하여, 차량통신('WAVE+')이 가능한 제1 차량용 기지국을 검색할 수 있다.
접속부(320)는 상기 신호의 검출에 따라, 구비된 차량통신 모듈(351)을 동작시켜, 상기 제1 차량용 기지국과 접속한다. 일례로, 접속부(320)는 선정된 광대역 주파수('5GHz 대역')를 사용하여 상기 제1 차량용 기지국과 접속할 수 있다.
설정부(330)는 상기 접속되는 제1 차량용 기지국과의 사이에, 데이터 신호의 송수신을 위한 복수의 서비스 채널을 설정한다.
설정부(330)는 선정된 광대역 주파수(예, '5GHz' 대역)를 사용하여 제1 차량용 기지국과 접속됨에 따라, 광대역 주파수 상에 n개(상기 n은 1 이상 6 이하의 자연수)의 서비스 채널을 설정하여 각 서비스 채널에 대한 대역폭을 확장해 데이터 통신 속도를 높일 수 있다.
설정부(330)는 동시 사용 가능한 n개의 서비스 채널을 설정하여 n×n MIMO(Multiple Input Multiple Output) 방식으로 데이터 신호의 송수신이 가능해지도록 할 수 있다.
일례로, 설정부(330)는 기존의 WAVE 차량통신과 동일한 구조로 각 서비스 채널을 배치하여 기존 WAVE 차량통신을 위해 기 설치되어 있는 제2 차량용 기지국과의 접속 호환성을 유지하고, 서비스 채널과 컨트롤 채널을 TDM 방식으로 사용하여 컨트롤 채널과 서비스 채널로 동시 사용을 불가능하게 설정할 수 있다.
구체적으로, 설정부(330)는 상기 광대역 주파수 상에 n개(상기 n은 1 이상 6 이하의 자연수)의 서비스 채널을 설정하고, 제1 차량용 기지국과 제어 신호를 송수신하기 위한 컨트롤 채널을, n개의 서비스 채널이 설정된 광대역 주파수 상의 가운데 부근에 해당하는 중앙 영역에 배치할 수 있다. 여기서, 제어 신호는 제1 차량용 기지국에서 각 차량에 장착된 차량통신 서비스 제공 단말(300)을 제어 및 관리하기 위한 신호일 수 있다.
예를 들어, 설정부(330)는, 도 4에 도시된 광대역 주파수('5.855 GHz' 내지 '5.925GHz') 상의 각 영역(410 내지 460)에, 최대 6개의 서비스 채널('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182' 및 'Ch184')을 각각 설정하고, 서비스 채널이 점유하지 않는 광대역 주파수 상의 중앙 영역(470)에, 컨트롤 채널('Ch 178')을 배치할 수 있다.
이에 따라, 후술하는 처리부(340)에서는, 제공하려는 서비스 용량에 따라, 최대 6개의 서비스 채널('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182' 및 'Ch184')(410 내지 460)을 가변적으로, 예컨대 2개, 3개, 4개 또는 5개를 동시에 사용하여, 제1 차량용 기지국과 데이터 신호를 송수신할 수 있다.
예를 들어, 처리부(340)는 서비스 용량이 작을 경우, 설정된 6개의 서비스 채널('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182' 및 'Ch184')(410 내지 460) 중 어느 하나의 채널(예컨대, 410)을 선택하여 상기 데이터 신호를 송수신 함으로써 서비스를 제공할 수 있다.
또한, 처리부(340)는 서비스 용량의 크기에 따라, 설정된 6개의 서비스 채널 중 2개의 서비스 채널(예컨대, 410+420, 420+430, 440+450 또는 450+460)을 결합하고, 결합한 채널을 동시에 사용하여 상기 데이터 신호를 송수신할 수도 있다.
또한, 처리부(340)는 서비스 용량의 크기에 따라, 설정된 6개의 서비스 채널 중 3개의 서비스 채널(예컨대, 410+420+430 또는 440+450+460)을 결합하고, 결합한 채널을 동시에 사용하여 상기 데이터 신호를 송수신할 수도 있다.
또한, 처리부(340)는 서비스 용량의 크기에 따라, 설정된 6개의 서비스 채널 중 4개의 서비스 채널(예컨대, 410+420+430+440 또는 430+440+450+460)을 결합하고, 결합한 채널을 동시에 사용하여 상기 데이터 신호를 송수신할 수도 있다.
또한, 처리부(340)는 서비스 용량의 크기에 따라, 설정된 6개의 서비스 채널 중 5개의 서비스 채널(예컨대, 410+420+430+440+450 또는 420+430+440+450+460)을 결합하고, 결합한 채널을 동시에 사용하여 상기 데이터 신호를 송수신할 수도 있다.
또한, 처리부(340)는 제공하려는 서비스가 동영상 서비스와 같이 용량이 큰 경우, 설정된 6개의 서비스 채널(410+420+430+440+450+460)을 결합하고, 결합한 채널을 동시에 사용하여 상기 데이터 신호를 송수신할 수도 있다.
이때, 처리부(340)는 서비스 채널과 컨트롤 채널을 시분할 방식으로 사용하게 되며, 서비스 채널을 통한 데이터 신호의 송수신 중에는, 컨트롤 채널을 통한 제어 신호의 송수신을 중단하여 신호 간의 간섭을 방지할 수 있다.
이를 이용하여, 처리부(340)는 서비스 채널을 통한 데이터 신호의 수신 시, 제어 신호의 송수신에 사용되지 않는 컨트롤 채널('Ch 178')을 데이터 신호의 수신에 더 사용할 수도 있다. 이 경우, 처리부(340)는 총 7개의 채널을 동시 사용하여 제1 차량용 기지국으로부터 데이터 신호를 더욱 빠르게 수신할 수 있다.
다른 일례로, 설정부(330)는 상기 컨트롤 채널을, 복수의 서비스 채널이 설정된 영역 중 적어도 하나에 재배치하고, 상기 중앙 영역을, 신규의 서비스 채널로서 설정할 수도 있다.
예를 들어, 설정부(330)는, 도 4에 도시된 광대역 주파수('5.855 GHz' 내지 '5.925GHz') 상에서 양 끝의 영역(410, 460)에 해당하는 'Ch 172' 또는 'Ch 184'에 컨트롤 채널을 배치하는 대신에, 중앙 영역(470)에 해당하는 'Ch 178'을 서비스 채널로 설정할 수도 있다.
이 경우, 컨트롤 채널의 실시간 이용이 가능해지며, 연속되는 복수 채널의 결합을 통해 서비스 채널의 사용이 가능해진다. 즉, 처리부(340)는, 각 서비스 채널을 통한 데이터 신호의 송수신과 컨트롤 채널을 통한 제어 신호의 송수신을 동시에 수행할 수 있다.
설정부(330)는 n×n MIMO 방식에 따른 데이터 신호의 수신이 가능해지도록, n개의 서비스 채널 중 어느 하나의 서비스 채널을 사용 가능한, 선정된 기존의 차량통신 프로토콜(예, WAVE 통신) 상의 MAC 구조에 포함되는 High MAC 모듈을 수정하여, MAC 계층에서 송수신 지연을 최소화 할 수 있다.
설정부(330)는 기존의 WAVE 통신 프로토콜의 물리 계층(PHY)과 MAC 구조를 n개의 서비스 채널을 동시에 사용 가능하도록 변경하여, 상기 n×n MIMO 방식에 따른 상기 데이터 신호의 수신이 가능해지도록 할 수 있다.
예를 들어, 도 5a 및 도 5b를 참조하면, 설정부(330)는 본 발명에 따른 차량통신(WAVE+) 프로토콜의 물리 계층(PHY)의 구조를, Low Mac Block(510), MIMO Modem Block(520) 및 4×4 MIMO 방식의 데이터 신호를 송수신 가능한 RF Block(530)을 포함하여 구현하고, 4×4 MIMO 방식의 데이터 신호를 송수신 가능한 High MAC 모듈(540)을 포함하여 MAC 계층을 구현할 수 있다.
다시 말해, 설정부(330)는 기존 차량통신 네트워크(WAVE)와의 접속 호환성을 갖게 하기 위하여 WAVE 표준을 준수하되, 물리 계층(Physical Layer, PHY)에서는 기존 WAVE의 단일의 서비스 채널을 6개로 구성 하거나, 4×4 MIMO 방식으로 구성 또는 6개 서비스 채널을 4×4 MIMO 구성이 되도록 하여 기존 WAVE 통신 기술 대비 최대 24배의 속도로 데이터 신호가 송수신 되도록 하고, MAC 계층에서는 이러한 4×4 MIMO 방식 및 6개 서비스 채널 구성에 맞게 기능을 구현하는 동시에 High MAC을 수정 함으로써, 기존 WAVE 통신 기술 대비 송수신 지연(Latency)을 대략 10msec 이내가 되도록 하여 서비스 제공 속도를 개선할 수 있다.
즉, 설정부(330)는 4×4 MIMO 방식에서 주파수 할당에서 1개 채널만 사용하고, 4개 서비스 채널 구성은 4개 채널을 사용하도록 배치하고, 6개 서비스 채널 구성은 6개 채널을 모두 사용하도록 구성할 수 있다.
처리부(340)는 접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 서비스 서버에 의해 전송되는 데이터 신호를 상기 제1 차량용 기지국으로부터 수신하여, 상기 서비스 요청에 대한 응답으로 상기 차량에 제공한다.
일례로, 설정부(330)에 의해 상기 제1 차량용 기지국과의 사이에 n개의 서비스 채널이 설정되면, 처리부(340)는 상기 n개의 서비스 채널을 함께 사용하는 n×n MIMO(Multiple Input Multiple Output) 방식으로, 상기 제1 차량용 기지국으로부터 상기 데이터 신호를 수신하여 상기 차량에 제공할 수 있다.
이 경우, 처리부(340)는 n개의 서비스 채널 중 하나의 서비스 채널을 사용하는 제2 차량용 기지국으로부터 상기 데이터 신호를 수신하는 통신 속도에 비해, 적어도 n배 이상의 통신 속도로 상기 제1 차량용 기지국으로부터 상기 데이터 신호를 수신하여 상기 차량에 제공할 수 있다.
다시 말해, 처리부(340)는 n개의 서비스 채널을 동시에 이용하는 제1 차량용 기지국을 통한 차량통신(WAVE+)을 이용 시, n개의 서비스 채널 중 어느 하나의 서비스 채널을 사용 가능한 기존의 제2 차량용 기지국을 통한 차량통신(WAVE) 보다, 최소 n배 이상 빠른 속도로 상기 데이터 신호를 수신하여 차량에 제공할 수 있다.
예컨대, 처리부(340)는 도 4에 도시된 6개의 서비스 채널 중 하나의 서비스 채널을 사용하는 기존의 WAVE 통신을 통해 10MHz 대역폭에서 최대 27 Mbps 통신 속도로 송수신되는 데이터 신호를, 4×4 MIMO 방식 또는 최대 6개의 서비스 채널을 함께 사용하여 최소 4배 이상의 대략 100 Mbps의 속도로 송수신 할 수 있다.
이와 같이, 본 명세서에서는 동시에 사용 가능한 서비스 채널의 수에 비례하여 데이터 신호의 송수신 속도가 보다 고속으로 결정될 수 있다. 즉, 검출부(310)에 의해, 서로 다른 수의 서비스 채널을 사용하는 복수의 차량용 기지국으로부터 상기 신호가 각각 검출될 경우, 접속부(320)는 더 많은 수의 서비스 채널을 사용하는 차량용 기지국에 우선적으로 접속을 요청하고, 처리부(340)는 채널 수에 비례하는 빠른 속도로 데이터 신호를 수신할 수 있게 된다.
일례로, 설정부(330)에 의해, 상기 제1 차량용 기지국과 제어 신호를 송수신하기 위한 컨트롤 채널이, 상기 복수의 서비스 채널이 설정된 광대역 주파수 상의 가운데 부근에 해당하는 중앙 영역에 배치될 경우, 처리부(340)는, 상기 복수의 서비스 채널을 사용하여 상기 데이터 신호를 수신하는 동안, 상기 컨트롤 채널을 통한 상기 제어 신호의 송수신을 중단하는 동시에, 상기 컨트롤 채널을 서비스 채널로서 더 사용하여 상기 데이터 신호를 수신할 수 있다.
이 경우, 접속에 사용된 광대역 주파수 상의 모든 채널이 서비스 채널로 할당되므로, 처리부(340)는 데이터 신호와 제어 신호 간의 채널 간의 간섭을 방지할 수 있고, 6개의 서비스 채널과 1개의 컨트롤 채널을 합한 7개의 채널을 동시에 사용하여 더욱 빠른 속도로 제1 차량용 기지국으로부터 데이터 신호를 수신할 수 있게 된다.
다른 일례로, 설정부(330)에 의해, 상기 컨트롤 채널이, 복수의 서비스 채널이 설정된 영역 중 적어도 하나에 재배치되고, 상기 중앙 영역이, 신규의 서비스 채널로서 설정될 경우, 처리부(340)는 신규의 서비스 채널을 더 포함하는 복수의 서비스 채널을 사용하여 상기 데이터 신호를 수신할 수 있고, 상기 데이터 신호의 수신 동안, 상기 재배치된 컨트롤 채널을 통한 상기 제어 신호의 송수신을 허용할 수 있다.
예를 들어, 도 4를 참조하면, 처리부(340)는 접속에 사용된 광대역 주파수 상의 양 끝 영역(410, 460)의 'Ch 172' 또는 'Ch 184'을, 컨트롤 채널로 사용하고, 가운데 부근에 해당하는 중앙 영역(450)의 'Ch 178'을, 서비스 채널로 사용하는 경우에는, 최대 6개의 서비스 채널을 동시에 사용하여 데이터 신호를 송수신하게 되며, 컨트롤 채널을 실시간으로 계속 사용할 수 있어 제1 차량용 기지국의 차량용 단말 관리가 보다 용이해질 수 있다.
상술과 같이 본 발명의 차량통신 서비스 제공 단말(300)은 자율주행이나 협력주행을 위해 필요한 정보를 고속의 대용량 차량통신(WAVE+)을 통해 서비스 서버로부터 빠르게 수신하여 차량에 제공할 수 있으며, 고속의 대용량 차량통신(WAVE+)이 어려운 경우에는 차선으로 기존의 저속의 차량통신(WAVE)이나 이동통신망을 통해 수신하여 제공할 수 있다.
이동통신망을 연동하는 일실시예로, 검출부(310)는 일정 시간 이내에, 상기 제1 차량용 기지국 신호로부터의 신호가 검출되지 않는 경우, 선정된 범위 내의 이동통신 기지국으로부터 수신되는 이동통신 신호를 검출할 수 있다.
여기서, 상기 이동통신 기지국은, LTE 기지국, WCDMA 기지국 및 GSM 기지국 중 적어도 하나이고, 검출부(310)는 상기 LTE 기지국에 의해 송출되는 이동통신 신호가 검출되지 않으면, 상기 WCDMA 기지국 또는 상기 GSM 기지국에 의해 송출되는 이동통신 신호를 검출할 수 있다.
다시 말해, 검출부(310)는 대용량의 고속 차량통신(WAVE+)을 통한 데이터 신호 수신을 위해 제1 차량용 기지국 신호로부터의 신호를 검출하되, 검출되지 않으면 차선으로 이동통신 신호(LTE 신호)를 검출하고, 접속 가능한 고속의 LTE 망이 없을 경우에는 차선으로 저속의 WCDMA 기지국이나 GSM 기지국으로부터의 이동통신 신호를 순차적으로 검출할 수 있다.
접속부(320)는 상기 이동통신 신호의 검출에 따라, 구비된 이동통신 모듈을 동작시켜, 상기 이동통신 기지국과 접속하고, 처리부(340)는 상기 데이터 신호를, 상기 이동통신 기지국으로부터 수신하여, 상기 차량에 제공할 수 있다.
이때, 접속부(320)는 상기 이동통신 기지국과 최초로 한 번만 접속을 시도하고, 이후에는 데이터 신호의 수신이 종료되거나 중단되더라도 접속 상태를 유지하는 유휴 모드(idle mode), 접속 해제와 재접속에 따른 절체 시간을 최소화 할 수 있다.
검출부(310)에 의해, 상기 이동통신 기지국을 통한 상기 데이터 신호의 수신 중에, 상기 제1 차량용 기지국으로부터의 상기 신호가 검출되는 경우, 처리부(340)는 상기 이동통신 기지국으로부터의 상기 데이터 신호의 수신을 중지하고, 상기 이동통신 모듈을, 상기 이동통신 기지국과의 접속 상태를 유지하는 유휴 모드로 모드 전환하고, 상기 차량통신 모듈을 통해 접속되는 상기 제1 차량용 기지국으로부터, 상기 데이터 신호를 이어서 수신하여 상기 차량에 제공할 수 있다.
즉, 처리부(340)는 데이터 신호의 수신 중에도, 검출부(310)를 통해 차량 주위의 기지국 신호를 모니터링하여, 보다 고용량의 고속 데이터 전송이 가능한 망이 새롭게 확인될 경우에는, 해당 망으로 전환하여 데이터 신호를 송수신 할 수 있다.
이때, 처리부(340)는 상기 제1 차량용 기지국과의 접속이 해제되는 경우, 상기 이동통신 모듈을, 상기 유휴 모드에서 활성 모드로 모드 전환하여, 상기 이동통신 기지국을 통한 상기 데이터 신호의 수신을 재개할 수 있다.
즉, 처리부(340)는 이동통신망에 최초 접속한 이후에는 접속부(320)를 통해 이동통신 기지국으로 재접속을 시도할 필요 없이, 유휴 모드의 이동통신 모듈(352)을 동작시켜 활성 모드(active mode)로 모드 전환하는 것 만으로, 이종 통신망 간의 절체를 빠르게 진행할 수 있으며, 차량통신망을 통해 수신 중이던 데이터 신호를, 이동통신 망을 통해 끊김 없이 이어서 수신할 수 있게 된다.
기존의 저속의 차량통신을 이용하는 실시예로, 접속부(320)는, 검출부(310)에 의해 검출되는 신호가, 상기 n개의 서비스 채널을 함께 사용하는 제1 차량용 기지국 신호로부터의 상기 신호가 아니라, 상기 n개의 서비스 채널 중 어느 하나의 서비스 채널을 사용하는 제2 차량용 기지국으로부터의 송출 신호인 경우, 상기 이동통신 신호가 검출되더라도, 상기 제2 차량용 기지국과 접속을 시도할 수 있다.
다시 말해, 처리부(340)는 이동통신망 보다는 저속이더라도 대용량의 데이터 전송이 가능한 기존의 차량통신(WAVE)을 우선 이용해서 데이터 신호를 수신할 수 있으며, 접속 가능한 제2 차량용 기지국도 없을 경우에, 이동통신망을 연동하여 상기 데이터 신호를 수신할 수 있다.
검출부(310)는 상기 차량으로부터 선정된 범위 내에서 검출되는 기지국 신호에 근거하여, 통신 방식을, 차량통신(WAVE+, WAVE) 및 이동통신 중 어느 하나로 결정할 수 있으며, 접속부(320)는 결정된 통신 방식에 상응하여, 차량통신 모듈(351) 또는 이동통신 모듈(352)을 동작시켜, 상기 기지국 신호를 송출한 기지국과 접속하고, 상기 기지국을 경유해 상위망에 접속하여 서비스 서버('교통센터')와 접속할 수 있고, 처리부(340)는 상기 서비스 서버에 의해 전송되는 데이터 신호를 상기 차량에 제공할 수 있다.
처리부(340)는 자율주행 및 협력주행 중 적어도 하나의 주행에 관련되는 서비스가 요청될 경우, 차량과 기지국 간의 V2I 통신을 통해 주행 시 필요한 정보를 서비스 서버로부터 수집함과 동시에, 인접 차량과의 V2V 통신을 실시하여 V2I 통신을 통해 얻을 수 없는 정보를 더 수집하여 자율주행 및 협력주행을 보다 세밀하고 안전하게 수행 가능하도록 할 수 있다.
구체적으로, 처리부(340)는 상기 서비스 요청이, 자율주행 및 협력주행 중 적어도 하나의 주행에 관련되는 경우, 상기 주행 시 필요한, 상기 차량의 위치 정보, 도로 상황 정보, 날씨 정보, 경로 정보, 교통 정보 및 안전 정보 중 적어도 하나에 관련된 데이터 신호를, 차량통신 모듈(351)을 통해 접속된 상기 제1 차량용 기지국을 통해, 차세대 지능형 교통시스템(ITS)으로부터 수신하여, 상기 차량에 제공할 수 있다.
예를 들어, 처리부(340)는 원거리 이격된 다른 차량이 촬영한 블랙박스 영상이나 도로 변의 CCTV 촬영 영상에 관한 고용량의 데이터 신호를 빠르고 끊김 없이 수신하여, 차량의 안전한 자율주행/협력주행 서비스 제공을 위해 활용할 수 있다.
또한, 상기 서비스 요청이, '자율주행'과 관련되는 경우, 접속부(320)는 차량통신 모듈(351)을 통해 상기 차량과 인접한 인접 차량에 구비된 타겟 차량통신 모듈과 접속하고, 처리부(340)는 상기 타겟 차량통신 모듈과의 데이터 통신을 통해, 상기 차량과 상기 인접 차량 간의 이격 거리를 측정하고, 상기 이격 거리를 근거로 차량 추돌 위험을 판단하여, 상기 차량 추돌 위험을 경고하는 데이터 신호를, 상기 차량 및 상기 인접 차량에 제공할 수 있다.
즉, 처리부(340)는 인접 차량의 움직임에 관한 데이터 신호의 수신을 통해 해당 차량 운전자의 졸음 운전 상태를 감지하여 자율주행/협력주행 시 반영할 수 있다. 또한, 처리부(340)는 인접 차량이 촬영한 블랙박스 영상을 데이터 신호로서 수집하여 자율주행/협력주행 서비스 제공 시 활용할 수 있다.
또한, 상기 서비스 요청이, 상기 차량과 동일 그룹으로 지정된 적어도 하나의 인접 차량과의 '협력주행'과 관련되는 경우, 접속부(320)는 차량통신 모듈(351)을 통해 상기 동일 그룹 내의 각 인접 차량에 구비된 타겟 차량통신 모듈과 접속하고, 처리부(340)는 상기 타겟 차량통신 모듈과의 데이터 통신을 통해, 상기 차량으로부터의 입력 메시지를 데이터 신호로서 상기 각 인접 차량에 전송하거나, 또는 상기 각 인접 차량으로부터의 입력 메시지를 데이터 신호로서 상기 차량에 제공할 수 있다.
예컨대, 처리부(340)는 상기 차량과 협력주행을 실시하는 인접 차량과의 음성, 영상, 텍스트를 통한 메시지 교환을 통해 그룹 통신 서비스를 제공하여 차량 간의 협력주행이 보다 용이하게 수행되도록 할 수 있다.
또한, 처리부(340)는 제1 및 제2 차량용 기지국 및 이동통신 기지국 중 적어도 하나의 기지국과의 접속 이후에도 해당 기지국과의 접속 상태를 주기적으로 확인하고, 해당 기지국과의 접속이 유지되는 동안, 데이터 신호를 수신하여 상기 차량에 제공할 수 있다.
이와 같이, 본 발명의 실시예에 따르면, 고속의 차량통신 기술과 이동통신 기술을 연동하여, 차세대 지능형 교통시스템(ITS)에 적용되는 기본적인 정보 외에 자율주행, 협력주행과 같은 다양한 응용 서비스를 용이하게 차량에 제공할 수 있다.
또한, 본 발명의 실시예에 따르면, 기존 차량통신('WAVE')과의 높은 호환성으로 기존 차량용 기지국(제2 차량용 기지국)을 재사용할 수 있고, 이동통신망과 연동에 의해 이미 구축된 이동통신 기지국을 사용할 수 있어, 새로운 고속의 차량통신('WAVE+')을 위한 기지국의 설치를 최소한으로 할 수 있으며 망 구축 비용이 절감되고 서비스 품질을 높일 수 있다.
도 4는 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말에서, 복수의 서비스 채널의 배치 일례를 도시한 도면이다.
도 4를 참조하면, 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말은, 고속의 대용량 차량통신을 위해 각 채널들을 선택적으로 수용할 수 있다.
일례로, 차량통신 서비스 제공 단말은, 기존의 WAVE 차량통신과 동일한 구조로 각 서비스 채널을 배치하여 기존 WAVE 차량통신을 위해 기 설치되어 있는 제2 차량용 기지국과의 접속 호환성을 유지하고, 서비스 채널과 컨트롤 채널을 TDM 방식으로 사용하여 컨트롤 채널과 서비스 채널로 동시 사용을 불가능하게 설정할 수 있다.
구체적으로, 차량통신 서비스 제공 단말은, 도 4에 도시된 광대역 주파수('5.855 GHz' 내지 '5.925GHz') 상의 각 영역(410 내지 460)에, 최대 6개의 서비스 채널('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182' 및 'Ch184')을 각각 설정하고, 서비스 채널이 점유하지 않는 광대역 주파수 상의 중앙 영역(470)에, 컨트롤 채널('Ch 178')을 배치할 수 있다.
차량통신 서비스 제공 단말은, 제공하려는 서비스 용량에 따라, 최대 6개의 서비스 채널('Ch 172', 'Ch 174', 'Ch 176', 'Ch 180', 'Ch 182' 및 'Ch184')(410 내지 460)을 가변적으로 동시에 사용하여, 제1 차량용 기지국과 데이터 신호를 송수신할 수 있다.
차량통신 서비스 제공 단말은, 서비스 채널을 통한 데이터 신호의 수신 시, 제어 신호의 송수신에 사용되지 않는 컨트롤 채널('Ch 178')을 데이터 신호의 수신에 더 사용할 수 있으며, 이 경우, 최대 7개의 채널을 동시 사용하여 제1 차량용 기지국으로부터 데이터 신호를 더욱 빠르게 수신할 수도 있다.
다른 일례로, 차량통신 서비스 제공 단말은, 도 4에 도시된 광대역 주파수('5.855 GHz' 내지 '5.925GHz') 상에서 양 끝의 영역(410, 460)에 해당하는 'Ch 172' 또는 'Ch 184'에 컨트롤 채널을 배치하는 대신에, 중앙 영역(470)에 해당하는 'Ch 178'을 서비스 채널로 설정할 수도 있다.
이 경우, 차량통신 서비스 제공 단말은, 서비스 채널을 통한 데이터 신호의 수신 중에도 컨트롤 채널을 통해 제어 신호를 실시간으로 수신할 수 있어, 차량용 기지국에서 다수의 차량용 단말에 대한 관리를 용이하게 수행할 수 있게 된다.
도 5a는 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말에서, n×n MIMO 방식의 데이터 통신을 위한 물리 계층(PHY)의 구조를 도시한 도면이고, 도 5b는, 도 5a에 도시된 n×n MIMO 방식의 데이터 통신에 맞춰, MAC 구조에 포함되는 High MAC 모듈을 수정하는 일례를 도시한 도면이다.
도 5a 및 도 5b를 참조하면, 본 발명의 일실시예에 따른 차량통신 서비스 제공 단말은, 기존 차량통신 방식인 WAVE와의 호환성을 보장하면서 100Mbps 급 이상의 고속 대용량 차량통신을 제공할 수 있고, 동시에 이동통신망과 연동하여 끊김 없는 데이터 통신을 제공할 수 있다.
일례로, 차량통신 서비스 제공 단말은, 본 발명에 따른 차량통신(WAVE+) 프로토콜의 물리 계층(PHY)의 구조를, 도 5a에 도시된 것처럼, Low Mac Block(510), MIMO Modem Block(520) 및 4×4 MIMO 방식의 데이터 신호를 송수신 가능한 RF Block(530)을 포함하여 구현할 수 있으며, 도 5b에 도시된 것처럼, 4×4 MIMO 방식의 데이터 신호를 송수신이 가능하도록 수정된 High MAC 모듈(540)을 포함하여 MAC 계층을 구현할 수 있다.
즉, 차량통신 서비스 제공 단말은, 기존 차량통신 네트워크(WAVE)와의 접속 호환성을 갖게 하기 위하여 WAVE 표준을 준수하되, 물리 계층(Physical Layer, PHY)에서는 기존 WAVE의 단일의 서비스 채널을 6개로 구성 하거나, 4×4 MIMO 방식으로 구성 또는 6개 서비스 채널을 4×4 MIMO 구성이 되도록 하여 기존 WAVE 통신 기술 대비 최대 24배의 속도로 데이터 신호가 송수신 되도록 하고, MAC 계층에서는 이러한 4×4 MIMO 방식 및 6개 서비스 채널 구성에 맞게 기능을 구현하는 동시에 High MAC을 수정 함으로써, 기존 WAVE 통신 기술 대비 송수신 지연(Latency)을 대략 10msec 이내가 되도록 하여 서비스 제공 속도를 개선할 수 있다.
이하, 도 6 내지 도 7에서는 본 발명의 실시예들에 따른 차량통신 서비스 제공 단말(300)의 작업 흐름을 상세히 설명한다.
도 6은 본 발명의 일실시예에 따른 차량통신 서비스 제공 방법의 순서를 도시한 흐름도이다.
본 실시예에 따른 차량통신 서비스 제공 방법은 상술한 차량통신 서비스 제공 단말(300)에 의해 수행될 수 있다.
도 6을 참조하면, 단계(610)에서, 차량통신 서비스 제공 단말(300)은, 차량으로부터 서비스 요청이 입력되는지 확인한다.
예를 들어, 차량통신 서비스 제공 단말(300)은, 도로를 주행 중인 차량으로부터, 자율주행 및 협력주행 중 적어도 하나의 주행에 관련되는 서비스 요청이 입력되는지 확인할 수 있다.
단계(610)에서 자율주행/협력주행과 같은 주행 서비스 요청이 입력되는 경우, 단계(620)에서, 차량통신 서비스 제공 단말(300)은, 상기 차량으로부터 선정된 범위 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출한다.
차량통신 서비스 제공 단말(300)은 상대적으로 대용량의 데이터 신호를 고속으로 전송 가능한 차량통신('WAVE+')을 먼저 시도하기 위해, 제1 차량용 기지국으로부터 송출되는 일정 세기 이상의 신호를 검출하여, 차량통신('WAVE+')이 가능한 제1 차량용 기지국을 검색할 수 있다.
단계(630)에서, 차량통신 서비스 제공 단말(300)은, 상기 신호의 검출에 따라, 구비된 차량통신 모듈을 동작시켜, 상기 제1 차량용 기지국과 접속한다. 본 단계에서, 차량통신 서비스 제공 단말(300)은 선정된 광대역 주파수('5GHz 대역')를 사용하여 상기 제1 차량용 기지국과 접속할 수 있다.
이때, 차량통신 서비스 제공 단말(300)은 동시에 사용 가능한 서비스 채널의 수에 비례하여 데이터 신호의 송수신 속도를 보다 고속으로 결정할 수 있다는 점을 이용하여, 서로 다른 수의 서비스 채널을 사용하는 복수의 차량용 기지국으로부터 상기 신호가 각각 검출될 경우에는, 더 많은 수의 서비스 채널을 사용하는 차량용 기지국에 우선적으로 접속을 요청할 수 있다.
구체적으로, 차량통신 서비스 제공 단말(300)은, n개의 서비스 채널을 함께 사용하는 제1 차량용 기지국 신호로부터의 신호가 검출되지 않고, n개의 서비스 채널 중 어느 하나의 서비스 채널을 사용하는 제2 차량용 기지국으로부터의 송출 신호가 검출되는 경우에는, 제2 차량용 기지국으로 접속을 요청할 수 있다.
차량통신 서비스 제공 단말(300)은 선정된 범위 내의 이동통신 기지국으로부터 이동통신 신호가 검출되더라도, 상기 제2 차량용 기지국과 접속을 시도할 수 있다.
즉, 차량통신 서비스 제공 단말(300)은 이동통신망 보다는 저속이더라도 대용량의 데이터 전송이 가능한 기존의 차량통신(WAVE)을 우선 이용해서 데이터 신호를 수신할 수 있으며, 접속 가능한 제2 차량용 기지국도 없을 경우에, 이동통신망을 연동할 수 있다.
구체적으로, 차량통신 서비스 제공 단말(300)은 일정 시간 이내에, 상기 제1 차량용 기지국 신호로부터의 신호가 검출되지 않거나, 차량용 기지국과의 접속이 단절될 경우, 선정된 범위 내의 이동통신 기지국으로부터 수신되는 이동통신 신호를 검출하고, 이동통신 기지국을 통해 상기 데이터 신호를 끊김 없이 수신하기 위해, 구비된 이동통신 모듈을 동작시켜, 이동통신 기지국에 접속을 요청할 수 있다.
이때, 차량통신 서비스 제공 단말(300)은 이동통신망에 최초 접속한 이후에는 이동통신 모듈을 유휴 모드에서 활성 모드로 모드 전환하여 이종 통신망 간의 절체를 빠르게 진행할 수 있다.
단계(640)에서, 차량통신 서비스 제공 단말(300)은, 접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 서비스 서버에 의해 전송되는 데이터 신호를 상기 제1 차량용 기지국으로부터 수신하여, 상기 서비스 요청에 대한 응답으로 상기 차량에 제공한다.
차량통신 서비스 제공 단말(300)은 선정된 광대역 주파수(예, '5GHz' 대역)를 사용하여 제1 차량용 기지국과 접속됨에 따라, 광대역 주파수 상에 복수의 서비스 채널을 설정하여 각 서비스 채널에 대한 대역폭을 확장해 데이터 통신 속도를 높일 수 있다.
차량통신 서비스 제공 단말(300)은 동시 사용 가능한 n개(상기 n은 1 이상 6 이하의 자연수)의 서비스 채널을 설정할 수 있으며, n×n MIMO(Multiple Input Multiple Output) 방식으로 상기 데이터 신호를 수신할 수 있다.
예를 들어, 도 4를 참조하면, 차량통신 서비스 제공 단말(300)은 도 4에 도시된 6개의 서비스 채널 중 하나의 서비스 채널을 사용하는 기존의 WAVE 통신을 통해 10MHz 대역폭에서 최대 27 Mbps 통신 속도로 송수신되는 데이터 신호를, 4×4 MIMO 방식 또는 최대 6개의 서비스 채널을 함께 사용하여 최소 4배 이상의 대략 100 Mbps의 속도로 송수신 할 수 있다.
이와 같이, 본 발명의 실시예에 따르면, 기존의 차량통신('WAVE 통신') 대비 최소 4배 이상의 100Mbps급 고속 데이터 통신을 가능하게 하고 이미 구축된 이동통신망과 연동하여 저렴한 망 구축 비용으로 끊임 없는 데이터 통신을 지원하여, 자율주행과 협력주행과 같은 주행 서비스를 기존의 차량통신 방식과의 호환성을 유지하면서 제공할 수 있다.
도 7은 본 발명의 다른 실시예에 따른 차량통신 서비스 제공 방법의 순서를 도시한 흐름도이다.
본 실시예에 따른 차량통신 서비스 제공 방법은 상술한 차량통신 서비스 제공 단말(300)에 의해 수행될 수 있다.
도 7을 참조하면, 차량통신 서비스 제공 단말(300)은, 도로를 주행 중인 차량으로부터, 자율주행 및 협력주행 중 적어도 하나의 주행에 관련되는 서비스 요청이 입력될 경우, 상기 주행 시 필요한 정보를 획득하기 위해 서비스 서버('차세대 지능형 교통시스템(ITS)')로 통신 서비스를 시도한다(단계(701)).
우선, 차량통신 서비스 제공 단말(300)은, 차량으로부터 선정된 범위 내의 제1 차량용 기지국(이하, WAVE+ RSE)에 의해 송출되는 신호(이하, WAVE+ 신호)를 검출한다(단계(702)).
단계(702)에서 WAVE+ 신호가 검출되는 경우, 차량통신 서비스 제공 단말(300)은 차량통신 모듈을 동작시켜, WAVE+ RSE와 접속하고(단계(703)), WAVE+ RSE를 통해 상위망에 접속하여(단계(704)), WAVE+ RSE와의 접속이 유지되는 동안(단계(705)), 서비스 서버(교통센터)에 접속하여(단계(706)), 자율주행/협력주행에 필요한 정보를 WAVE+ RSE로부터 수신하여 V2I 서비스로서 차량에 제공한다(단계(707)).
또는, 단계(702)에서 WAVE+ 신호가 검출되지 않거나 또는 단계(705)에서 WAVE+ RSE와의 접속이 유지되지 않을 경우, 차량통신 서비스 제공 단말(300)은 차량으로부터 선정된 범위 내의 제2 차량용 기지국(이하, WAVE RSE)에 의해 송출되는 신호(이하, WAVE 신호)를 검출한다(단계(708)).
단계(708)에서 WAVE 신호가 검출되는 경우, 차량통신 서비스 제공 단말(300)은 차량통신 모듈을 동작시켜, WAVE RSE와 접속하고(단계(709)), WAVE RSE를 통해 상위망에 접속하여(단계(710)), WAVE RSE와의 접속이 유지되는 동안(단계(711)), 서비스 서버(교통센터)에 접속하여(단계(706)), 자율주행/협력주행에 필요한 정보를 WAVE RSE로부터 수신하여 V2I 서비스로서 차량에 제공한다(단계(707)).
또는, 단계(708)에서 WAVE 신호가 검출되지 않을 경우, 차량통신 서비스 제공 단말(300)은 이동통신 기지국에 기 접속되어 있는지 확인한다(단계(712)).
단계(712)에서 기 접속되어 있지 않은 경우, 차량통신 서비스 제공 단말(300)은 차량으로부터 선정된 범위 내의 이동통신 기지국에 의해 송출되는 이동통신 신호를 검출한다(단계(713)).
단계(713)에서 이동통신 신호가 검출될 경우, 차량통신 서비스 제공 단말(300)은 이동통신 모듈을 동작시켜, 해당 이동통신 기지국과 이동통신 사업자 상위망에 접속하여(단계(714 내지 715)), 서비스 서버(교통센터)에 접속하고(단계(706)), 자율주행/협력주행에 필요한 정보를 이동통신 기지국을 통해 수신하여 V2I 서비스로서 차량에 제공한다(단계(707)).
또는, 단계(712)에서 기 접속되어 있는 경우, 차량통신 서비스 제공 단말(300)은 이동통신 모듈을, 현재의 유휴 모드에서 활성 모드로 모드 전환하고(단계(716)), 단계(715)로 이동하여 이동통신 사업자 상위망에 접속할 수 있다.
차량통신 서비스 제공 단말(300)은 단계(713)에서 이동통신 신호가 검출되지 않으면, 단계(702)로 돌아가서 WAVE+ 신호의 검출을 재수행할 수 있다.
즉, 차량통신 서비스 제공 단말(300)은 이동통신망으로 접속을 시도할 경우 접속까지 대략 400~500 msec 정도의 시간이 매번 소요되므로, 이동통신망으로의 최초 접속 이후, 이동통신 모듈을, 계속 접속된 상태를 유지하는 유휴 모드로 모드 전환해 두고, 차량용 기지국(WAVE+ RSE 또는 WAVE RSE)과의 접속이 단절되거나 접속이 어려울 경우, 이동통신 모듈을 활성 모드로 모드 전환하여 차량통신망과 이동통신망 간에 절체를 빠르게 실시할 수 있으며, 이 경우 이동통신 기지국으로 접속을 시도하는 절차가 생략되어 대략 10 msec 이내로 망 간에 절체를 수행할 수 있다.
일례로, 차량통신 서비스 제공 단말(300)은 이동통신망에 접속되어 데이터 신호를 수신하는 도중에, 차량이 차량통신(WAVE+ 또는 WAVE)이 가능한 지역으로 이동할 경우, 이동통신 모듈을 유휴 모드로 전환하여 이동통신망을 통한 서비스를 중단하고, 단계(702)로 돌아가서 차량용 기지국에 의해 송출되는 신호를 검출해 WAVE+ 망과 WAVE 망에 순차적으로 접속을 시도한다.
이와 같이, 차량통신 서비스 제공 단말(300)은 우선적으로 고속의 차량통신(WAVE+) 기지국으로부터의 WAVE+ 신호를 검색 후 WAVE+ 신호가 존재하면 WAVE+ 통신망에 접속하고, 존재하지 않으면 재 검색하여 저속의 차량통신(WAVE)이나 이동통신망의 접속을 통해 자율주행 또는 협력주행과 연관된 차량통신 서비스를 차량에 제공할 수 있다.
본 발명의 실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (16)

  1. 차량으로부터 서비스 요청이 입력 됨에 따라,
    상기 차량으로부터 선정된 범위 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출하는 단계;
    상기 신호의 검출에 따라, 구비된 차량통신 모듈을 동작시켜, 상기 제1 차량용 기지국과 접속하는 단계; 및
    접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 서비스 서버에 의해 전송되는 데이터 신호를 상기 제1 차량용 기지국으로부터 수신하여, 상기 서비스 요청에 대한 응답으로 상기 차량에 제공하는 단계
    를 포함하는 차량통신 서비스 제공 방법.
  2. 제1항에 있어서,
    상기 접속에 따라, 상기 제1 차량용 기지국과의 사이에 n개(상기 n은 1 이상 6 이하의 자연수)의 서비스 채널을 설정하는 단계
    를 더 포함하고,
    상기 차량에 제공하는 단계는,
    상기 n개의 서비스 채널을 함께 사용하는 n×n MIMO(Multiple Input Multiple Output) 방식으로, 상기 제1 차량용 기지국으로부터 상기 데이터 신호를 수신하여 상기 차량에 제공하는 단계
    를 포함하는 차량통신 서비스 제공 방법.
  3. 제2항에 있어서,
    상기 선정된 범위 내에, 하나의 서비스 채널을 사용하는 제2 차량용 기지국이 위치하는 경우,
    상기 차량에 제공하는 단계는,
    상기 제2 차량용 기지국으로부터 상기 데이터 신호를 수신하는 통신 속도에 비해, 적어도 n배(상기 n은 1 이상 6 이하의 자연수) 이상의 통신 속도로 상기 제1 차량용 기지국으로부터 상기 데이터 신호를 수신하여 상기 차량에 제공하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  4. 제2항에 있어서,
    상기 차량통신 서비스 제공 방법은,
    상기 n개의 서비스 채널 중 어느 하나의 서비스 채널을 사용 가능한, 선정된 차량통신 프로토콜 상의 MAC 구조에 포함되는 High MAC 모듈을, 상기 n×n MIMO 방식에 따른 상기 데이터 신호의 수신이 가능해지도록 수정하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  5. 제2항에 있어서,
    상기 n개의 서비스 채널을 설정하는 단계는,
    선정된 광대역 주파수를 사용하여 상기 제1 차량용 기지국과 접속됨에 따라, 상기 광대역 주파수 상에 상기 n개의 서비스 채널을 설정하여 각 서비스 채널에 대한 대역폭을 확장하는 단계
    를 포함하는 차량통신 서비스 제공 방법.
  6. 제1항에 있어서,
    상기 제1 차량용 기지국과 제어 신호를 송수신하기 위한 컨트롤 채널을, 상기 복수의 서비스 채널이 설정된 광대역 주파수 상의 가운데 부근에 해당하는 중앙 영역에 배치하는 단계; 및
    상기 복수의 서비스 채널을 사용하여 상기 데이터 신호를 수신하는 동안, 상기 컨트롤 채널을 통한 상기 제어 신호의 송수신을 중단하는 동시에, 상기 컨트롤 채널을 서비스 채널로서 더 사용하여 상기 데이터 신호를 수신하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  7. 제6항에 있어서,
    상기 컨트롤 채널을, 상기 복수의 서비스 채널이 설정된 영역 중 적어도 하나에 재배치하고, 상기 중앙 영역을, 신규의 서비스 채널로서 설정하는 단계; 및
    상기 신규의 서비스 채널을 포함하여 설정된 복수의 서비스 채널을 사용하여 상기 데이터 신호를 수신하는 동안, 상기 재배치된 컨트롤 채널을 통한 상기 제어 신호의 송수신을 허용하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  8. 제1항에 있어서,
    일정 시간 이내에, 상기 제1 차량용 기지국 신호로부터의 상기 신호가 검출되지 않는 경우,
    상기 선정된 범위 내의 이동통신 기지국으로부터 수신되는 이동통신 신호를 검출하는 단계;
    상기 이동통신 신호의 검출에 따라, 구비된 이동통신 모듈을 동작시켜, 상기 이동통신 기지국과 접속하는 단계; 및
    상기 데이터 신호를, 상기 이동통신 기지국으로부터 수신하여, 상기 차량에 제공하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  9. 제8항에 있어서,
    상기 이동통신 기지국은, LTE 기지국, WCDMA 기지국, 및 GSM 기지국을 포함하고,
    상기 이동통신 신호를 검출하는 단계는,
    상기 LTE 기지국에 의해 송출되는 이동통신 신호가 검출되지 않으면,
    상기 WCDMA 기지국 또는 상기 GSM 기지국에 의해 송출되는 이동통신 신호를 검출하는 단계
    를 포함하는 차량통신 서비스 제공 방법.
  10. 제8항에 있어서,
    상기 일정 시간 이내에, n개(상기 n은 1 이상 6 이하의 자연수)의 서비스 채널을 함께 사용하는 상기 제1 차량용 기지국 신호로부터의 상기 신호가 검출되지 않고, 상기 n개의 서비스 채널 중 어느 하나의 서비스 채널을 사용하는 제2 차량용 기지국으로부터의 송출 신호가 검출되는 경우,
    상기 이동통신 신호가 검출되더라도, 상기 제2 차량용 기지국과 접속을 시도하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  11. 제8항에 있어서,
    상기 이동통신 기지국을 통한 상기 데이터 신호의 수신 중에, 상기 제1 차량용 기지국으로부터의 상기 신호가 검출되는 경우,
    상기 이동통신 기지국으로부터의 상기 데이터 신호의 수신을 중지하고, 상기 이동통신 모듈을, 상기 이동통신 기지국과의 접속 상태를 유지하는 유휴 모드로 모드 전환하는 단계; 및
    상기 차량통신 모듈을 통해 접속되는 상기 제1 차량용 기지국으로부터, 상기 데이터 신호를 수신하여 상기 차량에 제공하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  12. 제11항에 있어서,
    상기 제1 차량용 기지국과의 접속이 해제되는 경우,
    상기 이동통신 모듈을, 상기 유휴 모드에서 활성 모드로 모드 전환하여, 상기 이동통신 기지국을 통한 상기 데이터 신호의 수신을 재개하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  13. 제1항에 있어서,
    상기 서비스 요청이, 자율주행 및 협력주행 중 적어도 하나의 주행에 관련되는 경우,
    상기 차량에 제공하는 단계는,
    상기 주행 시 필요한, 상기 차량의 위치 정보, 도로 상황 정보, 날씨 정보, 경로 정보, 교통 정보 및 안전 정보 중 적어도 하나에 관련된 데이터 신호를, 상기 제1 차량용 기지국을 통해, 차세대 지능형 교통시스템(ITS)으로부터 수신하여, 상기 차량에 제공하는 단계
    를 포함하는 차량통신 서비스 제공 방법.
  14. 제1항에 있어서,
    상기 서비스 요청이, '자율주행'에 관련되는 경우,
    상기 차량통신 모듈을 통해, 상기 차량과 인접한 인접 차량에 구비된 타겟 차량통신 모듈과 접속하는 단계; 및
    상기 타겟 차량통신 모듈과의 데이터 통신을 통해, 상기 차량과 상기 인접 차량 간의 이격 거리를 측정하고, 상기 이격 거리를 근거로 차량 추돌 위험을 판단하여, 상기 차량 추돌 위험을 경고하는 데이터 신호를, 상기 차량 및 상기 인접 차량에 제공하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  15. 제1항에 있어서,
    상기 서비스 요청이, 상기 차량과 동일 그룹으로 지정된 적어도 하나의 인접 차량과의 '협력주행'에 관련되는 경우,
    상기 차량통신 모듈을 통해, 상기 동일 그룹 내의 각 인접 차량에 구비된 타겟 차량통신 모듈과 접속하는 단계; 및
    상기 타겟 차량통신 모듈과의 데이터 통신을 통해,
    상기 차량으로부터의 입력 메시지를 데이터 신호로서 상기 각 인접 차량에 전송하거나, 또는 상기 각 인접 차량으로부터의 입력 메시지를 데이터 신호로서 상기 차량에 제공하는 단계
    를 더 포함하는 차량통신 서비스 제공 방법.
  16. 차량으로부터 서비스 요청이 입력 됨에 따라,
    상기 차량으로부터 선정된 범위 내에 위치한 제1 차량용 기지국에 의해 송출되는 신호를 검출하는 검출부;
    상기 신호의 검출에 따라, 구비된 차량통신 모듈을 동작시켜, 상기 제1 차량용 기지국과 접속하는 접속부; 및
    접속한 상기 제1 차량용 기지국과의 사이에 설정되는 복수의 서비스 채널을 통해, 서비스 서버에 의해 전송되는 데이터 신호를 상기 제1 차량용 기지국으로부터 수신하여, 상기 서비스 요청에 대한 응답으로 상기 차량에 제공하는 처리부
    를 포함하는 차량통신 서비스 제공 단말.
PCT/KR2018/008377 2017-11-15 2018-07-25 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말 WO2019098494A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0152028 2017-11-15
KR1020170152028A KR101964175B1 (ko) 2017-11-15 2017-11-15 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말

Publications (1)

Publication Number Publication Date
WO2019098494A1 true WO2019098494A1 (ko) 2019-05-23

Family

ID=66167101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008377 WO2019098494A1 (ko) 2017-11-15 2018-07-25 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말

Country Status (2)

Country Link
KR (1) KR101964175B1 (ko)
WO (1) WO2019098494A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549700A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 传输信号的装置及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131096B1 (ko) 2019-04-30 2020-08-05 호남대학교 산학협력단 가시광 통신 기반 차량간 통신 시스템
KR102622819B1 (ko) * 2019-07-29 2024-01-08 에스케이텔레콤 주식회사 차량 통신 지원 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060055043A (ko) * 2004-11-17 2006-05-23 현대자동차주식회사 자동차 운행정보 시스템 및 전송방법
KR20160131740A (ko) * 2015-05-08 2016-11-16 삼성전자주식회사 차량 서비스를 위한 자원 할당 장치 및 방법
KR101687818B1 (ko) * 2015-03-19 2016-12-20 현대자동차주식회사 차량, 차량의 통신 방법 및 차량에 포함된 무선 통신 장치
JP2017038192A (ja) * 2015-08-07 2017-02-16 日本電信電話株式会社 無線通信システム、基地局装置、端末局装置及び無線通信方法
JP2017139727A (ja) * 2016-02-03 2017-08-10 株式会社デンソー 移動通信システム、通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060055043A (ko) * 2004-11-17 2006-05-23 현대자동차주식회사 자동차 운행정보 시스템 및 전송방법
KR101687818B1 (ko) * 2015-03-19 2016-12-20 현대자동차주식회사 차량, 차량의 통신 방법 및 차량에 포함된 무선 통신 장치
KR20160131740A (ko) * 2015-05-08 2016-11-16 삼성전자주식회사 차량 서비스를 위한 자원 할당 장치 및 방법
JP2017038192A (ja) * 2015-08-07 2017-02-16 日本電信電話株式会社 無線通信システム、基地局装置、端末局装置及び無線通信方法
JP2017139727A (ja) * 2016-02-03 2017-08-10 株式会社デンソー 移動通信システム、通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549700A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 传输信号的装置及其方法
WO2023273874A1 (zh) * 2021-06-30 2023-01-05 华为技术有限公司 传输信号的装置及其方法

Also Published As

Publication number Publication date
KR101964175B1 (ko) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2019194630A1 (en) Method and apparatus for supporting vehicle communications in 5g system
WO2017176013A1 (ko) 단말의 접속 요청을 처리하는 방법 및 네트워크 노드
WO2013109015A1 (ko) 다중 네트워크 기반 데이터 동시 전송 방법 및 이에 적용되는 장치
WO2019098494A1 (ko) 차량통신 서비스 제공 방법 및 차량통신 서비스 제공 단말
WO2019216618A1 (en) Method and apparatus for deprioritizing access on unlicensed band based on ue preference in wireless communication system
WO2020091443A1 (en) Deactivation of configured grant and initiation of connection request upon detection of sidelink failure
WO2013081309A1 (ko) 다중 채널과 다중 송출 전력을 갖는 액세스 포인트 및 셀 형성 방법
WO2017105052A1 (ko) 통신 단말의 릴레이 기반 통신 기법
WO2017034324A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말
WO2018030868A1 (en) V2x communication method and terminal
WO2019216738A1 (ko) 차량 통신 서비스를 수행하는 장치 및 방법
WO2015005727A1 (en) Wlan system and handover method and apparatus for use therein
WO2020149714A1 (ko) Object 상태 정렬을 이용한 cpm 메시지 분할 방법
WO2022019646A1 (en) Method and apparatus for resource allocation in wireless communication system
WO2021040381A1 (ko) 무선 통신 시스템을 이용하는 uas 서비스 제어 방법 및 장치
WO2021045266A1 (ko) 데이터를 송수신하는 방법 및 통신 기기
WO2012121510A2 (en) Method and apparatus for controlling relay station mode of mobile station in a communication system
WO2019212247A1 (en) Method and apparatus for enhancing measurement rule on unlicensed frequency in wireless communication system
WO2022086084A1 (en) Method and apparatus for conflict resolution in wireless communication system
WO2021006376A1 (ko) 차세대 이동통신 시스템에서 차량에 장착된 tcu의 핸드오버를 효율적으로 지원하는 방법 및 그 서버
WO2021167335A1 (en) Method for triggering advanced automatic collision notification using pre-crash system
WO2021034147A1 (ko) Tvws(television white space) 대역을 통해 데이터 통신을 제공하는 통신 시스템
WO2022004912A1 (ko) V2x 서비스를 위한 서버, 방법 및 기기
WO2021040069A1 (ko) 카메라 데이터 및 센서 데이터를 송수신하는 방법 및 통신 기기
WO2010099658A1 (zh) 使用无线局域网的移动通信系统及车辆监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879048

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18879048

Country of ref document: EP

Kind code of ref document: A1