WO2016024821A2 - 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016024821A2
WO2016024821A2 PCT/KR2015/008473 KR2015008473W WO2016024821A2 WO 2016024821 A2 WO2016024821 A2 WO 2016024821A2 KR 2015008473 W KR2015008473 W KR 2015008473W WO 2016024821 A2 WO2016024821 A2 WO 2016024821A2
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
resource
terminal
information
Prior art date
Application number
PCT/KR2015/008473
Other languages
English (en)
French (fr)
Other versions
WO2016024821A3 (ko
Inventor
김학성
서한별
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP15831412.0A priority Critical patent/EP3182767A2/en
Priority to CN201580049086.XA priority patent/CN106797530A/zh
Priority to KR1020177004714A priority patent/KR20170044657A/ko
Priority to JP2017507845A priority patent/JP2017528067A/ja
Priority to US15/502,980 priority patent/US20170238260A1/en
Publication of WO2016024821A2 publication Critical patent/WO2016024821A2/ko
Publication of WO2016024821A3 publication Critical patent/WO2016024821A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for controlling transmission power of D2D communication in a wireless communication system supporting device to device communication and a device supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • the purpose of this specification is to define D2D control information required for demodulating D2D data in performing direct communication between terminals.
  • an object of the present specification is to provide a method for transmitting and receiving D2D control information and D2D data.
  • an object of the present specification is to provide a method for distinguishing transmission power control information of cellular communication and D2D communication.
  • an object of the present specification is to provide a method for distinguishing transmission power control information of SA and D2D data in D2D communication.
  • the present specification provides a method for performing a transmission power control (TPC) of the D2D communication in a wireless communication system supporting device-to-device (D2D) communication, by a first terminal
  • the method may include obtaining a resource pool for use in D2D communication, wherein the resource pool transmits a scheduling assignment resource pool or a D2D data indicating a resource area where an SA is transmitted.
  • At least one of a data resource pool representing a resource region to be managed Transmitting a scheduling assignment (SA) including information related to D2D data transmission to the second terminal through the SA resource pool; And transmitting D2D data to the second terminal, wherein the resource pool is included in a first downlink control information (DCI) format, and the first DCI format is a PDCCH (Physical Downlink Control Channel).
  • SA scheduling assignment
  • DCI downlink control information
  • PDCCH Physical Downlink Control Channel
  • the first DCI format is characterized by being masked with a cyclic redundancy check (CRC) with a D2D-RNTI (Radio Network Temporary Identifier).
  • CRC cyclic redundancy check
  • D2D-RNTI Radio Network Temporary Identifier
  • control information is characterized in that the transmission power control (TPC) command (command).
  • TPC transmission power control
  • the first DCI format includes a plurality of TPC commands, and when the terminal has two or more TPC commands, the plurality of TPC commands are grouped by the terminal.
  • each group is characterized by being divided into a group index.
  • the first DCI format is characterized by including an indication field for distinguishing whether it is for cellular communication or D2D communication.
  • control information is characterized by being divided into a TPC command in the cellular communication and a TPC command in the D2D communication.
  • the even index of the control information is a TPC command in cellular communication
  • the odd index of the control information is a TPC command in D2D communication.
  • control information related to transmission power control of the SA and control information related to transmission power control of the D2D data may be distinguished by different RNTIs.
  • a part of the D2D RNTI represents control information related to transmission power control of an SA
  • the remaining part of the D2D RNTI represents control information related to transmission power control of D2D data.
  • the first DCI format is a D2D DCI format, a DCI format 3, or a DCI format 3A.
  • the present specification provides a wireless terminal in a first terminal for performing a transmission power control (TPC) of the D2D communication in a wireless communication system supporting direct device-to-device (D2D) communication, RF (Radio Frequency) unit for transmitting and receiving a signal; And a processor operatively connected to the RF unit, the processor obtaining a resource pool for use in D2D communication, wherein the resource pool indicates a resource region to which an SA is transmitted.
  • TPC transmission power control
  • D2D direct device-to-device
  • RF Radio Frequency
  • SA scheduling assignment
  • SA scheduling assignment
  • PDCCH Physical Downlink Control Channel
  • the present specification has the effect of increasing the efficiency of resource use and reduce the transmission delay by transmitting and receiving each or together D2D control information and D2D data.
  • the present specification has the effect of efficiently controlling the power of the D2D transmitting terminal by defining a new field for adjusting the SA transmission power and the D2D data transmission power.
  • the present specification has the effect of reducing the power consumption of the D2D UE by operating in the D2D RX mode or the DTX mode in the D2D SF in which SA and / or D2D data is not transmitted.
  • the present specification has the effect of reducing the burden on the monitoring of the D2D terminal by using the indication information indicating the D2D SF that the D2D-related information is transmitted and received.
  • the present specification can distinguish the transmission power control information of the cellular communication and D2D communication, there is an effect that it is possible to perform the transmission power control more easily and quickly in the terminal.
  • the present specification can distinguish the transmission power control information of the SA and the D2D data in the D2D communication, there is an effect that can perform D2D communication more quickly and accurately.
  • the present specification newly defines the D2D RNTI, and by transmitting the D2D TPC command through this, it is possible to more easily and quickly perform the D2D power control in the terminal.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 shows an example of a form in which PUCCH formats are mapped to a PUCCH region of an uplink physical resource block in a wireless communication system to which the present invention can be applied.
  • FIG. 6 shows a structure of a CQI channel in the case of a normal CP in a wireless communication system to which the present invention can be applied.
  • FIG. 7 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • FIG. 8 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • FIG 9 shows an example of a subframe structure according to cross carrier scheduling in a wireless communication system to which the present invention can be applied.
  • MIMO 10 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • FIG. 11 illustrates a channel from a plurality of transmit antennas to one receive antenna.
  • FIG. 12 illustrates relay node resource partitioning in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating an example of a reference signal pattern mapped to a downlink resource block (RB) pair defined in a 3GPP LTE system.
  • RB downlink resource block
  • FIG. 14 is a diagram for conceptually explaining D2D communication in a wireless communication system to which the present invention can be applied.
  • 16 shows an example in which discovery resources are allocated.
  • 17 is a diagram briefly illustrating a discovery process.
  • FIG. 18 is a diagram illustrating an example of a method of transmitting / receiving D2D control information and D2D data.
  • 19 illustrates another example of a method of transmitting / receiving D2D control information and D2D data.
  • 20 is a diagram illustrating another example of a method of transmitting / receiving D2D control information and D2D data.
  • 21 is a diagram illustrating an example of a method for setting D2D control information according to a D2D transmission mode.
  • 22 is a diagram illustrating an example of a timing relationship between SG reception and SA transmission in a D2D terminal.
  • 23 is a flowchart illustrating an example of a timing relationship between SG reception and SA transmission in a D2D terminal.
  • 24 to 25 illustrate another example of a timing relationship between SG reception and SA transmission in a D2D terminal.
  • 26 to 28 illustrate examples of timing relationships between D2D SA transmissions and D2D data transmissions.
  • 29 is a flowchart illustrating an example of a D2D data transmission / reception method.
  • 30 to 33 are diagrams illustrating examples of a method for indicating a location of an SA resource and / or a D2D data resource.
  • 34 is a flowchart illustrating an example of a UE scheduling method for D2D transmission.
  • 35 is a diagram illustrating an example of a UE scheduling method for D2D transmission using RRC signaling.
  • 36 illustrates an example of a UE scheduling method for D2D transmission using a physical layer channel.
  • FIG. 37 is a flowchart illustrating an example of a method of performing a HARQ procedure for an SG.
  • FIG. 38 is a diagram illustrating an example of a D2D operation procedure to which the method proposed in this specification and a signaling transmission / reception method related thereto may be applied.
  • FIG. 39 shows an example of a flowchart associated with the method of FIG. 38.
  • 40 is a flowchart illustrating an example of an SA transmission method to which the method proposed in the present specification can be applied.
  • FIG. 41 is a flowchart illustrating an example of another method of transmitting SA to which a method proposed in this specification can be applied.
  • FIG. 41 is a flowchart illustrating an example of another method of transmitting SA to which a method proposed in this specification can be applied.
  • 43 is a view for explaining the basic concept of uplink power control.
  • FIG. 44 illustrates a method of performing power control on SA and data using DCI format 3 to which a method proposed in this specification can be applied.
  • FIG. 45 is a diagram illustrating a method of performing power control on SA and data using DCI format 3A to which the method proposed in this specification can be applied.
  • 46 is a flowchart illustrating an example of a power control method of D2D communication to which the method proposed in the present specification can be applied.
  • FIG. 47 is a diagram illustrating an example of a DCI format 3 / 3A configuration proposed in the specification.
  • FIG. 47 is a diagram illustrating an example of a DCI format 3 / 3A configuration proposed in the specification.
  • FIG. 48 is a diagram illustrating another example of a configuration of DCI format 3 / 3A proposed in the present specification.
  • 49 is a flowchart illustrating an example of a power control method of D2D communication proposed in the present specification.
  • 50 is a diagram illustrating an example of an internal block diagram of a wireless communication apparatus to which the methods proposed herein may be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Figure 1 (a) illustrates the structure of a type 1 radio frame.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two slots in the time domain.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • RBs resource blocks
  • 3GPP LTE uses OFDMA in downlink, so OFDM
  • the symbol is for representing one symbol period.
  • the OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • FIG. Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • Uplink-Downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number 0 One 2 3 4 5 6 7 8 9 0 5 ms D S U U U D S U U U One 5 ms D S U U D D S U U D 2 5 ms D S U D D D S U D D 3 10 ms D S U U U D D D D D D 4 10 ms D S U U D D D D D D 5 10 ms D S U D D D D D D D D D 6 5 ms D S U U U U D S U U D S U U D
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents DwPTS
  • GP UpPTS
  • UpPTS Indicates a special subframe consisting of three fields.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • the structure of the radio frame is only one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal It may carry a set of transmission power control commands for the individual terminals in the group, activation of Voice over IP (VoIP), and the like.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI downlink control information
  • the PDCCH has a different size and use of control information according to the DCI format, and a different size according to a coding rate.
  • DCI formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A, and 4 are defined.
  • DCI formats 0, 1A, 3, and 3A are defined to have the same message size in order to reduce the number of blind decoding, which will be described later.
  • These DCI formats are based on the purpose of the control information to be transmitted: i) DCI formats 0, 4, and ii) DCI formats 1, 1A, 1B, 1C, 1D, 2, and 2A used for downlink scheduling assignment. , 2B, 2C, and iii) DCI formats 3 and 3A for power control commands.
  • DCI format 0 used for uplink grant, a carrier indicator necessary for carrier aggregation to be described later, an offset used to distinguish DCI format 0 and 1A, and a flag for format 0 / format 1A differentiation
  • a frequency hopping flag indicating whether frequency hopping is used in link PUSCH transmission, information on resource block assignment that a UE should use for PUSCH transmission, modulation and coding scheme New data indicator used for emptying the buffer for initial transmission in relation to the HARQ process, TPC command for scheduled for PUSCH, and cyclic shift for demodulation reference signal (DMRS).
  • Information (cyclic shift for DMRS and OCC index), UL index and channel quality indicator required for TDD operation And the like (CSI request).
  • DCI format 0 uses synchronous HARQ, it does not include a redundancy version like DCI formats related to downlink scheduling allocation.
  • carrier offset if cross carrier scheduling is not used, it is not included in the DCI format.
  • DCI format 4 is new in LTE-A Release 10 and is intended to support spatial multiplexing for uplink transmission in LTE-A.
  • the DCI format 4 further includes information for spatial multiplexing as compared to the DCI format 0, and thus has a larger message size, and further includes additional control information in the control information included in the DCI format 0. That is, the DCI format 4 further includes a modulation and coding scheme for the second transport block, precoding information for multi-antenna transmission, and sounding reference signal request (SRS request) information.
  • SRS request sounding reference signal request
  • DCI formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, and 2C related to downlink scheduling allocation do not significantly support spatial multiplexing, but 1, 1A, 1B, 1C, 1D and 2, which support spatial multiplexing, It can be divided into 2A, 2B, and 2C.
  • DCI format 1C supports only frequency continuous allocation as a compact downlink allocation and does not include a carrier offset and a redundant version as compared to other formats.
  • DCI format 1A is a format for downlink scheduling and random access procedures. This includes an indicator indicating whether carrier offset, downlink distributed transmission is used, PDSCH resource allocation information, modulation and coding scheme, redundancy version, HARQ processor number to inform processor used for soft combining, HARQ
  • the process may include a new data offset used to empty the buffer for initial transmission, a transmit power control command for PUCCH, and an uplink index required for TDD operation.
  • DCI format 1 In the case of DCI format 1, most of the control information is similar to DCI format 1A. However, compared to DCI format 1A related to continuous resource allocation, DCI format 1 supports non-contiguous resource allocation. Therefore, DCI format 1 further includes a resource allocation header, so that control signaling overhead is somewhat increased as a trade-off of increasing flexibility of resource allocation.
  • DCI formats 1B and 1D are common in that precoding information is further included as compared with DCI format 1.
  • DCI format 1B includes PMI verification and DCI format 1D includes downlink power offset information.
  • the control information included in the DCI formats 1B and 1D is mostly identical to that of the DCI format 1A.
  • the DCI formats 2, 2A, 2B, and 2C basically include most of the control information included in the DCI format 1A, and further include information for spatial multiplexing. This includes the modulation and coding scheme, the new data offset, and the redundancy version for the second transport block.
  • DCI format 2 supports closed-loop spatial multiplexing, while 2A supports open-loop spatial multiplexing. Both contain precoding information.
  • DCI format 2B supports dual layer spatial multiplexing combined with beamforming and further includes cyclic shift information for DMRS.
  • DCI format 2C can be understood as an extension of DCI format 2B and supports spatial multiplexing up to eight layers.
  • DCI formats 3 and 3A may be used to supplement transmission power control information included in DCI formats for uplink grant and downlink scheduling assignment, that is, to support semi-persistent scheduling.
  • DCI format 3 1 bit per terminal and 2 bit in 3A are used.
  • Any one of the above-described DCI formats may be transmitted through one PDCCH, and a plurality of PDCCHs may be transmitted in a control region.
  • the terminal may monitor the plurality of PDCCHs.
  • DCI Format 0 Information transmitted through DCI format 0 is as follows.
  • Carrier indicator- consists of 0 or 3 bits.
  • Flag to distinguish DCI format 0 and format 1A-It consists of 1 bit, 0 value indicates DCI format 0, and 1 value indicates DCI format 1A.
  • Frequency Hopping Flag – consists of 1 bit. If necessary, this field may be used for multi-cluster allocation of the most significant bit (MSB) of the corresponding resource allocation.
  • Resource block assignment and hopping resource allocation It consists of bits.
  • N UL _ hop most significant bits are used to obtain a value of.
  • Bit provides resource allocation of the first slot within an uplink subframe.
  • Bits provide resource allocation within an uplink subframe.
  • resource allocation information is obtained from a concatenation of a frequency hopping flag field and a resource block allocation and a hopping resource allocation field. Bits provide resource allocation within an uplink subframe. In this case, the P value is determined by the number of downlink resource blocks.
  • Modulation and coding scheme (MCS)- consists of 5 bits.
  • New data indicator- consists of 1 bit.
  • TPC (Transmit Power Control) command for PUSCH – consists of 2 bits.
  • Uplink Index-It consists of 2 bits. This field is present only in TDD operation according to uplink-downlink configuration 0.
  • DAI Downlink Assignment Index
  • CSI Channel State Information Request-Consists of 1 or 2 bits.
  • the 2-bit field is applied only when a corresponding DCI is mapped by a C-RNTI (Cell-RNTI) in a UE specific manner to a terminal in which one or more downlink cells are configured.
  • C-RNTI Cell-RNTI
  • SRS Sounding Reference Signal
  • Resource allocation type-It consists of 1 bit.
  • DCI format 1A If the number of information bits in DCI format 0 is smaller than the payload size (including the added padding bits) of DCI format 1A, 0 is added so that the payload size of DCI format 1A is equal to DCI format 0.
  • DCI format 1A refers to a DCI format used for compact scheduling of one PDSCH codeword in one cell. That is, DCI format 1A may include control information used in rank 1 transmission, such as single antenna transmission, single stream transmission, or transmission diversity transmission.
  • DCI format 1A includes Carrier Indicator (CIF), Flag for format 0 / format 1A differentiation, Localized / Distributed VRB assignment Flag, Resource block assignment (RIV), MCS, HARQ process number, NDI (New Data Indicator), Redundancy Version (RV), TPC for PUCCH, Downlink Assignment Index (DAI), and SRS (Sounding Reference Signal) request information.
  • CIF Carrier Indicator
  • Flag for format 0 / format 1A differentiation
  • LCS Localized / Distributed VRB assignment Flag
  • RRIV Resource block assignment
  • MCS Mobility Control Protocol
  • HARQ process number HARQ process number
  • NDI New Data Indicator
  • RV Redundancy Version
  • TPC for PUCCH
  • DAI Downlink Assignment Index
  • SRS Sounding Reference Signal
  • DCI format 1A may be provided from the base station to the terminal through the PDCCH or EPDCCH.
  • DCI format 1A includes information for scheduling the most basic downlink transmission (transmission of one PDSCH codeword in rank 1). Therefore, when a complex PDSCH transmission scheme such as rank 2 or more and / or a plurality of codeword transmissions is not performed correctly, it may be used for the purpose of supporting the most basic PDSCH transmission scheme (ie, fallback).
  • PUCCH Physical Uplink Control Channel
  • the uplink control information (UCI) transmitted through the PUCCH may include a scheduling request (SR), HARQ ACK / NACK information, and downlink channel measurement information.
  • SR scheduling request
  • HARQ ACK / NACK information HARQ ACK / NACK information
  • HARQ ACK / NACK information may be generated according to whether the decoding of the downlink data packet on the PDSCH is successful.
  • one bit is transmitted as ACK / NACK information for downlink single codeword transmission, and two bits are transmitted as ACK / NACK information for downlink 2 codeword transmission.
  • Channel measurement information refers to feedback information related to a multiple input multiple output (MIMO) technique, and includes channel quality indicator (CQI), precoding matrix index (PMI), and rank indicator (RI). : Rank Indicator) may be included. These channel measurement information may be collectively expressed as CQI.
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • 20 bits per subframe may be used for transmission of the CQI.
  • PUCCH may be modulated using Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK).
  • Control information of a plurality of terminals may be transmitted through a PUCCH, and a constant amplitude zero autocorrelation (CAZAC) sequence having a length of 12 is performed when code division multiplexing (CDM) is performed to distinguish signals of respective terminals.
  • CAZAC sequence has a characteristic of maintaining a constant amplitude in the time domain and the frequency domain, the coverage is reduced by reducing the Peak-to-Average Power Ratio (PAPR) or the Cubic Metric (CM) of the UE. It has a suitable property to increase.
  • PAPR Peak-to-Average Power Ratio
  • CM Cubic Metric
  • ACK / NACK information for downlink data transmission transmitted through the PUCCH is covered using an orthogonal sequence or an orthogonal cover (OC).
  • control information transmitted on the PUCCH may be distinguished using a cyclically shifted sequence having different cyclic shift (CS) values.
  • the cyclically shifted sequence may be generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • the specific CS amount is indicated by the cyclic shift index (CS index).
  • the number of cyclic shifts available may vary depending on the delay spread of the channel.
  • Various kinds of sequences may be used as the base sequence, and the above-described CAZAC sequence is one example.
  • control information that can be transmitted in one subframe by the UE depends on the number of SC-FDMA symbols available for transmission of the control information (that is, RS transmission for coherent detection of PUCCH). SC-FDMA symbols except for the SC-FDMA symbol used).
  • PUCCH is defined in seven different formats according to transmitted control information, modulation scheme, amount of control information, and the like, and according to uplink control information (UCI) transmitted according to each PUCCH format,
  • UCI uplink control information
  • Uplink Control Information Format 1 Scheduling Request (SR) (unmodulated waveform) Format 1a 1-bit HARQ ACK / NACK with / without SR Format 1b 2-bit HARQ ACK / NACK with / without SR Format 2 CQI (20 coded bits) Format 2 CQI and 1- or 2-bit HARQ ACK / NACK (20 bits) for extended CP only Format 2a CQI and 1-bit HARQ ACK / NACK (20 + 1 coded bits) Format 2b CQI and 2-bit HARQ ACK / NACK (20 + 2 coded bits)
  • SR Scheduling Request
  • PUCCH format 1 is used for single transmission of SR.
  • an unmodulated waveform is applied, which will be described later in detail.
  • PUCCH format 1a or 1b is used for transmission of HARQ ACK / NACK.
  • PUCCH format 1a or 1b may be used.
  • HARQ ACK / NACK and SR may be transmitted in the same subframe using PUCCH format 1a or 1b.
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a or 2b is used for transmission of CQI and HARQ ACK / NACK.
  • PUCCH format 2 may be used for transmission of CQI and HARQ ACK / NACK.
  • FIG. 5 shows an example of a form in which PUCCH formats are mapped to a PUCCH region of an uplink physical resource block in a wireless communication system to which the present invention can be applied.
  • FIG. 5 Represents the number of resource blocks in uplink, and 0, 1, ..., -1 means the number of physical resource blocks.
  • the PUCCH is mapped to both edges of the uplink frequency block.
  • Number of PUCCH RBs available by PUCCH format 2 / 2a / 2b ) May be indicated to terminals in a cell by broadcasting signaling.
  • PUCCH format 2 / 2a / 2b is a control channel for transmitting channel measurement feedback (CQI, PMI, RI).
  • the reporting period of the channel measurement feedback (hereinafter, collectively referred to as CQI information) and the frequency unit (or frequency resolution) to be measured may be controlled by the base station.
  • CQI information channel measurement feedback
  • the frequency unit (or frequency resolution) to be measured may be controlled by the base station.
  • Periodic and aperiodic CQI reporting can be supported in the time domain.
  • PUCCH format 2 may be used only for periodic reporting and PUSCH may be used for aperiodic reporting.
  • the base station may instruct the terminal to transmit an individual CQI report on a resource scheduled for uplink data transmission.
  • FIG. 6 shows a structure of a CQI channel in the case of a normal CP in a wireless communication system to which the present invention can be applied.
  • SC-FDMA symbols 0 to 6 of one slot SC-FDMA symbols 1 and 5 (second and sixth symbols) are used for demodulation reference signal (DMRS) transmission, and CQI in the remaining SC-FDMA symbols. Information can be transmitted. Meanwhile, in the case of an extended CP, one SC-FDMA symbol (SC-FDMA symbol 3) is used for DMRS transmission.
  • SC-FDMA symbol 3 SC-FDMA symbol 3
  • DMRS Reference signal
  • CQI information is carried on the remaining five SC-FDMA symbols.
  • Two RSs are used in one slot to support a high speed terminal.
  • each terminal is distinguished using a cyclic shift (CS) sequence.
  • the CQI information symbols are modulated and transmitted throughout the SC-FDMA symbol, and the SC-FDMA symbol is composed of one sequence. That is, the terminal modulates and transmits the CQI in each sequence.
  • the number of symbols that can be transmitted in one TTI is 10, and modulation of CQI information is determined up to QPSK.
  • QPSK mapping is used for an SC-FDMA symbol, a 2-bit CQI value may be carried, and thus a 10-bit CQI value may be loaded in one slot. Therefore, a CQI value of up to 20 bits can be loaded in one subframe.
  • a frequency domain spread code is used to spread the CQI information in the frequency domain.
  • a length-12 CAZAC sequence (eg, a ZC sequence) may be used.
  • Each control channel may be distinguished by applying a CAZAC sequence having a different cyclic shift value.
  • IFFT is performed on the frequency domain spread CQI information.
  • 12 different terminals may be orthogonally multiplexed on the same PUCCH RB by means of 12 equally spaced cyclic shifts.
  • the DMRS sequence on SC-FDMA symbol 1 and 5 (on SC-FDMA symbol 3 in extended CP case) in the general CP case is similar to the CQI signal sequence on the frequency domain but no modulation such as CQI information is applied.
  • the PUCCH formats 1a and 1b will be described.
  • a symbol modulated using a BPSK or QPSK modulation scheme is multiply multiplied by a CAZAC sequence having a length of 12.
  • the y (0), ..., y (N-1) symbols may be referred to as a block of symbols.
  • a Hadamard sequence of length 4 is used for general ACK / NACK information, and a Discrete Fourier Transform (DFT) sequence of length 3 is used for shortened ACK / NACK information and a reference signal.
  • DFT Discrete Fourier Transform
  • a Hadamard sequence of length 2 is used for the reference signal in the case of an extended CP.
  • SRS Sounding Reference Signal
  • SRS is mainly used for measuring channel quality in order to perform frequency-selective scheduling of uplink and is not related to transmission of uplink data and / or control information.
  • the present invention is not limited thereto, and the SRS may be used for various other purposes for improving power control or supporting various start-up functions of terminals which are not recently scheduled.
  • start-up functions include initial modulation and coding scheme (MCS), initial power control for data transmission, timing advance, and frequency semi-selective scheduling. May be included.
  • MCS initial modulation and coding scheme
  • frequency semi-selective scheduling refers to scheduling in which frequency resources are selectively allocated to the first slot of a subframe, and pseudo-randomly jumps to another frequency in the second slot to allocate frequency resources.
  • the SRS may be used to measure downlink channel quality under the assumption that the radio channel is reciprocal between uplink and downlink. This assumption is particularly valid in time division duplex (TDD) systems where uplink and downlink share the same frequency spectrum and are separated in the time domain.
  • TDD time division duplex
  • Subframes of the SRS transmitted by any terminal in the cell may be represented by a cell-specific broadcast signal.
  • the 4-bit cell-specific 'srsSubframeConfiguration' parameter indicates an array of 15 possible subframes through which the SRS can be transmitted over each radio frame. Such arrangements provide flexibility for the adjustment of the SRS overhead in accordance with a deployment scenario.
  • the sixteenth arrangement of these switches completely switches off the SRS in the cell, which is mainly suitable for a serving cell serving high-speed terminals.
  • FIG. 7 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • the SRS is always transmitted on the last SC-FDMA symbol on the arranged subframe.
  • the SRS and DMRS are located in different SC-FDMA symbols.
  • PUSCH data transmissions are not allowed in certain SC-FDMA symbols for SRS transmissions.
  • the sounding overhead is equal to the highest sounding overhead, even if all subframes contain SRS symbols. It does not exceed about 7%.
  • Each SRS symbol is generated by a base sequence (random sequence or a set of sequences based on Zadoff-Ch (ZC)) for a given time unit and frequency band, and all terminals in the same cell use the same base sequence.
  • SRS transmissions from a plurality of terminals in the same cell at the same frequency band and at the same time are orthogonal to each other by different cyclic shifts of the basic sequence to distinguish them from each other.
  • SRS sequences from different cells may be distinguished by assigning different base sequences to each cell, but orthogonality between different base sequences is not guaranteed.
  • the communication environment considered in the embodiments of the present invention includes all of the multi-carrier support environments. That is, the multicarrier system or carrier aggregation (CA) system used in the present invention is one or more having a bandwidth smaller than the target band when configuring the target broadband to support the broadband A system that aggregates and uses a component carrier (CC).
  • CA carrier aggregation
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • the case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric aggregation. This is called asymmetric aggregation.
  • Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE-advanced system i.e., LTE-A
  • Only bandwidths can be used to support bandwidths greater than 20 MHz.
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier aggregation environment described above may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resource
  • the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a specific UE When a specific UE has only one configured serving cell, it may have one DL CC and one UL CC, but when a specific UE has two or more configured serving cells, as many DLs as the number of cells Has a CC and the number of UL CCs may be the same or less.
  • the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported. That is, carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell).
  • carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell).
  • the term 'cell' should be distinguished from the 'cell' as an area covered by a generally used base station.
  • Cells used in the LTE-A system include a primary cell (PCell: Primary Cell) and a secondary cell (SCell: Secondary Cell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • P cell and S cell may be used as a serving cell.
  • the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell.
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells may be configured through an RRC parameter.
  • PhysCellId is a cell's physical layer identifier and has an integer value from 0 to 503.
  • SCellIndex is a short identifier used to identify an SCell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the Pcell, and SCellIndex is pre-assigned to apply to the Scell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
  • P cell refers to a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • RRC ConnectionReconfigutaion message of a higher layer including mobility control information to a UE supporting a carrier aggregation environment. It may be.
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
  • the E-UTRAN adds the SCell to the UE supporting the carrier aggregation environment, the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used.
  • the E-UTRAN may perform dedicated signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the PCell
  • the secondary component carrier (SCC) may be used in the same sense as the SCell.
  • FIG. 8 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • FIG. 8B shows a carrier aggregation structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the number of DL CCs and UL CCs is not limited.
  • the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may assign L (L ⁇ M ⁇ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
  • SIB2 System Information Block Type2
  • the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
  • Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs or a UL CC in which a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC having received an UL grant This means that it is transmitted through other UL CC.
  • Whether to perform cross-carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH.
  • the PDCCH may allocate PDSCH resource or PUSCH resource to one of a plurality of component carriers using CIF. That is, when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the multi-aggregated DL / UL CC, CIF is set.
  • the DCI format of LTE-A Release-8 may be extended according to CIF.
  • the set CIF may be fixed as a 3 bit field or the position of the set CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE-A Release-8 may be reused.
  • the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC, CIF is not configured.
  • the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as the LTE-A Release-8 may be used.
  • the UE When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
  • the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH
  • the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH.
  • the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
  • cross-carrier scheduling When cross-carrier scheduling is deactivated, it means that the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary.
  • a PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule PDSCH or PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
  • FIG 9 shows an example of a subframe structure according to cross carrier scheduling in a wireless communication system to which the present invention can be applied.
  • DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured. If CIF is not used, each DL CC may transmit a PDCCH for scheduling its PDSCH without CIF. On the other hand, when the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF. At this time, DL CCs 'B' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
  • MIMO technology generally uses multiple transmit (Tx) antennas and multiple receive (Rx) antennas away from the ones that generally use one transmit antenna and one receive antenna.
  • the MIMO technology is a technique for increasing capacity or individualizing performance by using multiple input / output antennas at a transmitting end or a receiving end of a wireless communication system.
  • MIMO will be referred to as "multi-input / output antenna”.
  • the multi-input / output antenna technology does not rely on one antenna path to receive one total message, but collects a plurality of pieces of data received through several antennas to complete complete data.
  • multiple input / output antenna technology can increase the data rate within a specific system range, and can also increase the system range through a specific data rate.
  • MIMO communication technology is the next generation mobile communication technology that can be widely used in mobile communication terminals and repeaters, and attracts attention as a technology that can overcome the transmission limit of other mobile communication depending on the limit situation due to the expansion of data communication. have.
  • MIMO multiple input / output antenna
  • MIMO 10 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • the theoretical channel transmission is proportional to the number of antennas unlike the case where only a plurality of antennas are used in a transmitter or a receiver. Since the capacity is increased, it is possible to improve the transfer rate and to significantly improve the frequency efficiency. In this case, the transmission rate according to the increase in channel transmission capacity can be increased by as much as theoretically made following growth rate (R i) are multiplied, equal to the maximum transfer rate (R o) in the case of using one antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained.
  • the technique of the multiple input / output antennas improves transmission rate by simultaneously transmitting a plurality of data symbols by using a spatial diversity scheme that improves transmission reliability by using symbols passing through various channel paths and by using a plurality of transmit antennas. It can be divided into spatial multiplexing method. In addition, researches on how to appropriately combine these two methods to obtain the advantages of each are being studied in recent years.
  • the spatial diversity scheme there is a space-time block code sequence and a space-time trellis code sequence system that simultaneously uses diversity gain and coding gain.
  • the bit error rate improvement performance and the code generation freedom are excellent in the trellis code method, but the operation complexity is simple in the space-time block code.
  • Such a spatial diversity gain can be obtained by an amount corresponding to a product (NT ⁇ NR) of the number of transmit antennas NT and the number of receive antennas NR.
  • the spatial multiplexing technique is a method of transmitting different data strings at each transmitting antenna, and at the receiver, mutual interference occurs between data transmitted simultaneously from the transmitter.
  • the receiver removes this interference using an appropriate signal processing technique and receives it.
  • the noise cancellation schemes used here include: maximum likelihood detection (MLD) receivers, zero-forcing (ZF) receivers, minimum mean square error (MMSE) receivers, Diagonal-Bell Laboratories Layered Space-Time (D-BLAST), V- Vertical-Bell Laboratories Layered Space-Time (BLAST), If you Hebrews know the channel information from the transmitter may be used, such as SVD (singular value decomposition) method.
  • MLD maximum likelihood detection
  • ZF zero-forcing
  • MMSE minimum mean square error
  • D-BLAST Diagonal-Bell Laboratories Layered Space-Time
  • BLAST V- Vertical-Bell Laboratories Layered Space-Time
  • SVD singular value decomposition
  • N T transmit antennas when there are N T transmit antennas, since the maximum transmittable information is N T , this may be represented by a vector as follows.
  • the transmission power can be different for each transmission information s 1 , s 2 , ..., s NT , and if each transmission power is P 1 , P 2 , ..., P NT ,
  • the power-adjusted transmission information may be represented by the following vector.
  • the weight matrix W is multiplied to form N T transmission signals x 1 , x 2 , ..., x NT that are actually transmitted.
  • the weight matrix plays a role of appropriately distributing transmission information to each antenna according to a transmission channel situation.
  • Such transmission signals x 1 , x 2 , ..., x NT can be expressed as follows using a vector x.
  • w ij represents a weight between the i th transmit antenna and the j th transmission information
  • W represents this in a matrix.
  • W is called a weight matrix or a precoding matrix.
  • the above-described transmission signal (x) can be considered divided into the case of using the spatial diversity and the case of using the spatial multiplexing.
  • the elements of the information vector s all have different values, while using spatial diversity causes the same signal to be sent through multiple channel paths. Therefore, the elements of the information vector s all have the same value.
  • a method of mixing spatial multiplexing and spatial diversity is also conceivable. That is, for example, the same signal may be transmitted using spatial diversity through three transmission antennas, and the rest may be considered to be spatially multiplexed to transmit different signals.
  • the reception signal is represented as a vector y of reception signals y 1 , y 2 , ..., y NR of each antenna as follows.
  • each channel may be classified according to a transmit / receive antenna index, and a channel passing through the receive antenna i from the transmit antenna j will be denoted as h ij .
  • the order of the index of h ij is that of the receiving antenna index first, and that of the transmitting antenna is later.
  • These channels can be grouped together and displayed in vector and matrix form.
  • An example of the vector display is described as follows.
  • FIG. 11 illustrates a channel from a plurality of transmit antennas to one receive antenna.
  • a channel arriving from the N T transmit antennas to the reception antenna i may be expressed as follows.
  • each of the multiple input / output antenna communication systems may be represented through the following relationship.
  • the number of rows and columns of the channel matrix H indicating the state of the channel is determined by the number of transmit and receive antennas. As described above, in the channel matrix H, the number of rows becomes equal to the number of receiving antennas N R, and the number of columns becomes equal to the number of transmitting antennas N T. In other words, the channel matrix H becomes an N R ⁇ N T matrix.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other.
  • the rank of the matrix cannot be greater than the number of rows or columns.
  • the rank (H) of the channel matrix H is limited as follows.
  • the rank when the matrix is subjected to eigen value decomposition, the rank may be defined as the number of nonzero eigenvalues among eigen values. Similarly, the rank can be defined as the number of non-zero singular values when SVD (singular value decomposition). Therefore, the physical meaning of rank in the channel matrix is the maximum number that can send different information in a given channel.
  • 'rank' for MIMO transmission indicates the number of paths that can independently transmit a signal at a specific time point and a specific frequency resource, and 'number of layers' indicates transmission on each path.
  • the transmitting end since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
  • CoMP transmission has been proposed to improve the performance of the system.
  • CoMP is also called co-MIMO, collaborative MIMO, network MIMO.
  • CoMP is expected to improve the performance of the terminal located at the cell boundary, and improve the efficiency (throughput) of the average cell (sector).
  • inter-cell interference reduces performance and average cell (sector) efficiency of a terminal located at a cell boundary in a multi-cell environment having a frequency reuse index of 1.
  • a simple passive method such as fractional frequency reuse (FFR) is employed in an LTE system so that a terminal located at a cell boundary has an appropriate performance efficiency in an interference-limited environment.
  • FFR fractional frequency reuse
  • a method of reusing inter-cell interference or mitigating inter-cell interference as a desired signal that the terminal should receive is more advantageous.
  • CoMP transmission scheme may be applied to achieve the above object.
  • CoMP schemes that can be applied to the downlink can be classified into JP (Joint Processing) scheme and CS / CB (Coordinated Scheduling / Beamforming) scheme.
  • CoMP unit means a set of base stations used in the CoMP scheme.
  • the JP method may be further classified into a joint transmission method and a dynamic cell selection method.
  • the associated transmission scheme refers to a scheme in which a signal is simultaneously transmitted through a PDSCH from a plurality of points, which are all or part of a CoMP unit. That is, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points.
  • a cooperative transmission scheme the quality of a signal transmitted to a terminal can be increased regardless of whether it is coherently or non-coherently, and can actively remove interference with another terminal. .
  • the dynamic cell selection method refers to a method in which a signal is transmitted through a PDSCH from a single point in a CoMP unit. That is, data transmitted to a single terminal at a specific time is transmitted from a single point, and data is not transmitted to the terminal at another point in the CoMP unit.
  • the point for transmitting data to the terminal may be dynamically selected.
  • the CoMP unit performs beamforming in cooperation for data transmission to a single terminal. That is, although only the serving cell transmits data to the terminal, user scheduling / beamforming may be determined through cooperation between a plurality of cells in a CoMP unit.
  • CoMP reception means receiving a signal transmitted by cooperation between a plurality of geographically separated points.
  • CoMP schemes applicable to uplink may be classified into a joint reception (JR) scheme and a coordinated scheduling / beamforming (CS / CB) scheme.
  • the JR method refers to a method in which a plurality of points, which are all or part of CoMP units, receive a signal transmitted through a PDSCH.
  • the CS / CB scheme receives a signal transmitted through the PDSCH only at a single point, but user scheduling / beamforming may be determined through cooperation between a plurality of cells in a CoMP unit.
  • the relay node transmits data transmitted and received between the base station and the terminal through two different links (backhaul link and access link).
  • the base station may comprise a donor cell.
  • the relay node is wirelessly connected to the radio access network through the donor cell.
  • the band (or spectrum) of the relay node the case in which the backhaul link operates in the same frequency band as the access link is referred to as 'in-band', and the backhaul link and the access link have different frequencies.
  • the case of operating in band is called 'out-band'.
  • a terminal operating in accordance with an existing LTE system eg, Release-8) (hereinafter, referred to as a legacy terminal) should be able to access a donor cell.
  • the relay node may be classified as a transparent relay node or a non-transparent relay node.
  • a transparent means a case where a terminal does not recognize whether or not it communicates with a network through a relay node
  • a non-transparent means a case where a terminal recognizes whether a terminal communicates with a network through a relay node.
  • the relay node may be divided into a relay node configured as part of a donor cell or a relay node controlling a cell by itself.
  • the relay node configured as part of the donor cell may have a relay node identifier, but does not have a cell identity of the relay node itself.
  • RRM Radio Resource Management
  • a relay node configured as part of the donor cell even though the remaining parts of the RRM are located in the relay node.
  • a relay node can support legacy terminals.
  • various types of smart repeaters, decode-and-forward relays, L2 (layer 2) relay nodes, and type-2 relay nodes may be included in these relay nodes. Corresponding.
  • the relay node controls one or a plurality of cells, and a unique physical layer cell identifier is provided to each of the cells controlled by the relay node.
  • each of the cells controlled by the relay node may use the same RRM mechanism. From a terminal perspective, there is no difference between accessing a cell controlled by a relay node and accessing a cell controlled by a general base station.
  • the cell controlled by the relay node may support the legacy terminal. For example, self-backhauling relay nodes, L3 (third layer) relay nodes, type-1 relay nodes, and type-1a relay nodes are such relay nodes.
  • the type-1 relay node controls the plurality of cells as in-band relay nodes, each of which appears to be a separate cell from the donor cell from the terminal's point of view.
  • the plurality of cells have their own physical cell IDs (which are defined in LTE Release-8), and the relay node may transmit its own synchronization channel, reference signal, and the like.
  • the terminal may receive scheduling information and HARQ feedback directly from the relay node and transmit its control channel (scheduling request (SR), CQI, ACK / NACK, etc.) to the relay node.
  • SR scheduling request
  • CQI CQI
  • ACK / NACK etc.
  • the type-1 relay node is seen as a legacy base station (base station operating according to the LTE Release-8 system). That is, it has backward compatibility.
  • the type-1 relay node may be seen as a base station different from the legacy base station, thereby providing a performance improvement.
  • the type-1a relay node has the same features as the type-1 relay node described above in addition to operating out-band.
  • the operation of the type-1a relay node can be configured to minimize or eliminate the impact on L1 (first layer) operation.
  • the type-2 relay node is an in-band relay node and does not have a separate physical cell ID and thus does not form a new cell.
  • the type 2 relay node is transparent to the legacy terminal, and the legacy terminal is not aware of the existence of the type 2 relay node.
  • the type-2 relay node may transmit the PDSCH, but at least do not transmit the CRS and PDCCH.
  • resource partitioning In order for the relay node to operate in-band, some resources in the time-frequency space must be reserved for the backhaul link and these resources can be set not to be used for the access link. This is called resource partitioning.
  • the backhaul downlink and the access downlink may be multiplexed in a time division multiplexed (TDM) manner on one carrier frequency (ie, only one of the backhaul downlink or access downlink is activated at a particular time).
  • TDM time division multiplexed
  • the backhaul uplink and access uplink may be multiplexed in a TDM manner on one carrier frequency (ie, only one of the backhaul uplink or access uplink is activated at a particular time).
  • backhaul downlink transmission may be performed in a downlink frequency band
  • backhaul uplink transmission may be performed in an uplink frequency band
  • backhaul link multiplexing in TDD backhaul downlink transmission may be performed in a downlink subframe of a base station and a relay node
  • backhaul uplink transmission may be performed in an uplink subframe of a base station and a relay node.
  • the relay node may be connected to the relay node by a signal transmitted from the relay node.
  • Signal interference may occur at the receiving end. That is, signal interference or RF jamming may occur at the RF front-end of the relay node.
  • signal interference may occur even when the backhaul uplink transmission to the base station and the access uplink reception from the terminal are simultaneously performed in the same frequency band.
  • the antennas should be sufficiently spaced apart from each other such as installing the transmitting antenna and the receiving antenna on the ground / underground). If not provided, it is difficult to implement.
  • One way to solve this problem of signal interference is to operate the relay node so that it does not transmit a signal to the terminal while receiving a signal from the donor cell. That is, a gap can be created in the transmission from the relay node to the terminal, and during this gap, the terminal (including the legacy terminal) can be set not to expect any transmission from the relay node. This gap can be set by configuring a multicast broadcast single frequency network (MBSFN) subframe.
  • MBSFN multicast broadcast single frequency network
  • FIG. 12 illustrates relay node resource partitioning in a wireless communication system to which the present invention can be applied.
  • a downlink (ie, access downlink) control signal and data are transmitted from a relay node to a terminal as a first subframe, and a second subframe is a MBSFN subframe in a control region of a downlink subframe.
  • the control signal is transmitted from the relay node to the terminal, but no transmission is performed from the relay node to the terminal in the remaining areas of the downlink subframe.
  • the relay node since the PDCCH is expected to be transmitted in all downlink subframes (in other words, the relay node needs to support legacy UEs in its own area to perform the measurement function by receiving the PDCCH in every subframe).
  • N 1, 2 or 3 OFDM symbol intervals of the subframe.
  • the node needs to do access downlink transmission rather than receive the backhaul downlink.
  • the PDCCH is transmitted from the relay node to the terminal in the control region of the second subframe, backward compatibility with respect to the legacy terminal served by the relay node may be provided.
  • the relay node may receive the transmission from the base station while no transmission is performed from the relay node to the terminal. Accordingly, through this resource partitioning scheme, it is possible to prevent access downlink transmission and backhaul downlink reception from being simultaneously performed at the in-band relay node.
  • the control region of the second subframe may be referred to as a relay node non-hearing interval.
  • the relay node non-hearing interval means a period in which the relay node transmits the access downlink signal without receiving the backhaul downlink signal. This interval may be set to 1, 2 or 3 OFDM lengths as described above.
  • the relay node may perform access downlink transmission to the terminal and receive a backhaul downlink from the base station in the remaining areas. At this time, since the relay node cannot simultaneously transmit and receive in the same frequency band, it takes time for the relay node to switch from the transmission mode to the reception mode.
  • a guard time needs to be set for the relay node to transmit / receive mode switching in the first partial period of the backhaul downlink reception region.
  • a guard time for switching the reception / transmission mode of the relay node may be set.
  • the length of this guard time may be given as a value in the time domain, for example, may be given as k (k ⁇ 1) time sample (Ts) values, or may be set to one or more OFDM symbol lengths. have.
  • the guard time of the last part of the subframe may not be defined or set.
  • Such guard time may be defined only in a frequency domain configured for backhaul downlink subframe transmission in order to maintain backward compatibility (when a guard time is set in an access downlink period, legacy terminals cannot be supported).
  • the relay node may receive the PDCCH and the PDSCH from the base station. This may be expressed as a relay-PDCCH (R-PDCCH) and an R-PDSCH (Relay-PDSCH) in the sense of a relay node dedicated physical channel.
  • Reference signal (RS: Reference Signal)
  • data / signals in a wireless communication system are transmitted over wireless channels
  • data / signals may be distorted over the air during transmission.
  • the distorted signal is preferably corrected using the channel information.
  • the transmitting end and / or the receiving end may use a reference signal RS that is known to both sides to detect channel information.
  • the reference signal may be called a pilot signal.
  • each transmitting antenna of the transmitting end preferably has a separate reference signal.
  • the downlink reference signal includes a common reference signal (CRS: Common RS) shared by all terminals in one cell and a dedicated reference signal (DRS: Dedicated RS) only for a specific terminal.
  • the transmitter may provide the receiver with information for demodulation and channel measurement using the reference signals CRS and DRS.
  • the receiving end measures the channel state using the CRS, and according to the measured channel state, channel quality such as a channel quality indicator (CQI), a precoding matrix index (PMI), and / or a rank indicator (RI) May be fed back to the transmitter (eg, the base station).
  • channel quality such as a channel quality indicator (CQI), a precoding matrix index (PMI), and / or a rank indicator (RI) May be fed back to the transmitter (eg, the base station).
  • the CRS is also called a cell-specific RS.
  • the reference signal associated with the feedback of the channel state information (CSI) may be defined as CSI-RS.
  • the DRS may be transmitted to terminals through resource elements when data demodulation on the PDSCH is needed.
  • the terminal may receive the presence or absence of the DRS through higher layer signaling.
  • the DRS is valid only when the corresponding PDSCH signal is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 13 is a diagram illustrating an example of a reference signal pattern mapped to a downlink resource block (RB) pair defined in a 3GPP LTE system.
  • RB downlink resource block
  • a downlink resource block (RB) pair may be configured as one subframe in the time domain and 12 subcarriers in the frequency domain. That is, one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in the case of normal cyclic prefix (CP) (see FIG. 13 (a)), and an extended cyclic prefix In the case of CP ((Cyclic Prefix)), it has a length of 12 OFDM symbols (see FIG. 13B).
  • CP normal cyclic prefix
  • (Cyclic Prefix) extended cyclic prefix In the case of CP ((Cyclic Prefix)
  • resource elements REs denoted as' 0 ',' 1 ',' 2 ', and' 3 'in each resource block are the antenna ports' 0', ' CRSs corresponding to 1 ',' 2 ', and' 3 'are mapped to resource elements, and resource elements described as' D' refer to resource elements to which the DRS is mapped.
  • the CRS is a reference signal that can be commonly received by all terminals located in a cell, and is distributed in all frequency bands and can be used to estimate a channel of a physical antenna.
  • the CRS may be used for channel quality information (CSI) and data demodulation.
  • CSI channel quality information
  • the CRS may be defined in various formats according to the antenna arrangement at the transmitting end (eg, base station).
  • a transmitting end may support up to four transmit antennas.
  • the reference signal is transmitted through specific resource elements in accordance with a predetermined pattern.
  • the reference signal for the other antenna port is not transmitted in the resource element through which the reference signal for one antenna port is transmitted. That is, reference signals between different antennas do not overlap each other.
  • D2D communication is a term used to refer to communication between things or things intelligent communication, but D2D communication in the present invention is a simple device equipped with a communication function, as well as communication such as a smart phone or a personal computer It can include all communication between different types of devices with functionality.
  • D2D Device-to-Device
  • communication is a concept used to perform direct communication between terminals, and may be represented as a sidelink.
  • the D2D communication may include direct D2D communication related to a procedure of transmitting and receiving data between terminals and direct D2D discovery related to a procedure of discovering neighboring terminals.
  • FIG. 14 is a diagram for conceptually explaining D2D communication in a wireless communication system to which the present invention can be applied.
  • FIG. 14A illustrates an existing eNB-based communication scheme.
  • UE1 may transmit data to a base station on uplink, and the base station may transmit data to UE2 on downlink.
  • This communication method may be referred to as an indirect communication method through a base station.
  • an Un link a link between base stations or a link between a base station and a repeater, which may be referred to as a backhaul link
  • a Uu link a link between a base station and a terminal or a repeater defined in a conventional wireless communication system
  • As a link between terminals which may be referred to as an access link).
  • FIG. 14B illustrates a UE-to-UE communication scheme as an example of D2D communication, and data exchange between UEs may be performed without passing through a base station.
  • a communication method may be referred to as a direct communication method between devices.
  • the D2D direct communication method has advantages such as reduced latency and less radio resources compared to the indirect communication method through the existing base station.
  • the In-Coverage-Single-Cell and In-Coverage-Multi-Cell may be divided according to the number of cells corresponding to the coverage of the base station.
  • 15A illustrates an example of an out-of-coverage network scenario of D2D communication.
  • the out-of-coverage network scenario refers to performing D2D communication between D2D terminals without control of a base station.
  • FIG. 15A only UE1 and UE2 exist, and it can be seen that UE1 and UE2 communicate directly.
  • 15B illustrates an example of a partial-coverage network scenario of D2D communication.
  • Partial-Coverage Network scenario refers to performing D2D communication between a D2D UE located in network coverage and a D2D UE located outside network coverage.
  • FIG. 15B it can be seen that UE1 located within network coverage and UE2 located outside network coverage communicate.
  • FIG. 15C illustrates an example of an In-Coverage-Single-Cell scenario
  • FIG. 15D illustrates an example of an In-Coverage-Multi-Cell scenario.
  • In-Coverage Network scenario refers to D2D UEs performing D2D communication under control of a base station within network coverage.
  • UE1 and UE2 are located in the same network coverage (or cell) and perform D2D communication under the control of a base station.
  • UE1 and UE2 are located within network coverage, but located within different network coverage. And UE1 and UE2 perform D2D communication under the control of the base station which manages each network coverage.
  • D2D communication may operate in the scenario shown in FIG. 15, but may generally operate within network coverage and out-of-coverage.
  • a link used for D2D communication may be referred to as a D2D link, a directlink, or a sidelink, but is collectively referred to as a side link for convenience of description. Will be explained.
  • Side link transmission may operate in an uplink spectrum in the case of FDD and operate in an uplink (or downlink) subframe in the case of TDD.
  • Time division multiplexing TDM may be used for multiplexing of side link transmission and uplink transmission.
  • Side link transmission and uplink transmission do not occur simultaneously.
  • Side link transmission does not occur in an uplink subframe used for uplink transmission or a side link subframe partially or wholly overlaps with UpPTS.
  • the transmission and reception of the side link also do not occur simultaneously.
  • the structure of a physical resource used for side link transmission may have the same structure of an uplink physical resource. However, the last symbol of the side link subframe consists of a guard period and is not used for side link transmission.
  • the side link subframe may be configured by extended CP or normal CP.
  • D2D communication can be broadly classified into discovery, direct communication, and synchronization.
  • D2D discovery may be applied within network coverage. (Including Inter-cell and Intra-cell). Both synchronous or asynchronous cell placement in inter-cell discovery may be considered. D2D discovery may be used for various commercial purposes such as advertising, coupon issuance, and friend search for the UE in the proximity area.
  • UE 1 When UE 1 has a role of transmitting a discovery message, UE 1 transmits a discovery message and UE 2 receives a discovery message. The transmission and reception roles of UE 1 and UE 2 may be changed. The transmission from UE 1 may be received by one or more UE (s), such as UE 2.
  • UE UE
  • the discovery message may include a single MAC PDU, where the single MAC PDU may include a UE ID and an application ID.
  • a physical sidelink discovery channel may be defined as a channel for transmitting a discovery message.
  • the structure of the PSDCH channel may reuse the PUSCH structure.
  • Type 1 and Type 2 Two types of types (Type 1 and Type 2) may be used as a resource allocation method for D2D discovery.
  • the eNB may allocate resources for discovery message transmission in a non-UE specific manner.
  • a radio resource pool for transmission transmission and reception consisting of a plurality of subframes is allocated at a specific period, and the discovery transmission UE randomly selects a specific resource within this radio resource pool and then transmits a discovery message. do.
  • This periodic discovery resource pool may be allocated for discovery signal transmission in a semi-static manner.
  • the configuration information of the discovery resource pool for discovery transmission includes a discovery period and the number of subframes that can be used for transmission of a discovery signal in the discovery period (that is, the number of subframes constituting the radio resource pool).
  • a discovery resource pool for discovery transmission may be set by the eNB and inform the UE using RRC signaling (eg, a system information block (SIB)).
  • RRC signaling eg, a system information block (SIB)
  • a discovery resource pool allocated for discovery within one discovery period may be multiplexed with TDM and / or FDM as a time-frequency resource block with the same size, and a time-frequency resource block having the same size may be ' May be referred to as a 'discovery resource'.
  • the discovery resource may be used for transmission of discovery MAC PDU by one UE. Transmission of MAC PDUs sent by one UE may be repeated continuously or non-contiguous (e.g. four times) within a discovery period (i.e., in a radio resource pool). Can be.
  • the UE arbitrarily selects a first discovery resource from a discovery resource set that can be used for repeated transmission of the MAC PDU, and other discovery resources may be determined in relation to the first discovery resource.
  • the predetermined pattern may be preset, and the next discovery resource may be determined according to the preset pattern according to the location of the discovery resource first selected by the UE.
  • the UE may arbitrarily select each discovery resource within a set of discovery resources that can be used for repeated transmission of the MAC PDU.
  • Type 2 resources for discovery message transmission are allocated UE specific.
  • Type 2 is further divided into Type 2A (Type-2A) and Type 2B (Type-2B).
  • Type 2A is a method in which an eNB allocates resources to each instance of a discovery message transmission within a discovery period
  • type 2B is a method in which resources are allocated in a semi-persistent manner.
  • the RRC_CONNECTED UE requests allocation of resources for transmission of the D2D discovery message to the eNB through RRC signaling.
  • the eNB may allocate resources through RRC signaling.
  • the UE transitions to the RRC_IDLE state or when the eNB withdraws resource allocation via RRC signaling, the UE releases the most recently allocated transmission resource.
  • radio resources may be allocated by RRC signaling, and activation / deactivation of radio resources allocated by PDCCH may be determined.
  • the radio resource pool for receiving the discovery message may be set by the eNB and inform the UE using RRC signaling (eg, a system information block (SIB)).
  • RRC signaling eg, a system information block (SIB)
  • the UE monitors both the discovery resource pools of type 1 and type 2 described above for receiving discovery messages.
  • the coverage area of D2D direct communication includes network edge-of-coverage as well as in-coverage and out-of-coverage.
  • D2D direct communication can be used for purposes such as PS (Public Safety).
  • UE 1 When UE 1 has a role of direct communication data transmission, UE 1 transmits direct communication data and UE 2 receives direct communication data. The transmission and reception roles of UE 1 and UE 2 may be changed. Direct communication transmission from UE 1 may be received by one or more UE (s), such as UE 2.
  • UE UE
  • D2D discovery and D2D communication may be independently defined without being associated with each other. That is, D2D discovery is not required for groupcast and broadcast direct communication. As such, when D2D discovery and D2D direct communication are defined independently, UEs do not need to be aware of neighboring UEs. In other words, for groupcast and broadcast direct communication, it does not require all receiving UEs in the group to be in close proximity to each other.
  • a physical sidelink shared channel may be defined as a channel for transmitting D2D direct communication data.
  • a physical sidelink control channel is a channel for transmitting control information (eg, scheduling assignment (SA), transmission format, etc.) for D2D direct communication. ) Can be defined.
  • PSSCH and PSCCH may reuse the PUSCH structure.
  • mode 1 and mode 2 may be used.
  • Mode 1 refers to a scheme in which an eNB schedules a resource used by a UE to transmit data or control information for D2D direct communication. Mode 1 applies in in-coverage.
  • the eNB sets up a resource pool required for D2D direct communication.
  • a resource pool required for D2D communication may be divided into a control information pool and a D2D data pool.
  • the eNB schedules the control information and the D2D data transmission resource within the pool configured for the transmitting D2D UE using the PDCCH or the ePDCCH, the transmitting D2D UE transmits the control information and the D2D data using the allocated resources.
  • the transmitting UE requests transmission resources from the eNB, and the eNB schedules resources for transmission of control information and D2D direct communication data. That is, in case of mode 1, the transmitting UE should be in the RRC_CONNECTED state to perform D2D direct communication.
  • the transmitting UE sends a scheduling request to the eNB, and then a BSR (Buffer Status Report) procedure proceeds so that the eNB can determine the amount of resources requested by the transmitting UE.
  • BSR Buffer Status Report
  • Receiving UEs can monitor the control information pool and decode the control information associated with themselves to selectively decode the D2D data transmission associated with the control information.
  • the receiving UE may not decode the D2D data pool according to the control information decoding result.
  • Mode 2 refers to a method in which a UE arbitrarily selects a specific resource from a resource pool in order to transmit data or control information for D2D direct communication. Mode 2 applies in out-of-coverage and / or edge-of-coverage.
  • a resource pool for transmitting control information and / or a D2D direct communication data transmission in mode 2 may be pre-configured or semi-statically configured.
  • the UE is provided with a set resource pool (time and frequency) and selects a resource for D2D communication transmission from the resource pool. That is, the UE may select a resource for transmitting control information from the control information resource pool to transmit the control information. In addition, the UE may select a resource from the data resource pool for D2D direct communication data transmission.
  • control information is sent by the broadcasting UE.
  • the control information explicitly and / or implicitly locates a resource for data reception in relation to a physical channel (ie, PSSCH) that carries D2D direct communication data.
  • PSSCH physical channel
  • the D2D synchronization signal (or side link synchronization signal) may be used for the UE to obtain time-frequency synchronization.
  • the eNB since the eNB is impossible to control when it is out of network coverage, new signals and procedures for establishing synchronization between UEs may be defined.
  • a UE that periodically transmits a D2D synchronization signal may be referred to as a D2D synchronization source.
  • the D2D synchronization source is an eNB
  • the structure of the transmitted D2D synchronization signal may be the same as that of the PSS / SSS. If the D2D synchronization source is not an eNB (eg, UE or Global Navigation Satellite System (GNSS), etc.), the structure of the D2D synchronization signal transmitted may be newly defined.
  • GNSS Global Navigation Satellite System
  • the D2D synchronization signal is transmitted periodically with a period not less than 40ms.
  • Each terminal may have multiple physical-layer sidelink synchronization identifiers.
  • the D2D synchronization signal includes a primary D2D synchronization signal (or primary side link synchronization signal) and a secondary D2D synchronization signal (or secondary side link synchronization signal).
  • the UE Before transmitting the D2D synchronization signal, the UE may first search for a D2D synchronization source. When the D2D synchronization source is found, the UE may obtain time-frequency synchronization through the D2D synchronization signal received from the found D2D synchronization source. The UE may transmit a D2D synchronization signal.
  • D2D discovery schemes are a scheme (hereinafter, referred to as "distributed discovery") that allows all UEs to perform discovery in a distributed manner.
  • the method of performing D2D discovery in a distributed manner does not determine resource selection in one place (for example, eNB, UE, or D2D scheduling apparatus) like a centralized method. And a method of transmitting and receiving a discovery message.
  • a signal (or message) periodically transmitted by terminals for D2D discovery may be referred to as a discovery message, a discovery signal, a beacon, and the like.
  • a discovery message a signal (or message) periodically transmitted by terminals for D2D discovery
  • a discovery signal a discovery signal
  • a beacon a beacon
  • a dedicated resource may be periodically allocated as a resource for the UE to transmit and receive a discovery message separately from the cellular resource. This will be described with reference to FIG. 17 below.
  • FIG. 16 shows an example of a frame structure to which discovery resources are allocated to which the methods proposed herein may be applied.
  • a discovery subframe ie, a 'discovery resource pool'
  • the area consists of the existing LTE uplink wide area network (WAN) subframe area 1603.
  • the discovery resource pool may consist of one or more subframes.
  • the discovery resource pool may be allocated periodically at a predetermined time interval (ie, a 'discovery period'). In addition, the discovery resource pool may be repeatedly set within one discovery period.
  • a discovery resource pool is allocated with a discovery period of 10 sec, and each discovery resource pool is an example in which 64 consecutive subframes are allocated.
  • the size of the discovery period and the time / frequency resource of the discovery resource pool is not limited thereto.
  • the UE selects itself a resource for transmitting its discovery message (ie, 'discovery resource') in a dedicated allocated discovery pool and transmits a discovery message through the selected resource. This will be described with reference to FIG. 17 below.
  • 17 is a view briefly illustrating a discovery process to which the methods proposed herein may be applied.
  • the discovery method may be classified into resource sensing (S1701) for transmitting a discovery message (S1701), resource selection for transmitting a discovery message (S1703), transmission and reception of a discovery message (S1705), and the like 3 It consists of a step procedure.
  • the discovery resource may be composed of one or more resource blocks having the same size, and may be multiplexed with TDM and / or FDM in the discovery resource pool.
  • the UE periodically transmits and receives a discovery message according to a random resource hopping pattern.
  • the D2D discovery procedure is performed not only in the RRC_CONNECTED state where the UE is connected to the eNB but also in the RRC_IDLE state in which the UE is not connected.
  • all UEs sense all resources (i.e., discovery resource pools) transmitted by neighboring UEs and randomly discover discovery resources within a certain range (for example, within the lower x%). Select.
  • D2D control information and / or D2D data transmission method proposed herein will be described in detail with reference to FIGS. 18 to 29.
  • D2D may be represented as a sidelink.
  • the D2D control information may be represented by sidelink control information (SCI), and the D2D control information may be transmitted and received through a physical sidelink control channel (PSCCH).
  • SCI sidelink control information
  • PSCCH physical sidelink control channel
  • the D2D data may be transmitted and received through a physical sidelink shared channel (PSSCH), and the D2D data transmission and reception may be expressed as PSSCH transmission and reception.
  • PSSCH physical sidelink shared channel
  • D2D control information In performing direct communication between terminals, in order to demodulate D2D data in a D2D terminal, D2D control information should be defined.
  • the D2D control information may be represented by SCI, which will be used interchangeably below.
  • the D2D control information may be transmitted in a separate channel (or as a separate signal) from a D2D communication channel for transmitting the D2D data.
  • the D2D communication channel may be represented by a PSSCH, which will be used interchangeably below.
  • the D2D control information may include some or all of information such as a new data indicator (NDI), a resource allocation or resource configuration (RA), a modulation and coding scheme / set (MCS), a redundancy version (RV), and a Tx UE ID. Can be.
  • NDI new data indicator
  • RA resource allocation or resource configuration
  • MCS modulation and coding scheme / set
  • RV redundancy version
  • Tx UE ID may be.
  • the D2D control information may have a different combination of information included in the D2D control information according to the scenario in which the D2D communication of FIG. 15 is applied.
  • control information (CI) is utilized to demodulate a data channel, the control information must be decoded prior to the data channel.
  • the terminals receiving the control information must know in advance the location of the time and frequency resources at which the control information is transmitted and the related parameters required for demodulation of the data channel.
  • a UE ID based hashing function is transmitted to a UE (eg, a base station) and a receiver so that the UE knows that it will be transmitted to a specific position among specific symbols of every subframe.
  • UE eg, a base station
  • receiver so that the UE knows that it will be transmitted to a specific position among specific symbols of every subframe.
  • the base station and the UE share the fact that system information is transmitted to a specific symbol of a specific SF (Subframe) every 40 ms.
  • parameters related to transmission of the D2D control information must be shared with the D2D terminal in advance.
  • the parameter related to the transmission of the D2D control information may be, for example, a subframe / slot index, a symbol index, or an RB index.
  • the parameter related to the transmission of the D2D control information may be a DCI of a specific format, and may be obtained from the base station or from another D2D terminal through the PDCCH.
  • the DCI of the specific format means a newly defined DCI format and may be, for example, DCI format 5.
  • the D2D control information is in every subframe designated as a D2D subframe (subframe designated for D2D transmission) or in a series of subframes (a set of subframes or subframe sets) having a specific index among all subframes or a specific period. It may be specified to be transmitted in a subframe set having.
  • the transmission subframe or subframe set of such potential D2D control information is previously transmitted to the terminal in such a manner that the terminal can calculate it on its own through higher layers signaling or based on UE-specific information (UE ID, etc.). It can be recognized.
  • UE-specific information UE ID, etc.
  • the resource region to which the D2D data channel is delivered and the resource region to which the D2D control information is delivered may be configured differently in the time domain.
  • the D2D control information may be transmitted in a predetermined time unit, that is, periodically (or while hopping in a designated time-frequency domain pattern), and the D2D data channel may be transmitted only in a resource region indicated by the D2D control information. Can be.
  • this method means independently operating the case of transmitting the D2D control information and the case of transmitting the D2D data.
  • the D2D user equipment attempts to monitor and decode the D2D control information using a potential parameter in a potential resource (subframe or subframe set) to which the D2D control information is to be transmitted ( eg explicit or blind decoding), attempts to decode the D2D control information are not performed in resource regions other than the potential resources.
  • the terminal may demodulate only the specified information at a designated time point by using the parameter obtained through the D2D control information and the D2D data resource region information, thereby reducing power consumption of the terminal. It is effective.
  • the matching of D2D control information of each UE may be implemented based on UE specific information or based on UE-group specific (UE-group common) information.
  • UE-specific scrambling or CRC masking is applied to D2D control information so that only the corresponding UE decodes the D2D control information, or a plurality of UEs (group or all) decode the D2D control information.
  • Group common scrambling or CRC masking may be applied.
  • the UE or the UE group can obtain information related to D2D data demodulation from the D2D control information that has been successfully decoded.
  • the D2D control information is not only explicit information included in the D2D control information, but also a parameter used in a D2D control channel (PSCCH) (here, not only a predetermined parameter but also a parameter obtained through blind search in a given D2D control channel set. Inclusive).
  • PSCCH D2D control channel
  • the parameters used for the D2D control channel may be scrambling, CRC masking, usage resource information, reference signal related parameters, and the like.
  • the terminal can be implemented so that the terminal does not blindly decode the D2D data.
  • the terminal or the terminal group may utilize the unique information of each one to obtain the D2D control information, or perform blind decoding on the D2D control information through a specific parameter at a specific time point based on the information signaled in advance (higher layers). Perform.
  • the terminal or the terminal group may acquire various parameters used for generation and transmission of scheduling information related to data demodulation and D2D control channel (or control information).
  • the terminal is used for decoding and demodulation of the D2D data channel by using the D2D control channel related parameter and the decoded scheduling information.
  • the D2D data channel may be represented as a physical sidelink shared channel (PSSCH).
  • PSSCH physical sidelink shared channel
  • the scheduling information may refer to explicit information such as resource allocation information, NDI, MCS, Tx UE id, etc. necessary for demodulating D2 data.
  • the scheduling information may be represented by Sidelink Control Information (SCI).
  • SCI Sidelink Control Information
  • the UE uses a parameter through blind search for a D2D control channel (or PSCCH) as it is or uses a new parameter generated based on the parameter to generate a D2D data channel (PSSCH), the UE uses a D2D data channel. There is no need to perform the parameter blind search as performed on the D2D control channel.
  • a D2D control channel or PSCCH
  • PSSCH D2D data channel
  • the D2D control channel and the D2D data channel may be transmitted in the same subframe (in terms of a terminal or a terminal group), but a time period may be set differently.
  • the UE blindly decodes a D2D control channel in a specific subframe and demodulates D2D data of the same subframe based on the information.
  • the UE does not perform blind decoding on the D2D data.
  • the terminal may be configured to grant blind decoding only to the D2D control channel so that the blind decoding complexity depends only on the D2D control channel in the corresponding subframe.
  • the terminal performs blind decoding only on the D2D control information in the corresponding subframe.
  • the number of UEs capable of detecting D2D control information through blind decoding in a specific subframe may be limited.
  • the D2D control information and the D2D data may be transmitted together in the same subframe in some situations depending on the period of each other.
  • the limitation of the blind decoding trial due to the variation of the blind decoding complexity may be prevented by introducing blind decoding of the terminal only to the D2D control channel.
  • scheduling freedom of the D2D data channel may be increased.
  • D2D control channel In the case of a D2D control channel, assuming that transmission of D2D data once detected and associated with the D2D control channel is then transmitted in a specific subframe, in the D2D control channel transmission opportunity subframe for a time interval until the subframe in which the D2D data is to be transmitted ( D2D control information does not need to be transmitted again in the D2D control channel transmission period or PSCCH period.
  • the D2D control channel may be blindly decoded from the UE's point of view, and the D2D control channel blind decoding (monitoring) may not be additionally performed until the D2D data subframe indicated by the D2D control information.
  • the terminal can reduce power consumption. This may be set differently for each terminal.
  • the subframe does not need to be monitored for the D2D control information for each terminal.
  • the UE may know how long to perform DRX (Discontinuous Reception) or DTX (Discontinuous Transmission) in consideration of the monitoring subframe period and offset of its D2D control information. Will be.
  • the UE After receiving and demodulating D2D control information (ie scheduling assignment), the UE appropriately utilizes a corresponding subframe index, a terminal ID, a specific bit value included in the D2D control information, and D2D control information subframe period information (PSCCH Period). You can calculate how long D2D control information does not need to be monitored, ie DTX.
  • FIG. 18 is a diagram illustrating an example of a D2D control information and a D2D data transmission / reception method proposed in the present specification.
  • C1 represents a resource used for transmitting D2D control information among D2D resources allocated to UE 1 (or UE-group 1).
  • the C1 1801 may be obtained through (E-) PDCCH, SIB, preconfigured, relaying by UE, and the like.
  • the UE may acquire the C1 (or SCI format 0) through DCI format 5 transmitted through the PDCCH.
  • period of C1 corresponds to period # 1.
  • C2 1802 represents a resource used for transmitting D2D control information among D2D resources allocated to UE 2 (or UE-group 2).
  • the period of C2 corresponds to period # 2.
  • the period of C1 and C2 may be represented by PSCCH period # 1 and PSCCH period # 2, respectively.
  • the first C1 information indicates a parameter related to transmission of D2D data # 1 1803, and various kinds of information necessary for a demodulation of D2D data # 1 (eg, DM RS sequence, MCS, RA, etc., scheduling). information).
  • various kinds of information necessary for a demodulation of D2D data # 1 eg, DM RS sequence, MCS, RA, etc., scheduling). information.
  • the first C2 information indicates a transmission related parameter of the D2D data # 2 1804 and indicates various information (e.g. scheduling information) required by the receiving terminal for demodulation of the D2D data # 2.
  • the second C1 1805 and C2 information 1086 come after the first D2D data # 1 1803 and the D2D data # 2 1804, that is, the second Data # 1 and Data # 2 (1807). ) Shows parameters (scheduling information, etc.) associated with
  • each UE Since each UE knows in advance the subframe location of the D2D control information that it should monitor, it performs blind decoding on the D2D control information corresponding to each UE for the corresponding subframe.
  • 19 is a diagram illustrating another example of a method for transmitting / receiving D2D control information and D2D data proposed in the present specification.
  • the UE blindly decodes C1 1901 and may recognize that D2D data (D2D data # 1) related to C1 is delivered to D2D data # 1 subframe 1902.
  • the UE may determine the reserved subframe 1901. You can skip without monitoring or blind decoding.
  • FIG. 19 shows that the UE does not perform additional monitoring and blind decoding on D2D control information in a periodically reserved subframe existing between C1 and data # 1.
  • the UE may know in advance that monitoring and blind decoding of D2D control information does not need to be performed in a specific subframe, it may be regarded as performing a DTX operation in the specific subframe in order to reduce power consumption. .
  • 20 is a diagram illustrating another example of a D2D control information and a D2D data transmission / reception method proposed in the present specification.
  • the UE may perform blind decoding in C11 2001 and C13 2003 and skip blind decoding in C12 2002.
  • the monitoring subframes (C11, C12, C13) of all candidate D2D control information between C11 (2001) and data # 11 (2004) are not skipped.
  • the last subframe performs monitoring for blind decoding.
  • the blind candidate skipping is defined for the K candidate subframes positioned at the last part. can do.
  • the k value may be configured according to system operation.
  • D2D transmission A blind decoding skip rule may also be applied only to a subframe used for.
  • the blind decoding skip rule may be applied in consideration of both types of subframes (D2D transmission and D2D reception).
  • the UE assumes that no additional D2D control information arrives during the valid period, thereby allowing D2D control information to arrive between the D2D control information subframe and the D2D data subframe.
  • blind decoding skip may be applied.
  • each UE may calculate a subframe to be monitored from among the D2D control information subframes by using other parameters such as its ID and D2D subframe index. Can be.
  • the method for each UE to calculate its own D2D control information subframe is a method for calculating a subframe index that must be received after waking up from the paging subframe that is to be monitored, that is, the sleep mode by using the UE ID and other parameters. It can be calculated similarly to
  • 21 is a diagram illustrating an example of a method for setting D2D control information according to the D2D transmission mode proposed in the present specification.
  • FIG. 21 illustrates that some of the resources allocated in each D2D resource allocation scheme are configured as common resources when two types of D2D resource allocation schemes, that is, two transmission modes (transmission mode 1 and tansmission mode 2) are used together.
  • FIG. 21A illustrates resource allocation of D2D control information in an in-coverage scenario, that is, transmission mode 1
  • FIG. 21B illustrates resource allocation of D2D control information in partial or out-coverage, that is, transmission mode 2.
  • the resource of control information in transmission mode 1 is indicated by C1 or C2, and the resource of control information in transmission mode 2 can be seen as indicated by P or S.
  • the C1 and P resources are set to be aligned at the same time and / or frequency resource.
  • C1 and P resources are set as common resources (e.g. cell specific, UE-group-specific).
  • the UE when the UE switches a resource allocation scheme, the UE may use the common resource subframe as a fallback subframe in which a D2D control channel should be monitored.
  • the common resource set in different resource allocation schemes may mean a candidate subframe that delivers D2D control information that the UE must monitor in mode switching of the resource allocation scheme.
  • both terminals allocated resources in transmission mode 1 or terminals allocated resources in transmission mode 2 should perform blind decoding on P resources or C1 resources corresponding to common resources.
  • terminals in a cell may have different resource allocation schemes, that is, transmission modes, and one terminal may be configured to have two transmission modes.
  • the transmission mode 1 and the transmission mode 2 do not mean only a resource allocation method of D2D communication, but may be a concept indicating a resource allocation method of D2D discovery.
  • the D2D discovery resource may be set to transmission mode 1
  • the D2D communication resource may be set to transmission mode 2, or vice versa.
  • a predefined terminal terminal group or cell-wide terminal or D2D enabled terminal
  • a predefined terminal is defined to monitor the common resource set. can do.
  • DCI, SG scheduling grant
  • SA scheduling assignment
  • the scheduling grant (SG) used hereinafter indicates downlink control information (DCI) transmitted from the base station to the D2D terminal and may mean a parameter related to D2D communication.
  • DCI downlink control information
  • the scheduling grant may be transmitted through PDCCH / EPDCCH or may be represented by DCI format 5.
  • the scheduling assignment may indicate D2D control information and may mean control information for transmitting and receiving between D2D terminals including resource allocation information for transmitting and receiving D2D data.
  • the scheduling assignment may be transmitted through a PSCCH or may be represented by SCI format 0.
  • Resource Allocation Resource (or Resource Pool) indication methods (to be used for the following transmission) Being transmitted Scenarios For Scheduling Assignment For Data communication Mode 1 (eNB schedules) In-coverage SIB (or (E) PDCCH) (This can be triggered by D2D scheduling request (D-SR)) SIB (or (E) PDCCH) (This can be triggered by D2D scheduling request (D-SR)) Edge-of-coverage Via other forwarding UE (s) SIB or other sig. forwarding Via other forwarding UE (s) SIB or other sig.
  • D-SR D2D scheduling request
  • D-SR D2D scheduling request
  • D-SR D2D scheduling request
  • Edge-of-coverage Via other forwarding UE (s) SIB or other sig. forwarding Via other forwarding UE (s) SIB or other sig.
  • the resource pools for data and control may be the same -Semi-static and / or pre-configured resource pool restricting the available resources for data and / or control may be needed -D2D communication capable UE shall support Mode 2 for at least edge-of-coverage and / or out-of-coverage
  • Mode 1 and Mode 2 of the D2D resource allocation scheme may be classified as follows.
  • a UE can operate in two modes for resource allocation:
  • Mode 1 eNodeB or rel-10 relay node schedules the exact resources used by a UE to transmit direct data and direct control information
  • Mode 2 a UE on its own selects resources from resource pools to transmit direct data and direct control information
  • resource allocation used for SA transmission and D2D data transmission in Mode 1 and Mode 2 may be implemented through SIB in an in-coverage scenario. That is, the base station may inform the terminal of the resource allocation for SA transmission and D2D data transmission through the SIB.
  • scheduling assignment and data resources may be allocated using dynamic control signals (PDCCH, EPDCCH, MAC CE) of the eNB.
  • PDCCH dynamic control signals
  • EPDCCH EPDCCH
  • MAC CE MAC CE
  • the resource pool may be allocated to the SIB in advance, and specific resource allocation information (SA resource and D2D data resource) may be notified to the terminal through a dynamic control signal within the allocated resource range (time-frequency resource). .
  • SA resource and D2D data resource may be notified to the terminal through a dynamic control signal within the allocated resource range (time-frequency resource).
  • scheduling assignment for direct communication may deliver specific resource allocation information (e.g., using relative location information, offset information, etc.) used for direct data communication.
  • the terminal may receive the SA and data resource pool through the SIB, and may be allocated specific SA and data transmission resources through the SA.
  • SA may be used for indicating one or several of the allocated resource pools.
  • the UE may know the SA resource pool and the data resource pool based on the resource configuration information received from the pre-configured or coverage UE.
  • the UE may select SA resources by itself.
  • the terminal may transmit the D2D receiving terminal to the resource area receiving the D2D data by transmitting the SA contents to the D2D receiving terminal including the resources allocated for the D2D data transmission.
  • the SA may be able to utilize the detected resource region information (time, frequency index, etc.) as part of the D2D data resource allocation information.
  • the final resource area is calculated by using the SA resource related information and SA contents information together.
  • the SA (transmission) resource related parameter is used to obtain only time domain information (eg time domain parameter, subframe index) of the D2D data resource region, and the information transmitted from the SA is frequency domain information (eg frequency domain parameter, RB). index, etc.)
  • the SA resource related parameter may be used to specify the absolute position of the D2D data resource (time, frequency index), and the resource allocation information included in the SA contents may be used to indicate the relative position of the D2D data resource.
  • the SA (transmission) resource related parameter may be used to inform a random back-off or a transmission probability value.
  • the signaling contents transmitted from the base station to the D2D transmitting terminal may include a resource configuration for direct scheduling assignment, an MCS, and the like.
  • the signaling contents may be expressed as downlink control information (DCI) or scheduling grant (SG).
  • DCI downlink control information
  • SG scheduling grant
  • a D2D resource pool is allocated through a system information block (SIB) and the UE determines itself a resource for transmitting SA resources and D2D data based on the allocated D2D resource pool, an eNB dynamic control signal such as PDCCH / EPDCCH May not be necessary.
  • SIB system information block
  • the eNB can control resource allocation for D2D SA and direct data in real time, thereby making resource utilization more efficient. In this case, an eNB dynamic control signal is needed.
  • an eNB dynamic control signal eg, scheduling grant using DCI, MAC CE, etc.
  • an eNB dynamic control signal e.g. scheduling grant for SA and / or data for D2D
  • the eNB may transmit the SG to the D2D terminal not only for (1) scheduling regarding SA transmission but also (2) scheduling for data transmission.
  • scheduling may mean scheduling related to D2D transmission
  • the scheduling information may include resource allocation information, MCS, RV, and NDI.
  • the eNB may transmit one SG to the D2D terminal to indicate whether scheduling for SA transmission or scheduling for D2D data transmission.
  • the D2D UE may receive an SG related to SA transmission from the eNB, and grasp the location or the approximate location of the D2D data transmission resource having linkage with the SA (or scheduling information as well).
  • the D2D UE may receive an SG related to data transmission from an eNB and grasp resource location and related information related to SA transmission having data and linkage.
  • Method 1 to method 4 below show a timing relationship between a dynamic control signal transmitted from a base station to a D2D transmitting terminal and an SA transmitted from a D2D transmitting terminal to a D2D receiving terminal.
  • 22 is a diagram illustrating an example of a timing relationship between SG reception and SA transmission in a D2D terminal proposed in the present specification.
  • FIG. 22 illustrates that when a D2D scheduling assignment (SF) subframe (SF) is periodically set, when a D2D transmitting UE receives a scheduling grant (SG) from a base station between a D2D SA SF period (or PSCCH period, 2201) (S2210), FIG.
  • the D2D transmitting terminal transmits (S2220) a scheduling assignment in the first D2D SA SF 2202 that comes after the received SG SF.
  • FIG. 23 is a flowchart illustrating an example of a timing relationship between SG reception and SA transmission in a D2D UE proposed in the present specification.
  • FIG. 23 illustrates a method in which a D2D transmitting terminal transmits an SA to the D2D receiving terminal in consideration of the processing time of the terminal (or system) after receiving the SG from the base station.
  • the D2D transmitting terminal receives the SG from the eNB, and configures the SA based on the received SG, and transmits the SA in consideration of the time required for transmitting to the D2D receiving terminal, that is, the processing delay.
  • the D2D transmitting terminal may transmit the SA to the D2D receiving terminal in subframe # n + 4 2301 (S2302).
  • subframe # n + 4 2301 is not a D2D SA subframe
  • the subframe # n + 4 2301 is defined to be transmitted by the D2D SA subframe 2302 that first comes after the subframe # n + 4.
  • the D2D transmitting terminal determines that the D2D SA SF is not valid or available. do.
  • the D2D transmitting terminal transmits the D2D SA in a later available D2D SA SF (or next period).
  • n + 4 may be generalized to transmit a D2D SA in n + k, that is, after receiving SG and in the k-th SA SF.
  • the k value may be configured in consideration of future developments in technology and performance of the terminal.
  • the k value may be set differently for each terminal according to the capability of the terminal.
  • FIG. 23A illustrates an example of a method of transmitting an SA in subframe # n + k
  • FIG. 23B illustrates an example of a method of transmitting an SA in SA SF that first arrives after subframe # n + k.
  • the difference from the LTE (-A) system is not to allocate resources explicitly, but to define a D2D resource pool, select a resource again and transmit it, and allow a collision between resources. In other words, it is operated by setting different values between terminals.
  • the method of FIG. 23 can be equally applied to D2D data transmission.
  • the D2D UE may transmit the D2D data in subframe n + k 'in consideration of the processing time of the D2D UE. .
  • the control information related to the D2D data transmission may be an SG or SA related to resource allocation of the D2D data transmission.
  • k 'value may be set differently from k value at the time of SA transmission.
  • 24 is a diagram illustrating another example of a timing relationship between SG reception and SA transmission in a D2D terminal proposed in the present specification.
  • the D2D transmitting terminal When the D2D transmitting terminal receives a resource allocation DCI (SG) from the base station in SF #n, it shows how the D2D transmitting terminal transmits the SA to the D2D receiving terminal in the first SA SF after n + 4.
  • SG resource allocation DCI
  • the SA when receiving the SG in SF #n (S2410), the SA is transmitted in the first SA SF group after n + 4 ( S2430).
  • a specific bit (or specific field) of the DCI format may be used to determine the location of the SA or data transmission subframe.
  • bits, hopping bits, or RA bits for dividing DCI format 0/1 may be used to determine the location of an SA or data transmission subframe.
  • the SG can be divided into SA and data, and may be further classified into a special use if necessary.
  • bits, hopping bits, and RA bits for dividing the DCI format 0/1 may be used to distinguish the use of the SG.
  • FIG. 25 is a diagram illustrating another example of a timing relationship between SG reception and SA transmission in a D2D terminal proposed in the present specification.
  • FIG. 25 shows the position of the SA SF to the RRC in advance (S2510), and simply SG (e.g. PDCCH DCI) is used only for the activation purpose of using the SA SF (S2520).
  • simply SG e.g. PDCCH DCI
  • a special index may be defined to identify the association between RRC signaling and activation DCI.
  • DCI indicating activation of SA SF may be defined to inform which index RRC refers to.
  • the DCI, or SG accurately indicates the activation of the SA SF or SF set transmitted to the RRC.
  • the RRC set consisting of a series of idex mapped with the DCI may be specified in advance.
  • the D2D transmitting terminal transmits the SA to the D2D receiving terminal through the SA SF indicated by activation by the SG (S2530).
  • a method of indicating a time location of an SA resource and / or a D2D data resource through the RRC signaling of FIG. 25 will be described in more detail with reference to FIGS. 30 to 33.
  • FIG. 26 is a diagram illustrating an example of a timing relationship between D2D SA transmission and D2D data transmission proposed in the present specification.
  • Timing between the D2D SA SF and the D2D data SF may be desirable to implicitly transmit / receive the D2D data according to a predetermined rule.
  • the k value is configurable and may be configured to have a different value for each terminal.
  • parameter (k) indicating the specific SF may be included in SA contents.
  • the interpretation of the indication parameter k value may be interpreted differently according to the following conditions.
  • the indication parameter k value may be interpreted differently according to UE, resource region location, UE group, and scenario (in-coverage, out-coverage, edge-of-coverage).
  • FIG. 27 is a diagram illustrating another example of a timing relationship between D2D SA transmission and D2D data transmission proposed in the present specification.
  • FIG. 27 illustrates a method of enabling D2D data SF to be transmitted within n + k (2701) (S2720).
  • the D2D receiving terminal may enable decoding of D2D data by preparing SA SF buffering together with data SF buffering received later in consideration of processing time (or processing delay).
  • the k value is configurable and may be configured to have a different value for each terminal.
  • FIG. 28 is a diagram illustrating another example of a timing relationship between a D2D SA transmission and a D2D data transmission proposed in the present specification.
  • FIG. 28 explicitly shows a method of directly indicating D2D data SF in SA.
  • the D2D transmitting terminal receives the k value from a part of the SA contents or the SA transmission resource parameter in subframe # n + k (S2820) that receives the D2D data. Calculate from the D2D receiving terminal can be explicitly informed.
  • SA contents may indicate SA information to which an MCS value, frequency hopping, resource allocation related to frequency hopping, or the like is applied or set in a resource region for SA transmission.
  • 29 is a flowchart illustrating an example of a D2D data transmission / reception method proposed in the present specification.
  • the D2D receiving terminal that receives the D2D data may receive a plurality of D2D data through the SA value once received from the D2D transmitting terminal.
  • the D2D receiving terminal may determine that the same single SA value is applied to the multi data subframe.
  • the D2D receiving terminal receives an SA from the D2D transmitting terminal through a periodically set SA subframe (S2910).
  • the D2D receiving terminal receives at least one D2D data transmitted from the D2D transmitting terminal for the predetermined time interval using the received SA (S2920).
  • the predetermined time interval may be an SA period for receiving the SA, an SA contents valid time interval, or the like.
  • the SA contents valid time interval may be predetermined, and may be simply defined as an SF index or may be defined as a multiple of an SA SF period.
  • the SA contents valid time interval may be defined as a combination of SA SF and normal SF, or may be defined as a D2D data SF period or a multiple thereof.
  • SF may mean a normal SF index or may mean a D2D SF index.
  • the SA includes resource allocation information related to the plurality of D2D data when there is a plurality of D2D data during the predetermined time interval.
  • the D2D receiving terminal may receive a plurality of D2D data based on the SA received in step S2910 without additionally receiving SA during the predetermined time period.
  • the D2D control information may be divided into control information transmitted through the SA and control information embedded (or included) in the D2D data.
  • control information such as RA and MCS may be transmitted through direct SA
  • control information such as NDI may be transmitted through direct data.
  • 30 to 33 are diagrams showing examples of a method for indicating a location of an SA resource and / or a D2D data resource proposed in the present specification.
  • 30 and 31 illustrate a method for transmitting and receiving SA and / or D2D data by using a subframe pattern through which SA resources and / or D2D data resources can be transmitted and received.
  • the subframe pattern through which the SA resource and / or the D2D data resource can be transmitted and received may be expressed as a resource pattern for transmission (RPT).
  • RPT resource pattern for transmission
  • the RPT refers to time and / or frequency resources for guaranteeing a plurality of transmission opportunities for D2D data TBs (Transport Blocks).
  • the RPT may be classified into a time-RPT (T-RPT) or a frequency RPT (F-RPT).
  • FIG. 30 illustrates a method for explicitly informing a D2D terminal of a subframe pattern associated with an SA resource and / or a D2D data resource
  • FIG. 31 illustrates a subframe pattern associated with an SA resource and / or a D2D data resource. A method of implicitly transmitting to a D2D terminal is shown.
  • the UE uses a part of the entire UL subframe as the D2D subframe.
  • the UE communicates with the eNB in the remaining UL subframes other than the D2D subframe among the entire UL subframes.
  • the transmission of the eNB-to-UE and the transmission of the D2D Tx UE-D2D Rx UE do not occur at the same time.
  • a UE transmits a D2D signal to another UE in a D2D subframe
  • the UE cannot receive a D2D signal from the other UE in the same band of the same D2D subframe.
  • the D2D signal transmitted by the self acts as a strong interference.
  • a subframe pattern (or configuration) may be differently set between the D2D transmission subframe transmitting the D2D signal and the D2D receiving subframe receiving the D2D signal.
  • different UEs transmit D2D signals to reduce interference between UEs by reducing the probability that two adjacent UEs use overlapping time resources at the same time.
  • the subframe pattern can be set differently.
  • the eNB may solve the interference problem that may occur between UEs by setting a subframe pattern for each UE to use for D2D transmission in consideration of the distance between the UEs (to determine the degree of mutual interference effect).
  • the eNB explicitly informs the D2D UE of the D2D transmission subframe patterns 3010 through high layer signaling such as RRC signaling.
  • the eNB may dynamically set the D2D transmission subframe pattern to the D2D UE through EPDCCH or PDCCH. That is, when transmitting the D2D transmission subframe pattern to the D2D terminal through the EPDCCH or PDCCH, there is an advantage that the D2D transmission suframe pattern can be set by quickly adapting to the change of the position of the UE.
  • the terminal may be selected by itself.
  • the method allows the D2D UE to implicitly acquire the D2D subframe pattern.
  • the D2D UE may select the D2D subframe pattern in a pseudo random manner based on its UE ID (or UE-specific parameters having similar characteristics).
  • the D2D user equipment may receive the minimum signaling information from the base station and use the same as a factor for determining a pseudo random value to select a subframe pattern pseudo randomly.
  • an appropriate subframe pattern (or subframe set) is given, and mutual interference between UEs described above can be reduced by simply selecting a subframe pattern randomly among them.
  • the eNB delivers a candidate group 3010 of D2D transmission related subframe pattern potentially available to a specific UE to higher layer signaling such as RRC signaling, and then uses it for actual D2D transmission at a specific time point.
  • one or more subframe patterns 3020 may be transmitted (or designated) to EPDCCH or PDCCH.
  • the eNB performs D2D through N layer subframe patterns defined in advance, that is, N subframe pattern candidate groups (subframe pattern # 0, subframe pattern # 1, subframe pattern # 2, ...) through higher layer signaling such as RRC signaling. Send to the terminal.
  • the eNB specifies one or more than one subframe pattern of the N subframe patterns 3010 as a D2D transmission subframe pattern (3020) and transmits it to a D2D terminal through a PDCCH or an enhanced PDCCH (EPDCCH).
  • a D2D transmission subframe pattern (3020)
  • EPDCCH enhanced PDCCH
  • the eNB delivers a candidate group 3010 of a D2D transmission related subframe pattern potentially available to a specific UE through higher layer signaling such as RRC signaling, and the received D2D UE receives a specific time point.
  • subframe pattern (3120) to be used for the actual transmission can be selected using a UE identification parameter (eg UE ID, 3110).
  • the UE identification parameter (seed, 3110) may be previously assigned from the base station.
  • the D2D user equipment may perform D2D transmission and reception through the selected subframe pattern.
  • 32 and 33 illustrate examples of a method of changing a subframe pattern related to SA resources and / or D2D data resources proposed in the present specification.
  • FIG. 32 shows a method of informing of an explicitly changed subframe pattern
  • FIG. 33 shows a method of informing of an implicitly changed subframe pattern.
  • the UE changes the subframe pattern allocated to the D2D UE through FIGS. 30 and 31.
  • 32 and 33 illustrate a subframe pattern repeated in 8 ms periods (8 subframes), and the eNB indicates subframe pattern # 0 ⁇ 10001010 ⁇ 3210 and subframe pattern # 1 ⁇ 00111001 ⁇ through higher layer signaling in advance. 3210 may be transmitted to the D2D terminal.
  • a value of '1' may mean a subframe related to D2D transmission and may transmit and receive a D2D transmission related signal in the corresponding subframe.
  • a value of '0' may mean that a subframe not related to D2D transmission cannot transmit / receive a D2D transmission related signal in a corresponding subframe.
  • the eNB designates what the D2D subframe pattern (SF pattern # 0, S3220) actually used by the UE through the PDCCH, etc., and the UE operates accordingly.
  • the eNB transmits D2D subframe pattern change information 3230 indicating the changed D2D subframe pattern to the D2D UE.
  • the D2D subframe pattern change information may designate a changed subframe pattern by using some fields in PDCCH or EPDCCH.
  • Fields not used in the DCI field include an indicator for identifying DCI format 0 / 1A, a CQI request field, and an NDI field.
  • Some of a DM RS cyclic shift field or an MCS / RV field using a plurality of bits may be used.
  • the subframe pattern and D2D data for scheduling assignment are assigned to each state designated as a field in the DCI described above.
  • Each subframe pattern may be given.
  • the UE randomly selects a D2D subframe pattern (SF pattern # 0,3320) to be actually used among the D2D subframe pattern candidate groups using the UE ID, and the UE may operate accordingly.
  • the eNB may transmit a D2D subframe pattern (change) indicator indicating that the D2D subframe pattern has been changed through the PDCCH (or other control information or other message or RRC signaling) to the D2D UE.
  • a D2D subframe pattern (change) indicator indicating that the D2D subframe pattern has been changed through the PDCCH (or other control information or other message or RRC signaling) to the D2D UE.
  • the D2D UE may randomly select the D2D subframe pattern (SF pattern # 1,3330) using a pseudo-random selection parameter (seed, D2D UE identification parameter) such as a UE ID.
  • a pseudo-random selection parameter seed, D2D UE identification parameter
  • the UE ID and the like may inform the D2D UE in advance through RRC signaling.
  • the eNB may transmit a parameter or seed value for determining the pseudo random value to the D2D UE in advance.
  • the UE may determine the index of the D2D transmission subframe using the pseudo random value without the pattern.
  • a parameter or seed value for determining a pseudo random value may be transmitted from the base station.
  • the UE may determine the subframe pattern or the subframe index based only on the signaling information for determining the pseudo random value, the subframe pattern or the subframe index may be determined by including the unique value of the UE.
  • the transmission bandwidth of the SA may be fixed in advance so that the D2D receiving UE knows the transmission bandwidth of the SA.
  • the portion corresponding to the number of allocated RBs among the resource allocation fields included in the SG is fixed to a predetermined value, such as '0', or is fixed to the SA. It may be defined as the transmission bandwidth of.
  • a field included in the SG related to the transmission bandwidth of the SA may be used for a purpose other than the use of the SA transmission bandwidth (eg, for designating the position of the actual SA SF in the SA SF group).
  • 34 is a flowchart illustrating an example of a UE scheduling method for D2D transmission proposed in the present specification.
  • the eNB performs a scheduling grant (SG) procedure with a D2D transmitting (Tx) UE or a D2D receiving (Rx) UE (Step # 1, S3410).
  • SG scheduling grant
  • the eNB transmits the SG associated with the D2D transmission to the D2D Tx UE or the D2D Rx UE.
  • the SG procedure (Step # 1) may be divided into two methods as follows.
  • the first method (Method # 1) allocates D2D transmission related resources through RRC signaling, and then additionally performs detailed operations such as activation / release of the allocated resources through a physical / MAC control channel (eg PDCCH). This is a method of controlling dynamically.
  • a physical / MAC control channel eg PDCCH
  • the second method is a method of controlling D2D operation by transmitting resource allocation related to D2D transmission and / or scheduling information related to D2D transmission through a physical / MAC control channel.
  • the D2D UE may receive scheduling information related to D2D communication (MCS, RV, DM RS parameters, %) from the eNB or determine the D2D UE by itself.
  • MCS scheduling information related to D2D communication
  • RV scheduling information related to D2D communication
  • DM RS parameters DM RS parameters
  • Resource allocation information may be included in the scheduling information, and scheduling information and resource allocation information may be separately interpreted.
  • the scheduling information may be received through a control channel such as an RRC signal and / or a PDCCH.
  • the D2D UE when the D2D UE receives the scheduling information from the eNB by RRC signaling, fields such as MCS, RV, and DM RS parameters related to D2D transmission are unnecessary in the DCI format of the PDCCH.
  • the total length of the DCI format is reduced by eliminating the unnecessary fields or made into a DCI format having the same length by applying a technique such as zero padding.
  • the D2D transmitting terminal performs a scheduling procedure related to D2D data transmission for transmitting and receiving D2D data with the D2D receiving terminal (Step # 2, S3420). That is, the SA transmission procedure is performed.
  • Step # 2 may be used with the methods used in Step # 1 above.
  • the information that may be included in the SA may be as follows, and in particular, information related to a resource for receiving D2D data may be included in the SA.
  • Scheduling information (including resource allocation information) related to SA transmission may be transmitted from the base station to the D2D transmitting terminal (via SG), and the SA transmission may be interpreted to be transmitted from the D2D transmitting terminal to the D2D receiving terminal.
  • Information related to resources for data reception Information related to resources for receiving D2D data
  • Number and pattern of retransmissions Number of retransmissions and pattern information
  • SPS incl. Periodicity
  • Target ID ID information of the D2D receiving terminal
  • the received SG may include scheduling information (including resource allocation information) related to SA.
  • the base station knows a D2D transmission subframe capable of transmitting SA.
  • the base station transmits the SG to the D2D transmitting terminal in the n-k1 (k1 is an integer) subframe of the SA transmitting subframe (n), so that the D2D transmitting terminal can transmit the SA to the D2D receiving terminal.
  • the k1 value may be around 4.
  • the k1 value may be two or three.
  • the D2D transmitting terminal may simultaneously identify the location of the D2D data transmission subframe through the received SG.
  • the use of the SG may be used not only for SA scheduling but also for transmitting D2D data, subframes of D2D data, frequency resource allocation, and the like.
  • the D2D transmitting terminal receives the SG from the base station, and after a predetermined time will be described how to transmit the SA from the SA transmission effective resources to the D2D receiving terminal.
  • the received SG may include scheduling information related to SA transmission.
  • the eNB transmits the SG to the D2D transmitting terminal based on the request time point for the D2D transmitting resource from the D2D transmitting terminal without specifically identifying the SA transmission valid subframe.
  • the D2D transmitting terminal when the D2D transmitting terminal receives the SG from the base station, it generates an SA based on the received SG.
  • the D2D transmitting terminal identifies the SA available subframes in which the SA can be transmitted, and transmits the generated SA to the D2D receiving terminal in the available or valid D2D subframe (subframe valid in terms of SA transmission).
  • the D2D transmitting terminal receives the SG from the base station and the next subframe is available, it may not be able to transmit the SA directly to the D2D receiving terminal.
  • the reason is that the D2D transmitting terminal receives the SG, performs the reception process, generates an SA using the SG, which is information related to the received SA, and needs n + k2 time to prepare for transmission of the D2D data.
  • k2 has an integer value. As the technology advances, the k2 value may be up to 2 or 3. That is, k2 may have various values such as 1, 2, 3, and 4 depending on the reception capability of the terminal.
  • the D2D transmitting terminal receives the SG from the base station and transmits the SA to the D2D receiving terminal after 4 subframes.
  • the D2D transmitting terminal transmits the SA to the D2D receiving terminal in the next subframe.
  • an SA may be transmitted in the next subframe.
  • SA is transmitted in the fastest SA available subframe among n + 4 and subsequent subframes.
  • the subframes in which SA transmission is impossible may correspond to all subframes not designated as D2D transmission.
  • subframes through which synchronization signals are transmitted such as subframes 0 and 5, may be excluded from the SA available subframes.
  • subframes through which paging subframes are transmitted such as subframes 0, 4, 5, and 9, may also be excluded from the SA available subframes.
  • the specific D2D subframe may be excluded from the SA available subframe.
  • a dedicated subframe for SA transmission may be configured, and SA may be transmitted only in the SA dedicated subframe.
  • the D2D transmitting terminal may receive the SG from the base station (subframe n) and transmit the SA to the D2D receiving terminal in the SA (transmission) available subframe after the n + k3 subframe.
  • the D2D terminal receiving the SG may simultaneously identify the location of the data transmission subframe. That is, the SG may be used for data transmission time (subframe), frequency resource allocation, etc. by participating in data transmission beyond SA scheduling.
  • the D2D transmitting terminal transmits the D2D data to the D2D receiving terminal based on the SA (Step # 3, S3430).
  • the D2D transmitting terminal may transmit necessary control information together with the D2D data.
  • the control information may be transmitted in the form of piggyback on D2D data.
  • the D2D terminal may determine that the received SG1 is no longer valid.
  • the validity determination time point for the SG may be applied after n + k4 subframes after receiving (subframe n) the SG transmitted later, that is, SG2.
  • the k4 value is an integer, and considering the time point where the SG2 can be applied substantially, it will have a value of 2, 3, 4, and the like.
  • the base station may transmit the SG1 and SG2 together to the D2D terminal at the same time.
  • the SG1 and the SG2 may be merged and transmitted in one DCI format.
  • the D2D user equipment may increase the reception success probability for each SG.
  • the D2D UE may feedback the result of the reception of each SG to the eNB, and may use the PUCCH as a channel for feeding back the result of the reception of the SG.
  • the transmission power control of the D2D terminal may be implemented through the SG.
  • the base station may control the transmission power of the D2D terminal by transmitting the TPC command to the D2D terminal by using the TPC field or by using the DCI format 3 / 3A.
  • a specific field of a corresponding format may be reserved and used as D2D power control.
  • the valid time for which the SG can be used may be determined.
  • the D2D terminal may receive the SG from the base station, and automatically discard the received SG when a predetermined time (or a predetermined number of subframes) passes or a predetermined number of D2D subframes passes.
  • the SG may be considered to be invalid.
  • the previous SG may be defined as valid until the D2D UE receives the next SG.
  • the D2D terminal discards the corresponding SG after a certain time or a certain number of subframes after receiving the SG.
  • the D2D UE may discard the previously transmitted SG even if the predetermined time has not passed. have.
  • FIG. 35 illustrates an example of a UE scheduling method for D2D transmission using RRC signaling proposed in the present specification.
  • FIG. 35 shows a method of embodying S3410 in FIG. 34.
  • Steps S3520 and S3530 are the same as those of steps S3420 and S3430 of FIG. 34, and therefore only the differences will be described.
  • the eNB performs a scheduling grant procedure with a D2D Tx UE or a D2D Rx UE (Step # 1, S3510).
  • step S3510 can be implemented through two methods.
  • the first method (Method # 1) allocates D2D transmission related resources through RRC signaling and additionally provides detailed dynamics such as activation / release for the allocated resources through a physical / MAC control channel (eg PDCCH). How to control the operation.
  • a physical / MAC control channel eg PDCCH
  • the second method is a method of controlling D2D operation by transmitting resource allocation and / or scheduling information related to D2D transmission through a physical / MAC control channel.
  • Method # 1 ie RRC signal and dynamic control signal (eg (E) PDCCH, PHICH) based scheduling (eg semi-static scheduling) for SA (and data) in more detail Shall be.
  • the method of (1) includes 1) RRC signaling transmission (S3511) for overall resource configuration / allocation for SA (and / or data) transmission and 2) activation / deactivation of the allocated SA (and data) resources through 1). It can be divided into a dynamic control information transmission (S3512) method for (activation / release).
  • RRC signal ing overall resource configuration / allocation for SA (and data)
  • the eNB allocates a specific resource (or specific resource set / group) related to D2D transmission to the D2D terminal through RRC signaling similarly to the LTE semi-persistent scheduling (SPS) scheduling method.
  • SPS semi-persistent scheduling
  • the eNB may also allocate monitoring resources for D2D reception to the D2D terminal.
  • the specific resource region may be a subframe (s), a set of resource blocks, or the like.
  • the D2D UE may blind demodulation (or blind decoding) D2D data or SA by monitoring the specific resource region.
  • the monitoring resource may refer to a resource informed to monitor so as to blindly decode SA and / or D2D data (Tx-to-Rx for D2D) in the D2D UE.
  • a and / or B may be interpreted as the same meaning as a concept including at least one of A or B (A, B, A & B).
  • the method of (1) may be used not only for SA scheduling but also for indicating a data resource region, that is, for D2D data scheduling.
  • the method of (1) shows an operation of allocating D2D transmission-related resources to RRC similarly to semi-persistent scheduling (SPS) and dynamically activating or releasing resources by using a physical layer and a MAC layer control channel.
  • SPS semi-persistent scheduling
  • steps S3520 and S3530 are performed.
  • 36 is a diagram illustrating an example of a UE scheduling method for D2D transmission using a physical layer channel proposed herein.
  • FIG. 36 shows a method of embodying S3410 in FIG. 34.
  • Steps S3620 and S3630 are the same as steps S3420 and S3430 of FIG. 34, and therefore only the differences will be described.
  • the eNB performs a scheduling grant procedure with a D2D Tx UE or a D2D Rx UE (Step # 1, S3610).
  • Step # 1 can be implemented through two methods.
  • the first method (Method # 1) allocates D2D transmission related resources through RRC signaling and additionally provides detailed dynamics such as activation / release for the allocated resources through a physical / MAC control channel (eg PDCCH). How to control the operation.
  • a physical / MAC control channel eg PDCCH
  • the second method is a method of controlling D2D operation by transmitting resource allocation and / or scheduling information related to D2D transmission through a physical / MAC control channel.
  • the method of (2) uses D2D Tx by using control information transmission channel (eg EPDCCH, PDCCH, PHICH, new channel) in the physical layer (or MAC layer) instead of transmitting scheduling information (including resource allocation) related to D2D transmission by RRC.
  • control information transmission channel eg EPDCCH, PDCCH, PHICH, new channel
  • the resource allocation, MCS, RV, NDI, power control, and PMI may be referred to as scheduling information related to D2D transmission.
  • the SG may be used for notifying that the contents of scheduling information related to D2D transmission have changed.
  • the meaning of the change includes the meaning of change, deletion, addition, and the like.
  • it may be classified into a case of using the same signaling format as the SG and a case of using a different signaling format.
  • Scheduling information included in the SG means a change of a D2D transmission related resource region for which RRC signaling is specified or a change of a resource to be used by a D2D Tx (and / or Rx) UE in the corresponding resource region or substantially allocated by the SG. This may mean a change of a resource zone or a change of a resource zone group or a change of part or all of SA contents.
  • the SA contents include various scheduling information including RA, and informs through SG that one or more of these contents have changed.
  • the eNB may make and use a compact new SG by reducing the bit field of the SG.
  • a method of implementing SG / SA update such as resource re-allocation related to D2D transmission may use PHICH as well as PDCCH and EPDCCH.
  • the eNB may use the PHICH resource to inform the D2D UE whether there is a change in the SG / SA.
  • the D2D UE may receive the changed SG / SA by monitoring the PHICH including information indicating that there is a change in the SG / SA.
  • the D2D user equipment receives the modified SG / SA in advance of the SG / SA modification notification from the eNB or after a designated time interval.
  • Modification notification can have two meanings.
  • the first meaning is to inform the D2D UE that the SA should be changed and to receive the changed SA through monitoring of the SG in order to know the changed SA.
  • the second meaning is that the S2 is changed or is going to be changed at a specific time point to the D2D user equipment, so that the D2D user equipment receives the changed or scheduled SG.
  • SG can be used for data scheduling as well as SA scheduling.
  • steps S3620 and S3630 are performed.
  • FIG. 37 is a flowchart illustrating an example of a method of performing a HARQ procedure for an SG proposed herein.
  • Steps S3710, S3730, and S3740 are the same as those of steps S3410 to S3430 of FIG. 34, and therefore only the differences will be described.
  • step S3710 the D2D terminal and the base station performs a SG HARQ (Hybrid Automatic Retransmission reQuest) procedure (S3720).
  • SG HARQ Hybrid Automatic Retransmission reQuest
  • the D2D terminal may return (or transmit) a response to the received SG to the base station.
  • the response may be Ack or Nack.
  • the SG may be control information related to SA and / or D2D data transmission, such as activation / de-activation of allocated resources in the SPS, or may be resource allocation information.
  • Control information related to the SA and / or D2D data transmission or resource allocation information may be represented as scheduling information related to the D2D transmission.
  • step S3720 when the D2D terminal is not able to receive the SG from the base station, the SA transmission to other D2D terminal or do not apply the changes to the already transmitted SA content, SA before the change It is possible to prevent the performance degradation or the inability to communicate due to continuous transmission.
  • confirmation of whether the SG is received is required, which may utilize a UL ACK / NACK mechanism.
  • the D2D UE may transmit a response (ACK / NACK) to the SG to the base station in the existing PUCCH structure or embedded PUCCH to PUSCH form (UCI Piggyback).
  • the response to the SG can be easily utilized by using a PUCCH resource connected to each DCI index of the PDCCH or EPDCCH.
  • the D2D terminal may provide a feedback on whether the SG is received.
  • the size may be represented by 1 bit to 2 bits.
  • the response to the SG may be feedback through PUCCH.
  • FIG. 38 is a diagram illustrating an example of a D2D operation procedure to which the method proposed in the present specification can be applied and a signaling transmission / reception method related thereto.
  • D2D communication mode 1 a D2D operation procedure and related information in a D2D operation procedure (D2D communication mode 1) under the control of a base station.
  • a Scheduling Assginment (SA) resource pool 3810 and / or a data resource pool 3820 related to D2D communication may be configured in advance.
  • the configured resource pool may be transmitted from the base station to the D2D terminals through high layer signaling.
  • the higher layer signaling may be RRC signaling.
  • a and / or B may be interpreted as a concept that means at least one of A or B (which represents A, B or A & B).
  • the SA resource pool and / or data resource pool means resources reserved for UE-to-UE (D2D) or D2D communication.
  • the UE-to-UE link may be represented as a sidelink.
  • the SA resource pool refers to a resource region capable of transmitting SA
  • the data resource pool refers to a resource region capable of transmitting D2D data.
  • the SA may be transmitted according to the SA period 3830, and the D2D data may be transmitted according to the data transmission period 3840.
  • the SA period and / or the data transmission period may be transmitted from the base station to the D2D terminal through the D2D grant.
  • the SA period may be transmitted through a D2D grant, and the data transmission period may be transmitted through an SA.
  • the D2D grant represents control information for transmitting a scheduling assignment (SA) required for D2D communication from the base station to the D2D terminal.
  • SA scheduling assignment
  • the D2D grant may be expressed in DCI format 5 and may be transmitted through a physical layer channel or a MAC layer channel such as PDCCH, EPDCCH, or the like.
  • the D2D grant may include information related to data transmission as well as information related to SA transmission.
  • the SA may include, for example, a resource allocation (RA), an MCS, a new data indicator (NDI), a redundancy version (RV), or the like.
  • RA resource allocation
  • MCS mobility control system
  • NDI new data indicator
  • RV redundancy version
  • the SA resource pool for SA transmission may be transmitted through RRC signaling.
  • the SA may be transmitted through a physical sidelink control channel (PSCCH), and the D2D data may be transmitted through a physical sidelink shared channel (PSSCH).
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the D2D transmitting terminal may receive SA information, in particular, resource allocation (RA) information (hereinafter, referred to as 'SA RA' information) through which the SA can be transmitted from the base station through the D2D grant.
  • SA information in particular, resource allocation (RA) information (hereinafter, referred to as 'SA RA' information) through which the SA can be transmitted from the base station through the D2D grant.
  • RA resource allocation
  • the D2D transmitting terminal transmits the SA RA information received from the base station to the D2D receiving terminal as it is or generates new SA RA information by referring to the received SA RA information, and then generates the newly generated SA RA information. It may be transmitted to the D2D receiving terminal.
  • the D2D transmitting terminal when the D2D transmitting terminal newly generates the SA RA, the D2D transmitting terminal should perform resource allocation of the SA only within a resource pool indicated by the D2D grant RA.
  • the SA may be transmitted by selecting only some of the resource areas (SA RAs) from the resource areas (D2D grant RAs) that are allowed to be used by the eNB.
  • the D2D transmitting terminal may use the D2D grant RA allocated by the eNB as it is.
  • the D2D transmitting terminal may transmit the dummy data or occupy only the D2D SF (subframe) without transmitting the D2D data, thereby causing a situation in which the D2D SF is wasted.
  • the following relationship can be established for a resource pool related to D2D communication.
  • FIG. 39 shows an example of a flowchart associated with the method of FIG. 38.
  • an SA resource pool and / or a D2D data resource pool related to D2D communication are configured by an upper layer (S3910).
  • the base station transmits the SA resource pool and / or the D2D data resource pool to the D2D user equipment through higher layer signaling (S3920).
  • the base station transmits the control information related to the SA and / or the control information related to the D2D data to the D2D transmitting terminal through the D2D grant, respectively or together (S3930).
  • the control information may include RA, MCS, NDI, RV, and the like.
  • the D2D transmitting terminal transmits SA and / or D2D data to the D2D receiving terminal based on the information received in step S3930 (S3940).
  • the SA transmission and the transmission of the D2D data may be performed together, or the transmission of the D2D data may be performed after the SA transmission.
  • SPS semi-persistent scheduling
  • the D2D UE may be pre-assigned D2D communication related resources (SA resource pool and / or data resource pool) through RRC signaling as shown in FIGS. 38 and 39.
  • the D2D user equipment may receive from the base station whether the reservation-allocated D2D communication related resources are available through a D2D grant.
  • the base station may activate (use) the use of the reserved resources or instruct to stop or release the use of the resource to the D2D terminal through (E) PDCCH.
  • the base station may set the SA RA to all '0' and transmit to the D2D terminal, thereby instructing the release of the D2D communication-related resource use.
  • set specific values (eg, '0') in the TPC and MCS fields to indicate the release of D2D communication-related resource usage when certain conditions are met through a combination of fields. can do.
  • MCS can be set to “10000...”.
  • MSB Most Significant Bit
  • the base station may separately instruct activation and release of each resource use to the D2D user equipment.
  • the specific field may be a TPC field and will be described using the TPC field as an example.
  • the base station may instruct release of resource usage at different locations in consideration of the SA transmission period and the data transmission period.
  • the method may be implemented by transmitting different information (SA resource information, data resource information) to different TPCs, or may be implemented by assigning different bit sequences to two TPCs.
  • SA resource information SA resource information, data resource information
  • the release of resource usage may be indicated by a method of notifying which data resource is released from the time of release of the SA resource.
  • the time point at which the D2D UE delivers the actual SA is set according to the SA period in which the SA is transmitted.
  • the base station transmits the SA RA information to the D2D terminal through the D2D grant at the time when the D2D terminal transmits the SA
  • the update time for the SA RA information is engaged with the SA transmission period.
  • the minimum period of the update time point for the SA RA information may be the same as the SA period.
  • the update period and the SA period of the SA RA information may be interpreted to coincide.
  • the update of the TPC information corresponding to the transmission power control information may be designed differently from the SA RA information.
  • the TPC information may be updated for each SA period.
  • the update period of the TPC information is SA. It should be set smaller than the period.
  • a DCI format capable of transmitting only TPC information may be newly defined, and the newly defined DCI format may be transmitted even between SA periods.
  • the newly defined DCI format includes TPC information.
  • the SA (transmission) period is 100ms
  • the TPC information period is 10ms
  • the base station may also transmit control information (eg, HARQ information) that reflects the channel status, such as TPC information, to the D2D terminal.
  • control information eg, HARQ information
  • the base station may update the corresponding information so that the TPC, HARQ, MCS, RV, PMI, etc. reflecting the channel condition may be transmitted more frequently by setting a smaller period than the SA period so as to properly reflect the channel condition. .
  • the SA period is 10 ms.
  • transmission (or update) of SA RA information occurs at 100 ms period, and control information (TPC, HARQ information, etc.) reflecting the channel condition occurs at 10 ms period (or unit). You can explain it as you do.
  • the SA RA update period (periodicity), TPC update period, HARQ update period may be set (each) to an integer multiple of the SA period.
  • the SA RA update cycle occurs more frequently than the TPC and HARQ update cycles.
  • the SA RA update period, the TPC update period, and the HARQ update period may be determined in advance, which may be transmitted to the D2D terminal through RRC signaling.
  • the base station may explicitly or implicitly (or implicitly) transmit information related to the SA RA update period, TPC update period, HARQ update period, etc. to the D2D terminal through the D2D grant.
  • the SA period may be configured by RRC signaling
  • the TPC period and / or HARQ period may be configured by a D2D grant.
  • the SA period, the TPC period, and the HARQ period may be set to default values. That is, all cycles can have the same default value.
  • the TPC information refers to information for controlling the transmission power of the D2D transmitting terminal.
  • the D2D transmitting terminal may control the transmission power of the SA and data together through one TPC information.
  • the D2D terminal may control the transmission power according to the characteristics of each signal in consideration of characteristics of each of SA and data.
  • the base station may separately include the TPC information of the SA and the TPC information of the data in the D2D grant or transmit the D2D grant for each TPC to the D2D terminal separately.
  • the D2D grant may allocate TPC information of the SA and TPC information of the data to separate regions.
  • the TPC information of the SA indicates the transmission power control of the SA
  • the TPC information of the data is used to indicate the transmission power control of the data.
  • each TPC information may indicate an absolute Tx power value or may indicate a delta Tx power value relative to a previous transmission power value.
  • the second TPC field value is not transmitted separately.
  • the first TPC field may be obtained through an offset with an absolute transmit power value of the first TPC field.
  • the first TPC field may represent an absolute value of the transmission power of SA or data
  • the second TPC field may be represented by an offset of the first TPC field value
  • the method corresponds to a method of notifying a relative power difference between SA and data.
  • the transmission power for the SA and the data is controlled using a small number of bits. can do.
  • the SA power control parameter set and the data power control parameter set may be set independently.
  • transmission power information of SA and D2D data is set to different parameters, they may be transmitted at different powers, respectively.
  • the SA transmission power may be set to a higher power than the data transmission power or may be transmitted using more resources.
  • the TPC transmitted through the D2D grant can control the transmission power of the SA and data using one value.
  • the D2D UE may be set in advance with respect to a criterion for interpreting the transmission power for the SA and data differently for one TPC.
  • the transmission power adjustment range of the SA when the transmission power adjustment range of the SA is from X_SA (dB) to Y_SA (dB) in the 2-bit TPC table, the transmission power adjustment range of the D2D data may be set to be interpreted as X_data to Y_data.
  • the transmission power adjustment range of the TPC bit field value has been described as an example.
  • other power control parameters are also finalized for each using different definitions, different initial values, and different default values as in the above example. It is also possible to calculate the transmit power.
  • the D2D grant RA may mean information related to SA to be used for D2D communication, in particular, resource allocation information, and may be represented by a scheduling grant (SG) or a DCI format 5.
  • SG scheduling grant
  • DCI format 5 DCI format 5.
  • the SA RA information may actually mean resource allocation information related to transmission of an SA, and may also be expressed as a PSCCH.
  • the base station selects a restricted set selected from the original RRC configured resource pool.
  • the RA is transmitted to the D2D terminal through the D2D grant.
  • the D2D transmitting terminal receives the selected D2D grant RA set from the base station and transmits the selected D2D grant RA set to the D2D receiving terminal as it is, or reselects (or generates) some resources from the selected D2D grant RA set to the partial resources. Information may be transmitted to the D2D receiving terminal.
  • a D2D transmitting terminal selects a part of the RA set received through the D2D grant from the base station and transmits an SA to the D2D receiving terminal through the selected resource will be described in detail with reference to FIG. 40. .
  • 40 is a flowchart illustrating an example of an SA transmission method to which the method proposed in the present specification can be applied.
  • FIG. 40 a method of transmitting a D2D related packet from a resource selected by the D2D transmitting terminal to the D2D receiving terminal and receiving the D2D related packet from the D2D receiving terminal in the resource selected by the D2D receiving terminal will be described. .
  • the D2D transmitting terminal receives a reserved allocated resource related to the D2D communication from the base station (S4010).
  • the D2D communication related reservation allocated resources may be SA resource pools and / or data resource pools and may be transmitted through RRC signaling.
  • the D2D transmitting terminal selects or determines some resources to be used for actual transmission among the received D2D communication related reserved allocated resources (S4020).
  • the D2D UE Since the D2D UE generally transmits and receives a small amount of D2D packets, only the resources less than the reserved allocated resources (or D2D grant RA) received through the base station are used.
  • the D2D transmitting terminal transmits SA and / or D2D data to the D2D receiving terminal through the determined some resources (S4030).
  • the SA and / or D2D data may be transmitted together or after SA transmission, D2D data may be transmitted.
  • the D2D UE may operate in an Rx mode (listening to another signal) or enter a DTX (Discontinuous Transmission) state in the remaining resource intervals not used for D2D communication to perform an energy saving or power saving operation.
  • DTX Continuous Transmission
  • the D2D transmitting terminal operating in half-duplex can enlarge a resource region that can be received, and thus can receive resources from more D2D terminals.
  • a resource may be received by monitoring a D2D related resource (D2D SF) only in a specific (or limited) SF (subframe).
  • D2D SF D2D related resource
  • the D2D receiving terminal may perform energy saving by performing DRX (Discontinuous Reception) without monitoring the remaining D2D SF.
  • DRX Continuous Reception
  • the D2D transmitting user equipment and the D2D receiving user equipment communicate with each other through a negotiation process of transmitting and receiving a signal, respectively, for the required resource size and reception.
  • Resource size can be adjusted.
  • the signals transmitted and received between the D2D terminals in the process of adjusting the size of the transmission resource and the reception resource may be implemented using not only a physical layer signal but also an upper layer signal.
  • FIG. 41 is a flowchart illustrating an example of another method of transmitting SA to which a method proposed in this specification can be applied.
  • FIG. 41 is a flowchart illustrating an example of another method of transmitting SA to which a method proposed in this specification can be applied.
  • the D2D transmitting terminal informs the D2D receiving terminal about how many D2D data transmission resources can be used between the SA periods. It is about a method.
  • the D2D transmitting terminal receives resource allocation information related to SA and / or data transmission from the base station through the D2D grant RA (S4110).
  • the D2D transmitting terminal transmits configuration information related to the D2D data transmission resource to the D2D receiving terminal through the SA (S4120).
  • the configuration information related to the transmission resource of the D2D data includes indication information indicating a D2D SF (or D2D data SF) to which the D2D data may be transmitted.
  • the indication information may indicate the number of consecutive D2D SFs through which D2D data is transmitted, or may indicate a D2D SF corresponding to a multiple of an integer.
  • the D2D transmitting terminal transmits the D2D data to the D2D receiving terminal in K consecutive SFs immediately after the SA period (S4130).
  • the D2D transmitting terminal stops transmitting D2D data in the SFs after the consecutive K SFs (S4140).
  • offset information may be used.
  • the D2D transmitting terminal transmits the D2D data to the D2D receiving terminal in K D2D SFs continuously from the SF separated by the offset, not immediately after the SA period, using offset information related to transmitting the D2D data, and then in the SF
  • the transmission of D2D data can be stopped.
  • the D2D data transmission in the SF that has not been secured may be transferred to the next SA period, and the number of SFs that have not been secured since the first SF of the next SA period may be designated as SF for transmitting the D2D data.
  • the indication information (or indication bit) for indicating the D2D SF in which the D2D data is transmitted is preferably set in consideration of the SA and the data resource allocation period.
  • the SA period is at most 100 ms and the data transmission period is 10 ms, there are 10 data transmission opportunities between the SA periods.
  • the number (combination) of all cases of how many SFs can be consecutively designated among 10 SFs should be considered, and the indication information requires a field having a number of bits enough to support all the combinations.
  • the size of the indication information may be 3 bits, and when the indication is required for the number of ten cases, the size of the indication information may be 4 bits. .
  • the start position and the length of the SF related to the D2D data transmission may be indicated.
  • This method may be implemented using the UL RA method of LTE (-A).
  • the method of notifying the start position and length of the D2D data SF can increase the efficiency of resource use in terms of reducing the number of bits of the indication information.
  • the SA period increases, it can be solved by repeatedly transmitting indication information indicating the position of the D2D data SF.
  • the 4-bit indication information used when the SA period is 100 ms and the data transmission period is 10 ms can be repeatedly reused four times.
  • the base station may inform the D2D terminal of the location of the D2D data SF while adjusting the number of repetitions of the indication information.
  • the number of repetitions of use of the indication information indicating the position of the signal or D2D data SF used for adjusting the number of repetitions may be predetermined.
  • the predetermined value may be transmitted through RRC signaling.
  • a bitmap pattern may also be used as indication information indicating the position of the D2D data SF.
  • the D2D data SF may be specified very flexibly.
  • the indication information in the form of a bitmap of 10 bits is required. If the data period is 10ms, the bit information in the form of a 40-bit bitmap is required. Instruction information is required.
  • the SA period and the data transmission period are selected as reference, and the size of the indication information, that is, the bitmap length, is determined according to the selected SA period and the data transmission period.
  • the indication information (reference bitmap) in the form of a reference bitmap may be repeatedly used.
  • the bitmap type indication information used in the SA period 100ms / data transmission period 10ms is repeatedly used four times, and according to the SA period of 400ms, the D2D data SF The location can be indicated.
  • bitmap type indication information used in the SA period 100ms / data transmission period 10ms may be referred to as reference indication information or reference bitmap.
  • the position of the D2D data SF can be indicated by repeatedly using 10 bits of the reference bitmap twice.
  • the SA period is reduced to 50 ms and the data transmission period is 10 ms, only the upper 5 bits (as valid information) of the 10-bit D2D data SF indication bitmap are used and the lower 5 bits are ignored or invalidated. It can be implemented in a way.
  • the lower 5 bits of the 10-bit D2D data SF indication bitmap may be used as valid information, and the upper 5 bits may be ignored or invalidated.
  • the base station transmits a predefined (D2D) subframe pattern set to the D2D transmitting terminal through the D2D grant RA (S4210).
  • D2D predefined subframe pattern set to the D2D transmitting terminal through the D2D grant RA (S4210).

Abstract

본 명세서는 무선 통신 시스템에서 D2D 통신에 사용하기 위한 자원 풀(resource pool)을 획득하는 단계, 상기 자원 풀(resource pool)은 SA가 전송되는 자원 영역을 나타내는 SA(scheduling assignment) 자원 풀 또는 D2D data가 전송되는 자원 영역을 나타내는 data 자원 풀 중 적어도 하나를 포함하며; 상기 SA 자원 풀을 통해 D2D data 전송과 관련된 정보를 포함하는 SA(scheduling assignment)를 제 2 단말로 전송하는 단계; 및 상기 제 2 단말로 D2D data를 전송하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 단말 간 통신(device to device communication)을 지원하는 무선 통신 시스템에서 D2D 통신의 전송 전력을 제어하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 단말간 직접 통신을 수행하는데 있어 D2D data를 복조하기 위해 요구되는 D2D control information을 정의하는데 목적이 있다.
또한, 본 명세서는 D2D control information 및 D2D data를 송수신하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 RRC signaling, D2D grant 등을 통해 D2D 통신 자원과 관련된 제어 정보들을 전송하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 D2D 통신의 전송 전력 제어를 위한 새로운 전송 전력 제어 필드(또는 커맨드 또는 제어 정보)를 정의하는데 목적이 있다.
또한, 본 명세서는 셀룰러 통신과 D2D 통신의 전송 전력 제어 정보를 구별하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 D2D 통신에서 SA와 D2D data의 전송 전력 제어 정보를 구별하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 D2D grant와 DCI format 3/3A를 이용하여 SA 및 D2D data의 전송 전력 제어 정보를 구분하여 전송하기 위한 방법을 제공함에 목적이 있다.
또한, 본 명세서는 D2D RNTI를 새롭게 정의하여 D2D DCI 포맷을 다른 DCI 포맷과 구분하는 방법을 제공함에 목적이 있다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 단말간 직접 (Device-to-Device:D2D) 통신을 지원하는 무선 통신 시스템에서 상기 D2D 통신의 전송 전력 제어(Transmission Power Control:TPC) 를 수행하기 위한 방법에 있어서, 제 1 단말에 의해 수행되는 상기 방법은 D2D 통신에 사용하기 위한 자원 풀(resource pool)을 획득하는 단계, 상기 자원 풀(resource pool)은 SA가 전송되는 자원 영역을 나타내는 SA(scheduling assignment) 자원 풀 또는 D2D data가 전송되는 자원 영역을 나타내는 data 자원 풀 중 적어도 하나를 포함하며; 상기 SA 자원 풀을 통해 D2D data 전송과 관련된 정보를 포함하는 SA(scheduling assignment)를 제 2 단말로 전송하는 단계; 및 상기 제 2 단말로 D2D data를 전송하는 단계를 포함하되, 상기 자원 풀은 제 1 DCI(downlink control information) 포맷(format)에 포함되며, 상기 제 1 DCI 포맷은 PDCCH(Physical Downlink Control Channel)을 통해 기지국으로부터 수신되며, 상기 제 1 DCI 포맷은 상기 SA 및 상기 D2D data의 전송 전력 제어와 관련된 제어 정보를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 DCI 포맷은 D2D-RNTI(Radio Network Temporary Identifier)로 CRC(Cyclic Redundancy Check) 마스킹(masking)되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 정보는 TPC(Transmission Power Control) 커맨드(command)인 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 DCI 포맷은 다수의 TPC 커맨드들을 포함하며, 단말 별로 둘 이상의 TPC 커맨드들을 가지는 경우, 상기 다수의 TPC 커맨드들은 상기 단말 별로 그룹핑(grouping)되는 것을 특징으로 한다.
또한, 본 명세서에서 각 그룹은 그룹 인덱스(group index)로 구분되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 DCI 포맷은 셀룰러(cellular) 통신을 위한 것인지 또는 D2D 통신을 위한 것인지를 구분하는 지시(indication) 필드를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 정보는 셀룰러 통신에서의 TPC 커맨드 및 D2D 통신에서의 TPC 커맨드로 구분되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 정보의 짝수 인덱스(even index)는 셀룰러 통신에서의 TPC 커맨드이며, 상기 제어 정보의 홀수 인덱스(odd index)는 D2D 통신에서의 TPC 커맨드인 것을 특징으로 한다.
또한, 본 명세서에서 상기 SA의 전송 전력 제어와 관련된 제어 정보와 상기 D2D data의 전송 전력 제어와 관련된 제어 정보는 서로 다른 RNTI에 의해 구별되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 D2D RNTI의 일부는 SA의 전송 전력 제어와 관련된 제어 정보를 나타내며, 상기 D2D RNTI의 나머지 일부는 D2D data의 전송 전력 제어와 관련된 제어 정보를 나타내는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 DCI 포맷은 D2D DCI 포맷, DCI 포맷 3 또는 DCI 포맷 3A인 것을 특징으로 한다.
또한, 본 명세서는 단말간 직접 (Device-to-Device:D2D) 통신을 지원하는 무선 통신 시스템에서 상기 D2D 통신의 전송 전력 제어(Transmission Power Control:TPC) 를 수행하기 위한 제 1 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 상기 RF 유닛과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는 D2D 통신에 사용하기 위한 자원 풀(resource pool)을 획득하고, 상기 자원 풀(resource pool)은 SA가 전송되는 자원 영역을 나타내는 SA(scheduling assignment) 자원 풀 또는 D2D data가 전송되는 자원 영역을 나타내는 data 자원 풀 중 적어도 하나를 포함하며; 상기 SA 자원 풀을 통해 D2D data 전송과 관련된 정보를 포함하는 SA(scheduling assignment)를 제 2 단말로 전송하고; 및 상기 제 2 단말로 D2D data를 전송하도록 제어하되, 상기 자원 풀은 제 1 DCI(downlink control information) 포맷(format)에 포함되며, 상기 제 1 DCI 포맷은 PDCCH(Physical Downlink Control Channel)을 통해 기지국으로부터 수신되며, 상기 제 1 DCI 포맷은 상기 SA 및 상기 D2D data의 전송 전력 제어와 관련된 제어 정보를 포함하는 것을 특징으로 한다.
본 명세서는 D2D data를 복조하기 위해 요구되는 D2D control information을 새롭게 정의함으로써, 단말간 직접 통신을 수행할 수 있도록 하는 효과가 있다.
또한, 본 명세서는 D2D control information 및 D2D data를 각각 또는 함께 송수신함으로써, 자원 사용의 효율을 증대시키고, 전송 지연을 줄일 수 있는 효과가 있다.
또한, 본 명세서는 SA 전송 전력과 D2D data 전송 전력을 조절하기 위한 새로운 필드를 정의함으로써, D2D 송신 단말의 전력을 효율적으로 제어할 수 있는 효과가 있다.
또한, 본 명세서는 SA 및/또는 D2D data가 전송되지 않는 D2D SF에서 D2D RX 모드 또는 DTX 모드로 동작함으로써, D2D 단말의 전력 소모를 줄일 수 있는 효과가 있다.
또한, 본 명세서는 D2D 관련 정보가 송수신되는 D2D SF를 알려주는 지시 정보를 활용하여 D2D 단말의 monitoring에 대한 부담을 줄일 수 있는 효과가 있다.
또한, 본 명세서는 셀룰러 통신과 D2D 통신의 전송 전력 제어 정보를 구별할 수 있도록 함으로써, 단말에서 보다 쉽고 빠르게 전송 전력 제어를 수행할 수 있도록 할 수 있는 효과가 있다.
또한, 본 명세서는 D2D 통신에서 SA 및 D2D data의 전송 전력 제어 정보를 구별할 수 있도록 함으로써, D2D 통신을 좀 더 빠르고 정확하게 수행할 수 있는 효과가 있다.
또한, 본 명세서는 D2D RNTI를 새롭게 정의하고, 이를 통해 D2D TPC 커맨드를 전송함으로써, 단말에서 좀 더 쉽고 빠르게 D2D 전력 제어를 수행할 수 있도록 할 수 있는 효과가 있다.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PUCCH 포맷들이 상향링크 물리자원블록의 PUCCH 영역에 매핑되는 형태의 일례를 나타낸다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 일반 CP의 경우의 CQI 채널의 구조를 나타낸다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 크로스 캐리어 스케줄링에 따른 서브 프레임 구조의 일례를 나타낸다.
도 10은 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 11은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 릴레이 노드 자원 분할을 예시한다.
도 13은 3GPP LTE 시스템에서 정의된 하향링크 자원 블록(RB) 쌍에 매핑된 참조 신호 패턴의 일례를 나타내는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 D2D 통신을 개념적으로 설명하기 위한 도면이다.
도 15는 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 통신의 다양한 시나리오들의 일례를 나타낸다.
도 16은 디스커버리 자원이 할당된 일례를 나타낸다.
도 17은 디스커버리 과정을 간략히 예시한 도면이다.
도 18은 D2D 제어 정보 및 D2D 데이터 송수신 방법의 일 예를 나타낸 도이다.
도 19는 D2D 제어 정보 및 D2D 데이터 송수신 방법의 또 다른 일 예를 나타낸 도이다.
도 20은 D2D 제어 정보 및 D2D 데이터 송수신 방법의 또 다른 일 예를 나타낸 도이다.
도 21은 D2D 전송 모드에 따른 D2D 제어 정보 설정 방법의 일 예를 나타낸 도이다.
도 22는 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 일 예를 나타낸 도이다.
도 23은 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 일 예를 나타낸 순서도이다.
도 24 내지 도 25는 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 또 다른 일 예를 나타낸 도이다.
도 26 내지 도 28은 D2D SA 전송과 D2D data 전송 간의 타이밍 관계의 일 예를 나타낸 도이다.
도 29는 D2D data 송수신 방법의 일 예를 나타낸 순서도이다.
도 30 내지 도 33은 SA 자원 및/또는 D2D data 자원의 위치를 알려주기 위한 방법의 일 예들을 나타낸 도이다.
도 34는 D2D 전송을 위한 UE scheduling 방법의 일 예를 나타낸 흐름도이다.
도 35는 RRC signaling을 이용하여 D2D 전송을 위한 UE scheduling 방법의 일 예를 나타낸 도이다.
도 36은 물리 계층 채널을 이용하여 D2D 전송을 위한 UE scheduling 방법의 일 예를 나타낸 도이다.
도 37은 SG에 대한 HARQ 절차를 수행하는 방법의 일 예를 나타낸 흐름도이다.
도 38은 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 동작 절차 및 이와 관련된 시그널링 송수신 방법의 일 예를 나타낸 도이다.
도 39는 도 38의 방법과 관련된 흐름도의 일 예를 나타낸다.
도 40은 본 명세서에서 제안하는 방법이 적용될 수 있는 SA 전송 방법의 일 예를 나타낸 흐름도이다.
도 41은 본 명세서에서 제안하는 방법이 적용될 수 있는 SA를 전송하는 또 다른 방법의 일 예를 나타낸 흐름도이다.
도 42는 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 데이터 전송 방법의 일 예를 나타낸 흐름도이다.
도 43은 상향링크 전력 제어의 기본 개념을 설명하는 도면이다.
도 44는 본 명세서에서 제안하는 방법이 적용될 수 있는 DCI 포맷 3을 이용하여 SA 및 데이터에 대한 전력 제어를 수행하는 방법을 나타낸 도이다.
도 45는 본 명세서에서 제안하는 방법이 적용될 수 있는 DCI 포맷 3A를 이용하여 SA 및 데이터에 대한 전력 제어를 수행하는 방법을 나타낸 도이다.
도 46은 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 통신의 전력 제어 방법의 일 예를 나타낸 순서도이다.
도 47은 본 명세서에서 제안하는 DCI 포맷 3/3A 구성의 일 예를 나타낸 도이다.
도 48은 본 명세서에서 제안하는 DCI 포맷 3/3A 구성의 또 다른 일 예를 나타낸 도이다.
도 49는 본 명세서에서 제안하는 D2D 통신의 전력 제어 방법의 일 예를 나타낸 순서도이다.
도 50은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 내부 블록도의 일 예를 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.

시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 예시한다. 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다.. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크-하향링크 구성을 나타낸다.
Uplink-Downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS, GP, UpPTS 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다. 상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.

물리하향링크제어채널 (Physical Downlink Control Channel :PDCCH )
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(DCI: Downlink Control Indicator)라고 한다. PDCCH은 DCI 포맷에 따라서 제어 정보의 크기 및 용도가 다르며 또한 부호화율에 따라 크기가 달라질 수 있다.
DCI 포맷
현재 LTE-A(release 10)에 의하면 DCI 포맷 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A, 4 가 정의되어 있다. 여기서 DCI 포맷 0, 1A, 3, 3A는, 후술할 블라인드 복호 횟수를 줄이기 위해 동일한 메시지 크기를 갖도록 규정되어 있다. 이러한 DCI 포맷들은 전송하려는 제어정보의 용도에 따라 i)상향링크 승인에 사용되는 DCI 포맷 0, 4, ii)하향링크 스케줄링 할당에 사용되는 DCI 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, iii)전력제어명령을 위한 DCI 포맷 3, 3A로 구분할 수 있다.
상향링크 승인에 사용되는 DCI 포맷 0의 경우, 후술할 반송파 병합에 관련하여 필요한 반송파 오프셋(carrier indicator), DCI 포맷 0과 1A를 구분하는데 사용되는 오프셋(flag for format 0/format 1A differentiation), 상향링크 PUSCH 전송에서 주파수 호핑이 사용되는지 여부를 알려주는 호핑 플래그(frequency hopping flag), 단말이 PUSCH 전송에 사용해야 할 자원블록 할당에 대한 정보(resource block assignment), 변조 및 부호화 방식(modulation and coding scheme), HARQ 프로세스와 관련해 초기전송을 위해 버퍼를 비우는데 사용되는 새 데이터 지시자(new data indicator), PUSCH를 위한 전송전력 제어명령(TPC command for scheduled for PUSCH), DMRS(Demodulation reference signal)를 위한 순환이동 정보(cyclic shift for DMRS and OCC index), TDD 동작에서 필요한 상향링크 인덱스(UL index) 및 채널품질정보(Channel Quality Indicator) 요구 정보(CSI request) 등을 포함할 수 있다. 한편, DCI 포맷 0의 경우 동기식 HARQ를 사용하므로 하향링크 스케줄링 할당에 관련된 DCI 포맷들처럼 리던던시 버전(redundancy version)을 포함하지 않는다. 반송파 오프셋의 경우, 크로스 반송파 스케줄링이 사용되지 않는 경우에는 DCI 포맷에 포함되지 않는다.
DCI 포맷 4는 LTE-A 릴리즈 10에서 새로이 추가된 것으로서 LTE-A에서 상향링크 전송에 공간 다중화가 적용되는 것을 지원하기 위한 것이다. DCI 포맷 4의 경우 DCI 포맷 0과 비교하여 공간 다중화를 위한 정보들을 더 포함하므로 더 큰 메시지 크기를 가지며, DCI 포맷 0에 포함되는 제어정보에 추가적인 제어정보를 더 포함한다. 즉, DCI 포맷 4의 경우, 두 번째 전송블록을 위한 변조 및 부호화 방식, 다중 안테나 전송을 위한 프리코딩 정보, 사운딩참조신호 요청(SRS request) 정보를 더 포함한다. 한편, DCI 포맷 4는 DCI 포맷 0보다 큰 크기를 가지므로 DCI 포맷 0과 1A를 구분하는 오프셋은 포함하지 않는다.
하향링크 스케줄링 할당에 관련된 DCI 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C는 크게 공간 다중화를 지원하지 않는 1, 1A, 1B, 1C, 1D 와 공간 다중화를 지원하는 2, 2A, 2B, 2C 로 구분될 수 있다.
DCI 포맷 1C는 컴팩트 하향링크 할당으로서 주파수 연속적 할당만을 지원하며, 다른 포맷들과 비교해 반송파 오프셋, 리던던시 버전을 포함하지 않는다.
DCI 포맷 1A는 하향링크 스케줄링 및 랜덤 액세스 절차를 위한 포맷이다. 여기에는 반송파 오프셋, 하향링크 분산형 전송이 사용되는지 여부를 알려주는 표시자, PDSCH 자원 할당 정보, 변조 및 부호화 방식, 리던던시 버전, 소프트 컴바이닝을 위해 사용되는 프로세서를 알려주기 위한 HARQ 프로세서 번호, HARQ 프로세스와 관련해 초기전송을 위해 버퍼를 비우는데 사용되는 새 데이터 오프셋, PUCCH를 위한 전송전력 제어명령, TDD 동작에서 필요한 상향링크 인덱스 등을 포함할 수 있다.
DCI 포맷 1의 경우 대부분의 제어정보가 DCI 포맷 1A과 유사하다. 다만, DCI 포맷 1A가 연속적인 자원 할당에 관련된 것과 비교해, DCI 포맷 1은 비연속적 자원 할당을 지원한다. 따라서 DCI 포맷 1은 자원할당 헤더를 더 포함하므로 자원할당의 유연성이 증가하는 것의 트레이드 오프로서 제어 시그널링 오버헤드는 다소 증가한다.
DCI 포맷 1B, 1D의 경우에는 DCI 포맷 1과 비교해 프리코딩 정보를 더 포함하는 점에서 공통된다. DCI 포맷 1B는 PMI 확인을, DCI 포맷 1D는 하향링크 전력 오프셋 정보를 각각 포함한다. 그 외 DCI 포맷 1B, 1D에 포함된 제어정보는 DCI 포맷 1A의 경우와 대부분 일치한다.
DCI 포맷 2, 2A, 2B, 2C는 기본적으로 DCI 포맷 1A에 포함된 제어정보들을 대부분 포함하면서, 공간 다중화를 위한 정보들을 더 포함한다. 여기에는 두 번째 전송 블록에 관한 변조 및 부호화 방식, 새 데이터 오프셋 및 리던던시 버전이 해당된다.
DCI 포맷 2는 폐루프 공간 다중화를 지원하며, 2A는 개루프 공간 다중화를 지원한다. 양자 모두 프리코딩 정보를 포함한다. DCI 포맷 2B는 빔 포밍과 결합된 듀얼 레이어 공간 다중화를 지원하며 DMRS를 위한 순환이동 정보를 더 포함한다. DCI 포맷 2C는 DCI 포맷 2B의 확장으로 이해될 수 있으며 여덟개의 레이어까지 공간 다중화를 지원한다.
DCI 포맷 3, 3A는 전술한 상향링크 승인 및 하향링크 스케줄링 할당을 위한 DCI 포맷들에 포함되어 있는 전송전력 제어정보를 보완, 즉 반-지속적(semi-persistent) 스케줄링을 지원하기 위해 사용될 수 있다. DCI 포맷 3의 경우 단말당 1bit, 3A의 경우 2bit의 명령이 사용된다.
상술한 바와 같은 DCI 포맷 중 어느 하나는 하나의 PDCCH를 통해 전송되며, 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다.
DCI 포맷 0
이하에서, DCI 포맷 0을 통해 전송되는 정보에 대해 좀 더 구체적으로 살펴보기로 한다.
DCI 포맷 0를 통해 전송되는 정보는 다음과 같다.
1) 캐리어 지시자(Carrier indicator) - 0 또는 3 비트로 구성된다.
2) DCI 포맷 0와 포맷 1A를 구분하기 위한 플래그 – 1 비트로 구성되며, 0 값은 DCI 포맷 0를 지시하고, 1 값은 DCI 포맷 1A를 지시한다.
3) 주파수 도약(hopping) 플래그 – 1 비트로 구성된다. 이 필드는 필요한 경우 해당 자원 할당의 최상위 비트(MSB: Most Significant bit)를 다중 클러스터(multi-cluster) 할당을 위해 사용될 수 있다.
4) 자원 블록 할당(Resource block assignment)과 도약(hopping) 자원 할당 –
Figure PCTKR2015008473-appb-I000001
비트로 구성된다.
여기서, 단일 클러스터(single-cluster allocation) 할당에서 PUSCH 도약의 경우,
Figure PCTKR2015008473-appb-I000002
의 값을 획득하기 위해 NUL_hop 개의 최상위 비트(MSB)들이 사용된다.
Figure PCTKR2015008473-appb-I000003
비트는 상향링크 서브프레임 내에 첫번째 슬롯의 자원 할당을 제공한다. 또한, 단일 클러스터 할당에서 PUSCH 도약이 없는 경우,
Figure PCTKR2015008473-appb-I000004
비트가 상향링크 서브프레임 내에 자원 할당을 제공한다. 또한, 다중 클러스터 할당(multi-cluster allocation)에서 PUSCH 도약이 없는 경우, 주파수 도약 플래그 필드 및 자원 블록 할당과 도약 자원 할당 필드의 연결(concatenation)로부터 자원 할당 정보가 얻어지고,
Figure PCTKR2015008473-appb-I000005
비트가 상향링크 서브프레임 내에 자원 할당을 제공한다. 이때, P 값은 하향링크 자원 블록의 수에 의해 정해진다.
5) 변조 및 코딩 기법(MCS: Modulation and coding scheme) – 5 비트로 구성된다.
6) 새로운 데이터 지시자(New data indicator) – 1 비트로 구성된다.
7) PUSCH를 위한 TPC(Transmit Power Control) 커맨드 – 2 비트로 구성된다.
8) DMRS(demodulation reference signal)을 위한 순환 쉬프트(CS: cyclic shift)와 직교 커버 코드(OC/OCC: orthogonal cover/orthogonal cover code)의 인덱스 – 3 비트로 구성된다.
9) 상향링크 인덱스 – 2 비트로 구성된다. 이 필드는 상향링크-하향링크 구성 0 에 따른 TDD 동작에만 존재한다.
10) 하향링크 할당 인덱스(DAI: Downlink Assignment Index) – 2 비트로 구성된다. 이 필드는 상향링크-하향링크 구성(uplink-downlink configuration) 1-6 에 따른 TDD 동작에만 존재한다.
11) 채널 상태 정보(CSI: Channel State Information) 요청 – 1 또는 2 비트로 구성된다. 여기서, 2 비트 필드는 하나 이상의 하향링크 셀이 설정된 단말에 단말 특정(UE specific)하게 해당 DCI가 C-RNTI(Cell-RNTI)에 의해 매핑된 경우에만 적용된다.
12) 사운딩 참조 신호(SRS: Sounding Reference Signal) 요청 – 0 또는 1 비트로 구성된다. 여기서, 이 필드는 스케줄링하는 PUSCH가 단말 특정(UE specific)하게 C-RNTI에 의해 매핑되는 된 경우에만 존재한다.
13) 자원 할당 타입(Resource allocation type) - 1 비트로 구성된다.
DCI 포맷 0 내에 정보 비트의 수가 DCI 포맷 1A의 페이로드 크기(추가된 패딩 비트 포함)보다 작은 경우, DCI 포맷 0에 DCI 포맷 1A의 페이로드 크기가 같아지도록 0이 추가된다.
DCI 포맷 1A
이하에서, DCI 포맷 1A에 대해 좀 더 구체적으로 살펴보기로 한다.
DCI 포맷 1A는 하나의 셀에서의 하나의 PDSCH 코드워드의 콤팩트(compact) 스케줄링을 위해서 사용되는 DCI 포맷을 지칭한다. 즉, DCI 포맷 1A 는 단일 안테나 전송, 단일 스트림 전송, 또는 전송 다이버시티 전송 등 랭크 1 전송에서 사용되는 제어 정보들을 포함할 수 있다.
즉, DCI 포맷 1A는 Carrier Indicator (CIF), Flag for format 0/format 1A differentiation, Localized/Distributed VRB assignment Flag, Resource block assignment (RIV), MCS, HARQ process number, NDI (New Data Indicator), Redundancy Version(RV), TPC for PUCCH, Downlink Assignment Index (DAI), SRS(Sounding Reference Signal) request 정보를 포함한다.
DCI 포맷 1A는 PDCCH 또는 EPDCCH를 통하여 기지국으로부터 단말에게 제공될 수 있다.
DCI 포맷 1A는 가장 기본적인 하향링크 전송(랭크 1으로 하나의 PDSCH 코드워드 전송)을 스케줄링하는 정보를 포함한다. 따라서, 랭크 2 이상 및/또는 복수개의 코드워드 전송 등의 복잡한 PDSCH 전송 방식이 올바르게 수행되지 않는 경우, 가장 기본적인 PDSCH 전송 방식을 지원하기 위한 용도 (즉, 폴백(fallback)) 용도로 사용될 수 있다.

물리상향링크제어채널 (PUCCH)
PUCCH를 통하여 전송되는 상향링크 제어 정보(UCI)는, 스케줄링 요청(SR: Scheduling Request), HARQ ACK/NACK 정보 및 하향링크 채널 측정 정보를 포함할 수 있다.
HARQ ACK/NACK 정보는 PDSCH 상의 하향링크 데이터 패킷의 디코딩 성공 여부에 따라 생성될 수 있다. 기존의 무선 통신 시스템에서, 하향링크 단일 코드워드(codeword) 전송에 대해서는 ACK/NACK 정보로서 1 비트가 전송되고, 하향링크 2 코드워드 전송에 대해서는 ACK/NACK 정보로서 2 비트가 전송된다.
채널 측정 정보는 다중입출력(MIMO: Multiple Input Multiple Output) 기법과 관련된 피드백 정보를 지칭하며, 채널품질지시자(CQI: Channel Quality Indicator), 프리코딩매트릭스인덱스(PMI: Precoding Matrix Index) 및 랭크 지시자(RI: Rank Indicator)를 포함할 수 있다. 이들 채널 측정 정보를 통칭하여 CQI 라고 표현할 수도 있다.
CQI 의 전송을 위하여 서브프레임 당 20 비트가 사용될 수 있다.
PUCCH는 BPSK(Binary Phase Shift Keying)과 QPSK(Quadrature Phase Shift Keying) 기법을 사용하여 변조될 수 있다. PUCCH를 통하여 복수개의 단말의 제어 정보가 전송될 수 있고, 각 단말들의 신호를 구별하기 위하여 코드분할다중화(CDM: Code Division Multiplexing)을 수행하는 경우에 길이 12 의 CAZAC(Constant Amplitude Zero Autocorrelation) 시퀀스를 주로 사용한다. CAZAC 시퀀스는 시간 영역(time domain) 및 주파수 영역(frequency domain)에서 일정한 크기(amplitude)를 유지하는 특성을 가지므로 단말의 PAPR(Peak-to-Average Power Ratio) 또는 CM(Cubic Metric)을 낮추어 커버리지를 증가시키기에 적합한 성질을 가진다. 또한, PUCCH를 통해 전송되는 하향링크 데이터 전송에 대한 ACK/NACK 정보는 직교 시퀀스(orthgonal sequence) 또는 직교 커버(OC: orthogonal cover)를 이용하여 커버링된다.
또한, PUCCH 상으로 전송되는 제어정보는 서로 다른 순환 시프트(CS: cyclic shift) 값을 가지는 순환 시프트된 시퀀스(cyclically shifted sequence)를 이용하여 구별될 수 있다. 순환 시프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 시프트시켜 생성할 수 있다. 특정 CS 양은 순환 시프트 인덱스(CS index)에 의해 지시된다. 채널의 지연 확산(delay spread)에 따라 사용 가능한 순환 시프트의 수는 달라질 수 있다. 다양한 종류의 시퀀스가 기본 시퀀스로 사용될 수 있으며, 전술한 CAZAC 시퀀스는 그 일례이다.
또한, 단말이 하나의 서브프레임에서 전송할 수 있는 제어 정보의 양은 제어 정보의 전송에 이용가능한 SC-FDMA 심볼의 개수(즉, PUCCH 의 코히어런트(coherent) 검출을 위한 참조신호(RS) 전송에 이용되는 SC-FDMA 심볼을 제외한 SC-FDMA 심볼들)에 따라 결정될 수 있다.
3GPP LTE 시스템에서 PUCCH 는, 전송되는 제어 정보, 변조 기법, 제어 정보의 양 등에 따라 총 7 가지 상이한 포맷으로 정의되며, 각각의 PUCCH 포맷에 따라서 전송되는 상향링크 제어 정보(UCI: uplink control information)의 속성은 다음의 표 2와 같이 요약할 수 있다.
PUCCH Format Uplink Control Information(UCI)
Format 1 Scheduling Request(SR)(unmodulated waveform)
Format 1a 1-bit HARQ ACK/NACK with/without SR
Format 1b 2-bit HARQ ACK/NACK with/without SR
Format 2 CQI (20 coded bits)
Format 2 CQI and 1- or 2-bit HARQ ACK/NACK (20 bits) for extended CP only
Format 2a CQI and 1-bit HARQ ACK/NACK (20+1 coded bits)
Format 2b CQI and 2-bit HARQ ACK/NACK (20+2 coded bits)
PUCCH 포맷 1은 SR의 단독 전송에 사용된다. SR 단독 전송의 경우에는 변조되지 않은 파형이 적용되며, 이에 대해서는 후술하여 자세하게 설명한다.
PUCCH 포맷 1a 또는 1b는 HARQ ACK/NACK의 전송에 사용된다. 임의의 서브프레임에서 HARQ ACK/NACK이 단독으로 전송되는 경우에는 PUCCH 포맷 1a 또는 1b를 사용할 수 있다. 또는, PUCCH 포맷 1a 또는 1b를 사용하여 HARQ ACK/NACK 및 SR이 동일 서브프레임에서 전송될 수도 있다.
PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a 또는 2b는 CQI 및 HARQ ACK/NACK의 전송에 사용된다.
확장된 CP 의 경우에는 PUCCH 포맷 2가 CQI 및 HARQ ACK/NACK 의 전송에 사용될 수도 있다.

도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PUCCH 포맷들이 상향링크 물리자원블록의 PUCCH 영역에 매핑되는 형태의 일례를 나타낸다.
도 5에서
Figure PCTKR2015008473-appb-I000006
는 상향링크에서의 자원블록의 개수를 나타내고, 0, 1,...,
Figure PCTKR2015008473-appb-I000007
-1는 물리자원블록의 번호를 의미한다. 기본적으로, PUCCH는 상향링크 주파수 블록의 양쪽 끝단(edge)에 매핑된다. 도 5에서 도시하는 바와 같이, m=0,1로 표시되는 PUCCH 영역에 PUCCH 포맷 2/2a/2b 가 매핑되며, 이는 PUCCH 포맷 2/2a/2b가 대역-끝단(bandedge)에 위치한 자원블록들에 매핑되는 것으로 표현할 수 있다. 또한, m=2 로 표시되는 PUCCH 영역에 PUCCH 포맷 2/2a/2b 및 PUCCH 포맷 1/1a/1b 가 함께(mixed) 매핑될 수 있다. 다음으로, m=3,4,5 로 표시되는 PUCCH 영역에 PUCCH 포맷 1/1a/1b 가 매핑될 수 있다. PUCCH 포맷 2/2a/2b 에 의해 사용가능한 PUCCH RB들의 개수(
Figure PCTKR2015008473-appb-I000008
)는 브로드캐스팅 시그널링에 의해서 셀 내의 단말들에게 지시될 수 있다.
PUCCH 포맷 2/2a/2b에 대하여 설명한다. PUCCH 포맷 2/2a/2b는 채널 측정 피드백(CQI, PMI, RI)을 전송하기 위한 제어 채널이다.
채널측정피드백(이하에서는, 통칭하여 CQI 정보라고 표현함)의 보고 주기 및 측정 대상이 되는 주파수 단위(또는 주파수 해상도(resolution))는 기지국에 의하여 제어될 수 있다. 시간 영역에서 주기적 및 비주기적 CQI 보고가 지원될 수 있다. PUCCH 포맷 2 는 주기적 보고에만 사용되고, 비주기적 보고를 위해서는 PUSCH가 사용될 수 있다. 비주기적 보고의 경우에 기지국은 단말에게 상향링크 데이터 전송을 위하여 스케줄링된 자원에 개별 CQI 보고를 실어서 전송할 것을 지시할 수 있다.

도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 일반 CP의 경우의 CQI 채널의 구조를 나타낸다.
하나의 슬롯의 SC-FDMA 심볼 0 내지 6 중에서, SC-FDMA 심볼 1 및 5 (2 번째 및 6 번째 심볼)는 복조참조신호(DMRS: Demodulation Reference Signal) 전송에 사용되고, 나머지 SC-FDMA 심볼에서 CQI 정보가 전송될 수 있다. 한편, 확장된 CP 의 경우에는 하나의 SC-FDMA 심볼 (SC-FDMA 심볼 3) 이 DMRS 전송에 사용된다.
PUCCH 포맷 2/2a/2b 에서는 CAZAC 시퀀스에 의한 변조를 지원하고, QPSK 변조된 심볼이 길이 12 의 CAZAC 시퀀스로 승산된다. 시퀀스의 순환 시프트(CS)는 심볼 및 슬롯 간에 변경된다. DMRS에 대해서 직교 커버링이 사용된다.
하나의 슬롯에 포함되는 7 개의 SC-FDMA 심볼 중 3개의 SC-FDMA 심볼 간격만큼 떨어진 2개의 SC-FDMA 심볼에는 참조신호(DMRS)가 실리고, 나머지 5개의 SC-FDMA 심볼에는 CQI 정보가 실린다. 한 슬롯 안에 두 개의 RS가 사용된 것은 고속 단말을 지원하기 위해서이다. 또한, 각 단말은 순환 시프트(CS) 시퀀스를 사용하여 구분된다. CQI 정보 심볼들은 SC-FDMA 심볼 전체에 변조되어 전달되고, SC-FDMA 심볼은 하나의 시퀀스로 구성되어 있다. 즉, 단말은 각 시퀀스로 CQI를 변조해서 전송한다.
하나의 TTI에 전송할 수 있는 심볼 수는 10개이고, CQI 정보의 변조는 QPSK까지 정해져 있다. SC-FDMA 심볼에 대해 QPSK 매핑을 사용하는 경우 2비트의 CQI 값이 실릴 수 있으므로, 한 슬롯에 10비트의 CQI 값을 실을 수 있다. 따라서, 한 서브프레임에 최대 20비트의 CQI 값을 실을 수 있다. CQI 정보를 주파수 영역에서 확산시키기 위해 주파수 영역 확산 부호를 사용한다.
주파수 영역 확산 부호로는 길이-12 의 CAZAC 시퀀스(예를 들어, ZC 시퀀스)를 사용할 수 있다. 각 제어채널은 서로 다른 순환 시프트(cyclic shift) 값을 갖는 CAZAC 시퀀스를 적용하여 구분될 수 있다. 주파수 영역 확산된 CQI 정보에 IFFT가 수행된다.
12 개의 동등한 간격을 가진 순환 시프트에 의해서 12 개의 상이한 단말들이 동일한 PUCCH RB 상에서 직교 다중화될 수 있다. 일반 CP 경우에 SC-FDMA 심볼 1 및 5 상의 (확장된 CP 경우에 SC-FDMA 심볼 3 상의) DMRS 시퀀스는 주파수 영역 상의 CQI 신호 시퀀스와 유사하지만 CQI 정보와 같은 변조가 적용되지는 않는다.

PUCCH 채널 구조
PUCCH 포맷 1a 및 1b에 대하여 설명한다.
PUCCH 포맷 1a/1b에 있어서 BPSK 또는 QPSK 변조 방식을 이용하여 변조된 심볼은 길이 12 의 CAZAC 시퀀스로 승산(multiply)된다. 예를 들어, 변조 심볼 d(0)에 길이 N 의 CAZAC 시퀀스 r(n) (n=0, 1, 2, ..., N-1) 가 승산된 결과는 y(0), y(1), y(2), ..., y(N-1) 이 된다. y(0), ..., y(N-1) 심볼들을 심볼 블록(block of symbol)이라고 칭할 수 있다. 변조 심볼에 CAZAC 시퀀스를 승산한 후에, 직교 시퀀스를 이용한 블록-단위(block-wise)확산이 적용된다.
일반 ACK/NACK 정보에 대해서는 길이 4의 하다마드(Hadamard) 시퀀스가 사용되고, 짧은(shortened) ACK/NACK 정보 및 참조신호(Reference Signal)에 대해서는 길이 3의 DFT(Discrete Fourier Transform) 시퀀스가 사용된다.
확장된 CP의 경우의 참조신호에 대해서는 길이 2의 하다마드 시퀀스가 사용된다.

사운딩 참조 신호 (SRS: Sounding Reference Signal)
SRS는 주로 상향링크의 주파수-선택적 스케줄링을 수행하기 위하여 채널 품질 측정에 사용되며, 상향링크 데이터 및/또는 제어 정보의 전송과 관련되지 않는다. 그러나, 이에 한정되지 않으며 SRS는 전력 제어의 향상 또는 최근에 스케줄되어 있지 않은 단말들의 다양한 스타트-업(start-up) 기능을 지원하기 위한 다양한 다른 목적들을 위해 사용될 수 있다. 스타트-업 기능의 일례로, 초기의 변조 및 부호화 방식(MCS: Modulation and Coding Scheme), 데이터 전송을 위한 초기의 전력 제어, 타이밍 전진(timing advance) 및 주파수 반-선택적(semi-selective) 스케줄링이 포함될 수 있다. 이때, 주파수 반-선택적 스케줄링은 서브 프레임의 처음의 슬롯에 선택적으로 주파수 자원을 할당하고, 두번째 슬롯에서는 다른 주파수로 의사 랜덤(pseudo-randomly)하게 도약하여 주파수 자원을 할당하는 스케줄링을 말한다.
또한, SRS는 상향링크와 하향링크 간에 무선 채널이 상호적(reciprocal)인 가정하에 하향링크 채널 품질을 측정하기 위하여 사용될 수 있다. 이러한 가정은 상향링크와 하향링크가 동일한 주파수 스펙트럼을 공유하고, 시간 영역에서는 분리된 시분할 듀플레스(TDD: Time Division Duplex) 시스템에서 특히 유효하다
셀 내에서 어떠한 단말에 의하여 전송되는 SRS의 서브 프레임들은 셀-특정 방송 신호에 의하여 나타낼 수 있다. 4비트 셀-특정 'srsSubframeConfiguration' 파라미터는 SRS가 각 무선 프레임을 통해 전송될 수 있는 15가지의 가능한 서브 프레임의 배열을 나타낸다. 이러한 배열들에 의하여, 운용 시나리오(deployment scenario)에 따라 SRS 오버헤드(overhead)의 조정에 대한 유동성을 제공하게 된다.
이 중 16번째 배열은 셀 내에서 완전하게 SRS의 스위치를 오프하며, 이는 주로 고속 단말들을 서빙하는 서빙 셀에 적합하다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.
도 7을 참조하면, SRS는 배열된 서브 프레임 상에서 항상 마지막 SC-FDMA 심볼을 통해 전송된다. 따라서, SRS와 DMRS는 다른 SC-FDMA 심볼에 위치하게 된다.
PUSCH 데이터 전송은 SRS 전송을 위한 특정의 SC-FDMA 심볼에서는 허용되지 않으며, 결과적으로 사운딩(sounding) 오버헤드가 가장 높은 경우 즉, 모든 서브 프레임에 SRS 심볼이 포함되는 경우라도 사운딩 오버헤드는 약 7%를 초과하지 않는다.
각 SRS 심볼은 주어진 시간 단위와 주파수 대역에 관한 기본 시퀀스(랜덤 시퀀스 또는 Zadoff-Ch(ZC)에 기초한 시퀀스 세트)에 의하여 생성되고, 동일 셀 내의 모든 단말들은 동일한 기본 시퀀스를 사용한다. 이때, 동일한 주파수 대역과 동일한 시간에서 동일 셀 내의 복수의 단말로부터의 SRS 전송은 기본 시퀀스의 서로 다른 순환 이동(cyclic shift)에 의해 직교(orthogonal)되어 서로 구별된다.
각각의 셀 마다 서로 다른 기본 시퀀스가 할당되는 것에 의하여 서로 다른 셀로부터의 SRS 시퀀스가 구별될 수 있으나, 서로 다른 기본 시퀀스 간에 직교성은 보장되지 않는다.

캐리어 병합 일반
본 발명의 실시예들에서 고려하는 통신 환경은 멀티 캐리어(Multi-carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합(CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어(CC: Component Carrier)를 병합(aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다.) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다.) 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다.
상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합(carrier aggregation)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀(Cell)'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellId는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCellIndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCellIndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling) 할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.

도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 8a는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 8b는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 8b의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.

크로스 캐리어 스케줄링 (Cross Carrier Scheduling)
캐리어 병합 시스템에서는 캐리어(또는 반송파) 또는 서빙 셀(Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링(Self-Scheduling) 방법 및 크로스 캐리어 스케줄링(Cross Carrier Scheduling) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케줄링(Cross Component Carrier Scheduling) 또는 크로스 셀 스케줄링(Cross Cell Scheduling)으로 일컬을 수 있다.
크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL 그랜트를 수신한 DL CC와 링크되어 있는 UL CC가 아닌 다른 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링 여부는 단말 특정(UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링(예를 들어, RRC signaling)을 통해서 반정적(semi-static)으로 각 단말 별로 알려질 수 있다.
크로스 캐리어 스케줄링이 활성화된 경우, PDCCH에 해당 PDCCH가 지시하는 PDSCH/PUSCH가 어느 DL/UL CC를 통해서 전송되는지를 알려주는 캐리어 지시자 필드(CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH는 PDSCH 자원 또는 PUSCH 자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH가 다중 집성된 DL/UL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF가 설정된다. 이 경우, LTE-A Release-8의 DCI 포맷은 CIF에 따라 확장될 수 있다. 이때 설정된 CIF는 3bit 필드로 고정되거나, 설정된 CIF의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE-A Release-8의 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.
반면, DL CC 상에서의 PDCCH가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF가 설정되지 않는다. 이 경우, LTE-A Release-8과 동일한 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
크로스 캐리어 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.
캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합을 나타낸다. 또한, PDCCH 모니터링 집합(monitoring set)은 PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정(UE-specific), 단말 그룹 특정(UE group-specific) 또는 셀 특정(Cell-specific)하게 설정될 수 있다.
크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 크로스 캐리어 스케줄링에 따른 서브 프레임 구조의 일례를 나타낸다.
도 9를 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3개의 DL CC가 결합되어 있으며, DL CC 'A'는 PDCCH 모니터링 DL CC로 설정된 경우를 나타낸다. CIF가 사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF를 이용하여 자신의 PDSCH 또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 이때, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC 'B' 와 'C'는 PDCCH를 전송하지 않는다.

MIMO( M ulti-In put Multi-Output)
MIMO 기술은 지금까지 일반적으로 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피하여, 다중 송신(Tx) 안테나와 다중 수신(Rx) 안테나를 사용한다. 다시 말해서, MIMO 기술은 무선 통신 시스템의 송신단 또는 수신단에서 다중 입출력 안테나를 사용하여 용량 증대 또는 성능 개성을 꾀하기 위한 기술이다. 이하에서는 "MIMO"를 "다중 입출력 안테나"라 칭하기로 한다.
더 구체적으로, 다중 입출력 안테나 기술은 하나의 완전한 메시지(total message)를 수신하기 위하여 한 개의 안테나 경로에 의존하지 않으며, 여러 개의 안테나를 통해 수신한 복수의 데이터 조각을 수집하여 완전한 데이터를 완성시킨다. 결과적으로, 다중 입출력 안테나 기술은 특정 시스템 범위 내에서 데이터 전송율을 증가시킬 수 있으며, 또한 특정 데이터 전송율을 통해 시스템 범위를 증가시킬 수 있다.
차세대 이동통신은 기존 이동통신에 비해 훨씬 높은 데이터 전송률을 요구하므로 효율적인 다중 입출력 안테나 기술이 반드시 필요할 것으로 예상된다. 이와 같은 상황에서 MIMO 통신 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있는 차세대 이동통신 기술이며, 데이터 통신 확대 등으로 인해 한계 상황에 따라 다른 이동통신의 전송량 한계를 극복할 수 있는 기술로서 관심을 모으고 있다.
한편, 현재 연구되고 있는 다양한 전송효율 향상 기술 중 다중 입출력 안테나(MIMO) 기술은 추가적인 주파수 할당이나 전력증가 없이도 통신 용량 및 송수신 성능을 획기적으로 향상시킬 수 있는 방법으로서 현재 가장 큰 주목을 받고 있다.
도 10은 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 10을 참조하면, 송신 안테나의 수를 NT개로, 수신 안테나의 수를 NR개로 동시에 늘리게 되면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가하므로, 전송 레이트(transfer rate)를 향상시키고, 주파수 효율을 획기적으로 향상시킬 수 있다. 이 경우, 채널 전송 용량의 증가에 따른 전송 레이트는 하나의 안테나를 이용하는 경우의 최대 전송 레이트(Ro)에 다음과 같은 레이트 증가율(Ri)이 곱해진 만큼으로 이론적으로 증가할 수 있다.
Figure PCTKR2015008473-appb-M000001
즉, 예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다.
이와 같은 다중 입출력 안테나의 기술은 다양한 채널 경로를 통과한 심볼들을 이용하여 전송 신뢰도를 높이는 공간 다이버시티(spatial diversity) 방식과, 다수의 송신 안테나를 이용하여 다수의 데이터 심볼을 동시에 송신하여 전송률을 향상시키는 공간 멀티플렉싱(spatial multiplexing) 방식으로 나눌 수 있다. 또한 이러한 두 가지 방식을 적절히 결합하여 각각의 장점을 적절히 얻고자 하는 방식에 대한 연구도 최근 많이 연구되고 있는 분야이다.
각각의 방식에 대해 좀더 구체적으로 살펴보면 다음과 같다.
첫째로, 공간 다이버시티 방식의 경우에는 시공간 블록 부호 계열과, 다이버시티 이득과 부호화 이득을 동시에 이용하는 시공간 트렐리스(Trelis) 부호 계열 방식이 있다. 일반적으로 비트 오류율 개선 성능과 부호 생성 자유도는 트렐리스 부호 방식이 우수하지만, 연산 복잡도는 시공간 블록 부호가 간단하다. 이와 같은 공간 다이버서티 이득은 송신 안테나 수(NT)와 수신 안테나 수(NR)의 곱(NT × NR)에 해당되는 양을 얻을 수 있다.
둘째로, 공간 멀티플렉싱 기법은 각 송신 안테나에서 서로 다른 데이터 열을 송신하는 방법인데, 이때 수신기에서는 송신기로부터 동시에 전송된 데이터 사이에 상호 간섭이 발생하게 된다. 수신기에서는 이 간섭을 적절한 신호처리 기법을 이용하여 제거한 후 수신한다. 여기에 사용되는 잡음 제거 방식은 MLD(maximum likelihood detection) 수신기, ZF(zero-forcing) 수신기, MMSE(minimum mean square error) 수신 기, D-BLAST (Diagonal-Bell Laboratories Layered Space-Time), V-BLAST(Vertical-Bell Laboratories Layered Space-Time) 등이 있으며, 특히 송신단에서 채널 정보를 알 수 있는 경우에는 SVD(singular value decomposition) 방식 등을 사용할 수 있다.
셋째로, 공간 다이버시티와 공간 멀티플렉싱의 결합된 기법을 들 수 있다. 공간 다이버시티 이득만을 얻을 경우 다이버시티 차수의 증가에 따른 성능개선 이득이 점차 포화되며, 공간 멀티플렉싱 이득만을 취하면 무선 채널에서 전송 신뢰도가 떨어진다. 이를 해결하면서 두 가지 이득을 모두 얻는 방식들이 연구되어 왔으며, 이 중 시공간 블록 부호 (Double-STTD), 시공간 BICM(STBICM) 등의 방식이 있다.
상술한 바와 같은 다중 입출력 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링하는 경우 다음과 같이 나타낼 수 있다.
먼저, 도 10에 도시된 바와 같이 NT개의 송신 안테나와 NR개의 수신 안테나가 존재하는 것을 가정한다.
먼저, 송신 신호에 대해 살펴보면, 이와 같이 NT개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 NT개 이므로, 이를 다음과 같은 벡터로 나타낼 수 있다.
Figure PCTKR2015008473-appb-M000002
한편, 각각의 전송 정보 s1, s2, ..., sNT에 있어 전송 전력을 달리 할 수 있으며, 이때 각각의 전송 전력을 P1, P2, ..., PNT라 하면, 전송 전력이 조정된 전송 정보는 다음과 같은 벡터로 나타낼 수 있다.
Figure PCTKR2015008473-appb-M000003
또한,
Figure PCTKR2015008473-appb-I000009
를 전송 전력의 대각 행렬 P로 다음과 같이 나타낼 수 있다.
Figure PCTKR2015008473-appb-M000004
한편, 전송 전력이 조정된 정보 벡터
Figure PCTKR2015008473-appb-I000010
는 그 후 가중치 행렬 W가 곱해져 실제 전송되는 NT개의 전송 신호 x1, x2, ..., xNT를 구성한다. 여기서, 가중치 행렬은 전송 채널 상황 등에 따라 전송 정보를 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송 신호 x1, x2, ..., xNT를 벡터 x를 이용하여 다음과 같이 나타낼 수 있다.
Figure PCTKR2015008473-appb-M000005
여기서, wij는 i번째 송신 안테나와 j번째 전송 정보간의 가중치를 나타내며, W는 이를 행렬로 나타낸 것이다. 이와 같은 행렬 W를 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)라 부른다.
한편, 상술한 바와 같은 전송 신호(x)는 공간 다이버시티를 사용하는 경우와 공간 멀티플랙싱을 사용하는 경우로 나누어 생각해 볼 수 있다.
공간 멀티플랙싱을 사용하는 경우는 서로 다른 신호를 다중화하여 보내게 되므로, 정보 벡터 s의 원소들이 모두 다른 값을 가지게 되는 반면, 공간 다이버시티를 사용하게 되면 같은 신호를 여러 채널 경로를 통하여 보내게 되므로 정보 벡터 s의 원소들이 모두 같은 값을 갖게 된다.
물론, 공간 멀티플랙싱과 공간 다이버시티를 혼합하는 방법도 고려 가능하다. 즉, 예를 들어 3 개의 송신 안테나를 통하여 같은 신호를 공간 다이버시티를 이용하여 전송하고, 나머지는 각각 다른 신호를 공간 멀티플랙싱하여 보내는 경우도 고려할 수 있다.
다음으로, 수신신호는 NR개의 수신 안테나가 있는 경우, 각 안테나의 수신신호 y1, y2, ..., yNR을 벡터 y로 다음과 같이 나타내기로 한다.
Figure PCTKR2015008473-appb-M000006
한편, 다중 입출력 안테나 통신 시스템에 있어서의 채널을 모델링하는 경우, 각각의 채널은 송수신 안테나 인덱스에 따라 구분할 수 있으며, 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 hij로 표시하기로 한다. 여기서, hij의 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신안테나의 인덱스가 나중임에 유의한다.
이러한 채널은 여러 개를 한데 묶어서 벡터 및 행렬 형태로도 표시 가능하다. 벡터 표시의 예를 들어 설명하면 다음과 같다.
도 11은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 11에 도시된 바와 같이 총 NT개의 송신 안테나로부터 수신안테나 i로 도착하는 채널은 다음과 같이 표현 가능하다.
Figure PCTKR2015008473-appb-M000007
또한, 상기 수학식 7과 같은 행렬 표현을 통해 NT개의 송신 안테나로부터 NR개의 수신 안테나를 거치는 채널을 모두 나타내는 경우 다음과 같이 나타낼 수 있다.
Figure PCTKR2015008473-appb-M000008
한편, 실제 채널은 위와 같은 채널 행렬 H를 거친 후에 백색 잡음(AWGN: Additive White Gaussian Noise)가 더해지게 되므로, NR개의 수신 안테나 각각에 더해지는 백색 잡음 n1, n2, ..., nNR을 백터로 표현하면 다음과 같다.
Figure PCTKR2015008473-appb-M000009
상술한 바와 같은 전송 신호, 수신 신호, 채널, 및 백색 잡음의 모델링을 통해 다중 입출력 안테나 통신 시스템에서의 각각은 다음과 같은 관계를 통해 나타낼 수 있다.
Figure PCTKR2015008473-appb-M000010
한편, 채널의 상태를 나타내는 채널 행렬 H의 행과 열의 수는 송수신 안테나 수에 의해서 결정된다. 채널 행렬 H는 앞서 살펴본 바와 같이 행의 수는 수신 안테나의 수 NR과 같아지고, 열의 수는 송신 안테나의 수 NT와 같아 지게 된다. 즉, 채널 행렬 H는 NR×NT 행렬이 된다.
일반적으로, 행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 다음과 같이 제한된다.
Figure PCTKR2015008473-appb-M000011
또한, 행렬을 고유치 분해(Eigen value decomposition)를 하였을 때, 랭크는 고유치(eigen value)들 중에서 0이 아닌 고유치들의 개수로 정의할 수 있다. 비슷한 방법으로, 랭크를 SVD(singular value decomposition) 했을 때 0이 아닌 특이값(singular value)들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 명세서에 있어, MIMO 전송에 대한 '랭크(Rank)'는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수'는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.

COMP( Coordinated Multi-Point Transmission and Reception)
LTE-advanced의 요구에 발맞춰, 시스템의 성능 향상을 위하여 CoMP 전송이 제안되었다. CoMP는 co-MIMO, collaborative MIMO, network MIMO 등으로도 불린다. CoMP는 셀 경계에 위치한 단말의 성능을 향상시키고, 평균 셀(섹터)의 효율(throughput)을 향상시킬 것으로 예상된다.
일반적으로, 셀 간 간섭(Inter-Cell Interference)은 주파수 재사용 지수가 1 인 다중-셀 환경에서 셀 경계에 위치한 단말의 성능 및 평균 셀(섹터) 효율을 떨어뜨린다. 셀 간 간섭을 완화시키기 위해, 간섭 제한적인(interference-limited) 환경에서 셀 경계에 위치한 단말이 적정한 성능 효율을 가지도록 LTE 시스템에서는 부분 주파수 재사용(FFR: Fractional Frequency Reuse)과 같은 단순한 수동적인 방법이 적용되었다. 그러나, 각 셀 당 주파수 자원의 사용을 감소시키는 대신, 단말이 수신해야 하는 신호(desired signal)로써 셀 간 간섭을 재 사용하거나 셀 간 간섭을 완화시키는 방법이 보다 이익이 된다. 상술한 목적을 달성하기 위하여 CoMP 전송 방식이 적용될 수 있다.
하향링크에 적용될 수 있는 CoMP 방식은 JP(Joint Processing) 방식과 CS/CB(Coordinated Scheduling/Beamforming) 방식으로 분류할 수 있다.
JP 방식에서, 데이터는 CoMP 단위의 각 포인트(기지국)에서 사용될 수 있다. CoMP 단위는 CoMP 방식에서 이용되는 기지국들의 집합을 의미한다. JP 방식은 다시 연합 전송(joint transmission) 방식과 동적 셀 선택(dynamic cell selection) 방식으로 분류할 수 있다.
연합 전송 방식은 CoMP 단위에서 전체 또는 일부분인 복수의 포인트로부터 PDSCH를 통해 신호가 동시에 전송되는 방식을 의미한다. 즉, 단일의 단말에 전송되는 데이터는 복수의 전송 포인트로부터 동시에 전송될 수 있다. 이와 같은 연합 전송 방식을 통해 가간섭적(coherently) 내지 비간섭적(non-coherently)이든 무관하게 단말에 전송되는 신호의 품질을 높일 수 있으며, 또 다른 단말과의 간섭을 적극적으로 제거할 수 있다.
동적 셀 선택 방식은 CoMP 단위에서 단일의 포인트로부터 PDSCH를 통해 신호가 전송되는 방식을 의미한다. 즉, 특정 시간에 단일의 단말에 전송되는 데이터는 단일의 포인트로부터 전송되고, CoMP 단위 내 다른 포인트에서는 상기 단말로 데이터를 전송하지 않는다. 단말로 데이터를 전송하는 포인트는 동적으로 선택될 수 있다.
CS/CB 방식에 따르면, CoMP 단위는 단일의 단말로의 데이터 전송을 위하여 협력하여 빔포밍을 수행하게 된다. 즉, 서빙 셀에서만 단말로 데이터를 전송하지만, 사용자 스케줄링/빔포밍은 CoMP 단위 내의 복수의 셀 간의 협력을 통해 결정될 수 있다.
상향링크의 경우, CoMP 수신은 지리적으로 분리된 복수의 포인트 간의 협력에 의하여 전송된 신호를 수신하는 것을 의미한다. 상향링크에 적용될 수 있는 CoMP 방식은 JR(Joint Reception) 방식과 CS/CB(Coordinated Scheduling/Beamforming) 방식으로 분류할 수 있다.
JR 방식은 CoMP 단위에서 전체 또는 일부분인 복수의 포인트가 PDSCH를 통해 전송된 신호를 수신하는 방식을 의미한다. CS/CB 방식은 단일의 포인트에서만 PDSCH를 통해 전송된 신호를 수신하게 되나, 사용자 스케줄링/빔포밍은 CoMP 단위 내의 복수의 셀 간의 협력을 통해 결정될 수 있다.

릴레이 노드 (RN: Relay Node)
릴레이 노드는 기지국과 단말 간의 송수신되는 데이터를 두 개의 다른 링크(백홀 링크 및 액세스 링크)를 통해 전달한다. 기지국은 도너(donor) 셀을 포함할 수 있다. 릴레이 노드는 도너 셀을 통해 무선으로 무선 액세스 네트워크에 연결된다.
한편, 릴레이 노드의 대역(또는 스펙트럼) 사용과 관련하여, 백홀 링크가 액세스 링크와 동일한 주파수 대역에서 동작하는 경우를 '인-밴드(in-band)'라고 하고, 백홀 링크와 액세스 링크가 상이한 주파수 대역에서 동작하는 경우를 '아웃-밴드(out-band)'라고 한다. 인-밴드 및 아웃-밴드 경우 모두 기존의 LTE 시스템(예를 들어, 릴리즈-8)에 따라 동작하는 단말(이하, 레거시(legacy) 단말이라 한다.)이 도너 셀에 접속할 수 있어야 한다.
단말에서 릴레이 노드를 인식하는지 여부에 따라 릴레이 노드는 트랜스패런트(transparent) 릴레이 노드 또는 넌-트랜스패런트(non-transparent) 릴레이 노드로 분류될 수 있다. 트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하지 못하는 경우를 의미하고, 넌-트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하는 경우를 의미한다.
릴레이 노드의 제어와 관련하여, 도너 셀의 일부로 구성되는 릴레이 노드 또는 스스로 셀을 제어하는 릴레이 노드로 구분될 수 있다.
도너 셀의 일부로 구성되는 릴레이 노드는 릴레이 노드 식별자(relay ID)를 가질 수는 있지만, 릴레이 노드 자신의 셀 식별자(cell identity)를 가지지 않는다.
도너 셀이 속하는 기지국에 의하여 RRM(Radio Resource Management)의 적어도 일부가 제어되면, RRM의 나머지 부분들이 릴레이 노드에 위치하더라도 도너 셀의 일부로서 구성되는 릴레이 노드라 한다. 바람직하게, 이러한 릴레이 노드는 레거시 단말을 지원할 수 있다. 예를 들어, 스마트 리피터(Smart repeaters), 디코드-앤-포워드 릴레이 노드(decode-and-forward relays), L2(제2계층) 릴레이 노드들의 다양한 종류들 및 타입-2 릴레이 노드가 이러한 릴레이 노드에 해당한다.
스스로 셀을 제어하는 릴레이 노드의 경우에 릴레이 노드는 하나 또는 복수 개의 셀들을 제어하고, 릴레이 노드에 의해 제어되는 셀들 각각에 고유의 물리계층 셀 식별자가 제공된다. 또한, 릴레이 노드에 의해 제어되는 셀들 각각은 동일한 RRM 메커니즘을 이용할 수 있다. 단말 관점에서는 릴레이 노드에 의하여 제어되는 셀에 액세스하는 것과 일반 기지국에 의해 제어되는 셀에 액세스하는 것에 차이점이 없다. 이러한 릴레이 노드에 의해 제어되는 셀은 레거시 단말을 지원할 수 있다. 예를 들어, 셀프-백홀링(Self-backhauling) 릴레이 노드, L3(제3계층) 릴레이 노드, 타입-1 릴레이 노드 및 타입-1a 릴레이 노드가 이러한 릴레이 노드에 해당한다.
타입-1 릴레이 노드는 인-밴드 릴레이 노드로서 복수개의 셀들을 제어하고, 이들 복수개의 셀들의 각각은 단말 입장에서 도너 셀과 구별되는 별개의 셀로 보인다. 또한, 복수개의 셀들은 각자의 물리 셀 ID(이는 LTE 릴리즈-8에서 정의됨)를 가지고, 릴레이 노드는 자신의 동기화 채널, 참조신호 등을 전송할 수 있다. 단일-셀 동작의 경우에, 단말은 릴레이 노드로부터 직접 스케줄링 정보 및 HARQ 피드백을 수신하고 릴레이 노드로 자신의 제어 채널(스케줄링 요청(SR), CQI, ACK/NACK 등)을 전송할 수 있다. 또한, 레거시 단말(LTE 릴리즈-8 시스템에 따라 동작하는 단말)들에게 타입-1 릴레이 노드는 레거시 기지국(LTE 릴리즈-8 시스템에 따라 동작하는 기지국)으로 보인다. 즉, 역방향 호환성(backward compatibility)을 가진다. 한편, LTE-A 시스템에 따라 동작하는 단말들에게는, 타입-1 릴레이 노드는 레거시 기지국과 다른 기지국으로 보여, 성능 향상을 제공할 수 있다.
타입-1a 릴레이 노드는 아웃-밴드로 동작하는 것 외에 전술한 타입-1 릴레이 노드와 동일한 특징들을 가진다. 타입-1a 릴레이 노드의 동작은 L1(제1계층) 동작에 대한 영향이 최소화 또는 없도록 구성될 수 있다.
타입-2 릴레이 노드는 인-밴드 릴레이 노드로서, 별도의 물리 셀 ID를 가지지 않으며, 이에 따라 새로운 셀을 형성하지 않는다. 타입-2 릴레이 노드는 레거시 단말에 대해 트랜스패런트하고, 레거시 단말은 타입-2 릴레이 노드의 존재를 인지하지 못한다. 타입-2 릴레이 노드는 PDSCH를 전송할 수 있지만, 적어도 CRS 및 PDCCH는 전송하지 않는다.
한편, 릴레이 노드가 인-밴드로 동작하도록 하기 위하여, 시간-주파수 공간에서의 일부 자원이 백홀 링크를 위해 예비되어야 하고 이 자원은 액세스 링크를 위해서 사용되지 않도록 설정할 수 있다. 이를 자원 분할(resource partitioning)이라 한다.
릴레이 노드에서의 자원 분할에 있어서의 일반적인 원리는 다음과 같이 설명할 수 있다. 백홀 하향링크 및 액세스 하향링크가 하나의 반송파 주파수 상에서 시간분할다중화(TDM) 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 하향링크 또는 액세스 하향링크 중 하나만이 활성화된다). 유사하게, 백홀 상향링크 및 액세스 상향링크는 하나의 반송파 주파수 상에서 TDM 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 상향링크 또는 액세스 상향링크 중 하나만이 활성화된다).
FDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 하향링크 주파수 대역에서 수행되고, 백홀 상향링크 전송은 상향링크 주파수 대역에서 수행될 수 있다. TDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 기지국과 릴레이 노드의 하향링크 서브프레임에서 수행되고, 백홀 상향링크 전송은 기지국과 릴레이 노드의 상향링크 서브프레임에서 수행될 수 있다.
인-밴드 릴레이 노드의 경우에, 예를 들어, 동일한 주파수 대역에서 기지국으로부터의 백홀 하향링크 수신과 단말로의 액세스 하향링크 전송이 동시에 이루어지면, 릴레이 노드의 송신단으로부터 전송되는 신호에 의하여 릴레이 노드의 수신단에서 신호 간섭이 발생할 수 있다. 즉, 릴레이 노드의 RF 전단(front-end)에서 신호 간섭 또는 RF 재밍(jamming)이 발생할 수 있다. 유사하게, 동일한 주파수 대역에서 기지국으로의 백홀 상향링크 전송과 단말로부터의 액세스 상향링크 수신이 동시에 이루어지는 경우도 신호 간섭이 발생할 수 있다.
따라서, 릴레이 노드에서 동일한 주파수 대역에서의 동시에 신호를 송수신하기 위해서, 수신 신호와 송신 신호간에 충분한 분리(예를 들어, 송신 안테나와 수신 안테나를 지상/지하에 설치하는 것과 같이 지리적으로 충분히 이격시켜 설치함)가 제공되지 않으면 구현하기 어렵다.
이와 같은 신호 간섭의 문제를 해결하는 한 가지 방안은, 릴레이 노드가 도너 셀로부터 신호를 수신하는 동안에 단말로 신호를 전송하지 않도록 동작하게 하는 것이다. 즉, 릴레이 노드로부터 단말로의 전송에 갭(gap)을 생성하고, 이 갭 동안에는 단말(레거시 단말 포함)이 릴레이 노드로부터의 어떠한 전송도 기대하지 않도록 설정할 수 있다. 이러한 갭은 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임을 구성함으로써 설정할 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 릴레이 노드 자원 분할을 예시한다.
도 12에서, 첫번째 서브프레임은 일반 서브프레임으로서 릴레이 노드로부터 단말로 하향링크 (즉, 액세스 하향링크) 제어신호 및 데이터가 전송되고, 두번째 서브프레임은 MBSFN 서브프레임으로서 하향링크 서브프레임의 제어 영역에서는 릴레이 노드로부터 단말로 제어 신호가 전송되지만 하향링크 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는다. 여기서, 레거시 단말의 경우에는 모든 하향링크 서브프레임에서 PDCCH의 전송을 기대하게 되므로 (다시 말하자면, 릴레이 노드는 자신의 영역 내의 레거시 단말들이 매 서브프레임에서 PDCCH를 수신하여 측정 기능을 수행하도록 지원할 필요가 있으므로), 레거시 단말의 올바른 동작을 위해서는 모든 하향링크 서브프레임에서 PDCCH를 전송할 필요가 있다. 따라서, 기지국으로부터 릴레이 노드로의 하향링크 (즉, 백홀 하향링크) 전송을 위해 설정된 서브프레임 (두번째 서브프레임)상에서도, 서브프레임의 처음 N (N=1, 2 또는 3) 개의 OFDM 심볼구간에서 릴레이 노드는 백홀 하향링크를 수신하는 것이 아니라 액세스 하향링크 전송을 해야 할 필요가 있다. 이에 대하여, 두번째 서브프레임의 제어 영역에서 PDCCH가 릴레이 노드로부터 단말로 전송되므로 릴레이 노드에서 서빙하는 레거시 단말에 대한 역방향 호환성이 제공될 수 있다. 제 2 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는 동안에 릴레이 노드는 기지국으로부터의 전송을 수신할 수 있다. 따라서, 이러한 자원 분할 방식을 통해서, 인-밴드 릴레이 노드에서 액세스 하향링크 전송과 백홀 하향링크 수신이 동시에 수행되지 않도록 할 수 있다.
MBSFN 서브프레임을 이용하는 두번째 서브프레임에 대하여 구체적으로 설명한다. 두번째 서브프레임의 제어 영역은 릴레이 노드 비-청취(non-hearing) 구간이라고 할 수 있다. 릴레이 노드 비-청취 구간은 릴레이 노드가 백홀 하향링크 신호를 수신하지 않고 액세스 하향링크 신호를 전송하는 구간을 의미한다. 이 구간은 전술한 바와 같이 1, 2 또는 3 OFDM 길이로 설정될 수 있다. 릴레이 노드 비-청취 구간에서 릴레이 노드는 단말로의 액세스 하향링크 전송을 수행하고 나머지 영역에서는 기지국으로부터 백홀 하향링크를 수신할 수 있다. 이 때, 릴레이 노드는 동일한 주파수 대역에서 동시에 송수신을 수행할 수 없으므로, 릴레이 노드가 송신 모드에서 수신 모드로 전환하는 데에 시간이 소요된다. 따라서, 백홀 하향링크 수신 영역의 처음 일부 구간에서 릴레이 노드가 송신/수신 모드 스위칭을 하도록 가드 시간(GT: guard time)이 설정될 필요가 있다. 유사하게 릴레이 노드가 기지국으로부터의 백홀 하향링크를 수신하고 단말로의 액세스 하향링크를 전송하도록 동작하는 경우에도, 릴레이 노드의 수신/송신 모드 스위칭을 위한 가드 시간이 설정될 수 있다. 이러한 가드 시간의 길이는 시간 영역의 값으로 주어질 수 있고, 예를 들어, k (k≥1) 개의 시간 샘플(Ts: time sample) 값으로 주어질 수 있고, 또는 하나 이상의 OFDM 심볼 길이로 설정될 수도 있다. 또는, 릴레이 노드 백홀 하향링크 서브프레임이 연속으로 설정되어 있는 경우에 또는 소정의 서브프레임 타이밍 정렬(timing alignment) 관계에 따라 서브프레임의 마지막 부분의 가드시간은 정의되거나 설정되지 않을 수 있다. 이러한 가드 시간은 역방향 호환성을 유지하기 위하여, 백홀 하향링크 서브프레임 전송을 위해 설정되어 있는 주파수 영역에서만 정의될 수 있다 (액세스 하향링크 구간에서 가드 시간이 설정되는 경우에는 레거시 단말을 지원할 수 없다). 가드 시간을 제외한 백홀 하향링크 수신 구간에서 릴레이 노드는 기지국으로부터 PDCCH 및 PDSCH를 수신할 수 있다. 이를 릴레이 노드 전용 물리 채널이라는 의미에서 R-PDCCH (Relay-PDCCH) 및 R-PDSCH (Relay-PDSCH)로 표현할 수도 있다.

참조 신호 (RS: Reference Signal)
하향링크 참조 신호
무선 통신 시스템에서 데이터/신호는 무선 채널을 통해 전송되기 때문에, 데이터/신호는 전송 중에 무선상에서 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 왜곡되어 수신된 신호는 채널 정보를 이용하여 보정되는 것이 바람직하다. 이때, 송신단 및/또는 수신단은 채널 정보를 검출하기 위하여 양측에서 모두 알고 있는 참조신호(RS)를 이용할 수 있다. 참조신호는 파일럿 신호라고 불릴 수 있다.
송신단에서 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 수신단에서 데이터를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되는 것이 바람직하다. 이때, 수신단에서 채널 상태를 검출하기 위해 송신단의 각 송신 안테나는 개별적인 참조 신호를 가지는 것이 바람직하다.
하향 참조 신호는 하나의 셀 내 모든 단말이 공유하는 공통 참조 신호(CRS: Common RS)와 특정 단말만을 위한 전용 참조 신호(DRS: Dedicated RS)가 있다. 송신단은 이와 같은 참조 신호들(CRS, DRS)을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 수신단에 제공할 수 있다.
수신단(예를 들어, 단말)은 CRS를 이용하여 채널 상태를 측정하고, 측정된 채널 상태에 따라 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신단(예를 들어, 기지국)으로 피드백할 수 있다. 본 발명의 실시예들에서 CRS는 셀 특정 참조 신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우에 자원 요소들을 통해 단말들로 전송될 수 있다. 단말은 상위 계층 시그널링을 통하여 DRS의 존재 여부를 수신할 수 있다. DRS는 상응하는 PDSCH 신호가 매핑되는 경우에만 유효하다. 본 발명의 실시예들에서 DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 부를 수 있다.
도 13은 3GPP LTE 시스템에서 정의된 하향링크 자원 블록(RB) 쌍에 매핑된 참조 신호 패턴의 일례를 나타내는 도면이다.
참조 신호가 매핑되는 단위로서 하향링크 자원 블록(RB: Resource Block) 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 설정될 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP(Cyclic Prefix)) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 13 (a) 참조), 확장 순환 전치(extended CP((Cyclic Prefix))인 경우 12개의 OFDM 심볼의 길이를 가진다(도 13 (b) 참조).
도 13을 참조하면, 각 자원 블록에서 '0', '1', '2' 및 '3'으로 표시된 자원 요소들(REs)은 송신단(예를 들어, 기지국)의 안테나 포트 '0', '1', '2' 및 '3' 각각에 해당하는 CRS가 매핑된 자원요소를 의미하며, 'D'로 기재된 자원 요소들은 DRS가 매핑된 자원요소를 의미한다.
이하에서는 CRS에 대하여 보다 상세하게 설명한다.
CRS는 셀 내에 위치한 모든 단말에 공통적으로 수신할 수 있는 참조 신호로써 전체 주파수 대역에 분포되며, 물리적 안테나의 채널을 추정하기 위해 사용될 수 있다. 또한, CRS는 채널 품질 정보(CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 송신단(예를 들어, 기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의될 수 있다. 3GPP LTE 시스템(예를 들어, Rel-8/9)에서는 송신단은 4 개까지의 송신 안테나를 지원할 수 있다.
다중 입출력 안테나가 지원되고 참조 신호들이 하나 이상의 안테나 포트로부터 전송될 때, 참조 신호는 소정의 패턴에 따라 특정 자원 요소들을 통해 전송된다. 이때, 하나의 안테나 포트를 위한 참조신호가 전송되는 자원요소에서는 다른 안테나 포트를 위한 참조 신호가 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.

D2D 통신 일반
일반적으로 D2D 통신은 사물과 사물 간의 통신이나 사물 지능 통신을 지칭하는 용어로 제한적으로 사용되기도 하지만, 본 발명에서의 D2D 통신은 통신 기능이 장착된 단순한 장치는 물론, 스마트폰이나 개인용 컴퓨터와 같이 통신 기능을 갖춘 다양한 형태의 장치 간의 통신을 모두 포함할 수 있다.
즉, D2D(Device-to-Device) (통신)은 단말간 직접 통신을 수행하는데 사용되는 개념으로, 사이드링크(sidelink)로 표현될 수도 있다.
상기 D2D 통신은 단말간 데이터를 송수신하는 절차와 관련된 direct D2D communication과 주변 단말들을 발견하는 절차와 관련된 direct D2D discovery를 포함할 수 있다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 D2D 통신을 개념적으로 설명하기 위한 도면이다.
도 14a는 기존의 기지국(eNB) 중심의 통신 방식을 나타내는 것으로, UE1은 상향링크 상에서 기지국으로 데이터를 전송할 수 있고, 기지국은 하향링크 상에서 UE2으로 데이터를 전송할 수 있다. 이러한 통신 방식은 기지국을 통한 간접 통신 방식이라고 할 수 있다. 간접 통신 방식에서는 기존의 무선 통신 시스템에서 정의된 링크인 Un 링크(기지국들 간의 링크 또는 기지국과 중계기 간의 링크로서, 백홀 링크라고 칭할 수 있음) 및/또는 Uu 링크(기지국과 단말 간의 링크 또는 중계기와 단말 간의 링크로서, 액세스 링크라고 칭할 수 있음)가 관련될 수 있다.
도 14b는 D2D 통신의 일례로서 UE-to-UE 통신 방식을 나타내는 것으로, UE 간의 데이터 교환이 기지국을 거치지 않고 수행될 수 있다. 이러한 통신 방식은 장치 간의 직접 통신 방식이라고 할 수 있다. D2D 직접 통신 방식은 기존의 기지국을 통한 간접 통신 방식에 비하여 지연(latency)이 줄어들고, 보다 적은 무선 자원을 사용하는 등의 장점을 가진다.
도 15는 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 통신의 다양한 시나리오들의 일례를 나타낸다.
D2D 통신의 시나리오는 UE1과 UE2가 셀 커버리지 내(in-coverage)/셀 커버리지 밖(out-of-coverage)에 위치하는지에 따라 크게 (1) Out-of-Coverage Network, (2) Partial-Coverage Network 및 (3) In-Coverage Network으로 나뉠 수 있다.
In-Coverage Network의 경우, 기지국의 커버리지에 해당하는 셀(Cell)의 개수에 따라 In-Coverage-Single-Cell 및 In-Coverage-Multi-Cell로 나뉠 수 있다.
도 15a는 D2D 통신의 Out-of-Coverage Network 시나리오의 일 예를 나타낸다.
Out-of-Coverage Network 시나리오는 기지국의 제어 없이 D2D 단말들 간 D2D 통신을 수행하는 것을 말한다.
도 15a에서, UE1과 UE2만 존재하며, UE1과 UE2는 직접 통신을 하는 것을 볼 수 있다.
도 15b는 D2D 통신의 Partial-Coverage Network 시나리오의 일 예를 나타낸다.
Partial-Coverage Network 시나리오는 네트워크 커버리지 내에 위치하는 D2D 단말과 네트워크 커버리지 밖에 위치하는 D2D 단말 간에 D2D 통신을 수행하는 것을 말한다.
도 15b에서, 네트워크 커버리지 내 위치하는 UE1과 네트워크 커버리지 밖에 위치하는 UE2가 통신하는 것을 볼 수 있다.
도 15c는 In-Coverage-Single-Cell 시나리오의 일 예를, 도 15d는 In-Coverage-Multi-Cell 시나리오의 일 예를 나타낸다.
In-Coverage Network 시나리오는 D2D 단말들이 네트워크 커버리지 내에서 기지국의 제어를 통해 D2D 통신을 수행하는 것을 말한다.
도 15c에서, UE1과 UE2는 동일한 네트워크 커버리지(또는 셀) 내에 위치하며, 기지국의 제어 하에 D2D 통신을 수행한다.
도 15d에서, UE1과 UE2는 네트워크 커버리지 내에 위치하기는 하나, 서로 다른 네트워크 커버리지 내에 위치한다. 그리고, UE1과 UE2는 각 네트워크 커버리지를 관리하는 기지국의 제어 하에 D2D 통신을 수행한다.
이하, D2D 통신에 관하여 보다 상세히 살펴본다.
D2D 통신은 도 15에 도시된 시나리오에서 동작할 수 있으나, 일반적으로 네트워크 커버리지 내(in-coverage)와 네트워크 커버리지 밖(out-of-coverage)에서 동작할 수 있다. D2D 통신(단말들 간 직접 통신)을 위해 이용되는 링크를 D2D 링크(D2D link), 다이렉트 링크(directlink) 또는 사이드 링크(sidelink) 등으로 지칭할 수 있으나, 이하 설명의 편의를 위해 사이드 링크로 통칭하여 설명한다.
사이드 링크 전송은 FDD의 경우 상향링크 스펙트럼에서 동작하고, TDD의 경우 상향링크(혹은 하향링크) 서브프레임에서 동작할 수 있다. 사이드 링크 전송과 상향링크 전송의 다중화를 위하여 TDM(Time Division Multiplexing)이 이용될 수 있다.
사이드 링크 전송과 상향링크 전송은 동시에 일어나지 않는다. 상향링크 전송을 위해 사용되는 상향링크 서브프레임 또는 UpPTS와 부분적으로 혹은 전체적으로 겹쳐지는 사이드 링크 서브프레임에서는 사이드 링크 전송이 일어나지 않는다. 또한, 사이드 링크의 전송 및 수신 또한 동시에 일어나지 않는다.
사이드 링크 전송에 이용되는 물리 자원의 구조는 상향링크 물리 자원의 구조가 동일하게 이용될 수 있다. 다만, 사이드 링크 서브프레임의 마지막 심볼은 보호 구간(guard period)으로 구성되어 사이드 링크 전송에 이용되지 않는다.
사이드 링크 서브프레임은 확장 순환 전치(extended CP) 또는 일반 순환 전치(normal CP)에 의해 구성될 수 있다.
D2D 통신은 크게 디스커버리(discovery), 직접 통신(direct communication), 동기화(Synchronization)로 구분될 수 있다.
1) 디스커버리(discovery)
D2D 디스커버리는 네트워크 커버리지 내에서 적용될 수 있다. (Inter-cell, Intra-cell 포함). 인터 셀(inter-cell) 디스커버리에서 동기화된(synchronous) 또는 동기화되지 않은(asynchronous) 셀 배치 모두 고려될 수 있다. D2D 디스커버리는 근접 영역 내의 UE에게 광고, 쿠폰 발행, 친구 찾기 등의 다양한 상용 목적으로 활용될 수 있다.
UE 1이 디스커버리 메시지 전송의 역할(role)을 가지는 경우, UE 1은 디스커버리 메시지를 전송하고, UE 2는 디스커버리 메시지를 수신한다. UE 1과 UE 2의 전송 및 수신 역할은 바뀔 수 있다. UE 1으로부터의 전송은 UE 2와 같은 하나 이상의 UE(들)에 의해 수신될 수 있다.
디스커버리 메시지는 단일의 MAC PDU를 포함할 수 있으며, 여기서 단일의 MAC PDU는 UE ID 및 application ID를 포함할 수 있다.
디스커버리 메시지를 전송하는 채널로 물리 사이드 링크 디스커버리 채널(PSDCH: Physical Sidelink discovery Channel)이 정의될 수 있다. PSDCH 채널의 구조는 PUSCH 구조를 재이용할 수 있다.
D2D 디스커버리를 위한 자원 할당 방법은 두 가지의 타입(Type 1, Type 2)이 이용될 수 있다.
타입 1의 경우, eNB는 단말 특정하지 않은(non-UE specific) 방식으로 디스커버리 메시지 전송을 위한 자원을 할당할 수 있다.
구체적으로, 특정 주기로 복수의 서브프레임으로 구성된 디스커버리 전송 및 수신을 위한 무선 자원 풀(pool)이 할당되고, 디스커버리 전송 UE는 이 무선 자원 풀(pool) 내에서 특정 자원을 임의로 선택한 다음 디스커버리 메시지를 전송한다.
이러한 주기적인 디스커버리 자원 풀(pool)은 반정적(semi-static)인 방식으로 디스커버리 신호 전송을 위해 할당될 수 있다. 디스커버리 전송을 위한 디스커버리 자원 풀(pool)의 설정 정보는 디스커버리 주기, 디스커버리 주기 내 디스커버리 신호의 전송을 위해 사용할 수 있는 서브프레임의 개수(즉, 무선 자원 풀을 구성하는 서브프레임 개수)를 포함한다.
In-coverage UE의 경우, 디스커버리 전송을 위한 디스커버리 자원 풀(pool)은 eNB에 의해 설정되고, RRC 시그널링(예를 들어, SIB(System Information Block))을 이용하여 UE에게 알려줄 수 이다.
하나의 디스커버리 주기 내에 디스커버리를 위해 할당된 디스커버리 자원 풀(pool)은 동일한 크기를 가지는 시간-주파수 자원 블록으로 TDM 및/또는 FDM으로 다중화될 수 있으며, 이러한 동일한 크기를 가지는 시간-주파수 자원 블록을 ‘디스커버리 자원(discovery resource)’으로 지칭할 수 있다.
디스커버리 자원은 하나의 UE에 의해 디스커버리 MAC PDU의 전송을 위해 사용될 수 있다. 하나의 UE에 의해 전송되는 MAC PDU의 전송은 디스커버리 주기 내(즉, 무선 자원 풀(pool))에서 연속적으로(contiguous) 혹은 비연속적(non-contiguous)으로 반복(예를 들어, 4회 반복)될 수 있다. UE는 MAC PDU의 반복되는 전송을 위해 사용될 수 있는 디스커버리 자원 세트(discovery resource set)에서 첫 번째 디스커버리 자원을 임의로 선택하고, 그 이외의 디스커버리 자원은 첫 번째 디스커버리 자원과 관련하여 결정될 수 있다. 예를 들어, 일정 패턴이 미리 설정되고, UE가 첫 번째로 선택한 디스커버리 자원의 위치에 따라 그 다음의 디스커버리 자원이 미리 설정된 패턴에 따라 결정될 수 있다. 또한, UE가 MAC PDU의 반복되는 전송을 위해 사용될 수 있는 디스커버리 자원 세트 내에서 각각의 디스커버리 자원을 임의로 선택할 수도 있다.
타입2는 디스커버리 메시지 전송을 위한 자원이 단말 특정(UE specific)하게 할당된다. 타입 2는 다시 타입2A(Type-2A), 타입2B(Type-2B)로 세분화된다.
타입 2A는 eNB가 디스커버리 주기 내에서 UE가 디스커버리 메시지의 전송 시점(instance)마다 자원을 할당하는 방식이고, 타입 2B는 반정적인(semi-persistent) 방식으로 자원을 할당하는 방식이다.
타입 2B의 경우, RRC_CONNECTED UE는 RRC 시그널링을 통해 eNB에 D2D 디스커버리 메시지의 전송을 위한 자원의 할당을 요청한다. 그리고, eNB는 RRC 시그널링을 통해 자원을 할당할 수 있다. UE는 RRC_IDLE 상태로 천이할 때 또는 eNB이 RRC 시그널링을 통해 자원 할당을 철회(withdraw)할 때, UE는 가장 최근에 할당된 전송 자원을 해제한다. 이와 같이 타입 2B의 경우, RRC 시그널링에 의해 무선 자원이 할당되고, PDCCH에 의해 할당된 무선 자원의 활성(activation)/비활성(deactivation)이 결정될 수 있다.
디스커버리 메시지 수신을 위한 무선 자원 풀(pool)은 eNB에 의해 설정되고, RRC 시그널링(예를 들어, SIB(System Information Block))을 이용하여 UE에게 알려줄 수 있다.
디스커버리 메시지 수신 UE는 디스커버리 메시지 수신을 위하여 상술한 타입 1 및 타입 2의 디스커버리 자원 풀(pool) 모두 모니터링한다.
2) 직접 통신(direct communication)
D2D 직접 통신의 적용 영역은 네트워크 커버리지 안팎(in-coverage, out-of-coverage)은 물론 네트워크 커버리지 경계 영역(edge-of-coverage)도 포함한다. D2D 직접 통신은 PS(Public Safety) 등의 목적으로 이용될 수 있다.
UE 1이 직접 통신 데이터 전송의 역할을 가지는 경우, UE 1은 직접 통신 데이터를 전송하고, UE 2는 직접 통신 데이터를 수신한다. UE 1과 UE 2의 전송 및 수신 역할은 바뀔 수 있다. UE 1으로부터의 직접 통신 전송은 UE 2와 같은 하나 이상의 UE(들)에 의해 수신될 수 있다.
D2D 디스커버리와 D2D 통신은 서로 연계되지 않고 독립적으로 정의될 수 있다. 즉, 그룹캐스트(groupcast) 및 브로드캐스트(broadcast) 직접 통신에서는 D2D 디스커버리가 요구되지 않는다. 이와 같이, D2D 디스커버리와 D2D 직접 통신이 독립적으로 정의되는 경우, UE들은 인접하는 UE를 인지할 필요가 없다. 다시 말해, 그룹캐스트 및 브로드캐스트 직접 통신의 경우, 그룹 내 모든 수신 UE가 서로 근접할 것을 요구하지 않는다.
D2D 직접 통신 데이터를 전송하는 채널로 물리 사이드 링크 공유 채널(PSSCH: Physical Sidelink Shared Channel)이 정의될 수 있다. 또한, D2D 직접 통신을 위한 제어 정보(예를 들어, 직접 통신 데이터 전송을 위한 스케줄링 승인(SA: scheduling assignment), 전송 형식 등)를 전송하는 채널로 물리 사이드 링크 제어 채널(PSCCH: Physical Sidelink Control Channel)이 정의될 수 있다. PSSCH 및 PSCCH는 PUSCH 구조를 재이용할 수 있다.
D2D 직접 통신을 위한 자원 할당 방법은 두 가지의 모드(mode 1, mode 2)가 이용될 수 있다.
모드 1은 eNB가 UE가 D2D 직접 통신을 위한 데이터 또는 제어 정보를 전송하기 위하여 사용하는 자원을 스케줄링 하는 방식을 말한다. in-coverage에서는 모드 1이 적용된다.
eNB은 D2D 직접 통신에 필요한 자원 풀(pool)을 설정한다. 여기서, D2D 통신에 필요한 자원 풀(pool)은 제어 정보 풀과 D2D 데이터 풀로 구분될 수 있다. eNB가 PDCCH 또는 ePDCCH를 이용하여 송신 D2D UE에게 설정된 풀 내에서 제어 정보 및 D2D 데이터 전송 자원을 스케줄링하면 송신 D2D UE는 할당된 자원을 이용하여 제어 정보 및 D2D 데이터를 전송한다.
전송 UE는 eNB에 전송 자원을 요청하고, eNB는 제어 정보와 D2D 직접 통신 데이터의 전송을 위한 자원을 스케줄링한다. 즉, 모드 1의 경우, 전송 UE는 D2D 직접 통신을 수행하기 위하여 RRC_CONNECTED 상태에 있어야 한다. 전송 UE는 스케줄링 요청을 eNB에 전송하고, 이어 eNB가 전송 UE에 의해 요청되는 자원의 양을 결정할 수 있도록 BSR(Buffer Status Report) 절차가 진행된다.
수신 UE들은 제어 정보 풀을 모니터링하고, 자신과 관련된 제어 정보를 디코딩하면 해당 제어 정보와 관련된 D2D 데이터 전송을 선택적으로 디코딩할 수 있다. 수신 UE는 제어 정보 디코딩 결과에 따라 D2D 데이터 풀을 디코딩하지 않을 수도 있다.
모드 2는 UE가 D2D 직접 통신을 위한 데이터 또는 제어 정보를 전송하기 위하여 자원 풀(pool)에서 특정 자원을 임의로 선택하는 방식을 말한다. out-of-coverage 및/또는 edge-of-coverage에서 모드 2가 적용된다.
모드 2에서 제어 정보 전송을 위한 자원 풀(pool) 및/또는 D2D 직접 통신 데이터 전송을 자원 풀(pool)은 미리 설정(pre-configured)되거나 반정적으로(semi-statically) 설정될 수 있다. UE는 설정된 자원 풀(시간 및 주파수)를 제공 받고, 자원 풀에서 D2D 통신 전송을 위한 자원을 선택한다. 즉, UE는 제어 정보를 전송하기 위하여 제어 정보 자원 풀에서 제어 정보 전송을 위한 자원을 선택할 수 있다. 또한, UE는 D2D 직접 통신 데이터 전송을 위해 데이터 자원 풀에서 자원을 선택할 수 있다.
D2D 브로드캐스트 통신에서, 제어 정보는 브로드캐스팅 UE에 의해 전송된다. 제어 정보는 D2D 직접 통신 데이터를 운반하는 물리 채널(즉, PSSCH)과 관련하여 데이터 수신을 위한 자원의 위치를 명시적으로(explicit) 및/또는 묵시적으로(implicit) 지시한다.
3) 동기화(synchronization)
D2D 동기 신호(또는 사이드 링크 동기 신호)는 UE 가 시간-주파수 동기를 획득하기 위하여 이용될 수 있다. 특히, 네트워크 커버리지 밖의 경우 eNB의 제어가 불가능하므로 UE 간 동기 확립을 위한 새로운 신호 및 절차가 정의될 수 있다.
D2D 동기 신호를 주기적으로 전송하는 UE를 D2D 동기 소스(D2D Synchronization Source)로 지칭할 수 있다. D2D 동기 소스가 eNB인 경우, 전송되는 D2D 동기 신호의 구조는 PSS/SSS와 동일할 수 있다. D2D 동기 소스가 eNB가 아닌 경우(예를 들어, UE 또는 GNSS(Global Navigation Satellite System) 등) 전송되는 D2D 동기 신호의 구조는 새롭게 정의될 수 있다.
D2D 동기 신호는 40ms 보다 작지 않은 주기를 가지고 주기적으로 전송된다. 단말 별로 다중의 물리 계층 사이드 링크 동기화 식별자(physical-layer sidelink synchronization identity)를 가질 수 있다. D2D 동기 신호는 프라이머리 D2D 동기 신호(또는 프라이머리 사이드 링크 동기 신호)와 세컨더리 D2D 동기 신호(또는 세컨더리 사이드 링크 동기 신호)를 포함한다.
D2D 동기 신호를 전송하기 전에, 먼저 UE는 D2D 동기 소스를 탐색할 수 있다. 그리고, D2D 동기 소스가 탐색되면, UE는 탐색된 D2D 동기 소스로부터 수신된 D2D 동기 신호를 통해 시간-주파수 동기를 획득할 수 있다. 그리고, 해당 UE는 D2D 동기 신호를 전송할 수 있다.
이하에서는 명료성을 위해 D2D 통신에 있어서 2개의 장치들 간의 직접 통신을 예로 들어 설명하지만, 본 발명의 범위가 이에 제한되는 것은 아니고, 2 이상의 복수의 장치들 간의 D2D 통신에 대해서도 본 발명에서 설명하는 동일한 원리가 적용될 수 있다.

D2D discovery 방식 중에 하나로 모든 UE가 분산적인 방식에 의해서 discovery를 수행하도록 하는 방식(이하, ‘분산적 discovery’라고 지칭한다.)이 있다. 분산적으로 D2D discovery를 수행하는 방식은 centralized 방식처럼 한곳에서(예를 들어, eNB, UE 또는 D2D 스케줄링 장치 등) 자원 선택을 결정하는 것이 아니며, 모든 UE들이 분산적으로 스스로 판단해서 discovery 자원을 선택하고 discovery 메시지를 송신 및 수신을 하는 방식을 의미한다.
이하, 본 명세서에서는 D2D discovery를 위해서 단말들이 주기적으로 보내는 신호(또는 메시지)를 discovery 메시지, discovery 신호, 비콘 (beacon) 등으로 지칭할 수 있다. 이하, 설명의 편의를 위해 discovery 메시지로 통칭한다.
분산적 discovery에서는 UE가 discovery 메시지를 송신 및 수신하기 위한 자원으로서 셀룰러 자원과는 별도로 전용 자원이 주기적으로 할당될 수 있다. 이에 대하여 아래 도 17을 참조하여 설명한다.

도 16은 본 명세서에서 제안하는 방법들이 적용될 수 있는 디스커버리 자원이 할당되는 프래임 구조의 일례를 나타낸다.
도 16을 참조하면, 분산적 discovery 방식에서는 전체 셀룰러 상향링크 주파수-시간 자원 중에서 discovery를 위한 discovery subframe(즉, ‘discovery 자원 풀’)(1601)이 고정적으로(또는 전용적으로) 할당되고, 나머지 영역은 기존의 LTE 상향링크 WAN(wide area network) 서브프레임 영역(1603)으로 구성된다. discovery 자원 풀은 하나 이상의 서브프레임으로 구성될 수 있다.
discovery 자원 풀은 일정 시간 간격(즉, ‘discovery 주기’)으로 주기적으로 할당될 수 있다. 또한, discovery 자원 풀은 하나의 discovery 주기 내에서 반복하여 설정될 수 있다.
도 16의 경우, 10 sec 의 discovery 주기를 가지고 discovery 자원 풀이 할당되고, 각각의 discovery 자원 풀은 64 개의 연속적인 서브프레임이 할당되는 예를 나타낸다. 다만, discovery 주기 및 discovery 자원 풀의 시간/주파수 자원의 크기는 이에 한정되지 않는다.
UE는 전용적으로 할당된 discovery 풀 내에서 자신의 discovery 메시지를 전송하기 위한 자원(즉, ‘discovery 자원’)을 자체적으로 선택하고, 선택된 자원을 통해 discovery 메시지를 전송한다. 이에 대하여 아래 도 17을 참조하여 설명한다.

도 17은 본 명세서에서 제안하는 방법들이 적용될 수 있는 디스커버리 과정을 간략히 예시한 도면이다.
도 16 및 도 17을 참조하면, discovery 방식은 크게 discovery 메시지 전송을 위한 자원 센싱(sensing)(S1701), discovery 메시지 전송을 위한 자원 선택(S1703), discovery 메시지 송신 및 수신(S1705), 이와 같은 3단계 절차로 구성된다.
먼저, discovery 메시지 전송을 위한 자원 센싱 단계(S1701)에서, D2D discovery를 수행하는 모든 UE들은 분산적인 방식으로(즉, 자체적으로) D2D discovery 자원의 1 주기(period)(즉, discovery 자원 풀)동안 discovery 메시지를 전부 수신(즉, 센싱)한다. 예를 들어, 도 16에서 상향링크 대역폭이 10MHz라고 가정하면, 모든 UE는 K=64 msec (64개의 서브프레임) 동안 N=44 RB (전체 상향링크 대역폭은 10MHz 이므로 총 50개의 RB에서 PUCCH 전송을 위해 6개의 RB가 이용된다.)에서 전송되는 discovery 메시지를 전부 수신(즉, 센싱)한다.
그리고, discovery 메시지 전송을 위한 자원 선택 단계(S1703)에서, UE는 센싱한 자원들 중에서 낮은 에너지 레벨의 자원들을 분류하고 그 중 일정 범위 내에서(예를 들어, 하위 x% (x=임의의 정수, 5, 7, 10, ...) 내에서) discovery 자원을 랜덤하게 선택한다.
discovery 자원은 동일한 크기를 가지는 하나 이상의 자원 블록으로 구성될 수 있으며, discovery 자원 풀 내에서 TDM 및/또는 FDM으로 다중화될 수 있다.
그리고, 마지막 절차인 discovery 메시지 전송 및 수신 단계(S1705)에서, UE는 discovery 한 주기 후에(도 16의 예시에서 P=10초 후) 선택된 discovery 자원을 기반으로 discovery 메시지를 송수신하며, 이후의 discovery 주기에서는 랜덤한 자원 호핑(hopping) 패턴에 따라서 주기적으로 discovery 메시지를 송수신한다.
이러한, D2D discovery 절차는 UE가 eNB와 연결이 있는 RRC_CONNECTED 상태에서도 진행될 뿐만 아니라 eNB와 연결이 없는 RRC_IDLE 상태에서도 계속 수행된다.
위와 같은 discovery 방식을 고려하면, 모든 UE들은 주위의 UE들이 전송하고 있는 모든 자원들(즉, discovery 자원 풀)을 sensing 하고 그 중에서 일정 범위(예를 들어, 하위 x%내)에서 랜덤하게 discovery 자원을 선택한다.

이하에서, 본 명세서에서 제안하는 D2D 제어 정보 및/또는 D2D 데이터 전송 방법에 대해 도 18 내지 도 29를 참조하여 구체적으로 살펴보기로 한다.
앞서 살핀 것처럼, D2D는 사이드링크(sidelink)로 표현될 수 있다.
또한, D2D 제어 정보는 사이드링크 제어 정보(Sidelink Control Information:SCI)로 표현될 수 있으며, 상기 D2D 제어 정보는 PSCCH(Physical Sidelink Control Channel)을 통해 송수신될 수 있다.
또한, D2D 데이터는 PSSCH(Physical Sidelink Shared Channel)를 통해 송수신될 수 있으며, 상기 D2D 데이터 송수신은 PSSCH 송수신으로 표현될 수 있다.
단말간 직접 통신을 수행함에 있어, D2D 단말에서 D2D 데이터(data)를 복조하기 위해서는 D2D 제어 정보(control information)이 정의되어야 한다.
살핀 것처럼, 상기 D2D 제어 정보는 SCI로 표현될 수 있으며, 이하에서는 혼용하기로 한다.
여기서, 상기 D2D 제어 정보는 상기 D2D 데이터를 전달하는 D2D 통신 채널(communication channel)과는 별개의 채널(또는 별개의 신호로) 전송될 수 있다.
살핀 것처럼, 상기 D2D 통신 채널은 PSSCH로 표현될 수 있으며, 이하에서는 혼용하기로 한다.
또한, 이하에서 설명하는 방법들은 D2D discovery message를 전달하기 위해 필요한 제어 정보를 별도로 전송하게 되는 경우에도 동일하게 적용될 수 있다.
상기 D2D 제어 정보는 NDI(new data indicator), RA(resource allocation or resource configuration), MCS(modulation and coding scheme/set), RV(redundancy version), Tx UE ID 등과 같은 정보의 일부 또는 전체를 포함할 수 있다.
상기 D2D 제어 정보는 도 15의 D2D 통신이 적용되는 시나리오에 따라 상기 D2D 제어 정보에 포함되는 정보들의 조합이 다르게 구성될 수 있다.
일반적으로, 제어 정보(control information: CI)는 데이터 채널(data channel)을 복조하는데 활용되기 때문에, 상기 제어 정보는 상기 data channel에 앞서 decoding되어야 한다.
따라서, 상기 제어 정보를 수신하는 단말들은 상기 제어 정보가 전송되는 시간 및 주파수 자원의 위치와 상기 데이터 채널의 복조에 필요한 관련 파라미터를 사전에 알고 있어야 한다.
예를 들어, LTE(-A) 시스템에서 PDCCH의 경우, 매 서브프레임의 특정 심볼들 중에 특정 위치로 전송될 것임을 단말이 알 수 있도록 UE ID 기반의 hashing 함수를 전송단(예: 기지국) 및 수신단(예: 단말)이 공통으로 사용하고 있다.
또한, LTE(-A) 시스템에서 BCH의 경우, 40ms 주기로 특정 SF(Subframe)의 특정 심볼에 system information이 전달된다는 사실을 사전에 기지국과 단말이 공유하고 있다.
살핀 것처럼, 단말에서 상기 제어 정보를 제대로 획득하기 위해서는 사전에 상기 단말에게 충분한 상기 제어 정보의 복조 관련 정보(또는 파라미터)가 전달되어야 한다.
마찬가지로, D2D 통신을 지원하는 시스템에서 D2D 단말이 D2D 제어 정보를 성공적으로 복조하기 위해서는 상기 D2D 제어 정보의 전송과 관련된 파라미터가 사전에 D2D 단말과 공유되어야 한다.
상기 D2D 제어 정보의 전송과 관련된 파라미터는 일 예로, subframe/slot index, symbol index 또는 RB index 등일 수 있다.
또한, 상기 D2D 제어 정보의 전송과 관련된 파라미터는 특정 포맷의 DCI일 수 있으며, 기지국으로부터 또는 다른 D2D 단말로부터 PDCCH를 통해 획득될 수 있다.
상기 특정 포맷의 DCI는 새롭게 정의되는 DCI 포맷을 의미하는 것으로 일 예로, DCI format 5일 수 있다.
일 실시 예로서, 상기 D2D 제어 정보는 D2D subframe(D2D 전송을 위해 지정된 subframe)으로 지정된 모든 subframe에서 또는 상기 모든 subframe 중 특정 index를 갖는 일련의 subframe(a set of subframe 또는 subframe set)에서 또는 특정 주기를 갖는 subframe set에서 전송되도록 지정될 수 있다.
이러한 잠재적인 D2D 제어 정보의 전송 subframe 또는 subframe set은 사전에 단말에게 (higher layers) signaling을 통해서 또는 단말 고유의 정보(UE ID 등)에 기반해서, 단말이 스스로 계산할 수 있도록 하는 방식으로 단말에게 미리 인지될 수 있다.
또한, D2D data channel이 전달되는 자원 영역과 D2D control information이 전달되는 자원 영역은 시간 영역에서 서로 다르게 구성될 수 있다.
즉, 상기 D2D control information은 지정된 시간 단위로 즉, 주기적으로 (또는 지정된 시간-주파수 영역 패턴으로 hopping하면서) 전송되게 하고, 상기 D2D data channel은 상기 D2D control information이 지시하는 자원 영역에서만 전달되도록 정의할 수 있다.
이 방법은 D2D control information과 D2D data를 함께 전송하는 방식과 달리 상기 D2D control information을 전송하는 경우와 D2D data를 전송하는 경우를 독립적으로 운영하는 것을 의미한다.
구체적으로, 상기 D2D control information과 D2D data를 분리 전송하는 경우는 (1) D2D control information과 D2D data에 적용되는 파라미터 (scrambling, CRC, CRC masking, demodulation sequence generation parameter등)를 독립적으로 설정하거나 또는 (2) D2D data에 적용되는 parameter를 D2D control information을 통해서 indication 해주는 것이다.
(2)의 경우, D2D 단말은 상기 D2D control information이 전송되기로 한 잠재적인(potential) 자원(subframe 또는 subframe set)에서 잠재적인 parameter를 사용하여 상기 D2D control information에 대한 monitoring 및 decoding을 시도하고(e.g. explicit or blind decoding), 상기 잠재적인 자원 이외의 자원 영역에서는 상기 D2D control information에 대한 decoding 시도를 하지 않게 된다.
이를 통해, 단말의 전력 소모를 줄일 수 있게 되는 효과가 있다.
또한, 단말에서 D2D data를 복조하는 경우에도 상기 D2D control information을 통해 획득된 parameter와 D2D data 자원 영역 정보를 활용하여 단말은 지정된 시점에서 지정된 정보만을 복조하면 되기 때문에, 단말의 전력 소모를 줄일 수 있게 되는 효과가 있다.
이하에서는 앞서 살펴본 방법들을 구현하기 위한 일 실시 예로서, D2D control information을 획득하기 위해 단말들이 특정 시점에서 특정 자원 영역을 blind search(decoding)하고, 각 단말에게 matching되는 D2D control information을 decoding하는 방식을 살펴보기로 한다.
여기서, 각 단말의 D2D control information의 matching 여부는 UE specific information 기반으로 또는 UE-group specific(UE-group common) information 기반으로 구현할 수 있다.
즉, D2D control information에 UE specific scrambling 또는 CRC masking을 적용하여 해당 단말만 상기 D2D control information을 (blind) decoding하게 하거나 또는 다수의 단말들(group 또는 전체)가 모두 상기 D2D control information을 decoding하도록 UE-group common scrambling 또는 CRC masking을 적용할 수도 있다.
따라서, 단말 또는 단말 group은 decoding에 성공한 D2D control information으로부터 D2D data 복조에 관련된 정보를 얻을 수 있다.
상기 D2D control information(또는 SCI)이란 D2D control information에 포함된 explicit 정보뿐만 아니라 D2D control channel(PSCCH)에 사용된 parameter(여기는 사전에 정해진 parameter 뿐만 아니라 주어진 D2D control channel set에서 blind search를 통해서 얻어낸 parameter도 포함)를 포함한다.
상기 D2D control channel에 사용된 parameter는 scrambling, CRC masking, 사용 자원 정보, reference signal related parameters 등일 수 있다.
따라서, 이를 통해 D2D data에 대해 단말이 굳이 blind decoding을 하지 않도록 구현할 수 있게 된다.
정리하면, 단말 또는 단말 group은 D2D control information을 얻기 위해서 각자의 고유 정보를 활용하거나 또는 사전에 (higher layers) signaling된 정보에 기반해서, 상기 D2D control information을 특정 시점에 특정 파라미터를 통해 blind decoding을 수행한다.
상기 blind decoding 수행을 통해, 상기 단말 또는 단말 그룹은 data 복조에 관련된 scheduling information과 D2D control channel(또는 control information)의 생성 및 전송에 사용된 각종 parameter를 함께 획득할 수 있다.
따라서, 단말은 상기 D2D control channel 관련 paramter와 decoding된 scheduling information를 활용하여 D2D data channel의 decoding 및 demodulation에 사용하게 된다.
여기서, 상기 D2D data channel은 PSSCH(Physical Sidelink Shared Channel)로 표현될 수 있다.
상기 scheduling information은 D2 data를 복조하기 위해 필요한 자원 할당 정보, NDI, MCS, Tx UE id 등과 같은 explicit 정보를 말할 수 있다.
또한, 앞서 살핀 바와 같이 상기 scheduling information은 SCI(Sidelink Control Information)로 표현될 수 있다.
단말은 D2D control channel(또는 PSCCH)에 대해서 blind search를 통한 parameter를 그대로 사용하거나 또는 상기 parameter에 기반해서 생성된 new parameter를 D2D data channel(PSSCH)의 생성에 사용하기 때문에, 상기 단말은 D2D data channel에 대해서 D2D control channel에 대해서 수행된 것과 같은 parameter blind search를 수행할 필요가 없게 된다.
또 다른 실시 예로서, D2D control channel과 D2D data channel이 동일한 subframe에 전송되게 하되(단말 또는 단말 group 측면에서), 시간 상의 주기가 다르게 설정되도록 구현하는 것도 가능하다.
즉, 단말은 특정 subframe에서 D2D control channel을 blind decoding하고, 그 정보에 기반하여 동일한 subframe의 D2D data를 복조하는 방법이다.
여기서, 단말은 D2D data에 대해서는 blind decoding을 수행하지 않을 것을 가정한다.
대신, 상기 단말이 D2D control channel에 대해서만 blind decoding을 부여하여 해당 subframe에서 blind decoding complexity를 D2D control channel에만 의존하도록 구현할 수 있다.
즉, 상기 단말은 해당 subframe에서 D2D control information에 대해서만 blind decoding을 수행하는 것이다.
단말이 D2D data에 대한 blind decoding을 수행해야 할 경우, D2D control information과 D2D data가 동일한 subframe에서 함께 전송되는 경우, 단말의 blind decoding trial이 급증하게 되는 문제가 발생할 수 있다.
이럴 경우, 특정 subframe에서 blind decoding을 통해 D2D control information을 검출할 수 있는 단말의 수가 제한될 수 있다.
즉, D2D control information과 D2D data의 전송 주기 등이 고정되어 있을 경우, 서로의 주기에 따라서 어떤 상황에서는 D2D control information과 D2D data가 동일한 subframe에 함께 전송되는 경우가 발생할 수 있다.
이 경우, 해당 subframe에서의 blind decoding trial에 대해 제한이 있는 경우, D2D control information 및/또는 D2D data channel의 blind decoding trial을 줄여야 하는 상황에 직면할 수 있다.
따라서, 이러한 문제를 경감하기 위해서, 단말의 blind decoding을 D2D control channel에만 도입하여 blind decoding complexity의 variation으로 인한 blind decoding trial에 대한 limitation을 방지할 수 있다.
또한, blind decoding을 D2D control channel에만 도입함으로써, D2D data channel에 대한 scheduling 자유도가 더 커질 수 있는 효과가 있다.
즉, D2D control information과 D2D data가 동일한 subframe에 위치해도 D2D control channel에만 blind decoding을 적용하는 경우, blind decoding complexity에 대한 limitation이 없게 된다.
따라서, D2D control channel이 특정 subframe에서 주기적으로 전송되고 있을 경우에도 D2D data channel의 전송을 위한 subframe 결정 시, 상기 D2D control channel이 전송되는 subframe을 피해서 할당하지 않아도 된다.
D2D control channel의 경우, 한 번 검출되고 상기 D2D control channel과 associated된 D2D data의 전송이 이후 특정 subframe에 전송된다고 가정하면, D2D data가 전송될 subframe까지의 시간 구간 동안 D2D control channel 전송 기회 subframe에서(D2D control channel 전송 주기 또는 PSCCH Period)에서 다시 D2D control information을 전송을 하지 않아도 된다.
마찬가지로, 단말 입장에서 D2D control channel을 blind decoding하고, 상기 D2D control information이 지시하는 D2D data subframe까지는 추가적으로 D2D control channel blind decoding (monitoring)을 수행하지 않도록 사전에 정할 수 있다.
이를 통해, 단말은 전력 소모를 줄일 수 있게 된다. 이는 단말 별로 각각 다르게 설정될 수도 있다.
각 단말 별로 D2D control channel을 전송하는 주기(또는 PSCCH Period) 및 subframe offset이 다르게 주어지는 경우, 각 단말 별로 D2D control information의 monitoring을 하지 않아도 되는 subframe을 알 수 있게 된다.
즉, 각 단말은 특정 subframe에서 D2D control information을 blind decoding하게 되면, 자신의 D2D control information의 monitoring subframe 주기 및 offset을 고려해서 얼마 동안 DRX(Discontinuous Reception) 또는 DTX(Discontinuous Transmission)를 수행해야 하는지 알 수 있게 된다.
단말은 D2D control information (i.e. scheduling assignment)을 수신하여 복조하고 나서, 해당 subframe index, 단말 ID, D2D control information에 실려 있는 특정 비트 값, D2D control information subframe 주기 정보(PSCCH Period) 등을 적절하게 활용하여 얼마 동안 D2D control information을 monitoring 하지 않아도 되는지 즉, DTX해도 되는지 계산할 수 있다.

도 18은 본 명세서에서 제안하는 D2D 제어 정보 및 D2D 데이터 송수신 방법의 일 예를 나타낸 도이다.
도 18에서, C1은 UE 1(또는 UE-group 1)에 할당된 D2D 자원 중에서 D2D control information을 전송하기 위해 사용되는 자원을 나타낸다.
상기 C1(1801)은 (E-)PDCCH, SIB, preconfigured, relaying by UE 등을 통해 획득될 수 있다.
일 예로, 단말은 PDCCH를 통해 전송되는 DCI format 5를 통해 상기 C1(또는 SCI format 0)을 획득할 수 있다.
또한, 상기 C1의 주기는 period #1에 해당된다.
C2(1802)는 UE 2(또는 UE-group 2)에 할당된 D2D 자원 중에서 D2D control information을 전송하기 위해 사용되는 자원을 나타낸다.
상기 C2의 주기는 period #2에 해당된다.
상기 C1 및 C2의 주기는 각각 PSCCH period #1 및 PSCCH period #2로 표현될 수 있다
도 18에서, 첫 번째 C1 정보는 D2D data #1(1803)의 전송 관련 parameter를 나타내는 것으로, D2D data #1의 복조를 위해 수신 단말에서 필요한 각종 정보(e.g. DM RS sequence, MCS, RA등의 scheduling information)를 나타낸다.
또한, 첫 번째 C2 정보는 D2D data #2(1804)의 전송 관련 parameter를 나타내는 것으로, D2D data #2의 복조를 위해 수신 단말에서 필요한 각종 정보(e.g. scheduling information)를 나타낸다.
도 18에서, 두 번째 C1(1805) 및 C2 정보(1086)는 첫 번째 D2D data #1(1803) 및 D2D data #2(1804) 이후에 오는 즉, 두 번째 Data #1 및 Data #2(1807)와 연관된 parameter(scheduling information 등)를 나타낸다.
각 단말은 자신이 monitoring 해야하는 D2D control information의 subframe 위치를 사전에 알고 있기 때문에, 해당 subframe에 대해서 각 단말에 해당하는 D2D control information에 대한 blind decoding을 수행한다.

도 19는 본 명세서에서 제안하는 D2D 제어 정보 및 D2D 데이터 송수신 방법의 또 다른 일 예를 나타낸 도이다.
도 19의 경우, 단말은 C1(1901)을 blind decoding하여, 상기 C1과 관련된 D2D data(D2D data #1)가 D2D data #1 subframe(1902)에 전달됨을 알 수 있다.
또한, 상기 단말은 상기 C1 이후에 D2D control information 전송 목적으로 주기적으로 예약된(또는 할당된) 서브프레임(1903)에 C1이 없음을 미리 아는 경우, 상기 단말은 상기 예약된 서브프레임(1903)을 monitoring 또는 blind decoding하지 않고 skip할 수 있다.
즉, 도 19는 C1과 data #1 사이에 존재하는 주기적으로 예약된 subframe에서 단말이 D2D control information에 대한 추가적인 monitoring 및 blind decoding을 수행하지 않는 것을 나타낸다.
이는 단말이 D2D control information에 대한 monitoring 및 blind decoding을 특정 서브프레임에서 수행할 필요가 없음을 사전에 알 수 있기 때문에, 전력 소모를 줄이기 위해서 상기 특정 서브프레임에서 DTX 동작을 수행하는 것으로 간주될 수 있다.

도 20은 본 명세서에서 제안하는 D2D 제어 정보 및 D2D 데이터 송수신 방법의 또 다른 일 예를 나타낸 도이다.
앞서 살핀 도 19의 경우, C1과 data #1 사이에 존재하는 주기적으로 예약된 모든 subframe에 대해서 단말이 blind decoding을 skip하는 것을 보았다.
이와 달리, 도 20은 D2D 제어 정보와 상기 D2D 제어 정보가 지시하는 D2D데이터 서브프레임 사이에 D2D 제어 정보 전송용으로 예약된 D2D 제어 정보 서브프레임이 존재하는 경우, 상기 예약된 D2D 제어 정보 서브프레임 모두에 대해서 단말의 blind decoding을 skip하는 것이 아니라, 사전에 약속된 조건 맞는 경우에만 상기 예약된 D2D 제어 정보 서브프레임을 monitoring subframe에서 제외하는 방법을 나타낸다.
도 20에 도시된 바와 같이, 단말은 C11(2001)과 C13(2003)에서 blind decoding을 수행하고, C12(2002)에서는 blind decoding을 skip하는 것을 볼 수 있다.
즉, C11(2001)과 data #11(2004) 사이에 있는 모든 candidate D2D control information의 monitoring subframe(C11, C12, C13)을 skip하는 것은 아니다.
예를 들어, C11(2001)과 data #11(2004) 사이에 존재하는 candidate subframe 중에서 마지막 subframe(C13,2003)은 blind decoding을 위해서 monitoring을 수행한다.
또는, D2D control information(또는 scheduling information) subframe과 D2D data 전송 subframe 사이에 N 개의 D2D control information candidate subframe이 존재할 경우, 마지막 부분에 위치하는 K개의 candidate subframe에 대해서는 blind decoding의 skip을 수행하지 않는 것으로 정의할 수 있다.
여기서, 상기 k 값은 시스템 운영 등에 따라서 configure될 수 있다.
또는, D2D control information subframe이 D2D 전송에 사용되는 subframe과 D2D 수신에 사용되는 subframe (half-duplex 제약으로 동시에 송수신이 불가능하기 때문에 서로 구분되는 두 종류의 subframe이 존재할 경우)으로 구별되는 경우, D2D 송신에 사용되는 subframe에서만 blind decoding skip 규칙을 적용할 수도 있다.
만약, D2D 전송에 사용되는 subframe과 D2D 수신에 사용되는 subframe에 대한 구분이 없는 경우, 두 타입(D2D 전송 및 D2D 수신)의 subframe 모두를 고려해서 blind decoding skip 규칙을 적용할 수도 있다.
또는, D2D control information의 유효 기간(valid period)이 존재하는 경우, 단말은 상기 유효 기간 동안에는 추가적인 D2D control information이 도착하지 않는다고 가정함으로써, D2D control information subframe과 D2D data subframe 사이에 도착하는 D2D control information을 무시 즉, blind decoding skip을 적용할 수 있다.
또한, 상기 D2D control information subframe은 다수의 단말들이 함께 사용한다고 가정하는 경우, 각 단말은 상기 D2D control information subframe 중에서 자신이 monitoring 해야 하는 subframe을 자신의 ID, D2D subframe index 등의 다른 파라미터를 활용하여 계산할 수 있다.
여기서, 각 단말이 자신의 D2D control information subframe을 계산하는 방법은 단말이 UE ID 및 그 외 parameter를 활용해서 자신이 monitoring 해야 하는 paging subframe 즉, sleep mode에서 깨어나서 반드시 수신을 해야하는 subframe index를 계산하는 방법과 유사하게 계산할 수 있다.

도 21은 본 명세서에서 제안하는 D2D 전송 모드에 따른 D2D 제어 정보 설정 방법의 일 예를 나타낸 도이다.
도 21은 두 종류의 D2D 자원 할당 방식 즉, 두 종류의 전송 모드(transmission mode 1, tansmission mode 2)가 함께 사용되는 경우에 각 D2D 자원 할당 방식으로 할당된 자원들 중 일부 자원을 공통 자원으로 configuration을 하는 것을 나타낸다.
도 21a는 in-coverage 시나리오 즉, transmission mode 1에서의 D2D제어 정보의 자원 할당을 나타내고, 도 21b는 partial 또는 out-coverage 즉, transmission mode 2에서의 D2D 제어 정보의 자원 할당을 나타낸다.
transmission mode 1에서의 제어 정보의 자원은 C1 또는 C2로 표시되었으며, transmission mode 2에서의 제어 정보의 자원은 P 또는 S로 표시된 것을 볼 수 있다.
도 21에 도시된 바와 같이, C1과 P 자원은 서로 같은 시간 and/or 주파수 자원에서 alignment 되도록 설정된 것을 볼 수 있다.
즉, C1과 P 자원이 공통 자원으로(e.g. cell specific, UE-group-specific) 설정된 경우를 나타낸다.
도 21의 자원 구성은 단말이 자원 할당 방식을 switching할 경우, 단말이 상기 공통 자원 subframe을 D2D control channel을 monitoring 해야 하는 fallback subframe으로 사용할 수 있다.
즉, 서로 다른 자원 할당 방식에서 설정되는 공통 자원은 단말이 자원 할당 방식의 mode switching 시 의무적으로 monitoring 해야 하는 D2D control information을 전달하는 candidate subframe을 의미할 수 있다.
따라서, transmission mode 1로 자원을 할당 받은 단말들이나 transmission mode 2로 자원을 할당 받은 단말들 모두 공통 자원에 해당하는 P 자원 또는 C1 자원에 대해 blind decoding을 수행해야 한다.
여기서, 셀 내의 단말들은 서로 다른 자원 할당 방식 즉, transmission mode를 가질 수 있으며, 하나의 단말은 두 가지 transmission mode를 가지도록 자원이 configure될 수도 있다.
상기 transmission mode 1 및 transmission mode 2는 D2D communication의 자원 할당 방식만을 의미하는 것은 아니며, D2D discovery의 자원 할당 방식을 나타내는 개념일 수 있다.
즉, 하나의 단말 관점에서 D2D discovery 자원이 transmission mode 1로 설정되고, D2D communication 자원이 transmission mode 2로 설정될 수 있으며, 이와 반대로 설정될 수도 있다.
물론, 다수의 단말들 관점에서 transmission mode 1, transmission mode 2 및 D2D discovery, D2D communication 조합이 다양하게 구성되는 경우도 가능하다.
이 경우, transmission mode 1 또는 transmission mode 2에서 default resource set 또는 common resource set 개념을 정의함으로써, 사전에 지정된 단말(단말 group 또는 셀 전체 단말 또는 D2D enabled 단말 전체)는 상기 common resource set을 반드시 monitoring 하도록 정의할 수 있다.

다음으로, 본 명세서에서 제안하는 D2D 통신에서 scheduling grant(DCI, SG), scheduling assignment(SA) 및 D2D data 전송 사이의 타이밍 관계(timing relation)에 대해 구체적으로 살펴보기로 한다.
이하에서 사용되는 scheduling grant(SG)는 기지국에서 D2D 단말로 전송하는 DCI(Downlink Control Information)를 나타내는 것으로서, D2D 통신과 관련된 parameter를 의미할 수 있다.
상기 scheduling grant는 PDCCH/EPDCCH를 통해 전송될 수 있으며, DCI format 5로 표현될 수도 있다.
또한, 상기 scheduling assignment(SA)는 D2D control information을 나타낼 수 있으며, D2D data 송수신을 위한 자원 할당 정보를 포함하여 D2D 단말 간 송수신하는 제어 정보를 의미할 수 있다.
상기 scheduling assignment(SA)는 PSCCH를 통해 전송될 수 있으며, SCI format 0으로 표현될 수도 있다.
먼저, D2D data 전송을 위해 사용되는 자원 및 D2D data 전송 관련 scheduling information을 전송하는 Scheduling Assignment(SA) 전송을 위해 사용되는 자원을 단말에게 알려주는 방법과 관련된 사항에 대해 아래 표 3을 참고하여 살펴보기로 한다.
또한, 아래 표 3에서 설명되는 방법은 일 실시 예로서, 아래 표 3의 방법 이외에도 다른 방법들을 통해 D2D data 전송 및 SA 전송을 수행하는 것도 가능하다.
Signaling methods

Resource
Allocation
Resource (or Resource Pool) indication methods(to be used for the following transmission)
Being transmitted

Scenarios
For Scheduling Assignment For Data communication
Mode 1
(eNB schedules)
In-coverage SIB (or (E)PDCCH)
(This can be triggered by D2D scheduling request (D-SR))
SIB (or (E)PDCCH)
(This can be triggered by D2D scheduling request (D-SR))
Edge-of-coverage Via other forwarding UE(s)
SIB or other sig. forwarding
Via other forwarding UE(s)
SIB or other sig. forwarding
Out-coverage Pre-configured or other Pre-configured or other
- Semi-static resource pool restricting the available resources for data and/or control may be needed
- D2D communication capable UE shall support at least Mode 1 for in-coverage
Mode 2
(UE selects)
In-coverage SIB (or (E)PDCCH) SIB (or (E)PDCCH)
Edge-of-coverage Via other forwarding UE(s)
SIB or other sig. forwarding
Via other forwarding UE(s)
SIB or other sig. forwarding
Out-coverage Pre-configured or other Pre-configured or other
- The resource pools for data and control may be the same
- Semi-static and/or pre-configured resource pool restricting the available resources for data and/or control may be needed
- D2D communication capable UE shall support Mode 2 for at least edge-of-coverage and/or out-of-coverage

표 3에서, D2D 자원 할당 방식의 Mode 1 및 Mode 2는 아래와 같이 구분 될 수 있다.
From a transmitting UE perspective a UE can operate in two modes for resource allocation:
Mode 1: eNodeB or rel-10 relay node schedules the exact resources used by a UE to transmit direct data and direct control information
Mode 2: a UE on its own selects resources from resource pools to transmit direct data and direct control information
표 3을 참조하면, Mode 1 및 Mode 2에서 SA 전송 및 D2D data 전송을 위해 사용되는 자원 할당은 in-coverage 시나리오의 경우, SIB를 통해서 구현할 수 있다. 즉, 기지국은 SA 전송 및 D2D data 전송을 위한 자원 할당을 SIB를 통해 단말로 알릴 수 있다.
또는, eNB의 dynamic control signal (PDCCH, EPDCCH, MAC CE)을 사용하여 scheduling assignment 및 data resource를 할당하는 것도 가능하다.
또는, 사전에 SIB로 resource pool을 할당해주고, 상기 할당된 자원 범위 내에서(시간-주파수 자원) 구체적인 자원 할당 정보(SA 자원 및 D2D data 자원)를 dynamic control signal를 통해 단말로 알려주는 것도 가능하다.
이 경우, scheduling assignment for direct communication는 direct data communication에 사용되는 구체적인 자원 할당 정보(e.g. 상대적인 위치정보, offset 정보 등 활용하여)를 전달할 수 있다.
즉, 단말은 SA 및 data 자원 pool을 SIB로 수신하고, 구체적인 SA 및 data 전송 자원을 SA를 통해서 할당받을 수 있다.
단말이 다수의 resource pool을 미리 할당받은 경우, 상기 할당받은 resource pool 중에 하나 또는 몇 개를 가리키는 용도로 SA 가 사용될 수도 있다.
상기 표 3에서, Out-coverage 시나리오의 경우, 단말은 pre-configured 또는 coverage UE로부터 전달 받은 resource configuration 정보에 기초하여 SA resource pool 및 data resource pool을 알 수 있다.
여기서, 만약 단말이 SA 및 D2D data 전송을 위한 구체적인 자원을 결정해야 하는 경우, 단말은 스스로 SA 자원을 선택할 수 있다.
이후, 상기 단말은 SA contents에 D2D data 전송과 관련하여 할당된 자원을 포함하여 D2D 수신 단말로 전송함으로써, 상기 D2D 수신 단말이 D2D data를 수신하는 자원 영역을 알 수 있도록 할 수 있다.
여기서, SA contents에 포함되는 정보를 줄이기 위해서, SA가 검출된 자원 영역 정보(time, frequency index 등)를 D2D data 자원 할당 정보의 일부분으로 활용될 수 있도록 할 수도 있다.
즉, SA 자원 관련 정보와 SA contents 정보를 함께 사용하여 최종 자원 영역을 계산하는 것이다.
예를 들어, SA (전송) 자원 관련 parameter는 D2D data 자원 영역의 시간 영역 정보(e.g. time domain parameter, subframe index)만을 얻는 데 사용되고, SA에서 전달되는 정보는 주파수 영역 정보(e.g. frequency domain parameter, RB index등)를 알려주는 용도로 활용할 수 있다.
또는, SA 자원 관련 parameter는 D2D data 자원의 절대 위치를 지정하는 데 사용하고(time, frequency index), SA contents에 포함되는 자원 할당 정보는 D2D data 자원의 상대적인 위치를 알리는데 사용할 수 있다.
또는, 상기 SA (전송) 자원 관련 parameter는 random back-off 또는 전송 확률 값 등을 알려주는 데 사용할 수도 있다.
또한, 기지국에서 D2D 송신 단말로 전송되는 Signaling contents는 direct scheduling assignment을 위한 Resource configuration, MCS 등을 포함할 수 있다.
상기 Signaling contents는 DCI(Downlink Control Information) 또는 scheduling grant(SG)로 표현될 수 있다.

이하에서, eNB dynamic control signal과 SA 전송 시간 사이의 타이밍 관계에 대해 좀 더 구체적으로 살펴보기로 한다.
SIB(System Information Block)를 통해 D2D resource pool이 할당되고, 단말이 상기 할당된 D2D resource pool에 기초하여 SA 자원 및 D2D data 전송을 위한 자원을 스스로 결정하는 경우, PDCCH/EPDCCH 등과 같은 eNB dynamic control signal은 필요하지 않을 수도 있다.
하지만, in-coverage 시나리오와 같이, eNB에 의해서 모든 자원이 관리되는 상황에서는 D2D SA, direct data 용 자원 할당에 eNB가 실시간으로 control하는 것이 자원 활용을 더 효율적으로 할 수 있다. 이 경우, eNB dynamic control signal은 필요하게 된다.
따라서, eNB dynamic control signal (e.g. DCI를 활용한 scheduling grant, MAC CE 등)을 사용하는 방법 및 eNB dynamic control signal(eNB scheduling grant for SA and/or data for D2D)을 수신한 D2D 전송 단말이 언제 SA를 D2D 수신 단말로 전송해야 하는지에 대한 명확한 정의가 필요하다.
앞서 살핀 바와 같이, eNB는 SG를 (1) SA 전송에 관한 scheduling 뿐만 아니라 (2) data 전송에 관한 scheduling을 위해서 D2D 단말로 전송할 수 있다.
여기서, 스케쥴링이란 D2D 전송과 관련된 스케쥴링을 의미할 수 있으며, 스케쥴링 정보는 자원 할당 정보, MCS, RV, NDI 등을 포함할 수 있다.
또는, eNB는 하나의 SG를 SA 전송에 관한 스케쥴링인지 또는 D2D data 전송에 관한 스케쥴링인지를 지시하기 위해 D2D 단말로 전송할 수 있다.
이 경우, SA와 data 간에 implicit association이 형성되어 D2D 단말에서 각각의(SA, Data) scheduled information을 추정할 수 있도록 구현될 수 있다.
예를 들어, D2D 단말은 eNB로부터 SA 전송과 관련된 SG를 수신하고, SA와 linkage가 있는 D2D data 전송 자원의 위치 또는 대략적인 위치를 파악할 수 있다(또는 scheduling information도 마찬가지).
또는, 이와 반대로 D2D 단말은 eNB로부터 data 전송과 관련된 SG를 수신하고, data와 linkage가 있는 SA 전송과 관련된 자원 위치와 관련 정보를 파악할 수도 있다.

아래 방법 1 내지 방법 4는 기지국에서 D2D 전송 단말로 전송하는 dynamic control signal과 D2D 전송 단말에서 D2D 수신 단말로 전송하는 SA 사이의 타이밍 관계를 나타낸다.
즉, 방법 1 내지 방법 4를 통해 기지국으로부터 Scheduling Grant reception(DCI)와 D2D 전송 단말에서 D2D 수신 단말로의 Scheduling Assignment transmission 및/또는 data transmission 간 타이밍 관계에 대해 도 22 내지 도 25를 참조하여 구체적으로 살펴보기로 한다.
방법 1
도 22는 본 명세서에서 제안하는 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 일 예를 나타낸 도이다.
도 22는 D2D SA(scheduling assignment) SF(subframe)이 주기적으로 설정된 경우, D2D 전송 단말이 D2D SA SF 주기(또는 PSCCH period,2201) 사이에 기지국으로부터 scheduling grant(SG)를 수신하면(S2210), 상기 D2D 전송 단말은 상기 수신된 SG SF 이후 최초로 도래하는 D2D SA SF(2202)에서 scheduling assignment를 전송(S2220)하는 것을 나타낸다.

방법 2
도 23은 본 명세서에서 제안하는 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 일 예를 나타낸 순서도이다.
도 23은 D2D 전송 단말이 기지국으로부터 SG 수신 이후, 단말(또는 시스템)의 프로세싱 시간을 고려하여 D2D 수신 단말로 SA를 전송하는 방법을 나타낸다.
즉, D2D 전송 단말은 eNB로부터 SG를 수신하고, 상기 수신된 SG에 기초하여 SA를 구성해서 D2D 수신 단말로 전송하는데 소요되는 시간 즉, processing delay를 고려하여 SA를 전송하는 방법이다.
여기서, processing delay를 고려할 때, D2D 전송 단말의 SA 전송은 기지국으로부터 수신하는 SG 서브프레임(subframe #n) 이후 4번째 서브프레임(subframe #n+4)에서 전송하는 것이 바람직할 수 있다.
즉, D2D 전송 단말이 SG를 subframe #n에서 수신(S2301)한 경우, D2D 전송 단말은 SA를 subframe #n+4(2301)에서 D2D 수신 단말로 전송(S2302)할 수 있다.
여기서, subframe #n+4(2301)가 D2D SA subframe이 아닌 경우에는 상기 subframe #n+4 이후 처음으로 도래하는 D2D SA subframe(2302)에서 전송하도록 정의한다.
반대로, D2D 전송 단말이 subframe #n에서 SG를 기지국으로부터 수신하고, 이후 최초 도래하는 D2D SA SF이 subframe #n+4 이내에 존재하면, 상기 D2D 전송 단말은 상기 D2D SA SF이 valid 또는 available 하지 않다고 판단한다.
따라서, 상기 D2D 전송 단말은 상기 D2D SA를 그 이후(또는 다음 주기의) available D2D SA SF에서 전송한다.
상기 n+4는 일 실시 예로서, n+k로 즉, SG 수신 이후, k번째 SA SF에서 D2D SA를 전송하도록 일반화할 수 있다.
상기 k 값은 향후 기술의 발전 및 단말의 성능 등을 고려해서 configure 할 수 있다.
또한, 상기 k 값은 단말의 capability에 따라서 단말 별로 다르게 설정될 수 있다.
도 23a는 subframe #n+k에서 SA를 전송하는 방법의 일 예를 나타내며, 도 23b는 subframe #n+k 이후 처음으로 도래하는 SA SF에서 SA를 전송하는 방법의 일 예를 나타낸다.
상기 k 값 설정과 관련하여, LTE(-A) 시스템에서와 다른 점은 자원을 명시적으로 할당하는 것이 아니라, D2D resource pool을 정하고 여기서 다시 자원을 선택해서 전송하며, 자원 간 충돌을 허용하는 경우에는 단말간 다른 값으로 설정해서 운영하는 점이다.
도 23의 방법은 D2D Data transmission에도 동일하게 적용될 수 있다.
즉, D2D 단말이 eNB로부터 D2D Data transmission과 관련된 제어 정보(또는 스케쥴링 정보)를 subframe n에서 수신하는 경우, D2D 단말의 프로세싱 시간을 고려하여 D2D 단말은 D2D 데이터를 subframe n+k’에서 전송할 수 있다.
상기 D2D Data transmission과 관련된 제어 정보는 D2D Data transmission의 자원 할당과 관련된 SG 또는 SA일 수 있다.
k’ 값은 SA 전송 시점의 k값과 다르게 설정될 수 있다.
일반적으로 D2D Data transmission이 좀 더 늦게 발생할 확률이 높은 것을 고려하면 k’ > (or =) k 관계가 성립할 수 있다.

방법 3
다음으로, SA SF group으로 configure된 경우 즉, 다수의 SF들이 SA용으로 할당되어 운영되는 경우에 대해 살펴본다.
도 24는 본 명세서에서 제안하는 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 또 다른 일 예를 나타낸 도이다.
D2D 전송 단말이 SF #n에서 기지국으로부터 SG(resource allocation DCI)를 수신하는 경우, D2D 전송 단말이 n+4 이후의 첫 번째 SA SF에서 SA를 D2D 수신 단말로 전송하는 방법을 나타낸다.
여기서, n+4 이후의 첫 번째 SA SF이 M개의 연속된 SA SF 그룹인 경우, SF #n에서 SG를 수신(S2410)하는 경우, n+4 이후 처음 만나는 SA SF group에서 SA를 전송한다(S2430).
상기 SA SF group 내 M 개의 SF들 중 어떤 SF에서 SA를 전송할지에 대해서는 상기 SG를 통해 최종적으로 알 수 있게 된다(S2420).
또한, SA 또는 Data 전송 SF(subframe)이 다수의 subframes로 구성된 경우에는 SA 또는 Data 전송 subframe의 위치를 결정하는데 DCI format의 특정 bit(또는 특정 필드)를 활용할 수 있다.
일 예로서, DCI format 0/1을 구분하는 bit, hopping bit 또는 RA bit의 일부 또는 전체를 SA 또는 Data 전송 subframe의 위치를 결정하기 위해 사용할 수 있다.
또한, SG는 SA용과 data용으로 구분할 수 있으며, 필요 시 특수 용도로 더 구분할 수도 있다.
따라서, 상기 DCI format 0/1을 구분하는 bit, hopping bit, RA 비트의 일부 또는 전체를 상기 SG의 용도를 구분하기 위해 사용할 수도 있다.

방법 4
다음으로, RRC(Radio Resource Control)를 통해 SA SF의 위치를 알려주는 방법에 대해 살펴본다.
도 25는 본 명세서에서 제안하는 D2D 단말에서의 SG 수신과 SA 전송 간의 타이밍 관계의 또 다른 일 예를 나타낸 도이다.
도 25는 RRC로 SA SF의 위치를 미리 알려주고(S2510), 단순히 SG(e.g. PDCCH DCI)는 상기 SA SF를 사용할 수 있다는 activation 용도로만 사용(S2520)하는 방법이다.
이 경우, RRC signaling과 activation DCI 사이의 연관성을 파악할 수 있도록 특수한 index를 정의할 수 있다.
즉, SA SF의 activation을 나타내는 DCI는 어떤 index의 RRC를 지칭하는 것인지 알려주도록 정의할 수 있다.
DCI 즉, SG는 RRC로 전송되는 SA SF 또는 SF set의 activation을 정확하게 indication 해준다. 여기서, 상기 DCI와 매핑되는 일련의 idex로 구성되는 RRC set은 사전에 지정될 수 있다.
그리고, D2D 전송 단말은 SG에 의해 activation이 indication된 SA SF을 통해 SA를 D2D 수신 단말로 전송한다(S2530).
도 25의 RRC 시그널링을 통해 SA 자원 및/또는 D2D Data 자원의 시간 위치를 알려주는 방법에 대해 후술할 도 30 내지 도 33에서 좀 더 구체적으로 살펴보기로 한다.

다음으로, 본 명세서에서 제안하는 D2D 단말에서 SA 전송과 D2D data 전송 사이의 타이밍 관계에 대해 도 26 내지 도 28을 참고하여 구체적으로 살펴보기로 한다.
도 26은 본 명세서에서 제안하는 D2D SA 전송과 D2D data 전송 간의 타이밍 관계의 일 예를 나타낸 도이다.
D2D SA SF과 D2D data SF 간 타이밍은 사전에 정해진 규칙에 따라서 D2D data를 implicit하게 송/수신하는 것이 바람직할 수 있다.
도 26의 경우, 앞서 살핀 도 23의 SG와 SA의 타이밍 관계처럼, D2D 전송 단말은 D2D 수신 단말로 SA를 subframe #n에서 전송(S2610)하고, n+k 이후의 처음으로 도래하는 available D2D data SF(2601)에서 상기 D2D 수신 단말로 D2D data를 전송(S2620)하는 방법을 나타낸다.
마찬가지로, 상기 k 값은 configurable하며, 단말마다 다른 값을 가지도록 configure 할 수도 있다.
또한, 앞서 살핀 도 24의 SG와 SA 타이밍 관계처럼, available D2D data SF group을 알려주고 D2D data SF group 내 특정 SF(e.g. subframe #m)을 별도로 indication하는 것도 가능하다.
이 경우, 상기 특정 SF을 indication하는 parameter(k)는 SA contents에 포함될 수 있다.
상기 indication parameter k 값의 해석은 아래와 같은 조건에 따라서 서로 다르게 해석될 수도 있다.
즉, 상기 indication parameter k 값은 UE 별, 자원 영역 위치, UE 그룹, Scenario(in-coverage, out-coverage, edge-of-coverage)에 따라서 다르게 해석될 수 있다.

도 27은 본 명세서에서 제안하는 D2D SA 전송과 D2D data 전송 간의 타이밍 관계의 또 다른 일 예를 나타낸 도이다.
도 27은 도 26과 달리, D2D SA SF이 결정되면(subframe #n)(S2710), D2D data SF이 n+k 이내(2701)에 전송(S2720) 가능하도록 하는 방법을 나타낸다.
여기서, D2D SA SF의 바로 다음 SF에 D2D data가 전송되어도 이를 단말에서 사전에 알고 있는 경우에는 큰 문제가 없게 된다.
이 경우, D2D 수신 단말은 프로세싱 시간(또는 프로세싱 지연)을 고려하여 SA SF buffering과 함께 이후에 수신되는 data SF buffering도 함께 준비함으로써, D2D data의 decoding을 가능하게 할 수 있다.
여기서, 상기 k 값은 configurable하며, 단말마다 다른 값을 가지도록 configure 할 수도 있다.

도 28은 본 명세서에서 제안하는 D2D SA 전송과 D2D data 전송 간의 타이밍 관계의 또 다른 일 예를 나타낸 도이다.
즉, 도 28은 명시적으로 SA에서 D2D data SF을 직접 indication 해주는 방법을 나타낸다.
D2D 수신 단말이 SA를 subframe #n에서 수신(S2810)한다고 할 때, D2D 전송 단말은 D2D data를 수신하는 subframe #n+k(S2820)에서 상기 k 값을 SA contents의 일부로부터 또는 SA 전송 자원 parameter로부터 계산해서 D2D 수신 단말에게 명시적으로 알려줄 수 있다.

다음으로, SA contents의 유효 기간(valid period)과 관련된 D2D data 전송 방법에 대해 살펴보기로 한다.
SA contents는 SA 전송을 위한 자원 영역에 MCS 값, Frequency Hopping 여부, Frequency Hopping과 관련된 자원 할당 등이 적용 또는 설정된 SA 정보를 나타낼 수 있다.
도 29는 본 명세서에서 제안하는 D2D data 송수신 방법의 일 예를 나타낸 순서도이다.
도 29의 경우, D2D SA SF이 주기적으로 설정되는 경우, SA SF 전송 주기 사이의 D2D data는 동일한 SA 값을 이용하여 전송한다고 가정한다.
이 경우, D2D data를 수신하는 D2D 수신 단말은 D2D 전송 단말로부터 한 번 수신된 SA 값을 통해서 다수의 D2D data를 수신할 수 있게 된다.
즉, D2D 수신 단말은 multi data subframe에 대해서 동일한 하나의 SA 값이 적용된다고 판단할 수 있다.
도 29를 참조하면, D2D 수신 단말은 주기적으로 설정된 SA subframe을 통해 SA를 D2D 전송 단말로부터 수신한다(S2910).
이후, 상기 D2D 수신 단말은 일정 시간 구간 동안 상기 D2D 전송 단말로부터 전송되는 적어도 하나의 D2D data를 상기 수신된 SA를 이용하여 수신한다(S2920).
상기 일정 시간 구간은 상기 SA를 수신한 SA period, SA contents 유효 시간 구간 등일 수 있다.
상기 SA contents 유효 시간 구간은 사전에 정해질 수 있으며, 단순히 SF index로 정의될 수 있거나 또는 SA SF 주기의 배수로 정의될 수도 있다.
또한, 상기 SA contents 유효 시간 구간은 SA SF 과 normal SF의 결합으로 정의되거나 D2D data SF 주기 또는 이의 배수로 정의될 수도 있다.
여기서, SF은 normal SF index를 의미할 수도 있고 또는 D2D SF index를 의미할 수도 있다.
여기서, 상기 SA는 상기 일정 시간 구간 동안 다수의 D2D data가 있는 경우, 상기 다수의 D2D data와 관련된 자원 할당 정보를 포함한다.
즉, 상기 D2D 수신 단말은 상기 일정 시간 구간 동안에는 추가적으로 SA를 수신하지 않고도 S2910 단계에서 수신된 SA에 기초하여 다수의 D2D data를 수신할 수 있다.

또 다른 실시 예로서, D2D control information은 SA를 통해 전송되는 control information과 D2D data에 embedded되는(또는 포함되는) control information으로 분리되어 전송될 수도 있다.
즉, control information의 속성을 활용하여 (1) direct SA를 통해서는 RA, MCS 등과 같은 control information을, (2) direct data를 통해서는 NDI 등과 같은 control information을 각각 분리하여 전송할 수 있다.

도 30 내지 도 33은 본 명세서에서 제안하는 SA 자원 및/또는 D2D data 자원의 위치를 알려주기 위한 방법의 일 예들을 나타낸 도이다.
도 30 및 도 31은 SA 자원 및/또는 D2D data 자원이 송수신 될 수 있는 subframe pattern을 이용하여 SA 및/또는 D2D Data를 송수신하기 위한 방법을 나타낸다.
상기 SA 자원 및/또는 D2D data 자원이 송수신 될 수 있는 subframe pattern은 RPT(Resource Pattern for Transmission)로 표현될 수도 있다.
상기 RPT는 D2D data TBs(Transport Blocks)에 대한 다수의 전송 기회를 보장하기 위한 시간 및/또는 주파수 자원을 의미한다.
따라서, 상기 RPT는 T-RPT(Time-RPT) 또는 F-RPT(Frequency RPT)로 구분될 수 있다.
구체적으로, 도 30은 SA 자원 및/또는 D2D data 자원과 관련된 subframe pattern을 D2D 단말로 명시적으로(explicitly) 알려주는 방법을 나타내며, 도 31은 SA 자원 및/또는 D2D data 자원과 관련된 subframe pattern을 D2D 단말로 암시적으로(implicitly) 전송하는 방법을 나타낸다.
UE는 전체 UL subframe의 일부를 D2D subframe으로 사용한다.
즉, UE는 전체 UL subframe 중 D2D subframe을 제외한 나머지 UL subframe에서 eNB와 통신을 수행한다.
따라서, eNB-to-UE의 전송과 D2D Tx UE-D2D Rx UE의 전송은 동시에 발생하지 않는다.
한편, UE는 D2D subframe에서 D2D 신호를 다른 UE로 전송하는 경우, 동일 D2D subframe의 동일 band에서 상기 다른 UE로부터 D2D 신호를 수신할 수 없다. 그 이유는 자신이 송신한 D2D 신호가 다른 UE로부터 D2D 신호를 수신할 때, 강한 간섭으로 작용하기 때문이다.
따라서, 이를 해결하기 위해 D2D 신호를 송신하는 D2D 송신 subframe과 D2D 신호를 수신하는 D2D 수신 subframe 간 subframe pattern(또는 구성)을 상이하게 설정할 수 있다.
또한, 하나의 UE에서 D2D 신호 송/수신으로 인한 간섭 문제를 해결하면서, 동시에 상호 인접한 두 UE들이 중복되는 시간 자원을 사용하는 확률을 줄여서 UE 상호 간의 간섭을 줄이기 위해 서로 다른 UE들이 D2D 신호를 송신하는 subframe의 pattern을 상이하게 설정할 수 있다.
구체적으로, eNB는 각 UE들이 D2D 송신에 사용할 subframe pattern을 UE들 간 거리 등을 고려하여(상호 간섭 영향 정도를 파악하여) 설정해줌으로써 UE 상호 간 발생할 수 있는 간섭 문제를 해결할 수 있다.
이 경우, eNB는 D2D 단말로 D2D 송신 subframe pattern들(3010)을 RRC 시그널링 등과 같은 상위 계층 시그널링(high layer signaling)을 통해 명시적으로 알려주게 된다.
여기서, eNB는 D2D 송신 subframe pattern을 D2D 단말로 EPDCCH 또는 PDCCH를 통해 동적으로 설정해줄 수도 있다. 즉, EPDCCH 또는 PDCCH를 통해 D2D 송신 subframe pattern을 D2D 단말로 전송할 경우, UE의 위치 변화에 신속하게 적응하여 D2D 송신 suframe pattern을 설정할 수 있다는 장점이 있다.
또 다른 방법으로, eNB의 Signaling burden을 줄이기 위해, D2D (송신) subframe pattern을 eNB가 정해서 알려주는 대신, 단말이 스스로 선택하도록 할 수도 있다.
즉, D2D 단말이 D2D subframe pattern을 암시적으로 획득하게 하는 방법이다.
이 경우, D2D 단말은 자신의 단말 ID (또는 이와 유사한 특징을 지닌 단말 고유의 parameter)에 기반하여 유사 랜덤 방식으로 D2D subframe pattern을 선택할 수 있다.
또는, D2D 단말은 기지국으로부터 최소한의 signaling information을 수신하고, 이를 유사 랜덤 값을 결정하는 인자로 사용함으로써 유사 랜덤하게 subframe pattern을 선택하도록 할 수 있다.
이러한 암시적인 subframe pattern 선택 방법을 이용하는 경우, 적정한 subframe pattern(또는 subframe set)이 주어지고, 이 중에서 random하게 subframe pattern을 선택하는 것만으로 앞서 살펴본 UE들 간 상호 간섭을 줄일 수 있게 된다.
도 30에 도시된 바와 같이, eNB는 특정 UE에게 잠재적으로 사용할 수 있는 D2D 전송 관련 subframe pattern의 후보군(3010)을 RRC 시그널링과 같은 상위 계층 시그널링으로 전달하고, 이후 특정 시점에서 실제 D2D 전송에 사용할 하나 또는 하나 이상의 subframe pattern들(3020)을 EPDCCH나 PDCCH로 전송(또는 지정)해 줄 수 있다.
구체적으로, eNB는 사전에 정의되는 N개의 subframe pattern들 즉, N개의 subframe pattern 후보군(subframe pattern #0, subframe pattern #1, subframe pattern #2,…)을 RRC 시그널링과 같은 상위 계층 시그널링을 통해 D2D 단말로 전송한다.
이후, eNB는 상기 N개의 subframe pattern들(3010) 중 하나 또는 하나 이상의 subframe pattern을(3020) D2D 송신 subframe pattern으로 명시하여 PDCCH나 EPDCCH(Ehanced PDCCH)를 통해 D2D 단말로 전송한다.
여기서, eNB는 사전에 정의되는 N개의 subframe pattern들을 D2D 단말로 전송하는 과정에서, subframe pattern #k(k=0,1,2,…)가(각 subframe pattern들이) 실제로 가지는 pattern이 어떠한 형태인지를(SF pattern #0(10001010), SF pattern #1(00111001),…) 일정한 주기로 반복되는 subframe의 bitmap 형태로 부여할 수 있다.
또한, 도 31에 도시된 바와 같이, eNB는 특정 UE에게 잠재적으로 사용할 수 있는 D2D 전송 관련 subframe pattern의 후보군(3010)을 RRC 시그널링과 같은 상위 계층 시그널링으로 전달하고, 이를 수신한 D2D 단말은 특정 시점에서 실제의 송신에 사용할 subframe pattern(3120)을 UE identification parameter(예: UE ID,3110)를 이용하여 선택할 수 있다.
여기서, 상기 UE identification parameter(seed,3110)는 사전에 기지국으로부터 할당될 수 있다.
이후, D2D 단말은 상기 선택된 subframe pattern을 통해 D2D 송수신을 수행할 수 있다.

도 32 및 도 33은 본 명세서에서 제안하는 SA 자원 및/또는 D2D data 자원 관련 subframe pattern을 변경하는 방법의 일 예들을 나타낸 도이다.
도 32는 명시적으로 변경된 subframe pattern을 알려주는 방법이며, 도 33은 암시적으로 변경된 subframe pattern을 알려주는 방법을 나타낸다.
도 32 및 도 33에 도시된 바와 같이, 도 30 및 도 31을 통해 D2D 단말로 할당된 subframe pattern을 UE가 변경하는 동작을 나타낸다.
도 32 및 도 33의 경우, 8ms 주기(8개 subframe)으로 반복되는 subframe pattern을 나타내며, eNB는 사전에 상위 계층 시그널링을 통해 subframe pattern #0{10001010}(3210)과 subframe pattern #1{00111001}(3210)을 D2D 단말로 전송할 수 있다.
여기서, ‘1’의 값은 D2D 전송과 관련된 subframe으로 해당 subframe에서 D2D 전송 관련 신호를 송수신할 수 있음을 의미할 수 있다.
또한, ‘0’의 값은 D2D 전송과 관련되지 않은 subframe으로 해당 subframe에서 D2D 전송 관련 신호를 송수신할 수 없음을 의미할 수 있다.
상기 ‘0’의 값과 상기 ‘1’의 값의 의미는 바뀔 수도 있다.
이후, eNB는 PDCCH 등을 통해 실제로 UE가 사용할 D2D subframe pattern(SF pattern #0,S3220)이 무엇인지를 지정해주며, UE는 그에 따라서 동작하게 된다.
이후, eNB는 PDCCH를 통해(또는 다른 제어 정보 또는 다른 메시지 또는 RRC 시그널링) D2D subframe pattern이 변경된 경우, 상기 변경된 D2D subframe pattern을 알려주는 D2D subframe pattern 변경 정보(3230)를 D2D 단말로 전송한다.
상기 D2D subframe pattern 변경 정보는 PDCCH나 EPDCCH 내의 일부 field를 이용하여 변경된 subframe pattern을 지정할 수 있다.
D2D를 위한 DCI로 기존의 UL grant용 DCI를 재사용할 경우, DCI field 중 사용되지 않는 필드를 이용하여 변경된 subframe pattern을 지정하는 subframe pattern 변경 정보로 사용할 수 있다.
상기 DCI field 중 사용되지 않는 필드로는 DCI format 0/1A를 구분하는 indicator, CQI request field, NDI field 등이 존재한다.
복수의 bit를 사용하는 DM RS cyclic shift field 또는 MCS/RV field 중 일부를 사용할 수도 있다.
만일, 단일의 PDCCH나 EPDCCH로 UE에게 scheduling assignment 송신을 위한 자원과 D2D data 송신을 위한 자원을 동시에 지정해주는 경우에는 상기 설명한 DCI 내의 field로 지정되는 각 state에 scheduling assignment를 위한 subframe pattern과 D2D data를 위한 subframe pattern이 각각 부여될 수 있다.
도 33의 경우, UE는 D2D subframe pattern 후보군 중 실제로 사용할 D2D subframe pattern(SF pattern #0,3320)을 UE ID 등을 이용하여 랜덤하게 선택하며, UE는 그에 따라서 동작할 수 있다.
여기서, eNB는 PDCCH 등을 통해(또는 다른 제어 정보 또는 다른 메시지 또는 RRC 시그널링) D2D subframe pattern이 변경되었음을 지시하는 D2D subframe pattern (change) indicator를 D2D 단말로 전송할 수 있다.
이 경우, D2D 단말은 UE ID 등 Pseudo-random selection parameter(seed, D2D UE identification parameter)을 이용하여 랜덤하게 D2D subframe pattern(SF pattern #1,3330)을 다시 선택할 수 있다.
여기서, UE ID 등은 eNB가 D2D 단말로 RRC 시그널링 등을 통해 미리 알려줄 수 있다.
즉, UE가 유사 랜덤하게 subframe pattern을 선택 또는 재선택하는 경우, eNB는 유사 랜덤 값을 결정하는 parameter 또는 seed 값을 D2D 단말로 사전에 전달할 수 있다.
또한, 패턴 없이 UE가 유사 랜덤 값을 이용하여 D2D 송신 subframe의 index를 결정할 수도 있다.
이 경우도 유사 랜덤 값을 결정하는 parameter 또는 seed 값은 기지국으로부터 전달될 수 있다.
또한, 이러한 유사 랜덤 값을 결정하는 signaling 정보에만 기반하여 subframe pattern 또는 subframe index를 UE가 결정할 수도 있지만, 여기에 단말이 가지는 고유의 값도 포함시켜 subframe pattern 또는 subframe index를 결정할 수도 있다.

또 다른 일 예로서, D2D 수신 UE가 D2D 전송 UE로부터 전송되는 SA를 검출하기 위해 SA의 전송 대역폭을 획득하는 방법에 대해 살펴본다.
이 경우, D2D 수신 UE가 SA의 전송 대역폭을 알기 위해 상기 SA의 전송 대역폭이 사전에 고정될 수 있다.
이 경우, SG에 포함되는 자원 할당 필드(resource allocation field) 중 할당된 RBs의 개수(number of allocated RBs)에 해당하는 부분은 ‘0’과 같이 사전에 정해진 값으로 고정되거나 또는 사전에 고정된 SA의 전송 대역폭으로 정의될 수 있다.
상기 SA의 전송 대역폭과 관련된 SG에 포함되는 필드(bit)는 SA 전송 대역폭의 용도 이외 다른 용도(예를 들어, SA SF group 내 실제 SA SF의 위치를 지정하는 용도)를 위해 사용될 수도 있다.

이하에서는, D2D 전송을 위한 eNB-to-D2D Tx(and/or D2D Rx)의 UE scheduling에 대해 도 34 내지 도 37을 참조하여 살펴보기로 한다.
도 34는 본 명세서에서 제안하는 D2D 전송을 위한 UE scheduling 방법의 일 예를 나타낸 흐름도이다.
먼저, eNB는 D2D 송신(Tx) UE 또는 D2D 수신(Rx) UE와 scheduling grant(SG) 절차를 수행한다(Step#1,S3410).
즉, eNB는 D2D Tx UE 또는 D2D Rx UE로 D2D 전송과 관련된 SG를 전송한다.
상기 SG 절차(Step#1)은 아래와 같이 두 가지 방법으로 구분될 수 있다.
(1) 첫 번째 방법(Method#1)은 RRC signaling을 통해 D2D 전송 관련 자원을 할당하고, 이후 추가적으로, physical/MAC control channel (e.g. PDCCH)를 통해서 상기 할당된 자원의 activation/release와 같은 세부 동작을 동적으로(dynamic) 제어하는 방법이다.
(2) 두 번째 방법(Method#2)는 D2D 전송 관련 자원 할당 및/또는 D2D 전송과 관련된 scheduling information을 physical/MAC control channel을 통해 전송함으로써, D2D 동작을 제어하는 방법이다.
상기 (1) 및 (2)의 방법에서, D2D 단말은 D2D 통신과 관련된 scheduling information (MCS, RV, DM RS parameters,…)를 eNB로부터 수신하여 결정하거나 또는 D2D UE가 스스로 결정할 수 있다.
상기 scheduling information에 자원 할당 정보가 포함될 수도 있으며, scheduling information와 자원 할당 정보가 따로 구분되어 해석될 수도 있다.
D2D UE가 eNB로부터 D2D 전송과 관련된 scheduling information을 상기 (1)의 방법을 통해 수신하는 경우, 상기 scheduling information을 RRC signal 및/또는 PDCCH 등과 같은 control channel을 통해 수신할 수 있다.
여기서, D2D UE가 eNB로부터 RRC signaling으로 상기 scheduling information을 수신하는 경우, PDCCH의 DCI format에 D2D 전송과 관련된 MCS, RV, DM RS parameter 등과 같은 필드는 불필요하게 된다.
따라서, PDCCH의 DCI format에 D2D 전송과 관련된 필드들을 포함할 수 있도록 정의된 경우, 상기 불필요한 필드를 없애서 DCI format의 총 길이를 줄이거나 또는 zero padding등의 기술을 적용하여 동일한 길이의 DCI format으로 만들어 전송할 수 있다.
마찬가지로, UE가 MCS, RV 등 스케쥴링 정보를 직접 결정하는 경우, (1) 또는 (2)의 방법에서 전송되는 PDCCH 내 MCS, RV 등 스케쥴링 정보와 관련된contents 필드는 불필요하게 된다.
따라서, 상기 불필요한 필드를 없애거나 또는 zero padding하는 방법을 적용할 수 있다.
(1)의 방법은 후술할 도 35에서, (2)의 방법은 후술할 도 36에서 좀 더 구체적으로 살펴보기로 한다.
이후, D2D 송신 단말은 D2D 수신 단말과 D2D data 송수신을 위해 D2D data 전송 관련 스케쥴링 절차를 수행한다(Step#2,S3420). 즉, SA 전송 절차를 수행한다.
Step#2는 상기 Step#1에 사용된 방법들과 함께 사용될 수 있다.
여기서, SA에 포함될 수 있는 정보들은 아래와 같을 수 있으며, 특히 D2D data 수신을 위한 자원과 관련된 정보들이 상기 SA에 포함될 수 있다.
SA 전송과 관련된 스케쥴링 정보(자원 할당 정보 포함)는 기지국에서 D2D 전송 단말로 (SG를 통해) 전송되며, SA 전송은 D2D 전송 단말에서 D2D 수신 단말로 전송되는 것으로 해석될 수 있다.
Information related to resources for data reception: D2D data 수신을 위한 자원과 관련된 정보
RB assignment: RB 할당 정보
Number and pattern of retransmissions: 재전송 횟수 및 패턴 정보
Frequency hopping pattern: 주파수 호핑 패턴 정보
SPS (incl. periodicity) of data: data의 주기성 정보
Target ID: D2D 수신 단말의 ID 정보
MCS/RV of data
Timing advance of data
다음, D2D 송신 단말이 eNB로부터 SG를 수신하고, D2D 수신 단말로 SA를 전송하는 시점을 결정하기 위한 방법에 대해 살펴본다.
상기 수신된 SG에는 SA와 관련된 스케쥴링 정보(자원 할당 정보 포함)가 포함될 수 있다.
먼저, 기지국은 D2D Tx 단말이 SA를 전송할 수 있는 D2D 송신 subframe을 알고 있다고 가정한다.
기지국은 SA 전송 subframe(n)의 n-k1 (k1은 정수) subframe에 D2D 송신 단말로 SG를 전송함으로써, D2D 송신 단말이 D2D 수신 단말로 SA를 전송할 수 있다.
LTE(-A) 시스템에서 단말의 receiver 처리 능력을 고려하면, k1 값은 4 내외가 될 수 있다.
기술의 진화에 따라 상기 k1 값은 2 또는 3도 가능할 수 있다.
상기 SG를 수신한 D2D 송신 단말은 상기 수신된 SG를 통해 동시에 D2D data 전송 subframe의 위치도 함께 파악할 수 있다.
즉, SG의 용도는 SA scheduling 뿐만 아니라, D2D data 전송에 관여하여 D2D data 전송 시점(subframe), 주파수 자원 할당 등까지도 사용될 수 있다.
다음, D2D 송신 단말이 기지국으로부터 SG를 수신하고, 일정 시간 후에 SA전송 유효 자원에서 D2D 수신 단말로 SA를 전송하는 방법에 대해 살펴보기로 한다.
상기 수신된 SG는 SA 전송 관련 스케쥴링 정보를 포함할 수 있다.
eNB는 SA 전송 유효 subframe을 구체적으로 파악하지 않고, D2D 송신 단말로부터 D2D 전송 자원에 대한 요청 시점에 기초하여, 상기 D2D 송신 단말로 SG를 전송한다.
즉, D2D 송신 단말은 기지국으로부터 SG를 수신하면, 상기 수신된 SG를 기반으로 SA를 생성한다.
이후, D2D 송신 단말은 생성된 SA를 SA가 전송될 수 있는 SA available subframe을 파악하여 available 또는 valid D2D subframe (SA 전송 측면에서 valid한 subframe)에서 D2D 수신 단말로 상기 생성된 SA를 전송한다.
여기서, D2D 송신 단말은 기지국으로부터 SG를 수신하고, 다음 subframe이 available 하다고 해서 SA를 바로 D2D 수신 단말로 전송할 수 없을 수 있다.
그 이유는 D2D 송신 단말이 SG를 받아서 수신 처리를 하고, 수신된 SA와 관련된 정보인 SG를 이용하여 SA를 생성하고, D2D data에 대한 전송 준비를 위해서 n+k2만큼의 시간이 필요하다.
여기서, k2는 정수 값을 가진다. 기술의 발전에 따라 상기 k2 값은 2 또는 3까지도 가능할 수 있다. 즉, 단말의 수신 능력에 따라서 k2는 1, 2, 3, 4 등 다양한 값을 가질 수 있다.
만약, k2=4인 경우, D2D 송신 단말은 기지국으로부터 SG를 수신하고 4 subframe 이후에 D2D 수신 단말로 SA를 전송한다.
다만, D2D 송신 단말은 4 subframe 직후에 SA 전송을 위한 available subframe이 존재하지 않으면 그 다음 subframe에 SA를 D2D 수신 단말로 전송한다.
만약, 그 다음 available subframe이 존재하지 않은 경우, 또 그 다음 subframe에서 SA가 전송될 수 있다.
즉, n+4 이후의 subframe 중 가장 빠른 SA available subframe에서 SA가 전송되는 것으로 해석할 수 있다.
여기서, SA 전송이 불가능한 subframe은 D2D 전송으로 지정되지 않은 모든 subframe이 해당될 수 있다.
또는, subframe 0 및 5와 같이 synchronization signal이 전송되는 subframe은 상기 SA available subframe에서 제외될 수 있다.
또는, subframe 0, 4, 5, 9와 같이 paging subframe이 전송되는 subframe도 상기 SA available subframe에서 제외될 수 있다.
여기서, D2D subframe으로 지정되었다고 할지라도 D2D 필수 정보를 전달하기 위한 채널이 (상기 WAN synchronization signal, BCH channel과 유사한 채널) 특정 D2D subframe에 정해지면, 상기 특정 D2D subframe은 상기 SA available subframe에서 제외될 수 있다.
또는, SA 전송을 위한 전용 subframe을 configure 해두고, 이러한 SA 전용 subframe에서만 SA를 전송하도록 할 수도 있다.
즉, D2D 송신 단말은 기지국으로부터 SG를 수신하고(subframe n), n+k3 subframe 이후에 SA (전송) available subframe에서 SA를 D2D 수신 단말로 전송할 수 있다.
여기서, SG를 수신한 D2D 단말은 동시에 data 전송 subframe 위치도 함께 파악할 수 있다. 즉, SG는 SA scheduling을 넘어서 data 전송에 관여하여 data 전송 시점(subframe), 주파수 자원 할당 등에도 사용될 수 있다.
이후, D2D 송신 단말은 SA에 기초하여 D2D 수신 단말로 D2D data를 전송한다(Step#3,S3430).
이 때, D2D 송신 단말은 D2D data와 함께 필요한 제어 정보를 전송할 수 있다.
상기 제어 정보는 D2D data에 piggyback 형태로 전송될 수 있다.
다음, SG의 유효성에 대해 살펴본다.
D2D 단말이 SG1을 기지국으로부터 수신하고, 그 이후 SG2를 기지국으로부터 수신하는 경우, D2D 단말은 상기 수신된 SG1은 더 이상 유효하지 않다고 판단할 수 있다.
SG에 대한 유효성 판단 시점은 이후에 전송되는 SG 즉, SG2를 수신하고 나서(subframe n) n+k4 subframe 이후에 적용될 수 있다.
여기서, k4 값은 정수이며, 실질적으로 SG2가 적용될 수 있는 시점을 고려하면, 2, 3, 4 등의 값을 가질 것이다.
또한, 기지국은 SG1과 SG2를 동일 시간에 함께 D2D 단말로 전송할 수도 있다.
이 경우, 상기 SG1과 상기 SG2는 하나의 DCI format으로 병합되어 전송될 수 있다.
각 SG에 대해 별도의 channel coding을 수행할 경우, D2D 단말은 각 SG에 대한 수신 성공 확률이 높아질 수 있다.
앞서 살핀 것처럼, D2D 단말은 각 SG에 대한 수신 여부의 결과를 eNB에 feedback 할 수 있으며, SG 수신 여부의 결과를 feedback하는 채널로 PUCCH를 이용할 수 있다.
또한, D2D 단말의 전송 전력 제어는 SG를 통해서 구현 가능할 수 있다.
이 경우, 기지국은 TPC field를 활용하거나 DCI format 3/3A를 활용하여 TPC command를 D2D 단말로 전송하여, D2D 단말의 전송 전력을 제어할 수 있다.
DCI format 3/3A를 사용하는 경우에는 해당 포맷의 특정 field를 D2D power control로 reserved 해서 사용할 수도 있다.
이는 사전에 RRC signaling을 통해서 D2D 전력 제어 용도인지 아니면 LTE(-A) 전력 제어 용도인지를 partitioning할 수 있다.
또한, 상기 SG는 사용 가능한 유효 시간이 정해질 수 있다.
즉, D2D 단말이 기지국으로부터 SG를 수신하고, 일정 시간(또는 일정 수의 subframe)이 지나거나 또는 일정 수의 D2D subframe이 지나면 자동으로 상기 수신된 SG를 폐기(discard)할 수 있다.
또는, SG timer를 새로 정의함으로써, SG timer가 expired되는 경우, SG는 invalid 되었다고 간주되도록 구현할 수도 있다.
또는, D2D 단말이 다음 SG를 수신할 때까지 이전 SG가 유효하다고 정의할 수도 있다.
또는, D2D 단말은 SG 수신 후, 일정 시간 또는 일정 수의 subframe이 지나면 해당 SG를 폐기하지만, 그 전에 또 다른 SG를 기지국으로부터 수신하는 경우, 일정 시간이 지나지 않아도 이전에 전송된 SG를 폐기할 수도 있다.

도 35는 본 명세서에서 제안하는 RRC signaling을 이용하여 D2D 전송을 위한 UE scheduling 방법의 일 예를 나타낸 도이다.
즉, 도 35는 도 34에서 S3410 단계를 구체화한 방법을 나타낸다.
S3520 및 S3530 단계는 도 34의 S3420 및 S3430 단계와 동일하므로 차이가 나는 부분에 대해서만 살펴보기로 한다.
먼저, eNB는 D2D Tx UE 또는 D2D Rx UE와 scheduling grant procedure를 수행한다(Step#1,S3510).
도 34에서 살핀 것처럼, S3510 단계는 두 가지 방법을 통해 구현될 수 있다.
(1) 첫 번째 방법(Method#1)은 RRC signaling을 통해 D2D 전송 관련 자원을 할당하고, 추가적으로 physical/MAC control channel (e.g. PDCCH)를 통해서 상기 할당된 자원에 대한 activation/release와 같은 세부 dynamic한 동작을 제어하는 방법이다.
(2) 두 번째 방법(Method#2)는 D2D 전송 관련 자원 할당 및/또는 scheduling information을 physical/MAC control channel을 통해 전송하여 D2D 동작을 제어하는 방법이다.
(1)의 방법(Method#1) 즉, RRC signal and dynamic control signal (e.g. (E)PDCCH, PHICH) based scheduling (e.g. semi-static scheduling) for SA (and data)에 대해 좀 더 구체적으로 살펴보기로 한다.
(1)의 방법은 1) SA (and/or data) 전송을 위한 전체 자원 구성/할당을 위한 RRC signaling 전송(S3511)과 2) 1)을 통해 할당된 SA (and data) 자원의 활성화/해지(activation/release)를 위한 동적 제어 정보 전송(S3512) 방법으로 구분할 수 있다.
먼저, RRC signaling 전송에 대해 살펴본다.
RRC signal ing : overall resource configuration/allocation for SA (and data)
eNB는 LTE SPS(Semi-Persistent Scheduling) scheduling 방법과 유사하게 RRC signaling을 통해서 D2D 전송 관련 특정 자원 (또는 특정 자원 set/group)을 D2D 단말로 할당한다.
또한, 유사한 방법으로, eNB는 D2D 수신을 위한 monitoring 자원도 D2D단말로 할당할 수 있다.
상기 특정 자원 영역은 subframe(s), a set of resource blocks 등일 수 있다.
따라서, D2D 단말은 상기 특정 자원 영역을 monitoring하여 D2D data 또는 SA를 blind demodulation(또는 blind decoding) 할 수 있다.
Monitoring 자원이란 SA 및/또는 D2D Data(Tx-to-Rx for D2D)를 D2D 단말에서 blind decoding하도록 하기 위해 monitoring 하라고 알려준 자원을 의미할 수 있다.
본 명세서에서 사용하는 ‘A 및/또는 B’의 의미는 A 또는 B 중 적어도 하나(A, B, A&B)를 포함하는 개념과 동일한 의미로 해석될 수 있다.
상기 (1)의 방법은 SA scheduling 뿐만 아니라 data 자원 영역을 알려주는, 즉 D2D data scheduling용으로도 사용될 수 있다.
즉, (1)의 방법은 semi-persistent scheduling(SPS)과 유사하게 D2D 전송 관련 자원을 RRC로 할당하고, 물리계층 및 MAC 계층 제어 채널을 활용하여 dynamic하게 자원을 활성화하거나 해제하는 동작을 나타낸다.
이와 관련된 좀 더 구체적인 내용은 앞서 살핀 도 30 내지 도 33을 참조하기로 한다.
이후, S3520 및 S3530 단계를 수행한다.

도 36은 본 명세서에서 제안하는 물리 계층 채널을 이용하여 D2D 전송을 위한 UE scheduling 방법의 일 예를 나타낸 도이다.
즉, 도 36은 도 34에서 S3410 단계를 구체화한 방법을 나타낸다.
S3620 및 S3630 단계는 도 34의 S3420 및 S3430 단계와 동일하므로 차이가 나는 부분에 대해서만 살펴보기로 한다.
먼저, eNB는 D2D Tx UE 또는 D2D Rx UE와 scheduling grant procedure를 수행한다(Step#1,S3610).
마찬가지로, 상기 Step#1은 두 가지 방법을 통해 구현될 수 있다.
(1) 첫 번째 방법(Method#1)은 RRC signaling을 통해 D2D 전송 관련 자원을 할당하고, 추가적으로 physical/MAC control channel (e.g. PDCCH)를 통해서 상기 할당된 자원에 대한 activation/release와 같은 세부 dynamic한 동작을 제어하는 방법이다.
(2) 두 번째 방법(Method#2)는 D2D 전송 관련 자원 할당 및/또는 scheduling information을 physical/MAC control channel을 통해 전송하여 D2D 동작을 제어하는 방법이다.
본 명세서에서 사용하는 ‘A 및/또는 B’의 의미는 A 또는 B 중 적어도 하나를 포함하는 개념과 동일한 의미로 해석될 수 있다.
도 36을 참조하여, (2)의 방법 즉, 동적 스케쥴링(dynamic scheduling)에 기반한 (Enhanced)PDCCH 전송 방법에 대해 살펴보기로 한다.
(2)의 방법은 RRC에 의한 D2D 전송 관련 스케쥴링 정보(자원 할당 포함) 전송 대신 물리계층 (또는 MAC 계층 포함)에서 제어 정보 전달 채널(e.g. EPDCCH, PDCCH, PHICH, new channel)을 이용하여 D2D Tx UE (and/or D2D Rx UE)에게 resource allocation 뿐만 아니라 D2D data demodulation을 위한 MCS, RV, NDI, power control, PMI 등도 함께 알려주는 방법을 말한다(S3611).
상기 resource allocation, MCS, RV, NDI, power control, PMI 등을 D2D 전송과 관련된 스케쥴링 정보라고 할 수 있다.
또한, SG의 용도는 상기 언급된 용도 이외에도 다양하게 정의될 수 있다.
일 예로, SG는 D2D 전송 관련 scheduling information의 contents가 변화되었다는 사실을 알려주기 위한 용도로 사용될 수 있다.
상기 변화의 의미는 변경, 삭제, 추가 등의 의미를 포함한다.
이 경우, 상기 SG와 동일한 signaling format을 사용하는 경우와 다른 signaling format을 사용하는 경우로 구분할 수 있다.
상기 SG에 포함되는 Scheduling information은 RRC signaling을 지정한 D2D 전송 관련 자원 영역의 변화 또는 해당 자원 영역에서 D2D Tx (and/or Rx) UE가 사용해야 할 자원의 변화를 의미하거나 또는 SG에 의해서 실질적으로 할당된 자원 영역의 변화 또는 자원 영역 그룹의 변화를 의미하거나 또는 SA contents의 일부 또는 전체의 변화를 의미할 수 있다.
상기 SA contents에는 RA를 비롯하여 여러 가지 scheduling information이 포함되어 있으며, 이 중에 하나 또는 그 이상의 내용이 변화했음을 SG를 통해서 알려주게 된다.
eNB는 SG의 bit field를 줄여서 compact한 형태의 새로운 SG를 만들어 사용할 수도 있다.
또한, D2D 전송 관련 resource re-allocation과 같이 SG/SA update 를 구현하는 방법에는 PDCCH, EPDCCH 뿐만 아니라 PHICH를 사용하는 것도 가능하다.
즉, eNB는 PHICH 자원을 이용하여 D2D 단말로 SG/SA에 변화가 있는지 여부를 알려주는 용도로 사용할 수 있다.
D2D 단말은 SG/SA에 변화가 있음을 나타내는 정보를 포함하는 PHICH를 monitoring하여 상기 변화된 SG/SA를 수신할 수 있다.
D2D 단말은 사전에 SG/SA modification notification을 eNB로부터 지정 시간 후 또는 지정 시간 구간에 modified SG/SA를 수신하게 된다.
여기서, 상기 Modification notification은 두 가지 의미를 가질 수 있다.
첫 번째 의미는, D2D 단말로 SA가 변경되어야 함을 알리고, 상기 변경된 SA를 알기 위해서 SG의 monitoring을 통해 상기 변경된 SA를 수신할 것을 의미한다.
두 번째 의미는, D2D 단말로 특정 정해진 시점에 SG가 변경되었거나 변경될 예정이니 상기 변경되었거나 변경될 예정인 SG를 수신할 것을 알려주는 의미이다.
앞서 살핀 바와 같이, SG는 SA scheduling 뿐만 아니라 data scheduling 용도로도 사용될 수 있다.
이후, S3620 및 S3630 단계를 수행한다.

도 37은 본 명세서에서 제안하는 SG에 대한 HARQ 절차를 수행하는 방법의 일 예를 나타낸 흐름도이다.
S3710, S3730 및 S3740단계는 도 34의 S3410 내지 S3430 단계와 동일하므로 차이가 나는 부분에 대해서만 살펴보기로 한다.
S3710 단계 이후, D2D 단말과 기지국은 SG HARQ(Hybrid Automatic Retransmission reQuest) 절차를 수행한다(S3720).
즉, D2D 단말이 기지국으로부터 SG를 수신하고, 다른 D2D 단말로 SA를 전송하는 시점 사이에 D2D 단말은 기지국으로 상기 수신된 SG에 대한 응답을 회신(또는 전송)할 수 있다. 상기 응답은 Ack 또는 Nack일 수 있다.
상기 SG는 살핀 것처럼, SPS에서의 할당된 자원의 activation/de-activation과 같이 SA 및/또는 D2D Data 전송과 관련된 제어 정보이거나 resource allocation 정보일 수 있다.
상기 SA 및/또는 D2D Data 전송과 관련된 제어 정보이거나 resource allocation 정보는 D2D 전송과 관련된 scheduling information로 나타낼 수 있다.
S3720 단계의 SG HARQ 절차는 D2D 단말이 기지국으로부터 SG를 수신하지 못하게 되는 경우, 다른 D2D 단말로 SA 전송을 하지 못하거나 또는 이미 전송된 SA 내용에 대한 변경 사항을 적용하지 못하게 되어, 변경 이전의 SA를 지속적으로 전송하게 됨으로 인해 발생할 수 있는 성능 열화나 통신이 불가능한 상황이 초래되는 것을 방지하도록 할 수 있다.
따라서, 상기 SG 수신 여부에 대한 confirmation이 필요하며, 이는 UL ACK/NACK mechanism를 활용할 수 있다.
즉, 기존의 PUCCH structure 또는 embedded PUCCH to PUSCH 형태(UCI Piggyback)로 SG에 대한 응답(ACK/NACK)을 D2D 단말이 기지국으로 전송할 수 있다.
여기서, SG가 PDCCH 또는 EPDCCH format 등의 mechanism을 따르게 되면, 상기 SG에 대한 응답은 상기 PDCCH 또는 EPDCCH의 각 DCI index에 연결된 PUCCH 자원을 이용하여 쉽게 활용할 수 있다.
여기서, SG에 포함된 정보가 SA scheduling용과 D2D data scheduling용으로 분리되어 D2D 단말로 각각 수신되는 경우, D2D 단말은 각 SG의 수신 여부에 대한 응답을 각각 feedback 해줄 수 있다.
또한, 상기 SG에 대한 응답은 최대 4가지 경우가 발생 가능하므로, 그 크기는 1 bit 내지 2 bit로 표현될 수 있다.
여기서, 상기 SG에 대한 응답은 PUCCH를 통해 feedback 될 수 있다.

이하에서, SA 및/또는 D2D data를 송수신하기 위한 방법들에 대해 도 38 내지 도 42를 참조하여 구체적으로 살펴보기로 한다.
도 38은 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 동작 절차 및 이와 관련된 시그널링(signaling) 송수신 방법의 일 예를 나타낸 도이다.
도 38의 경우, 기지국의 제어에 의한 D2D 동작 절차(D2D communication Mode 1)에서의 D2D 동작 절차와 이와 관련된 정보를 송수신함으로써, D2D 통신을 수행하는 방법을 나타낸다.
도 38에 도시된 바와 같이, D2D 통신과 관련된 SA(Scheduling Assginment) 자원 풀(resource pool)(3810) 및/또는 data 자원 풀(resource pool)(3820)이 사전에 구성될 수 있으며, 상기 사전에 구성된 자원 풀은 상위 계층 시그널링(high layer signaling)을 통해 기지국에서 D2D 단말들로 전송될 수 있다.
상기 상위 계층 시그널링은 RRC signaling일 수 있다.
본 명세서에서 사용하는 ‘A 및/또는 B’의 표현은 A 또는 B 중 적어도 하나(A, B 또는 A&B를 나타냄)를 의미하는 개념으로 해석될 수 있다.
상기 SA 자원 풀 및/또는 data 자원 풀은 단말 간 링크(UE-to-UE:D2D) 또는 D2D 통신을 위해 예약된 자원을 의미한다.
상기 UE-to-UE 링크는 사이트링크(sidelink)로 표현될 수도 있다.
구체적으로, SA 자원 풀은 SA를 전송할 수 있는 자원 영역을 의미하며, data 자원 풀은 D2D data를 전송할 수 있는 자원 영역을 의미한다.
상기 SA는 SA 주기(3830)에 따라 전송될 수 있으며, D2D data는 data 전송 주기(3840)에 따라 전송될 수 있다.
상기 SA 주기 및/또는 상기 data 전송 주기는 D2D grant를 통해 기지국에서 D2D 단말로 전송될 수 있다.
또는, 상기 SA 주기는 D2D grant를 통해, 상기 data 전송 주기는 SA를 통해 전송될 수 있다.
또한, D2D grant는 D2D 통신에 필요한 SA(Scheduling Assignment)를 기지국에서 D2D 단말로 전송하는 제어 정보를 나타낸다.
상기 D2D grant는 DCI format 5로 표현될 수 있으며, PDCCH, EPDCCH 등과 같은 물리 계층 채널 또는 MAC layer channel을 통해 전송될 수 있다.
또한, 상기 D2D grant는 SA 전송과 관련된 정보뿐만 아니라 data 전송과 관련된 정보를 포함할 수도 있다.
상기 SA는 일 예로, RA(Resource Allocation), MCS, NDI(New Data Indicator), RV(Redundancy Version) 등을 포함할 수 있다.
앞서 살핀 것처럼, 상기 SA 전송을 위한 SA 자원 풀은 RRC signaling을 통해 전송될 수 있다.
또한, 상기 SA는 PSCCH(Physical Sidelink Control Channel)을 통해 전송될 수 있으며, 상기 D2D data는 PSSCH(Physical Sidelink Shared Channel)를 통해 전송될 수 있다.
D2D 송신 단말은 기지국으로부터 D2D grant를 통해 SA 정보, 특히 SA가 전송될 수 있는 자원 할당(resource allocation: RA) 정보(이하, ‘SA RA’ 정보라 한다.)를 수신할 수 있다.
이 때, 상기 D2D 송신 단말은 기지국으로부터 수신된 SA RA 정보를 그대로 D2D 수신 단말로 전송하거나 또는 상기 수신된 SA RA 정보를 참고하여 새로운 SA RA 정보를 생성한 후, 상기 새롭게 생성된 SA RA 정보를 D2D 수신 단말로 전송할 수도 있다.
여기서, D2D 송신 단말이 SA RA를 새롭게 생성하는 경우, D2D 송신 단말은 D2D grant RA가 지시하는 자원 영역(resource pool) 내에서만 SA의 자원 할당을 수행해야 한다.
즉, eNB가 사용하도록 허가 해준 자원 영역(D2D grant RA) 중에서 일부 자원 영역(SA RA)만을 선택하여 SA를 전송할 수 있음을 나타낸다.
또는 이와 반대로, D2D 송신 단말은 eNB가 할당해준 D2D grant RA를 그대로 사용할 수도 있다.
다만, 이 경우 D2D 송신 단말은 전송할 D2D data가 없더라도 dummy data를 전송하거나 또는 D2D data 전송 없이 D2D SF(subframe)만 점유하고 있어, D2D SF을 낭비하는 상황이 발생할 수도 있다.
D2D 통신과 관련된 자원 풀(Resource pool)은 아래와 같은 관계가 성립될 수 있다.
RRC configured D2D resource pool (A)
D2D grant RA indicating resource pool (B)
SA의 RA indicating resource pool (C)
상기 자원 풀의 포함관계가 A>= B>= C를 만족하는 경우, 무분별하게 D2D 전송을 위해 D2D SF가 점유되는 것을 방지할 수 있어, 결과적으로 WAN data 전송을 위한 자원을 보호할 수 있게 된다.

도 39는 도 38의 방법과 관련된 흐름도의 일 예를 나타낸다.
먼저, D2D 통신과 관련된 SA 자원 풀 및/또는 D2D data 자원 풀이 상위 계층에 의해 구성된다(S3910).
이후, 기지국은 상기 SA 자원 풀 및/또는 D2D data 자원 풀을 상위 계층 시그널링을 통해 D2D 단말로 전송한다(S3920).
이후, 기지국은 D2D grant를 통해 D2D 송신 단말로 SA와 관련된 제어 정보및 /또는 D2D data와 관련된 제어 정보를 각각 또는 함께 전송한다(S3930).
상기 제어 정보는 RA, MCS, NDI, RV 등이 포함될 수 있다.
이후, 상기 D2D 송신 단말은 S3930 단계에서 수신된 정보에 기초하여 D2D 수신 단말로 SA 및/또는 D2D data를 전송한다(S3940).
상기 SA 전송과 상기 D2D data의 전송은 함께 수행될 수도 있고, 상기 SA 전송 후에 상기 D2D data의 전송이 수행될 수도 있다.

다음으로, D2D 관련 자원이 반고정적 스케쥴링(semi-persistent scheduling:SPS) 방식으로 할당되는 경우에 대해 살펴본다.
이 경우, D2D 단말은 RRC signaling을 통해 D2D 통신 관련 자원(SA 자원 풀 및/또는 data 자원 풀)을 도 38 및 도 39와 같이 사전에 예약 할당 받을 수 있다.
이후, D2D 단말은 상기 예약 할당받은 D2D 통신 관련 자원에 대한 사용 가능 여부를 기지국으로부터 D2D grant를 통해 수신할 수 있다.
즉, 기지국은 (E)PDCCH 등을 통해 D2D 단말로 상기 예약 할당받은 자원의 사용을 활성화(activation)하거나 또는 자원 사용의 중지 또는 해지(release)를 지시할 수 있다.
여기서, 기지국은 SA RA를 모두 ‘0’으로 설정하여 D2D 단말로 전송함으로써, D2D 통신 관련 자원 사용의 release를 지시할 수 있다.
또 다른 방법으로, TPC 및 MCS 필드(field)에 특정 값(예를 들어, ‘0’)을 설정하여 여러 field의 조합을 통해 특정 조건이 만족되는 경우, D2D 통신 관련 자원 사용의 release를 지시하도록 할 수 있다.
또 다른 방법으로, MCS를 ‘10000…0000’과 같이 MSB(Most Significant Bit)만 ‘1’로 설정하고, 나머지 bit들은 ‘0’으로 설정함으로써, D2D 통신 관련 자원 사용의 release를 지시(indication)할 수 있다.

다음으로, SA 자원 정보와 D2D data 자원 정보가 분리되어 각각 전송되는 경우, 각 자원 사용 여부에 대한 활성화/해지 방법에 대해 살펴본다.
일 예로, 특정 필드 내 SA 자원과 관련된 부분과 data 자원과 관련된 부분이 분리되어 있는 경우, 기지국은 각각의 자원 사용 여부에 대한 activation 및 release를 D2D 단말로 별도로 지시할 수도 있다.
상기 특정 필드는 TPC 필드일 수 있으며, TPC 필드를 예로 들어 설명한다.
또한, 기지국은 SA 전송 주기 및 data 전송 주기를 고려해서 서로 다른 위치에서 자원 사용의 release를 지시할 수도 있다.
상기 방법은 서로 다른 TPC에 각각 서로 다른 정보(SA 자원 정보, data 자원 정보)를 전송함으로써 구현할 수도 있고, 두 개의 TPC에 서로 다른 bit sequence를 할당하여 구현할 수도 있다.
또는, SA 자원의 release 시점으로부터 몇 번째 data 자원부터 release가 되는지를 알려주는 방법으로도 자원 사용의 release를 지시할 수도 있다.

다음으로, SA RA를 업데이트하는 방법에 대해 살펴본다.
D2D 단말이 기지국으로부터 D2D grant를 통해 SA RA 정보를 수신하는 경우, 상기 D2D 단말이 실제 SA를 전달하는 시점은 SA가 전송되는 SA 주기(periodicity)에 맞춰져 있다.
여기서, 기지국은 D2D 단말이 SA를 전송하는 시점에 D2D grant를 통해 SA RA 정보를 D2D 단말로 전송하기 때문에, SA RA 정보에 대한 업데이트 시기는 SA 전송 주기와 맞물려 있게 된다.
구체적으로, SA RA 정보에 대한 업데이트 시점의 최소 주기는 SA 주기와 같을 수 있다.
즉, SA RA 정보에 대한 업데이트가 없는 경우에도 SA를 전송하는 경우를 고려하는 경우, SA RA 정보의 업데이트 주기와 SA 주기는 일치하는 것으로 해석될 수 있다.
이와 달리, 전송 전력 제어 정보에 해당하는 TPC 정보의 업데이트는 상기 SA RA 정보와 다르게 설계될 수 있다.
기지국이 D2D grant를 통해 TPC 정보를 SA 주기마다 D2D 송신 단말로 전송하는 경우, SA 주기마다 TPC 정보는 업데이트될 수 있다.
하지만, D2D 단말이 SA 주기 사이에 다수의 SA 또는 data를 전송할 수 있는 것을 고려하는 경우, 상기 SA 또는 data 전송에 대한 전력 제어를 좀 더 최적화 또는 효율적으로 수행하기 위해서는 상기 TPC 정보의 업데이트 주기는 SA 주기보다 더 작게 설정되어야 한다.
이를 위해, TPC 정보만을 따로 전송할 수 있는 DCI format을 새롭게 정의할 수 있고, 상기 새롭게 정의되는 DCI format은 SA 주기 사이에서도 전송될 수 있도록 할 수 있다.
상기 새롭게 정의되는 DCI format은 TPC 정보를 포함한다.
예를 들어, SA (전송) 주기가 100ms인 경우, TPC 정보 주기를 10ms로 설정함으로써, TPC 정보를 채널 상황에 맞게 업데이트하도록 할 수 있다.
하지만, 상기 방법에서 TPC 정보만을 전송하는 경우, 자원을 효율적으로 사용하지 못할 수 있으므로, 기지국은 TPC 정보와 같이 채널 상황을 반영하는 제어 정보(예:HARQ 정보)도 함께 D2D 단말로 전송할 수 있다.
즉, 기지국은 채널 상황을 반영하는 TPC, HARQ, MCS, RV, PMI 등에 대해서는 SA 주기보다 더 작은 주기를 설정하여 더 자주 전송되도록 하여 채널 상황을 적절하게 반영할 수 있도록 해당 정보들을 업데이트할 수 있다.

여기서, 상기 살펴본 방법들은 다르게 해석될 수도 있다.
예를 들어, SA 주기는 10ms 인데, 실제적으로 SA RA 정보의 전송(또는 업데이트)은 100ms 주기로 발생하고, 채널 상황을 반영하는 제어 정보(TPC, HARQ 정보 등)은 10ms 주기(또는 단위)로 발생하는 것처럼 설명할 수도 있다.
즉, SA 주기가 설정되는 경우, 상기 SA 주기의 정수 배로 SA RA update 주기(periodicity), TPC update 주기, HARQ update 주기가 (각각) 설정될 수 있다.
여기서, SA RA update 주기는 TPC, HARQ update 주기보다 자주 발생한다.
따라서, 상기 SA RA 업데이트 주기, TPC 업데이트 주기, HARQ 업데이트 주기는 사전에 정해질 수 있으며, 이는 RRC signaling을 통해 D2D 단말로 전송될 수 있다.
또는, 기지국은 D2D grant를 통해 상기 SA RA 업데이트 주기, TPC 업데이트 주기, HARQ 업데이트 주기 등과 관련된 정보를 D2D 단말로 명시적으로 또는 암묵적으로(또는 암시적으로) 전송할 수 있다.
여기서, SA 주기는 RRC signaling으로 configure하고, TPC 주기 및/또는 HARQ 주기는 D2D grant로 configure할 수 있다.
또는, SA 주기, TPC 주기, HARQ 주기는 default 값으로 설정될 수도 있다. 즉, 모든 주기가 동일한 default 값을 가질 수 있다.
살핀 것처럼, TPC 정보는 D2D 송신 단말의 전송 전력을 제어하기 위한 정보를 말한다.
여기서, D2D 송신 단말은 하나의 TPC 정보를 통해 SA 및 data의 전송 전력을 함께 제어할 수 있다.
또는, D2D 단말은 SA 및 data 각각에 대한 특성을 고려해서 각 신호의 특성에 맞게 전송 전력을 제어할 수도 있다.
이 경우, 기지국은 D2D grant에 SA의 TPC 정보 및 Data의 TPC 정보를 별도로 포함하여 전송하거나 각각의 TPC에 대한 D2D grant를 별개로 D2D 단말로 전송할 수 있다.
즉, 상기 D2D grant는 SA의 TPC 정보 및 data의 TPC 정보를 별개의 영역에 할당할 수 있다.
상기 SA의 TPC 정보는 SA의 전송 전력 제어를 지시하고, 상기 data의 TPC 정보는 data의 전송 전력 제어를 지시하기 위해 사용된다.
여기서, 각각의 TPC 정보는 절대적인 전송 전력(absolute Tx power)값을 지시하거나 또는 이전 전송 전력 값에 대한 상대적인 전송 전력(delta Tx power)값을 지시할 수 있다.
또 다른 방법으로서, SA 전송 전력 및 data 전송 전력을 각각 제어하기 위해 두 개의 TPC 필드(SA TPC 필드, data TPC 필드)를 사용하는 경우, 하나의 TPC 필드 값과 오프셋 값을 통해 다른 하나의 TPC 필드 값을 지시할 수도 있다.
예를 들어, 제 1 TPC 필드는 SA의 (절대적인) 전송 전력값을 지시하고, 제 2 TPC 필드는 data의 (절대적인) 전송 전력 값을 지시하는 경우, 상기 제 2 TPC 필드값은 따로 전송되지 않고 상기 제 1 TPC 필드의 절대적인 전송 전력 값과의 상대적인 값(offset)을 통해 획득되도록 할 수도 있다.
즉, 제 1 TPC 필드는 SA 또는 data의 전송 전력의 절대값을 나타내고, 제 2 TPC 필드는 상기 제 1 TPC 필드 값의 offset으로 표현될 수 있다.
즉, 해당 방법은 SA와 data 사이의 상대적인 전력 차이를 알려주는 방식에 해당한다.
해당 방법은 SA 및 data 간의 전송 전력 값의 변화가 거의 동일한 방향으로 발생할 가능성이 크기 때문에, offset을 이용하여 전력 값을 설정하는 경우, 적은 수의 bit를 이용해서 SA 및 data에 대한 전송 전력을 제어할 수 있다.

일반적으로, SA 전력 제어 파라미터 셋(power control parameter set)과 data 전력 제어 파라미터 셋(power control parameter set)은 독립적으로 설정될 수 있다.
즉, SA 및 D2D data의 전송 전력 정보는 서로 다른 parameter로 설정되기 때문에 각각 서로 다른 전력으로 전송될 수 있다.
특히, SA의 경우 D2D data보다 더 중요한 정보이기 때문에, SA 전송 전력을 data 전송 전력보다 더 높은 전력으로 설정하거나 또는 더 많은 자원을 사용하여 전송할 수 있다.
또한, D2D data의 경우도 channel coding뿐만 아니라 HARQ 동작을 고려해서 전송해야 하기 때문에, SA와는 다른 전송 전력으로 제어하는 것이 바람직할 수 있다.
하지만, 비록 서로 다른 전송 전력 설정 값(초기값 등)으로 전력 값이 계산된다고 할지라도 D2D grant를 통해 전송되는 TPC는 하나의 값을 사용하여 SA와 data의 전송 전력을 제어할 수 있다.
이 경우는, D2D 단말이 기지국으로부터 동일한 TPC 정보를 수신하더라도, D2D 단말에서 서로 다르게 해석하는 기준을 적용함으로써, 실질적으로 SA 및 data에 대한 전송 전력 계산을 서로 다르게 적용하도록 할 수 있다.
이 경우, D2D 단말이 하나의 TPC에 대해 SA 및 data에 대한 전송 전력을 서로 다르게 해석하는 기준에 대해서는 미리 설정될 수 있다.
예를 들어, SA의 전송 전력 조절 범위가 2bit TPC table에서 X_SA(dB)부터 Y_SA(dB)인 경우, D2D data의 전송 전력 조절 범위는 X_data에서 Y_data로 해석되도록 설정할 수 있다.
여기서는 TPC bit field 값이 의미하는 전송 전력 조절 범위만 예를 들어 살펴보았으나, 다른 전력 제어 parameter도 상기 예와 같이 서로 다른 정의, 서로 다른 초기 값, 서로 다른 default 값 등을 이용하여 각각에 대한 최종 전송 전력을 계산할 수도 있다.

다음으로, D2D grant RA 정보와 SA RA 정보의 구성에 대해 좀 더 구체적으로 살펴보기로 한다.
여기서, D2D grant RA는 D2D 통신에 사용될 SA와 관련된 정보 특히, 자원 할당 정보를 의미할 수 있으며, SG(Scheduling Grant) 또는 DCI format 5로 표현될 수 있다.
또한, 상기 SA RA 정보는 실제적으로 SA의 전송과 관련된 자원 할당 정보를 의미할 수 있으며, PSCCH로 표현될 수도 있다.
구체적으로, D2D grant를 통해 전송되는 (D2D와 관련된) RA 정보를 D2D 송신 단말이 SA RA 정보 구성 시 어떤 방식으로 상기 D2D grant RA를 반영하여 SA를 전송할 것인지에 대한 방법을 나타낸다.
앞서 살핀 바와 같이, RRC로 구성되는 자원 풀(RRC configured resource pool)이 존재한다고 가정하고, 기지국은 상기 RRC로 구성되는 자원 풀 중의 일부(a restricted set selected from the original RRC configured resource pool)를 선택하여 D2D grant를 통해 RA를 D2D 단말로 전송한다.
D2D 송신 단말은 기지국으로부터 상기 선택된 D2D grant RA set을 수신하여, 이를 그대로 D2D 수신 단말로 전송하거나 또는 상기 선택된 D2D grant RA set 중에서 일부의 자원을 다시 선택하여(또는 생성하여), 상기 일부의 자원에 대한 정보를 D2D 수신 단말로 전송할 수 있다.

이하에서, D2D 송신 단말이 기지국으로부터 D2D grant를 통해 수신된 RA set 중 일부를 선택하고, 상기 선택된 자원을 통해 SA를 D2D 수신 단말로 전송하는 방법에 대해 도 40을 참조하여 구체적으로 살펴보기로 한다.
도 40은 본 명세서에서 제안하는 방법이 적용될 수 있는 SA 전송 방법의 일 예를 나타낸 흐름도이다.
즉, 도 40의 경우, D2D 송신 단말이 자신이 선택한 자원에서 D2D 관련 패킷(packet)을 D2D 수신 단말로 전송하고, 마찬가지로 자신이 선택한 자원에서 D2D 수신 단말로부터 D2D 관련 packet을 수신하는 방법을 설명한다.
먼저, D2D 송신 단말은 기지국으로부터 D2D 통신 관련 예약 할당된 자원을 수신한다(S4010).
상기 D2D 통신 관련 예약 할당된 자원은 SA 자원 풀 및/또는 data 자원 풀일 수 있으며, RRC signaling을 통해 전송될 수 있다.
이후, D2D 송신 단말은 상기 수신된 D2D 통신 관련 예약 할당된 자원 중 실제 전송에 사용될 일부 자원을 선택 또는 결정한다(S4020).
D2D 단말은 일반적으로 적은 양의 D2D packet을 송수신하기 때문에, 기지국을 통해 수신되는 예약 할당된 자원(또는 D2D grant RA)보다 적은 자원만을 사용하게 된다.
이후, D2D 송신 단말은 상기 결정된 일부 자원을 통해 SA 및/또는 D2D data를 D2D 수신 단말로 전송한다(S4030).
살핀 것처럼, 상기 SA 및/또는 D2D data는 함께 전송되거나 SA 전송 후, D2D data가 전송될 수 있다.
여기서, D2D 단말은 D2D 통신에 사용되지 않은 나머지 자원 구간에서는 Rx mode(다른 신호를 들음)로 동작하거나 또는 DTX(Discontinuous Transmission) 상태로 들어가서 energy saving 또는 power saving 동작을 수행할 수 있다.
이와 같은 동작을 통해, 반이중(half-duplex)로 동작하는 D2D 송신 단말은 수신할 수 있는 자원 영역을 확대할 수 있어, 더 많은 D2D 단말로부터 자원을 수신할 수 있게 된다.
또한, D2D 수신 단말의 경우, 특정(또는 제한된) SF(subframe)에서만 D2D 관련 자원(D2D SF)을 monitoring하여 자원을 수신할 수 있다.
또한, D2D 수신 단말은 나머지 D2D SF에서는 monitoring하지 않고 DRX(Discontinuous Reception)를 수행함으로써, 마찬가지로 energy saving을 수행할 수 있다.
마찬가지로, D2D 수신 단말의 측면에서도 다른 D2D 단말에게 전송할 수 있는 자원을 더 많이 확보할 수 있어, D2D 전송 기회가 증가하여 더 많은 D2D 관련 packet을 보낼 수 있게 된다.
도 40에서와 같이, D2D 단말이 실제적으로 전송할 D2D 관련 packet에 해당하는 만큼만 자원을 사용하는 방법에서는 D2D 송신 단말과 D2D 수신 단말은 서로 신호를 송수신하는 협상 과정을 통해, 각자 필요한 송신 자원 크기 및 수신 자원 크기를 조절할 수 있다.
이를 통해, 전체적으로 mesh 형태로 구성된 D2D network에서 D2D 단말 간 packet 전송의 효율을 높일 수 있게 된다.
여기서, 송신 자원 및 수신 자원의 크기를 조절하기 위한 과정에서 D2D 단말 간 송수신하는 신호는 물리 계층 신호뿐만 아니라 상위 계층 신호를 이용하여 구현할 수 있다.

다음으로, D2D 송신 단말이 SA RA를 통해 SA를 D2D 수신 단말로 전송하는 방법에 대해서 도 41을 참조하여 구체적으로 살펴보기로 한다.
도 41은 본 명세서에서 제안하는 방법이 적용될 수 있는 SA를 전송하는 또 다른 방법의 일 예를 나타낸 흐름도이다.
도 41의 경우, SA 주기 사이에 다수의 D2D data 전송 자원(또는 기회)들이 있을 경우, 상기 SA 주기 사이에 몇 개의 D2D data 전송 자원을 사용할 수 있는지에 대해서 D2D 송신 단말이 D2D 수신 단말로 알려주는 방법에 관한 것이다.
먼저, 살핀 것처럼, D2D 송신 단말은 기지국으로부터 D2D grant RA를 통해 SA 및/또는 data 전송과 관련된 자원 할당 정보를 수신한다(S4110).
이후, D2D 송신 단말은 D2D data 전송 자원과 관련된 구성 정보를 SA를 통해 D2D 수신 단말로 전송한다(S4120).
이하에서는, 상기 D2D data 전송 자원과 관련된 구성 정보에 대해 좀 더 구체적으로 살펴보기로 한다.
상기 D2D data의 전송 자원과 관련된 구성 정보는 D2D data가 전송될 수 있는 D2D SF(또는 D2D data SF)을 지시하는 지시 정보를 포함한다.
상기 지시 정보는 D2D data가 전송되는 연속된 D2D SF의 개수를 지시할 수도 있고, 정수의 배수에 해당하는 D2D SF을 지시할 수도 있다.
상기 지시 정보가 연속된 D2D SF을 알려주는 경우, D2D 송신 단말은 SA 주기 바로 다음 연속된 K개의 SF에서 D2D data를 D2D 수신 단말로 전송한다(S4130).
이후, 상기 D2D 송신 단말은 상기 연속된 K개의 SF 이후 SF에서는 D2D data의 전송을 중단한다(S4140).
D2D data를 전송하는 또 다른 방법으로, offset 정보를 이용할 수도 있다.
즉, D2D 송신 단말은 D2D data 전송과 관련된 offset 정보를 이용하여 SA 주기 바로 다음이 아닌, 상기 offset 만큼 떨어진 SF에서부터 연속적으로 K개의 D2D SF에서 D2D data를 D2D 수신 단말로 전송하고, 그 이후 SF에서는 D2D data의 전송을 중단할 수 있다.
만약, 상기 Offset 값이 너무 커서 SA 주기 내에서 연속된 D2D SF을 확보하지 못하는 경우, 확보되지 못한 SF에서의 D2D data 전송은 무시 또는 무효화될 수 있다.
또는, 상기 확보되지 못한 SF에서의 D2D data 전송은 다음 SA 주기로 넘어가서 상기 다음 SA 주기의 첫 SF부터 확보되지 못한 SF 수만큼을 D2D data를 전송하기 위한 SF으로 지정할 수도 있다.
여기서, D2D data가 전송되는 D2D SF을 지시하기 위한 지시 정보(또는 indication bit)는 SA 및 data 자원 할당 주기를 고려해서 설정되는 것이 바람직하다.
예를 들어, SA 주기가 최대 100ms이고, data 전송 주기가 10ms인 경우, 상기 SA 주기 사이에 10번의 data 전송 기회가 존재한다.
10개의 SF 중에서 몇 개의 SF를 연속적으로 지정할 수 있는지에 대한 모든 경우의 수(조합)를 고려해야 하며, 상기 지시 정보는 상기 모든 조합을 지원할 수 있을 만큼의 bit 수를 가진 field가 필요하다.
일 예로, 8 가지 경우의 수에 대해 indication을 해야 하는 경우, 상기 지시 정보의 크기는 3bits일 수 있으며, 10 가지 경우의 수에 대해 indication을 해야 하는 경우, 상기 지시 정보의 크기는 4bits일 수 있다.
D2D data SF을 지시하는 또 다른 방법으로, D2D data 전송과 관련된 SF의 시작 위치 및 길이를 알려줄 수도 있다. 이 방법은 LTE(-A)의 UL RA 방법을 이용하여 구현될 수 있다.
상기와 같이 D2D data SF의 시작 위치 및 길이를 알려주는 방법의 경우, indication 정보의 bit 수를 줄일 수 있는 측면에서 자원 사용의 효율성을 높일 수 있게 된다.

다음으로, SA 주기가 증가하는 경우, D2D data SF의 위치를 지시하는 지시 정보의 사용 방법에 대해 살펴보기로 한다.
구체적으로, SA 주기가 증가하는 경우, 상기 D2D data SF의 위치를 알려주는 지시 정보를 반복 전송함으로써 해결할 수 있다.
예를 들어, SA 주기가 400ms로 증가하는 경우, SA 주기가 100ms이고, data 전송 주기가 10ms일 때 사용하는 4bit 크기의 지시 정보를 4번 반복하여 재사용할 수 있다.
여기서, 기지국은 상기 지시 정보의 반복 횟수를 조절하면서 D2D data SF의 위치를 D2D 단말로 알려줄 수도 있다.
상기 반복 회수의 조절을 위해 사용되는 신호 또는 D2D data SF의 위치를 알려주는 지시 정보의 반복 사용 횟수는 미리 결정될 수도 있다.
이 경우, 상기 미리 결정된 값은 RRC signaling을 통해 전송될 수 있다.
D2D data SF의 위치를 알려주는 지시 정보로 비트맵 패턴(bitmap pattern)을 사용할 수도 있다.
상기 지시 정보가 bitmap pattern인 경우, D2D data SF은 매우 유연하게 지정될 수 있다.
예를 들어, SA 주기 100ms 및 Data 전송 주기 10ms를 가정하는 경우, data의 10번 전송 시기에 대한 모든 조합을 알려주기 위해서는 살핀 것처럼, 10 bit 크기의 지시 정보가 필요하다.
만약, SA 주기가 400ms이고, data 주기가 40ms인 경우, 10 bits 크기의 비트맵(bitmap) 형태의 지시 정보가 필요하며, data 주기가 10ms인 경우에는 40 bits 크기의 비트맵(bitmap) 형태의 지시 정보가 필요하다.
하지만, 상기 지시 정보의 길이를 SA 및/또는 data 주기에 따라 가변하는 것은 제어 정보를 설계함에 있어 어려움이 있다.
따라서, 지시 정보의 크기 즉, bitmap의 길이를 고정하는 것이 바람직하다.
이를 위해, 기준이 되는 SA 주기 및 data 전송 주기를 선택하고, 상기 선택된 SA 주기 및 data 전송 주기에 따라 지시 정보의 크기 즉, bitmap 길이를 결정한다.
여기서, SA 주기 및 data 전송 주기의 변화로 인해 D2D data SF의 위치를 지시하기 위한 경우의 수가 늘어나는 경우, 기준이 되는 bitmap 형태의 지시 정보(기준 bitmap)을 반복하여 사용할 수 있다.
이와 반대로, D2D data SF의 위치를 지시하기 위한 경우의 수가 줄어드는 경우에는 일부 조합을 제거하는(truncation) 방식으로 사용할 수 있다.
예를 들어, SA 주기가 400ms, data 전송 주기가 10ms인 경우, SA 주기 100ms/data 전송 주기 10ms에서 사용되는 bitmap 형태의 지시 정보를 4번 반복사용함으로써, 400ms의 SA 주기에 맞추어 D2D data SF의 위치를 indication 해줄 수 있다.
상기 SA 주기 100ms/data 전송 주기 10ms에서 사용되는 bitmap 형태의 지시 정보를 기준 지시 정보 또는 기준 bitmap이라 할 수 있다.
만약, SA 주기가 400ms이고, data 전송 주기가 20ms인 경우, 400ms에 20회의 data 전송 기회가 있으므로, 기준 bitmap의 10 bit를 2번 반복해서 사용함으로써, D2D data SF의 위치를 지시해줄 수 있다.
이와는 반대로, SA 주기가 50ms로 줄어 들고, data 전송 주기는 10ms인 경우, 10 bit 크기의 D2D data SF 지시 bitmap 중에서 상위 5 bit 만을 (유효한 정보로) 사용하고, 하위 5 bits를 무시 또는 무효처리하는 방식으로 구현할 수 있다.
아니면 반대로, 10 bit 크기의 D2D data SF 지시 bitmap 중에서 하위 5 bits만을 유효한 정보로 사용하고, 상위 5 bits는 무시 또는 무효처리하는 방식으로 구현할 수도 있다.

다음으로, D2D data SF의 위치를 나타내는 지시 정보(또는 D2D data SF 지시 bitmap)의 bit 수를 줄이기 위한 방법에 대해 도 42를 참조하여 구체적으로 살펴보기로 한다.
도 42는 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D data 전송 방법의 일 예를 나타낸 흐름도이다.
기지국은 D2D grant RA를 통해 사전에 정의된 (D2D) subframe pattern set을 D2D 송신 단말로 전송한다(S4210).
이후, D2D 송신 단말은 상기 수신된 subframe pattern set 중에서 하나또는 하나 이상을 선택한다(S4220).
구체적으로, 기지국이 RRC 구성된 D2D 자원 풀 중에서 8개의 resource pattern(또는 subframe pattern)을 D2D grant RA를 통해 D2D 송신 단말로 전송하는 경우, D2D 송신 단말은 상기 수신된 8개의 resource pattern 중에서 하나 또는 하나 이상을 선택하여 상기 선택된 자원을 통해 SA 및/또는 data를 전송한다.
여기서, 상기 8개의 resource pattern을 나타내기 위해서는 3bit 크기의 필드 또는 지시 정보가 정의된다.
즉, 기지국은 3 bit 크기의 지시 정보를 전송함으로써, resource pattern에 대한 정보를 D2D 송신 단말로 알려줄 수 있다.
여기서, 상기 subframe pattern을 다양하게 구성함으로써(예: 초기 연속 K개의 subframe, offset, interlaced된 SF pattern 등) SA 주기 사이에 data가 전송되는 SF의 개수를 다양하게 선택하여 사용할 수 있다.
이후, D2D 송신 단말은 상기 선택된 subframe pattern을 SA 및/또는 data를 D2D 수신 단말로 전송한다(S4230).

또 다른 실시 예로서, D2D 관련 resource pattern(또는 subframe pattern)을 계층적으로 구성하여, 이를 D2D 단말로 전송해줄 수도 있다.
예를 들어, RRC에서 구성된 자원 풀은 가장 높은 layer에 존재하고, 그 아래 layer에 tree 형태 구조로 다수의 resource pattern이 존재하고, 또 그 아래 layer에 tree 형태 구조로 더 많은 종류의 resource pattern이 존재하도록 자원 형태를 계층적으로 구성할 수 있다.
이 경우, 기지국은 RRC configured 1st layer 정보를 이용하여 그 하위 2nd layer resource pattern 중에 하나 또는 하나 이상을 선택하여 D2D grant를 통해 상기 선택된 resource pattern을 D2D 송신 단말로 전송한다.
이후, D2D 송신 단말은 상기 수신된 2nd layer resource pattern 하위에 있는 3rd layer resource pattern 중에 하나를 선택하여 상기 선택된 resource pattern을 통해 SA 및/또는 data를 D2D 수신 단말로 전송한다.
이러한 D2D 자원의 계층적(tree) 구조 및 그 해석 방법은 사전에 기지국 및 D2D 단말들에 공유되어야 한다.

다음으로, SA의 업데이트 시점에 대해 살펴보기로 한다.
앞서 살핀 것처럼, D2D 송신 단말은 기지국으로부터 D2D grant를 수신하는 경우, 상기 수신된 D2D grant를 참조하여 SA 주기에 맞추어 SA를 D2D 수신 단말로 전송한다.
D2D 송신 단말이 기지국으로부터 새로운 SA 관련 정보를 SA 주기 사이에서 수신하는 경우, 다음 SA 주기가 도래하기까지 기존 SA 정보는 유효하다.
즉, D2D 송신 단말은 다음 SA 전송 주기에 SA를 업데이트한다. 그리고, D2D 송신 단말은 업데이트된 SA를 해당 SA 전송 주기에 D2D 수신 단말로 전송한다.
이와 같이, 다음 주기 시점에 새로운 제어 정보를 업데이트하는 방법은 TPC 정보 등에도 동일하게 적용될 수 있다.
앞서 살핀 업데이트 방법은 D2D 자원의 activation과 관련 있다.
하지만, D2D 자원을 release하는 경우는 앞서 살핀 D2D 자원의 activation 경우와 달리 설정될 수 있다.
즉, D2D 자원에 대한 release의 경우, D2D 송신 단말은 기지국으로부터Release 관련 정보를 수신한 시점에 바로 적용한다.
따라서, D2D 송신 단말은 release가 지시된 자원에서 SA 및/또는 data의 전송을 중단한다.
구체적으로, D2D 송신 단말이 기지국으로부터 SA 주기 사이에 D2D 자원의 release를 지시하는 정보를 수신하는 경우, D2D 송신 단말은 다음 SA 주기까지 기다리지 않고, 바로 D2D 자원을 release한다.
또는, SA 주기가 설정되고, 상기 설정된 SA 주기보다 더 큰 주기로 SA의 update 주기가 구성(configure)되는 경우에 아래와 같이 D2D 동작을 적용할 수도 있다.
즉, SA update 주기와 SA 주기가 다르게 설정되고, SA update 주기가 더 큰 경우에 D2D 자원 activation은 SA update 주기 마다 설정되고, D2D 자원 release는 SA의 전송 시점 즉, SA 주기마다 설정될 수 있다.

상향링크 전력 제어
무선 통신 시스템에 있어서 전력 제어(power control)는 채널의 경로 손실과(path loss) 변동(fading)을 보상함으로써 시스템에서 요구하는 수신 SNR(Signal-to-Noise Ratio)을 보장하고, 적절한 랭크 적응(rank adaptation)을 통해서 높은 시스템 성능을 제공하는 것을 목적으로 한다. 또한, 셀 간 간섭(inter-cell interference)은 상기 전력 제어에 의해 조정될 수 있다.
기존 시스템에 있어서, 상향링크 전력 제어는 폐루프 보정(closed-loop correction) 및/또는 개루프(openloop) 전력 제어에 기초한다. 개루프 전력 제어는 사용자 기기(User Equipment; UE)의 계산에 의해 처리되고, 폐루프 보정은 기지국(evolved Nod B; eNB)으로부터의 전력 제어 명령(power control command)에 의해 수행된다. 기지국으로부터의 상향링크 전송 전력 제어(Transmit Power Control; TPC) 명령은 PDCCH 의 DCI 포맷에서 정의될 수 있다.
이하에서는 단일 전송 안테나 전송의 경우를 예로 들어서 전력 제어 절차에 대해서 설명한다.
도 43은 상향링크 전력 제어의 기본 개념을 설명하는 도면이다.
도 43을 참조하면, 상향링크 전력은 주로 폐루프 방식에 의해 사용자 기기에 의해 측정되고 기지국은 폐루프 보정 계수(factor)
Figure PCTKR2015008473-appb-I000011
에 의해 상향링크 전력을 조정할 수 있다. 상향링크공유채널(PUSCH)의 전력제어는 다음의 수학식 12에 따라 수행될 수 있다.
Figure PCTKR2015008473-appb-M000012
상기 수학식 12에서, PPUSCH(i)는 PUSCH 에 대한 i 번째 서브프레임의 전송 전력이며, 단위는 dBm이다. PCMAX는 최대 허용 전력을 나타내고, 최대 허용 전력은 상위계층에 의해서 설정되며 사용자 기기의 종류(class)에 따른다.
또한, MPUSCH(i) 는 할당되는 자원의 양이고, 할당되는 자원 블록(부반송파의 그룹, 예를 들어, 12 부반송파)의 단위로 표현될 수 있으며, 1부터 110사이의 값을 갖고, 매 서브프레임마다 갱신된다. 상기 수학식 12 에서 PO_PUSCH(j)는 다음의 수학식 13과 같이 PO_NOMINAL_PUSCH(j) 과 PO_UE_PUSCH(j) 의 2 부분으로 구성된다.
Figure PCTKR2015008473-appb-M000013
상기 수학식 13에서 PO_NOMINAL_PUSCH(j) 는 상위계층(higher layer)에 의해 셀 특정으로 주어지는 값이고, PO_UE_SPECIFIC(j) 는 상위계층에 의해 단말 특정으로 주어지는 값이다.
상기 수학식 12에서 인수(argument) j 는 0, 1 또는 2 의 값을 가질 수 있다. j=0 인 경우에 PDCCH 에서 동적(dynamic)으로 스케줄링되는 PUSCH 전송에 해당한다. j=1 인 경우에, 반-영속적(semi-persistent) PUSCH 전송에 해당한다. j=2 인 경우에 임의접속 그랜트 (random access grant)에 기초한 PUSCH 전송에 해당한다.
상기 수학식 12 에서
Figure PCTKR2015008473-appb-I000012
(j)·PL 는 경로 손실 보상을 위한 수식이다. 여기서, PL은 사용자 기기에 의해 측정되는 하향링크 경로 손실을 나타내며, "참조신호전력 - 상위계층 필터링된 RSRP(Reference Signal ReceivedPower)" ("referenceSignalPower - higher layer filtered RSRP")로서 정의된다.
Figure PCTKR2015008473-appb-I000013
(j)는 경로 손실의 정정(correction) 비율을 나타내는 스케일링(scaling)값이며 {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 중의 하나의 값을 가지고, 3비트 크기의 값으로 표현된다. 만약
Figure PCTKR2015008473-appb-I000014
가 1이면 경로 손실이 완전히 보상된 것을 의미하며,
Figure PCTKR2015008473-appb-I000015
가 1보다 작으면, 경로 손실의 일부가 보상되었다는 것을 의미한다.
상기 수학식 12 에서
Figure PCTKR2015008473-appb-I000016
는 다음의 수학식 14와 같이 주어질 수 있다.
Figure PCTKR2015008473-appb-M000014
상기 수학식 14 에서 나타내는 바와 같이,
Figure PCTKR2015008473-appb-I000017
의 사용은 deltaMCS-Enabled 라는 플래그에 의해서 설정될수 있다. deltaMCS-Enabled 가 1 의 값을 가지면
Figure PCTKR2015008473-appb-I000018
사용이 설정되고, deltaMCS-Enabled 가 0 의 값을 가지면
Figure PCTKR2015008473-appb-I000019
가 0의 값이 되므로 사용되지 않는다. 상기 수학식 14 에서 MPR 은 다음의 수학식 15와 같이 주어질 수 있다.
Figure PCTKR2015008473-appb-M000015
상기 수학식 15에서 TBS 는 전송블록크기(Transport Block Size)이고, NRE 는 부반송파의 개수로 표현되는 자원요소(RE)의 개수에 해당한다. 데이터가 재전송되는 경우에, NRE의 값은 동일한 전송 블록에 대한 최초 PDCCH 에서 지시되는 값으로부터 획득될 수 있다.
상기 수학식 12에서 f(i) 는 폐-루프 방식으로 전송 전력을 조절하는 파라미터를 나타낸다. f(i)를 제공하기 위해서 DCI 포맷 0, 3 또는 3A 의 PDCCH 가 사용될 수 있다. 즉, f(i) 는 사용자-특정(UE-specific)으로 주어지는 파라미터이다.
f(i) 와 관련하여 이전의 전송 전력에 누적하여 전송 전력 값이 주어지는지, 또는 누적하지 않고 전송 전력 값이 주어지는지 여부는 Accumulation-Enabled 라는 플래그를 통하여 지시될 수 있다.
Accumulation-Enabled 플래그에서 누적 모드가 활성화되는 것으로 설정되는 경우, f(i)는 다음의 수학식 16과 같이 주어질 수 있다.
Figure PCTKR2015008473-appb-M000016
수학식 16에서,
Figure PCTKR2015008473-appb-I000020
는 단말 특정 보정 값(correction value)으로서, 전송전력제어(TPC) 명령으로 칭할 수도 있다.
Figure PCTKR2015008473-appb-I000021
는 DCI 포맷 0 의 PDCCH에 포함되거나 또는 DCI 포맷 3/3A의 PDCCH에 다른 TPC 명령들과 함께 조인트 코딩되어 단말에게 시그널링될 수 있다. PDCCH DCI 포맷 0 또는 3 의 PDCCH 상에서 시그널링되는
Figure PCTKR2015008473-appb-I000022
dB 누적 값(accumulated value)은 아래의 표 4와 같이 2 비트 크기로 주어질 수 있다.
TPC Command Field in DCI format 0/3 Accumulated
Figure PCTKR2015008473-appb-I000023
0 -1
1 0
2 1
3 3

단말이 PDCCH DCI 포맷 3A 를 검출하는 경우에,
Figure PCTKR2015008473-appb-I000024
dB 누적 값(accumulated value) 은 1 비트로 표현되고, {-1, 1} 중 하나의 값을 가질 수 있다.
상기 수학식 16에서 FDD 의 경우에 KPUSCH = 4 이다.
DCI 포맷 0 및 DCI 포맷 3/3A 모두가 동일한 서브프레임에서 검출되는 경우에, 단말은 DCI 포맷 0 에 의해서 제공되는
Figure PCTKR2015008473-appb-I000025
를 사용하게 된다. TPC 명령이 없거나 불연속 수신(DRX) 모드인 경우에는
Figure PCTKR2015008473-appb-I000026
= 0dB 이다. 단말이 최대 전송 전력에 다다르게 되면, 양수(positive) 값을 가진 TPC 명령은 누적되지 않는다 (즉, 최대 전송 전력을 유지한다). 단말이 최소 전송 전력 (예를 들어, -40dBm)에 다다르게 되면, 음수(negative) 값을 가진 TPC 명령은 누적되지 않는다 (즉, 최소 전송 전력을 유지한다).
한편, Accumulation-Enabled 플래그에서 누적 모드가 활성화되지 않는 것으로 설정되는 경우, f(i) 는 다음의 수학식 17과 같이 주어질 수 있다. 누적 모드가 활성화되지 않는 것은, 달리 표현하면 상향링크 전력 제어 값이 절대값(absolute value) 방식으로 주어지는 것을 의미한다.
Figure PCTKR2015008473-appb-M000017
상기 수학식 17에서,
Figure PCTKR2015008473-appb-I000027
의 값은 PDCCH DCI 포맷 0 인 경우에만 시그널링된다. 이 때,
Figure PCTKR2015008473-appb-I000028
의 값은 다음의 표 5와 같이 주어질 수 있다.
TPC Command Field in DCI format 0 Absolute
Figure PCTKR2015008473-appb-I000029
(dB) only DCI format 0
0 -4
1 -1
2 1
3 4

상기 수학식 17에서, FDD 의 경우에 KPUSCH = 4 이다.
PDCCH 가 검출되지 않거나, DRX 모드이거나, 또는 TDD 에서 상향링크 서브프레임이 아닌 경우에 f(i) = f(i-1)이다.
한편, 상향링크제어채널(PUCCH)을 위한 전력 제어는 다음의 수학식 18과 같이 정의할 수 있다.
Figure PCTKR2015008473-appb-M000018
상기 수학식 18에서, PPUCCH(i)의 단위는 dBm으로 표현된다. 수학식 18에서,
Figure PCTKR2015008473-appb-I000030
는 상위 계층에 의해 제공되며, 각
Figure PCTKR2015008473-appb-I000031
값은 PUCCH 포맷(format) 1a와 관계된 PUCCH 포맷(F)에 대응한다.
Figure PCTKR2015008473-appb-I000032
은 PUCCH 포맷에 종속한 값으로, nCQI는 채널 품질 정보(Channel Quality Information; CQI)를 위한 숫자 정보 비트(information bit)에 해당하고, nHARQ는 HARQ(Hybrid Automatic Repeat request) 비트(bit)수에 해당한다.

이하에서, 앞서 살핀 TPC command를 활용한 D2D 전송 전력 제어(power control)와 관련된 설명을 참조하여 D2D 전송 전력 제어 방법에 대해 좀 더 구체적으로 살펴본다.
먼저, D2D 전송 전력 제어(power control)은 SG(Scheduling Grant) 를 통해서 구현할 수 있다.
상기 SG는 D2D grant로 표현될 수 있다.
여기서, 상기 D2D grant는 DCI format 5의 PDCCH를 통해 전송될 수 있다.
특히, 상기 D2D 전송 전력 제어는 TPC(Transmission Power Control) 필드를 활용하거나 또는 DCI format 3/3A를 활용하여 TPC command를 전달할 수 있다.
상기 D2D 전송 전력 제어를 위해 DCI format 3/3A를 사용하는 경우, 상기 DCI format 3/3A의 필드 중에 특정 field를 D2D power control을 위한 필드로 정의하여 사용할 수도 있다.
상기 특정 필드가 D2D power control을 위한 필드로 정의되는지는 사전에 RRC signal을 통해서 용도가 cellular용인지 또는 D2D 용인지 partitioning되어야 한다.

D2D 전송 전력 제어를 위해 기존의 TPC를 이용하는 경우, TPC bit(2 bit)의 공유를 통해 SA(Scheduling Assignment)와 Data에 대한 power control을 동시에 지원할 수 있다.
즉, TPC 필드 중 1 bit에 해당하는 state(또는 value)는 SA를 위한 전력 제어에, 다른 1 bit에 해당하는 state는 Data를 위한 전력 제어에 할당함으로써, dynamic (closed) power control을 수행할 수 있다.
또한, 상기 TPC는 1 bit 단위로 분리되거나 또는 2 bit의 state를 분리할 수 있다.
여기서, 2 bit의 state를 분리한다는 의미는 2 bit로 표현 가능한 ‘00’, ‘01’, ‘10’, ‘11’ 값 중 일부는 SA의 전력 제어용으로, 또 다른 일부는 Data의 전력 제어용으로 구분하는 것으로 해석될 수 있다.
또 다른 실시 예로서, D2D 전송 전력 제어를 위해 기존의 DCI format 3/3A를 사용하여 SA 및/또는 Data의 power control을 수행할 수도 있다.
여기서, DCI format 3은 2 bit power control을, DCI format 3A는 1 bit power control을 할 수 있다.
즉, DCI format 3의 TPC는 1 bit이고, DCI format 3A의 TPC는 2 bit이다.
먼저, D2D 전송 전력 제어를 위해 DCI format 3을 이용하는 방법에 대해 살펴본다.
DCI format 3에서, SA와 Data를 분리하여 DCI format을 구성하는 방법은 (1) 2 bit 길이의 TPC unit(TPC command)를 분리하여 1 bit는 SA를 위한 전력 제어용으로, 1 bit는 data를 위한 전력 제어용으로 구현하는 방법과, (2) 기본 TPC 단위인(TPC command) 2 bit를 각각 SA 및 data에 개별적으로 할당하는 방법이 있다.
추가적으로, 도 44를 참조하여, 2개의 TPC unit (2 bit x 2 = 4bit)을 하나의 D2D UE의 SA 및 Data의 power control을 위해 사용하는 방법에 대해서도 살펴본다.
2개의 TPC unit을 이용하여 SA 및 data에 대한 전력 제어를 위해서는 사전에 RRC signaling을 통해서 D2D 단말로 알려져야 한다.
도 44는 본 명세서에서 제안하는 방법이 적용될 수 있는 DCI format 3을 이용하여 SA 및 DATA에 대한 전력 제어를 수행하는 방법을 나타낸 도이다.
도 44a는 기존 DCI format 3의 TPC command(2 bit)를 나타낸다.
도 44b는 도 44a의 TPC command 2 bit를 SA 및 Data의 전력 제어를 위해 공유하는 일 예를 나타낸다.
이 경우, TPC command 2 bit를 앞서 살핀 것처럼, 1 bit씩 분할하여 각각 SA 및 data의 전력 제어를 위해 사용하거나 또는 상기 TPC command 2 bit의 state(‘00’, ‘01’, ‘10’, ‘11’)를 분할해서 SA와 data의 전력 제어를 위해 사용할 수도 있다.
도 44c는 4 bit를 하나의 TPC command로 묶어서 SA와 Data의 전력 제어를 위해 공유하는 방법을 나타낸다.
도 44c의 경우도, 특정 bit를 분할하는 방법과 4 bit로 표현 가능한 state를 SA 및 data의 전력 제어를 위해 분할하는 방법이 가능하다.
도 44d 및 도 44e는 2 bit의 TPC command에 SA 또는 data에 대한 하나의 TPC만을 전송하는 방법을 나타낸다.
여기서, SA에 대한 TPC가 먼저 위치하는지 또는 data에 대한 TPC가 먼저 위치하는지에 대한 순서는 사전에 정해지는 것이 바람직하다.
도 44f 및 도 44g는 TPC command에 먼저 data 또는 SA를 연속적으로 할당하고, 이후에 SA 또는 data를 연속적으로 할당하는 방법을 나타낸다.
즉, TPC command에 data가 연속적으로 할당된 경우, 이후에는 TPC command에 SA가 연속적으로 할당된다.
여기서, 연속적으로 할당되는 SA 또는 data의 개수는 사전에 정해지거나 RRC signaling을 통해 정해질 수 있다.

다음으로, 도 44의 방법을 통해 data 및 SA의 TPC를 할당한 DCI format 3에 zero padding을 수행하는 방법에 대해 살펴본다.
즉, 도 44의 방법을 통해 data 및 SA의 TPC를 할당한 DCI format 3의 전체 비트가 DCI format 0의 길이와 동일하지 않은 경우, 상기 DCI format 0의 길이와 동일하게 유지하기 위해서, 상기 DCI format 3에 zero bit가 삽입될 수 있다.
도 44b와 같이, 2 bit의 TPC command를 SA 및 data의 TPC command를 위해 공유하는 방법에서는 DCI format 3은 DCI format 0과의 길이 차이가 1 bit만큼 발생할 수 있다.
따라서, 상기 DCI format 3에 1 bit의 zero padding을 수행한다.
하지만, 도 44c의 경우와 같이, TPC(2 bit) pair를 통해 4 bit가 하나의 TPC command를 이루는 경우에는 DCI format 0과 DCI format 3과의 길이 차이는 최대 3 bit까지 발생할 수 있다.
즉, 3 bit의 길이 차이가 발생하는 경우, DCI format 3에 3 bit의 zero padding을 수행한다.
결과적으로, DCI format 3에 삽입해야할 zero padding의 bit 수는 SA 와 data의 pairing bit에 따라서 결정된다.
즉, 상기 SA 와 data의 pairing bit에 따라 결정되는 삽입될 zero padding의 bit 수는 최대 (Paired bit -1) bit이다.
여기서, SA와 data의 paring 방법은 도 44에 도시된 바와 같이 SA와 Data의 TPC가 일-대-일(1-to-1)로 mapping되는 경우 이외에도, M-대-N(M-to-N) 형태로 pairing 될 수도 있다.
여기서, M은 SA의 TPC 개수를 나타내고, N은 Data의 TPC 개수를 나타낸다.

도 45는 본 명세서에서 제안하는 방법이 적용될 수 있는 DCI format 3A를 이용하여 SA 및 DATA에 대한 전력 제어를 수행하는 방법을 나타낸 도이다.
도 45a는 기존 DCI format 3A의 TPC command(1 bit)를 나타낸다.
도 45b 및 도 45c는 SA 및 Data의 전력 제어를 위해 각각 1 bit의 TPC command를 할당하는 방법의 일 예들을 나타낸다.
도 45b는 SA TPC command, data TPC command 순서로 각각 1 bit의 TPC command가 할당되는 것을 나타내며, 도 45c는 data TPC command, SA TPC command 순서로 각각 1 bit의 TPC command가 할당되는 것을 나타낸다.
도 45d 및 도 45e는 1 bit의 TPC command에 먼저 data 또는 SA를 연속적으로 할당하고, 이후에 SA 또는 data를 연속적으로 할당하는 방법을 나타낸다.
즉, 1 bit의 TPC command에 data의 TPC가 연속적으로 할당된 경우, 이후에는 1 bit의 TPC command에 SA의 TPC가 연속적으로 할당된다.
연속적으로 할당되는 SA 또는 data의 개수는 사전에 정해지거나 RRC signaling을 통해 정해질 수 있다.

다음으로, 도 45의 방법을 통해 data 및 SA의 TPC를 할당한 DCI format 3A에 zero padding을 수행하는 방법에 대해 살펴본다.
살핀 것처럼, 도 45b는 SA TPC 1 bit, Data TPC 1 bit가 pairing되어 2 bit의 D2D TPC command를 형성하는 경우를 나타낸다.
이 경우, DCI format 3A와 DCI format 0과의 최대 길이 차이(size difference)는 1 bit가 되기 때문에, DCI format 3A에 1 bit zero padding을 수행한다.
마찬가지로, DCI format 3A를 변형해서 사용하는 다른 방법(도 45c 내지 도 45e)에서도 DCI format 3A에 최대 1 bit의 zero padding을 수행하면 DCI format 0과 DCI format size를 동일하게 유지할 수 있다.
도 44 내지 도 45의 방법은 기본적으로 SA 및 data의 TPC를 전송하는 DCI format(예: DCI format 3/3A)의 길이를 DCI format 0의 길이에 맞추기 위해 특정 bit의 zero padding을 수행하는 것을 전제로 한다.

앞서 살핀 본 명세서에서 제안하는 방법들에서, SA TPC와 Data TPC를 구분하는 방법으로, D2D RNTI를 가지는 D2D grant에서 TPC를 구분하는 방법이 가능하다.
여기서, D2D RNTI를 가지는 D2D grant는 DCI format 5를 의미할 수 있으며, 상기 D2D RNTI는 SL(SideLink)-RNTI로 표현될 수도 있다.
또는, DCI format 3/3A를 사용하는 경우, SA TPC와 Data TPC를 구분하는 방법으로, SA TPC와 Data TPC에 각각 서로 다른 TPC RNTI를 사용해서 구분하는 것도 가능하다.
또는, 하나의 RNTI를 사용하지만 DCI format 3/3A에서 SA TPC와 Data TPC를 구분하는 방법으로, DCI format 3/3A 내 서로 다른 필드를 사용함으로써 SA TPC와 Data TPC를 구분할 수도 있다.
SA TPC와 Data TPC를 구분하는 또 다른 방법으로, SA와 Data 전송 시점과 TPC의 전송 시점과의 관계를 이용하는 것이다.
예를 들어, Subframe #n에서 TPC가 전송된다고 가정하고(eNB-to-UE), subframe #n+4 또는 subframe #n+4 이후 첫 번째 subframe(설계 방법에 따라, available subframe or D2D용 D2D grant가 전송 가능한 subframe or D2D available subframe 등으로 해석될 수 있음)에서 SA가 전송되면(UE-to-UE) subframe #n에 전송된 TPC는 SA용 TPC로 간주하고, subframe #n+4 혹은 그 이후 처음 도래하는 subframe에서 Data가 전송되면 subframe #n에 전송된 TPC는 Data TPC로 해석하는 것이다.
이러한 전송 timing 관계를 이용하여 TPC 용도(SA 용 또는 data 용)를 구분해 내는 방법을 적용하면, subframe #n에 (EPDCCH, PDCCH 등을 사용해서) 전송되는 TPC가 D2D grant(또는 SG 또는 DCI format 5)에 포함되어 전송되는 TPC 형태가 될 수도 있으며, 또는 동일한 또는 다른 RNTI로 masking된 DCI format 3/3A 또는 이의 변형형태로 전달되더라도 TPC 용도를 쉽게 구별할 수 있다.
여기서, TDD 시스템을 고려하는 경우, 상기 subframe #n+4 또는 그 이후 도래하는 available subframe의 정의는 subframe #n+k로 변경되어야 한다.
여기서, k 는 TDD UL/DL configuration에서 정의된 “UL grant 전송 시점과 PUSCH 전송 시점의 차이(subframe)”에 해당하는 값이다.
또는, 상기 k는 “DCI format 3/3A를 전송하고 이 값이 D2D transmission에 적용되는 시점(subframe)”으로 정의할 수도 있다.
참고로, subframe은 legacy subframe이지만 D2D를 위한 D2D subframe일 수도 있다. 이 경우, subframe #n+4의 정의는 달라질 수도 있다.
상기 SA TPC 및 data TPC command를 공유 또는 구분하여 특정 DCI format을 이용하여 전송하는 방법은 D2D grant에 포함되어 전송되는 TPC와 함께 전달되거나 필요에 따라서 독립적으로 전달될 수 있다.
여기서, 상기 D2D grant에 포함되어 전송되는 TPC는 SA 또는 data 전송 시의 전력을 최대 전력으로 설정하여 전송하는지 또는 기존 DCI format 3/3A의 방식과 같은 전력 제어를 수행하는지를 지시하는(또는 나타내는) TPC 모드(mode) 정보를 나타낼 수 있다.

앞서 살핀 바와 같이, SA와 D2D data에 개별 power control 방식을 적용할 수 있다.
이러한 정보는 TPC field를 통해서 전달될 수 있다. 하지만, D2D data grant는 아래 표 6과 같이 하나의 TPC만 존재할 수도 있다.
Field Name Length Use in D2D grant
Hopping flag 1 Use as is
Resource block assignment
(including N_Ulhop)
6 (1.4 MHz)
8 (3 MHz)
8 (5 MHz)
13 (10 MHz)
14 (15 MHz)
15 (20 MHz)
Use as is for resource of data. Resource of SA is derived from this field.
MCS and RV 5 Use as is for data
TPC 2 Use as is (data)
Number of subframes used for transmissions
(as a part of RPT)
2(for example) Indicates the number of subframes used for data transmissions
Subframe pattern
(as a part of RPT)
4(for example) Indicates the set of subframes used for data transmissions

여기서, TPC 값은 SA와 Data가 공유하지만 TPC 파라미터이외의 power control parameters는 SA와 data 각각 개별적으로 configuration 될 수 있다.
특히, 개루프 전력 제어(open loop power control:OLPC)를 수행하는 데 관련된 parameter는 별도로 설정될 수 있다.
이와 같이, TPC 파라미터 이외의 power control parameters는 RRC signaling에 의해서 사전에 configuration 될 수 있기 때문에, D2D grant 설계에 영향을 미치지 않고 별도로 indication 해줄 수 있게 된다.

이하에서, D2D 통신의 전송 전력 제어를 수행하는 방법에 대해 간략히 정리하기로 한다.
먼저, 제 1 단말은 D2D 통신에 사용하기 위한 자원 풀(resource pool)을 획득한다.
여기서, 상기 제 1 단말은 D2D 전송 단말을 의미할 수 있으며, D2D 통신은 사이드링크(sidelink)로 표현될 수 있다.
또한, 상기 제 1 단말은 상기 자원 풀을 기지국으로부터 획득하거나 또는 사용자로부터 해당 자원 풀을 입력받을 수 있다.
여기서, 상기 자원 풀(resource pool)은 SA가 전송되는 자원 영역을 나타내는 SA(scheduling assignment) 자원 풀 또는 D2D data가 전송되는 자원 영역을 나타내는 data 자원 풀 중 적어도 하나를 포함한다.
이후, 상기 제 1 단말은 상기 SA 자원 풀을 통해 D2D data 전송과 관련된 정보를 포함하는 SA(scheduling assignment)를 제 2 단말로 전송한다.
여기서, 상기 제 2 단말은 D2D 수신 단말일 수 있다.
이후, 상기 제 1 단말은 상기 제 2 단말로 상기 SA에 기초하여 D2D data를 전송한다.
앞의 과정들에서 D2D 통신의 전송 전력 제어는 상기 SA 또는 상기 D2D data 중 적어도 하나의 전송 전력 제어와 관련된 제어 정보를 통해 수행될 수 있다.
상기 제어 정보는 전송 전력 제어 커맨드(TPC command) 또는 전송 전력 제어 정보 또는 전송 전력 제어 필드 등으로 표현될 수 있다.
또한, 상기 제어 정보는 기지국으로부터 D2D grant를 통해 수신될 수 있으며, 상기 D2D grant는 DCI format 5로 표현될 수도 있다.
또한, 상기 제어 정보는 상기 SA 또는 상기 D2D data 중 적어도 하나의 전송 전력을 최대 전송 전력으로 사용할지 아닐지를 나타내는 (모드) 정보를 나타낼 수 있다.
상기 제어 정보가 상기 D2D grant(또는 DCI format 5)에 포함되는 경우, 상기 제어 정보는 상기 SA 또는 상기 D2D data의 전송 전력을 최대 전송 전력으로 사용할 것을 지시하거나 또는 기존의 절대적/상대적 전송 전력 제어 수행을 지시할 수 있다.
여기서, 상기 SA 및/또는 상기 Data의 TPC 정보를 포함하는 D2D grant의 전체 bit 수가 DCI format 0의 길이보다 작은 경우, 상기 D2D grant에는 상기 DCI format 0의 길이와 같아질 때까지 제로(zero) bit가 삽입된다.
또한, 상기 제어 정보는 제 1 제어 정보 및 제 2 제어 정보로 구분되며, 상기 제 1 제어 정보는 상기 SA의 전송 전력 제어 정보이며, 상기 제 2 제어 정보는 상기 D2D data의 전송 전력 제어 정보일 수 있다.
또한, 상기 제어 정보는 상기 SA의 전송 전력 제어 정보 또는 상기 D2D data의 전송 전력 제어 정보를 나타내며, 상기 제어 정보는 연속적으로 할당되거나 또는 일정 구간마다 할당되는 것을 특징으로 한다. 이와 관련된 구체적인 구조는 도 44 내지 도 45를 참조하기로 한다.
또한, 상기 제어 정보는 DCI format 3 또는 DCI format 3A를 통해 전송될 수 있으며, 이 경우 상기 제어 정보는 상기 D2D 통신에 사용하기 위한 자원 풀에서 전송될 수 있다.
즉, DCI format 3 또는 3A가 D2D subframe에서 전송 또는 수신되는 경우, 해당 DCI format 3/3A는 D2D 통신의 전송 전력 제어 수행을 위한 것으로 판단될 수 있다.
또한, 상기 제어 정보를 포함하는 DCI format 3 또는 상기 DCI format 3A의 전체 bit 수가 DCI format 0의 길이보다 작은 경우, 제로(zero) bit가 삽입될 수 있다.
또한, 상기 SA의 전송 전력 제어 정보와 상기 D2D data의 전송 전력 제어 정보는 서로 다른 RNTI(Radio Network Temporary Identifier)의 사용에 의해 또는 서로 다른 필드의 사용에 의해 구분될 수 있다.
또한, 상기 제어 정보는 상기 제어 정보가 전송되는 서브프래임(subframe) 이후의 subframe과 관련될 수 있다.
구체적으로, 상기 제어 정보가 subframe #n에서 전송되고, subframe #n+k에서 또는 상기 subframe #n+k 이후 첫 번째 D2D subframe에서 SA가 전송되는 경우, 상기 제어 정보는 상기 SA의 전송 전력 제어 정보이며, 상기 subframe #n+k에서 또는 상기 subframe #n+k 이후 첫 번째 D2D subframe에서 D2D data가 전송되는 경우, 상기 제어 정보는 상기 D2D data의 전송 전력 제어 정보를 나타낸다.
K 값은 4일 수 있으며, TDD UL/DL configuration에 따라 그 값은 변경될 수 있다.

이하에서, 앞서 살핀 내용을 토대로 D2D 전송 전력 제어(power control) 구체적으로, SA 및 D2D Data의 전력 제어 방법에 대해 구체적으로 살펴본다.
즉, 본 명세서는 D2D grant에 정의되는 TPC(Transmission Power Control) 필드와 DCI format 3/3A를 이용하여 D2D link(sidelink)의 전력 제어를 수행하는 방법을 제공한다.
여기서, D2D grant는 앞서 살핀 바와 같이, 새로운 DCI format이 정의되어 전송될 수 있으며, 상기 새로운 DCI format의 일 예는 DCI format 5일 수 있다.
구체적으로, D2D link의 전력 제어를 수행하기 위해 D2D grant에 포함된 TPC 필드는 SA 즉각적인(instantaneous) 전력 제어(power control)에 사용되고, DCI format 3/3A에 포함된 TPC 필드는 D2D Data 전송(transmission)의 power control에 사용할 수 있다.
여기서, 상기 D2D grant에 포함된 TPC 필드는 SA TPC 필드로 표현될 수 있다.
여기서, 상기 SA는 D2D data 전송을 위한 스케쥴링 정보(scheduling information)를 나타내며, 상기 SA에는 자원 할당(resource allocation:RA) 정보가 포함되어 있다.
상기 SA에 포함되는 자원 할당 정보는 SA 자원 풀(resource pool) 형태로 제공된다.
여기서, 상기 SA의 자원 할당 정보는 D2D 통신의 특성을 고려할 때 자주 변하지 않을 가능성이 높다.
일 예로, VoIP과 같은 데이터 송수신을 가정하는 경우, 기지국은 단말로 임의의 자원을 사전에 지정하고, 오랜 시간 동안 상기 지정된 자원을 사용하여 데이터 송수신을 수행한다.
따라서, SA 내 RA 정보의 변화가 자주 일어나지 않기 때문에, 기지국은 단말로 SA를 자주 전송할 필요가 없게 된다.
하지만, D2D Data는 동일한 자원을 일정 기간 동안 변화 없이 사용하더라도 WAN(Wireless Area Network) UE(cellular UE)에게 주는 간섭 정도가 상대적으로 자주 변할 수 있다.
이처럼, 자주 변하는 간섭 상황에 적응적으로 대처하기 위해서, 기본적으로 D2D Data 전송에 대한 전력 제어가 상기 SA 전송 전력 제어에 비해서 자주 수행되는 것이 바람직하다.
또한, 한 번의 SA 전송에 다수의 D2D Data 전송이 수행되기 때문에 SA 전송에 대한 전력 제어는 SA 주기에 맞추어 진행하고, D2D Data 전송에 대한 전력 제어는 D2D Data 전송의 (발생) 빈도에 맞추어 전력 제어가 수행되도록 하는 것이 바람직하다.
예를 들어, 상기 SA가 P_sa 주기로 전송되고, D2D Data는 상기 P_sa 주기보다 작은 주기인 P_data 간격으로 전송된다고 가정하면, 상기 P_sa 주기마다 전송되는 D2D grant에 포함되는 TPC 필드는 SA 전송의 전력 제어를 위해 사용되며, P_data 주기로 전송되는 DCI format 3/3A의 TPC 필드는 D2D Data 전송의 전력 제어를 위해 사용하는 것으로 정의한다.
앞서 살핀 것처럼, D2D grant의 TPC 필드는 SA 전력 제어용으로, DCI format 3/3A의 TPC 필드는 D2D data의 전력 제어용으로 구분하여 사용하는 것은 SA와 D2D Data를 더 효율적이고 자율적으로 제어할 수 있게 된다.
특히, D2D Data 전송의 경우, SA 주기 사이에 특정 서브프레임에서 D2D Data의 전송이 끝날 수도 있으며, 또는 WAN data 전송에 강한 간섭을 유발하거나 또는 WAN data 전송에 의해 강한 간섭이 발생될 수 있다.
이런 상황에서 D2D grant를 통해 SA 및 D2D data 모두에 대한 전력 제어를 수행하게 되면, latency 문제로 신속한 대응이 어렵게 될 수 있다.
즉, 본 명세서에서 제안하는 방법(SA 및 D2D data의 전력 제어 분리)을 이용하는 경우, 별도의 RNTI 또는 동일한 RNTI를 사용하는 DCI format 3/3A를 사용하여 매 subframe 마다 D2D Data 전송의 전력 제어뿐만 아니라 심지어 HARQ 관련 parameter까지 변경할 수 있다.
이는 SA 및 D2D Data 전송이 비주기적이어도 마찬가지이다.
즉, 중요한 점은 DCI format 3/3A는 심지어 매 서브프레임 단위로 비주기적으로 필요한 상황에서 전송된다는 것이다.
즉, DCI format 3/3A를 이용하여 D2D data 전송의 전력 제어를 수행하는 경우, SA 또는 D2D Data 전송이 주기적/비주기적과 관계없이 D2D Data 전송의 전력 제어가 필요하면(그 외 전송 파라미터 변경이 필요하게 되면) 언제든지 임의의 시점에 바로 D2D data 전송의 전력 제어를 DCI format 3/3A가 전송될 수 있다는 flexibility가 있다.
SA와 D2D Data는 D2D 링크를 통해 단말들 간 송수신되기 때문에, SA와 D2D data 전송에서 정확한 동기를 유지하는 것보다는 SA 및 D2D Data 전송 시점에 적절한 전력 제어 parameter로 전송될 수 있도록 상기 전송 시점 이전에 eNB로부터 SA 및 D2D data 전송 관련 전력 제어 정보(TPC 필드)를 D2D grant 및/또는 DCI format 3/3A를 통해 수신하면 된다.
즉, Data 전송 시점과 엄격한 timing association 보다는 D2D Data를 전송하는 시점에서 얼마 이전까지는 D2D data 전송과 관련된 전력 제어 정보가 수신되어야 하는 형태의 요구사항(requirement)만 만족되면 된다.

도 46은 본 명세서에서 제안하는 방법이 적용될 수 있는 D2D 통신의 전력 제어 방법의 일 예를 나타낸 순서도이다.
D2D 통신을 지원하는 무선 통신 시스템에서, D2D data를 송수신하는 방법은 아래와 같다.
먼저, 기지국은 SA 자원 풀 및/또는 D2D data 자원 풀을 포함하는 D2D grant를 D2D 전송 단말로 전송한다. 상기 D2D grant는 DCI format 5일 수 있다.
이후, 상기 D2D 전송 단말은 상기 수신된 SA 자원 풀 중에서 SA 자원을 결정하거나 또는 기지국으로부터 SA 전송 자원이 기 결정된 경우 해당 자원을 이용하여 SA를 D2D 수신 단말로 전송한다.
이후, 상기 D2D 전송 단말은 D2D data를 D2D data 자원 풀 내 D2D data 자원을 이용하여 D2D 수신 단말로 전송한다.
상기 D2D data 자원은 상기 SA에 의해 지시될 수 있다.
여기서, 상기 SA 및 D2D data는 D2D link(또는 sidelink)를 통해 송수신된다.
여기서, 상기 SA 전송에 대한 전력 제어는 상기 D2D grant 내 TPC 필드를 통해 수행된다.
즉, 상기 기지국은 SA 전송의 전력 제어와 관련된 정보를 포함하는 TPC 필드를 상기 D2D grant에 포함시켜 상기 D2D 전송 단말로 전송한다.
상기 D2D 전송 단말은 SA 전송 주기마다 SA 전송의 전력 제어와 관련된 TPC 필드를 수신하기 때문에 상기 SA 전송에 대한 전력 제어는 SA 주기마다 수행될 수 있다.
또한, 상기 D2D data에 대한 전력 제어는 DCI format 3/3A의 TPC 필드를 통해 수행된다.
여기서, 상기 DCI format 3/3A는 PDCCH를 통해 기지국에서 D2D 전송 단말로 전송된다.
상기 기지국은 D2D data 전송 전력을 동적으로 제어할 필요가 있는 경우, 상기 DCI format 3/3A의 PDCCH를 동적으로 D2D 전송 단말로 전송한다.
즉, 상기 D2D 전송 단말은 매 서브프래임마다 또는 정해진 서브프래임에서PDCCH(DCI format 3/3A)의 모니터링을 통해 D2D data 전송에 대한 전력 제어가 수행되는지를 확인하게 된다.
정리하면, 기지국은 SA의 전송 전력 제어와 관련된 정보는 D2D grant를 통해 전송하고(S4610,S4620), D2D data의 전송 전력 제어와 관련된 정보는 DCI format 3/3A를 통해 전송한다(S4630,S4640).

D2D 통신의 전력 제어 방법의 또 다른 실시 예로서, SA 및 D2D Data 전송에 대한 전력 제어는 D2D grant에 포함되는 TPC 필드를 이용하고, DCI format 3/3A는 D2D Data 전송에 대한 전력 제어를 추가적으로 수행하는 것으로 정의할 수 있다.
즉, 기본적으로는 D2D grant의 TPC 필드를 이용하여 D2D 통신 즉, SA 및 D2D Data 전송의 전력 제어를 수행하며, 앞서 살핀, SA와 D2D Data 전송의 특성으로 인해서 D2D Data 전송의 전력 제어 관련 파라미터의 시급한 변경이 필요한 경우, 언제라도 DCI format 3/3A를 전송함으로써, D2D data 전송의 전력 제어를 수행할 수 있도록 한다.
앞서 살핀 방법들에서 DCI format 3/3A를 사용하여 D2D 통신의 전력 제어를 수행하는 경우, 해당 UE의 TPC 정보에 대한 index는 사전에 RRC로 configure되는 것이 바람직하다.

이하에서, 본 명세서에서 제안하는 TPC-X-RNTI로 CRC 마스킹(masking)하여 DCI 포맷(format) 3/3A를 통해 SA 및/또는 D2D 데이터(data)의 TPC 커맨드 필드를 전송하는 방법에 대해 구체적으로 살펴보기로 한다.
셀룰라 통신(cellular communication)에서 정의되는 DCI 포맷 3/3A 내 콘텐츠 필드들(content fields) 또는 정보들 특히, TPC 커맨드 필드는 RRC 시그널링(signaling)에 의해서 구성(configure)된다.
즉, 상기 TPC 커맨드 필드의 구성과 관련된 규칙은 사전에 정해지게 된다.
상기 셀룰라 통신은 LTE/LTE(-A) 또는 현재 3GPP 표준에서 정의되는 eNB-UE 간의 통신을 의미하는 것으로, 이하에서 설명하는 단말과 단말 간 직접 통신(D2D 통신)과 구별하기 위해 편의상 셀룰러 통신으로 호칭하기로 한다.
또한, 기존의 DCI 포맷 3/3A와 본 명세서에서 제안하는 DCI 포맷 3/3A를 구별하기 위해 기존의 DCI 포맷 3/3A는 제 1 DCI 포맷 3/3A로, 본 명세서에서 제안하는 DCI 포맷 3/3A는 제 2 DCI 포맷 3/3A로 표현할 수도 있다.
여기서, 본 명세서에서 제안하는 DCI 포맷 3/3A(제 2 DCI 포맷 3/3A)는 기존의 DCI 포맷 3/3A(제 1 DCI 포맷 3/3A)와 필드 구성, 길이 등이 다를 수 있다.
DCI 포맷 3/3A 내 TPC 커맨드 필드의 구성과 관련된 규칙의 일 예로서, 상기 TPC 커맨드 필드는 다수의 UE들(multiple UEs)에 대한 TPC command 필드를 1 bit 또는 2 bits 단위로 연속적으로 구성할 수 있다.
이에 대한 구체적인 설명은 도 45를 참조하기로 한다.
상기 TPC 커맨드 필드가 다수의 UE들에 대한 TPC 커맨드들을 포함하는 경우,각 UE에 해당하는 TPC 커맨드 필드의 위치는 해당 UE로 사전에 알려진다.
또한, 상기 TPC 커맨드 필드에 사용되는 CRC 마스킹(masking) RNTI는 TPC-X-RNTI로 표현될 수 있다.
상기 X는 TPC 커맨드를 사용하는(또는 송수신하는) 채널의 종류를 나타낸다.
즉, 상기 X는 PUCCH, PUSCH 등일 수 있다.

본 명세서에서 제안하는 D2D 통신(SA 및/또는 D2D data)에서 전력 제어(power control)를 수행하는 방법에 대해 살펴본다.
D2D 통신에 대한 전력 제어(power control) 즉, SA 및/또는 D2D data에 대한 전력 제어(power control)이 필요한 경우, 앞서 언급한 바와 같이 D2D grant 즉, DCI format 5만을 사용하여 수행하는 것이 바람직할 수 있다.
만약 D2D grant(DCI format 5)를 사용하여 D2D 통신에 대한 전력 제어를 수행하는 경우, D2D grant 내 필드 중 TPC 커맨드 필드 이외의 다른 필드는 필요하지 않을 수 있다.
즉, TPC 커맨드 필드 이외의 다른 필드가 D2D grant 내 포함되어 전송되는 경우 불필요한 오버헤드(overhead)가 발생할 수 있게 된다.
상기 오버헤드는 D2D grant의 평균 전송 간격이 긴 주기로 정해져 있으나, 간섭 변화에 대응하기 위해 잦은 전력 제어를 수행하기 위해 D2D grant를 해당 주기보다 자주 전송해야하는 경우가 많이 발생할 수 있다.
이처럼, 불필요한 오버헤드의 발생을 해결하기 위한 방법으로, 기존의 DCI 포맷 3/3A를 활용하거나 또는 새롭게 구성(또는 정의)함으로써, TPC 커맨드가 필요한 UE들에게 다수의 TPC 커맨드를 그룹핑하여 한 번에 전송하는 방법을 고려할 수 있다.
다만, 상기 DCI 포맷 3/3A를 활용하거나 또는 새롭게 구성(또는 정의)하는 경우에는 종래의 DCI 포맷 3/3A와 구분하기 위한 방법이 정의될 필요가 있다.
따라서, 본 명세서에서 제안하는 DCI 포맷 3/3A와 기존의 DCI 포맷 3/3A를 구분하기 위한 방법으로서, (1) D2D TPC-D2D-RNTI를 새롭게 도입(또는 정의)하거나 또는 (2) 기존의 DCI 포맷 3/3A 내 특정 필드에 이를 구별할 수 있는 지시 비트(indication bit) 또는 지시 정보를 새롭게 정의할 수 있다.
상기 (2)에서의 지시 비트 또는 지시 정보는 DCI 포맷 3/3A의 콘텐츠(contents) 중 일부 또는 상기 콘텐츠의 전부가 셀룰러(cellular) UE를 위한 것인지 또는 D2D UE를 위한 것인지를 구별하는 정보를 나타낼 수 있다.
또는, 상기 지시 비트 또는 상기 지시 정보는 상기 DCI 포맷 3/3A의 콘텐츠 중 어디까지가 셀룰러(cellular) UE용이고, 상기 콘텐츠 중 어디에서부터 D2D UE 용인지를 구분하기 위한 용도로 활용될 수도 있다.
또는, 상기 (1) 및 (2) 이외도, 사전에 RRC 시그널링(signaling)을 통해 상기 DCI 포맷 3/3A의 일부 또는 전부가 셀룰러 UE 용인지 또는 D2D UE 용인지에 대한 규칙을 사전에 정할 수도 있다.
상기 규칙의 일 예로, DCI 포맷 3/3A 내 TPC 커맨드(command) 중에서 짝수 인덱스(index), 홀수 index로 구분하고(또는 N의 배수 위치 등), 도 47에 도시된 바와 같이, 상기 홀수 인덱스는 셀룰러 UE용, 상기 짝수 인덱스는 D2D UE용으로 DCI 포맷 3/3A의 용도를 구별할 수 있다. 도 47은 본 명세서에서 제안하는 DCI 포맷 3/3A 구성의 일 예를 나타낸 도이다.

앞서 살핀 방법들(TPC-D2D-RNTI를 새롭게 정의 또는 기존 DCI 포맷 3/3A 의 TPC 커맨드(command) 필드 공유 방법)을 통해 DCI 포맷 3/3A의 TPC 커맨드가 셀룰러 용인지 또는 D2D 용인지를 구분하는 경우에는 기존 셀룰러(cellular) UE에게 영향을 줄 수도 있다.
따라서, 앞서 살핀 신규 RNTI(TPC-D2D-RNTI)를 새롭게 정의하지 않고 기존 셀룰러 UE에게 영향을 최소화하기 위한 방법으로, 기존 TPC RNTI를 활용하여 D2D TPC 커맨드(command)를 위한 DCI 포맷 3/3A를 설계 또는 구현하는 방법도 가능하다.

이하에서, 기존 TPC RNTI를 활용하고, 기존 DCI 포맷 3/3A를 이용하여 D2D TPC 커맨드를 전송하는 방법에 대해 살펴보기로 한다.
먼저, 기존 DCI 포맷 3/3A에 사용되는 TPC-PUCCH-RNTI, TPC-PUSCH-RNTI의 일부 또는 전부를 D2D 용도로 사용하는 방법이다(제 1 실시 예).
제 1 실시 예의 경우, D2D 용 TPC 커맨드가 DCI 포맷 3/3A에 일부 포함되어 있거나 또는 DCI 포맷 3/3A 전부가 D2D 용 TPC 커맨드임이 사전에 RRC 시그널링을 통해 eNB와 UE 간에 공유되어야 한다.
또 다른 방법으로, 사전에 셀룰러 용 또는 D2D 용 서브프래임(subframe)을 미리 지정하고, 상기 지정된 서브프래임(subframe)에서 검출된 DCI 포맷 3/3A는 셀룰러 용 또는 D2D 용으로 간주하는 방법이다(제 2 실시 예).
< 1 실시 >
제 1 실시 예에 대해 좀 더 구체적으로 살펴보면, TPC-PUCCH-RNTI 또는 TPC-PUSCH-RNTI로 마스킹된 DCI 포맷 3/3A에 D2D 용 TPC 커맨드를 삽입하는 방법은 (1) 연속해서 일부 TPC 필드를 점유하는 방법과, (2) 인터레이싱(interlacing)하는 방법(예: 홀수/짝수 구분)이 정의될 수 있다.
상기 D2D 용 TPC 커맨드 삽입 방법의 일 예로, 1) 셀룰러 용 TPC 커맨드 다음에 D2D 용 TPC 커맨드가 위치하도록 하거나 또는 2) 셀룰러 용 TPC 커맨드 다음에 D2D 용 TPC 커맨드(SA와 D2D Data의 TPC 커맨드)가 연속해서 배치되는 형태가 있을 수 있다.
상기와 같은 DCI 포맷 3/3A의 TPC 커맨드 필드 구성에서, 셀룰러(Cellular) TPC 커맨드와 D2D TPC 커맨드를 동시에 수신하는 UE들이 있는 경우, 상기 셀룰러 TPC 커맨드와 상기 D2D TPC 커맨드를 모아서 하나의 DCI 포맷에 포함시키는 것이 바람직할 수 있다.
그 이유는, 앞서 살핀 것처럼, Cellular TPC 커맨드와 D2D TPC 커맨드를 함께 수신하여야 하는 UE와 그렇지 않은 UE에 대한 TPC 커맨드가 같은 DCI 포맷(format)에 공존할(포함될) 경우, TPC 커맨드 구성 및 이와 관련된 index 정보를 기지국과 UE 간에 공유하는 것은 어려울 수 있기 때문이다.

또 다른 방법으로, 상기 DCI 포맷 3/3A가 D2D TPC 전용 DCI 포맷인 경우, SA와 D2D data가 연속해서 구성되고, 이와 같은 형태가 반복되는 것이 인덱싱(indexing)하는 데 유리할 수 있다.

또 다른 방법으로, TPC-PUCCH-RNTI에 celluar TPC 커맨드와 D2D TPC 커맨드가 함께 포함되는 경우에는 셀룰러(Cellular) TPC 다음에 D2D TPC(SA 또는 D2D Data TPC)가 연속해서 존재하는 형태가 될 수 있다.
또 다른 방법으로, UE마다 TPC 커맨드 구성 포맷을 서로 다르게 하는 경우, 다수의 UE들에 대한 TPC 커맨드가 하나의 DCI 포맷에 혼재 또는 공존하더라도 이에 대한 정보를 RRC 시그널링 등을 통해 사전에 충분히 알려주는 경우 전력 제어의 수행에는 큰 문제가 없을 수 있다.

또 다른 방법으로, 하나의 UE가 다수의 TPC 커맨드(또는 정보)들을 기지국으로부터 수신하여야 하는 경우, 그룹 인덱스(group index) 형태로 하나의 UE에 대한 TPC 커맨드를 지시할 수 도 있다.
예를 들어, UE 별로 3개의 TPC 커맨드가 해당 단말들로 전송되어야 하는 상황을 가정한다.
즉, 하나의 DCI 포맷에 총 15개의 TPC 커맨드 (필드)로 구성된 경우, UE 별로 하나씩(0~14) indexing하는 방법 대신, 각 UE 당 3개의 TPC 커맨드를 묶어서 하나의 index를 만들어 0, 1, 2, 3, 4만 indexing함으로써 TPC 커맨드 전송과 관련된 시그널링(signaling) 절차를 더 간소화할 수도 있다(도 48).
도 48은 본 명세서에서 제안하는 DCI 포맷 3/3A 구성의 또 다른 일 예를 나타낸 도이다.

또 다른 실시 예(제 3 실시 예)로서, 앞서 살핀 TPC X RNTI에서 ‘X’에 따라 단말로 전송하는 TPC 커맨드(command) 적용 대상이 달라지게 할 수도 있다.
예를 들어, TPC PUCCH RNTI에 포함된 일부 또는 전체 TPC 커맨드는 SA 전력 제어(power control)에 사용하고, TPC PUSCH RNTI에 포함된 일부 또는 전체 TPC 커맨드는 데이터 전력 제어(Data power control)에 사용할 수 있다.
여기서, 상기 살핀 내용과 반대로 mapping 형태를 정의할 수도 있다.
즉, 기존 cellular TPC RNTI에 따라서 SA TPC 커맨드와 Data TPC 커맨드를 구분하여 단말로 전송하는 것도 가능하다.

또 다른 실시 예(제 4 실시 예)로서, 일부 TPC 커맨드 정보는 기존 TPC-X-RNTI로 전달하고, 일부 TPC 커맨드 정보는 새롭게 정의하는 TPC-D2D-RNTI로 전달하는 것도 가능하다.
즉, 기존과 신규로 나누어 SA TPC 또는 Data TPC를 구분할 수도 있고, 또는 채널의 속성에 따라서 분리하고, 분리된 채널에 SA TPC 및 Data TPC를 나누어 전송할 수도 있다.
예를 들어, 제어 채널 TPC 커맨드(control channel TPC command)에 사용되는 TPC-PUCCH-RNTI DCI 포맷 3/3A에는 D2D control channel/information에 대한 전력 제어 커맨드(power control command)가 전송되며, D2D data channel TPC command에 사용되는 (예: TPC-PUSCH-RNTI) DCI 포맷 3/3A에는 D2D data channel/information에 대한 전력 제어 커맨드가 전송되도록 할 수도 있다.

본 명세서에서 사용하는 기존 DCI 포맷 3/3A는 eNB-UE 간에 사용된 DCI format을 의미하는 것으로, 앞서도 언급한 바와 같이 D2D 통신에 사용되는 DCI 포맷 3/3A와 구별하기 위해 제 1 DCI 포맷 3/3A로 표현될 수도 있다.
또한, 본 명세서에서 제안하는 DCI 포맷 3/3A(제 2 DCI 포맷 3/3A)가 실제적으로 기존 DCI 포맷 3/3A의 필드 구성과 다른 필드 구성을 가지는 경우, DCI 포맷 3/3A에 대한 표현은 다른 DCI 포맷의 용어로 변경될 수 있다.
예를 들어, DCI 포맷의 길이 및 RNTI가 기존 DCI 포맷 3/3A와 동일하지만, TPC 커맨드 필드 구성에서 셀룰러(cellular) TPC와 D2D TPC가 혼재 또는 공존하는 경우(또는 함께 포함되는 경우)에는 앞서 언급한 DCI 포맷 3/3A란 용어의 범주에 포함되는 것이 바람직하지 않을 수 있다.
따라서, 이 경우에는 새로운 DCI 포맷의 용어를 정의하여 사용함으로써, 본 명세서에서 제안하는 방법들을 더 명확하게 표현할 수 있다.

도 49는 본 명세서에서 제안하는 D2D 통신의 전력 제어 방법의 일 예를 나타낸 순서도이다.
D2D 통신을 지원하는 무선 통신 시스템에서, SA 및 D2D data 송수신 및 전력 제어 수행 방법은 아래와 같다.
먼저, 기지국은 SA 자원 풀 및/또는 D2D data 자원 풀을 포함하는 제 1 DCI(downlink control information) 포맷을 D2D 전송 단말로 전송한다(S4910).
상기 제 1 DCI 포맷은 PDCCH(Physical Downlink Control Channel)을 통해 기지국으로부터 수신될 수 있다.
또한, 상기 제 1 DCI 포맷은 상기 SA 및 상기 D2D data의 전송 전력 제어와 관련된 제어 정보를 포함한다.
상기 제어 정보는 TPC(Transmission Power Control) 커맨드(command)를 나타낸다.
여기서, 상기 제 1 DCI 포맷은 D2D DCI 포맷, DCI format 5, DCI 포맷 3 또는 DCI 포맷 3A일 수 있다.
상기 제 1 DCI 포맷은 D2D-RNTI(Radio Network Temporary Identifier)로 CRC(Cyclic Redundancy Check) 마스킹(masking)될 수 있다.
또한, 상기 제 1 DCI 포맷은 다수의 TPC 커맨드들을 포함할 수 있다.
이 경우, 상기 제 1 DCI 포맷이 단말 별로 둘 이상의 TPC 커맨드들을 가지는 경우, 상기 다수의 TPC 커맨드들은 상기 단말 별로 그룹핑(grouping)되며, 각 그룹은 그룹 인덱스(group index)로 구분된다.
또한, 상기 제 1 DCI 포맷은 셀룰러(cellular) 통신을 위한 것인지 또는 D2D 통신을 위한 것인지를 구분하는 지시(indication) 필드를 포함할 수 있다.
또한, 상기 제어 정보는 셀룰러 통신에서의 TPC 커맨드 및 D2D 통신에서의 TPC 커맨드로 구분될 수 있다.
일 예로, 상기 제어 정보의 짝수 인덱스(even index)는 셀룰러 통신에서의 TPC 커맨드를 나타내며, 상기 제어 정보의 홀수 인덱스(odd index)는 D2D 통신에서의 TPC 커맨드를 나타낼 수 있다.
또한, 상기 SA의 전송 전력 제어와 관련된 제어 정보와 상기 D2D data의 전송 전력 제어와 관련된 제어 정보는 서로 다른 RNTI에 의해 구별될 수 있다.
또한, 상기 제 1 DCI 포맷이 D2D-RNTI로 CRC 마스킹되는 경우, 상기 D2D RNTI의 일부는 SA의 TPC 커맨드를 나타내며, 상기 D2D RNTI의 나머지 일부는 D2D data의 TPC 커맨드를 나타낼 수 있다.
이후, 상기 D2D 전송 단말은 상기 수신된 SA 자원 풀 중에서 SA 자원을 결정하거나 또는 기지국으로부터 SA 전송 자원이 기 결정된 경우 해당 자원을 이용하여 SA를 D2D 수신 단말로 전송한다(S4920).
이후, 상기 D2D 전송 단말은 D2D data를 D2D data 자원 풀 내 D2D data 자원을 이용하여 D2D 수신 단말로 전송한다(S4930).
상기 D2D data 자원은 상기 SA에 의해 지시될 수 있다.
여기서, 상기 SA 및 D2D data는 D2D link(또는 sidelink)를 통해 송수신된다.
앞서 살핀 바와 같이, 상기 SA 및 D2D data 전송에 대한 전력 제어는 상기 제 1 DCI 포맷의 TPC 필드를 통해 수행된다.

발명이 적용될 있는 장치 일반
도 50은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 내부 블록도의 일 예를 나타낸다.
도 50을 참조하면, 무선 통신 시스템은 기지국(5010)과 기지국(5010) 영역 내에 위치한 다수의 단말(5020)을 포함한다.
기지국(5010)은 프로세서(processor, 5011), 메모리(memory, 5012) 및 RF부(radio frequency unit, 5013)을 포함한다. 프로세서(5011)는 앞서 도 1 내지 도 49에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(5011)에 의해 구현될 수 있다. 메모리(5012)는 프로세서(5011)와 연결되어, 프로세서(5011)를 구동하기 위한 다양한 정보를 저장한다. RF부(5013)는 프로세서(5011)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(5020)은 프로세서(5021), 메모리(5022) 및 RF부(5023)을 포함한다. 프로세서(5021)는 앞서 도 1 내지 도 49에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(5021)에 의해 구현될 수 있다. 메모리(5022)는 프로세서(5021)와 연결되어, 프로세서(5021)를 구동하기 위한 다양한 정보를 저장한다. RF부(5023)는 프로세서(5021)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(5012, 5022)는 프로세서(5011, 5021) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(5011, 5021)와 연결될 수 있다. 또한, 기지국(5010) 및/또는 단말(5020)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 명세서의 무선 통신 시스템에서 전송 전력 제어 방법은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 단말간 직접 (Device-to-Device:D2D) 통신을 지원하는 무선 통신 시스템에서 상기 D2D 통신의 전송 전력 제어(Transmission Power Control:TPC) 를 수행하기 위한 방법에 있어서, 제 1 단말에 의해 수행되는 상기 방법은,
    D2D 통신에 사용하기 위한 자원 풀(resource pool)을 수신하는 단계,
    상기 자원 풀(resource pool)은 SA가 전송되는 자원 영역을 나타내는 SA(scheduling assignment) 자원 풀 또는 D2D data가 전송되는 자원 영역을 나타내는 data 자원 풀 중 적어도 하나를 포함하며;
    상기 SA 자원 풀을 통해 D2D data 전송과 관련된 정보를 포함하는 SA(scheduling assignment)를 제 2 단말로 전송하는 단계; 및
    상기 제 2 단말로 D2D data를 전송하는 단계를 포함하되,
    상기 자원 풀은 제 1 DCI(downlink control information) 포맷(format)에 포함되며,
    상기 제 1 DCI 포맷은 PDCCH(Physical Downlink Control Channel)을 통해 기지국으로부터 수신되며,
    상기 제 1 DCI 포맷은 상기 SA 및 상기 D2D data의 전송 전력 제어와 관련된 제어 정보를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 제 1 DCI 포맷은 D2D-RNTI(Radio Network Temporary Identifier)로 CRC(Cyclic Redundancy Check) 마스킹(masking)되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 제어 정보는 TPC(Transmission Power Control) 커맨드(command)인 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기 제 1 DCI 포맷은 다수의 TPC 커맨드들을 포함하며,
    단말 별로 둘 이상의 TPC 커맨드들을 가지는 경우, 상기 다수의 TPC 커맨드들은 상기 단말 별로 그룹핑(grouping)되는 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    각 그룹은 그룹 인덱스(group index)로 구분되는 것을 특징으로 하는 방법.
  6. 제 3항에 있어서,
    상기 제 1 DCI 포맷은 셀룰러(cellular) 통신을 위한 것인지 또는 D2D 통신을 위한 것인지를 구분하는 지시(indication) 필드를 포함하는 것을 특징으로 하는 방법.
  7. 제 3항에 있어서,
    상기 제어 정보는 셀룰러 통신에서의 TPC 커맨드 및 D2D 통신에서의 TPC 커맨드로 구분되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 제어 정보의 짝수 인덱스(even index)는 셀룰러 통신에서의 TPC 커맨드이며,
    상기 제어 정보의 홀수 인덱스(odd index)는 D2D 통신에서의 TPC 커맨드인 것을 특징으로 하는 방법.
  9. 제 1항에 있어서,
    상기 SA의 전송 전력 제어와 관련된 제어 정보와 상기 D2D data의 전송 전력 제어와 관련된 제어 정보는 서로 다른 RNTI에 의해 구별되는 것을 특징으로 하는 방법.
  10. 제 2항에 있어서,
    상기 D2D RNTI의 일부는 SA의 전송 전력 제어와 관련된 제어 정보를 나타내며,
    상기 D2D RNTI의 나머지 일부는 D2D data의 전송 전력 제어와 관련된 제어 정보를 나타내는 것을 특징으로 하는 방법.
  11. 제 1항에 있어서,
    상기 제 1 DCI 포맷은 D2D DCI 포맷, DCI 포맷 3 또는 DCI 포맷 3A인 것을 특징으로 하는 방법.
  12. 단말간 직접 (Device-to-Device:D2D) 통신을 지원하는 무선 통신 시스템에서 상기 D2D 통신의 전송 전력 제어(Transmission Power Control:TPC) 를 수행하기 위한 제 1 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    D2D 통신에 사용하기 위한 자원 풀(resource pool)을 수신하고,
    상기 자원 풀(resource pool)은 SA가 전송되는 자원 영역을 나타내는 SA(scheduling assignment) 자원 풀 또는 D2D data가 전송되는 자원 영역을 나타내는 data 자원 풀 중 적어도 하나를 포함하며;
    상기 SA 자원 풀을 통해 D2D data 전송과 관련된 정보를 포함하는 SA(scheduling assignment)를 제 2 단말로 전송하고; 및
    상기 제 2 단말로 D2D data를 전송하도록 제어하되,
    상기 자원 풀은 제 1 DCI(downlink control information) 포맷(format)에 포함되며,
    상기 제 1 DCI 포맷은 PDCCH(Physical Downlink Control Channel)을 통해 기지국으로부터 수신되며,
    상기 제 1 DCI 포맷은 상기 SA 및 상기 D2D data의 전송 전력 제어와 관련된 제어 정보를 포함하는 것을 특징으로 하는 단말.
PCT/KR2015/008473 2014-08-14 2015-08-13 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치 WO2016024821A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15831412.0A EP3182767A2 (en) 2014-08-14 2015-08-13 Method and device for controlling transmission power in wireless communication system
CN201580049086.XA CN106797530A (zh) 2014-08-14 2015-08-13 无线通信系统中控制传输功率的方法和设备
KR1020177004714A KR20170044657A (ko) 2014-08-14 2015-08-13 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치
JP2017507845A JP2017528067A (ja) 2014-08-14 2015-08-13 無線通信システムにおける送信電力制御を行うための方法及びこのための装置
US15/502,980 US20170238260A1 (en) 2014-08-14 2015-08-13 Method and device for controlling transmission power in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462037596P 2014-08-14 2014-08-14
US62/037,596 2014-08-14

Publications (2)

Publication Number Publication Date
WO2016024821A2 true WO2016024821A2 (ko) 2016-02-18
WO2016024821A3 WO2016024821A3 (ko) 2016-03-31

Family

ID=55304729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008473 WO2016024821A2 (ko) 2014-08-14 2015-08-13 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (1) US20170238260A1 (ko)
EP (1) EP3182767A2 (ko)
JP (1) JP2017528067A (ko)
KR (1) KR20170044657A (ko)
CN (1) CN106797530A (ko)
WO (1) WO2016024821A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063085A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for sensing
WO2018082031A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 数据发送方法及用户设备
JP2019533962A (ja) * 2016-11-02 2019-11-21 エルジー エレクトロニクス インコーポレイティド 無線通信システムでサイドリンク送信を行うための方法及びこのための装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233803B (zh) * 2014-02-16 2019-09-13 Lg电子株式会社 用于无线通信系统中的装置到装置通信的控制信号的资源分配方法及其装置
WO2016021929A1 (ko) * 2014-08-05 2016-02-11 엘지전자(주) 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치
US9980281B2 (en) * 2014-08-06 2018-05-22 Lg Electronics Inc. Method for performing transmission power control in wireless communication system and device therefor
BR112017005864A2 (pt) * 2014-09-25 2018-02-06 Ericsson Telefon Ab L M método e aparelho para sinal de referência de uplink aumentado em sistemas de escute antes de falar
KR102375582B1 (ko) * 2015-10-20 2022-03-17 삼성전자주식회사 통신 디바이스 및 그 제어 방법
US11044709B2 (en) * 2016-03-11 2021-06-22 Qualcomm Incorporated Power savings for downlink channel monitoring in narrowband systems
EP3457794A4 (en) * 2016-05-10 2019-11-06 NTT DoCoMo, Inc. WIRELESS COMMUNICATION DEVICE AND WIRELESS COMMUNICATION METHOD
US9986513B1 (en) * 2016-12-31 2018-05-29 Sprint Communications Company L.P. Device to-device (D2D) transmission power control
US10554363B2 (en) 2017-05-04 2020-02-04 At&T Intellectual Property I, L.P. Facilitating incremental downlink control information design to support downlink control information scheduling
CN110771224A (zh) * 2017-05-05 2020-02-07 摩托罗拉移动有限责任公司 侧链路控制信息指示
CN114375061A (zh) 2017-06-16 2022-04-19 北京小米移动软件有限公司 一种数据调度方法及装置
WO2019028891A1 (en) 2017-08-11 2019-02-14 Zte Corporation METHOD AND APPARATUS FOR PROVIDING RADIO RESOURCE INFORMATION FOR LATERAL BINDING CONTROL
ES2946252T3 (es) 2017-09-07 2023-07-14 Beijing Xiaomi Mobile Software Co Ltd Gestión de haces de enlace ascendente
CN107734610B (zh) * 2017-09-15 2020-11-13 维沃移动通信有限公司 消息处理方法、移动终端及计算机可读存储介质
KR102616557B1 (ko) * 2018-02-13 2023-12-26 삼성전자 주식회사 무선 통신 시스템에서 데이터 및 제어 정보 송수신 방법 및 장치
EP4084565A1 (en) * 2018-03-16 2022-11-02 Telefonaktiebolaget LM Ericsson (publ) Technique for device-to-device communication
JP7099844B2 (ja) * 2018-03-27 2022-07-12 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局
CN108702281B (zh) * 2018-04-04 2021-11-09 北京小米移动软件有限公司 下行控制信息格式大小的确定方法及装置
SG11201911426YA (en) * 2018-04-13 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Method of uplink power control, terminal device and network device
US11700601B2 (en) 2018-08-08 2023-07-11 Lg Electronics Inc. Method by which user equipment controls transmission power of sidelink signal in wireless communication system and apparatus therefor
CN109274478B (zh) * 2018-10-12 2021-11-12 泉州市顺风耳电子科技有限公司 一种同频双时隙半双工数字通信中继方法
US20210345396A1 (en) * 2018-12-20 2021-11-04 Lenovo (Beijing) Limited Method and apparatus for scheduling a sidelink resource
EP3897044A4 (en) * 2019-01-03 2022-01-26 Huawei Technologies Co., Ltd. MESSAGE TRANSMISSION METHOD AND RECEIVING METHOD, DEVICE AND DEVICE
CN111491275B (zh) * 2019-01-28 2023-08-15 北京小米松果电子有限公司 功率控制方法、装置、存储介质及电子设备
JP7286792B2 (ja) * 2019-03-28 2023-06-05 アップル インコーポレイテッド eMTCに対するDCIフォーマット3/3Aの繰り返し回数の指示
US10873944B2 (en) * 2019-05-03 2020-12-22 At&T Intellectual Property I, L.P. Forward compatible new radio sidelink slot format signalling
US11595912B2 (en) * 2019-08-13 2023-02-28 Qualcomm Incorporated Sidelink power control
CN114844596B (zh) * 2019-08-16 2023-04-11 华为技术有限公司 侧行链路信道状态信息传输的方法和通信装置
KR102478455B1 (ko) 2020-01-07 2022-12-20 엘지전자 주식회사 무선통신시스템에서 단말이 신호를 송수신하는 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688226B1 (en) * 2011-03-18 2016-10-05 LG Electronics Inc. Method and device for communicating device-to-device
KR20130065002A (ko) * 2011-12-09 2013-06-19 한국전자통신연구원 단말간 직접 통신 제어 방법
KR102034836B1 (ko) * 2012-03-18 2019-11-08 엘지전자 주식회사 데이터 패킷 전송 방법 및 무선기기
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US9503837B2 (en) * 2012-10-08 2016-11-22 Lg Electronics Inc. Method and apparatus for performing HARQ process in wireless communication system
KR102154605B1 (ko) * 2013-05-01 2020-09-11 삼성전자주식회사 기기 간 직접 통신 시스템을 위한 방법 및 장치
US9560574B2 (en) * 2014-01-31 2017-01-31 Intel IP Corporation User equipment and method for transmit power control for D2D tranmissions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063085A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for sensing
US10694497B2 (en) 2016-09-30 2020-06-23 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for sensing
JP2019533962A (ja) * 2016-11-02 2019-11-21 エルジー エレクトロニクス インコーポレイティド 無線通信システムでサイドリンク送信を行うための方法及びこのための装置
US10999862B2 (en) 2016-11-02 2021-05-04 Lg Electronics Inc. Method for performing sidelink transmission in wireless communication system and apparatus therefor
WO2018082031A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 数据发送方法及用户设备

Also Published As

Publication number Publication date
CN106797530A (zh) 2017-05-31
US20170238260A1 (en) 2017-08-17
KR20170044657A (ko) 2017-04-25
WO2016024821A3 (ko) 2016-03-31
EP3182767A2 (en) 2017-06-21
JP2017528067A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
US10945279B2 (en) Method for transmitting and receiving data in wireless communication system, and device for same
WO2016024821A2 (ko) 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치
WO2016021929A1 (ko) 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치
KR101793118B1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
KR101759609B1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2015122629A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
KR101983829B1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
WO2016047994A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
US9930679B2 (en) Method for reducing interference in wireless communication system supporting device to-device communication and apparatus for the same
KR101741102B1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN106165481B (zh) 在无线通信系统中收发信号的方法及其设备
WO2016021930A1 (ko) 무선 통신 시스템에서 전송 전력 제어를 수행하기 위한 방법 및 이를 위한 장치
WO2015152581A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치
WO2015163662A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치
WO2015126114A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 스케줄링 승인 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831412

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2017507845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177004714

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015831412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015831412

Country of ref document: EP