WO2016024856A1 - Nanostructured systems as thermal protectors of functional ingredients in foods and food supplements - Google Patents

Nanostructured systems as thermal protectors of functional ingredients in foods and food supplements Download PDF

Info

Publication number
WO2016024856A1
WO2016024856A1 PCT/MX2015/000115 MX2015000115W WO2016024856A1 WO 2016024856 A1 WO2016024856 A1 WO 2016024856A1 MX 2015000115 W MX2015000115 W MX 2015000115W WO 2016024856 A1 WO2016024856 A1 WO 2016024856A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional ingredients
functional
further characterized
nanocapsules
thermal protector
Prior art date
Application number
PCT/MX2015/000115
Other languages
Spanish (es)
French (fr)
Inventor
David Quintanar Guerrero
María De La Luz ZAMBRANO ZARAGOZA
Ricardo Moisés GONZALEZ REZA
José Jaime FLORES MINUTTI
Original Assignee
Universidad Nacional Autónoma de México
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autónoma de México filed Critical Universidad Nacional Autónoma de México
Publication of WO2016024856A1 publication Critical patent/WO2016024856A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention is related to the techniques used in nanotechnology, as well as in Food Engineering, for the elaboration, transformation, preparation, conservation and packaging of food for human consumption, applying techniques of control and manipulation of matter at the level Submioronic, and more particularly, is related to nanostructuring systems as thermal protectors of functional ingredients in food and food supplements.
  • Meroencapsulation is one of the methods that has been reported as effective in the protection of materials sensitive to temperature, light, etc., since it allows the use of polymers to form a protective membrane of the encapsulated material.
  • nanotechnology currently presents novel alternatives that allow greater encapsulation efficiency (70 to 90%), one of the most effective methods being emulsification-diffusion, in which polymers that can be biodegradable or not can be used, so as lipids that allow a release of different assets.
  • One of the polymers reported for use in packaging and pharmaceutical applications is the ⁇ ly- ⁇ -caprolactone that has been shown is useful for the encapsulation of assets.
  • dead food components are sensitive to process conditions.
  • preparation and transformation of food it is generally necessary to use high temperatures for short periods of time (eg, pasteurization, spray drying, etc.), so that the maintenance of integrity Chemistry of functional ingredients is an important challenge in the food industry.
  • the structure of the nanoc psulas turns out to be very attractive due to the membrane that surrounds the nanogofas, being able to be used as protective barriers of nutritional assets in the fortification, enrichment, substitution and development of functional foods.
  • the oily core of the nanocapsules can be a active oil serves as a vehicle for containing different particulate substances, food additives and dietary supplements such as flavorants, sweeteners, probiotics, nutraceuticals "pigments, antimicrobial agents, antioxidants, among others.
  • Mexican Patent Application No. MX / a / 2010/012138 provides procedures for encapsulating biologically active agents such as proteins in particulate vehicles such as nanoparticles using Hip agents.
  • Compositions comprising particles-shaped vehicles that can be obtained by said methods and uses of said compositions in a treatment are also provided. While this patent considers a generic procedure for the encapsulation of assets, the proposed encapsulating agent is basically protein and is not focused on thermal resistance.
  • Mexican Patent No. 261,041 refers to the production of capsules or particles of micro and nanometric size for introduction into food, using stable electrified coaxial jets of two immiscible liquids with diameters in the range of microns and nanometers.
  • a spray of charged structured drops is formed when the jets dissociate due to capillary instabilities.
  • Structured drops which are nano-dlspersed in size, contain a first liquid (usually the material to be added) that is surrounded by a second liquid.
  • the second liquid provides a barrier or protective coating that allows the addition of the first liquid to a food product without adversely affecting the organoleptic or other properties of the food product.
  • the method of preparation differs completely from that presented in this application, it is also proposed to be used in aerosol systems without considering thermal stability and incorporating them into the preservation of a liquid product that must be pasted.
  • Korean Patent No. 10-0929195 (B1) provides the process for the preparation of nanocapsules comprising capsaicin, which improves the encapsulation efficiency of capsaicin, and nanocapsules comprising capsaicin prepared by said method.
  • a process for preparing nanocapsules comprising capsaicin which comprises steps of: mixing an organic solution with an aqueous solution at a piss ratio of 0.1: 20 to 1:20 (v / v); homogenize the mixed solution to obtain an emulsion; volatilize an organic solvent of the emulsion to obtain a suspension; and drying the suspension to obtain nanocapsules comprising capsaicin, the organic solution was prepared by dissolving poiicaproiactone and capsaicin in an organic solvent for the dispersion of capsaicin.
  • the aqueous solution is prepared by dissolving a surfactant or surfactant in distilled water.
  • the method of preparation is different from that proposed in the present invention, since although they use caproiactone, it does not consider any possibility of application in the thermal treatment of food such as pasteurization.
  • International Application No. PCT / DE2011 / 002026 (International Publication No, WO 2012/089184) refers to a colloidal carrier system in the form of a nanocapsule comprising at least the following components: a lipid nucleus liquid, a layer that surrounds the core continuously, contains at least one membrane-forming, natural anionic emulsifier and at least one single chain, a natural non-ionic o-emulsifier selected from the group of glyceryl monoethate, glyceryl monoiinoleate, polyglycyl monoxide, polyglycerol monoiinoleate.
  • the application refers to a system used to form nano-capsules from glyceryl monoleate applied for penetration into the skin, without mentioning its application based on its resistance to heat treatment.
  • US Patent Application Series No. US2012027825 (A1) refers to a useful method for the preparation of nanocapsules having a liquid lipid core and a solid shell and loaded with at least one active agent having a hydrophilic character, said said comprising. method at least the stages that consist of; i) providing at least a first microemulsion having a water-oil character, stabilized with at least one lipophilic surfactant that contains in its hydrophilic phase at least one active agent having a hydrophilic character; yes) providing at least a second microemulsion, separated from the first microemulsion, formulated by phase inversion of an emulsion and stabilized with at least one non-ionic hydrophilic heat-sensitive surface active agent; iii) the addition of said first microemulsion to said second microemulsion under conditions conducive to the formation of a new microemulsion in which said hydrophilic active agent remains present in the hydrophilic phase gives the first microemulsion; and, iv) cold hardening the mixture formed
  • US Pat. No. 4814413 refers to a thermofurible polymer, adapted for use as an adhesive agent containing a pre-polymer block comprising polyurethane and polycaproiactone sequences and an NCO free group comprised between 1% and 5%.
  • This patent describes the mixture of two polyurethane and polycaproiactone pyopoimers that can be applied as a heat-resistant adhesive; however, it does not consider the use of an active agent susceptible to temperature that is subjected to pasteurization processes.
  • the North American Patent Series o. 8716450 refers to nanocapsules useful for encapsulating bioactive molecules such as proteins. These nanocapsules are made up of branched or hyperbranched polymers and copoiimers and have a crust core structure that forms a bag with appropriate volume to complex and retain enzymes and other bioactive molecules.
  • the nanoencapsulated bioactive molecule is stable at extreme temperatures and pH, soluble in aqueous or organic solvents, and can be lyophilized to a dry powder for long-term storage without loss of enzyme activity.
  • the invention describes nanocapsules whose coating is based on protein that they mention being stable at storage temperature, but were not heat treated to analyze their stability during the pasteurization process.
  • US Pat. No. 6858299 describes a process free of high content of emulsion solids for the preparation of polymeric nanoparticles reticulated from 1 to 200 nm in diameter, the patent development of nanoparticles with possible applications in the administration of nutraceuticals, but without considering the thermal resistance of the same.
  • International Patent Application No. PCT / US 2010/026678 International Publication No. WO 2010/104865 ⁇ describes a nanoencapsulated protein having an individual protein core and a thin polymer shell anchored covalently to the protein core. In this patent it is proposed to encapsulate an agent of protein origin, but without considering its application for food preservation and its thermal stability, since only the release time and its effect are covered.
  • European Patent Ho. EP 1 932 429 refers to a food coating based on cellulose hydrate, which comprises nanoscale additives integrated in the mat iz formed by cellulose hydrate.
  • the present invention is related to a nanostructured system as thermal protectors of functional ingredients, which comprise nanoparticulate systems, where the nanoparticles can be nanocapsules or nanospheres, and said nanoparticles have an average particle size of not more than 350 nm.
  • Said nano-capsules comprise: a polymer as a protective membrane; functional or active ingredients that are included in the core of the nanocapsule for protection; stabilizing agents, and, the use of support solutions based on polymers for food use, the narsocapsules are preferably prepared by the emulsification-diffusion method to allow nanoencapsulation of lipophilic active substances.
  • the experimental procedure performed to achieve this requires three phases; the organic, aqueous and dilution
  • the nanocápasuias are subjected to a thermal process to demonstrate the protective thermal capacity of said nanocapsules on the functional Ingredients,
  • Another object of the present invention is to provide nanostructured systems as thermal protectors of functional ingredients that can be integrated or aggregates to liquid, solid and semi-solid food products, increasing their stability and distribution in said products.
  • Figure 1 is a micrograph showing the morphology of fS ⁇ carotene nanocapsules that ensures the presence of these capsular nanostructured systems in accordance with a particularly preferred embodiment of the present investigation.
  • Figure 2 shows the loss percentages of ⁇ -carotene to the pasteurization conditions in a scraped surface system, with a minimum loss of 5% and a maximum of 28% ⁇ when the feed rate is lower and therefore the time of major process) of submicron structures,
  • the present invention considers the potential application of nanotechnology to food systems subjected to high temperatures with the great advantage of having a coating agent (membrane) preferably formed by a polymer capable of protecting tormolabile substances during processing, considerably reducing the amount of vitamins or aseptic oils that are used in excess during a process in order to contain at least what is stated on the label.
  • a coating agent membrane preferably formed by a polymer capable of protecting tormolabile substances during processing, considerably reducing the amount of vitamins or aseptic oils that are used in excess during a process in order to contain at least what is stated on the label.
  • the present invention relates to the preservation of food and nutritional supplements, and even more particularly, it refers to the protection of functional ingredients by means of their nano-encapsulation.
  • the nanocapsules loaded with the functional ingredients can be used as enrichment, substitution, reconstitution and fortification systems in liquid, solid and semi-solid products in order to protect them from the thermal processing to which they are subjected and which currently increase production costs due to Loss of these components in the different stages of the process, transport and storage.
  • nanostructured systems are described as thermal protectors of functional ingredients which in general terms comprise nanoparticulate systems, wherein said nanoparticles can be nanocapsules or nanospheres, preferably nartocapsules having an average particle size not greater than 350 nm, and said nanocapsuias include;
  • a polymer as a protective membrane wherein said polymer is preferably or biodegradable polymer that is selected from the group comprising: poly-ocaproiaetone, polydioxanorse, polyglycolic acid, polylactic acid, and copolymers of lactic and glycolic acid ⁇ polylactic-co -glycolic ⁇ , among others; preferably using poiy-e-oaproiactone as a protective membrane;
  • antioxidant agents vitamins, essential oils for food use, oily liquid materials and edible oils, being selected from the group comprising: tocopherics, omegas, OHA and essential oils (eugenol, menthol, fimmoneno) and essential extracts (rosemary, Rosemary, extracts of lemon or orange), among others, and, - solid materials that dissolve in oil, such as: carotenes, quercetirsas, lycopene and carotenes in general.
  • beta-carotene at 30% dissolved in corn oil;
  • stabilizing agents that are selected from the group comprising polyvinyl alcohol, poioxamers and polyisorbates; preferably using polyvinyl alcohol as a stabilizing agent; Y, (d) use of support solutions of polymers for food use, preferably polysaccharides selected from the group comprising: gums (Carfexymethyl cellulose, hydroxypropylmethyl cellulose, xanthan, carob, guar, among others).
  • the nanocapsules are preferably prepared by the emulsification-diffusion method to allow nanoencapsulation of iipophilic active substances.
  • the experimental procedure enhanced to achieve this requires three phases: organic, aqueous and dilution.
  • organic solvents are used which are preferably selected from partially water-miscible organic solvents that are food grade, and more preferably those selected from the group comprising propitencarbonate, ethyl acetate, methy-eti-oetone, benzyl alcohol, or mixtures thereof, among others; preferably using ethyl acetate as solvent in the organic phase.
  • Ethyl acetate is present in the dispersion in a concentration ranging from 0.06 to 1mf, more preferably in a concentration of 0.5mi.
  • both solvents, the organic solvent (ethyl acetate) and the distilled water are saturated in each other. to guarantee a thermodynamic equilibrium of both liquids (oil / water system), that is, the ethyl acetate is saturated with distilled water (saturated organic solvent cor? water), and in turn, distilled water is saturated with ethyl acetate (water saturated with organic solvent).
  • the polymer ⁇ poly-e-caprolactone) and the Functional Ingredient (betacaroiene ai 305 dissolved in sunflower oil) were solubilized in the organic solvent (ethyl acetate ⁇ to thus form the organic phase.
  • a suitable stabilizer prevents the formation of lumps of the polymer, since said stabilizer acts as a protective agent both to form the emulsion and to stabilize the formed nanoparicles.
  • the stabilizer (aleono) poi ⁇ vin ⁇ l ⁇ co ⁇ is added in an amount that goes from 0.1 to 15g 100ml, preferably 6g 100mi. Said stabilizer is solubilized in the distilled water previously saturated with the organic solvent, thus forming the aqueous phase.
  • the oil / water emulsion is prepared, and for this, as mentioned above, the emulsification / diffusion method is used to obtain the nanoparticles, where an amount ranging from 0.5 is sufficient 30mi, preferably 20ml of the organic phase solution will be used for an amount ranging from 1 to 10, preferably 4mf of the aqueous phase and using either a variable speed mechanical stirrer (Heidolph # Instruments, type 2R1, Schwabach, Germany) or a high-speed dispersion equipment ⁇ Ultra-Tur ax® T50, KA Labotechn ⁇ k, Staufen, Germany) for speeds between 2000 and 8000 rpm, preferably using the variable speed agitator at a speed between SO and 30,000 rpm, preferably at 1 00 rpm.
  • a variable speed mechanical stirrer Heidolph # Instruments, type 2R1, Schwabach, Germany
  • a high-speed dispersion equipment ⁇ Ultra-Tur ax® T50, KA
  • the emulsification process is carried out for a period of time ranging from 3 minutes to 1 hour, preferably 10 minutes, to subsequently move on to the diffusion stage.
  • an amount of unsaturated distilled water ranging from 50 to 400ml, preferably from 180 to 2Q0ml, and more preferably 200m !, is added, wherein said amount of water induces the organic solvent out ⁇ acetate of ethyl) to the continuous phase of the emulsion, in order to achieve the formation of the nanocapsules.
  • the system obtained is stable with zeta potential of »-40 mV and particle sizes ranging from SO up to 800 nm, consisting of a bio-pleasant polymer ⁇ poiy-e ⁇ caprolactone) and functional ingredients such as ⁇ -carotene.
  • the product obtained consists of a suspension of nanoparties that can be subjected to spray drying using different vehicles such as carboxymethyl cellulose, hydroxypropylmethylcellulose, maliotyxtrins, mucilages, among others; or, you incorporate directly into liquid foods as delivery of the formulation.
  • the product thus obtained is subjected to a thermal process to demonstrate the protective thermal capacity of nanocapsuias on the additive principles described above.
  • the pasteurization process gives a model fluid (0.5% CMC dispersion) with initial nanocapsule concentration of 60 pg / mi (average particle size 300 nm, IPD 0.16 zeta potential of -38 rnV) and a scraped surface Intetcarnbiator using a feed rate 82.8% «steam pressure 1.24 bar and blade rotation speed 285 rmp, keeping the cooling stage constant with an ice water speed of 8 Umm analyzing the fine concentration! of ⁇ -caro ⁇ eno by means of spectral measurements.
  • the decimal reduction time ⁇ considered for the pasteurization of the product was D - 5 ro ⁇ n.
  • the maximum loss of beta-carotene after the pasteurization process was 16%, while when these are used in the system without annepsuising the losses are 45%, which makes it possible to establish that the encapsulating polymer exerts a protective effect on the high temperature processing. Furthermore, in extreme conditions (treatment time d 10 min) the maximum losses in nanocapsuias were do! 26%, while for non-encapsulated systems it was greater than 60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Formation And Processing Of Food Products (AREA)

Abstract

The invention relates to nanostructured systems as thermal protectors of functional ingredients, which are formed by nanoparticulate systems, wherein said nanoparticles can be nanocapsules or nanospheres. The nanoparticles have an average particle size no greater than 350 nm, and comprise; (a) a polymer as a protective membrane; (b) functional or active ingredients that are included in the core of the nanocapsule for the protection thereof; (c) stabilising agents; and (d) the use of carrier solutions based on polymers for food purposes.

Description

SISTEMAS MANOESTRUCTURADOS COMO PROTECTORES TÉRMICOS DE INGREDIENTES PUMCIONÁLES EN AUMENTOS Y SUPLEMENTOS ALIMENTICIOS  MANOSTRUCTURED SYSTEMS AS THERMAL PROTECTORS OF PUMPABLE INGREDIENTS IN FOOD INCREASES AND SUPPLEMENTS
CAMPO DE LA I VECCIÓ FIELD OF I VECCIÓ
La presente invención está relacionada con las técnicas utilizadas en ¡a nanotecnologia, asi como en ta Ingeniería en Alimentos, para la elaboración, transformación, preparación, conservación y envasado de alimentos cié consumo humano, aplicando técnicas de control y manipulación de la materia a nivel submiorónico, y más particularmente, está relacionada con sistemas nanoestructuracios como protectores térmicos de Ingredientes funcionales en alimentos y suplementos alimenticios.  The present invention is related to the techniques used in nanotechnology, as well as in Food Engineering, for the elaboration, transformation, preparation, conservation and packaging of food for human consumption, applying techniques of control and manipulation of matter at the level Submioronic, and more particularly, is related to nanostructuring systems as thermal protectors of functional ingredients in food and food supplements.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La míeroencapsulación es uno de los métodos que ha sido reportado corno efectivo en la protección de materiales sensibles a la temperatura, luz, etc., ya que permite emplear polímeros para formar una membrana protectora del material encapsulado. Sin embargo, actualmente la nanotecnologia presenta alternativas novedosas que permiten una mayor eficiencia de encapsulación (70 a 90 %), siendo uno de los métodos más efectivo el de emulsificacion-difusión, en el cual se emplean polímeros que pueden ser biodegradables o no, asi como lipidos que permiten una liberación de diferentes activos. Uno de ios polímeros reportados para su uso en envases y aplicaciones farmacéuticas es la ροly-ε-caprolactona que se ha mostrado es útil para la encapsulación de activos.  Meroencapsulation is one of the methods that has been reported as effective in the protection of materials sensitive to temperature, light, etc., since it allows the use of polymers to form a protective membrane of the encapsulated material. However, nanotechnology currently presents novel alternatives that allow greater encapsulation efficiency (70 to 90%), one of the most effective methods being emulsification-diffusion, in which polymers that can be biodegradable or not can be used, so as lipids that allow a release of different assets. One of the polymers reported for use in packaging and pharmaceutical applications is the ροly-ε-caprolactone that has been shown is useful for the encapsulation of assets.
Por otro lado, muertos componentes de los alimentos son sensibles a las condiciones del proceso. En la formulación, preparación y transformación de alimentos, es generalmente necesario el empleo de altas temperaturas por cortos tiempos (e, g. pasteurización, secado por aspersión, etc.), por lo que ei mantenimiento de la integridad química de los ingredientes funcionales es un reto importante en la industria d ios alimentos. On the other hand, dead food components are sensitive to process conditions. In the formulation, preparation and transformation of food, it is generally necessary to use high temperatures for short periods of time (eg, pasteurization, spray drying, etc.), so that the maintenance of integrity Chemistry of functional ingredients is an important challenge in the food industry.
La estructura de las nanoc psulas resulta ser muy atractiva debido a la membrana que envuelve las nanogofas, pudiendo ser utilizadas como barreras protectoras de activos nutrimentales en la fortificación, enriquecimiento, sustitución y desarrollo de alimentos funcionales, El núcleo oleoso de las nanocápsulas puede ser un aceite activo que sirve como vehículo para contener diferentes sustancias en partículas, aditivos de alimentos y suplementos dietéticos tales como saboreantes, edulcorantes, probiótícos, nutracéuticos» pigmentos, agentes microbianos, antioxidantes, entre otros. The structure of the nanoc psulas turns out to be very attractive due to the membrane that surrounds the nanogofas, being able to be used as protective barriers of nutritional assets in the fortification, enrichment, substitution and development of functional foods. The oily core of the nanocapsules can be a active oil serves as a vehicle for containing different particulate substances, food additives and dietary supplements such as flavorants, sweeteners, probiotics, nutraceuticals "pigments, antimicrobial agents, antioxidants, among others.
La Solicitud de Patente Mexicana No. MX/a/2010/012138 proporciona procedimientos para encapsuíar agentes biológicamente activos tales como proteínas en vehículos en forma de partículas tales como nanopartículas utilizando agentes de Hip. También se proporcionan composiciones que comprenden vehículos en forma de partículas que pueden obtenerse mediante dichos procedimientos y usos de dichas composiciones en un tratamiento. Si bien esta patente considera un procedimiento genérico para la encapsyladón de activos, el agente encapsulante propuesto es básicamente de proteínas y no están enfocados a la resistencia térmica. Mexican Patent Application No. MX / a / 2010/012138 provides procedures for encapsulating biologically active agents such as proteins in particulate vehicles such as nanoparticles using Hip agents. Compositions comprising particles-shaped vehicles that can be obtained by said methods and uses of said compositions in a treatment are also provided. While this patent considers a generic procedure for the encapsulation of assets, the proposed encapsulating agent is basically protein and is not focused on thermal resistance.
La Patente Mexicana No. 261,041 se refiere a la producción de cápsulas o partículas de tamaño micro y nanométríco para introducción en alimentos, usando chorros coaxiales electrificados estables de dos líquidos inmiscibles con diámetros en el rango míoro y nanométríco. Un aerosol d gotas estructuradas cargadas se forma cuando los chorros se disocian por inestabilidades capilares. Las gotas estructuradas, que son nano-dlspersas en tamaño, contienen un primer liquido (generalmente el material que se desea añadir) que se rodea por un segundo liquido. Generalmente, el segundo liquido proporciona una barrera o recubrimiento protector que permite la adición del primer liquido a un producto alimenticio sin afectar de manera adversa las propiedades organolépticas u otras del producto alimenticio. No obstante» el método de preparación difiere totalmente del presentados en ia presente solicitud, además se propon para ser empleado en sistemas en aerosol sin considerar la estabilidad térmica y la incorporación de estas a la conservación de un producto liquido que debe de ser pasteuñzado. Mexican Patent No. 261,041 refers to the production of capsules or particles of micro and nanometric size for introduction into food, using stable electrified coaxial jets of two immiscible liquids with diameters in the range of microns and nanometers. A spray of charged structured drops is formed when the jets dissociate due to capillary instabilities. Structured drops, which are nano-dlspersed in size, contain a first liquid (usually the material to be added) that is surrounded by a second liquid. Generally the The second liquid provides a barrier or protective coating that allows the addition of the first liquid to a food product without adversely affecting the organoleptic or other properties of the food product. However, the method of preparation differs completely from that presented in this application, it is also proposed to be used in aerosol systems without considering thermal stability and incorporating them into the preservation of a liquid product that must be pasted.
La Patente Coreana No. 10-0929195 (B1) provee el proceso para la preparación do nanocápsulas que comprenden capsaicina, lo que mejora ia eficiencia de encapsulación de ia capsaicina, y nanocápsulas que comprenden capsaicina preparadas por dicho método. Un procedimiento para preparar nanocápsulas que comprenden capsaicina, el cual comprende fas etapas de: mezclar una solución orgánica con una solución acuosa a una relación de meada de 0.1:20 a 1:20 (v/v); homogenekar la solución mixta para obtener una emulsión; volatilizar un disolvente orgánico de ia emulsión para obtene una suspensión; y secar ía suspensión para obtener nanocápsulas que comprenden capsaicina, ta solución orgánica se prepar mediante la disolución de poiicaproiactona y capsaicina en un disolvente orgánico para la dispersión de la capsaicina. La solución acuosa se prepara por disolución de un agente tensioactivo o surfactante en agua destilada. El método de preparación es distinto al propuesto en la presente invención, ya que a pesar de que emplean caproiactona, no considera ninguna posibilidad de aplicación en el tratamiento térmico de alimentos como lo es la pasteurización. Korean Patent No. 10-0929195 (B1) provides the process for the preparation of nanocapsules comprising capsaicin, which improves the encapsulation efficiency of capsaicin, and nanocapsules comprising capsaicin prepared by said method. A process for preparing nanocapsules comprising capsaicin, which comprises steps of: mixing an organic solution with an aqueous solution at a piss ratio of 0.1: 20 to 1:20 (v / v); homogenize the mixed solution to obtain an emulsion; volatilize an organic solvent of the emulsion to obtain a suspension; and drying the suspension to obtain nanocapsules comprising capsaicin, the organic solution was prepared by dissolving poiicaproiactone and capsaicin in an organic solvent for the dispersion of capsaicin. The aqueous solution is prepared by dissolving a surfactant or surfactant in distilled water. The method of preparation is different from that proposed in the present invention, since although they use caproiactone, it does not consider any possibility of application in the thermal treatment of food such as pasteurization.
La Solícitud Internacional No. PCT/DE2011/002026 (Publicación Internacional No, WO 2012/089184) se refiera a un sistema coloidal portador en la forma de una nanocápsula que comprende al menos los siguientes componentes: un núcleo lipldico liquido, una capa que rodea el núcleo de forma continua, contiene al menos un formador de membrana, emulsionante anióníco natural y por lo menos una cadena sencilla, un oo~ emulsionante no iónico natural seleccionado del grupo de monoieato de glicerilo, monoiinoleato de glicerilo, monoíeato de poliglícerilo, monoiinoleato de polgliceriio. La solicitud de refiere a un sistema utilizado para formar nanoeápsulas a partir de monoleato de glicerilo aplicadas para su penetración en piel, sin que se mencione su aplicación en función a su resistencia al tratamiento térmico. International Application No. PCT / DE2011 / 002026 (International Publication No, WO 2012/089184) refers to a colloidal carrier system in the form of a nanocapsule comprising at least the following components: a lipid nucleus liquid, a layer that surrounds the core continuously, contains at least one membrane-forming, natural anionic emulsifier and at least one single chain, a natural non-ionic o-emulsifier selected from the group of glyceryl monoethate, glyceryl monoiinoleate, polyglycyl monoxide, polyglycerol monoiinoleate. The application refers to a system used to form nano-capsules from glyceryl monoleate applied for penetration into the skin, without mentioning its application based on its resistance to heat treatment.
La Solicitud de Patente Norteamericana Serie No. US2012027825 (A1) se refiere a un método útil para la preparación de nanocápsulas que tienen un núcleo de lipidos liquido y una ciscara sólida y cargada con al menos un agente activo que tiene un carácter hidrófilo, comprendiendo dicho método al menos las etapas que consisten en; i) proporcionar al menos una primera microemulsión que tiene un carácter de agua-aceite, estabilizada con por lo menos un tensoactivo lipofilico que contiene en su fase hidrófila al menos un agente activo que tiene un carácter hidrófilo; si) proporcionar por lo menos una segunda microemulsión, separada de la primera microemulsión, formulada por inversión de fase ele una emulsión y estabilizada con por ai menos un agente tensoactivo hidrófilo no iónico sensible al calor; iii) la adición de dicha primera microemulsión a dicha segunda microemuísión bajo condiciones propicias para la formación de una nueva microemulsión en la que dicho agent activo hidrófilo permanece presente en la fase hidrófila da la primera microemuísión; y, iv) endurecer en frío la mezcla formada en el paso anterior a fin de obtener nanoeápsulas que comprenden dicho agente activo hidrófilo y está formado a partir de un núcleo lípido que es liquido a temperatura ambiente y encapsuiado en una película que es sólida a temperatura ambiente. Además, la invención se refiere a nanoeápsulas que son capaces de ser obtenidas por dicho método. En esa invención se provee un sistema de encapsufación con surfactantes hidrófilos y lipidos sólidos a temperatura ambiente, sin que se analice su capacidad de encapsulación a temperaturas superiores. US Patent Application Series No. US2012027825 (A1) refers to a useful method for the preparation of nanocapsules having a liquid lipid core and a solid shell and loaded with at least one active agent having a hydrophilic character, said said comprising. method at least the stages that consist of; i) providing at least a first microemulsion having a water-oil character, stabilized with at least one lipophilic surfactant that contains in its hydrophilic phase at least one active agent having a hydrophilic character; yes) providing at least a second microemulsion, separated from the first microemulsion, formulated by phase inversion of an emulsion and stabilized with at least one non-ionic hydrophilic heat-sensitive surface active agent; iii) the addition of said first microemulsion to said second microemulsion under conditions conducive to the formation of a new microemulsion in which said hydrophilic active agent remains present in the hydrophilic phase gives the first microemulsion; and, iv) cold hardening the mixture formed in the previous step in order to obtain nano-capsules comprising said hydrophilic active agent and formed from a lipid core that is liquid at room temperature and encapsulated in a film that is solid at temperature ambient. In addition, the invention relates to nano-capsules that are capable of being obtained by said method. In that invention a system of encapsulation with hydrophilic surfactants and solid lipids at room temperature, without analyzing their encapsulation capacity at higher temperatures.
La Patente Norteamericana Serie No, 4814413 so refiere a un polímero termofuridible, adaptado para su uso como un agente adhesivo que contiene un bloque prepoiimero que comprende secuencias de poliuretano y policaproiactona y un grupo libre NCO comprendido entre 1% y 5%. Esta patente describe ia mezcla de dos piopoíímeros poliuretano y policaproiactona que pueda ser aplicada como adhesivo termorresístente; sin embargo no considera la utilización de un agente activo susceptible a ia temperatura que sea sometido a procesos de pasteurización. US Pat. No. 4814413 refers to a thermofurible polymer, adapted for use as an adhesive agent containing a pre-polymer block comprising polyurethane and polycaproiactone sequences and an NCO free group comprised between 1% and 5%. This patent describes the mixture of two polyurethane and polycaproiactone pyopoimers that can be applied as a heat-resistant adhesive; however, it does not consider the use of an active agent susceptible to temperature that is subjected to pasteurization processes.
La Patente Norteamericana Serie o. 8716450 se refiere a nanocápsulas útiles para encapsular moléculas bioactivas tales como las proteínas. Estas nanocápsuias se componen de polímeros y copoiímeros ramificados o hlperramificados y tienen una estructura de núcleo de corteza que forma na bolsa con volumen apropiada para acomplejar y retenar las enzimas y otras moléculas bioactlvas. La molécula bioactiva nanoencapsulado es estable a temperaturas y pH extremos, soluble en solventes acuosos u orgánicos, y se puede liofilizar a un polvo seco para el almacenamiento a largo plazo sin pérdida de actividad da la enzima. La invención describa nanocápsuias cuyo recubrimiento es a base de proteína que mencionan ser estables a temperatura de almacenamiento, más no fueron tratadas térmicamente para analizar su estabilidad durante el proceso de pasteurización. The North American Patent Series o. 8716450 refers to nanocapsules useful for encapsulating bioactive molecules such as proteins. These nanocapsules are made up of branched or hyperbranched polymers and copoiimers and have a crust core structure that forms a bag with appropriate volume to complex and retain enzymes and other bioactive molecules. The nanoencapsulated bioactive molecule is stable at extreme temperatures and pH, soluble in aqueous or organic solvents, and can be lyophilized to a dry powder for long-term storage without loss of enzyme activity. The invention describes nanocapsules whose coating is based on protein that they mention being stable at storage temperature, but were not heat treated to analyze their stability during the pasteurization process.
La Patente Norteamericana Serie No. 6858299 describe un proceso libre de alto contenido de sólidos de emulsión para la preparación de nanoparticulas poliméricas retículadas de 1 a 200nm de diámetro, ta patente desarrollo nanoparticulas con posibles aplicaciones en ia administración de nutracéuticos, per© sin considerar la resistencia térmica de ias mismas. La Solicitud de Patente internacional No. PCT/US 2010/026678 (Publicación internacional No. WO 2010/104865} describe una proteina nanoencapsulada que tiene un núcleo de proteina individual y una cubierta de polímero delgada anclado co- valentemente ai núcleo de la proteina. En esta patente se propone encapsuiar un agente de origen proteico, per© sin que se considere su aplicación para la conservación de alimentos y su estabilidad térmica, ya que únicamente se cubre el tiempo de liberación y su efecto. US Pat. No. 6858299 describes a process free of high content of emulsion solids for the preparation of polymeric nanoparticles reticulated from 1 to 200 nm in diameter, the patent development of nanoparticles with possible applications in the administration of nutraceuticals, but without considering the thermal resistance of the same. International Patent Application No. PCT / US 2010/026678 (International Publication No. WO 2010/104865} describes a nanoencapsulated protein having an individual protein core and a thin polymer shell anchored covalently to the protein core. In this patent it is proposed to encapsulate an agent of protein origin, but without considering its application for food preservation and its thermal stability, since only the release time and its effect are covered.
La Solicitud Internacional da Patente No. PCT/IL2009/000446 (Publicación Internacional WO 2009/130704) proporciona dispersiones coloidalmente estables de nanopariicuias que comprenden beta-iactoglobulina y un pslisacárldo que son transparentes cuando se diluyen en medios acuosos. En particular, estas dispersiones coloidalmente estables de nanopartículas son útiles como vehículos de administración de nutracéutícos hidrofobicos y las vitaminas solubles en grasa para el enriquecimiento de los alimentos, especialmente de bebidas transparentes y de otros alimentos y bebidas sin o bajas en grasa. La presente invención proporciona además métodos para la preparación de dichas dispersiones coloidalmente estables. International Patent Application No. PCT / IL2009 / 000446 (International Publication WO 2009/130704) provides colloidally stable dispersions of nanopariicuias comprising beta-iactoglobulin and a pslisaccharide that are transparent when diluted in aqueous media. In particular, these colloidally stable dispersions of nanoparticles are useful as vehicles for the administration of hydrophobic nutraceuticals and fat-soluble vitamins for the enrichment of foods, especially transparent beverages and other foods and beverages without or low in fat. The present invention further provides methods for the preparation of said colloidally stable dispersions.
La Patente Europea Ho. EP 1 932 429 se refiere a un recubrimiento alimenticio a base de hidrato de celulosa, el cual comprende aditivos a nanoescala integrados en la mat iz formada por el hidrato de celulosa. European Patent Ho. EP 1 932 429 refers to a food coating based on cellulose hydrate, which comprises nanoscale additives integrated in the mat iz formed by cellulose hydrate.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención está relacionada con sistema nanoestructurados como protectore térmicos de ingredientes funcionales, lo cuales comprenden sistemas nanoparticuiados, en dond las nanoparliculas pueden ser nanocápsulas o nanoessferas, y dichas nanopartículas tienen un tamaño de partícula promedio no mayor a 350nm. Dichas nano-cápsulas comprenden: un polímero como membrana protectora; ingredientes funcionales o activos que son Incluidos en el núcleo de la nanocápsula para su protección; agentes estabilizantes, y, la utilización de soluciones soporte a base de polímeros de uso alimenticio, las narsocápsulas son preparadas preferiblemente por el método de emulsific ción-difusión para permitir la nanoencapsulación de sustancias activas lipófilicas. El procedimiento experimental realizado para lograr esto requiere de tres fases; la orgánica, acuosas y dilución The present invention is related to a nanostructured system as thermal protectors of functional ingredients, which comprise nanoparticulate systems, where the nanoparticles can be nanocapsules or nanospheres, and said nanoparticles have an average particle size of not more than 350 nm. Said nano-capsules comprise: a polymer as a protective membrane; functional or active ingredients that are included in the core of the nanocapsule for protection; stabilizing agents, and, the use of support solutions based on polymers for food use, the narsocapsules are preferably prepared by the emulsification-diffusion method to allow nanoencapsulation of lipophilic active substances. The experimental procedure performed to achieve this requires three phases; the organic, aqueous and dilution
Posteriormente, las nanocápasuias son sometidas a un proceso térmico para demostrar la capacidad térmica protectora de dichas nanocápsulas sobre ios Ingredientes funcionales, Subsequently, the nanocápasuias are subjected to a thermal process to demonstrate the protective thermal capacity of said nanocapsules on the functional Ingredients,
OBJETOS DE LA INVENCIÓN OBJECTS OF THE INVENTION
Teniendo en cuenta los defectos de la técnica anterior, es un objeto de la presente invención el proveer sistemas naríoestructuradoa de desarrollo sumamente sencillo, y sin embargo, altamente eficientes como protectores términos de ingredientes funcionales en alimentos y suplemento alimenticios, como lo son entre otros: vitaminas (A, D, E, k), sustancia nutracéutícas isposolubles como omega-3 y 6, aceites esenciales, flavonosdes, antioxidantes, colorantes de origen natural; a fin de desarrollar un alimento funcional adaptado a las actuales demandas nutricionales dadas por el consumidor.  Taking into account the defects of the prior art, it is an object of the present invention to provide extremely simple, and yet highly efficient, narrative-structured systems as protective terms of functional ingredients in food and food supplements, as they are among others: vitamins (A, D, E, k), isosoluble nutraceutical substances such as omega-3 and 6, essential oils, flavonoses, antioxidants, dyes of natural origin; in order to develop a functional food adapted to the current nutritional demands given by the consumer.
Otro objeto más ele la presente invención es proveer sistemas nanoestructurados como protectores térmicos de ingredientes funcionales que puedan ser integrados o agregados a productos alimenticios líquidos, sólidos y semi-sóiidos, incrementando su estabilidad y distribución en dichos productos. Another object of the present invention is to provide nanostructured systems as thermal protectors of functional ingredients that can be integrated or aggregates to liquid, solid and semi-solid food products, increasing their stability and distribution in said products.
Es un objeto más de la presente invención proveer sistemas nanoestructurados como protectores térmicos de ingredientes funcionales en alimentos y suplementos alimenticios coadyuvando a evitar su degradación cuando para su conservación son sometidos a altas temperaturas en procesos tales como pasteurización, escaldado, esterilización, entre otros. It is a further object of the present invention to provide nanostructured systems such as thermal protectors of functional ingredients in foods and food supplements, helping to prevent their degradation when they are subjected to high temperatures for preservation in processes such as pasteurization, scalding, sterilization, among others.
Es aUn más otro objeto d la presente Invención el proveer sistemas nanoestnjoturados como protectores térmicos de ingredientes funcionales en alimentos y suplementos alimenticios que coadyuven a enriquecer, fortificar y reconstituir dichos alimentos durante su transporte y almacenamiento. It is yet another object of the present invention to provide nanostructured systems as thermal protectors of functional ingredients in foods and nutritional supplements that help enrich, fortify and reconstitute said foods during transport and storage.
BREVE DESCRIPCIÓ DE LAS FISURAS BRIEF DESCRIPTION OF THE FISURES
Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, la invención misma, tanto por su organización, asi como por su método de operación, conjuntamente con otros objetos y ventajas de la misma, se comprenderán mejor en la siguiente descripción detallada de una modalidad particularmente preferida de ia presente invención, cuando se lea e relación con los dibujos que se acompañan, en ios cuales:  The novel aspects that are considered characteristic of the present invention will be established with particularity in the appended claims. However, the invention itself, both by its organization, as well as by its method of operation, together with other objects and advantages thereof, will be better understood in the following detailed description of a particularly preferred embodiment of the present invention, when Read the relationship with the accompanying drawings, in which:
La Figura 1 es una micrografia que muestra la morfología de nanocápsulas de fS~ caroteno que asegura la presencia de estos sistemas nanoestructurados capsulares de conformidad con una modalidad particularmente preferida de la presente investigación. La fiura 2 muestra los porcentajes de perdida de β-caroteno a las condicionas de pasteurización en un sistema de superficie raspada, teniendo como pérdida mínima el 5% y máxima 28% {cuando la velocidad de alimentación es menor y por el ende el tiempo de proceso mayor) de estructuras submicrónicas, Figure 1 is a micrograph showing the morphology of fS ~ carotene nanocapsules that ensures the presence of these capsular nanostructured systems in accordance with a particularly preferred embodiment of the present investigation. Figure 2 shows the loss percentages of β-carotene to the pasteurization conditions in a scraped surface system, with a minimum loss of 5% and a maximum of 28% {when the feed rate is lower and therefore the time of major process) of submicron structures,
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención considera la potencial aplicación de la nanotecnología a sistemas alimenticios sometidos a altas temperaturas con la gran ventaja de tener un agente de recubrimiento (membrana) conformado preferiblemente por un polímero capaz de proteger sustancias tormolábiles durante el procesamiento, disminuyendo considerablemente la cantidad de vitaminas o aceites asentíales que se emplean en exceso durante un proceso con el fin de contener al menos lo declarado en la etiqueta.  The present invention considers the potential application of nanotechnology to food systems subjected to high temperatures with the great advantage of having a coating agent (membrane) preferably formed by a polymer capable of protecting tormolabile substances during processing, considerably reducing the amount of vitamins or aseptic oils that are used in excess during a process in order to contain at least what is stated on the label.
Particularmente, ia presente invención se refere a la conservación de alimentos y suplementos alimenticios, y todavía más particularmente» se refiere a ia protección de ingredientes funcionales por medio do su nanoenoapsulación. Las nanocápsuSas cargadas con los ingredientes funcionales pueden ser empleadas como sistemas de enriquecimiento, sustitución, reconstitución y fortificación en productos liquides, sólidos y semisólidos con la finalidad de protegerlas del procesamiento térmico al que son sometidos y que actualmente incrementan los costos de producción debido a la pérdida da estos componentes en las diferentes etapas del proceso, transporte y almacenamiento.  Particularly, the present invention relates to the preservation of food and nutritional supplements, and even more particularly, it refers to the protection of functional ingredients by means of their nano-encapsulation. The nanocapsules loaded with the functional ingredients can be used as enrichment, substitution, reconstitution and fortification systems in liquid, solid and semi-solid products in order to protect them from the thermal processing to which they are subjected and which currently increase production costs due to Loss of these components in the different stages of the process, transport and storage.
En razón de lo anterior, se ha encontrado de manera inesperada que ia nanoencapsulación de ios ingredientes funcionales alimenticios los protege térmicamente en aquellos procesos que requieren calentamiento para la conservación de alimentos, o bien, durante su transporte y almacenamiento para su posterior aplicación en alimentos. De conformidad con una modalidad particularmente preferida de la presente invención, se describen sistemas nanoestructurados como protectores térmicos de ingredientes funcionales ue en términos generales comprenden sistemas nanoparticuiados, en donde dichas nanopartscufas pueden ser nanocápsulas o nanoesferas, siendo preferiblemente nartocápsulas que tienen un tamaño de partícula promedio no mayor a 350nm, y dichas nanocápsuias comprenden; Due to the above, it has been unexpectedly found that the nanoencapsulation of the functional food ingredients protects them thermally in those processes that require heating for food preservation, or, during transport and storage for subsequent application in food. In accordance with a particularly preferred embodiment of the present invention, nanostructured systems are described as thermal protectors of functional ingredients which in general terms comprise nanoparticulate systems, wherein said nanoparticles can be nanocapsules or nanospheres, preferably nartocapsules having an average particle size not greater than 350 nm, and said nanocapsuias include;
(a) un polímero como membrana protectora, en donde dicho polímero es preferiblemente u polímero biodegradable que se selecciona del grupo que comprende: poly-ocaproiaetona, polidioxanorsa, áddo poliglicólico, acido poliláotico, y copolímeros de tos ácidos láctico y glicólico {poliláctico-co-glicólico}, entre otros; utilizando preferiblemente poiy-e-oaproiactona como membrana protectora; (a) a polymer as a protective membrane, wherein said polymer is preferably or biodegradable polymer that is selected from the group comprising: poly-ocaproiaetone, polydioxanorse, polyglycolic acid, polylactic acid, and copolymers of lactic and glycolic acid {polylactic-co -glycolic}, among others; preferably using poiy-e-oaproiactone as a protective membrane;
(b) ingredientes funcionales o activos que son incluidos er el núcleo de la nanoo psula para su protección, en donde dichos ingredientes funcionales se seleccionan de entre:  (b) functional or active ingredients that are included in the core of the nano-psula for protection, wherein said functional ingredients are selected from:
- agentes antioxidantes, vitaminas, aceites esenciales de uso alimenticio, materiales líquidos oleosos y aceites comestibles, seleccionándose del grupo que comprende: tocoferoies, omegas, OHA y aceites esenciales (eugenol, mentól, fímoneno) y extractos esenciales (romero, Rosemary, extractos de limón o naranja), entre otros, y, - materiales sólidos que se disuelven en aceite, tales como: carotenos, quercetirsas, licopeno y carotenos en general. Seleccionándose preferiblemente, el betacaroteno ai 30% disueltoen aceite de maíz;  - antioxidant agents, vitamins, essential oils for food use, oily liquid materials and edible oils, being selected from the group comprising: tocopherics, omegas, OHA and essential oils (eugenol, menthol, fimmoneno) and essential extracts (rosemary, Rosemary, extracts of lemon or orange), among others, and, - solid materials that dissolve in oil, such as: carotenes, quercetirsas, lycopene and carotenes in general. When preferably selected, beta-carotene at 30% dissolved in corn oil;
(c) agentes estabilizantes que se seleccionan del grupo que comprende alcohol polivinílíeo, poioxámeres y poíisorbates; utilizándose preferiblemente alcohol poiiviniiico como agente estabilizante; y, (d) utilización de soluciones soporte a ase de polímeros de uso alimenticio, preferiblemente polisacaridos seleccionados del grupo que comprende: gomas (Carfeoximetll celulosa, hidroxipropslmetil celulosa, xantana, algarrobo, guar, entre otras). (c) stabilizing agents that are selected from the group comprising polyvinyl alcohol, poioxamers and polyisorbates; preferably using polyvinyl alcohol as a stabilizing agent; Y, (d) use of support solutions of polymers for food use, preferably polysaccharides selected from the group comprising: gums (Carfexymethyl cellulose, hydroxypropylmethyl cellulose, xanthan, carob, guar, among others).
Las nanocápsulas son preparadas preferiblemente por el método de emulsificacián-difusíón para permitir la nanoencapsulación de sustancias activas iipófilicas. El procedimiento experimental realzado para lograr esto requiere de tres fases: la orgánica, acuosas y dilución. The nanocapsules are preferably prepared by the emulsification-diffusion method to allow nanoencapsulation of iipophilic active substances. The experimental procedure enhanced to achieve this requires three phases: organic, aqueous and dilution.
Como es bien sabido, las dispersione están compuestas por dos partes, una fase orgánica y una fase acuosa. En razón de lo anterior, para formar la fase orgánica de la dispersión de nanocápsulas preparada en la modalidad particularmente preferida de la presente invención se emplean disolventes orgánicos que se seleccionan preferiblemente de entre disolventes orgánicos parcialmente míscíbles en agua que sean de grado alimenticio, y más preferiblemente seleccionándose aquellos del grupo que comprende propitencarbonato, acetato de etilo, metií-etii-oetona, alcohol bencílico, o mezclas de los mismos, entre otros; utilizándose preferiblemente acetato de etilo como disolvente en la fase orgánica. As is well known, dispersions are composed of two parts, an organic phase and an aqueous phase. In view of the foregoing, in order to form the organic phase of the nanocapsule dispersion prepared in the particularly preferred embodiment of the present invention, organic solvents are used which are preferably selected from partially water-miscible organic solvents that are food grade, and more preferably those selected from the group comprising propitencarbonate, ethyl acetate, methy-eti-oetone, benzyl alcohol, or mixtures thereof, among others; preferably using ethyl acetate as solvent in the organic phase.
El acetato de etilo se encuentra presente en la dispersión en una concentración que va desde 0.06 hasta 1mf, más preferiblemente en una concentración de 0,5mi. Ethyl acetate is present in the dispersion in a concentration ranging from 0.06 to 1mf, more preferably in a concentration of 0.5mi.
Previ© a la formación de la emulsión para ia formación de fas nanocápsulas, es necesario preparar primero las fases orgánica y acuosa, Para ello, ambos disolventes, el disolvente orgánico (acetato d§ etilo) el agua destilada, son saturados uno en el otro para garantizar un equilibrio termodinámico de ambos liquides (sistema aceite/agua), esto es, el acetato de etilo se satura con agua destilada (disolvente orgánico saturado cor? agua), y a su vez, el agua destilada se satura con acetato de etilo (agua saturada con disolvente orgánico). Posteriormente, el polímero {poli-e-caprolactona) y el Ingrediente funcional (betacaroieno ai 305 disuelto en aceite de girasol) se solubillian en el disolvente orgánico (acetato de etilo} para formar asi ía fase orgánica. Prior to the formation of the emulsion for the formation of fas nanocapsules, it is first necessary to prepare the organic and aqueous phases. For this, both solvents, the organic solvent (ethyl acetate) and the distilled water are saturated in each other. to guarantee a thermodynamic equilibrium of both liquids (oil / water system), that is, the ethyl acetate is saturated with distilled water (saturated organic solvent cor? water), and in turn, distilled water is saturated with ethyl acetate (water saturated with organic solvent). Subsequently, the polymer {poly-e-caprolactone) and the Functional Ingredient (betacaroiene ai 305 dissolved in sunflower oil) were solubilized in the organic solvent (ethyl acetate} to thus form the organic phase.
Para formar la fase acuosa, la adición de un estabilizante adecuado evita la formación de grumos del polímero, pues dicho estabilizante actúa como un agente protector tanto para formar la emulsión como para estabilizar las nanoparíículas formadas. El estabilizante (aleono) poiívinílíco} se adiciona en una cantidad que va desde 0.1 hasta 15g 100ml, preferiblemente 6g 100mi. Dicho estabilizante se solubiliza en el agua destilada previamente saturad con el disolvente orgánico, formando asi la fase acuosa. To form the aqueous phase, the addition of a suitable stabilizer prevents the formation of lumps of the polymer, since said stabilizer acts as a protective agent both to form the emulsion and to stabilize the formed nanoparicles. The stabilizer (aleono) poiívinílíco} is added in an amount that goes from 0.1 to 15g 100ml, preferably 6g 100mi. Said stabilizer is solubilized in the distilled water previously saturated with the organic solvent, thus forming the aqueous phase.
Una vez formadas las fases orgánica y acuosa, se procede a preparar la emulsión aceite/agua, y para ello, como se comentó párrafos arriba, se emplea el método emulslficación/difusidn para obtener las nanopartícuias, en donde una cantidad que va desde 0.5 basta 30mi, preferiblemente 20ml de la solución de la fase orgánica se e uísificars cosí una cantidad que va desde 1 hasta lOümi, preferiblemente 4ümf de la fase acuosa y utilizando ya sea un agitador mecánico de velocidad variable (Heidolph# Instruments, tipo 2R1, Schwabach, Alemania) o un equipo de dispersión de alta velocidad {Ultra-Tur ax® T50, ¡KA Labotechník, Staufen, Alemania) para velocidades de entre 2000 a 8000 rpm, utilizándose preferiblemente el agitador de velocidad variable y a una velocidad de entre SO y 30,000 rpm, preferiblemente a 1 00 rpm. El proceso de emulsificacion se lleva a cabo por un espacio de tiempo que va desde 3 minutos hasta 1 hora, preferiblemente 10 minutos, para posteriormente pasar a la etapa de difusión. En la etapa de difusión, se adiciona una cantidad de agua destilada sin saturar que va desde 50 hasta 400ml, preferiblemente desde 180 hasta 2Q0ml, y más preferiblemente 200m!, en donde dicha cantidad de agya induce ¡a salida del disolvente orgánico {acetato de etilo) hacía la fase continua de la emulsión, a fin de lograr la formación de las nanocápsulas. Once the organic and aqueous phases have been formed, the oil / water emulsion is prepared, and for this, as mentioned above, the emulsification / diffusion method is used to obtain the nanoparticles, where an amount ranging from 0.5 is sufficient 30mi, preferably 20ml of the organic phase solution will be used for an amount ranging from 1 to 10, preferably 4mf of the aqueous phase and using either a variable speed mechanical stirrer (Heidolph # Instruments, type 2R1, Schwabach, Germany) or a high-speed dispersion equipment {Ultra-Tur ax® T50, KA Labotechník, Staufen, Germany) for speeds between 2000 and 8000 rpm, preferably using the variable speed agitator at a speed between SO and 30,000 rpm, preferably at 1 00 rpm. The emulsification process is carried out for a period of time ranging from 3 minutes to 1 hour, preferably 10 minutes, to subsequently move on to the diffusion stage. In the diffusion stage, an amount of unsaturated distilled water ranging from 50 to 400ml, preferably from 180 to 2Q0ml, and more preferably 200m !, is added, wherein said amount of water induces the organic solvent out {acetate of ethyl) to the continuous phase of the emulsion, in order to achieve the formation of the nanocapsules.
Finalmente, para obtener las nanocápsulas cargada con el ingrediente funcional {betaoaroteno al 30% disuelto en aceite de girasol), se elimina ei exceso de disolvente orgánico (acetato de etilo) medíante evaporación a una temperatura de 30°C y 70mm de Hg, en donde las condiciones anteriores van a estar en función .del disolvente y !a sensibilidad del polímero utilizados. Finally, to obtain the nanocapsules loaded with the functional ingredient {30% betaoarotene dissolved in sunflower oil), excess organic solvent (ethyl acetate) is removed by evaporation at a temperature of 30 ° C and 70mm Hg, in where the above conditions will depend on the solvent and the sensitivity of the polymer used.
En principio el sistema obtenido es estable con potencial zeta de » -40 mV y tallas de partícula que va desde SO hasta 800nm, constituido de un polímero bíodagradable {poiy-e~caprolactona) e ingredientes funcionales como el ^-caroteno. In principle, the system obtained is stable with zeta potential of »-40 mV and particle sizes ranging from SO up to 800 nm, consisting of a bio-pleasant polymer {poiy-e ~ caprolactone) and functional ingredients such as ^ -carotene.
El producto obtenido consiste en una suspensión de nanopartíeuías que puede ser sometido a secado por aspersión empleando diferentes vehículos como la carboximetil celuluosa, hidroxipropilmetifceluiosa, maliotíextrinas, mucíiagos, entre otros; o bien, incorporáis© directamente a alimentos líquidos como parto de la formulación. The product obtained consists of a suspension of nanoparties that can be subjected to spray drying using different vehicles such as carboxymethyl cellulose, hydroxypropylmethylcellulose, maliotyxtrins, mucilages, among others; or, you incorporate directly into liquid foods as delivery of the formulation.
El producto asi obtenido es sometido a un proceso térmico para demostrar la capacidad térmica protectora de las nanocápsuias sobre ios principios aditivos descritos con anterioridad. The product thus obtained is subjected to a thermal process to demonstrate the protective thermal capacity of nanocapsuias on the additive principles described above.
La presente invención será mejor entendida a partir de ios ejemplos que a continuación se describen, ios cuales se presentan únicamente con fines ilustrativos, más no limitativos, sino para permitir la comprensión c b l de las modalidades de la presente invención, sin que ello implique q no existan otras modalidades que no fueron descritas aquí y que puedan ser llevadas a la práctica con bas en ia descripción detallada de dichas modalidades de ia descripción de la presente invención. The present invention will be better understood from the examples described below, which are presented for illustrative purposes only, but not limited to, but to allow the understanding of the modalities of the present invention, without implying that there are no other modalities that were not described here and that can be implemented based on the detailed description of said modalities of The description of the present invention.
Figure imgf000016_0001
Figure imgf000016_0001
Formación de Nanocápaufas;  Formation of Nanocápaufas;
a) en yn embudo cíe separación se agregan 120 mf de agua y 80 mi de acetato de etilo, se agita y se espera a que se separen ias fases;  a) in a funnel separating 120 mf of water and 80 ml of ethyl acetate, stirring and wait for the phases to separate;
b) se toman 80 mi de agua previamente saturada con el solvente orgánico y se agregan a 4 g de pluronic P-127, se agit hasta que esté disuelto;  b) 80 ml of water previously saturated with the organic solvent are taken and added to 4 g of pluronic P-127, stirred until dissolved;
o) se toman 40 mi de acetato de etilo previamente saturado con agua y se adicionan a 0.4 g de poly-s-caprolactona y 0.5 g de ingrediente funcional (nutracéutico) en este caso 8~caroteno al 30% (p/p) previamente disuelto en aceite de girasol, Se agitan los componentes hasta que se disuelvan por completo;  o) 40 ml of ethyl acetate previously saturated with water are taken and added to 0.4 g of poly-s-caprolactone and 0.5 g of functional ingredient (nutraceutical) in this case 8 ~ 30% carotene (w / w) previously dissolved in sunflower oil, the components are stirred until they dissolve completely;
d) ambas soluciones de emuisifican a 4000 rpm por agitación mecánica (Ultra- Turrax T50, I A®, Staufen, Alemania con un S25 -2S Gs IKA® como elemento dispersor) durante 10 minutos; d) both solutions emuisify at 4000 rpm by mechanical agitation (Ultra-Turrax T50, IA®, Staufen, Germany with an S25 -2S G s IKA® as dispersing element) for 10 minutes;
e) se adicionan 380 mi de agua para fomentar la difusión y la formación de estructuras nanooapsulares con agitación a 4000 rpm por agitación mecánica en eí ultraturrax por 10 minutos; y,  e) 380 ml of water are added to promote the diffusion and formation of nano-encapsulated structures with stirring at 4000 rpm by mechanical agitation in the ultraturrax for 10 minutes; Y,
f) el disolvente orgánico y una porción de agua fueron eliminados de ia suspensión de nanocápsulas través de evaporación (Rotavapor IKA® RV10, E.UA) a 30 *C bajo 400 mm Hg de presión. Proceso da pasteurización: f) the organic solvent and a portion of water were removed from the nanocapsule suspension through evaporation (Rotavapor IKA® RV10, E.UA) at 30 * C under 400 mm Hg pressure. Pasteurization process:
El proceso ció pasteurización da un fluido modelo (dispersión de CMC 0.5%) con concentración inicial de nanocápsuias de 60 pg/mi ( tamaño promedio de partícula 300 nm, IPD 0,16 potencial zeta de -38 rnV) e un Intetcarnbiador de superficie raspada empleando una velocidad de alimentación 82.8 %« presión del vapor 1.24 bar y velocidad de rotación de las aspas 285 rmp, manteniendo constante ia etapa de enfriamiento con una velocidad de agua helada de 8 Umm analizando la concentració fina! de β-caroíeno mediante mediciones espectrales. El tiempo de reducción decimal {□} considerado para la pasteurización dei producto fue D - 5 roín. La pérdida máxim de beta-caroteno después del proceso de pasteurización fue de 16 %, mientras que cuando estas son empleadas en el sistema sin anoapsuiar las pérdidas son de 45 %, lo que hace posible establecer que el polímero encapsuiante ejerce un efecto protector e el procesamiento a alfas temperaturas. Además en condiciones extremas (tiempo de tratamiento d 10 min) las pérdidas máximas en nanocápsuias fueron do! 26 %, mientras que para sistemas sin encapsular fue superior al 60 %.  The pasteurization process gives a model fluid (0.5% CMC dispersion) with initial nanocapsule concentration of 60 pg / mi (average particle size 300 nm, IPD 0.16 zeta potential of -38 rnV) and a scraped surface Intetcarnbiator using a feed rate 82.8% «steam pressure 1.24 bar and blade rotation speed 285 rmp, keeping the cooling stage constant with an ice water speed of 8 Umm analyzing the fine concentration! of β-caroíeno by means of spectral measurements. The decimal reduction time {□} considered for the pasteurization of the product was D - 5 roín. The maximum loss of beta-carotene after the pasteurization process was 16%, while when these are used in the system without annepsuising the losses are 45%, which makes it possible to establish that the encapsulating polymer exerts a protective effect on the high temperature processing. Furthermore, in extreme conditions (treatment time d 10 min) the maximum losses in nanocapsuias were do! 26%, while for non-encapsulated systems it was greater than 60%.
Aún cuando en la anterior descripción se ha hecho referencia a ciertas modalidades de sistemas nanoesfrueturados como protectores térmicos de ingredientes funcionales en alimentos y suplementos alimenticios de ia presente invención, debe hacerse hincapié en que son posibles numerosas modificaciones a dichas modalidades, pero sin apartarse dei verdadero alcance de la invención, tales como el cambio de ingrediente funcional, la concentración de los componentes dei sistema; entre muchas otras modificaciones. Por lo tanto, la presente invención no debe ser restringida excepto por lo establecido en el estado de la técnica y por las reivindicaciones anexas. Even though in the previous description reference has been made to certain modalities of nanospecified systems as thermal protectors of functional ingredients in foods and food supplements of the present invention, it should be emphasized that numerous modifications to said modalities are possible, but without departing from the true scope of the invention, such as the change of functional ingredient, the concentration of system components; among many other modifications. Therefore, the present invention should not be restricted except as set forth in the prior art and by the appended claims.

Claims

NOVEDAD DE LA INVENCIÓN  NEW OF THE INVENTION
REIVINDICACIONES
1. ~ Un sistema nanoesfnucturado como protector térmico de ingredientes funcionales que comprendan sistemas nanoparticulados, en donde dichas nanopartícylas pueden ser nanocápsuías o nsrtoesfsras. 1. ~ A nanostructured system as a thermal protector of functional ingredients comprising nanoparticulate systems, wherein said nanoparticles can be nanocapsuías or nsrtoesfsras.
2. - El sistema nanoesíructurado como protector térmico de ingredientes funcionales de conformidad con la reivindicación 1, caracterizado además porque las nanopartícuías son nanocápsuías que tienen un tamaño de partícula promedio no mayor a 350nm. 2. - The nanostructured system as a thermal protector of functional ingredients according to claim 1, further characterized in that the nanoparticles are nanocapsules having an average particle size of not more than 350 nm.
3. - El sistema nanoesíructurado como protector térmico de ingredientes funcionales de conformidad con l reivindicación 2; caracterizado además porque las nanocápsuías comprenden; 3. - The nanostructured system as a thermal protector of functional ingredients according to claim 2 ; further characterized in that the nanocapsuies comprise;
(a) un polímero como membrana protectora, en donde dicho polímero es un polímero biodegradable que se selecciona del grupo que comprende: poiy-ε- caprolaclona, polidíoxanona, ácido poliglicóííco, acido poiiiáctíco, y copoíímeros de los ácidos táctico y glícófico (políláctíco-co-glicólíco), entre oíros;  (a) a polymer as a protective membrane, wherein said polymer is a biodegradable polymer that is selected from the group comprising: poiy-ε-caprolaclone, polydioxanone, polyglycolic acid, poiiiactic acid, and co-polymers of tactical and glycophic acids (polylactic- co-glycolic), among others;
(b) ingredientes funcionales o activos que son incluidos en el núcleo de la rtanocápsuia pw^ su protección, en donde dichos ingredientes funcionales se seleccionan de entre:  (b) functional or active ingredients that are included in the core of rtanocápsuia pw ^ their protection, wherein said functional ingredients are selected from:
* agentes antíoxidantes, vitaminas, aceites esenciales de uso alimenticio, materiales líquidos oleosos y aceites comestibles, seleccionándose del grupo que comprende: tocoferoles, omegas, DHA y aceites esenciales (eugenol mente!, límoneno) y extractos esenciales {romero, Rosemary, extractos de limón o naranja), entre otros; * materiales sólidos que se disuelven en aceite, tales como: carotenos, quereetinas, licopeno y carotenos en general; * antioxidant agents, vitamins, essential oils for food use, oily liquid materials and edible oils, being selected from the group comprising: tocopherols, omegas, DHA and essential oils (eugenol mind !, limonene) and essential extracts {rosemary, Rosemary, extracts of lemon or orange), among others; * solid materials that dissolve in oil, such as: carotenes, quereetinas, lycopene and carotenes in general;
(c) agentes estabilizantes que se seleccionan del grupo que comprende alcohol poiivinílico, poloxámeros y polísorbatos; y,  (c) stabilizing agents that are selected from the group comprising polyvinyl alcohol, poloxamers and polysorbates; Y,
(d) utilización de soluciones soporte a base de polímeros de uso alimenticio, preferiblemente polisacáridos seleccionados del grupo que comprende; gomas CCarboximefif celulosa, hídroxipropilmetíl celulosa, xantana, algarrobo, guar, entre otras),  (d) use of support solutions based on polymers for food use, preferably polysaccharides selected from the group comprising; CCarboximefif cellulose, hydroxypropylmethyl cellulose, xanthan, carob, guar, among others),
4,« El sistema nanoestructurado como protector térmico de ingredientes funcionales de conformidad con la reivindicación 3, caracterizado además porque ei polímero utilizado como membrana protectora es peiy-e-caprolacfona, β.- E! sistema nanoestructurado como protector térmico de ingredientes funcionales de conformidad con la reivindicación 3, caracterizado además porque e! ingrediente funcional es betacaroteno ai 30% disuelio en aceite de maíz. 4, " The nanostructured system as a thermal protector of functional ingredients according to claim 3, further characterized in that the polymer used as a protective membrane is peiy-e-caprolacfone, β.- E! Nanostructured system as thermal protector of functional ingredients according to claim 3, further characterized in that e! Functional ingredient is beta carotene ai 30% dissolved in corn oil.
6. - El sistema nanoestructurado como protector térmico de ingredientes funcionales de conformidad con la reivindicación 3, caracterizado además porque ei agente estabilizante es alcohol poiivinílico, 6. - The nanostructured system as a thermal protector of functional ingredients according to claim 3, further characterized in that the stabilizing agent is polyvinyl alcohol,
7. ~ El sistema nanoestructurado como protector térmico de ingredientes foncionaies de conformidad con las reivindicaciones 1 a 8, caracterizado además porque las nanocápsulas son preparadas por el método de emulsificación-difusión para permitir la nanoencapsuiación de sustancias activas lipofilicas. 7. The nanostructured system as a thermal protector of phonation ingredients according to claims 1 to 8, further characterized in that the nanocapsules are prepared by the emulsification-diffusion method to allow nanoencapsuation of lipophilic active substances.
8. ~ El sistema nanoestructurado como protector térmico de ingredientes funcionales de conformidad con la reivindicación 7, caracterizado además porque las nanocápsulas son sometidos a un proceso térmico, tal como un proceso d© pasteurización, entre otros, para demostrar la capacidad térmica protectora de nanocápsulas sobre los ingredientes funcionales. 8. The nanostructured system as a thermal protector of functional ingredients according to claim 7, further characterized in that the nanocapsules are subjected to a thermal process, such as a process © Pasteurization, among others, to demonstrate the protective thermal capacity of nanocapsules over functional ingredients.
PCT/MX2015/000115 2014-08-12 2015-08-12 Nanostructured systems as thermal protectors of functional ingredients in foods and food supplements WO2016024856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2014/009687 2014-08-12
MX2014009687A MX2014009687A (en) 2014-08-12 2014-08-12 Nanostructured system as thermal protectors of functional ingredients in food and food supplements.

Publications (1)

Publication Number Publication Date
WO2016024856A1 true WO2016024856A1 (en) 2016-02-18

Family

ID=55304398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2015/000115 WO2016024856A1 (en) 2014-08-12 2015-08-12 Nanostructured systems as thermal protectors of functional ingredients in foods and food supplements

Country Status (2)

Country Link
MX (1) MX2014009687A (en)
WO (1) WO2016024856A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107510057A (en) * 2017-10-09 2017-12-26 无锡盛雅生物科技有限公司佛山分公司 A kind of preparation method of mackerel fish oil and fat-soluble tea polyphenol complex microsphere
CN108359229A (en) * 2018-01-09 2018-08-03 浙江理工大学 A kind of enhanced polylactic acid acidic group composite material and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040434A1 (en) * 2007-09-26 2009-04-02 Dsm Ip Assets B.V. Microparticle comprising cross-linked polymer
KR20090065616A (en) * 2007-12-18 2009-06-23 한국식품연구원 A nano-capsule comprising capsaicin and process for preparing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040434A1 (en) * 2007-09-26 2009-04-02 Dsm Ip Assets B.V. Microparticle comprising cross-linked polymer
KR20090065616A (en) * 2007-12-18 2009-06-23 한국식품연구원 A nano-capsule comprising capsaicin and process for preparing the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FERNANDA S. POLETTO ET AL.: "Nanocosmetics and Nanomedicines", CÁPITULO 3 POLYMERIC NANOCAPSULES: CONCEPTS AND APPLICATIONS (ABSTRACT, 2011, ISBN: 978-3-642-19792-5, Retrieved from the Internet <URL:http://www.springer.com/gp/book/9783642197918?wt_mc=ThirdParty.SpringerLink.3.EPR653.AbouteBook> [retrieved on 20151019] *
GONZALEZ-REZA R.M ET AL.: "Nanocapsules of b-carotene: Thermal degradation kinetics in a scraped surface heat exchanger (SSHE", LWT - FOOD SCIENCE AND TECHNOLOGY, vol. 60, 2015, pages 124 - 130, XP029079578, doi:10.1016/j.lwt.2014.09.020 *
JOUBERT ELIZABETH ET AL.: "Use of green rooibos (Aspalathus linearis) extract and water-soluble nanomicelles of green rooibos extract encapsulated with ascorbic acid for enhanced aspalathin content in ready-to-drink iced teas''.", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 58, no. 20, 2010, pages 10965 - 10971, ISSN: 1520-5118 *
LV YI ET AL.: "Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation''.", FOOD HYDROCOLLOIDS, vol. 35, 2014, pages 305 - 314, ISSN: 0268-005X *
MORA-HUERTA C.E. ET AL.: "Polymer-based nanocapsules for drug delivery", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 385, 2010, pages 113 - 142, XP026814030 *
SÁIZ-ABAJO MARÍA-JOSÉ ET AL.: "Thermal protection of [beta]-carotene in re-assembled casein micelles during different processing technologies applied in food industry''.", FOOD CHEMISTRY ENGLAND, vol. 138, no. 2-3, 2013, pages 1581 - 1587, XP028977584, ISSN: 0308-8146, doi:10.1016/j.foodchem.2012.11.016 *
SANAZ ABDOLMOHAMMADI ET AL.: "Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles", INT. J. MOL. SCI., vol. 13, 2012, pages 4508 - 4522, XP055184136, doi:10.3390/ijms13044508 *
SINHA V.R. ET AL.: "Poly-_-caprolactone microspheres and nanospheres: an overview", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 278, 2004, pages 1 - 23, XP055198204, doi:10.1016/j.ijpharm.2004.01.044 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107510057A (en) * 2017-10-09 2017-12-26 无锡盛雅生物科技有限公司佛山分公司 A kind of preparation method of mackerel fish oil and fat-soluble tea polyphenol complex microsphere
CN108359229A (en) * 2018-01-09 2018-08-03 浙江理工大学 A kind of enhanced polylactic acid acidic group composite material and preparation method

Also Published As

Publication number Publication date
MX2014009687A (en) 2016-02-11

Similar Documents

Publication Publication Date Title
Taheri et al. Gum-based nanocarriers for the protection and delivery of food bioactive compounds
Dai et al. Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method
Pisoschi et al. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity-A critical view
Ganesan et al. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery
Esfahani et al. Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation
Akhavan et al. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals
Azar et al. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients
Hu et al. Fabrication of surfactant-stabilized zein nanoparticles: A pH modulated antisolvent precipitation method
Recharla et al. Novel technologies to enhance solubility of food-derived bioactive compounds: A review
Kumar et al. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications
Zhong et al. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications
Shin et al. Recent developments in nanoformulations of lipophilic functional foods
Sagalowicz et al. Delivery systems for liquid food products
McClements et al. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity
JP5933709B2 (en) Method of forming an encapsulated composition having enhanced solubility and stability
Machado et al. Recent strategies in resveratrol delivery systems
Walia et al. Methods for nanoemulsion and nanoencapsulation of food bioactives
Arpagaus Production of food bioactive-loaded nanoparticles by nano spray drying
Vahidmoghadam et al. Characteristics of freeze-dried nanoencapsulated fish oil with whey protein concentrate and gum arabic as wall materials
Panigrahi et al. Nanoencapsulation strategies for lipid-soluble vitamins
Bhushani et al. Nanodelivery of nutrients for improved bioavailability
Asghar et al. Nutraceutical formulation strategies to enhance the bioavailability and efficiency: An overview
Shirvani et al. Fabrication of edible solid lipid nanoparticle from beeswax/propolis wax by spontaneous emulsification: Optimization, characterization and stability
Tang et al. Fish skin gelatin-based emulsion as a delivery system to protect lipophilic bioactive compounds during in vitro and in vivo digestion: The case of benzyl isothiocyanate
Melnikov et al. Colloidal emulsion based delivery systems for steroid glycosides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832345

Country of ref document: EP

Kind code of ref document: A1