WO2016024500A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2016024500A1
WO2016024500A1 PCT/JP2015/072128 JP2015072128W WO2016024500A1 WO 2016024500 A1 WO2016024500 A1 WO 2016024500A1 JP 2015072128 W JP2015072128 W JP 2015072128W WO 2016024500 A1 WO2016024500 A1 WO 2016024500A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
introduction hole
introduction
sensor
introduction holes
Prior art date
Application number
PCT/JP2015/072128
Other languages
French (fr)
Japanese (ja)
Inventor
伸幸 向井
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2016024500A1 publication Critical patent/WO2016024500A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance

Definitions

  • the present invention relates to a sensor for detecting a characteristic of a fluid.
  • the sensor for detecting the characteristics of the fluid is not limited to detecting the collected sample at a predetermined sample position.
  • a sensor mounted on an attachment body such as a conduit or a tank through which the fluid flows.
  • This type of sensor is often required to be responsive to changes in the fluid state.
  • a fluid temperature detection sensor described in Patent Document 1 has a sensor housing that is mounted on a mounted body.
  • the sensor housing has a protection cylinder, and the temperature detection element is accommodated in the protection cylinder via a heat conductive paste.
  • a male screw is formed on the outer periphery of the sensor housing.
  • the temperature detection element does not contact the measurement medium, but there is also a sensor in which the temperature detection element or other detection unit contacts the fluid.
  • the detection unit if the detection unit unexpectedly drops due to factors such as a severe usage situation, the detection unit may be mixed into the fluid as a foreign substance. For this reason, it is preferable to cover the detection unit with a protective member such as a protective cylinder while keeping the detection unit in contact with the fluid.
  • the fluidity of the fluid around the detection unit is lower than when the detection unit is not covered with the protective member. For this reason, since the change in the state of the fluid to be detected is not immediately reflected in the state of the fluid in the protective cylinder, the responsiveness of the sensor may be reduced.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a sensor capable of improving responsiveness while protecting a detection unit.
  • a sensor including a detection unit that detects a characteristic of a fluid and a cylindrical cover that houses the detection unit inside.
  • the cover has a plurality of introduction holes smaller than the size of the detection unit.
  • the plurality of introduction holes are formed around the central axis of the cover at positions that do not face each other with the central axis in between.
  • the detection target fluid is brought into contact with the detection unit while suppressing the detection unit from dropping out of the cover. be able to. Further, since the plurality of holes in the cover are formed at positions that do not face each other, the response of the sensor can be improved by improving the fluidity of the fluid in the cover.
  • At least a part of the plurality of introduction holes is provided at a position facing the detection unit. According to the above configuration, since at least a part of the plurality of introduction holes is provided at a position facing the detection unit, the time until the fluid that has flowed into the cover through the introduction hole reaches the detection unit is shortened. Can do.
  • the cover has a plurality of introduction hole rows each consisting of a plurality of introduction holes that are a part of the introduction holes, and the introduction holes of each introduction hole row are introduced to adjacent introduction hole rows. It is preferable that the arrangement of the cover in the circumferential direction is different from the hole.
  • the cover has a plurality of introduction hole rows each composed of a plurality of introduction holes that are a part of the introduction holes, and the introduction holes of each introduction hole row are introduced to other introduction hole rows. It is preferable that the arrangement of the cover in the circumferential direction is different from the hole.
  • the introduction hole of each introduction hole row differs from the introduction hole of the other introduction hole row in the circumferential direction of the cover, so that the fluidity of the fluid in the cover can be improved.
  • the introduction holes are arranged in a spiral from one end portion to the other end portion in the axial direction of the cover.
  • the cover has a plurality of introduction hole rows each including a plurality of introduction holes that are a part of the introduction holes, and between the adjacent pairs of the introduction holes in each introduction hole row. Are preferably different from each other.
  • a wall portion is provided at one end portion in the axial direction of the cover, and an end portion introduction hole for taking a fluid into the inside of the cover is formed in the wall portion.
  • the cover has the introduction hole located around the central axis of the cover and the end introduction hole located at one end in the axial direction of the cover. Improvements can be made.
  • the detection unit includes a first electrode, a second electrode that is disposed opposite to the first electrode and transmits water molecules, and a sensor sandwiched between the first electrode and the second electrode. And the detection unit detects the amount of water contained in the fluid based on a change in capacitance caused by the sensitive film adsorbing and desorbing water molecules that have passed through the second electrode. preferable.
  • another aspect of the present invention provides a sensor including a detection unit that detects a characteristic of a fluid and a cylindrical cover that houses the detection unit.
  • the cover has a plurality of introduction holes smaller than the size of the detection unit, each of the introduction holes being located around the central axis of the cover and another one of the introduction holes.
  • the two introduction holes facing each other have different inner diameters.
  • the detection target fluid is brought into contact with the detection unit while suppressing the detection unit from dropping out of the cover. be able to. Further, since the introduction holes facing each other have different inner diameters, the response of the sensor can be improved by improving the fluidity of the fluid in the cover.
  • FIG. 5A is a sectional view taken along line 6a-6a in FIG. 5
  • FIG. 5B is a sectional view taken along line 6b-6b in FIG. 5
  • FIG. 5C is a sectional view taken along line 6c-6c in FIG.
  • FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. The figure which shows the attachment state of the sensor of the embodiment.
  • FIG. 10A is a sectional view taken along line 11a-11a in FIG. 10
  • FIG. 10B is a sectional view taken along line 11b-11b in FIG. 10
  • FIG. 10C is a sectional view taken along line 11c-11c in FIG.
  • 12A is a sectional view taken along line 13a-13a in FIG. 12
  • FIG. 12B is a sectional view taken along line 13b-13b in FIG.
  • FIG. 13C is a sectional view taken along line 13c-13c in FIG.
  • FIG. 14A is a sectional view taken along line 15a-15a in FIG. 14, FIG. 14B is a sectional view taken along line 15b-15b in FIG. 14, and FIG. 14C is a sectional view taken along line 15c-15c in FIG.
  • 16A is a cross-sectional view taken along line 17a-17a in FIG. 16
  • FIG. 16B is a cross-sectional view taken along line 17b-17b in FIG.
  • FIG. 16C is a cross-sectional view taken along line 17c-17c in FIG.
  • 18A is a cross-sectional view taken along a line 19a-19a in FIG.
  • FIG. 18B is a cross-sectional view taken along a line 19b-19b in FIG. 18, and FIG. 18C is a cross-sectional view taken along a line 19c-19c in FIG.
  • the front view of the cover in the sensor of the modification of this invention The front view of the cover in the sensor of the modification of this invention. Sectional drawing of the cover in the sensor of the modification of this invention.
  • a sensor according to a first embodiment of the present invention will be described with reference to FIGS.
  • the sensor will be specifically described as a sensor that detects the amount of moisture contained in oil as a fluid, such as lubricating oil for a machine.
  • the sensor is mounted on a mounted body such as a conduit through which oil flows or a tank in which oil is stored.
  • the sensor 10 includes a housing 11 and a cover 12.
  • the housing 11 has a large diameter portion 13 and a small diameter portion 14.
  • the large diameter portion 13 and the small diameter portion 14 are fastened by a fastening portion 15 such as a nut.
  • the cover 12 is formed of a metal material having corrosion resistance against oil to be detected such as mineral oil or insulating oil, and has a cylindrical shape.
  • a side wall 22 is provided at one end of the cover 12 along the axial direction, and the other end is open.
  • One first introduction hole 24 is formed through the side wall portion 22 of the cover 12.
  • a plurality of second introduction holes 26 are formed through the peripheral wall portion 25 of the cover 12.
  • the first introduction hole 24 and the second introduction hole 26 are through holes for introducing oil into the cover 12 and have the same shape and inner diameter.
  • the first introduction hole 24 is formed in the central portion of the side wall portion 22.
  • the small-diameter portion 14 of the housing 11 includes a first screwing portion 16 and a second screwing portion 17 in which male screws are respectively formed.
  • a pair of pins 21 is fixed to the tip of the second screwing portion 17.
  • the pin 21 is firmly fixed to the second screwing portion 17 by soldering or the like.
  • a detection element 20 that is electrically connected to the pins 21 is provided.
  • the inner diameter D (see FIG. 2) of the first introduction hole 24 and the second introduction hole 26 described above is smaller than the width W, height H, and thickness T of the detection element 20.
  • a cover screw portion 27 is formed on the inner peripheral surface of the opening end 23 of the cover 12. When the cover screw portion 27 is screwed with the second screw portion 17 of the small diameter portion 14, the cover 12 is attached to the small diameter portion 14 in a state where the detection element 20 is accommodated inside.
  • the relative position in the circumferential direction between the cover 12 and the detection element 20 is not particularly limited.
  • a region Z ⁇ b> 1 in which the second introduction hole 26 is formed is located at a position where the detection element 20 is disposed in the axial direction of the cover 12 with the cover 12 being attached to the small diameter portion 14. Overlap. That is, at least a part of the second introduction hole 26 faces the detection element 20. For this reason, the oil that has flowed into the cover 12 from the second introduction hole 26 easily reaches the detection element 20.
  • the region Z1 is a region including from the second introduction hole 26 closest to the opening end 23 to the second introduction hole 26 closest to the side wall portion 22 in the axial direction of the cover 12.
  • connection portion 18 and a notification portion 19 are provided on the end surface 18 a on the opposite side of the small diameter portion 14 among the end surfaces of the large diameter portion 13.
  • a power supply line and a signal line are connected to the connection unit 18.
  • the power supply line connected to the connection unit 18 supplies power to the drive circuit accommodated in the large-diameter portion 13 and the notification unit 19.
  • the signal line connected to the connection unit 18 transmits the detection signal output from the detection element 20 to an external output device or the like.
  • the notification unit 19 includes three lamps 19a, 19b, and 19c.
  • the lamps 19a to 19c are controlled to be lit by the drive circuit accommodated in the large diameter portion 13.
  • each of the lamps 19a to 19c may emit light of different colors when turned on.
  • the back lamp 19a in FIG. 9 is turned on.
  • the central lamp 19b is turned on.
  • the lamp 19c in front of FIG. 9 is turned on. That is, the notification unit 19 notifies the user of the approximate amount of water contained in the detection target oil.
  • the measured value of the amount of moisture detected by the detection element 20 can be confirmed by the output device connected via the signal line. Further, when an abnormality occurs in the sensor 10 itself, the failure is notified by turning on all the lamps 19a to 19c.
  • the cover 12 is formed with a plurality of introduction hole arrays each including a plurality of second introduction holes 26 having the same position in the axial direction of the cover 12.
  • the present embodiment four introduction hole rows L 1, L 2, L 3, and L 4 are arranged in the axial direction of the cover 12.
  • Each of the introduction hole rows L1 to L4 has three second introduction holes 26.
  • Each second introduction hole 26 constituting each introduction hole row L1 to L4 is different in position in the circumferential direction of the cover 12 from any second introduction hole 26 in the adjacent introduction hole row. That is, the circumferential position of each second introduction hole 26 that constitutes the first introduction hole row L1 is different from the circumferential position of any second introduction hole 26 that constitutes the second introduction hole row L2. Further, the circumferential position of each second introduction hole 26 constituting the second introduction hole row L2 is different from the circumferential position of any second introduction hole 26 constituting the first introduction hole row L1, and the third introduction hole is arranged. It is different from the circumferential position of any second introduction hole 26 constituting the hole row L3.
  • each second introduction hole 26 constituting the first introduction hole row L1 is the same as the circumferential position of one of the second introduction holes 26 constituting the third introduction hole row L3. Further, the circumferential position of each second introduction hole 26 constituting the second introduction hole row L2 is the same as the circumferential position of one of the second introduction holes 26 constituting the fourth introduction hole row L4.
  • the second introduction holes 26 constituting each of the introduction hole rows L1 to L4 are located at positions that do not face each other with the central axis X1 of the cover 12 in between, that is, the front faces Each is formed at a position that does not become.
  • the central axis X1 passes through the center of the first introduction hole 24.
  • the second introduction holes 26 of the second introduction hole row L2 shown in FIG. 6A are clockwise with respect to the position of the upper second introduction hole 26 in the figure, “0 °”, “120 °”, Each is formed at a position of “240 °”.
  • the second introduction holes 26 of the fourth introduction hole row L4 shown in FIG. 6C are formed at positions of “0 °”, “120 °”, and “240 °”, respectively.
  • the second introduction hole 26 of the first introduction hole row L1 is “60 °”, “180 °”, “300 °” similarly to the second introduction hole 26 of the third introduction hole row L3. It is formed at each position.
  • the detection element 20 detects the amount of water contained in the oil to be detected based on the capacitance.
  • the detection element 20 includes a substrate 30 and a first electrode 31 installed on the substrate 30.
  • a sensitive film 33 is formed on the first electrode 31, and a second electrode 32 is formed on the sensitive film 33.
  • the first electrode 31 is made of a metal material such as chromium containing gold.
  • a first electrode terminal 34 is connected to the first electrode 31.
  • the 2nd electrode 32 consists of metal materials, such as chromium, and a water molecule can permeate
  • the second electrode 32 is connected to the second electrode 32.
  • the first electrode terminal 34 and the second electrode terminal 35 are drawn from one side of the substrate 30 and are connected to the drive circuit accommodated in the large-diameter portion 13 through the pin 21.
  • the sensitive film 33 is made of an organic insulator such as polyimide that can adsorb and desorb water molecules.
  • the sensitive film 33 is formed to be slightly larger than the first electrode 31 and the second electrode 32, and is laminated so that end portions thereof protrude from the first electrode 31 and the second electrode 32.
  • the first electrode 31 is covered with a sensitive film 33.
  • the first electrode 31 and the second electrode 32 face each other with the sensitive film 33 interposed therebetween. Adsorption and desorption of water molecules to the sensitive film 33 are performed directly at the exposed portion protruding from the second electrode 32 and also through the second electrode 32.
  • the adsorption of water molecules to the sensitive film 33 is balanced with the oil. For example, if the amount of water molecules contained in the oil increases, the amount of water molecules adsorbed on the sensitive membrane 33 also increases, and if the amount of water molecules contained in the oil decreases, the amount of water molecules adsorbed on the sensitive membrane 33 also increases. Decrease.
  • the capacitance between the first electrode 31 and the second electrode 32 changes due to the adsorption and desorption of water molecules on the sensitive film 33.
  • the amount of moisture contained in the oil is detected by calculating a change in capacitance between the first electrode 31 and the second electrode 32 by a drive circuit connected to the first electrode terminal 34 and the second electrode terminal 35. Is done.
  • the time required for equilibration of the adsorption of water molecules to the sensitive membrane 33 is required to be minimal.
  • An insertion hole 101 for mounting the sensor 10 is formed in a wall such as a pipe line or a tank that is the mounted body 100.
  • a female screw is formed on the inner peripheral surface of the insertion hole 101. The sensor 10 is mounted by inserting the cover 12 into the mounted body 100 and screwing the first screwing portion 16 into the female screw of the insertion hole 101.
  • the sensor 10 preferably detects the amount of water contained in the oil 102 in a state where the oil 102 is flowing in the mounted body 100. This is to make the water content of the oil 102 uniform in the mounted body 100, but the water content of the oil 102 is made uniform or needs to be made uniform before detection by the sensor 10. If there is not (for example, when the detection is in a biased state), the oil 102 does not need to flow during the detection.
  • the oil 102 flows into the cover 12 via the second introduction hole 26 and the first introduction hole 24 and contacts the detection element 20.
  • the detection element 20 outputs an electrical signal corresponding to the amount of water molecules adsorbed to the drive circuit.
  • the drive circuit transmits a signal corresponding to the moisture content to the above-described output device via a signal line connected to the sensor 10. Further, the drive circuit turns on a lamp corresponding to the moisture content among the lamps 19a to 19c to notify the user of the level of the moisture content.
  • the detection element 20 is covered with the cover 12 and is larger than the inner diameters of the first introduction hole 24 and the second introduction hole 26 formed in the cover 12. For this reason, even if the detection element 20 is unintentionally detached from the second screwing portion 17 due to factors such as the use environment, the detection element 20 does not fall out of the cover 12. For this reason, it is prevented that the detection element 20 mixes in the pipe line and tank in which oil flows.
  • the senor 10 has improved responsiveness compared to the case where the second introduction holes 26 are provided at positions where they are not opposed to each other.
  • the improvement of the responsiveness here is not the responsiveness of the detection element 20 itself, but when the water content of the oil 102 flowing through the mounted body 100 changes due to some factor, the change from the time of the change is detected by the sensor 10. This means shortening the delay time until it is detected by.
  • the reason for improving the responsiveness of the sensor 10 has not yet been clarified, but is estimated as follows.
  • the second introduction holes 26 formed in the cover 12 are formed at positions facing each other, the oil 102 introduced into the cover 12 from one of the pair of opposed second introduction holes 26 is the other.
  • the second introduction hole 26 is easily discharged out of the cover 12.
  • the oil 102 introduced into the cover 12 from the second introduction holes 26 faces the second introduction holes 26 facing each other. Therefore, it is not discharged out of the cover 12 as it is, but collides with the inner peripheral surface of the cover 12.
  • the inflow of the oil 102 from the first introduction hole 24 is also added, for example, shear force or turbulent flow is applied to the oil 102 in the cover 12 as compared with the case where the second introduction holes 26 are formed at positions facing each other. As a result, the flow of the oil 102 in the cover 12 is complicated.
  • each second introduction hole 26 in each introduction hole row L1 to L4 is different in position in the circumferential direction of the cover 12 from any second introduction hole 26 in the adjacent introduction hole row.
  • the direction of the flow of the oil 102 introduced into the cover 12 is diversified as compared with the case where the circumferential position of the second introduction hole 26 is the same between the two introduction hole rows adjacent to each other.
  • the oil flow in the cover 12 can be made a more complicated flow.
  • the oil in the cover 12 does not stay in the corners of the cover 12 and is mixed well in a short time, and then the oil in the cover 12 passes through either the second introduction hole 26 or the first introduction hole 24. Discharged to the outside.
  • the moisture content of the oil 102 existing inside the cover 12 is the same as the moisture content of the oil 102 existing outside the cover 12 in a short time.
  • the following effects can be obtained. (1) Since the plurality of second introduction holes 26 smaller than the size of the detection element 20 are formed in the cover 12, it is possible to prevent the detection element 20 from dropping out of the cover 12 and to detect the oil to be detected. It can be brought into contact with the detection element 20. Moreover, since the 2nd introduction hole 26 is formed in the position which is not mutually opposed, the responsiveness of the sensor 10 can be improved.
  • the cover 12 has a second introduction hole 26 formed in the peripheral wall portion 25 and a first introduction hole 24 formed in the side wall portion 22. For this reason, the detection target oil can flow into the cover 12 not only in the direction from the peripheral wall portion 25 of the cover 12 toward the center in the radial direction but also in the axial direction from the side wall portion 22 toward the opening end 23. For this reason, the oil flow in the cover 12 is complicated, so that oil can be prevented from staying in the corners of the cover 12.
  • the detection element 20 is a capacitive element, and detects a change in capacitance based on a change in the amount of moisture between the first electrode 31 and the second electrode 32. For this reason, the responsiveness of the detection element 20 itself can be improved compared with the resistance type sensor which detects the resistance change by the moisture content between electrodes.
  • the sensor of 2nd Embodiment of this invention is demonstrated centering on difference with 1st Embodiment.
  • the sensor of this embodiment is different from the first embodiment in that the circumferential position of the second introduction hole of each introduction hole row coincides with the circumferential position of the second introduction hole of another introduction hole row. Yes.
  • the basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
  • the cover 12 of the sensor 10 of the present embodiment has three introduction hole rows L1, L2, and L3.
  • the region Z2 in which the introduction hole rows L1 to L3 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
  • each of the introduction hole arrays L1 to L3 has three second introduction holes 26 formed every 120 °.
  • the second introduction holes 26 in each of the introduction hole rows L1 to L3 have the same circumferential position as the second introduction holes 26 of the other two introduction hole rows L1 to L3.
  • the second introduction holes 26 of the introduction hole rows L1 to L3 are arranged at positions that do not face each other with the central axis X1 interposed therebetween.
  • the cover 12 of the sensor 10 of this embodiment has four introduction hole rows L1, L2, L3, and L4.
  • the region Z3 in which the introduction hole rows L1 to L4 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
  • each of the introduction hole rows L1 to L4 has five second introduction holes 26 formed every 72 °.
  • the second introduction holes 26 of the introduction hole rows L1 to L4 are arranged at positions that do not face each other with the central axis X1 interposed therebetween.
  • each second introduction hole 26 of each introduction hole row L1 to L4 has a circumferential position different from the second introduction hole 26 of any other introduction hole row L1 to L4. That is, the second introduction holes 26 of the introduction hole rows L1 to L4 are different in the position in the axial direction and the circumferential direction of the cover 12 from the second introduction holes 26 of any other introduction hole rows L1 to L4. Further, in the present embodiment, the circumferential positions of the second introduction holes 26 of the introduction hole rows L1 to L4 are shifted by 18 ° with respect to the closest second introduction hole 26 among the adjacent introduction hole rows.
  • the five second introduction holes 26 of the fourth introduction hole row L4 are “0 °”, “72 °”, “144 °”, “216 °” in the clockwise direction. ”And“ 288 ° ”.
  • the five second introduction holes 26 of the third introduction hole row L3 are “54 °”, “126 °”, “198 °”, “270 °”, “342”. It is formed at each position of “°”.
  • the five second introduction holes 26 of the second introduction hole row L2 are “36 °”, “108 °”, “180 °”, “252 °”, “324”. It is formed at each position of “°”.
  • each of the introduction hole rows L1 to L4 has the five second introduction holes 26, the opening ratio of the cover 12 can be increased. Further, the direction in which the detection target oil is introduced into the cover 12 can be further diversified as compared with the cover 12 of the first embodiment.
  • the same effects as the effects (1) to (4) of the first embodiment can be obtained, and the following effects can be obtained.
  • the circumferential positions of the second introduction holes 26 constituting the introduction hole rows L1 to L4 are different from the circumferential positions of the second introduction holes 26 of any other introduction hole rows L1 to L4. For this reason, the flow of oil in the cover 12 can be complicated, and the fluidity of the oil in the cover 12 can be improved.
  • the second introduction holes 26 are arranged in a spiral from the side wall portion 22 to the opening end 23 in the cover 12 of the sensor of the present embodiment. That is, the position of the second introduction hole 26 in the axial direction and the position in the circumferential direction of the cover 12 are shifted from each other.
  • the region Z4 in which the second introduction holes 26 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
  • the second introduction holes 26 are arranged at positions that do not face each other with the central axis X1 interposed therebetween. Further, each second introduction hole 26 is not opposed to any other second introduction hole 26 because the position of the cover 12 in the axial direction is shifted from any other second introduction hole 26. For this reason, the fluidity
  • the same effects as the effects (1) to (4) of the first embodiment can be obtained, and the following effects can be obtained.
  • the second introduction holes 26 are arranged in a spiral on the cover 12, the fluidity of oil in the cover 12 can be improved.
  • FIGS. 16 and 17 a sensor according to a fifth embodiment of the present invention will be described with reference to FIGS. 16 and 17 focusing on differences from the first embodiment.
  • the basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
  • the cover 12 of the sensor 10 of this embodiment has three introduction hole rows L1, L2, and L3.
  • the region Z5 in which the introduction hole rows L1 to L3 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
  • the second introduction holes 26 constituting each of the introduction hole rows L1 to L3 are arranged at positions that do not face each other with the central axis X1 interposed therebetween.
  • the intervals between adjacent two of the second introduction holes 26 constituting each of the introduction hole rows L1 to L3 are different from each other.
  • the intervals ⁇ 11, ⁇ 12, ⁇ 13 between two adjacent second introduction holes 26 in the first introduction hole row L1 are, for example, “134 °”, “120 °”, “ 106 ° ".
  • the intervals ⁇ 21, ⁇ 22, ⁇ 23 between two adjacent second introduction holes 26 in the second introduction hole row L2 are “133 °”, “115 °”, It is different from each other like “112 °”.
  • the intervals ⁇ 31, ⁇ 32, and ⁇ 33 of the second introduction holes 26 in the third introduction hole row L3 are “115 °”, “123 °”, and “122 °”. Each is different. These intervals are merely examples, and other intervals may be used.
  • each second introduction hole 26 is not opposed to any other second introduction hole 26. Further, since the intervals between the second introduction holes 26 in each of the introduction hole arrays L1 to L3 are different from each other, for example, a large number of second introduction holes 26 are provided at positions corresponding to locations in the cover 12 where oil is likely to stay. You can also. For this reason, the fluidity
  • the present embodiment in addition to the same effects as the effects (1) to (4) of the first embodiment, the following effects can be obtained.
  • the intervals between the second introduction holes 26 constituting each of the introduction hole rows L1 to L3 are different from each other, the flow direction of the oil introduced into the cover 12 is diversified. For this reason, the fluidity
  • FIGS. 18 and 19 a sensor according to a fifth embodiment of the present invention will be described with reference to FIGS. 18 and 19 focusing on differences from the first embodiment.
  • the basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
  • the cover 12 of the sensor 10 of this embodiment has three introduction hole rows L1, L2, and L3.
  • the position of the detection element 20 is not shown for convenience.
  • each of the introduction hole rows L1 to L3 has four second introduction holes 26 formed every 90 °.
  • Each second introduction hole 26 of each introduction hole row L1 to L3 faces one of the other second introduction holes 26 of the same introduction hole row L1 to L3.
  • Each introduction hole row L1 to L3 includes two second introduction holes 26a having a relatively small inner diameter, and two second introduction holes 26b having a relatively large inner diameter.
  • Two second introduction holes 26 facing each other across the central axis X1 are configured by a pair of 26a and the second introduction hole 26b.
  • the pair of second introduction holes 26 facing the cover 12 have different inner diameters.
  • the oil contracts in the cover 12.
  • a part of the contracted flow of oil that has passed through the large-diameter second introduction hole 26 b is easily discharged from the opposing second small-diameter second introduction hole 26 b, but the remaining portion of the contracted flow is within the cover 12. Easy to collide with the surrounding surface. For this reason, it is possible to prevent oil from staying in the cover 12 by complicating the flow of oil in the cover 12.
  • Example 1 Using the sensor 10 having the cover 12 of the first embodiment, the amount of water contained in the oil was detected.
  • the first introduction hole 24 and the second introduction hole 26 were formed in a circular shape having a diameter of 5.5 mm.
  • test tank was filled with mineral oil and adjusted to a temperature of 70 degrees. Furthermore, the detection element 20 covered with the cover 12 of the sensor 10 was immersed in the oil in a state where the oil was stirred at a constant speed by a stirrer and a flow along the inner peripheral surface of the test tank was generated.
  • the water activity value in the oil is changed from 0.1 aw to 1 aw from a specific portion of the test tank while stirring the oil. Drops of water were added until 0.0 aw or more. The dropping speed was made not to greatly exceed the minimum required response speed of the sensor 10. In addition, a tester was connected to the sensor 10, and the output value (V) of the sensor 10 was detected.
  • Comparative Example 2 The number, shape, and diameter of the second introduction holes 26 of the sensor 10 are the same as those in the first embodiment, and only the formation positions are different from those in the first embodiment.
  • the cover 12 of Comparative Example 2 was formed with three introduction hole arrays each including four second introduction holes 26 formed every 90 ° so that a pair of second introduction holes 26 face each other. That is, the aperture ratio of Example 1 and the cover 12 is the same.
  • FIG. 20 shows a graph of changes in the output values of Example 1, Comparative Example 1 and Comparative Example 2 with changes in the amount of water in the oil.
  • the output value of the sensor 10 becomes “5V” and constant after the water activity value reaches 1.0 aw under the above-described test conditions.
  • the time required to reach the output value (5V) when the water activity value reaches 1.0 aw is 52 seconds. This time is based on the response of the detection element 20 itself.
  • the time required to reach the output value (5 V) when the water activity value reaches 1.0 aw is 95 seconds.
  • the time required to reach the output value (5 V) when the water activity value reaches 1.0 aw is 115 seconds. That is, the response time of the sensor 10 of Example 1 is shortened by 17% or more with respect to the response time of Comparative Example 3, and it can be said that the sensor 10 of Example 1 is more responsive than Comparative Example 2. .
  • each said embodiment can also be implemented with the following forms.
  • the 2nd introduction hole 26 may be formed in the rectangular shape.
  • the second introduction holes 26 constituting each introduction hole row may be formed at positions that do not face each other.
  • each 2nd introduction hole 26 which constitutes each introduction hole line is located in opposition to one of the other 2nd introduction holes 26 of the same introduction hole line, and two 2nd which is located opposite to each other.
  • the introduction holes 26 may have different inner diameters.
  • the second introduction hole 26 may be formed in an elongated shape (slit shape) extending in the circumferential direction of the cover 12 as long as it is smaller than the length, width, and thickness of the detection element 20.
  • the second introduction holes 26 are formed at different positions in the axial direction of the cover 12 and extend, for example, in the range of 45 ° along the circumferential direction of the cover 12. For this reason, the 2nd introduction hole 26 is provided in the position which does not oppose mutually.
  • a rectifying unit 40 that rectifies oil may be provided on the inner peripheral surface of the cover 12 and in the vicinity of each second introduction hole 26.
  • the rectifying unit 40 can also cause the oil at the corners of the cover 12 to flow.
  • the second introduction holes 26 formed in the cover 12 have the same inner diameter, but the inner diameters of the second introduction holes 26 may be two or more different inner diameters. Moreover, although the internal diameter of the 2nd introduction hole 26 and the internal diameter of the 1st introduction hole 24 were made into the same internal diameter, you may make it a different internal diameter.
  • the second introduction holes 26 are arranged in one spiral, but a plurality of rows of the spiral second introduction holes 26 may be provided. At this time, even if the second introduction holes 26 are located at the same position in the axial direction of the cover 12, the second introduction holes 26 are preferably formed at positions that do not face each other.
  • the configuration of the detection element 20 may be other than the configuration described above.
  • the sensitive film 33 is made of an organic insulator, but may be made of an inorganic material having an insulating property.
  • the number and size of the second introduction holes 26 can be increased to the extent that the detection element 20 does not drop out of the cover 12, and the aperture ratio of the cover 12 is not particularly limited.
  • the number of introduction hole rows made up of a plurality of introduction holes can be appropriately changed according to the size of the detection unit, the size of the cover, the required response of the sensor, and the like. That is, the introduction hole row may be one row. The introduction hole row may be a plurality of two or more rows.
  • the detection unit is a capacitive element, but it may be one that detects the amount of water in the fluid by other methods.
  • it may be a detection unit having an optical element or a heat conduction type detection element.
  • the senor 10 is a type of sensor that is mounted on the mounted body 100, but may be used in other methods.
  • the sensor 10 may be inserted into oil through a tank opening or the like while supporting the sensor 10 by hand.
  • the method is not limited to the method of mounting on the mounted body 100 or being inserted into a pipe or tank, and a sample collected from the pipe or tank may be a detection target.
  • the detection target of the sensor is the amount of water in the oil used in the machine, but it may be a fluid other than oil, or the characteristics of a fluid other than the amount of water may be detected.
  • the detection target may be a liquid other than oil.
  • the liquid material is a liquid, a sol using a liquid as a medium, and is, for example, drainage, food or drink, medicine, river water, seawater, ink, detergent, or optical modeling agent.
  • the detection target may be gas.
  • the sensor may measure the pressure, temperature, flow rate, liquid level, flow rate, etc. of the fluid, may measure the presence or absence of a specific contained substance, and the concentration of the contained substance.
  • the substance may be specified.
  • the detection method of the sensor may be a method other than the capacitance type, and is selected depending on the measurement object or the like.
  • the material of the member which comprises a sensor is selected according to a measuring object.
  • SYMBOLS 10 Sensor, 11 ... Housing, 12 ... Cover, 13 ... Large diameter part, 14 ... Small diameter part, 15 ... Fastening part, 16 ... 1st screwing part, 17 ... 2nd screwing part, 18 ... Connection part, 18a DESCRIPTION OF SYMBOLS ... End face, 19 ... Notification part, 19a-19c ... Lamp, 20 ... Detection element as detection part, 21 ... Pin, 22 ... Side wall part as wall part in which end part introduction hole was formed, 23 ... Open end, 24 ... 1st introduction hole as end part introduction hole, 25 ... Perimeter wall part, 26 ... 2nd introduction hole, 26a ... 2nd introduction hole, 26b ...
  • 2nd introduction hole, 27 Cover screwing part, 30 ... Substrate, 31 ... 1st electrode, 32 ... 2nd electrode, 33 ... Sensitive membrane, 34 ... 1st electrode terminal, 35 ... 2nd electrode terminal, 40 ... Rectification part, 100 ... Mounted object, 101 ... Insertion hole, 102 ... As fluid Oil, L1 ... first introduction hole row, L2 ... second introduction hole row, L3 ... third introduction hole row, L4 ... fourth guide Row of holes.

Abstract

A sensor for detecting the amount of water in oil is provided with a detecting element (20) and a cylindrical cover (12) accommodating the detecting element (20) therein. The cover (12) has a plurality of second introducing holes (26) which are smaller in size than the detecting element (20). The second introducing holes (26) are formed at positions where the second introducing holes do not face each other around the central axis of the cover (12).

Description

センサSensor
 本発明は、流体の特性を検出するセンサに関する。 The present invention relates to a sensor for detecting a characteristic of a fluid.
 流体の特性を検出するセンサには、採取した試料を所定の試料位置にセットして検出を行うもののほかに、例えば流体が流れる管路やタンク等の被装着体に装着されるものや、管路やタンク等に挿入可能な携帯式のもの等がある。この種のセンサは、流体の状態変化に対する応答性が求められることが多い。 The sensor for detecting the characteristics of the fluid is not limited to detecting the collected sample at a predetermined sample position. For example, a sensor mounted on an attachment body such as a conduit or a tank through which the fluid flows, There are portable types that can be inserted into roads and tanks. This type of sensor is often required to be responsive to changes in the fluid state.
 例えば、特許文献1に記載された流体温度検出用センサは、被装着体に装着されるセンサハウジングを有する。センサハウジングは保護筒を有し、この保護筒には、熱伝導性ペーストを介して温度検出素子が収容されている。また、センサハウジングの外周には雄ねじが形成されている。流体温度検出用センサを被装着体に装着する際は、保護筒を測定媒体(温度検出対象の流体)に向けた状態で、センサハウジングの雄ねじを、被装着体の挿通孔に形成された雌ねじに螺合する。 For example, a fluid temperature detection sensor described in Patent Document 1 has a sensor housing that is mounted on a mounted body. The sensor housing has a protection cylinder, and the temperature detection element is accommodated in the protection cylinder via a heat conductive paste. A male screw is formed on the outer periphery of the sensor housing. When mounting the sensor for detecting fluid temperature on the mounted body, the male screw of the sensor housing is inserted into the insertion hole of the mounted body with the protective cylinder facing the measurement medium (fluid for temperature detection) Threaded onto.
特開2002-48654号公報JP 2002-48654 A
 上述した流体温度検出用センサでは温度検出素子が測定媒体に接触しないが、温度検出素子又はその他の検出部が流体に接触するセンサもある。このようなセンサにおいては、過酷な使用状況等の要因により予期せず検出部が脱落すると、流体に検出部が異物として混入するおそれがある。このため、検出部を流体に接触可能な状態としつつ保護筒等の保護部材で覆うことが好ましい。 In the fluid temperature detection sensor described above, the temperature detection element does not contact the measurement medium, but there is also a sensor in which the temperature detection element or other detection unit contacts the fluid. In such a sensor, if the detection unit unexpectedly drops due to factors such as a severe usage situation, the detection unit may be mixed into the fluid as a foreign substance. For this reason, it is preferable to cover the detection unit with a protective member such as a protective cylinder while keeping the detection unit in contact with the fluid.
 しかし、検出部が保護部材で覆われると、保護部材で覆われない場合に比べ、検出部周辺の流体の流動性が低下することは否めない。このため、検出対象とする流体の状態変化が、保護筒内の流体の状態には直ちに反映されないので、センサの応答性が低下するおそれがある。 However, when the detection unit is covered with the protective member, it is undeniable that the fluidity of the fluid around the detection unit is lower than when the detection unit is not covered with the protective member. For this reason, since the change in the state of the fluid to be detected is not immediately reflected in the state of the fluid in the protective cylinder, the responsiveness of the sensor may be reduced.
 本発明は、このような実情に鑑みてなされたものであり、その目的は、検出部を保護しつつ応答性の向上を図ることができるセンサを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sensor capable of improving responsiveness while protecting a detection unit.
 上記課題を解決するために本発明の一態様では、流体の特性を検出する検出部と、前記検出部を内側に収容する筒状のカバーと、を備えるセンサが提供される。前記カバーは、前記検出部の大きさよりも小さい複数の導入孔を有する。前記複数の導入孔は、前記カバーの中心軸の周囲において前記中心軸を間に挟んで互いに対向しない位置に形成されている。 In order to solve the above problems, according to one aspect of the present invention, there is provided a sensor including a detection unit that detects a characteristic of a fluid and a cylindrical cover that houses the detection unit inside. The cover has a plurality of introduction holes smaller than the size of the detection unit. The plurality of introduction holes are formed around the central axis of the cover at positions that do not face each other with the central axis in between.
 上記構成によれば、検出部の大きさよりも小さい複数の孔がカバーに形成されているため、検出部がカバーの外へ脱落することを抑制しつつ、検出対象の流体を検出部に接触させることができる。また、カバーの複数の孔が互いに対向しない位置に形成されているので、カバー内の流体の流動性の向上等により、センサの応答性の向上を図ることができる。 According to the above configuration, since the plurality of holes smaller than the size of the detection unit are formed in the cover, the detection target fluid is brought into contact with the detection unit while suppressing the detection unit from dropping out of the cover. be able to. Further, since the plurality of holes in the cover are formed at positions that do not face each other, the response of the sensor can be improved by improving the fluidity of the fluid in the cover.
 このセンサについて、前記複数の導入孔の少なくとも一部は、前記検出部に対向する位置に設けられることが好ましい。
 上記構成によれば、複数の導入孔の少なくとも一部が検出部と対向する位置に設けられるので、導入孔を介してカバー内に流入した流体が検出部に到達するまでの時間を短くすることができる。
In this sensor, it is preferable that at least a part of the plurality of introduction holes is provided at a position facing the detection unit.
According to the above configuration, since at least a part of the plurality of introduction holes is provided at a position facing the detection unit, the time until the fluid that has flowed into the cover through the introduction hole reaches the detection unit is shortened. Can do.
 このセンサについて、前記カバーは、前記導入孔のうちの一部である複数の導入孔からそれぞれなる複数の導入孔列を有し、各導入孔列の導入孔は、隣接する導入孔列の導入孔とは前記カバーの周方向における配置が異なることが好ましい。 With respect to this sensor, the cover has a plurality of introduction hole rows each consisting of a plurality of introduction holes that are a part of the introduction holes, and the introduction holes of each introduction hole row are introduced to adjacent introduction hole rows. It is preferable that the arrangement of the cover in the circumferential direction is different from the hole.
 上記構成によれば、互いに隣接する2つの導入孔列の間で導入孔の周方向位置が互いに異なるので、カバー内における流体の流動性の向上を図ることができる。
 このセンサについて、前記カバーは、前記導入孔のうちの一部である複数の導入孔からそれぞれなる複数の導入孔列を有し、各導入孔列の導入孔は、他の導入孔列の導入孔とは前記カバーの周方向における配置が異なることが好ましい。
According to the above configuration, since the circumferential positions of the introduction holes are different between the two introduction hole rows adjacent to each other, the fluidity of the fluid in the cover can be improved.
With respect to this sensor, the cover has a plurality of introduction hole rows each composed of a plurality of introduction holes that are a part of the introduction holes, and the introduction holes of each introduction hole row are introduced to other introduction hole rows. It is preferable that the arrangement of the cover in the circumferential direction is different from the hole.
 上記構成によれば、各導入孔列の導入孔が他の導入孔列の導入孔とはカバーの周方向における配置が異なるので、カバー内における流体の流動性の向上を図ることができる。
 このセンサについて、前記導入孔は、前記カバーの軸方向における一方の端部から他方の端部にかけて螺旋状に並んでいることが好ましい。
According to the above configuration, the introduction hole of each introduction hole row differs from the introduction hole of the other introduction hole row in the circumferential direction of the cover, so that the fluidity of the fluid in the cover can be improved.
In this sensor, it is preferable that the introduction holes are arranged in a spiral from one end portion to the other end portion in the axial direction of the cover.
 上記構成によれば、導入孔がカバーに螺旋状に並んでいるので、カバー内における流体の流動性の向上を図ることができる。
 このセンサについて、前記カバーは、前記導入孔のうちの一部である複数の導入孔からそれぞれなる複数の導入孔列を有し、各導入孔列の前記導入孔のうちの隣り合うペアの間の間隔が互いに異なることが好ましい。
According to the above configuration, since the introduction holes are arranged spirally in the cover, the fluidity of the fluid in the cover can be improved.
In this sensor, the cover has a plurality of introduction hole rows each including a plurality of introduction holes that are a part of the introduction holes, and between the adjacent pairs of the introduction holes in each introduction hole row. Are preferably different from each other.
 上記構成によれば、各導入孔列の導入孔のうち隣り合うペアの間の間隔が互いに異なるので、カバー内における流体の流動性の向上を図ることができる。
 このセンサについて、前記カバーの軸方向における一方の端部には壁部が設けられ、当該壁部には、前記カバーの内側に流体を取り込むための端部導入孔が形成されていることが好ましい。
According to the above configuration, since the intervals between adjacent pairs of the introduction holes in each introduction hole row are different from each other, the fluidity of the fluid in the cover can be improved.
With respect to this sensor, it is preferable that a wall portion is provided at one end portion in the axial direction of the cover, and an end portion introduction hole for taking a fluid into the inside of the cover is formed in the wall portion. .
 上記構成によれば、カバーは、カバーの中心軸の周囲に位置する導入孔と、カバーの軸方向一端に位置する端部導入孔とを有しているので、カバー内における流体の流動性の向上を図ることができる。 According to the above configuration, the cover has the introduction hole located around the central axis of the cover and the end introduction hole located at one end in the axial direction of the cover. Improvements can be made.
 このセンサについて、前記検出部は、第1電極と、前記第1電極に対向して配置され水分子を透過する第2電極と、前記第1電極及び前記第2電極の間に挟まれた感応膜とを備え、前記検出部は、前記第2電極を透過した水分子を前記感応膜が吸脱着することによる静電容量の変化に基づいて前記流体に含有される水分量を検出することが好ましい。 In this sensor, the detection unit includes a first electrode, a second electrode that is disposed opposite to the first electrode and transmits water molecules, and a sensor sandwiched between the first electrode and the second electrode. And the detection unit detects the amount of water contained in the fluid based on a change in capacitance caused by the sensitive film adsorbing and desorbing water molecules that have passed through the second electrode. preferable.
 上記構成によれば、検出部は静電容量式の素子であるため、電極間の水分量による抵抗変化を検出する抵抗式のセンサに比べ、検出部自体の応答性を高めることができる。
 上記課題を解決するために本発明の別の態様では、流体の特性を検出する検出部と、前記検出部を収容する筒状のカバーと、を備えるセンサが提供される。前記カバーは、前記検出部の大きさよりも小さい複数の導入孔を有し、前記導入孔のそれぞれは、前記カバーの中心軸の周囲に位置し、かつ、前記導入孔のうちの別の1つに対向いており、互いに対向する2つの導入孔は互いに異なる内径を有する。
According to the above configuration, since the detection unit is a capacitance-type element, the responsiveness of the detection unit itself can be improved as compared to a resistance-type sensor that detects a resistance change due to the amount of moisture between the electrodes.
In order to solve the above problems, another aspect of the present invention provides a sensor including a detection unit that detects a characteristic of a fluid and a cylindrical cover that houses the detection unit. The cover has a plurality of introduction holes smaller than the size of the detection unit, each of the introduction holes being located around the central axis of the cover and another one of the introduction holes. The two introduction holes facing each other have different inner diameters.
 上記構成によれば、検出部の大きさよりも小さい複数の孔がカバーに形成されているため、検出部がカバーの外へ脱落することを抑制しつつ、検出対象の流体を検出部に接触させることができる。また、互いに対向する導入孔が異なる内径を有するため、カバー内の流体の流動性の向上等により、センサの応答性の向上を図ることができる。 According to the above configuration, since the plurality of holes smaller than the size of the detection unit are formed in the cover, the detection target fluid is brought into contact with the detection unit while suppressing the detection unit from dropping out of the cover. be able to. Further, since the introduction holes facing each other have different inner diameters, the response of the sensor can be improved by improving the fluidity of the fluid in the cover.
 本発明によれば、センサの検出部を保護しつつ、センサの応答性の向上を図ることができる。
 本発明の他の態様及び利点は、本発明の技術的思想の例を示す図面と共に以下の記載から明らかとなる。
ADVANTAGE OF THE INVENTION According to this invention, the response of a sensor can be improved, protecting the detection part of a sensor.
Other aspects and advantages of the present invention will become apparent from the following description taken in conjunction with the drawings which illustrate examples of the technical idea of the present invention.
本発明の第1実施形態のセンサの斜視図。The perspective view of the sensor of 1st Embodiment of this invention. 同実施形態のセンサの平面図。The top view of the sensor of the embodiment. 同実施形態におけるセンサに設けられる検出素子の斜視図。The perspective view of the detection element provided in the sensor in the embodiment. 同実施形態のセンサを図1とは別の角度からみた斜視図。The perspective view which looked at the sensor of the embodiment from the angle different from FIG. 同実施形態のセンサのカバーの正面図。The front view of the cover of the sensor of the embodiment. (a)は図5の6a-6a線における断面図、(b)は図5の6b-6b線における断面図、(c)は図5の6c-6c線における断面図。5A is a sectional view taken along line 6a-6a in FIG. 5, FIG. 5B is a sectional view taken along line 6b-6b in FIG. 5, and FIG. 5C is a sectional view taken along line 6c-6c in FIG. 同実施形態の検出素子の模式図。The schematic diagram of the detection element of the embodiment. 図7における8-8線における断面図。FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. 同実施形態のセンサの取付状態を示す図。The figure which shows the attachment state of the sensor of the embodiment. 本発明の第2実施形態のセンサにおけるカバーの正面図。The front view of the cover in the sensor of 2nd Embodiment of this invention. (a)は図10の11a-11a線における断面図、(b)は図10の11b-11b線における断面図、(c)は図10の11c-11c線における断面図。10A is a sectional view taken along line 11a-11a in FIG. 10, FIG. 10B is a sectional view taken along line 11b-11b in FIG. 10, and FIG. 10C is a sectional view taken along line 11c-11c in FIG. 本発明の第3実施形態のセンサにおけるカバーの正面図。The front view of the cover in the sensor of 3rd Embodiment of this invention. (a)は図12の13a-13a線における断面図、(b)は図12の13b-13b線における断面図、(c)は図12の13c-13c線における断面図。12A is a sectional view taken along line 13a-13a in FIG. 12, FIG. 12B is a sectional view taken along line 13b-13b in FIG. 12, and FIG. 13C is a sectional view taken along line 13c-13c in FIG. 本発明の第4実施形態のセンサにおけるカバーの正面図。The front view of the cover in the sensor of 4th Embodiment of this invention. (a)は図14の15a-15a線における断面図、(b)は図14の15b-15b線における断面図、(c)は図14の15c-15c線における断面図。14A is a sectional view taken along line 15a-15a in FIG. 14, FIG. 14B is a sectional view taken along line 15b-15b in FIG. 14, and FIG. 14C is a sectional view taken along line 15c-15c in FIG. 本発明の第5実施形態のセンサにおけるカバーの正面図。The front view of the cover in the sensor of 5th Embodiment of this invention. (a)は図16の17a-17a線における断面図、(b)は図16の17b-17b線における断面図、(c)は図16の17c-17c線における断面図。16A is a cross-sectional view taken along line 17a-17a in FIG. 16, FIG. 16B is a cross-sectional view taken along line 17b-17b in FIG. 16, and FIG. 16C is a cross-sectional view taken along line 17c-17c in FIG. 本発明の第5実施形態のセンサにおけるカバーの正面図。The front view of the cover in the sensor of 5th Embodiment of this invention. (a)は図18の19a-19a線における断面図、(b)は図18の19b-19b線における断面図、(c)は図18の19c-19c線における断面図。18A is a cross-sectional view taken along a line 19a-19a in FIG. 18, FIG. 18B is a cross-sectional view taken along a line 19b-19b in FIG. 18, and FIG. 18C is a cross-sectional view taken along a line 19c-19c in FIG. 本発明の実施例1及び比較例1~2のセンサの応答性を示す図。The figure which shows the responsiveness of the sensor of Example 1 of this invention and Comparative Examples 1-2. 本発明の変形例のセンサにおけるカバーの正面図。The front view of the cover in the sensor of the modification of this invention. 本発明の変形例のセンサにおけるカバーの正面図。The front view of the cover in the sensor of the modification of this invention. 本発明の変形例のセンサにおけるカバーの断面図。Sectional drawing of the cover in the sensor of the modification of this invention.
 (第1実施形態)
 図1~図9を参照して、本発明の第1実施形態のセンサを説明する。本実施形態では、センサを、機械の潤滑油等、流体としての油に含まれる水分量を検出するセンサに具体化して説明する。また、このセンサは、油が流れる管路や、油が貯められるタンク等の被装着体に装着される。
(First embodiment)
A sensor according to a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the sensor will be specifically described as a sensor that detects the amount of moisture contained in oil as a fluid, such as lubricating oil for a machine. The sensor is mounted on a mounted body such as a conduit through which oil flows or a tank in which oil is stored.
 まず図1~図4を参照して、センサ10の概略構成について説明する。
 図1に示すように、センサ10は、ハウジング11とカバー12とを備える。ハウジング11は、大径部13と小径部14とを有する。大径部13と小径部14とは、ナット等の締結部15によって締結されている。
First, a schematic configuration of the sensor 10 will be described with reference to FIGS.
As shown in FIG. 1, the sensor 10 includes a housing 11 and a cover 12. The housing 11 has a large diameter portion 13 and a small diameter portion 14. The large diameter portion 13 and the small diameter portion 14 are fastened by a fastening portion 15 such as a nut.
 カバー12の内側には、小径部14の先端に設けられた検出部としての検出素子20が収容されている。カバー12は、鉱物油、絶縁油等の検出対象の油に対して耐食性を有する金属材から形成され、円筒状をなしている。軸方向に沿ったカバー12の一方の端部には側壁部22が設けられ、他方の端部は開口している。カバー12の側壁部22には1つの第1導入孔24が貫通形成されている。カバー12の周壁部25には複数の第2導入孔26が貫通形成されている。第1導入孔24及び第2導入孔26は、カバー12内に油を導入するための貫通孔であって、同じ形状及び内径を有している。第1導入孔24は、側壁部22の中央部に形成されている。 Inside the cover 12, a detection element 20 as a detection part provided at the tip of the small diameter part 14 is accommodated. The cover 12 is formed of a metal material having corrosion resistance against oil to be detected such as mineral oil or insulating oil, and has a cylindrical shape. A side wall 22 is provided at one end of the cover 12 along the axial direction, and the other end is open. One first introduction hole 24 is formed through the side wall portion 22 of the cover 12. A plurality of second introduction holes 26 are formed through the peripheral wall portion 25 of the cover 12. The first introduction hole 24 and the second introduction hole 26 are through holes for introducing oil into the cover 12 and have the same shape and inner diameter. The first introduction hole 24 is formed in the central portion of the side wall portion 22.
 図2に示すように、ハウジング11の小径部14は、雄螺子がそれぞれ形成された第1螺合部16と第2螺合部17とを備えている。第2螺合部17の先端には、一対のピン21が固定されている。ピン21は、はんだ付け等によって第2螺合部17に強固に固定されている。これらのピン21の先端には、ピン21と電気的に接続する検出素子20が設けられている。 As shown in FIG. 2, the small-diameter portion 14 of the housing 11 includes a first screwing portion 16 and a second screwing portion 17 in which male screws are respectively formed. A pair of pins 21 is fixed to the tip of the second screwing portion 17. The pin 21 is firmly fixed to the second screwing portion 17 by soldering or the like. At the tips of these pins 21, a detection element 20 that is electrically connected to the pins 21 is provided.
 図3に示すように、上述した第1導入孔24及び第2導入孔26の内径D(図2参照)は、この検出素子20の幅W、高さH及び厚みTよりも小さい。
 カバー12の開口端23の内周面には、カバー螺合部27が形成されている。カバー螺合部27が小径部14の第2螺合部17と螺合することにより、カバー12は、内側に検出素子20を収容した状態で小径部14に装着される。なお、カバー12と検出素子20との周方向における相対位置は、特に限定されない。
As shown in FIG. 3, the inner diameter D (see FIG. 2) of the first introduction hole 24 and the second introduction hole 26 described above is smaller than the width W, height H, and thickness T of the detection element 20.
A cover screw portion 27 is formed on the inner peripheral surface of the opening end 23 of the cover 12. When the cover screw portion 27 is screwed with the second screw portion 17 of the small diameter portion 14, the cover 12 is attached to the small diameter portion 14 in a state where the detection element 20 is accommodated inside. The relative position in the circumferential direction between the cover 12 and the detection element 20 is not particularly limited.
 カバー12の周壁部25のうち、第2導入孔26が形成された領域Z1は、カバー12が小径部14に装着された状態で、カバー12の軸方向において検出素子20が配置された位置に重なる。即ち、第2導入孔26の少なくとも一部が、検出素子20と対向する。このため、第2導入孔26からカバー12内に流入した油は、検出素子20に到達しやすくなる。ここで、領域Z1は、カバー12の軸方向において、開口端23に最も近い第2導入孔26から側壁部22に最も近い第2導入孔26までを含む領域である。 Of the peripheral wall portion 25 of the cover 12, a region Z <b> 1 in which the second introduction hole 26 is formed is located at a position where the detection element 20 is disposed in the axial direction of the cover 12 with the cover 12 being attached to the small diameter portion 14. Overlap. That is, at least a part of the second introduction hole 26 faces the detection element 20. For this reason, the oil that has flowed into the cover 12 from the second introduction hole 26 easily reaches the detection element 20. Here, the region Z1 is a region including from the second introduction hole 26 closest to the opening end 23 to the second introduction hole 26 closest to the side wall portion 22 in the axial direction of the cover 12.
 図4に示すように、大径部13の端面のうち小径部14とは反対側の端面18aには、接続部18と、報知部19とが設けられている。この接続部18には、電力供給線及び信号線が接続される。接続部18に接続された電力供給線は、大径部13に収容された駆動回路、及び報知部19に電力を供給する。接続部18に接続された信号線は、検出素子20から出力された検出信号を外部の出力装置等へ送信する。 As shown in FIG. 4, a connection portion 18 and a notification portion 19 are provided on the end surface 18 a on the opposite side of the small diameter portion 14 among the end surfaces of the large diameter portion 13. A power supply line and a signal line are connected to the connection unit 18. The power supply line connected to the connection unit 18 supplies power to the drive circuit accommodated in the large-diameter portion 13 and the notification unit 19. The signal line connected to the connection unit 18 transmits the detection signal output from the detection element 20 to an external output device or the like.
 報知部19は、3つのランプ19a,19b,19cを有している。各ランプ19a~19cは、大径部13に収容された上記駆動回路によって点灯が制御される。また、各ランプ19a~19cは、点灯することによって異なる色の光を出射するものであってもよい。 The notification unit 19 includes three lamps 19a, 19b, and 19c. The lamps 19a to 19c are controlled to be lit by the drive circuit accommodated in the large diameter portion 13. In addition, each of the lamps 19a to 19c may emit light of different colors when turned on.
 例えば、検出対象の油に含有される水分量が予め設定された低い範囲内である場合には、図9の奥側のランプ19aが点灯される。また、油中の水分量が予め設定された中程度の範囲内の場合には、中央のランプ19bが点灯される。さらに、油中の水分量が予め設定された高い範囲内の場合には、図9の手前のランプ19cが点灯される。即ち、報知部19は、検出対象の油に含有されるおおよその水分量をユーザに報知するためのものである。検出素子20により検出された水分量の実測値は、信号線を介して接続された上記出力装置にて確認することができる。また、センサ10自体に異常が発生した場合には、全てのランプ19a~19cが点灯することによって故障を報知する。 For example, when the amount of water contained in the detection target oil is within a preset low range, the back lamp 19a in FIG. 9 is turned on. Further, when the amount of water in the oil is within a preset medium range, the central lamp 19b is turned on. Further, when the amount of water in the oil is within a preset high range, the lamp 19c in front of FIG. 9 is turned on. That is, the notification unit 19 notifies the user of the approximate amount of water contained in the detection target oil. The measured value of the amount of moisture detected by the detection element 20 can be confirmed by the output device connected via the signal line. Further, when an abnormality occurs in the sensor 10 itself, the failure is notified by turning on all the lamps 19a to 19c.
 次に、図5及び図6を参照して、第2導入孔26の形成パターンについて説明する。
 図5に示すように、カバー12には、カバー12の軸方向における位置が同じである複数の第2導入孔26からそれぞれなる複数の導入孔列が形成されている。本実施形態では、4つの導入孔列L1,L2,L3,L4がカバー12の軸方向に並んでいる。導入孔列L1~L4は、各々3個の第2導入孔26を有している。
Next, the formation pattern of the second introduction holes 26 will be described with reference to FIGS.
As shown in FIG. 5, the cover 12 is formed with a plurality of introduction hole arrays each including a plurality of second introduction holes 26 having the same position in the axial direction of the cover 12. In the present embodiment, four introduction hole rows L 1, L 2, L 3, and L 4 are arranged in the axial direction of the cover 12. Each of the introduction hole rows L1 to L4 has three second introduction holes 26.
 各導入孔列L1~L4を構成する各第2導入孔26は、隣接する導入孔列のどの第2導入孔26ともカバー12の周方向における位置が異なる。即ち、第1導入孔列L1を構成する各第2導入孔26の周方向位置は、第2導入孔列L2を構成するどの第2導入孔26の周方向位置とも異なる。また、第2導入孔列L2を構成する各第2導入孔26の周方向位置は、第1導入孔列L1を構成するどの第2導入孔26の周方向位置とも異なり、かつ、第3導入孔列L3を構成するどの第2導入孔26の周方向位置とも異なる。なお、第1導入孔列L1を構成する各第2導入孔26の周方向位置は、第3導入孔列L3を構成する第2導入孔26のうちの1つと周方向位置が同じである。また、第2導入孔列L2を構成する各第2導入孔26の周方向位置は、第4導入孔列L4を構成する第2導入孔26のうちの1つと周方向位置が同じである。 Each second introduction hole 26 constituting each introduction hole row L1 to L4 is different in position in the circumferential direction of the cover 12 from any second introduction hole 26 in the adjacent introduction hole row. That is, the circumferential position of each second introduction hole 26 that constitutes the first introduction hole row L1 is different from the circumferential position of any second introduction hole 26 that constitutes the second introduction hole row L2. Further, the circumferential position of each second introduction hole 26 constituting the second introduction hole row L2 is different from the circumferential position of any second introduction hole 26 constituting the first introduction hole row L1, and the third introduction hole is arranged. It is different from the circumferential position of any second introduction hole 26 constituting the hole row L3. The circumferential position of each second introduction hole 26 constituting the first introduction hole row L1 is the same as the circumferential position of one of the second introduction holes 26 constituting the third introduction hole row L3. Further, the circumferential position of each second introduction hole 26 constituting the second introduction hole row L2 is the same as the circumferential position of one of the second introduction holes 26 constituting the fourth introduction hole row L4.
 図6(a)~(c)に示すように、各導入孔列L1~L4を構成する第2導入孔26は、カバー12の中心軸X1を間に挟んで互いに対向しない位置、即ち正面同士にならない位置にそれぞれ形成されている。なお、中心軸X1は、第1導入孔24の中心を通る。図6(a)に示す第2導入孔列L2の第2導入孔26は、同図中上方の第2導入孔26の位置を基準として時計回りに、「0°」、「120°」、「240°」の位置にそれぞれ形成されている。図6(b)に示す第3導入孔列L3の第2導入孔26は、「60°」、「180°」、「300°」の位置にそれぞれ形成されている。図6(c)に示す第4導入孔列L4の第2導入孔26は、「0°」、「120°」、「240°」の位置にそれぞれ形成されている。図示は省略するが、第1導入孔列L1の第2導入孔26は、第3導入孔列L3の第2導入孔26と同様に、「60°」、「180°」、「300°」の位置にそれぞれ形成されている。 As shown in FIGS. 6A to 6C, the second introduction holes 26 constituting each of the introduction hole rows L1 to L4 are located at positions that do not face each other with the central axis X1 of the cover 12 in between, that is, the front faces Each is formed at a position that does not become. The central axis X1 passes through the center of the first introduction hole 24. The second introduction holes 26 of the second introduction hole row L2 shown in FIG. 6A are clockwise with respect to the position of the upper second introduction hole 26 in the figure, “0 °”, “120 °”, Each is formed at a position of “240 °”. The second introduction holes 26 of the third introduction hole row L3 shown in FIG. 6B are formed at positions of “60 °”, “180 °”, and “300 °”, respectively. The second introduction holes 26 of the fourth introduction hole row L4 shown in FIG. 6C are formed at positions of “0 °”, “120 °”, and “240 °”, respectively. Although illustration is omitted, the second introduction hole 26 of the first introduction hole row L1 is “60 °”, “180 °”, “300 °” similarly to the second introduction hole 26 of the third introduction hole row L3. It is formed at each position.
 次に図7及び図8を参照して、検出素子20の構成について説明する。この検出素子20は、検出対象の油に含有される水分量を静電容量に基づいて検出するものである。
 図7に示すように、検出素子20は、基板30と、基板30上に設置された第1電極31を備えている。第1電極31の上には、感応膜33が形成され、感応膜33の上には第2電極32が形成されている。
Next, the configuration of the detection element 20 will be described with reference to FIGS. The detection element 20 detects the amount of water contained in the oil to be detected based on the capacitance.
As shown in FIG. 7, the detection element 20 includes a substrate 30 and a first electrode 31 installed on the substrate 30. A sensitive film 33 is formed on the first electrode 31, and a second electrode 32 is formed on the sensitive film 33.
 第1電極31は、金を含有するクロム等の金属材料からなる。第1電極31には、第1電極端子34が接続されている。第2電極32は、クロム等の金属材料からなり、水分子が透過可能である。また、第2電極32には、第2電極端子35が接続されている。第1電極端子34及び第2電極端子35は、基板30の一辺から引き出され、ピン21を介して、大径部13に収容される上記駆動回路に接続される。また感応膜33は、水分子を吸脱着することができるポリイミド等の有機絶縁物からなる。感応膜33は、第1電極31及び第2電極32よりも若干大きく形成され、第1電極31及び第2電極32からその端部がはみ出すように積層されている。 The first electrode 31 is made of a metal material such as chromium containing gold. A first electrode terminal 34 is connected to the first electrode 31. The 2nd electrode 32 consists of metal materials, such as chromium, and a water molecule can permeate | transmit. The second electrode 32 is connected to the second electrode 32. The first electrode terminal 34 and the second electrode terminal 35 are drawn from one side of the substrate 30 and are connected to the drive circuit accommodated in the large-diameter portion 13 through the pin 21. The sensitive film 33 is made of an organic insulator such as polyimide that can adsorb and desorb water molecules. The sensitive film 33 is formed to be slightly larger than the first electrode 31 and the second electrode 32, and is laminated so that end portions thereof protrude from the first electrode 31 and the second electrode 32.
 図8に示すように、第1電極31は、感応膜33によって覆われている。第1電極31及び第2電極32は、感応膜33を介して対向している。感応膜33への水分子の吸着及び脱離は、第2電極32からはみ出した露出部分において直接行われるとともに、第2電極32を介しても行われる。 As shown in FIG. 8, the first electrode 31 is covered with a sensitive film 33. The first electrode 31 and the second electrode 32 face each other with the sensitive film 33 interposed therebetween. Adsorption and desorption of water molecules to the sensitive film 33 are performed directly at the exposed portion protruding from the second electrode 32 and also through the second electrode 32.
 検出素子20の周辺における検出対象の油中の水分量が安定すると、感応膜33への水分子の吸着は油との間で平衡化する。例えば油に含まれる水分子が増加すれば、感応膜33に吸着される水分子の量も増加し、油に含まれる水分子が減少すれば、感応膜33に吸着される水分子の量も減少する。 When the moisture content in the detection target oil around the detection element 20 is stabilized, the adsorption of water molecules to the sensitive film 33 is balanced with the oil. For example, if the amount of water molecules contained in the oil increases, the amount of water molecules adsorbed on the sensitive membrane 33 also increases, and if the amount of water molecules contained in the oil decreases, the amount of water molecules adsorbed on the sensitive membrane 33 also increases. Decrease.
 感応膜33への水分子の吸着及び脱離により、第1電極31及び第2電極32の間の静電容量が変化する。第1電極31及び第2電極32の間の静電容量の変化を、第1電極端子34及び第2電極端子35に接続された駆動回路で演算することによって、油に含まれる水分量が検出される。このように、油に含まれる水分量を検出するには、感応膜33への水分子の吸着が平衡化する時間等が最小限必要となる。 The capacitance between the first electrode 31 and the second electrode 32 changes due to the adsorption and desorption of water molecules on the sensitive film 33. The amount of moisture contained in the oil is detected by calculating a change in capacitance between the first electrode 31 and the second electrode 32 by a drive circuit connected to the first electrode terminal 34 and the second electrode terminal 35. Is done. As described above, in order to detect the amount of water contained in the oil, the time required for equilibration of the adsorption of water molecules to the sensitive membrane 33 is required to be minimal.
 次に図9を参照して、センサ10の被装着体100への装着状態について説明する。被装着体100である管路やタンク等の壁部には、センサ10を装着するための挿通孔101が形成されている。この挿通孔101の内周面には、雌螺子が形成されている。センサ10は、カバー12を被装着体100の内側に差し込んで、第1螺合部16を挿通孔101の雌螺子に螺合させることにより装着される。 Next, the mounting state of the sensor 10 on the mounted body 100 will be described with reference to FIG. An insertion hole 101 for mounting the sensor 10 is formed in a wall such as a pipe line or a tank that is the mounted body 100. A female screw is formed on the inner peripheral surface of the insertion hole 101. The sensor 10 is mounted by inserting the cover 12 into the mounted body 100 and screwing the first screwing portion 16 into the female screw of the insertion hole 101.
 センサ10は、被装着体100内で油102が流動している状態で、油102に含まれる水分量の検出を行うことが好ましい。これは、被装着体100内で、油102の含有水分量を均一化するためであるが、センサ10による検出前に油102の含有水分量が均一化されているか、又は均一化の必要がない場合(偏った状態での検出を目的としている場合等)には、検出中に油102が流動している必要はない。 The sensor 10 preferably detects the amount of water contained in the oil 102 in a state where the oil 102 is flowing in the mounted body 100. This is to make the water content of the oil 102 uniform in the mounted body 100, but the water content of the oil 102 is made uniform or needs to be made uniform before detection by the sensor 10. If there is not (for example, when the detection is in a biased state), the oil 102 does not need to flow during the detection.
 油102は、第2導入孔26及び第1導入孔24を介してカバー12内に流入し、検出素子20に接触する。検出素子20は、水分子の吸着量に応じた電気信号を上記駆動回路に出力する。駆動回路は、センサ10に接続された信号線を介して、含有水分量に応じた信号を、上述した出力装置に送信する。また駆動回路は、ランプ19a~19cのうち含有水分量に応じたランプを点灯させて、含有水分量のレベルをユーザに報知する。 The oil 102 flows into the cover 12 via the second introduction hole 26 and the first introduction hole 24 and contacts the detection element 20. The detection element 20 outputs an electrical signal corresponding to the amount of water molecules adsorbed to the drive circuit. The drive circuit transmits a signal corresponding to the moisture content to the above-described output device via a signal line connected to the sensor 10. Further, the drive circuit turns on a lamp corresponding to the moisture content among the lamps 19a to 19c to notify the user of the level of the moisture content.
 次に図9を参照して、センサ10のカバー12の作用を説明する。検出素子20はカバー12によって覆われており、カバー12に形成された第1導入孔24及び第2導入孔26の内径よりも大きい。このため、使用環境等の要因により、意図せず検出素子20が第2螺合部17から外れたとしても、検出素子20がカバー12の外側へ脱落することはない。このため、油が流動する管路やタンクに検出素子20が混入することが防がれる。 Next, the operation of the cover 12 of the sensor 10 will be described with reference to FIG. The detection element 20 is covered with the cover 12 and is larger than the inner diameters of the first introduction hole 24 and the second introduction hole 26 formed in the cover 12. For this reason, even if the detection element 20 is unintentionally detached from the second screwing portion 17 due to factors such as the use environment, the detection element 20 does not fall out of the cover 12. For this reason, it is prevented that the detection element 20 mixes in the pipe line and tank in which oil flows.
 センサ10は、第2導入孔26が互いに対向しない位置に設けられていることにより、互いに対向する位置に形成された場合よりも、応答性が向上することが発明者による実験等を通じてわかっている。ここでいう応答性の向上とは、検出素子20自体の応答性ではなく、被装着体100を流れる油102の水分含有量が何らかの要因により変化した際に、変化した時点からその変化がセンサ10によって検出されるまでの遅れ時間の短縮を指す。 It has been found through experiments and the like by the inventors that the sensor 10 has improved responsiveness compared to the case where the second introduction holes 26 are provided at positions where they are not opposed to each other. . The improvement of the responsiveness here is not the responsiveness of the detection element 20 itself, but when the water content of the oil 102 flowing through the mounted body 100 changes due to some factor, the change from the time of the change is detected by the sensor 10. This means shortening the delay time until it is detected by.
 センサ10の応答性の向上の理由は未だ明らかとなっていないが、以下のように推定される。
 カバー12に形成された第2導入孔26が互いに対向する位置に形成されている場合には、対向した一対の第2導入孔26のうち一方からカバー12内に導入された油102は、他方の第2導入孔26からカバー12の外に排出されやすくなる。
The reason for improving the responsiveness of the sensor 10 has not yet been clarified, but is estimated as follows.
When the second introduction holes 26 formed in the cover 12 are formed at positions facing each other, the oil 102 introduced into the cover 12 from one of the pair of opposed second introduction holes 26 is the other. The second introduction hole 26 is easily discharged out of the cover 12.
 一方、本実施形態のように第2導入孔26が互いに対向する位置に形成されていない場合には、第2導入孔26からカバー12内に導入された油102は、向かい合う第2導入孔26が無いため、そのままカバー12の外に排出されるのではなく、カバー12の内周面に衝突する。また第1導入孔24からの油102の流入も加わることにより、第2導入孔26が互いに対向する位置に形成されている場合に比べ、カバー12内の油102に例えばせん断力や乱流が生じやすく、その結果、カバー12内における油102の流れが複雑化する。 On the other hand, when the second introduction holes 26 are not formed at positions facing each other as in this embodiment, the oil 102 introduced into the cover 12 from the second introduction holes 26 faces the second introduction holes 26 facing each other. Therefore, it is not discharged out of the cover 12 as it is, but collides with the inner peripheral surface of the cover 12. In addition, since the inflow of the oil 102 from the first introduction hole 24 is also added, for example, shear force or turbulent flow is applied to the oil 102 in the cover 12 as compared with the case where the second introduction holes 26 are formed at positions facing each other. As a result, the flow of the oil 102 in the cover 12 is complicated.
 また、各導入孔列L1~L4の各第2導入孔26は、隣接する導入孔列のどの第2導入孔26ともカバー12の周方向における位置が異なる。このため、互いに隣接する2つの導入孔列の間で第2導入孔26の周方向位置が同じである場合に比べ、カバー12内に導入される油102の流れの向きが多様化する。このため、カバー12内の油の流れをより複雑な流れとすることができる。その結果、カバー12内の油は、カバー12の隅部に滞留することなく、短時間でよく混合された後、いずれかの第2導入孔26又は第1導入孔24を介してカバー12の外側に排出される。このため、カバー12の内側に存在する油102の含有水分量が、カバー12の外側に存在する油102の含有水分量と短時間で同じとなる。 Further, each second introduction hole 26 in each introduction hole row L1 to L4 is different in position in the circumferential direction of the cover 12 from any second introduction hole 26 in the adjacent introduction hole row. For this reason, the direction of the flow of the oil 102 introduced into the cover 12 is diversified as compared with the case where the circumferential position of the second introduction hole 26 is the same between the two introduction hole rows adjacent to each other. For this reason, the oil flow in the cover 12 can be made a more complicated flow. As a result, the oil in the cover 12 does not stay in the corners of the cover 12 and is mixed well in a short time, and then the oil in the cover 12 passes through either the second introduction hole 26 or the first introduction hole 24. Discharged to the outside. For this reason, the moisture content of the oil 102 existing inside the cover 12 is the same as the moisture content of the oil 102 existing outside the cover 12 in a short time.
 以上説明したように、本実施形態によれば、以下の効果が得られるようになる。
 (1)検出素子20の大きさよりも小さい複数の第2導入孔26がカバー12に形成されているため、検出素子20がカバー12の外側へ脱落することを抑制しつつ、検出対象の油を検出素子20に接触させることができる。また、第2導入孔26は、互いに対向しない位置に形成されているので、センサ10の応答性を高めることができる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) Since the plurality of second introduction holes 26 smaller than the size of the detection element 20 are formed in the cover 12, it is possible to prevent the detection element 20 from dropping out of the cover 12 and to detect the oil to be detected. It can be brought into contact with the detection element 20. Moreover, since the 2nd introduction hole 26 is formed in the position which is not mutually opposed, the responsiveness of the sensor 10 can be improved.
 (2)第2導入孔26の一部が検出素子20と対向する位置に設けられるので、第2導入孔26を介してカバー12内に流入した油が検出素子20に到達するまでの時間を短くすることができる。 (2) Since a part of the second introduction hole 26 is provided at a position facing the detection element 20, the time until oil that has flowed into the cover 12 through the second introduction hole 26 reaches the detection element 20 is reduced. Can be shortened.
 (3)カバー12は、周壁部25に形成された第2導入孔26と、側壁部22に形成された第1導入孔24とを有している。このため、検出対象の油は、カバー12の周壁部25から径方向中心に向かう方向だけでなく、側壁部22から開口端23に向かう軸方向にもカバー12内に流入することができる。このため、カバー12内における油の流れが複雑化することで、カバー12の隅部における油の滞留を抑制することができる。 (3) The cover 12 has a second introduction hole 26 formed in the peripheral wall portion 25 and a first introduction hole 24 formed in the side wall portion 22. For this reason, the detection target oil can flow into the cover 12 not only in the direction from the peripheral wall portion 25 of the cover 12 toward the center in the radial direction but also in the axial direction from the side wall portion 22 toward the opening end 23. For this reason, the oil flow in the cover 12 is complicated, so that oil can be prevented from staying in the corners of the cover 12.
 (4)検出素子20は静電容量式の素子であり、第1電極31及び第2電極32の間の水分量の変化に基づく静電容量変化を検出する。このため、電極間の水分量による抵抗変化を検出する抵抗式のセンサに比べ、検出素子20自体の応答性を高めることができる。 (4) The detection element 20 is a capacitive element, and detects a change in capacitance based on a change in the amount of moisture between the first electrode 31 and the second electrode 32. For this reason, the responsiveness of the detection element 20 itself can be improved compared with the resistance type sensor which detects the resistance change by the moisture content between electrodes.
 (5)互いに隣接する2つの導入孔列L1~L4の間で第2導入孔26の周方向位置が異なる。このため、カバー12内における油の流れ方向を多様化して、カバー12内における油の流動性の向上を図ることができる。 (5) The circumferential position of the second introduction hole 26 is different between the two introduction hole rows L1 to L4 adjacent to each other. For this reason, the flow direction of the oil in the cover 12 can be diversified, and the fluidity of the oil in the cover 12 can be improved.
 (第2実施形態)
 次に、図10及び図11を参照して、本発明の第2実施形態のセンサを、第1実施形態との相違点を中心に説明する。本実施形態のセンサは、各導入孔列の第2導入孔の周方向位置が別の導入孔列の第2導入孔の周方向位置に一致している点が第1の実施形態と異なっている。なお、本実施形態にかかるセンサも、その基本的な構成は第1実施形態と同等であり、図面においても第1実施形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
(Second Embodiment)
Next, with reference to FIG. 10 and FIG. 11, the sensor of 2nd Embodiment of this invention is demonstrated centering on difference with 1st Embodiment. The sensor of this embodiment is different from the first embodiment in that the circumferential position of the second introduction hole of each introduction hole row coincides with the circumferential position of the second introduction hole of another introduction hole row. Yes. The basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
 図10に示すように、本実施形態のセンサ10のカバー12は、3つの導入孔列L1,L2,L3を有する。これらの導入孔列L1~L3が形成された領域Z2は、カバー12の軸方向において、第1実施形態と同様に検出素子20の位置と重なる。 As shown in FIG. 10, the cover 12 of the sensor 10 of the present embodiment has three introduction hole rows L1, L2, and L3. The region Z2 in which the introduction hole rows L1 to L3 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
 図11(a)~(c)に示すように、各導入孔列L1~L3は、120°毎に形成された3つの第2導入孔26を有する。各導入孔列L1~L3の第2導入孔26は、別の2つの導入孔列L1~L3の第2導入孔26と周方向位置が一致している。また、各導入孔列L1~L3の第2導入孔26は、中心軸X1を間に挟んで互いに対向しない位置に配置されている。 As shown in FIGS. 11A to 11C, each of the introduction hole arrays L1 to L3 has three second introduction holes 26 formed every 120 °. The second introduction holes 26 in each of the introduction hole rows L1 to L3 have the same circumferential position as the second introduction holes 26 of the other two introduction hole rows L1 to L3. The second introduction holes 26 of the introduction hole rows L1 to L3 are arranged at positions that do not face each other with the central axis X1 interposed therebetween.
 このため、カバー12内における油の滞留を抑制し、カバー12内の油の流動性を高めることができる。
 以上説明したように、本実施形態によれば、第1の実施形態の(1)~(4)の効果と同様の効果が得られる。
For this reason, the stay of the oil in the cover 12 can be suppressed, and the fluidity of the oil in the cover 12 can be improved.
As described above, according to this embodiment, the same effects as the effects (1) to (4) of the first embodiment can be obtained.
 (第3実施形態)
 次に、図12及び図13を参照して、本発明の第3実施形態のセンサを、第1実施形態との相違点を中心に説明する。なお、本実施形態にかかるセンサも、その基本的な構成は第1実施形態と同等であり、図面においても第1実施形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
(Third embodiment)
Next, with reference to FIGS. 12 and 13, a sensor according to a third embodiment of the present invention will be described focusing on differences from the first embodiment. The basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
 図12に示すように、本実施形態のセンサ10のカバー12は、4つの導入孔列L1,L2,L3,L4を有する。これらの導入孔列L1~L4が形成された領域Z3は、カバー12の軸方向において、第1実施形態と同様に検出素子20の位置と重なる。 As shown in FIG. 12, the cover 12 of the sensor 10 of this embodiment has four introduction hole rows L1, L2, L3, and L4. The region Z3 in which the introduction hole rows L1 to L4 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
 図13(a)~(c)に示すように、各導入孔列L1~L4は、72°毎に形成された5つの第2導入孔26を有する。各導入孔列L1~L4の第2導入孔26は、中心軸X1を間に挟んで互いに対向しない位置に配置される。また、各導入孔列L1~L4の各第2導入孔26は、他のどの導入孔列L1~L4の第2導入孔26とも周方向位置が異なる。即ち、各導入孔列L1~L4の各第2導入孔26は、他のどの導入孔列L1~L4の第2導入孔26とも、カバー12の軸方向における位置及び周方向における位置が異なる。また、本実施形態では、各導入孔列L1~L4の各第2導入孔26は、隣接する導入孔列のうち最も近い第2導入孔26に対して周方向位置が18°ずれている。 As shown in FIGS. 13A to 13C, each of the introduction hole rows L1 to L4 has five second introduction holes 26 formed every 72 °. The second introduction holes 26 of the introduction hole rows L1 to L4 are arranged at positions that do not face each other with the central axis X1 interposed therebetween. Further, each second introduction hole 26 of each introduction hole row L1 to L4 has a circumferential position different from the second introduction hole 26 of any other introduction hole row L1 to L4. That is, the second introduction holes 26 of the introduction hole rows L1 to L4 are different in the position in the axial direction and the circumferential direction of the cover 12 from the second introduction holes 26 of any other introduction hole rows L1 to L4. Further, in the present embodiment, the circumferential positions of the second introduction holes 26 of the introduction hole rows L1 to L4 are shifted by 18 ° with respect to the closest second introduction hole 26 among the adjacent introduction hole rows.
 例えば、図13(c)に示すように、第4導入孔列L4の5つの第2導入孔26が、時計回り方向に「0°」、「72°」、「144°」、「216°」、「288°」の位置に形成されていたとする。 For example, as shown in FIG. 13C, the five second introduction holes 26 of the fourth introduction hole row L4 are “0 °”, “72 °”, “144 °”, “216 °” in the clockwise direction. ”And“ 288 ° ”.
 図13(b)に示すように、このとき第3導入孔列L3の5つの第2導入孔26は、「54°」、「126°」、「198°」、「270°」、「342°」の位置にそれぞれ形成されている。 As shown in FIG. 13B, at this time, the five second introduction holes 26 of the third introduction hole row L3 are “54 °”, “126 °”, “198 °”, “270 °”, “342”. It is formed at each position of “°”.
 図13(a)に示すように、このとき第2導入孔列L2の5つの第2導入孔26は、「36°」、「108°」、「180°」、「252°」、「324°」の位置にそれぞれ形成されている。 As shown in FIG. 13A, at this time, the five second introduction holes 26 of the second introduction hole row L2 are “36 °”, “108 °”, “180 °”, “252 °”, “324”. It is formed at each position of “°”.
 各導入孔列L1~L4が5つの第2導入孔26を有するため、カバー12の開口率を高めることができる。また、第1実施形態のカバー12に比べて、検出対象の油がカバー12に導入される方向をより多様化することができる。 Since each of the introduction hole rows L1 to L4 has the five second introduction holes 26, the opening ratio of the cover 12 can be increased. Further, the direction in which the detection target oil is introduced into the cover 12 can be further diversified as compared with the cover 12 of the first embodiment.
 以上説明したように、本実施形態によれば、第1の実施形態の(1)~(4)の効果と同様の効果が得られるほか、以下の効果が得られる。
 (6)各導入孔列L1~L4を構成する各第2導入孔26の周方向位置は、他のどの導入孔列L1~L4の第2導入孔26の周方向位置とも異なる。このため、カバー12内における油の流れを複雑化させ、カバー12内における油の流動性の向上を図ることができる。
As described above, according to the present embodiment, the same effects as the effects (1) to (4) of the first embodiment can be obtained, and the following effects can be obtained.
(6) The circumferential positions of the second introduction holes 26 constituting the introduction hole rows L1 to L4 are different from the circumferential positions of the second introduction holes 26 of any other introduction hole rows L1 to L4. For this reason, the flow of oil in the cover 12 can be complicated, and the fluidity of the oil in the cover 12 can be improved.
 (第4実施形態)
 次に、図14及び図15を参照して、本発明の第4実施形態のセンサを、第1実施形態との相違点を中心に説明する。なお、本実施形態にかかるセンサも、その基本的な構成は第1実施形態と同等であり、図面においても第1実施形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
(Fourth embodiment)
Next, with reference to FIGS. 14 and 15, a sensor according to a fourth embodiment of the present invention will be described focusing on differences from the first embodiment. The basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
 図14に示すように、本実施形態のセンサのカバー12には、側壁部22から開口端23にかけて、第2導入孔26が螺旋状に並んでいる。即ち、第2導入孔26は、カバー12の軸方向における位置及び周方向における位置が互いにずれている。これらの第2導入孔26が形成された領域Z4は、カバー12の軸方向において、第1実施形態と同様に検出素子20の位置と重なる。 As shown in FIG. 14, the second introduction holes 26 are arranged in a spiral from the side wall portion 22 to the opening end 23 in the cover 12 of the sensor of the present embodiment. That is, the position of the second introduction hole 26 in the axial direction and the position in the circumferential direction of the cover 12 are shifted from each other. The region Z4 in which the second introduction holes 26 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
 図15(a)~(c)に示すように、第2導入孔26は、中心軸X1を間に挟んで互いに対向しない位置に配置される。また、各第2導入孔26は、他のどの第2導入孔26ともカバー12の軸方向における位置がずれているので、他のどの第2導入孔26とも対向していない。このため、カバー12内における油の流動性の向上を図ることができる。 As shown in FIGS. 15A to 15C, the second introduction holes 26 are arranged at positions that do not face each other with the central axis X1 interposed therebetween. Further, each second introduction hole 26 is not opposed to any other second introduction hole 26 because the position of the cover 12 in the axial direction is shifted from any other second introduction hole 26. For this reason, the fluidity | liquidity of the oil in the cover 12 can be aimed at.
 以上説明したように、本実施形態によれば、第1の実施形態の(1)~(4)の効果と同様の効果が得られるほか、以下の効果が得られる。
 (7)第2導入孔26がカバー12に螺旋状に並んでいるので、カバー12内における油の流動性の向上を図ることができる。
As described above, according to the present embodiment, the same effects as the effects (1) to (4) of the first embodiment can be obtained, and the following effects can be obtained.
(7) Since the second introduction holes 26 are arranged in a spiral on the cover 12, the fluidity of oil in the cover 12 can be improved.
 (第5実施形態)
 次に、図16及び図17を参照して、本発明の第5実施形態のセンサを、第1実施形態との相違点を中心に説明する。なお、本実施形態にかかるセンサも、その基本的な構成は第1実施形態と同等であり、図面においても第1実施形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
(Fifth embodiment)
Next, a sensor according to a fifth embodiment of the present invention will be described with reference to FIGS. 16 and 17 focusing on differences from the first embodiment. The basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
 図16に示すように、本実施形態のセンサ10のカバー12は、3つの導入孔列L1,L2,L3を有する。これらの導入孔列L1~L3が形成された領域Z5は、カバー12の軸方向において、第1実施形態と同様に検出素子20の位置と重なる。 As shown in FIG. 16, the cover 12 of the sensor 10 of this embodiment has three introduction hole rows L1, L2, and L3. The region Z5 in which the introduction hole rows L1 to L3 are formed overlaps with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment.
 図17(a)~(c)に示すように、各導入孔列L1~L3を構成する第2導入孔26は、中心軸X1を間に挟んで互いに対向しない位置に配置されている。各導入孔列L1~L3を構成する第2導入孔26のうち隣り合う2つの間の間隔は互いに異なる。 As shown in FIGS. 17A to 17C, the second introduction holes 26 constituting each of the introduction hole rows L1 to L3 are arranged at positions that do not face each other with the central axis X1 interposed therebetween. The intervals between adjacent two of the second introduction holes 26 constituting each of the introduction hole rows L1 to L3 are different from each other.
 図17(a)に示すように、第1導入孔列L1における第2導入孔26のうち隣り合う2つの間の間隔θ11,θ12,θ13は、例えば「134°」、「120°」、「106°」のようにそれぞれ異なる。また、図17(b)に示すように、第2導入孔列L2における第2導入孔26のうち隣り合う2つの間の間隔θ21,θ22,θ23は、「133°」、「115°」、「112°」のようにそれぞれ異なる。さらに、図17(c)に示すように、第3導入孔列L3における第2導入孔26の間隔θ31,θ32,θ33は、「115°」、「123°」、「122°」のようにそれぞれ異なる。なお、これらの間隔は一例であり、これ以外の間隔であってもよい。 As shown in FIG. 17 (a), the intervals θ11, θ12, θ13 between two adjacent second introduction holes 26 in the first introduction hole row L1 are, for example, “134 °”, “120 °”, “ 106 ° ". Further, as shown in FIG. 17B, the intervals θ21, θ22, θ23 between two adjacent second introduction holes 26 in the second introduction hole row L2 are “133 °”, “115 °”, It is different from each other like “112 °”. Further, as shown in FIG. 17C, the intervals θ31, θ32, and θ33 of the second introduction holes 26 in the third introduction hole row L3 are “115 °”, “123 °”, and “122 °”. Each is different. These intervals are merely examples, and other intervals may be used.
 このように各第2導入孔26は、他のどの第2導入孔26とも対向していない。また、各導入孔列L1~L3の第2導入孔26同士の間隔が互いに異なるので、例えば、油の滞留が生じやすいカバー12内の箇所に対応する位置に、第2導入孔26を多く設けることもできる。このため、カバー12内における油の流動性の向上を図ることができる。 Thus, each second introduction hole 26 is not opposed to any other second introduction hole 26. Further, since the intervals between the second introduction holes 26 in each of the introduction hole arrays L1 to L3 are different from each other, for example, a large number of second introduction holes 26 are provided at positions corresponding to locations in the cover 12 where oil is likely to stay. You can also. For this reason, the fluidity | liquidity of the oil in the cover 12 can be aimed at.
 以上説明したように、本実施形態によれば、第1の実施形態の(1)~(4)の効果と同様の効果に加え、以下の効果が得られる。
 (8)各導入孔列L1~L3を構成する第2導入孔26同士の間隔が互いに異なるので、カバー12内に導入される油の流れ方向が多様化される。このため、カバー12内における油の流動性の向上を図ることができる。
As described above, according to the present embodiment, in addition to the same effects as the effects (1) to (4) of the first embodiment, the following effects can be obtained.
(8) Since the intervals between the second introduction holes 26 constituting each of the introduction hole rows L1 to L3 are different from each other, the flow direction of the oil introduced into the cover 12 is diversified. For this reason, the fluidity | liquidity of the oil in the cover 12 can be aimed at.
 (第6実施形態)
 次に、図18及び図19を参照して、本発明の第5実施形態のセンサを、第1実施形態との相違点を中心に説明する。なお、本実施形態にかかるセンサも、その基本的な構成は第1実施形態と同等であり、図面においても第1実施形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
(Sixth embodiment)
Next, a sensor according to a fifth embodiment of the present invention will be described with reference to FIGS. 18 and 19 focusing on differences from the first embodiment. The basic configuration of the sensor according to this embodiment is the same as that of the first embodiment, and in the drawings, substantially the same elements as those of the first embodiment are denoted by the same reference numerals. , I will omit the duplicate explanation.
 図18に示すように、本実施形態のセンサ10のカバー12は、3つの導入孔列L1,L2,L3を有する。これらの導入孔列L1~L3が形成された領域は、カバー12の軸方向において、第1実施形態と同様に検出素子20の位置と重なる。なお、図17では、便宜上、検出素子20の位置の図示を省略している。 As shown in FIG. 18, the cover 12 of the sensor 10 of this embodiment has three introduction hole rows L1, L2, and L3. The regions where the introduction hole rows L1 to L3 are formed overlap with the position of the detection element 20 in the axial direction of the cover 12 as in the first embodiment. In FIG. 17, the position of the detection element 20 is not shown for convenience.
 図19(a)~(c)に示すように、各導入孔列L1~L3は、90°毎に形成された4つの第2導入孔26を有する。各導入孔列L1~L3の各第2導入孔26は、同じ導入孔列L1~L3の別の第2導入孔26のうちの1つに対向している。各導入孔列L1~L3は、相対的に小さい内径を有する2つの第2導入孔26aと、相対的に大きい内径を有する2つの第2導入孔26bとを含んでおり、この第2導入孔26aと第2導入孔26bのペアによって、中心軸X1を間に挟んで互いに対向する2つの第2導入孔26は構成されている。 As shown in FIGS. 19A to 19C, each of the introduction hole rows L1 to L3 has four second introduction holes 26 formed every 90 °. Each second introduction hole 26 of each introduction hole row L1 to L3 faces one of the other second introduction holes 26 of the same introduction hole row L1 to L3. Each introduction hole row L1 to L3 includes two second introduction holes 26a having a relatively small inner diameter, and two second introduction holes 26b having a relatively large inner diameter. Two second introduction holes 26 facing each other across the central axis X1 are configured by a pair of 26a and the second introduction hole 26b.
 次に、本実施形態のセンサ10の作用について説明する。カバー12の対向する一対の第2導入孔26は、互いに異なる内径を有している。検出対象の油が第2導入孔26を通ってカバー12の内側に流入する際には、カバー12内で油の縮流が生じる。例えば、大径の第2導入孔26bを通った油の縮流のうちの一部は、対向する小径の第2導入孔26bから排出されやすいが、縮流の残りの部分はカバー12の内周面に衝突しやすい。このため、カバー12内の油の流れを複雑化することで、カバー12内に油が滞留することを抑制することができる。 Next, the operation of the sensor 10 of this embodiment will be described. The pair of second introduction holes 26 facing the cover 12 have different inner diameters. When the detection target oil flows into the inside of the cover 12 through the second introduction hole 26, the oil contracts in the cover 12. For example, a part of the contracted flow of oil that has passed through the large-diameter second introduction hole 26 b is easily discharged from the opposing second small-diameter second introduction hole 26 b, but the remaining portion of the contracted flow is within the cover 12. Easy to collide with the surrounding surface. For this reason, it is possible to prevent oil from staying in the cover 12 by complicating the flow of oil in the cover 12.
 以上説明したように、本実施形態によれば、第1の実施形態の(2)~(4)の効果と同様の効果に加えて、以下の効果が得られる。
 (9)カバー12には、検出素子20の大きさよりも小さい複数の第2導入孔26が形成されているため、検出素子20がカバー12の外側へ脱落することを抑制しつつ、検出対象の油を検出素子20に接触させることができる。また、互いに対向する第2導入孔26が異なる内径を有するため、カバー12内の油の流動性の向上等により、センサの応答性を高めることができる。
As described above, according to this embodiment, in addition to the same effects as the effects (2) to (4) of the first embodiment, the following effects can be obtained.
(9) Since a plurality of second introduction holes 26 smaller than the size of the detection element 20 are formed in the cover 12, it is possible to prevent the detection element 20 from dropping out of the cover 12 and Oil can be brought into contact with the detection element 20. Further, since the second introduction holes 26 facing each other have different inner diameters, the responsiveness of the sensor can be improved by improving the fluidity of the oil in the cover 12.
 (実施例)
 以下、図20を参照して、カバー12の第2導入孔26の位置と、センサ10の応答性との関係について、実施例及び比較例の比較を通じて説明する。
(Example)
Hereinafter, the relationship between the position of the second introduction hole 26 of the cover 12 and the responsiveness of the sensor 10 will be described with reference to FIG.
 (実施例1)
 第1実施形態のカバー12を備えたセンサ10を用いて、油に含まれる水分量を検出した。第1導入孔24及び第2導入孔26は、直径5.5mmの円形状に形成した。
(Example 1)
Using the sensor 10 having the cover 12 of the first embodiment, the amount of water contained in the oil was detected. The first introduction hole 24 and the second introduction hole 26 were formed in a circular shape having a diameter of 5.5 mm.
 また、試験槽に鉱物油系油を満たし、70度の温度に調整した。さらに油を撹拌機により一定の速度で撹拌し、試験槽の内周面に沿った流れを発生させた状態で、センサ10のカバー12で覆われた検出素子20を油に浸した。 Also, the test tank was filled with mineral oil and adjusted to a temperature of 70 degrees. Furthermore, the detection element 20 covered with the cover 12 of the sensor 10 was immersed in the oil in a state where the oil was stirred at a constant speed by a stirrer and a flow along the inner peripheral surface of the test tank was generated.
 次に油に含まれる水分量が変化する場合のセンサ10の応答性を確認するために、油を撹拌しながら、試験槽の特定の箇所から、油中の水分活性値が0.1awから1.0aw以上となるまで水滴を滴下した。滴下速度は、センサ10の必要最小限の応答速度を大きく上回らないようにした。また、センサ10にテスターを接続し、センサ10の出力値(V)を検出した。 Next, in order to confirm the responsiveness of the sensor 10 when the amount of water contained in the oil changes, the water activity value in the oil is changed from 0.1 aw to 1 aw from a specific portion of the test tank while stirring the oil. Drops of water were added until 0.0 aw or more. The dropping speed was made not to greatly exceed the minimum required response speed of the sensor 10. In addition, a tester was connected to the sensor 10, and the output value (V) of the sensor 10 was detected.
 (比較例1)
 実施例1のセンサ10のカバー12を外した以外は、実施例1と同様の条件で、センサ10の出力値(V)を検出した。
(Comparative Example 1)
The output value (V) of the sensor 10 was detected under the same conditions as in Example 1 except that the cover 12 of the sensor 10 of Example 1 was removed.
 (比較例2)
 センサ10の第2導入孔26の数、形状、及び直径を実施例1と同じとし、形成位置だけを実施例1と相違させた。比較例2のカバー12は、90°毎に形成された4つの第2導入孔26からなる導入孔列を3つ形成し、1対の第2導入孔26が互いに向かい合うようにした。即ち、実施例1とカバー12の開口率は同一である。
(Comparative Example 2)
The number, shape, and diameter of the second introduction holes 26 of the sensor 10 are the same as those in the first embodiment, and only the formation positions are different from those in the first embodiment. The cover 12 of Comparative Example 2 was formed with three introduction hole arrays each including four second introduction holes 26 formed every 90 ° so that a pair of second introduction holes 26 face each other. That is, the aperture ratio of Example 1 and the cover 12 is the same.
 図20に、油中の水分量の変化に伴う、実施例1、比較例1及び比較例2の出力値の変化のグラフを示す。このセンサ10では、上記した試験条件の下、水分活性値が1.0awに到達した後は、センサ10の出力値は「5V」で一定となる。 FIG. 20 shows a graph of changes in the output values of Example 1, Comparative Example 1 and Comparative Example 2 with changes in the amount of water in the oil. In the sensor 10, the output value of the sensor 10 becomes “5V” and constant after the water activity value reaches 1.0 aw under the above-described test conditions.
 カバー12の無い比較例1のセンサ10では、水分活性値が1.0awに到達したときの出力値(5V)に達するまでに要する時間が52秒である。この時間は、検出素子20自体の応答性等に基づくものである。 In the sensor 10 of Comparative Example 1 without the cover 12, the time required to reach the output value (5V) when the water activity value reaches 1.0 aw is 52 seconds. This time is based on the response of the detection element 20 itself.
 これに対し、実施例1のセンサ10では、水分活性値が1.0awに到達したときの出力値(5V)に達するまでに要する時間が95秒である。比較例2のセンサ10では、水分活性値が1.0awに到達したときの出力値(5V)に達するまでに要する時間が115秒である。即ち、実施例1のセンサ10の応答時間は、比較例3における応答時間に対し17%以上短縮されており、実施例1のセンサ10のほうが比較例2よりも応答性が良好であるといえる。 On the other hand, in the sensor 10 of Example 1, the time required to reach the output value (5 V) when the water activity value reaches 1.0 aw is 95 seconds. In the sensor 10 of Comparative Example 2, the time required to reach the output value (5 V) when the water activity value reaches 1.0 aw is 115 seconds. That is, the response time of the sensor 10 of Example 1 is shortened by 17% or more with respect to the response time of Comparative Example 3, and it can be said that the sensor 10 of Example 1 is more responsive than Comparative Example 2. .
 (他の実施形態)
 なお、上記各実施形態は、以下のような形態をもって実施することもできる。
 ・図21に示すように、第2導入孔26は、矩形状に形成されていてもよい。この場合、各導入孔列を構成する第2導入孔26は、互いに対向しない位置に形成されていてもよい。又は、各導入孔列を構成する各第2導入孔26は、同じ導入孔列の別の第2導入孔26のうちの1つと対向して位置し、互いに対向して位置する2つの第2導入孔26は互いに異なる内径を有していてもよい。
(Other embodiments)
In addition, each said embodiment can also be implemented with the following forms.
-As shown in FIG. 21, the 2nd introduction hole 26 may be formed in the rectangular shape. In this case, the second introduction holes 26 constituting each introduction hole row may be formed at positions that do not face each other. Or each 2nd introduction hole 26 which constitutes each introduction hole line is located in opposition to one of the other 2nd introduction holes 26 of the same introduction hole line, and two 2nd which is located opposite to each other. The introduction holes 26 may have different inner diameters.
 ・図22に示すように、第2導入孔26は、検出素子20の長さ、幅及び厚みよりも小さければ、カバー12の周方向に延びる細長状(スリット状)に形成されていてもよい。例えば、第2導入孔26は、カバー12の軸方向における異なる位置に形成され、例えばカバー12の周方向に沿って45°の範囲に延びている。このため、第2導入孔26は、互いに対向しない位置に設けられる。 As shown in FIG. 22, the second introduction hole 26 may be formed in an elongated shape (slit shape) extending in the circumferential direction of the cover 12 as long as it is smaller than the length, width, and thickness of the detection element 20. . For example, the second introduction holes 26 are formed at different positions in the axial direction of the cover 12 and extend, for example, in the range of 45 ° along the circumferential direction of the cover 12. For this reason, the 2nd introduction hole 26 is provided in the position which does not oppose mutually.
 ・図23に示すように、カバー12の内周面であって、各第2導入孔26の近傍に、油を整流する整流部40を設けてもよい。この整流部40により、カバー12の隅部の油も流動させることができる。 As shown in FIG. 23, a rectifying unit 40 that rectifies oil may be provided on the inner peripheral surface of the cover 12 and in the vicinity of each second introduction hole 26. The rectifying unit 40 can also cause the oil at the corners of the cover 12 to flow.
 ・第1~第5実施形態では、カバー12に形成された第2導入孔26を、互いに同じ内径に形成したが、第2導入孔26の内径を、2種類以上の異なる内径にしてもよい。また、第2導入孔26の内径と第1導入孔24の内径とを同じ内径にしたが、異なる内径にしてもよい。 In the first to fifth embodiments, the second introduction holes 26 formed in the cover 12 have the same inner diameter, but the inner diameters of the second introduction holes 26 may be two or more different inner diameters. . Moreover, although the internal diameter of the 2nd introduction hole 26 and the internal diameter of the 1st introduction hole 24 were made into the same internal diameter, you may make it a different internal diameter.
 ・第4実施形態では、第2導入孔26を1本の螺旋状に配置したが、螺旋状の第2導入孔26の列は複数であってもよい。この際、カバー12の軸方向における同じ位置に第2導入孔26が位置したとしても、それらの第2導入孔26は互いに対向しない位置に形成されることが好ましい。 In the fourth embodiment, the second introduction holes 26 are arranged in one spiral, but a plurality of rows of the spiral second introduction holes 26 may be provided. At this time, even if the second introduction holes 26 are located at the same position in the axial direction of the cover 12, the second introduction holes 26 are preferably formed at positions that do not face each other.
 ・検出素子20の構成は、上述した構成以外のものであってもよい。例えば、感応膜33は、有機絶縁物から構成したが、絶縁性を有する無機物から構成してもよい。
 ・上記各実施形態において、第2導入孔26の数及び大きさは、カバー12の外側へ検出素子20が脱落しない程度に増やすことも可能であり、カバー12の開口率は特に限定されない。
The configuration of the detection element 20 may be other than the configuration described above. For example, the sensitive film 33 is made of an organic insulator, but may be made of an inorganic material having an insulating property.
In each of the above embodiments, the number and size of the second introduction holes 26 can be increased to the extent that the detection element 20 does not drop out of the cover 12, and the aperture ratio of the cover 12 is not particularly limited.
 ・上記各実施形態において、複数の導入孔からなる導入孔列の数は、検出部の大きさやカバーの大きさ、要求されるセンサの応答性等に応じて適宜変更することも可能である。即ち、導入孔列は、1列でもよい。また、導入孔列は、2列以上の複数でもよい。 In each of the above embodiments, the number of introduction hole rows made up of a plurality of introduction holes can be appropriately changed according to the size of the detection unit, the size of the cover, the required response of the sensor, and the like. That is, the introduction hole row may be one row. The introduction hole row may be a plurality of two or more rows.
 ・上記各実施形態では、検出部を静電容量式の素子としたが、これ以外の方式により流体内の水分量を検出するものであってもよい。例えば、光学素子を有する検出部であってもよく、熱伝導式の検出素子であってもよい。 In each of the embodiments described above, the detection unit is a capacitive element, but it may be one that detects the amount of water in the fluid by other methods. For example, it may be a detection unit having an optical element or a heat conduction type detection element.
 ・上記各実施形態では、センサ10を、被装着体100に装着されるタイプのセンサとしたが、これ以外の方式で使用されるものであってもよい。例えば、センサ10を手で支持しながらタンクの開口等から油内に差し込むものであってもよい。また、被装着体100に装着したり、管路やタンク等に差し込んだりする方式に限定されず、管路やタンクから採取した試料を検出対象としてもよい。 In each of the embodiments described above, the sensor 10 is a type of sensor that is mounted on the mounted body 100, but may be used in other methods. For example, the sensor 10 may be inserted into oil through a tank opening or the like while supporting the sensor 10 by hand. Further, the method is not limited to the method of mounting on the mounted body 100 or being inserted into a pipe or tank, and a sample collected from the pipe or tank may be a detection target.
 ・上記各実施形態では、センサの検出対象を、機械に用いられる油中の水分量としたが、油以外の流体であってもよく、水分量以外の流体の特性を検出してもよい。例えば、検出対象を、油以外の液状体にしてもよい。液状体は、液体や、液体を媒体とするゾル等であって、例えば、排水、飲食品、薬品、河川の水、海水、インク、洗剤、光造形剤等である。また、検出対象を、気体にしてもよい。さらに、センサは、流体の圧力、温度、流量、液面、流速等を計測するものであってもよく、特定の含有物質の有無、含有物質の濃度を測定するものであってもよく、含有物質を特定するものであってもよい。センサの検出方式は、静電容量式以外の方式でもよく、測定対象等によって選択される。また、センサを構成する部材の材料は、測定対象に応じて選択される。 In each of the above embodiments, the detection target of the sensor is the amount of water in the oil used in the machine, but it may be a fluid other than oil, or the characteristics of a fluid other than the amount of water may be detected. For example, the detection target may be a liquid other than oil. The liquid material is a liquid, a sol using a liquid as a medium, and is, for example, drainage, food or drink, medicine, river water, seawater, ink, detergent, or optical modeling agent. Further, the detection target may be gas. Furthermore, the sensor may measure the pressure, temperature, flow rate, liquid level, flow rate, etc. of the fluid, may measure the presence or absence of a specific contained substance, and the concentration of the contained substance. The substance may be specified. The detection method of the sensor may be a method other than the capacitance type, and is selected depending on the measurement object or the like. Moreover, the material of the member which comprises a sensor is selected according to a measuring object.
 先の説明は、例証的であって制限的でないことを意図する。例えば、上述した実施例(あるいはその1つ又は複数の態様)は、互いに組み合わせて使用されてもよい。先の説明を検討することによって、他の実施形態が当業者などによって使用されてもよい。また、上記詳細な説明では、種々の特徴は、開示を簡素化するために共にグループ化されてもよい。このことは、未請求の開示の特徴が、任意の特許請求項に必須であることを意図するものとして解釈されるべきでない。むしろ、本発明の主題は、特定の開示の実施形態のすべての特徴よりも少ない特徴に存在することがある。そのため、添付の特許請求項は、詳細な説明に組み込まれ、各請求項は、別個の実施形態として自分自身を主張する。本発明の範囲は、添付の特許請求項を参照して、その特許請求項が権利を与えられる均等物の全範囲と共に確定されるべきである。 The above explanation is intended to be illustrative and not restrictive. For example, the above-described embodiments (or one or more aspects thereof) may be used in combination with each other. Other embodiments may be used by those skilled in the art, etc. by reviewing the above description. Also, in the above detailed description, various features may be grouped together to simplify the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, the subject matter of the invention may reside in fewer than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
 10…センサ、11…ハウジング、12…カバー、13…大径部、14…小径部、15…締結部、16…第1螺合部、17…第2螺合部、18…接続部、18a…端面、19…報知部、19a~19c…ランプ、20…検出部としての検出素子、21…ピン、22…端部導入孔が形成された壁部としての側壁部、23…開口端、24…端部導入孔としての第1導入孔、25…周壁部、26…第2導入孔、26a…第2導入孔、26b…第2導入孔、27…カバー螺合部、30…基板、31…第1電極、32…第2電極、33…感応膜、34…第1電極端子、35…第2電極端子、40…整流部、100…被装着体、101…挿通孔、102…流体としての油、L1…第1導入孔列、L2…第2導入孔列、L3…第3導入孔列、L4…第4導入孔列。 DESCRIPTION OF SYMBOLS 10 ... Sensor, 11 ... Housing, 12 ... Cover, 13 ... Large diameter part, 14 ... Small diameter part, 15 ... Fastening part, 16 ... 1st screwing part, 17 ... 2nd screwing part, 18 ... Connection part, 18a DESCRIPTION OF SYMBOLS ... End face, 19 ... Notification part, 19a-19c ... Lamp, 20 ... Detection element as detection part, 21 ... Pin, 22 ... Side wall part as wall part in which end part introduction hole was formed, 23 ... Open end, 24 ... 1st introduction hole as end part introduction hole, 25 ... Perimeter wall part, 26 ... 2nd introduction hole, 26a ... 2nd introduction hole, 26b ... 2nd introduction hole, 27 ... Cover screwing part, 30 ... Substrate, 31 ... 1st electrode, 32 ... 2nd electrode, 33 ... Sensitive membrane, 34 ... 1st electrode terminal, 35 ... 2nd electrode terminal, 40 ... Rectification part, 100 ... Mounted object, 101 ... Insertion hole, 102 ... As fluid Oil, L1 ... first introduction hole row, L2 ... second introduction hole row, L3 ... third introduction hole row, L4 ... fourth guide Row of holes.

Claims (9)

  1.  流体の特性を検出する検出部と、
     前記検出部を内側に収容する筒状のカバーと、を備え、
     前記カバーは、前記検出部の大きさよりも小さい複数の導入孔を有し、前記導入孔は、前記カバーの中心軸の周囲において前記中心軸を間に挟んで互いに対向しない位置に形成されている
     センサ。
    A detector for detecting the characteristics of the fluid;
    A cylindrical cover that houses the detection unit inside,
    The cover has a plurality of introduction holes smaller than the size of the detection unit, and the introduction holes are formed around the central axis of the cover at positions that do not face each other with the central axis in between. Sensor.
  2.  前記複数の導入孔の少なくとも一部は、前記検出部に対向する位置に設けられる
     請求項1に記載のセンサ。
    The sensor according to claim 1, wherein at least a part of the plurality of introduction holes is provided at a position facing the detection unit.
  3.  前記カバーは、前記導入孔のうちの一部である複数の導入孔からそれぞれなる複数の導入孔列を有し、
     各導入孔列の導入孔は、隣接する導入孔列の導入孔とは前記カバーの周方向における配置が異なる
     請求項1又は2に記載のセンサ。
    The cover has a plurality of introduction hole rows each consisting of a plurality of introduction holes that are a part of the introduction holes,
    The sensor according to claim 1 or 2, wherein the introduction hole of each introduction hole row is different in arrangement in the circumferential direction of the cover from the introduction hole of the adjacent introduction hole row.
  4.  前記カバーは、前記導入孔のうちの一部である複数の導入孔からそれぞれなる複数の導入孔列を有し、
     各導入孔列の導入孔は、他の導入孔列の導入孔とは前記カバーの周方向における配置が異なる
     請求項1又は2に記載のセンサ。
    The cover has a plurality of introduction hole rows each consisting of a plurality of introduction holes that are a part of the introduction holes,
    The sensor according to claim 1 or 2, wherein the introduction hole of each introduction hole row is different in arrangement in the circumferential direction of the cover from introduction holes of other introduction hole rows.
  5.  前記導入孔は、前記カバーの軸方向における一方の端部から他方の端部にかけて螺旋状に並んでいる
     請求項1又は2に記載のセンサ。
    The sensor according to claim 1 or 2, wherein the introduction holes are arranged in a spiral from one end portion to the other end portion in the axial direction of the cover.
  6.  前記カバーは、前記導入孔のうちの一部である複数の導入孔からそれぞれなる複数の導入孔列を有し、
     各導入孔列の前記導入孔のうちの隣り合うペアの間の間隔が互いに異なる
     請求項1~5のいずれか1項に記載のセンサ。
    The cover has a plurality of introduction hole rows each consisting of a plurality of introduction holes that are a part of the introduction holes,
    The sensor according to any one of claims 1 to 5, wherein an interval between adjacent pairs of the introduction holes of each introduction hole row is different from each other.
  7.  前記カバーの軸方向における一方の端部には壁部が設けられ、当該壁部には、前記カバーの内側に流体を取り込むための端部導入孔が形成されている
     請求項1~6のいずれか1項に記載のセンサ。
    A wall portion is provided at one end portion in the axial direction of the cover, and an end portion introduction hole for taking a fluid into the inside of the cover is formed in the wall portion. The sensor according to claim 1.
  8.  前記検出部は、第1電極と、前記第1電極に対向して配置され水分子を透過する第2電極と、前記第1電極及び前記第2電極の間に挟まれた感応膜とを備え、前記検出部は、前記第2電極を透過した水分子を前記感応膜が吸脱着することによる静電容量の変化に基づいて前記流体に含有される水分量を検出する
     請求項1~7のいずれか1項に記載のセンサ。
    The detection unit includes a first electrode, a second electrode disposed opposite to the first electrode and transmitting water molecules, and a sensitive film sandwiched between the first electrode and the second electrode. The detection unit detects the amount of water contained in the fluid based on a change in capacitance caused by the sensitive film adsorbing and desorbing water molecules that have passed through the second electrode. The sensor according to any one of claims.
  9.  流体の特性を検出する検出部と、
     前記検出部を収容する筒状のカバーと、を備え、
     前記カバーは、前記検出部の大きさよりも小さい複数の導入孔を有し、前記導入孔のそれぞれは、前記カバーの中心軸の周囲に位置し、かつ前記導入孔のうちの別の1つに対向しており、互いに対向する2つの導入孔は互いに異なる内径を有する
     センサ。
    A detector for detecting the characteristics of the fluid;
    A cylindrical cover that houses the detection unit;
    The cover has a plurality of introduction holes smaller than the size of the detection unit, and each of the introduction holes is located around the central axis of the cover and is provided in another one of the introduction holes. The two introduction holes facing each other have different inner diameters.
PCT/JP2015/072128 2014-08-11 2015-08-04 Sensor WO2016024500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-163352 2014-08-11
JP2014163352A JP2016038351A (en) 2014-08-11 2014-08-11 Sensor

Publications (1)

Publication Number Publication Date
WO2016024500A1 true WO2016024500A1 (en) 2016-02-18

Family

ID=55304129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072128 WO2016024500A1 (en) 2014-08-11 2015-08-04 Sensor

Country Status (2)

Country Link
JP (1) JP2016038351A (en)
WO (1) WO2016024500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025533A1 (en) * 2016-08-04 2018-02-08 株式会社デンソー Refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669553A (en) * 1979-11-13 1981-06-10 Ngk Insulators Ltd Oxygen concentration detecting device
JPS6059961U (en) * 1983-09-30 1985-04-25 日本碍子株式会社 exhaust gas sensor
JP2002090329A (en) * 2000-09-19 2002-03-27 Tabai Espec Corp Humidity sensor and its manufacturing method
JP2003083043A (en) * 2001-09-07 2003-03-19 Honda Motor Co Ltd Condition determining device for exhaust emission control device
JP2004245828A (en) * 2003-01-20 2004-09-02 Denso Corp Gas sensor
JP2010190607A (en) * 2009-02-16 2010-09-02 Yamatake Corp Humidity sensor
JP2012168143A (en) * 2011-02-17 2012-09-06 Nippon Soken Inc Particulate matter detector
JP2013127454A (en) * 2011-11-18 2013-06-27 Ngk Insulators Ltd Gas sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669553A (en) * 1979-11-13 1981-06-10 Ngk Insulators Ltd Oxygen concentration detecting device
JPS6059961U (en) * 1983-09-30 1985-04-25 日本碍子株式会社 exhaust gas sensor
JP2002090329A (en) * 2000-09-19 2002-03-27 Tabai Espec Corp Humidity sensor and its manufacturing method
JP2003083043A (en) * 2001-09-07 2003-03-19 Honda Motor Co Ltd Condition determining device for exhaust emission control device
JP2004245828A (en) * 2003-01-20 2004-09-02 Denso Corp Gas sensor
JP2010190607A (en) * 2009-02-16 2010-09-02 Yamatake Corp Humidity sensor
JP2012168143A (en) * 2011-02-17 2012-09-06 Nippon Soken Inc Particulate matter detector
JP2013127454A (en) * 2011-11-18 2013-06-27 Ngk Insulators Ltd Gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025533A1 (en) * 2016-08-04 2018-02-08 株式会社デンソー Refrigeration cycle device
JPWO2018025533A1 (en) * 2016-08-04 2019-01-17 株式会社デンソー Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2016038351A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP4716146B2 (en) Liquid property sensor
US8410948B2 (en) Recreational vehicle holding tank sensor probe
JP2007120962A (en) Liquid state detection sensor
JP6443619B2 (en) Sample measuring device
WO2016024500A1 (en) Sensor
CN104950177A (en) Circulating type industrial on-line seven-electrode conductivity sensor
JP7080680B2 (en) Conductivity measurement structure and pure water production equipment
JP4782506B2 (en) Capacitive sensor
US20160363552A1 (en) Electrically Conductive Fluid Detector
CN108760828B (en) Device for measuring liquid conductivity
JP2009115616A (en) Fuel property sensor
JP6901355B2 (en) Fluid property detector
RU2463575C1 (en) Apparatus for measuring pipeline corrosion
CN204679147U (en) A kind of novel pin taper level sensing capacitive approach switch
JP4943923B2 (en) Water quality analyzer
CN100557391C (en) Liquid condition sensing apparatus
CN207540628U (en) A kind of liquid level gauge and tank level control system for container
JP2014025735A (en) Sensor device
CN220751299U (en) Resistance type liquid level meter and heating device
JP6772178B2 (en) Sensor device
JP5206651B2 (en) Fuel alcohol concentration detector
CN219914575U (en) Liquid level detection assembly and liquid storage device
CN220381070U (en) Detection device for liquid chromatography system
CN210689776U (en) Evaporation tank liquid level measuring device
JP2011145201A (en) Fuel alcohol concentration detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831345

Country of ref document: EP

Kind code of ref document: A1