WO2016024774A1 - Iron structure for fenton oxidation treatment of wastewater, preparation method therefor, and wastewater treatment method using same - Google Patents

Iron structure for fenton oxidation treatment of wastewater, preparation method therefor, and wastewater treatment method using same Download PDF

Info

Publication number
WO2016024774A1
WO2016024774A1 PCT/KR2015/008350 KR2015008350W WO2016024774A1 WO 2016024774 A1 WO2016024774 A1 WO 2016024774A1 KR 2015008350 W KR2015008350 W KR 2015008350W WO 2016024774 A1 WO2016024774 A1 WO 2016024774A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
oxidation treatment
fenton oxidation
wastewater
plate
Prior art date
Application number
PCT/KR2015/008350
Other languages
French (fr)
Korean (ko)
Inventor
박재우
장준원
김혜란
김슬기
정종진
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2016024774A1 publication Critical patent/WO2016024774A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation

Definitions

  • the present invention relates to a novel iron structure for fenton oxidation treatment of wastewater, a method for producing the same, and a wastewater treatment method using the same.
  • chemical treatment techniques generally include oxidation methods such as ozone, hydrogen peroxide, UV / O 3 , UV / TiO 2 , and fenton, among which fenton does not form chlorides and both iron and hydrogen peroxide have relatively low toxicity.
  • oxidation methods such as ozone, hydrogen peroxide, UV / O 3 , UV / TiO 2 , and fenton, among which fenton does not form chlorides and both iron and hydrogen peroxide have relatively low toxicity.
  • the process injects Fe 2+ form iron salt into raw water to accelerate the generation of hydrogen peroxide and OH into raw water, and rapidly oxidizes and removes organic substances in the water. It is widely used.
  • the problem to be solved by the present invention is to provide a novel wastewater fenton oxidation treatment iron structure and its manufacturing method to solve the conventional problems and at the same time have an excellent Fenton reaction efficiency, and to provide a wastewater treatment method using the same do.
  • the present invention provides an iron structure for fenton oxidation treatment of wastewater formed by anodizing, in order to solve the above problems, the iron structure according to the present invention is a ferric oxide (Fe) oxide on the surface of the plate (plate) made of iron (Fe 0 ) It is characterized in that the nanostructure of Fe 2 O 3 ) is formed.
  • Fe ferric oxide
  • ferric oxide nano structure is characterized in that it has a nano-leaf (Nano-leaf) shape.
  • the 'nano-leaf' is a shape having a leaf shape such as an irregular wire having a grphen-like shape or a face shape (the aspect ratio is close to 1) similar to graphene. It can be confirmed, more specifically in Figures 3a and 3b below.
  • the surface of the nanostructure is characterized in that the nanostructure of ferric oxide is hematite, and the plate is ferrous iron (Fe 0 ).
  • the present invention provides a method for producing an iron structure for fenton oxidation treatment of wastewater comprising the following steps.
  • step (b) continuing the anodic oxidation step of step (a) to oxidize the non-ferrous iron surface;
  • power may be applied at a voltage of 10-15 V in step (a), preferably 12 V voltage.
  • the surface of the anodized plate in step (b) is characterized in that the ferrous oxide (FeO) of the wustite crystal structure (FeO), the surface of the plate annealed in the step (c) is hematite (hematite) Ferric oxide (Fe 2 O 3 ) having a crystal structure.
  • the ferrous oxide (FeO) of the wustite crystal structure (FeO) the surface of the plate annealed in the step (c) is hematite (hematite) Ferric oxide (Fe 2 O 3 ) having a crystal structure.
  • the present invention provides a wastewater treatment method comprising the following steps using the iron structure for fenton oxidation treatment according to the present invention.
  • the pseudo-fentone reaction occurs in the surface nanostructure of the iron structure for fenton oxidation treatment, it is characterized in that the oxidation of the organic material contained in the wastewater.
  • the electron is continuously supplied to the surface from the plate of the iron structure for fenton oxidation treatment.
  • the iron structure for the fenton oxidation catalyst according to the present invention has a nano structure formed on the surface thereof, so that the surface area is improved, the fenton oxidation treatment efficiency is excellent, and electrons are continuously supplied to the surface to enable semi-permanent use.
  • the nanostructures are fixed to the plate, there is an advantage of easy operation of the catalyst. In addition, it can be performed even in an alkaline state of about pH 12, there is no generation of iron sludge and economical environmental treatment process can be implemented.
  • Figure 1 is a cross-sectional view of the iron structure for fenton oxidation treatment according to the present invention, a cross-sectional view showing a nanostructure of ferric oxide formed on a plate of a non-ferrous iron and its surface, SEM image is an image showing a surface nanoleaf structure.
  • FIG. 2 is a graph showing a current change curve with time during anodization according to an embodiment of the present invention.
  • 3A and 3B are scanning microscope images showing top-view and bottom-view of the iron oxide nanostructures formed on the iron plate surface according to Example 1, respectively.
  • Figure 4 is an XRD graph analyzed through Crystal Impact Match for the iron structure formed on the surface of the iron plate produced according to the present invention.
  • Figures 5a and 5b is an external appearance image of the iron structure after the annealing process and the external appearance image of the iron structure produced by the anodizing process of Example 1 according to the present invention, respectively.
  • 6A to 6C are graphs showing the results of Fenton experiments performed using hydrogen peroxide and commercial iron catalyst powder using hydrogen peroxide, respectively, using hydrogen peroxide and the iron structure for fenton oxidation treatment according to the present invention.
  • FIG. 7 is a graph showing ammonia nitrogen removal efficiency according to the amount of zeolite according to an embodiment of the present invention.
  • FIG 8 is an image showing the result of the before and after the final treatment water treatment of livestock wastewater according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an anodization process apparatus schematically showing an anodization process according to the present invention.
  • the present invention is to provide an iron structure for the Fenton oxidation catalyst having a new structure to solve the low economic efficiency compared to the efficiency.
  • the iron structure for the fenton oxidation catalyst according to the present invention is an immobilized fenton reaction in the form of a plate, characterized in that the control of the catalyst is easy and can be reused.
  • the nanostructure of ferric oxide (Fe 2 O 3 ) is formed on the surface of the plate (plate) made of ductile iron (Fe 0 ) It is characterized by being.
  • This novel structure can be produced by forming a nanostructure of ferric oxide (Fe 2 O 3 ) on the surface through an anodization process and an annealing process using an iron plate as an anode.
  • Fe 2 O 3 ferric oxide
  • the quasi-Fenton reaction with hydrogen peroxide is carried out, characterized in that the organic pollutants in the wastewater can be treated by OH radicals.
  • the quasi-Fenton reaction is continuously performed by continuously supplying electrons to the nanostructure of the surface in the plate made of ductile iron.
  • the iron structure for fenton oxidation treatment according to the present invention to form a nano-structured structure having a high surface area on the surface of the iron catalyst to efficiently perform the Fenton reaction on the plate of iron iron to fix the iron catalyst to react It is called Immobilized Fenton Reaction, which is easy to control.
  • the nanostructure of the ferric oxide has a nano-leaf (Nano-leaf) shape
  • the nano-leaf (Nano-leaf) shape is graphene-like form (grphen-like) or surface shape (aspect ratio of 1 Close to the shape of the shape having a leaf shape such as an irregular wire (wire), and more specifically, it can be confirmed in FIGS. 3A and 3B below.
  • the surface is hematite of ferric oxide (hematite)
  • the plate is characterized in that the ferric iron (Fe 0 ).
  • Another aspect of the invention relates to a method for producing an iron structure for fenton oxidation treatment of wastewater comprising the following steps.
  • step (b) continuing the anodic oxidation step of step (a) to oxidize the non-ferrous iron surface;
  • power may be applied at a voltage of 10-15 V in step (a), preferably 12 V voltage.
  • the reaction time may be 2-5 hours, when the reaction time is out of the range, there is a problem in the production of nanocrystalline form in the process of forming the ferric oxide (FeO) crystal form by anodization There may be a problem that the amorphous form is generated and the Fenton processing efficiency is lowered.
  • the surface of the anodized plate in step (b) is characterized in that the ferrous oxide (FeO) of the wustite crystal structure (FeO), the surface of the plate annealed in the step (c) is hematite (hematite) Ferric oxide (Fe 2 O 3 ) having a crystal structure.
  • the ferrous oxide (FeO) of the wustite crystal structure (FeO) the surface of the plate annealed in the step (c) is hematite (hematite) Ferric oxide (Fe 2 O 3 ) having a crystal structure.
  • Another aspect of the present invention relates to a wastewater treatment method comprising the following steps using the iron structure for fenton oxidation treatment according to the present invention.
  • the pseudo-fentone reaction occurs in the surface nanostructure of the iron structure for fenton oxidation treatment, it is characterized in that the oxidation of the organic material contained in the wastewater.
  • the electron is continuously supplied to the surface from the plate of the iron structure for fenton oxidation treatment.
  • Wastewater treatment method is to be carried out in the neutral state and pH 12 alkali conditions, and the iron sludge, the process was carried out at low conditions of pH 3-5, which is a problem in the conventional Fenton process It is possible to use semi-permanent use of iron catalyst and economical environmental treatment process is possible.
  • the iron used in the present invention was 99.0% in purity, and an iron plate cut to a size of 40 mm to 100 mm was used to favor anodization and electroreduction.
  • Chemical etching was performed to remove contaminants of the organic content on the iron plate surface, and hydrofluoric acid, nitric acid, and distilled water were mixed at a volume ratio of 1: 4: 5.
  • the iron plate sample was immersed in the prepared solution for about 30 seconds, then taken out, and ultrasonically cleaned for about 20 minutes with distilled water. At this time, the chemical etching was not performed for more than 1 minute because metal defects or toxic gases may be generated due to hydrogen embrittlement.
  • an electrolyte containing 0.25 wt% NaF in Na 2 SO 4 1 M was used as an anodizing solution.
  • anodization using EG electrolyte was carried out using a PNCYS EP1605 model, and anodization was performed by a constant voltage method with a fixed voltage of 12 V.
  • an iron plate was used as the positive electrode, and 95% platinum or copper was dissolved as the negative electrode, and the metal plates were equilibrated at 5-8 cm intervals.
  • the temperature was maintained at 5 ° C. through cooling water, and the anodization time was fixed at 3 hours, after which the mixture was washed with distilled water and methanol and dried at 60 ° C. in an oven.
  • Example 1 In the anodization process of Example 1 was carried out in the same manner except for adjusting the voltage to 4, 8, 16V instead of 12V.
  • the surface of the initial iron plate is changed to iron oxide in the form of nanostructure through anodization at 12V.
  • 3A and 3B are scanning microscope images showing a top-view and a bottom-view of an iron oxide structure formed on an iron plate surface according to Example 1, respectively, wherein the structure formed according to the present invention has a graphene-like shape (grphen- It is in the form of a nano laef with a leaf shape such as an irregular wire having a like or face shape (aspect ratio close to 1).
  • grphen- It is in the form of a nano laef with a leaf shape such as an irregular wire having a like or face shape (aspect ratio close to 1).
  • the crystal form of the iron structure formed on the surface of the iron plate produced according to the present invention was confirmed through an XRD graph, and analyzed through Crystal Impact Match. The results are shown in FIG. 4.
  • the initial iron plate is a ferrous iron (Fe 0 , raw iron), the surface is changed to wustite (FeO (ferrous oxide)) after the anodization process, and then annealing process After passing through the surface, hematite (hematite, Fe 2 O 3 (ferric oxide)) can be confirmed that the change.
  • FeO ferrous iron
  • hematite hematite, Fe 2 O 3 (ferric oxide)
  • FIG. 5a The exterior image of the iron structure manufactured by the anodization process of Example 1 is as shown in Figure 5a, after which the exterior image of the iron structure undergoes an annealing process is shown in Figure 5b.
  • the baseline was met after 360 minutes with commercial iron catalyst powder (0.9 g) with 882 mM hydrogen peroxide.
  • reaction time was shortened by half compared with the case of using the commercial iron catalyst powder of (2).
  • the sample was collected from the Hamyang Livestock Wastewater Treatment Plant, and after the precipitation and dehydration process, the experiment was carried out using the filtrate, and refrigerated after storage to minimize the change in appearance.
  • zeolite used in this experiment was purchased by using a zeolite manufactured by Wako, Japan, and the particle size of the zeolite has a size of 75 ⁇ m (200 mesh).
  • concentration of ammonium ions was analyzed by ion-selective electrode (ISE, Neonet Dual pH meter) method, and ionic strength adjuster (ISA) was used to remove other interferences and maintain ionic strength at a constant and high value.
  • the livestock wastewater was treated with Fenton using 1 g of iron catalyst for fenton oxidation according to the present invention (hydrogen peroxide was fixed at 3% in the previous experiment), and the total efficiency was 80% in 60 minutes. Hematite showed 70% treatment efficiency.
  • TOC since the oxidized amount of organic matter is measured, it is possible to perform a complete treatment if the efficiency is 70% or more, and the iron catalyst for fenton oxidation treatment according to the present invention shows much higher efficiency than general hematite treatment. appear.
  • ammonia nitrogen treatment efficiency was measured using zeolite in order to treat ammonia nitrogen. As a result, when 1 g of zeolite was used, the reaction efficiency was 90% at 45 minutes. When a larger amount of zeolite was added, ammonia nitrogen increased by desorption after 45 minutes.
  • FIG. 8 it is a photograph of the result of the last treatment before a livestock wastewater treatment and even ammonia nitrogen. After high turbidity was filtered to zeolite, it was confirmed that the result was a very transparent form.
  • the iron structure for the fenton oxidation catalyst and the wastewater treatment process using the same according to the present invention are not only excellent in fenton oxidation treatment efficiency, do not generate iron sludge, and can be used semi-permanently, which is useful for environmental treatment process industries such as wastewater treatment. Can be utilized.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention relates to an iron structure for Fenton oxidation treatment, having a novel structure, wherein a nanostructured ferric oxide in which a Fenton-like reaction is carried out on the surface thereof is formed on the surface thereof, and this nanostructure is fixed to a plate. The iron structure for Fenton oxidation treatment has excellent Fenton oxidation treatment efficiency and can be semi-permanently used, and thus can be useful in the environmental treatment process industry such as wastewater treatment.

Description

폐수의 펜톤산화처리용 철 구조체, 그 제조방법 및 이를 이용한 폐수처리방법Iron structure for fenton oxidation treatment of wastewater, its manufacturing method and wastewater treatment method using the same
본 발명은 폐수의 펜톤산화처리용의 신규한 철 구조체, 그 제조방법 및 이를 이용한 폐수처리방법에 관한 것이다.The present invention relates to a novel iron structure for fenton oxidation treatment of wastewater, a method for producing the same, and a wastewater treatment method using the same.
산업 발달에 따른 생활수준 향상과 함께 다양하고 무수한 종류의 유해화학물질이 포함된 공장폐수, 축산폐수, 가정하수 등이 하천이나 호수로 유입되어 상수원을 오염시키고 있다. 특히, 미량유해물질인 휘발성 유기물질, 유기용제, 소독부산물, 페놀, 농약, 다환방향족 탄화수소, 프탈레이트 등의 유해화학물질들은 극미량으로도 발암성과 만성독성을 지니고 있어 인간의 건강과 직결되는 문제이므로 수질 규제 대상물질과 이들 이외의 미량오염물질에 대한 체계적이며 신속한 대응전략 및 처리기술 개발이 시급한 실정이다. 미량오염물질의 경우 이들에 대한 거동을 이해하기 어렵고 먹는 물의 정수처리 과정 중에서 염소소독에 의하여 본래보다 더욱 유해한 물질로 변환되며 또한 제거도 어려워 국내외적으로 이에 대한 처리 기술 개발의 중요성이 날로 증가되고 있는 실정이다.In addition to improving living standards according to industrial development, factory wastewater, livestock wastewater, and household sewage containing various and numerous types of hazardous chemicals are introduced into rivers and lakes to contaminate water supplies. In particular, trace harmful substances such as volatile organic substances, organic solvents, disinfection by-products, phenols, pesticides, polyaromatic hydrocarbons, and phthalates are extremely carcinogenic and chronic toxic. It is urgent to develop systematic and rapid response strategies and treatment technologies for regulated substances and other trace pollutants. In the case of trace contaminants, it is difficult to understand the behavior of these substances and they are converted into more harmful substances by chlorine disinfection during the purification process of drinking water, and it is difficult to remove them. It is true.
특히, 화학적 처리기술의 경우, 일반적으로 오존, 과산화수소, UV/O3, UV/TiO2, 펜톤 등의 산화법이 있으며, 이들 중 산화과정에서 염화물을 생성하지 않으며 철과 과산화수소 모두 독성이 비교적 적은 펜톤 공정은 과산화수소와 OH의 발생 촉진을 위한 Fe2+ 형태의 철염을 원수 내에 주입하여 수중의 유기물질을 빠르게 산화, 제거하는 공정으로 각종 화학약품폐수와 매립지 침출수 염화화합물로 오염된 토양정화에 이르기까지 폭넓게 이용되고 있다.In particular, chemical treatment techniques generally include oxidation methods such as ozone, hydrogen peroxide, UV / O 3 , UV / TiO 2 , and fenton, among which fenton does not form chlorides and both iron and hydrogen peroxide have relatively low toxicity. The process injects Fe 2+ form iron salt into raw water to accelerate the generation of hydrogen peroxide and OH into raw water, and rapidly oxidizes and removes organic substances in the water. It is widely used.
그러나, 철 이온에 의한 다량의 수산화물 형태의 슬러지 발생과 액상형태로 주입되는 펜톤 시약의 과다 주입 등은 기술의 제약점으로 지적되고 있다. 이를 보완하기 위하여 환원 상태의 입자형태의 금속철(Fe0)과 과산화수소를 이용한 펜톤-유사 공정(Fenton-like oxidation)이 연구되고 있으며 이는 슬러지 생산이 많은 철염 대신 금속 철을 사용하기 때문에 기존 펜톤 반응에서 생기는 수산화물 형태의 슬러지 발생을 최소화 시키고 철염으로 FeCl2나 FeSO4를 사용할 때 발생되는 Cl-, SO4 2- 등의 부산물 발생 또한 억제할 수 있는 장점이 있다. 그러나, 여전히 그 효율성에 비해 경제성이 낮은 것으로 평가되고 있다.However, generation of sludge in the form of a large amount of hydroxide by iron ions and over-injection of Fenton's reagent injected in liquid form are pointed out as a limitation of the technology. In order to compensate for this, the Fenton-like oxidation process using reduced-type metal iron (Fe 0 ) and hydrogen peroxide has been studied, and the existing Fenton reaction is performed because metal iron is used instead of iron salt with high sludge production. Minimizes the formation of hydroxide-type sludge and also prevents the by-products such as Cl - and SO 4 2- generated when using FeCl 2 or FeSO 4 as iron salt. However, it is still evaluated to be economically low compared to its efficiency.
따라서, 반영구적인 사용이 가능하여 경제성을 향상시킬 수 있음과 동시에 우수한 펜톤 반응 효율을 거둘 수 있는 신규한 철 구조체에 대한 개발이 절실히 필요한 실정이다.Therefore, it is necessary to develop a new iron structure that can be used semi-permanently to improve the economics and at the same time achieve excellent Fenton reaction efficiency.
본 발명이 해결하고자 하는 과제는 종래 문제점을 해결함과 동시에 우수한 펜톤 반응 효율을 가질 수 있도록 하는 신규한 폐수의 펜톤산화처리용 철 구조체와 그 제조방법를 제공하고자 하고, 이를 이용한 폐수처리방법을 제공하고자 한다.The problem to be solved by the present invention is to provide a novel wastewater fenton oxidation treatment iron structure and its manufacturing method to solve the conventional problems and at the same time have an excellent Fenton reaction efficiency, and to provide a wastewater treatment method using the same do.
본 발명은 상기 과제를 해결하기 위하여, 양극산화로 형성된 폐수의 펜톤산화처리용 철 구조체를 제공하고, 본 발명에 따른 철 구조체는 영가철(Fe0)로 이루어진 플레이트(plate) 표면에 산화제이철(Fe2O3)의 나노 구조체가 형성되어 있는 것을 특징으로 한다.The present invention provides an iron structure for fenton oxidation treatment of wastewater formed by anodizing, in order to solve the above problems, the iron structure according to the present invention is a ferric oxide (Fe) oxide on the surface of the plate (plate) made of iron (Fe 0 ) It is characterized in that the nanostructure of Fe 2 O 3 ) is formed.
또한, 상기 철 구조체의 표면에서 유사펜톤반응(Fenton like reaction)이 일어나고, 영가철로 이루어진 플레이트에서 표면으로 전자가 공급되는 것은 특징으로 한다.In addition, a Fenton-like reaction occurs on the surface of the iron structure, and the electrons are supplied to the surface from a plate made of ductile iron.
또한, 상기 산화제이철의 나노 구조체는 나노리프(Nano-leaf) 형상을 갖는 것을 특징으로 한다.In addition, the ferric oxide nano structure is characterized in that it has a nano-leaf (Nano-leaf) shape.
상기 '나노리프(Nano-leaf) 형상'이라 함은 그래핀과 유사한 형태(grphen-like) 또는 면의 형상(종횡비가 1에 가까움)을 갖는 불규칙적인 와이어(wire)와 같은 나뭇잎 형상을 갖는 형태를 의미하고, 보다 구체적으로는 하기 도 3a 및 도 3b에서 이를 확인할 수 있다.The 'nano-leaf' is a shape having a leaf shape such as an irregular wire having a grphen-like shape or a face shape (the aspect ratio is close to 1) similar to graphene. It can be confirmed, more specifically in Figures 3a and 3b below.
본 발명에 따른 펜톤산화처리용 철 구조체에서, 나노 구조의 표면은 산화제이철의 나노 구조체는 헤마타이트(hematite)이고, 플레이트는 영가철(Fe0)인 것을 특징으로 한다.In the iron structure for fenton oxidation treatment according to the present invention, the surface of the nanostructure is characterized in that the nanostructure of ferric oxide is hematite, and the plate is ferrous iron (Fe 0 ).
또한, 본 발명은 하기 단계를 포함하는 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체를 제조하는 방법을 제공한다.In addition, the present invention provides a method for producing an iron structure for fenton oxidation treatment of wastewater comprising the following steps.
(a) 영가철(Fe0) 플레이트(plate)를 황산나트륨(Na2SO4)과 플루오르화나트륨(NaF)의 혼합 전해 용액에 담지 후, 상기 영가철 플레이트가 양극이 되도록 전원을 인가하는 단계,(a) immersing a ferrous iron (Fe 0 ) plate in a mixed electrolyte solution of sodium sulfate (Na 2 SO 4 ) and sodium fluoride (NaF), and then applying power so that the non-ferrous iron plate becomes a positive electrode;
(b) 상기 (a) 단계의 양극 산화 단계를 지속시켜 상기 영가철 플레이트 표면을 산화시키는 단계,(b) continuing the anodic oxidation step of step (a) to oxidize the non-ferrous iron surface;
(c) 상기 표면이 산화된 영가철 플레이트를 어닐링시키는 단계.(c) annealing the surface of the oxidized zero iron plate.
본 발명의 일 실시예에 의하면, 상기 (a) 단계에서 10-15 V 전압으로 전원을 인가할 수 있고, 바람직하게는 12 V 전압일 수 있다.According to an embodiment of the present invention, power may be applied at a voltage of 10-15 V in step (a), preferably 12 V voltage.
한편, 상기 (b) 단계에서 양극산화된 플레이트의 표면은 우스타이트(wustite) 결정 구조의 산화제일철(FeO)인 것을 특징으로 하고, 상기 (c) 단계에서 어닐링된 플레이트의 표면은 헤마타이트(hematite) 결정 구조의 산화제이철(Fe2O3)인 것을 특징으로 한다.On the other hand, the surface of the anodized plate in step (b) is characterized in that the ferrous oxide (FeO) of the wustite crystal structure (FeO), the surface of the plate annealed in the step (c) is hematite (hematite) Ferric oxide (Fe 2 O 3 ) having a crystal structure.
또한, 본 발명은 상기 본 발명에 따른 펜톤산화처리용 철 구조체를 이용하여 하기 단계를 포함하는 것을 특징으로 하는 폐수처리방법을 제공한다.In addition, the present invention provides a wastewater treatment method comprising the following steps using the iron structure for fenton oxidation treatment according to the present invention.
(a) 폐수를 준비하는 단계,(a) preparing wastewater,
(b) 상기 폐수에 과산화수소 및 상기 본 발명에 따른 펜톤산화처리용 철 구조체를 투입하는 단계.(b) injecting hydrogen peroxide and the iron structure for fenton oxidation treatment according to the present invention into the waste water.
한편, 상기 펜톤산화처리용 철 구조체의 표면 나노 구조에서 유사펜톤반응이 일어나고, 이를 통하여 폐수 내 포함된 유기물의 산화가 이루어지는 것을 특징으로 한다.On the other hand, the pseudo-fentone reaction occurs in the surface nanostructure of the iron structure for fenton oxidation treatment, it is characterized in that the oxidation of the organic material contained in the wastewater.
또한, 상기 펜톤산화처리용 철 구조체의 플레이트에서 표면으로 전자가 지속적으로 공급되는 것을 특징으로 한다.In addition, the electron is continuously supplied to the surface from the plate of the iron structure for fenton oxidation treatment.
본 발명에 따른 펜톤산화처리 촉매용 철 구조체는 표면에 나노구조체가 형성되어 있어 표면적이 향상되어 펜톤산화처리 효율이 우수하고, 표면에 전자가 지속적으로 공급되어 반영구적인 사용이 가능하다. 또한, 나노구조체가 플레이트에 고정된 형태이어서 촉매의 조작이 용이한 장점이 있다. 또한, pH 12 정도의 알칼리 상태에서도 수행이 가능하며, 철 슬러지의 발생이 없고 경제적인 환경처리 공정을 구현할 수 있다.The iron structure for the fenton oxidation catalyst according to the present invention has a nano structure formed on the surface thereof, so that the surface area is improved, the fenton oxidation treatment efficiency is excellent, and electrons are continuously supplied to the surface to enable semi-permanent use. In addition, since the nanostructures are fixed to the plate, there is an advantage of easy operation of the catalyst. In addition, it can be performed even in an alkaline state of about pH 12, there is no generation of iron sludge and economical environmental treatment process can be implemented.
도 1은 본 발명에 따른 펜톤산화처리용 철 구조체이 단면도로서, 영가철의 플레이트와 이의 표면에 형성된 산화제이철의 나노구조체를 나타내는 단면도이고, SEM 이미지는 표면 나노리프 구조를 보여주는 이미지이다.Figure 1 is a cross-sectional view of the iron structure for fenton oxidation treatment according to the present invention, a cross-sectional view showing a nanostructure of ferric oxide formed on a plate of a non-ferrous iron and its surface, SEM image is an image showing a surface nanoleaf structure.
도 2는 본 발명의 일 실시예에 따른 양극산화시 시간에 따른 전류변화곡선을 나타내는 그래프이다.2 is a graph showing a current change curve with time during anodization according to an embodiment of the present invention.
도 3a 및 도 3b는 각각 실시예 1에 따라 철 플레이트 표면에 형성된 산화철 나노 구조체의 top-view, bottom-view를 보여주는 주사현미경이미지이다.3A and 3B are scanning microscope images showing top-view and bottom-view of the iron oxide nanostructures formed on the iron plate surface according to Example 1, respectively.
도 4는 본 발명에 따라 생성된 철 플레이트의 표면에 형성된 철 구조체에 대해서 결정형 일치도(Crystal Impact Match)를 통하여 분석한 XRD 그래프이다.Figure 4 is an XRD graph analyzed through Crystal Impact Match for the iron structure formed on the surface of the iron plate produced according to the present invention.
도 5a 및 도 5b는 각각 본 발명에 따른 실시예 1의 양극산화 공정으로 제작된 철 구조체의 외관 이미지와 어닐링 공정을 거친 철 구조체의 외관 이미지이다.Figures 5a and 5b is an external appearance image of the iron structure after the annealing process and the external appearance image of the iron structure produced by the anodizing process of Example 1 according to the present invention, respectively.
도 6a 내지 6c는 각각 과산화수소만을 이용하여, 과산화수소와 상용 철 촉매 파우더를 이용하여, 과산화수소와 본 발명에 따른 펜톤산화처리용 철 구조체를 이용하여 수행한 펜톤 실험 결과를 보여주는 그래프이다.6A to 6C are graphs showing the results of Fenton experiments performed using hydrogen peroxide and commercial iron catalyst powder using hydrogen peroxide, respectively, using hydrogen peroxide and the iron structure for fenton oxidation treatment according to the present invention.
도 7은 본 발명의 일 실시예에 따른 제올라이트의 양에 따른 암모니아성 질소제거 효율을 보여주는 그래프이다.7 is a graph showing ammonia nitrogen removal efficiency according to the amount of zeolite according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 축산폐수 처리 전과 최종처리수 결과를 보여주는 이미지이다.8 is an image showing the result of the before and after the final treatment water treatment of livestock wastewater according to an embodiment of the present invention.
도 9는 본 발명에 따른 양극산화 공정을 개략적으로 보여주는 양극산화 공정 장치의 개략도이다.9 is a schematic diagram of an anodization process apparatus schematically showing an anodization process according to the present invention.
종래의 펜톤 반응에서는 철 이온을 직접 투입하여 사용하나, 유사펜톤반응(Fenton like reaction)에서는 goethite, hematite, magnetite 등을 철 이온 대신 투입하여 종래의 문제점인 슬러지나 부산물 발생을 방지할 수 있고 반영구적인 사용이 가능한 장점이 있다. 유사펜톤반응의 메커니즘은 하기와 같다(Electron transfer in Fenton like reaction (Moura et al, 2005).In the conventional Fenton reaction, iron ions are directly added, but in the Fenton like reaction, goethite, hematite, magnetite, etc. are added instead of iron ions to prevent sludge and byproducts, which are a conventional problem, and are semipermanent. There is an advantage to use. The mechanism of pseudofenton reaction is as follows (Electron transfer in Fenton like reaction (Moura et al, 2005)).
Figure PCTKR2015008350-appb-I000001
Figure PCTKR2015008350-appb-I000001
다만, 이러한 펜톤 반응의 효율성이 있음에도 불구하고, 그 효율성에 비해 경제성이 낮아 이를 해결할 수 있도록 본 발명에서는 새로운 구조를 갖는 펜톤산화처리 촉매용 철 구조체를 제공하고자 한다.However, in spite of the efficiency of the Fenton reaction, the present invention is to provide an iron structure for the Fenton oxidation catalyst having a new structure to solve the low economic efficiency compared to the efficiency.
또한, 본 발명에 따른 펜톤산화처리 촉매용 철 구조체는 플레이트 형태에 철 촉매를 고정화(Immobilized Fenton Reaction)시킨 것으로서, 촉매의 컨트롤이 용이하고, 재사용이 가능한 장점을 갖는 것을 특징으로 한다.In addition, the iron structure for the fenton oxidation catalyst according to the present invention is an immobilized fenton reaction in the form of a plate, characterized in that the control of the catalyst is easy and can be reused.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 폐수의 펜톤산화처리용 철 구조체는 하기 도 1에 도시된 바와 같이, 영가철(Fe0)로 이루어진 플레이트(plate) 표면에 산화제이철(Fe2O3)의 나노 구조체가 형성되어 있는 것을 특징으로 한다.The iron structure for fenton oxidation treatment of wastewater according to the present invention, as shown in Figure 1, the nanostructure of ferric oxide (Fe 2 O 3 ) is formed on the surface of the plate (plate) made of ductile iron (Fe 0 ) It is characterized by being.
이러한 신규한 구조는 철 플레이트를 양극으로 하여 양극산화 공정과 어닐링 공정을 거쳐서 표면에 산화제이철(Fe2O3)의 나노 구조체를 형성함으로서 제조할 수 있다.This novel structure can be produced by forming a nanostructure of ferric oxide (Fe 2 O 3 ) on the surface through an anodization process and an annealing process using an iron plate as an anode.
표면의 산화제이철(Fe2O3)의 나노 구조체에서 과산화수소와 함께 상기와 유사-펜톤 반응이 수행되어 OH 라디칼에 의해서 폐수 내의 유기 오염 물질을 처리할 수 있는 것을 특징으로 한다.In the nanostructure of ferric oxide (Fe 2 O 3 ) on the surface, the quasi-Fenton reaction with hydrogen peroxide is carried out, characterized in that the organic pollutants in the wastewater can be treated by OH radicals.
또한, 영가철로 이루어진 플레이트에서 표면의 나노구조체로 전자를 계속 공급하여 유사-펜톤 반응이 지속적으로 수행되는 것을 특징으로 한다.In addition, the quasi-Fenton reaction is continuously performed by continuously supplying electrons to the nanostructure of the surface in the plate made of ductile iron.
즉, 표면의 펜톤-유사 반응에서 Fe2+에서 Fe3+로 산화된 후, 이의 재생문제를 플레이트 내에 존재하는 영가철에 의한 전자 이동으로 인해 Fe3+에서 Fe2+로의 환원으로 재생기작을 촉진시킨다.That is, after oxidizing Fe 2+ to Fe 3+ in the Fenton-like reaction on the surface, the regeneration problem is reduced by Fe 3+ to Fe 2+ due to the electron transfer by the non-ferrous iron present in the plate. Promote
또한, 본 발명에 따른 펜톤산화처리용 철 구조체는 영가철의 플레이트에 펜톤 반응이 효율적으로 수행될 수 있도록 높은 표면적을 갖는 나노 형상의 구조체를 표면에 형성하여 반응하는 철 촉매를 고정화시켜 철 촉매의 컨트롤이 용이한 펜톤반응 고정화 촉매(Immobilized Fenton Reaction)라고 할 수 있다.In addition, the iron structure for fenton oxidation treatment according to the present invention to form a nano-structured structure having a high surface area on the surface of the iron catalyst to efficiently perform the Fenton reaction on the plate of iron iron to fix the iron catalyst to react It is called Immobilized Fenton Reaction, which is easy to control.
또한, 상기 산화제이철의 나노 구조체는 나노리프(Nano-leaf) 형상을 갖는 것으로서, 나노리프(Nano-leaf) 형상이라 함은 그래핀과 유사한 형태(grphen-like) 또는 면의 형상(종횡비가 1에 가까움)을 갖는 불규칙적인 와이어(wire)와 같은 나뭇잎 형상을 갖는 형태를 의미하고, 보다 구체적으로는 하기 도 3a 및 도 3b에서 이를 확인할 수 있다.In addition, the nanostructure of the ferric oxide has a nano-leaf (Nano-leaf) shape, the nano-leaf (Nano-leaf) shape is graphene-like form (grphen-like) or surface shape (aspect ratio of 1 Close to the shape of the shape having a leaf shape such as an irregular wire (wire), and more specifically, it can be confirmed in FIGS. 3A and 3B below.
또한, 표면은 산화제이철의 헤마타이트(hematite)이고, 플레이트는 영가철(Fe0)인 것을 특징으로 한다.In addition, the surface is hematite of ferric oxide (hematite), the plate is characterized in that the ferric iron (Fe 0 ).
본 발명의 다른 측면은 하기 단계를 포함하는 폐수의 펜톤산화처리용 철 구조체를 제조하는 방법에 관한 것이다.Another aspect of the invention relates to a method for producing an iron structure for fenton oxidation treatment of wastewater comprising the following steps.
(a) 영가철(Fe0) 플레이트(plate)를 황산나트륨(Na2SO4)과 플루오르화나트륨(NaF)의 혼합 전해 용액에 담지 후, 상기 영가철 플레이트가 양극이 되도록 전원을 인가하는 단계,(a) immersing a ferrous iron (Fe 0 ) plate in a mixed electrolyte solution of sodium sulfate (Na 2 SO 4 ) and sodium fluoride (NaF), and then applying power so that the non-ferrous iron plate becomes a positive electrode;
(b) 상기 (a) 단계의 양극 산화 단계를 지속시켜 상기 영가철 플레이트 표면을 산화시키는 단계,(b) continuing the anodic oxidation step of step (a) to oxidize the non-ferrous iron surface;
(c) 상기 표면이 산화된 영가철 플레이트를 어닐링시키는 단계.(c) annealing the surface of the oxidized zero iron plate.
본 발명의 일 실시예에 의하면, 상기 (a) 단계에서 10-15 V 전압으로 전원을 인가할 수 있고, 바람직하게는 12 V 전압일 수 있다.According to an embodiment of the present invention, power may be applied at a voltage of 10-15 V in step (a), preferably 12 V voltage.
10 V 미만의 전압을 인가하는 경우에는 양극산화시 산화도가 낮아지는 문제점이 발생할 수 있고, 15 V 초과의 전압을 인가하는 경우, 발열에 의해 철 나노구조체가 손상되는 문제점이 있을 수 있으므로 펜톤산화처리용 철 나노구조체 제조 시, 상기 조건을 모두 만족해야 한다.When applying a voltage of less than 10 V may cause a problem of lowering the oxidation degree when anodizing, and when applying a voltage of more than 15 V, iron nanostructures may be damaged by heat generation, so penton oxidation When preparing the iron nanostructures for treatment, all of the above conditions must be satisfied.
또한, 상기 양극산화 시, 반응 시간은 2-5 시간일 수 있고, 반응 시간이 상기 범위를 벗어나는 경우, 양극 산화에 의해 산화제일철(FeO) 결정형이 형성되는 과정에서 나노결정형 생성에 문제가 생기거나 비결정형이 생성되어 펜톤 처리 효율이 떨어지는 문제점이 있을 수 있다.In addition, when the anodization, the reaction time may be 2-5 hours, when the reaction time is out of the range, there is a problem in the production of nanocrystalline form in the process of forming the ferric oxide (FeO) crystal form by anodization There may be a problem that the amorphous form is generated and the Fenton processing efficiency is lowered.
한편, 상기 (b) 단계에서 양극산화된 플레이트의 표면은 우스타이트(wustite) 결정 구조의 산화제일철(FeO)인 것을 특징으로 하고, 상기 (c) 단계에서 어닐링된 플레이트의 표면은 헤마타이트(hematite) 결정 구조의 산화제이철(Fe2O3)인 것을 특징으로 한다.On the other hand, the surface of the anodized plate in step (b) is characterized in that the ferrous oxide (FeO) of the wustite crystal structure (FeO), the surface of the plate annealed in the step (c) is hematite (hematite) Ferric oxide (Fe 2 O 3 ) having a crystal structure.
본 발명의 또 다른 측면은 본 발명에 따른 펜톤산화처리용 철 구조체를 이용하여 하기 단계를 포함하는 폐수처리방법에 관한 것이다.Another aspect of the present invention relates to a wastewater treatment method comprising the following steps using the iron structure for fenton oxidation treatment according to the present invention.
(a) 폐수를 준비하는 단계,(a) preparing wastewater,
(b) 상기 폐수에 과산화수소 및 상기 본 발명에 따른 펜톤산화처리용 철 구조체를 투입하는 단계.(b) injecting hydrogen peroxide and the iron structure for fenton oxidation treatment according to the present invention into the waste water.
한편, 상기 펜톤산화처리용 철 구조체의 표면 나노 구조에서 유사펜톤반응이 일어나고, 이를 통하여 폐수 내 포함된 유기물의 산화가 이루어지는 것을 특징으로 한다.On the other hand, the pseudo-fentone reaction occurs in the surface nanostructure of the iron structure for fenton oxidation treatment, it is characterized in that the oxidation of the organic material contained in the wastewater.
또한, 상기 펜톤산화처리용 철 구조체의 플레이트에서 표면으로 전자가 지속적으로 공급되는 것을 특징으로 한다.In addition, the electron is continuously supplied to the surface from the plate of the iron structure for fenton oxidation treatment.
본 발명의 일 실시예에 따른 폐수처리방법은 기존의 펜톤 공정에서 문제가 되던 pH 3-5 정도의 낮은 조건에서 이루어지던 공정을 중성 및 pH 12 정도의 알칼리 상태에서도 수행이 가능하게 하며, 철 슬러지의 발생이 없고 철촉매의 반영구적인 사용이 가능하여 경제적인 환경처리 공정을 구현할 수 있다.Wastewater treatment method according to an embodiment of the present invention is to be carried out in the neutral state and pH 12 alkali conditions, and the iron sludge, the process was carried out at low conditions of pH 3-5, which is a problem in the conventional Fenton process It is possible to use semi-permanent use of iron catalyst and economical environmental treatment process is possible.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the scope and contents of the present invention are not limited or interpreted by the following examples. In addition, if it is based on the disclosure of the present invention including the following examples, it will be apparent that those skilled in the art can easily carry out the present invention, the results of which are not specifically presented experimental results, these modifications and modifications are attached to the patent It goes without saying that it belongs to the claims.
실시예 1Example 1
(1) 본 발명에 사용된 철은 순도 99.0%이며, 양극산화와 전기환원에 유리하도록 40 mm 내지 100 mm의 크기로 절삭한 철 플레이트를 사용하였다. 철 플레이트 표면의 유기분의 오염물질을 제거하기 위해 Chemical etching을 하였고, 불산과 질산과 증류수를 1:4:5의 부피비로 섞어서 사용하였다. 철 플레이트 샘플을 제조된 용액에 약 30 초간 담지 하였다가 꺼내어 증류수로 약 20 분간 초음파 세척하였다. 이 때 Chemical etching은 수소취성으로 인한 금속결함이나 유독성 가스 등이 발생할 수 있으므로 1분 이상은 수행하지 않았다.(1) The iron used in the present invention was 99.0% in purity, and an iron plate cut to a size of 40 mm to 100 mm was used to favor anodization and electroreduction. Chemical etching was performed to remove contaminants of the organic content on the iron plate surface, and hydrofluoric acid, nitric acid, and distilled water were mixed at a volume ratio of 1: 4: 5. The iron plate sample was immersed in the prepared solution for about 30 seconds, then taken out, and ultrasonically cleaned for about 20 minutes with distilled water. At this time, the chemical etching was not performed for more than 1 minute because metal defects or toxic gases may be generated due to hydrogen embrittlement.
(2) 이렇게 전처리된 철 플레이트 샘플에 대해서 하기 도 9와 같이, 양극산화법을 수행하였다.(2) An anodization method was performed on the iron plate sample thus pretreated as shown in FIG. 9.
양극산화시 전해용액은 Na2SO4 1 M에 0.25 wt%의 NaF를 혼합한 전해질을 사용하였다. 전원을 공급할 파워서플라이는 PNCYS의 EP1605 모델을 사용하여 EG 전해질을 사용한 양극산화는 전압을 12 V로 고정하여 정전압법으로 양극산화를 수행하였다.As an anodizing solution, an electrolyte containing 0.25 wt% NaF in Na 2 SO 4 1 M was used. For the power supply to be supplied, anodization using EG electrolyte was carried out using a PNCYS EP1605 model, and anodization was performed by a constant voltage method with a fixed voltage of 12 V.
하기 도 9에 나타낸 바와 같이 양극에는 철 플레이트, 음극에는 95 %의 백금 또는 구리를 고용하여 5-8 cm 간격으로 평형하게 배치하였다.As shown in FIG. 9, an iron plate was used as the positive electrode, and 95% platinum or copper was dissolved as the negative electrode, and the metal plates were equilibrated at 5-8 cm intervals.
온도는 냉각수를 통해 5 ℃를 유지하였고, 양극산화시간은 3 시간으로 고정하여 이 후 증류수와 메탄올로 세척한 후 오븐에서 60 ℃로 건조하였다.The temperature was maintained at 5 ° C. through cooling water, and the anodization time was fixed at 3 hours, after which the mixture was washed with distilled water and methanol and dried at 60 ° C. in an oven.
(3) 상기 양극산화시킨 철 플레이트를 다시 약 750 ℃ 어닐링하였다.(3) The anodized iron plate was annealed again at about 750 ° C.
(4) 초기 철 플레이트(Fe0)을 양극산화한 경우에 그 표면은 우스타이트(wustite, FeO)로 변화되고, 이후 어닐링 과정을 거치게 되면 표면은 헤마타이트(hematite, Fe2O3)가 형성된다.(4) In the case of anodizing the initial iron plate (Fe 0 ), the surface is changed to wustite (FeO), and after annealing, the surface is formed of hematite (Fe 2 O 3 ). do.
비교예 1 내지 3Comparative Examples 1 to 3
상기 실시예 1의 양극산화 공정에서 전압을 12 V로 하는 것 대신에 4, 8, 16 V로 조절하는 것을 제외하고는 동일한 방법으로 수행하였다.In the anodization process of Example 1 was carried out in the same manner except for adjusting the voltage to 4, 8, 16V instead of 12V.
실험예 1Experimental Example 1
양극산화시 시간에 따른 전류변화를 분석한 결과, 도 2에 나타낸 바와 같이, 그래프를 살펴보면 4 V, 8 V, 16 V에 비하여 12 V의 경우 일반적인 양극산화 단계에서 나타나는 전압전류곡선의 형상이 나타남을 알 수 있다.As a result of analyzing the change of current with time during anodization, as shown in FIG. 2, when looking at the graph, the shape of the voltage current curve appearing in the general anodization step is shown in the case of 12 V as compared to 4 V, 8 V, and 16 V. It can be seen.
이러한 전류변화양상을 통하여 12 V에서 양극산화를 통해 초기 철 플레이트의 표면이 나노 구조체 형상의 산화철로 변화된다.Through this current change pattern, the surface of the initial iron plate is changed to iron oxide in the form of nanostructure through anodization at 12V.
실험예 2Experimental Example 2
하기 도 3a 및 도 3b는 각각 실시예 1에 따라 철 플레이트 표면에 형성된 산화철 구조체의 top-view, bottom-view를 보여주는 주사현미경이미지로서, 본 발명에 따라 형성된 구조체는 그래핀과 유사한 형태(grphen-like) 또는 면의 형상(종횡비가 1에 가까움)을 갖는 불규칙적인 와이어(wire)와 같은 나뭇잎 형상을 갖는 나노리프(nano laef) 형태이다.3A and 3B are scanning microscope images showing a top-view and a bottom-view of an iron oxide structure formed on an iron plate surface according to Example 1, respectively, wherein the structure formed according to the present invention has a graphene-like shape (grphen- It is in the form of a nano laef with a leaf shape such as an irregular wire having a like or face shape (aspect ratio close to 1).
실험예 3Experimental Example 3
본 발명에 따라 생성된 철 플레이트의 표면에 형성된 철 구조체의 결정형을 XRD 그래프를 통해 확인하였으며, 결정형 일치도(Crystal Impact Match)를 통하여 분석하였다. 그 결과를 하기 도 4에 나타내었다.The crystal form of the iron structure formed on the surface of the iron plate produced according to the present invention was confirmed through an XRD graph, and analyzed through Crystal Impact Match. The results are shown in FIG. 4.
하기 도 4에 나타낸 바와 같이, 초기 철 플레이트는 영가철(Fe0, raw iron)이고, 양극산화 공정을 거치게 되면 그 표면은 우스타이트(wustite, FeO(산화제일철))로 변화되고, 이후 어닐링 과정을 거치게 되면 표면은 헤마타이트(hematite, Fe2O3(산화제이철))가 변화됨을 확인할 수 있다.As shown in Figure 4, the initial iron plate is a ferrous iron (Fe 0 , raw iron), the surface is changed to wustite (FeO (ferrous oxide)) after the anodization process, and then annealing process After passing through the surface, hematite (hematite, Fe 2 O 3 (ferric oxide)) can be confirmed that the change.
실험예 4Experimental Example 4
상기 실시예 1의 양극산화 공정으로 제작된 철 구조체의 외관 이미지는 하기 도 5a와 같으며, 이후 어닐링 공정을 거친 철 구조체의 외관 이미지는 하기 도 5b와 같다.The exterior image of the iron structure manufactured by the anodization process of Example 1 is as shown in Figure 5a, after which the exterior image of the iron structure undergoes an annealing process is shown in Figure 5b.
양극산화 이후에는 진한 녹색 계열의 빛을 띄고(wustite), 750 ℃에서 어닐링한 이후에는 붉은 색의 빛을 띈다(hematite).After anodization, it is dark green, and after annealing at 750 ° C, it is reddish (hematite).
실험예 5Experimental Example 5
(1) 펜톤실험은 시안화합물(도금폐수)에 대해서 실험을 수행하였으며, pH는 HCN으로 휘발되는 것을 방지하기 위하여 12로 조정하였다.(1) Fenton experiment was performed on cyanide (plating wastewater), and pH was adjusted to 12 to prevent volatilization into HCN.
먼저, 과산화수소(대정화학, 순도 30%)만을 사용하여 시안산화반응을 수행하였으며, control 실험으로는 과산화수소 대신 증류수를 사용하였다. 그 결과를 하기 도 6a에 나타내었다.First, cyanide oxidation was carried out using only hydrogen peroxide (Daejung Chemical, purity 30%), and distilled water was used instead of hydrogen peroxide as a control experiment. The results are shown in Figure 6a below.
하기 도 6a에서, 은 control, 은 H2O2 29.4 mM, 은 H2O2 147 mM, 은 H2O2 294 mM, 은 H2O2 882 mM인 경우이고, 각각의 시안화합물 제거에 대한 1차 비율 상수는 5.1×10-4(29.4 mM), 1.0×10-3(147 mM), 2.1×10-3(294 mM), 5.2×10-3(882 mM)이다.In FIG. 6A, silver control, silver H 2 O 2 29.4 mM, silver H 2 O 2 147 mM, silver H 2 O 2 294 mM, silver H 2 O 2 882 mM, and for each cyanide removal The primary rate constants are 5.1 × 10 −4 (29.4 mM), 1.0 × 10 −3 (147 mM), 2.1 × 10 −3 (294 mM), 5.2 × 10 −3 (882 mM).
과산화수소만을 882 mM 사용한 경우에 360분후에 시안화합물이 80%로 저감되는 것을 확인할 수 있다.When only 882 mM hydrogen peroxide was used, the cyanide compound was reduced to 80% after 360 minutes.
(2) 다음으로 과산화수소와 함께 파우더 형태의 상용 철 촉매 파우더를 이용하여 시안산화반응을 수행하였으며, control 실험으로는 과산화수소 대신 증류수를 사용하였다. 그 결과를 하기 도 6b에 나타내었다.(2) Next, cyanide oxidation was performed using commercial iron catalyst powder in powder form with hydrogen peroxide. Distilled water was used instead of hydrogen peroxide as a control experiment. The results are shown in Figure 6b below.
하기 도 6b에서, 은 control, 은 H2O2 29.4 mM, 은 H2O2 147 mM, 은 H2O2 294 mM, 은 H2O2 882 mM인 경우이고, 각각의 시안화합물 제거에 대한 1차 비율 상수는 1.0×10-3(29.4 mM), 3.0×10-3(147 mM), 6.0×10-3(294 mM), 1.2×10-2(882 mM)이다.In FIG. 6B, silver control, silver H 2 O 2 29.4 mM, silver H 2 O 2 147 mM, silver H 2 O 2 294 mM, silver H 2 O 2 882 mM, and for each cyanide removal The primary rate constants are 1.0 × 10 −3 (29.4 mM), 3.0 × 10 −3 (147 mM), 6.0 × 10 −3 (294 mM), 1.2 × 10 −2 (882 mM).
과산화수소 882 mM과 함께 상용 철 촉매 파우더(0.9 g)를 사용한 경우에 360분 후에 기준치를 만족하였다.The baseline was met after 360 minutes with commercial iron catalyst powder (0.9 g) with 882 mM hydrogen peroxide.
(3) 다음으로 본 발명에 따른 나노 리프 형태의 구조체가 포함된 펜톤산화처리용 철 촉매를 이용하여 시안산화반응을 수행하였으며, control 실험으로는 과산화수소 대신 증류수를 사용하였다. 그 결과를 하기 도 6c에 나타내었다.(3) Next, the cyanation reaction was carried out using the iron catalyst for fenton oxidation treatment including the nano-leaf structure according to the present invention, and distilled water was used instead of hydrogen peroxide as a control experiment. The results are shown in Figure 6c below.
하기 도 6c에서, 은 control, 은 H2O2 29.4 mM, 은 H2O2 147 mM, 은 H2O2 294 mM, 은 H2O2 882 mM인 경우이고, 각각의 시안화합물 제거에 대한 1차 비율 상수는 3.0×10-4(29.4 mM), 4.0×10-3(147 mM), 1.0×10-3(294 mM), 1.7×10-2(882 mM)이다.In FIG. 6C, silver control, silver H 2 O 2 29.4 mM, silver H 2 O 2 147 mM, silver H 2 O 2 294 mM, silver H 2 O 2 882 mM, for each cyanide removal The primary ratio constants are 3.0 × 10 −4 (29.4 mM), 4.0 × 10 −3 (147 mM), 1.0 × 10 −3 (294 mM), 1.7 × 10 −2 (882 mM).
과산화수소 882 mM과 함께 본 발명에 따른 펜톤산화처리용 철 촉매(0.9 g)를 사용한 경우 180분 후에 기준치를 만족하였다.When the iron catalyst (0.9 g) according to the present invention with hydrogen peroxide 882 mM was used, the reference value was satisfied after 180 minutes.
상기 (2)의 상용 철 촉매 파우더를 사용한 경우에 비하여 반응시간이 반으로 단축되었다.The reaction time was shortened by half compared with the case of using the commercial iron catalyst powder of (2).
실험예 6Experimental Example 6
다음으로 함양 축산폐수처리장으로부터 채취하여, 침전 및 탈수과정을 거쳐 이후 여액을 사용하여 실험을 수행하였으며, 성상변화를 최소화하기 위해 채취 후 냉장보관하였다.Next, the sample was collected from the Hamyang Livestock Wastewater Treatment Plant, and after the precipitation and dehydration process, the experiment was carried out using the filtrate, and refrigerated after storage to minimize the change in appearance.
모든 실험에서 사용되어진 수용액의 제조는 millipore system을 사용하여 18 mΩ-cm까지 정화된 증류수를 사용하였으며, pH의 조절을 위한 용액은 1 N H2SO4와 10 N NaOH를 사용하였다.For the preparation of the aqueous solution used in all experiments using distilled water purified to 18 m 수 -cm using a millipore system, 1 NH 2 SO 4 and 10 N NaOH was used as a solution for adjusting the pH.
각 실험은 회분식 반응기에서 실험되어졌으며, magnetic bar를 이용하여 용액을 균등하게 stirring하여 주었다. 반응 후 유기물의 양은 Total organic analyzer(Multi N/C 3100, analyticjena)를 이용하여 측정하였다. 또한, 본 실험에서 사용한 제올라이트는 일본 Wako사에서 제조한 제올라이트를 구매하여 사용하였으며, 제올라이트의 입경은 75 ㎛ (200 mesh)의 크기를 갖고 있다. 암모늄 이온의 농도는 ion-selective electrode(ISE, Neonet Dual pH meter) method에 의해 분석하였으며, 다른 방해물질의 제거 및 이온세기를 일정하면서도 높은 값으로 유지하기 위해 ionic strength adjuster(ISA)를 이용하였다.Each experiment was conducted in a batch reactor and the solution was stirred evenly using a magnetic bar. The amount of organic matter after the reaction was measured using a total organic analyzer (Multi N / C 3100, analyticjena). In addition, the zeolite used in this experiment was purchased by using a zeolite manufactured by Wako, Japan, and the particle size of the zeolite has a size of 75 ㎛ (200 mesh). The concentration of ammonium ions was analyzed by ion-selective electrode (ISE, Neonet Dual pH meter) method, and ionic strength adjuster (ISA) was used to remove other interferences and maintain ionic strength at a constant and high value.
축산폐수를 본 발명에 따른 펜톤산화처리용 철 촉매 1 g을 이용하여 펜톤처리한 결과(과산화수소는 전 실험에서 3 %로 고정하여 사용함), 60 분에 총 80 %의 처리효율을 보였으며, 일반 헤마타이트의 경우 70 %의 처리효율을 나타내었다. TOC의 경우 유기물로 완전한 산화된 양을 측정하기 때문에 70 % 이상의 효율이면 후속처리로 완전한 처리가 가능하며, 본 발명에 따른 펜톤산화처리용 철 촉매의 경우 일반 헤마타이트 처리보다 훨씬 높은 효율을 나타낸 것으로 나타났다.The livestock wastewater was treated with Fenton using 1 g of iron catalyst for fenton oxidation according to the present invention (hydrogen peroxide was fixed at 3% in the previous experiment), and the total efficiency was 80% in 60 minutes. Hematite showed 70% treatment efficiency. In the case of TOC, since the oxidized amount of organic matter is measured, it is possible to perform a complete treatment if the efficiency is 70% or more, and the iron catalyst for fenton oxidation treatment according to the present invention shows much higher efficiency than general hematite treatment. appear.
또한, 도 7에 나타낸 바와 같이, 이 후 암모니아성 질소를 처리하기 위해 제올라이트를 이용하여 암모니아성 질소처리효율을 측정하였다. 반응 결과 1 g의 제올라이트를 사용하였을 경우 45 분에 90 % 처리효율을 나타냈다. 더 많은 양의 제올라이트를 투입할 경우 45 분 이후에 탈착에 의한 암모니아성 질소가 증가되는 현상을 나타냈다.In addition, as shown in FIG. 7, ammonia nitrogen treatment efficiency was measured using zeolite in order to treat ammonia nitrogen. As a result, when 1 g of zeolite was used, the reaction efficiency was 90% at 45 minutes. When a larger amount of zeolite was added, ammonia nitrogen increased by desorption after 45 minutes.
나아가, 도 8에 나타낸 바와 같이, 축산폐수처리 전과 암모니아성 질소까지 최종 처리한 결과의 사진이다. 높은 탁도가 제올라이트까지 여과된 후에는 굉장히 투명한 형태의 결과물을 얻을 수 있음을 확인하였다.Furthermore, as shown in FIG. 8, it is a photograph of the result of the last treatment before a livestock wastewater treatment and even ammonia nitrogen. After high turbidity was filtered to zeolite, it was confirmed that the result was a very transparent form.
본 발명에 따른 펜톤산화처리 촉매용 철 구조체와 이를 이용한 페수처리 공정은 펜톤산화처리 효율이 우수할 뿐만 아니라 철 슬러지의 발생이 없으며, 반영구적인 사용이 가능하여 폐수 처리 등의 환경처리 공정 산업에 유용하게 활용할 수 있다.The iron structure for the fenton oxidation catalyst and the wastewater treatment process using the same according to the present invention are not only excellent in fenton oxidation treatment efficiency, do not generate iron sludge, and can be used semi-permanently, which is useful for environmental treatment process industries such as wastewater treatment. Can be utilized.

Claims (11)

  1. 양극산화로 형성된 폐수의 펜톤산화처리용 철 구조체에 있어서,In the iron structure for fenton oxidation treatment of wastewater formed by anodization,
    상기 철 구조체는 영가철(Fe0)로 이루어진 플레이트(plate) 표면에 산화제이철(Fe2O3)의 나노 구조체가 형성되어 있는 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체.The iron structure is iron structure for fenton oxidation treatment of wastewater, characterized in that the nanostructure of ferric oxide (Fe 2 O 3 ) is formed on the surface of the plate made of ductile iron (Fe 0 ).
  2. 제1항에 있어서,The method of claim 1,
    상기 철 구조체의 표면에서 유사펜톤반응(Fenton like reaction)이 일어나고, 영가철로 이루어진 플레이트에서 표면으로 전자가 공급되는 것은 특징으로 하는 폐수의 펜톤산화처리용 철 구조체.Fenton like reaction occurs on the surface of the iron structure, the iron structure for fenton oxidation treatment of the waste water, characterized in that the electron is supplied to the surface from a plate made of iron.
  3. 제1항에 있어서,The method of claim 1,
    상기 산화제이철의 나노 구조체는 나노리프(Nano-leaf) 형상을 갖는 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체.The ferric oxide nanostructure of the ferric oxide has a nano-leaf (Nano-leaf) shape, characterized in that the iron structure for fenton oxidation treatment.
  4. 제1항에 있어서,The method of claim 1,
    상기 산화제이철의 나노 구조체는 헤마타이트(hematite) 결정 구조인 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체.The ferric oxide nanostructure is a hematite (hematite) crystal structure of the iron structure for fenton oxidation treatment of waste water.
  5. (a) 영가철(Fe0) 플레이트(plate)를 황산나트륨(Na2SO4)과 플루오르화나트륨(NaF)의 혼합 전해 용액에 담지 후, 상기 영가철 플레이트가 양극이 되도록 전원을 인가하는 단계;(a) immersing a ferrous iron (Fe 0 ) plate in a mixed electrolyte solution of sodium sulfate (Na 2 SO 4 ) and sodium fluoride (NaF), and then applying power so that the non-ferrous iron plate becomes a positive electrode;
    (b) 상기 (a) 단계의 양극 산화 단계를 지속시켜 상기 영가철 플레이트 표면을 산화시키는 단계; 및(b) continuing the anodic oxidation step of step (a) to oxidize the non-ferrous plate surface; And
    (c) 상기 표면이 산화된 영가철 플레이트를 어닐링시키는 단계;를 포함하는 폐수의 펜톤산화처리용 철 구조체를 제조하는 방법.and (c) annealing the surface of the oxidized zero duct iron plate.
  6. 제5항에 있어서,The method of claim 5,
    상기 (a) 단계에서 10-15 V 전압으로 전원을 인가하는 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체를 제조하는 방법.The method of manufacturing the iron structure for fenton oxidation treatment of wastewater, characterized in that the power is applied at a voltage of 10-15V in step (a).
  7. 제5항에 있어서,The method of claim 5,
    상기 (b) 단계에서 양극산화된 플레이트의 표면은 우스타이트(wustite) 결정 구조의 산화제일철(FeO)인 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체를 제조하는 방법.The surface of the anodized plate in the step (b) is a method for producing an iron structure for fenton oxidation treatment of waste water, characterized in that the ferrous oxide (FeO) of the wustite crystal structure (FeO).
  8. 제5항에 있어서,The method of claim 5,
    상기 (c) 단계에서 어닐링된 플레이트의 표면은 헤마타이트(hematite) 결정 구조의 산화제이철(Fe2O3)인 것을 특징으로 하는 폐수의 펜톤산화처리용 철 구조체를 제조하는 방법.The surface of the plate annealed in the step (c) is a ferric oxide (Fe 2 O 3 ) of hematite crystal structure (Fe 2 O 3 ) The method for producing an iron structure for fenton oxidation treatment of waste water.
  9. 폐수를 준비하는 단계; 및Preparing wastewater; And
    상기 폐수에 과산화수소 및 상기 제1항에 펜톤산화처리용 철 구조체를 투입하는 단계;를 포함하는 폐수처리방법.And injecting hydrogen peroxide and the iron structure for fenton oxidation treatment into the wastewater.
  10. 제9항에 있어서,The method of claim 9,
    상기 펜톤산화처리용 철 구조체에서 유사펜톤반응이 일어나고, 이를 통하여 폐수 내 포함된 유기물의 산화가 이루어지는 것을 특징으로 하는 폐수처리방법.The quasi-Fenton reaction occurs in the iron structure for fenton oxidation treatment, through which the organic matter contained in the wastewater is oxidized.
  11. 제9항에 있어서,The method of claim 9,
    상기 펜톤산화처리용 철 구조체의 플레이트에서 표면으로 전자가 지속적으로 공급되는 것을 특징으로 하는 폐수처리방법.Waste water treatment method characterized in that the electron is continuously supplied to the surface from the plate of the iron structure for fenton oxidation treatment.
PCT/KR2015/008350 2014-08-12 2015-08-10 Iron structure for fenton oxidation treatment of wastewater, preparation method therefor, and wastewater treatment method using same WO2016024774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0104452 2014-08-12
KR20140104452 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016024774A1 true WO2016024774A1 (en) 2016-02-18

Family

ID=55304346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008350 WO2016024774A1 (en) 2014-08-12 2015-08-10 Iron structure for fenton oxidation treatment of wastewater, preparation method therefor, and wastewater treatment method using same

Country Status (1)

Country Link
WO (1) WO2016024774A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964308A (en) * 2016-05-27 2016-09-28 东莞市联洲知识产权运营管理有限公司 Preparation method of carrier material for catalyst for sewage treatment
CN107640854A (en) * 2017-09-25 2018-01-30 复旦大学 A kind of dyeing waste water advanced treating integral method of oxidization time in seconds
CN107899578A (en) * 2017-10-25 2018-04-13 浙江科技学院 A kind of heterogeneous class light fenton catalyst of rice-pudding shape micron ferric oxide and preparation method thereof
CN110961107A (en) * 2019-12-10 2020-04-07 重庆工商大学 Nano iron oxide material, preparation method and application thereof
CN112358900A (en) * 2020-10-26 2021-02-12 沈阳工业大学 Fenton reagent oxidized coal desulfurization method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040052387A (en) * 2002-12-17 2004-06-23 학교법인 성균관대학 Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
KR20050017863A (en) * 2003-08-11 2005-02-23 학교법인 성균관대학 Nanostructural ferric catalyst for wastewater fenton oxidation treatment and the Producing method hereof
KR20070078830A (en) * 2007-07-04 2007-08-02 한양대학교 산학협력단 Fabrication method of zero-valent iron nanotube film
KR100930929B1 (en) * 2009-05-22 2009-12-10 한양대학교 산학협력단 Iron for catalyst of fentonoxidation, method thereof, and waste water treatment method using the same
KR20100078936A (en) * 2008-12-30 2010-07-08 서울대학교산학협력단 Fabrication method of nano-fenton system waste water treatment reagent using magnetic nanoparticle/polymer core-shell nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040052387A (en) * 2002-12-17 2004-06-23 학교법인 성균관대학 Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
KR20050017863A (en) * 2003-08-11 2005-02-23 학교법인 성균관대학 Nanostructural ferric catalyst for wastewater fenton oxidation treatment and the Producing method hereof
KR20070078830A (en) * 2007-07-04 2007-08-02 한양대학교 산학협력단 Fabrication method of zero-valent iron nanotube film
KR20100078936A (en) * 2008-12-30 2010-07-08 서울대학교산학협력단 Fabrication method of nano-fenton system waste water treatment reagent using magnetic nanoparticle/polymer core-shell nanoparticles
KR100930929B1 (en) * 2009-05-22 2009-12-10 한양대학교 산학협력단 Iron for catalyst of fentonoxidation, method thereof, and waste water treatment method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964308A (en) * 2016-05-27 2016-09-28 东莞市联洲知识产权运营管理有限公司 Preparation method of carrier material for catalyst for sewage treatment
CN107640854A (en) * 2017-09-25 2018-01-30 复旦大学 A kind of dyeing waste water advanced treating integral method of oxidization time in seconds
CN107899578A (en) * 2017-10-25 2018-04-13 浙江科技学院 A kind of heterogeneous class light fenton catalyst of rice-pudding shape micron ferric oxide and preparation method thereof
CN107899578B (en) * 2017-10-25 2020-05-26 浙江科技学院 Zongzi-shaped micron-sized iron oxide heterogeneous photo-Fenton catalyst and preparation method thereof
CN110961107A (en) * 2019-12-10 2020-04-07 重庆工商大学 Nano iron oxide material, preparation method and application thereof
CN110961107B (en) * 2019-12-10 2023-03-28 重庆工商大学 Nano iron oxide material, preparation method and application thereof
CN112358900A (en) * 2020-10-26 2021-02-12 沈阳工业大学 Fenton reagent oxidized coal desulfurization method

Similar Documents

Publication Publication Date Title
WO2016024774A1 (en) Iron structure for fenton oxidation treatment of wastewater, preparation method therefor, and wastewater treatment method using same
WO2015194739A1 (en) Waste water treatment method using micro-electrolysis reaction, and micro-electrolysis material thereof
Skubal et al. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles
WO2012045236A1 (en) Method for promoting monopersulfate or persulfate to produce sulfate free radical
WO2011097892A1 (en) Fenton and fenton-like system hardening agent and usage thereof
EP0621354B1 (en) Method for recovering and reproducing tinning liquid
WO2014094399A1 (en) Wastewater treatment device and method for in-situ electric generation of h2o2 cooperating with o3 oxidation
WO2013100691A1 (en) Preparation method of granular oxide adsorbent, and water treatment method using same
CN110498555B (en) Zero-valent iron disulfide heterogeneous Fenton system and method thereof
KR101358855B1 (en) Method for purifying sewage-pollution water using zero valent iron/magnetite mixture
Huang et al. Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes
CN101491771A (en) Fenton and Fenton-like reaction catalyst regeneration and reclamation method
WO2013133509A1 (en) Synthesis of nanoscale zero valent iron coated with iron sulfide precipitate on surface thereof by means of hydrogen sulfide ions and method for purifying environmental pollutants in contaminated soil and ground water using same
Jang et al. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction
US5326439A (en) In-situ chromate reduction and heavy metal immobilization
CN108217834B (en) Method for removing ammonia nitrogen-containing wastewater by producing activated persulfate and carbonate radical
KR100930929B1 (en) Iron for catalyst of fentonoxidation, method thereof, and waste water treatment method using the same
WO2016029613A1 (en) Method and apparatus for purifying desulfurization lead plaster filtrate
CN109437277B (en) Method for green and efficient recovery of copper ions
Arulmani et al. Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells
KR100502755B1 (en) Apparatus for treating waste water and method for treating waste water
TW200906737A (en) Recycling method for copper resource in process
CN108754177B (en) Method for removing organic matters in zinc sulfate solution by wet method through ultraviolet irradiation
EP0295696B1 (en) Method for removing organic dye stuffs and heavy metals from wastewater
TW553906B (en) A method for the treatment of waste tin-lead stripping solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831560

Country of ref document: EP

Kind code of ref document: A1