WO2016023278A1 - 一种网络保护倒换方法、网络设备及存储介质 - Google Patents

一种网络保护倒换方法、网络设备及存储介质 Download PDF

Info

Publication number
WO2016023278A1
WO2016023278A1 PCT/CN2014/090254 CN2014090254W WO2016023278A1 WO 2016023278 A1 WO2016023278 A1 WO 2016023278A1 CN 2014090254 W CN2014090254 W CN 2014090254W WO 2016023278 A1 WO2016023278 A1 WO 2016023278A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow point
layer
path
point
internet protocol
Prior art date
Application number
PCT/CN2014/090254
Other languages
English (en)
French (fr)
Inventor
王�华
崔春来
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14899653.1A priority Critical patent/EP3182645B1/en
Publication of WO2016023278A1 publication Critical patent/WO2016023278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5058Service discovery by the service manager
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present invention relates to a packet transport network (PTN, Packet Transport Network) and a radio access network (IP, Internet Protocol) (IP, IP Radio Access Network) technology, and more particularly to a network protection switching method, a network device, and a storage medium.
  • PTN Packet Transport Network
  • IP Internet Protocol
  • IP Radio Access Network IP Radio Access Network
  • the PTN technology is generally a packet transmission network technology that is designed and developed with a layer 2 data exchange function and a connection-oriented technology.
  • the PTN technology not only integrates the functions of statistical multiplexing and multicasting of the Layer 2 device, but also provides The end-to-end carrier-class Ethernet service protection and bandwidth planning functions are implemented based on a Layered Service Provider (LSP), so that the PTN technology is at a higher level of service than the advantages of the traditional Layer 2 data network.
  • LSP Layered Service Provider
  • Transmission, network fault location and other aspects have obvious advantages; now, with the further clarification and refinement of business requirements, the PTN technology gradually develops and improves the function of having three layers of data interaction capabilities.
  • the IPRAN technology is mainly used in an IP metropolitan area network, and the IPRAN device is in an access and aggregation layer of the metropolitan area network; and the IPRAN device is connected to the service router (SR) upward, and is connected to the client device and the base station device downward.
  • the main advantage of the IPRAN technology is that it has complete and mature Layer 3 data exchange functions, including forwarding and routing of Layer 3 data supporting the full version of IP version 4 (IPV4) or IP version 6 (IPV6).
  • IPRAN Function, and support for multi-protocol label switching (MPLS) three-layer data exchange function, three-layer data exchange MPLS virtual private network (VPN) function and three-layer data exchange multicast function, meanwhile, the IPRAN technology also Some elements of the traditional transmission technology are integrated in the aspects of network management, operation management and maintenance (OAM), synchronization, and protection; wherein the routing function includes a static routing function and a dynamic routing function, and the dynamic routing function includes intra-domain Routing protocol RIP/OSPF/ISIS function, inter-domain routing protocol BGP function.
  • OAM operation management and maintenance
  • the hierarchical OAM mechanism refers to that the PTN technology and the IPRAN technology support OAM of the network layer, the service layer, and the access link layer. And support fine-grained control network monitoring and detection, to achieve rapid fault diagnosis and recovery, enhance network predictability and controllability; the difference is that the PTN technology mainly adopts multi-protocol label switching transmission architecture (MPLS-TP, The OAM mechanism of the Muti-protocol label switching-Transport Profile; the IPRAN technology generally adopts an OAM mechanism of Bidirectional Forwarding Detection (BFD); and the PTN technology supports a pseudowire (PW) layer and an LSP.
  • MPLS-TP multi-protocol label switching transmission architecture
  • BFD Bidirectional Forwarding Detection
  • PW pseudowire
  • the linear protection function of the layer and the multiple protection functions for the ring network; the IPRAN technology is a protection technology that implements a dynamic protocol based on the three-layer data exchange function, such as Fast Reroute (FRR).
  • FRR Fast Reroute
  • the embodiment of the present invention provides a network protection switching method, a network device, and a storage medium, which can unify the path switching decision method of the service corresponding to the PTN and the IPRAN, and clearly and completely determine the PTN.
  • a path switching decision method for a service corresponding to IPRAN is a path switching decision method for a service corresponding to IPRAN.
  • the embodiment of the present invention provides a network protection switching method, including:
  • the hierarchical flow point model is determined according to all ports corresponding to the packet transport network or the wireless access network Internet protocol, or the physical port or physical port set in the physical connection channel layer, including:
  • All the ports corresponding to the packet transmission network or the wireless access network Internet protocol, or the physical port or physical port set in the physical connection channel layer as the first layer flow point, according to the first layer flow point and the first preset The rule determines the next layer of flow points and determines the hierarchical distribution of the flow point model.
  • the method further include:
  • the alarm mechanism of each flow point is determined according to the hierarchical distribution structure of each layer flow point in the flow point model.
  • the method for determining a service for determining a service corresponding to a packet transmission network or a wireless access network Internet protocol according to the flow point model includes:
  • the path information is an identifier of a working path and/or an identifier of a protection path of each flow point in the flow point model in which the packet transmission network or the wireless access network Internet protocol is pre-processed.
  • the determining, according to the alarm mechanism of each flow point, and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point, determining the protocol correspondence of the packet transmission network or the wireless access network Business turnover decision making methods including:
  • the path information of the service corresponding to the Internet protocol is determined according to the path information of each flow point of the service path corresponding to the packet transmission network or the wireless access network Internet protocol, and the service path corresponding to the Internet protocol of the packet transmission network or the wireless access network is determined. Best path information for all flow points; or,
  • the method further includes:
  • the optimal path information is effective path information of each flow point in the flow point model.
  • the method further includes:
  • the work instruction information is instruction information of a path of the selection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used;
  • the protection instruction information is instruction information for selecting a path protection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used.
  • the method further includes:
  • the operation management and maintenance information is configured on the working path and the protection path of each flow point to determine the packet transmission network or the wireless access according to the operation management and maintenance information.
  • Network Internet Protocolization corresponds to the work of each flow point of the business approach
  • the operation of the path or protection path manages the maintenance label.
  • the method further includes:
  • the client layer of the first layer flow point is a corresponding one underground layer flow point; the first layer flow point has no service layer, or the service layer of the first layer flow point is a packet transmission network Or a port corresponding to the Internet Protocol of the radio access network; the packet transport network or the radio access network corresponding to the Internet protocol in the first layer stream point has a working path, or a working path and a service Protection path.
  • the method further includes:
  • the i-th layer flow point is the i-th layer flow point a client layer; a packet transmission network or a radio access network Internet Protocol-based service corresponding to each of the i-th stream points has a working path, or a working path and a protection path; the i-th layer stream
  • the client layer of the point is the i+1th layer stream point or the user service of the layer; the service layer of the i-th layer stream point is the i-1 layer stream point;
  • the client layer of the Nth layer flow point is a layer user service
  • the N is a positive integer greater than or equal to 2; and the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the alarm mechanism of each flow point is determined according to the hierarchically distributed structure of the layer flow points, including:
  • Determining that the alarm information of each flow point in the first layer flow point is derived from a packet transmission network or wireless access
  • the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the embodiment of the invention further provides a network device, including:
  • a modeling unit configured to determine a hierarchically distributed stream point model according to all ports corresponding to the packet transport network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer;
  • the decision unit is configured to determine, according to the flow point model, a switching decision method of a service corresponding to a packet transmission network or a wireless access network Internet protocol.
  • the modeling unit is further configured to use, as a first layer flow point, all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer. Determining a layered flow point according to the first layer flow point and the first preset rule to determine a hierarchically distributed flow point model.
  • the device further includes:
  • a path unit configured to determine, according to the second preset rule, a working path, or a working path and a protection path of a service corresponding to the packet forwarding network or the wireless access network Internet protocol on the stream point model;
  • the alarm unit is configured to determine an alarm mechanism of each flow point according to a hierarchically distributed structure of each layer flow point in the flow point model.
  • the determining unit is further configured to determine a packet transmission network or a wireless connection according to the alarm mechanism of each flow point and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point.
  • the path information is corresponding to a packet transmission network or a wireless access network Internet protocol.
  • the device further includes:
  • a label unit configured to configure operation management and maintenance information on a working path and a protection path of each flow point according to a hierarchically distributed structure of each layer flow point in the flow point model, to determine packet transmission according to operation management and maintenance information
  • the working or maintenance label of the working path or the protection path of each flow point of the service path corresponding to the network protocol of the network or the wireless access network.
  • the embodiment of the invention further provides a network device, including:
  • the modeling processing device is configured to determine a hierarchically distributed stream point model according to all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer;
  • the decision processing device is configured to determine a switching decision method of the service corresponding to the packet transfer network or the wireless access network Internet protocol according to the flow point model.
  • the modeling processing device is further configured to use all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer as the first layer flow point. And determining a layered flow point according to the first layer flow point and the first preset rule to determine a hierarchically distributed flow point model.
  • the device further includes:
  • a path processing device configured to determine, according to a second preset rule, a working path, or a working path and a protection path of a service corresponding to a packet transmission network or a wireless access network Internet protocol on the stream point model;
  • the alarm processing device is configured to determine an alarm mechanism of each flow point according to a hierarchically distributed structure of each layer flow point in the flow point model.
  • the decision processing device is further configured to: according to the alarm mechanism of each flow point, and the path of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the stream point The information determines a switching decision method of a service corresponding to the packet transfer network or the wireless access network Internet protocol;
  • the path information is an identifier of a working path and/or an identifier of a protection path of each flow point in the flow point model in which the packet transmission network or the wireless access network Internet protocol is pre-processed.
  • the device further includes:
  • the label processing device is configured to configure operation management and maintenance information to the working path and the protection path of each flow point according to the hierarchical distribution structure of each layer flow point in the flow point model, to determine the group according to the operation management and maintenance information
  • the operation path or the maintenance management label of the working path or the protection path of each flow point of the service path corresponding to the transport protocol or the wireless access network.
  • the embodiment of the invention further provides a computer readable storage medium, wherein the computer readable storage medium stores computer executable instructions for performing the network protection switching method according to the above.
  • the network protection switching method, the network device and the storage medium in the embodiment of the present invention can determine the hierarchical protection structure through a unified hierarchical flow point structure, and then the PTN according to the hierarchical flow point structure and the hierarchical protection structure.
  • the path switching decision method of the service corresponding to the IPRAN is unified, and the embodiment of the present invention can clearly and completely determine according to the hierarchical flow point structure, the protection path set in each flow point, and the alarm mechanism of each flow point.
  • the path switching decision method of the service corresponding to the PTN and the IPRAN so that the embodiment of the present invention can reduce the design complexity and design cost of the path protection and path selection, shorten the development cycle, and further improve the system using the method of the embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of implementing a network protection switching method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a networking implementation according to Embodiment 2 of the present invention.
  • Embodiment 2 of the present invention is a schematic flowchart of a specific implementation of Embodiment 2 of the present invention.
  • FIG. 5 is a topological diagram of a 4-layer flow point according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a networking implementation according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic flowchart of a specific implementation of Embodiment 3 of the present invention.
  • FIG. 8 is a topological diagram of three layers of flow points according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an implementation process of a network protection switching method according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 Determine a hierarchically distributed stream point model according to all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer;
  • the hierarchical flow point model is determined according to the physical port or the physical port set in the physical port or the physical port of the packet, or the physical port or the physical port in the physical connection channel layer, including: step 101A;
  • the method further Including: step 101B and step 101C.
  • Step 101A All ports corresponding to the PTN or the IPRAN, or a physical port or a physical port set in the physical connection channel layer (VS layer) is used as the first layer flow point, according to the first layer flow point. And determining, by the first preset rule, a next flow point point to determine a hierarchically distributed flow point model;
  • the client layer of the first layer flow point is itself corresponding to a base layer flow point; the first layer flow point has no service layer, or the service layer of the first layer flow point is PTN or IPRAN Corresponding port; the service corresponding to the PTN or IPRAN at each flow point in the first layer flow point has a working path, or a working path and a protection path.
  • the method further includes:
  • the i-th layer flow point is a client layer of the i-th layer flow point;
  • the i-th layer The service corresponding to the PTN or IPRAN at each flow point in the flow point has a working path, or a working path and a protection path;
  • the client layer of the i-th layer stream point is the i+1th layer stream point, or is the current a layer user service;
  • the service layer of the i-th layer stream point is the i-1 layer stream point;
  • the client layer of the Nth layer flow point is a layer user service
  • the N is a positive integer greater than or equal to 2; and the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the service model corresponding to the PTN or the IPRAN is hierarchical.
  • the service model corresponding to the PTN there are usually a layer layer (TMS), a path layer (TMP), and a circuit layer (TMC);
  • TMS layer layer
  • TMP path layer
  • TMC circuit layer
  • IP IP layer
  • LSP path layer
  • PW PW layer
  • the N is related to a service type corresponding to the PTN or the IPRAN, and the N may be determined according to a service type corresponding to the PTN or the IPRAN and a first preset rule;
  • the N-layer flow point model is specifically:
  • the port includes but is not limited to a physical port, a logical port or a medium port entity; specifically, the port includes but is not limited to: GE, FE, trunk group, ML-PPP group, PPP-POS, VCG group, DSL port/DSL Group, GRE tunnel, E1 channel, IMA group.
  • the first layer flow point is a bidirectional flow point
  • the client layer of the first layer flow point is corresponding to the underground one layer flow point, that is, the second layer flow point;
  • the first layer flow point has no service layer, or when the first layer flow point is a corresponding port in the VS layer, the service layer of the first layer flow point is a port corresponding to the PTN or the IPRAN;
  • the service corresponding to the PTN or the IPRAN at each flow point in the first layer flow point has a working path, or a working path and a protection path;
  • each flow point in the first layer flow point has only one working route and no protection route.
  • the second layer flow point is a client layer of the first layer flow point, that is, the second layer flow point is used to describe a client layer model of the first layer flow point;
  • the service corresponding to the PTN or the IPRAN at each flow point of the second layer flow point has a working path, or a working path and a protection path; here, according to the second preset rule, the traffic can be configured at each layer flow point.
  • the protection path of the service corresponding to the PTN or IPRAN Generally, each flow point in the first layer flow point has only one working path and no protection path, and from the second layer flow point, each of the second layer flow points can be The protection path is configured on the flow point. Therefore, it can be said that the transmission path of the service corresponding to the PTN or the IPRAN is extended from the second layer flow point to ensure the smooth transmission of the data information of the service corresponding to the PTN or the IPRAN;
  • Each of the second layer flow points is a bidirectional flow point, that is, an inbound flow point and an outgoing flow point, wherein the inflow point is a lower ring receiving direction of a service corresponding to the PTN or the IPRAN, Declaring the direction of the upper ring sending of the service corresponding to the PTN or the IPRAN to the flow point; for example, when the data information of the service corresponding to the PTN or the IPRAN is sent upward from the first layer flow point to the second layer flow point, The second layer flow point is an inbound flow point. When the data information of the service corresponding to the PTN or the IPRAN is sent from the second layer flow point to the first layer flow point, the second layer flow point is an outgoing flow point. ;
  • the client layer of the second layer flow point is a third layer flow point or a user service of the layer
  • the service layer of the second layer flow point is a first layer flow point
  • the third layer flow point is a customer layer of the second layer flow point, that is, the third layer flow point
  • the service corresponding to the PTN or the IPRAN at each flow point of the third layer flow point has a working path, or a working path and a protection path; here, since the second preset rule can be configured at each layer flow point
  • the protection path of the service corresponding to the PTN or IPRAN Generally, each flow point in the first layer flow point has only one working path and no protection path, and from the second layer flow point, each of the second layer flow points can be The protection point is configured on each of the flow points and the flow points corresponding to the third layer flow point. Therefore, it can be said that the protection path configured from the second layer flow point and combined with the third layer flow point expands the service corresponding to the PTN or the IPRAN.
  • Each of the third layer stream points is a bidirectional stream point, that is, an inbound stream point and an outbound stream point. For example, when the data information of the service corresponding to the PTN or IPRAN is sent from the second layer stream point to the third point. At the laminar flow point, the third layer flow point is an inflow flow point, and when the data information of the service corresponding to the PTN or the IPRAN is sent from the third layer flow point to the second layer flow point, the third layer flow point For the outflow point;
  • the client layer of the third layer flow point is a fourth layer flow point or a user service of the layer
  • the service layer of the third layer flow point is a second layer flow point
  • the i-th layer stream point is a client layer of the i-th layer stream point, that is, the i-th layer stream point is used to describe a client layer model of the i-th layer stream point;
  • the service corresponding to the PTN or the IPRAN at each stream point in the i-th stream point has a working path, or a working path and a protection path;
  • Each of the i-layer flow points is a bidirectional flow point, that is, an inflow point and an outflow point;
  • the client layer of the i-th layer stream point is the i+1th layer stream point or the layer user service;
  • the service layer of the i-th layer stream point is the i-1 layer stream point
  • the Nth layer stream point is a client layer of the N-1 layer stream point, that is, the Nth layer stream point is used to describe a client layer model of the N-1 layer stream point;
  • the service corresponding to the PTN or the IPRAN at each flow point in the Nth flow point has a working path, or a working path and a protection path;
  • Each of the N-layer flow points is a bidirectional flow point, that is, an inflow point and an outflow point;
  • the client layer of the Nth layer stream point is a service corresponding to the PTN or the IPRAN at each stream point of the layer;
  • the service layer of the Nth layer stream point is the N-1 layer stream point.
  • Step 101B Determine, according to the second preset rule, a working path, or a working path and a protection path of a service corresponding to the PTN or the IPRAN on the flow point in the flow point model;
  • the working path, the working path and the protection path of the service corresponding to the PTN or the IPRAN on the stream point are determined according to the second preset rule, and the hierarchical protection model is determined according to the hierarchical distribution structure of each layer stream point to ensure Smooth transmission of data information of services corresponding to PTN or IPRAN;
  • the hierarchical protection model is usually Starting from the second layer flow point, that is, starting from the second layer flow point, each flow point has a protection route and a work route; further, since each flow point in the second layer flow point is both an outlet flow point and an inlet Flow point, therefore, it is possible to have both a work route and a protection road in the second layer flow point
  • Each flow point of the line is called a protection group, that is, one protection group corresponds to one inflow point and one out point point;
  • each flow point in the second layer flow point can have both a work route and a protection route, or a partial flow point in the second layer flow point has a work route and a protection.
  • the route that is, whether each flow point in the second layer flow point has a protection route may be determined according to the type of service configured on the flow point, or whether each flow point has a protection route according to the second preset rule.
  • the N-1 layer protection model can be determined at most according to the N-layer flow point model and the second preset rule. Specifically,
  • First layer protection corresponding to the protection of the bottom layer protection in the N layer flow point model, that is, the protection performed by the second layer flow point in the N layer flow point model;
  • the first layer protection includes, but is not limited to, normal ring network protection, shared ring network protection, traffic engineering (TE, Traffic Engineer) FRR protection, TE hot backup (HSB, Hotstandby) protection, and the like;
  • Layer 2 protection corresponding to the protection of the secondary layer in the N-layer flow point model, that is, the protection performed by the third layer flow point in the N-layer flow point model;
  • the second layer protection includes, but is not limited to, linear tunnel 1+1/1:1, Label Distribution Protocol (LDP), FRR protection, IP FRR protection, and the like;
  • LDP Label Distribution Protocol
  • FRR protection FRR protection, IP FRR protection, and the like;
  • Layer 3 protection corresponding to the third-order layer protection in the N-layer flow point model, that is, the protection corresponding to the fourth layer flow point in the N-layer flow point model;
  • the third layer protection includes but is not limited to: pseudowire 1+1/1:1, VPN FRR protection, PW FRR protection, and the like;
  • Protection layer N-1 corresponding to the protection of the next highest layer in the N-layer flow point model, that is, the protection corresponding to the N-th flow point in the N-layer flow point model;
  • the first layer of protection, the second layer of protection to the N-1 layer of protective N-1 layer protection includes but is not limited to: PW FRR overlay LDP FRR overlay TE HSB, IP overlay IP/LDP FRR overlay TE FRR/HSB, VPN FRR overlay LDP FRR overlay TE HSB , pw 1:1/1+1 superimposed LSP1:1/1+1 superposition wrapping protection and other superimposed scene protection;
  • a complete stream point topology model that is, a service topology model can be obtained.
  • protection can be enabled at each stream point level, that is, the protection route is selected, or the protection is not enabled, that is, no protection is established.
  • Route for unprotected flow points, by default, only the working path is valid; for protected flow points, there are two paths of working path and protection path; according to the working status of each level and the alarm status of the protection path or APS decision-making mechanism Select the path of the current effective service pre-transfer, maintain the flow point topology model in time, and complete the protection group switching by the mapping relationship between the protection group and the flow point.
  • the original service topology model is updated to a new service topology model. In this way, the protection task for the service is realized, and the smooth transmission of the data information corresponding to the service is completed.
  • Step 101C Determine an alarm mechanism of each flow point according to a hierarchical distribution structure of each layer flow point in the flow point model.
  • determining the flow point according to the hierarchically distributed structure of the respective flow points Alarm mechanism including:
  • the alarm information of each flow point in the first layer flow point is determined by the alarm information generated by the physical port corresponding to the PTN or the IPRAN, or the alarm information generated by the corresponding segment OAM in the VS layer;
  • the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the alarm mechanism of each layer flow point is determined, specifically:
  • the maintenance of the path state of each protection group is based on the inflow point in the hierarchy to which the protection group belongs.
  • the generated alarm information; and the alarm information generation mechanism on the working path and the protection path of the incoming flow point is as follows, wherein the working information of the incoming flow point and the alarm information generating mechanism on the protection path are also called a breeding alarm mechanism
  • the flow points of each layer are bidirectional, that is, all the flow points in the N-layer flow point model can be used as the inflow point;
  • the alarm information generation mechanism on the working path and the protection path of the incoming flow point including:
  • the alarm information of each flow point in the first layer flow point is derived from the alarm information generated by the physical port corresponding to the PTN or the IPRAN, or the alarm information generated by the corresponding segment OAM in the VS layer;
  • the alarm information source of each flow point in the first layer flow point includes, but is not limited to, an alarm message generated by a fault such as a physical port fault, an optical module not being installed, and a link layer not being synchronized;
  • the alarm information of each flow point in the first layer flow point is derived from the alarm information generated by the physical port corresponding to the PTN or the IPRAN;
  • the alarm information of each flow point in the first layer flow point is derived from the alarm information generated by the corresponding physical port in the VS layer.
  • the alarm information of each flow point in the second layer flow point is derived from the alarm information generated by the OAM or the service layer of the layer;
  • the alarm information generated by the OAM of the current layer includes but is not limited to: Loss of continuity (LOC, Loss of Continuity) in the PTN network, and the remote end Alarm information generated by a defect indication (RDI, Remote Defect Indicator), error merging (MMG, Mismerge), an error message exchange pattern (UNMEP, Unexpected Message Exchange Pattern), or a BFD LOC in an IPRAN network;
  • LOC Loss of continuity
  • RDI Remote Defect Indicator
  • MMG Mismerge
  • UNMEP Unexpected Message Exchange Pattern
  • the alarm information generated by the service layer of the layer that is, the alarm information generated by the service layer of the second layer flow point, is the alarm information generated by the first layer flow point;
  • the alarm information generated by the first flow point in the second layer flow point is generated by the alarm information generated by the second flow point in the first layer flow point corresponding to the first flow point; wherein the second flow point a first-class point corresponding to the first flow point in the first layer flow point; a correspondence relationship between the first flow point and the second flow point refers to a user flow from the first flow point, through the first flow The path between the point and the second stream point passes through the second stream point, and thus, the first stream point corresponds to the second stream point.
  • the alarm information of each flow point in the third layer flow point is derived from the alarm information generated by the OAM or the service layer of the layer;
  • the alarm information generated by the OAM of the current layer includes but is not limited to: OAM LOC, RDI, MMG, UNMEP in the PTN network, or BFD in the IPRAN network. Alarm information generated by LOC, etc.;
  • the alarm information generated by the service layer of the layer that is, the alarm information generated by the service layer of the third layer flow point, is the alarm information generated by the second layer flow point;
  • the alarm information generated by the third flow point in the third layer flow point is derived from the alarm information generated by the fourth flow point in the second layer flow point corresponding to the third flow point; wherein, the fourth a flow point is a first-class point corresponding to the third flow point in the second layer flow point; a correspondence relationship between the third flow point and the fourth flow point refers to a user flow from the third flow point, The path between the third stream point and the fourth stream point passes through the fourth stream point, and thus the third stream point corresponds to the fourth stream point.
  • the alarm information generated by the service layer of the third layer flow point is only the alarm information generated by the effective path in the second layer flow point, wherein
  • the effective path is a path corresponding to each current stream point that is automatically updated after the second layer stream point is switched according to the switching decision method; when the service is switched in the second layer stream point, the service pre-path path is switched.
  • the alarm is propagated to the third layer flow point path.
  • no delay (holdoff) is set in the third layer flow point, and the third layer flow point is led to the third layer flow point.
  • the alarm of the second layer flow point can be effectively prevented from being perceived by the third layer flow point before the switching, which causes the third layer flow point to be mis-switched; for example;
  • the work path is selected according to the initial path information. If the work path of the flow point A has alarm information at this time, the path occurs when the service passes through the flow point A. Switching, however, if the third layer flow point is not configured with a delay, the third layer flow point will propagate an alarm through the service layer flow point, that is, the flow point B corresponding to the working path of the flow point A in the third layer flow point will An alarm is generated due to the alarm of the flow point A.
  • the third layer flow point is not configured. Delaying and delaying the propagation alarm of the second layer flow point to the third layer flow point, and the delay time is greater than the second layer flow point after detecting the alarm information to the path switching according to the switching decision method.
  • the flow point topology processing time of the second layer flow point can be updated, so that the alarm of the second layer flow point can be effectively prevented from being sensed by the third layer flow point before the switching, resulting in the occurrence of the third layer flow point.
  • the flow point topology for updating the second layer flow point refers to updating the work instruction information of each flow point in the current state in the second layer flow point.
  • the alarm information of each stream point in the layer N stream point is derived from the alarm information generated by the OAM or the service layer of the layer;
  • the alarm information generated by the OAM of the local layer includes but is not limited to: OAM LOC, RDI, MMG, UNMEP in the PTN network, or BFD in the IPRAN network. Alarm information generated by LOC, etc.;
  • the alarm information generated by the service layer of the layer that is, the alarm information generated by the service layer of the Nth layer stream point is the alarm information generated by the N-1 layer stream point.
  • the alarm information generated by the service layer of the Nth layer flow point is only the alarm information generated by the current effective path; when the service is in the N-1th
  • a switchover occurs in a laminar flow point, that is, when the pre-route path of the service is switched, the delay is propagated to the path of the N-th flow point after appropriate delay, so that no delay is set in the N-th flow point (holdoff)
  • the problem of the Nth layer stream point being erroneously switched is caused.
  • the alarm information of the flow point in the embodiment is generated by the alarm information generated by the path corresponding to the flow point. Therefore, the alarm information generated by the flow point mentioned in this example refers to the flow point corresponding to the flow point. The alarm information generated by the path.
  • Step 102 Determine, according to the flow point model, a switching decision method of a service corresponding to a packet transmission network or a wireless access network Internet protocol.
  • the method for determining a service for determining a service corresponding to a packet transmission network or a wireless access network Internet protocol according to the flow point model includes:
  • the path information is an identifier of a working path and/or an identifier of a protection path of each flow point in the flow point model in which the packet transmission network or the wireless access network Internet protocol is pre-processed.
  • the method further includes:
  • the optimal path information is effective path information of each flow point in the flow point model.
  • the method further includes:
  • the work instruction information is instruction information of a path of the selection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used;
  • the protection instruction information is instruction information for selecting a path protection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used.
  • the determining, according to the alarm mechanism of each flow point, and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point, determining the protocol correspondence of the packet transmission network or the wireless access network Business turnover decision making methods including:
  • the path information of the service corresponding to the Internet protocol is determined according to the path information of each flow point of the service path corresponding to the packet transmission network or the wireless access network Internet protocol, and the service path corresponding to the Internet protocol of the packet transmission network or the wireless access network is determined. Best path information for all flow points; or,
  • the switching decision method may perform a switching decision determination based on an APS protocol such as G.8111, G.8132, etc.; for protection such as FRR in IPRAN, the switching decision method may be based on steps The alarm mechanism in 101C is determined.
  • the switching decision result may be switched in two ways, so as to determine the optimal path information; and the N-layer flow point model is taken as an example to explain the output of the switching decision result:
  • the hierarchical switching mode that is, according to the topology structure of the N-layer flow point model, switches the service layer by layer;
  • the path information of the service corresponding to the PTN or the IPRAN passing through a flow point is determined according to the alarm mechanism of each flow point and the path information of the service corresponding to the PTN or the IPRAN at the flow point, for example, the flow of the Nth layer
  • the A-stream point in the point is taken as an example to determine whether the service corresponding to the PTN or the IPRAN is the working path or the protection path corresponding to the A-stream point.
  • the working path of the service path corresponding to the PTN or the IPRAN is determined, and so on.
  • the path information of each flow point that the service corresponding to the IPRAN is pre-determined, and determines the optimal path information of all the flow points corresponding to the service corresponding to the PTN or the IPRAN;
  • the initial stream point is determined as the stream point of the bearer service; for different services, the starting stream point may be at different levels.
  • the N-1 layer protection can be configured at most. Since each flow point has one protection path and one working path, there are at most 2 on the first layer flow point. N-1 path selection; if the path information of each layer flow point to the work path and the last layer flow point number is 0, each path information from number 0 to 2 N-1 reflects the start A protection switching mode in which the flow point is in the topology of the N-layer flow point model; these numbers are temporarily defined as bitmaps for convenience of reference in the following;
  • the selection of the service path is not only dependent on the protection switching manner determined in the topology of the N-layer stream point model, and the selection of the service path may be directly controlled by the outside; for example, For the MBB (make before break) process, in the unprotected group scenario, when the route is re-optimized, the service can be forwarded to the standby bitmap in advance. After the route re-optimization is finished, the bitmap is directly updated. Cut back the business, and so on, to achieve lossless switching.
  • MBB make before break
  • the method further includes:
  • the operation management and maintenance information is configured on the working path and the protection path of each flow point to determine the packet transmission network or the wireless access according to the operation management and maintenance information.
  • the network management protocol maintains the label of the working path of each flow point of the corresponding business path or the protection path of the protection path.
  • the method further includes:
  • the unique identifier of the protection path of the service corresponding to the Internet protocol of the access network, and the unique identifier of the working path corresponding to each flow point and the unique identifier of the protection path are used as operation management and maintenance labels corresponding to the paths.
  • the embodiment of the present invention further provides a label processing mechanism before and after the switching is established:
  • the unique identifier of the working path of the service corresponding to the PTN or the IPRAN at each stream point, and the unique identifier of the protection path of the service corresponding to the PTN or the IPRAN at each stream point are determined, and the unique identifier of the working path corresponding to each stream point is determined.
  • the unique identifier of the protection path is used as the OAM label corresponding to each path, so that the OAM label can uniquely indicate a path; then, according to the hierarchical distribution structure of the layer stream points, the OAM information is configured to each stream point.
  • the OAM mechanism when the OAM mechanism approaches a specific path corresponding to a specific flow point, for example, when the flow point C is routed, the upper first point corresponding to the flow point C is the flow point B, and the flow point The path from B to the flow point C is the path A.
  • the service A corresponding to the PTN or the IPRAN arrives at the flow point C after the path A, and then, according to the instruction information of the flow point C, the service A is selected to select the flow at the flow point C.
  • the protection path B of the point C At this time, when the OAM mechanism approaches the path B, the unique OAM label corresponding to the encapsulation path B is selected, and the service A is displayed in the OAM information corresponding to the path B.
  • the identification information of the previous path and the identification information of the current path in this embodiment, the OAM identifier of the path A and the OAM identifier of the protection path B, so that the OAM identifier of the previous path is recorded in the OAM information corresponding to the path B.
  • the OAM labeling mechanism of the present embodiment can facilitate the technology, if the service A is switched at the flow point C, because the identifier of the previous path is recorded in the OAM information, that is, the identifier of the path before the switching is recorded. The person detects the path condition before and after the switchover.
  • the OAM tag may be allocated by OAM information in its own path; when the OAM mechanism sends a packet through each layer of the flow point, the flow point is determined first.
  • the previous valid path that is, the working path or the protection path, if the current valid path is the working path, the OAM mechanism selects the OAM label corresponding to the encapsulation working path.
  • the OAM mechanism selects the encapsulation protection path correspondingly.
  • the OAM tag in this way, when the OAM mechanism passes through each layer of the stream point, the OAM tag selected by the client layer stream point corresponding to the stream point is carried to the service layer together, so that all levels can be obtained at the first layer stream point.
  • Optimal path encapsulation information wherein the selection mechanism of the effective path is automatically updated by the switching decision method.
  • the OAM information is configured on the working path and the protection path of each flow point, wherein the OAM information is sent according to a configuration period, and the OAM information is from N.
  • the next layer (or upper layer) of OAM information is obtained layer by layer in the topology of the laminar flow point model, wherein each layer of OAM information records the OAM label of the path of the flow point of the service path, and then The obtained next layer (or upper layer) OAM information is encapsulated together with the layer OAM information and sent out;
  • the OAM label in the OAM information may change before and after the path switching. Therefore, the OAM label action in the OAM information of the working path and the protection path of each level stream point needs to be defined as follows:
  • the first layer flow point, the second layer flow point, and the flow point of the Nth layer flow point may be provided with independent label processing actions on the working path and the protection path, for example, not encapsulating, encapsulating a layer of labels, exchanging a layer, Exchange and encapsulate each layer.
  • a layer of pseudo-line labels is usually encapsulated in the VC layer, and the VP layer encapsulates a layer of tunnel labels. If the normal ring network protection is configured, the ring network working path does not encapsulate labels; the ring network protection path replaces the original tunnel labels.
  • the package label or the empty label that is, the label 0 is not encapsulated or encapsulated.
  • a layer of FRR label is added to the TE protection path, and the TE tunnel is also replaced. Labels; thus, can be classified into four cases: no encapsulation, encapsulation of a layer of labels, exchange of layers, exchange, and encapsulation of each layer;
  • the definition of the hierarchy and the label action can be pre-configured according to the specific business scenario.
  • the embodiment of the present invention first determines a hierarchical flow point topology, and determines a working path or a protection path of each flow point according to the hierarchical flow point topology and a preset rule, that is, a hierarchical protection structure, such that Determining an alarm mechanism of each flow point according to the hierarchical flow point topology and the hierarchical protection structure, and determining, according to the alarm mechanism, a failure of a working path or a protection path corresponding to each flow point, and corresponding to each flow point
  • the failure path of the working path or the protection path determines the effective path of each flow point of the service path corresponding to the PTN or the IPRAN, that is, the switching decision method, thereby determining the optimal path of the service corresponding to the PTN or the IPRAN; wherein, the switching decision is made
  • each flow point has its own initial effective path in the current state, which may be a working path or a protection path.
  • the network protection switching method and the network device in the embodiment of the present invention can unify the path switching decision method of the service corresponding to the PTN and the IPRAN through the unified flow point model and the protection model, and the hierarchical flow point structure and each of the embodiments of the present invention can be
  • the protection path set in the laminar flow point and the alarm mechanism of each flow point can clearly and completely determine the path switching decision method of the service corresponding to the PTN and the IPRAN.
  • the embodiment of the present invention can reduce the complexity of the path protection and path selection.
  • the embodiment of the present invention further provides a network device.
  • the device includes:
  • the modeling unit 21 is configured to determine a hierarchically distributed stream point model according to all ports corresponding to the packet transport network or the radio access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer;
  • the decision unit 22 is configured to determine, according to the flow point model, a switching decision method of a service corresponding to a packet transmission network or a wireless access network Internet protocol.
  • the modeling unit is further configured to: the packet transmission network or the radio access network All the ports corresponding to the networking protocol or the physical port or the physical port set in the physical connection channel layer are used as the first layer flow point, and the next layer flow point is determined according to the first layer flow point and the first preset rule, and is determined.
  • a hierarchically distributed stream point model is further configured to: the packet transmission network or the radio access network All the ports corresponding to the networking protocol or the physical port or the physical port set in the physical connection channel layer are used as the first layer flow point, and the next layer flow point is determined according to the first layer flow point and the first preset rule, and is determined.
  • the device further includes:
  • the path unit 23 is configured to determine, according to the second preset rule, a working path, or a working path and a protection path of a service corresponding to the packet transmission network or the wireless access network Internet protocol on the stream point model;
  • the alarm unit 24 is configured to determine an alarm mechanism of each flow point according to a hierarchically distributed structure of each layer flow point in the flow point model.
  • the determining unit 24 is further configured to determine, according to the alarm mechanism of each flow point, and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point, determine the packet transmission network or the wireless The switching decision method of the service corresponding to the Internet protocol of the access network;
  • the path information is an identifier of a working path and/or an identifier of a protection path of each flow point in the flow point model in which the packet transmission network or the wireless access network Internet protocol is pre-processed.
  • the determining unit 24 is further configured to determine, according to the alarm mechanism of each flow point in the flow point model, and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point.
  • the path information of the corresponding service of the packet transmission network or the radio access network Internet protocol passing through a flow point is determined, and the packet transmission is determined according to the path information of each flow point of the service path corresponding to the packet transmission network or the wireless access network Internet protocol.
  • the device further includes:
  • a first determining unit configured to determine, according to the switching decision method, optimal path information of a service corresponding to the Internet protocol of the packet transmission network or the radio access network, and output the optimal path information;
  • the optimal path information is effective path information of each flow point in the flow point model.
  • the device further includes:
  • a second determining unit configured to determine, according to the valid path information, work instruction information or protection instruction information of each flow point in the flow point model
  • the work instruction information is instruction information of a path of the selection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used;
  • the protection instruction information is instruction information for selecting a path protection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used.
  • the device further includes:
  • the labeling unit 25 is configured to configure the operation management and maintenance information to the working path and the protection path of each flow point according to the hierarchical distribution structure of each layer flow point in the flow point model, to determine the grouping according to the operation management and maintenance information.
  • the operation path or the maintenance management label of the working path or the protection path of each flow point of the service path corresponding to the transport protocol or the wireless access network.
  • the label unit is further configured to determine a unique identifier of a working path of a service corresponding to a packet transmission network or a wireless access network Internet protocol at each flow point in the flow point model, and determine each flow point
  • the unique identifier of the protection path of the service corresponding to the packet forwarding network or the radio access network, and the unique identifier of the working path corresponding to each flow point and the unique identifier of the protection path are used as operation management and maintenance labels corresponding to the paths.
  • the modeling unit is further configured to: determine that the client layer of the first layer flow point is a corresponding one underground layer flow point; determine that the first layer flow point has no service layer, or determine the The service layer of the first layer flow point is the corresponding end of the packet transmission network or the wireless access network Internet protocol And determining, by the packet transmission network or the radio access network, the protocol corresponding to the Internet protocolization of each of the first layer flow points has a working path, or a working path and a protection path.
  • the modeling unit is further configured to: when determining a flow point having an N-layer structure according to a service type corresponding to a packet transmission network or a wireless access network Internet protocol and a first preset rule, determining the The i-th layer stream point is a client layer of the i-th layer stream point; determining that the packet transport network or the radio access network Internet protocol-based service on each stream point of the i-th layer stream point has a working path, Or a working path and a protection path; and determining that the client layer of the i-th layer stream point is an i+1th layer stream point or a layer user service; the service layer of the i-th layer stream point is I-1 layer flow point;
  • the client layer of the Nth layer flow point is a layer user service
  • the N is a positive integer greater than or equal to 2; and the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the alarm unit is further configured to determine the first layer.
  • the alarm information of each flow point in the flow point is derived from the alarm information generated by the physical port corresponding to the Internet protocol of the packet transmission network or the wireless access network, or the alarm information generated by the corresponding segment layer operation management and maintenance in the physical link channel layer. ;
  • the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the network device may be a PTN device or an IPRAN device; wherein the modeling unit, the decision unit, the path unit, the alarm unit, the first determining unit, the second determining unit, and the label unit may all run on a computer. It can be implemented by a central processing unit (CPU), or a microprocessor (MPU), or a digital signal processor (DSP), or a programmable gate array (FPGA) located on a computer.
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA programmable gate array
  • the embodiment of the invention further provides a computer readable storage medium, wherein the computer readable storage medium stores computer executable instructions, and the computer executable instructions are configured as the network protection switching method shown in FIG. 1 .
  • the embodiment of the present invention further provides a network device, where the device includes:
  • the modeling processing device is configured to determine a hierarchically distributed stream point model according to all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer;
  • the decision processing device is configured to determine a switching decision method of the service corresponding to the packet transfer network or the wireless access network Internet protocol according to the flow point model.
  • the modeling processing device is further configured to use all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer as the first layer flow point. And determining a layered flow point according to the first layer flow point and the first preset rule to determine a hierarchically distributed flow point model.
  • the device further includes:
  • a path processing device configured to determine, according to a second preset rule, a working path, or a working path and a protection path of a service corresponding to a packet transmission network or a wireless access network Internet protocol on the stream point model;
  • the alarm processing device is configured to determine an alarm mechanism of each flow point according to a hierarchically distributed structure of each layer flow point in the flow point model.
  • the decision processing device is further configured to determine the packet transmission network or the wireless according to the alarm mechanism of each flow point and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point.
  • the path information is corresponding to a packet transmission network or a wireless access network Internet protocol.
  • the decision processing device is further configured to determine, according to the alarm mechanism of each flow point in the flow point model, and the path information of the service corresponding to the packet transmission network or the wireless access network Internet protocol on the flow point.
  • the path information of the corresponding service of the packet transmission network or the radio access network Internet protocol passing through a flow point is determined, and the packet transmission is determined according to the path information of each flow point of the service path corresponding to the packet transmission network or the wireless access network Internet protocol.
  • the device further includes:
  • a first processing device configured to determine, according to the switching decision method, optimal path information of a service corresponding to a packet transmission network or a wireless access network Internet protocol, and output the optimal path information;
  • the optimal path information is effective path information of each flow point in the flow point model.
  • the device further includes:
  • a second processing device configured to determine work instruction information or protection instruction information of each flow point in the flow point model according to valid path information
  • the work instruction information is instruction information of a path of the selection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used;
  • the protection instruction information is instruction information for selecting a path protection path when the service corresponding to the packet transmission network or the wireless access network Internet protocol is used.
  • the device further includes:
  • the label processing device is configured to configure operation management and maintenance information to the working path and the protection path of each flow point according to the hierarchical distribution structure of each layer flow point in the flow point model, to determine the group according to the operation management and maintenance information
  • the operation path or the maintenance management label of the working path or the protection path of each flow point of the service path corresponding to the transport protocol or the wireless access network.
  • the label processing device is further configured to determine a unique identifier of a working path of a service corresponding to a packet transmission network or a wireless access network Internet protocol at each flow point in the flow point model, and determine each flow point.
  • the unique identifier of the protection path of the service corresponding to the packet forwarding network or the radio access network Internet protocol, and the unique identifier of the working path corresponding to each stream point and the unique identifier of the protection path are used as operation management and maintenance labels corresponding to the paths.
  • the modeling processing device is further configured to: determine that the client layer of the first layer flow point is a corresponding one underground layer flow point; determine that the first layer flow point has no service layer, or determine the location
  • the service layer of the first layer flow point is a port corresponding to the packet transmission network or the wireless access network Internet protocol; and determining a packet transmission network or a wireless access network Internet protocol at each flow point in the first layer flow point
  • the corresponding service has a working path, or a working path and a protection path.
  • the modeling processing device is further configured to: when determining a flow point having an N-layer structure according to a service type corresponding to a packet transmission network or a wireless access network Internet protocol and a first preset rule, determining the location The i-th layer stream point is a client layer of the i-th layer stream point; determining that the packet transport network or the radio access network Internet protocol-based service on each stream point in the i-th layer stream point has a working path Or a working path and a protection path; and determining that the client layer of the i-th layer stream point is an i+1th layer stream point or a layer user service; the service layer of the i-th layer stream point is Said i-1 layer flow point;
  • the client layer of the Nth layer flow point is a layer user service
  • the N is a positive integer greater than or equal to 2; and the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the alarm processing device is further configured to determine the first
  • the alarm information of each flow point in the laminar flow point is derived from the alarm information generated by the physical port corresponding to the Internet protocol of the packet transmission network or the radio access network, or the alarm generated by the corresponding segment layer operation management and maintenance in the physical link channel layer. information;
  • the i is a positive integer greater than or equal to 2 and less than or equal to N.
  • the network device may be a PTN device or an IPRAN device; wherein functions of the modeling processing device, the decision processing device, the path processing device, the alarm processing device, the first processing device, the second processing device, and the tag processing device Both can be implemented by a processor located in a PTN device or an IPRAN device, or an integrated circuit chip or FPGA on a PTN device or an IPRAN device.
  • the MPLS-TP-based PTN static protection module and the MPLS/IP-based IPRAN dynamic protection module on the device are usually independent modules, and the embodiments of the present invention can pass two typical examples.
  • the networking is implemented to implement the unified service protection scenario of the PTN and the IPRAN. The method of the embodiment of the present invention is further explained in detail below with reference to specific embodiments.
  • a data service corresponding to the PTN is configured on the device 1 to protect the pseudowire.
  • the working pseudowire label is 100
  • the OAM1 information is configured on the pseudowire with the label 100.
  • the protection pseudowire label is 101.
  • the tunnel label carrying the protection pseudo-line 101 is 202
  • the OAM5 information is configured on the tunnel with the label 202.
  • the working tunnel label carrying the working pseudo-line 100 is 200.
  • the OAM2 information is configured on the working tunnel with the label 200;
  • the protection tunnel label carrying the working pseudowire 100 is 201, and the label is
  • the OAM3 information is configured on the protection tunnel of 201;
  • FIG. 4 is a schematic flowchart of a specific implementation of the second embodiment of the present invention, that is, in the background shown in FIG. 3, a schematic diagram of an implementation process of determining a switching decision method by using a network protection switching method according to an embodiment of the present invention is shown in FIG. Methods include:
  • Step 401 Determine a hierarchically distributed stream point model according to all ports corresponding to the packet transmission network or the wireless access network Internet protocol, or a physical port or a physical port set in the physical connection channel layer.
  • the first layer VS flow point is all ports in the VS, TMS entity; each of the first layer flow points is bidirectional, and both may be inflow points or Outbound flow point; the first layer VS flow point can be used at the node (PE node) where the device 1 and the device 2 are located and the interface (NNI) side of the node (P node) where the device 3 is located;
  • Each of the first stream points has only one working path; the VSOAM, peer bfd or link bfd information can be enabled as the alarm information on the path of the stream point, and the client layer of the first layer stream point is VS.
  • - VP flow point the service layer is the corresponding physical port in the VS, TMS entity;
  • the second layer VS-VP flow point represents a virtual flow point when the segment layer protection acts on the VP layer, and no corresponding entity exists, such as normal and Shared ring network protection; for IPRAN, the second layer VS-VP flow point represents a physical flow point that acts on TE FRR and TE HSB protection; each flow point in the second layer VS-VP flow point is Two-way, there are two directions of inbound and outbound; the second layer VS-VP flow point can be used on the PE and P point NNI side; the second layer VS-VP flow point has two flow points For the PTN, the two paths are the LSP working segment layer path and the Wrapping/Steering protection path of the LSP.
  • the two paths are the TE FRR or TE HSB working path, and the TE FRR or TE.
  • the HSB protection path for the physical flow point, the OAM information can be enabled as the alarm information on the flow point path, such as the TE tunnel BFD information; for the virtual flow point
  • the service layer of the layer that is, the first layer VS flow point alarm is required to trigger the switching
  • the client layer of the second layer VS-VP flow point is the third layer VP flow point
  • the second layer VS-VP The service layer of the flow point is the first layer VS flow point;
  • the third layer VP flow point represents a tunnel entity; specifically, for a PTN, the third layer VP flow point represents an LSP tunnel entity; for IPRAN, the third The layer VP stream point represents an LDP, a TE tunnel or an IP entity; each of the third layer VP stream points is bidirectional, and has two directions of inbound and outbound directions respectively; and the third layer VP stream point can be in the PE.
  • each of the third layer VP stream points has two paths, which are a working path and a protection path respectively; for the PTN, the protection path can enable the tunnel 1+1/1:1 Protection; for IPRAN, the protection path can enable LDP FRR and IP FRR protection; PTN can enable TMP OAM information on both the protection path and the working path; IPRAN can enable LSP BFD information on both the protection path and the working path;
  • the client layer of the third layer VP stream point is the fourth layer VC stream point, and the service layer of the third layer VP stream point is the VS-VP stream point.
  • the fourth layer VC stream point represents a PW entity (dynamic entity or static) entity; and the fourth layer VC stream point corresponding to the PW can enable PW1+1/1:1
  • the protection is a protection path; here, each of the fourth layer VC stream points has two paths of a working path and a protection path, and PW OAM information can be enabled on both paths; for L3VPN, the The fourth layer VC stream point represents the VRF Peer PE, and no entity exists.
  • the fourth layer VC stream point corresponding to the VRF Peer PE can enable VPN FRR protection as the protection path; here, the fourth layer VC stream point has a VRF working path and The two paths of the VPN FRR protection path cannot enable OAM on the flow point. Therefore, each flow point in the fourth layer VC flow point is associated with the BGP peer BFD or the service layer alarm trigger protection switching; the fourth layer Each flow point in the VC flow point is unidirectional, and has two directions of inbound and outbound directions, respectively.
  • the fourth layer VC stream point can be used on the PE point NNI side; the client layer of the fourth layer VC stream point is the service corresponding to the layer, and the service layer of the fourth layer VC stream point is the third layer VP Flow point.
  • Table 1 the topology table is established for the inbound flow point path
  • Table 2 is the topology table for the outflow point path
  • Step 402 Configure two layers of protection on the topology of the four-layer flow point according to the service configuration.
  • the first layer VS flow point includes: VS flow point 4, VS flow point 5, VS flow point 6, VS. Flow point 7, VS flow point 14, VS flow point 15, VS flow point 16 and VS flow point 17;
  • second layer VS-VP flow point includes: VS-VP flow point 2, VS-VP flow point 3, VS- VP stream point 12 and VS-VP stream point 13;
  • the third layer VP stream point includes: VP stream point 1, VP stream point 11; and the fourth layer VC stream point includes VC stream point 0.
  • the first layer of LSP protection acts on the third layer VP stream point, that is, a working route and a protection route are arranged on the stream point of the third layer VP stream point; as shown in FIG. 5, the third layer VP
  • the VP stream point 1 in the stream point has a working path pointing to the VS-VP stream point 2 in the second layer VS-VP stream point, and one protection path pointing to the VS-VP stream point 3 in the second layer VS-VP stream point.
  • the working paths of the VS-VP stream point 2 and the VS-VP stream point 3 all point to the stream points connected to the physical interface, which are the VS stream point 4 and the VS stream point 6 in the first layer VS stream point, respectively. Therefore, the VP flow point 1 is a protection group, that is, the first layer LSP protection in this embodiment;
  • the second layer of PW protection acts on the fourth layer VC stream point, that is, a working route and a protection route are arranged on the flow point of the fourth layer VC stream point; as shown in FIG. 5, the fourth layer VC stream
  • the VC stream point 0 in the point has a working path pointing to the VP stream point 1, a protection path pointing to the VP stream point 11, and because the VP stream point 1 has two paths that can lead to the connection with the physical port.
  • the VC stream point 0 in the VC stream point is also a protection group, that is, the second layer in this embodiment. PW protection; thus identifying two protective layers;
  • Table 3 shows the association table between the protection group and the flow point; as shown in Table 3,
  • Step 403 Determine an alarm mechanism of each flow point according to the service configuration, and according to the hierarchically distributed structure of the layer flow points.
  • the alarm detection is performed on the inbound flow point topology, including the OAM detection of the local layer and the propagation of the service layer flow point, as shown in Table 1.
  • the OAM is sent on the outbound flow point path, including the label and the service layer flow.
  • Point relationship mapping as shown in Table 2; wherein, Table 1 is the inbound flow point table.
  • Table 1 is the inbound flow point table.
  • the flow points with flow points numbered 4, 6, and 11 are the first layer VS flow point.
  • each flow point in the first layer VS flow point has only a working path, and the working paths of the flow points 4, 6, and 11 respectively correspond to the physical port 5/1, should be the physical port 5/3, should be physical Port 5/4; further, each flow point in the first layer VS flow point has no protection path, that is, no protection group; the flow point number 2, 3, 12 is the second layer VS-VP flow
  • the flow point in the point, and the corresponding service layer is the flow point with flow point numbers 4, 6, and 14, respectively, that is, the flow point 2, the flow point 3, and the flow point in the second layer VS-VP flow point
  • the corresponding service layer is the flow point 4, the flow point 6, and the flow point 14 in the first layer VS flow point; here, the flow points in the first layer VS flow point corresponding to the flow point 13 are not related to the physical port.
  • the flow points with flow points numbered 1 and 11 are flow points in the third layer VP flow point, wherein
  • the flow point 1 has a protection group, that is to say, the flow point 1 has both a working path and a protection path, that is, the working path of the stream point 1 corresponds to the stream point 2, and the protection path corresponds to the stream point 3, that is, the service layer corresponding to the stream point 1
  • the flow point 2 and the flow point 3 respectively correspond to the flow point 4 and the flow point 5 in the first layer VS flow point, and the flow point 4 and the flow point 5 are both Physical port connection; therefore, the flow point is illustrated 1 has a protection group; similarly, the flow point 11 has no protection group, because the flow point 11 has only one working path corresponding to the flow point 12 having a service layer, that is, the flow point 11 corresponding to the protection point 13
  • the service layer that is, the flow point
  • the flow point 12 has no service layer; the flow point numbered 0 is the first The stream point in a layer of VC stream points, stream point 0 has a protection group, and the service layer is stream point 1 and stream point 11 in the third layer VP stream point respectively; Table 2 is an outflow point table, and its topological relationship Table 1 is similar and therefore will not be described again.
  • the topology of the 4-layer flow point can be established, that is, the service flow point.
  • the topology is as shown in FIG. 5; for the 4-layer flow point, since the protection path is set on the third layer VP flow point and the protection path is set on the fourth layer VC flow point, there are two layers of protection,
  • the two-layer protection may be a two-layer protection of PW 1:1 superimposed LSP 1:1. Therefore, a total of 8 paths are selectable from the fourth layer VC stream point to the first layer VS stream point, that is, 8 bitmaps.
  • the working path is taken by default; from the 4-layer flow point model, it can be clearly seen that for the VP incoming flow point path, the alarm is derived from the local OAM; for the VC incoming flow point The path is generated by the OAM and the service layer alarms. In addition, the service layer of the VC channel 0 has LSP protection. The alarm source is the alarm of the current effective path in the service layer. For the VC layer, the flow point is working. OAM1 on the path has two encapsulation modes on the VP flow point: encapsulating the VP flow point working label or protection label; other OAM has only one type of encapsulation;
  • the flow point model is established from the first layer flow point, that is, starting from the first layer flow point, it is built up layer by layer until the Nth layer flow point structure is established according to the preset rule; and, in this example, Only three flow points in the first layer VS flow point correspond to the physical port, that is, in the first layer VS flow point in FIG. 4, the flow point corresponding to the gray circle corresponds to the physical port; that is, the first layer flow point
  • the middle circle is a gray flow point, that is, VS flow point 4, VS flow point 6 and VS flow point 14, corresponding to the entity, that is, corresponding to the physical port, and the other flow point in the first layer VS flow point, that is, the VS flow point 5.
  • VS stream point 7, VS stream point 15, VS stream point 16 and VS stream point 17 do not correspond to physical ports, ie, no service layer entity, VS stream point 5, VS stream point 7, VS stream point 15, VS The path of the stream point 16 and the VS stream point 17 is considered invalid.
  • the path number is bitmap0; starting from VC stream point 0, sequentially to VP stream point 1, VS-VP stream point 3 to VS stream point 4, the path number is Bitmap 2; starting from VC stream point 0, sequentially to VP stream point 11, VS-VP stream point 12 to VS stream point 14, this path number is bitmap4; assume that the currently valid path in this example is bitmap0.
  • Step 404 According to the alarm mechanism of each flow point, and the service corresponding to the PTN at the flow point The path information determines a switching decision method of the service corresponding to the PTN;
  • the switching decision method can be based on the G.8131 protocol decision.
  • LSP OAM2 When port 5/1 is faulty, LSP OAM2 has only a unique 5/1 exit, it will detect the LOC alarm, and generate SF in the working path of the third layer VP stream point 1, and pass the G.8131 APS decision mechanism.
  • the protection path is selected on the protection group 2; the protection switching of the third layer VP flow point is completed; and the topological relationship between the current inbound and outbound flow points is modified; and the working path OAM1 of the fourth layer VC flow point is less than the detection time
  • the sum of the detection time of the OAM 2 of the third layer VP stream point and the LSP protection switching time will also generate the LOC.
  • the fourth layer VC stream point When the LOC is generated, the fourth layer VC stream point does not immediately generate the SF, but the holdoff timer is enabled. After the three-layer VP switching operation is completed, the third layer VP stream point is propagated to the client layer VC because of a certain delay, that is, the fourth layer VC stream point does not perceive the alarm of the service layer stream point; and the VC layer OAM1 The label will be encapsulated according to the new topology relationship. As shown in Figure 5, on the Layer 3 VP stream point 1, the LSP label is encapsulated according to the protection path label 201, and finally the packet is sent from the port 5/3, and the holdoff timer reaches 50 ms. After that, the LOC alarm has disappeared. Finally, there is no switching on the fourth layer VC stream point;
  • the WTR process is started for the return protection, and the WTR is automatically switched back after the time is reached.
  • Step 405 Output a switching decision result.
  • the result of the hierarchical output switching decision is as follows; in Table 1 and Table 2 above, the current path selection state of the inbound and outbound flow points of each level has been maintained. Therefore, according to Table 1 and Table 2, it can be seen that the example can be directly output.
  • Table 1 and Table 2 it can be seen that the example can be directly output.
  • the table 4 is the starting flow point bitmap maintenance table of the second embodiment; the specific process is: periodically polling all the starting flow points, and for each starting flow point, by iteratively searching the table 2, finally obtaining the same
  • the initial bitmap is 0. After the VP is switched, the bitmap becomes 2.
  • bitmap automatically finds the available path with the effective path of bitmap4 according to the switched topology table.
  • the switching execution module can be notified in the form of a packet to perform service switching.
  • FIG. 6 is a schematic diagram of a networking implementation according to Embodiment 3 of the present invention.
  • an L3VPN service of an IPRAN is configured on the device 1, and a VPN FRR protection overlay TE FRR is configured, and the primary VPN label is 300, TE.
  • the tunnel label is 400, the TE FRR label is 500, the standby VPN label is 301, and the TE tunnel label is 402.
  • the BGP PEER BFD is configured on the VPN FRR.
  • the session ID is 10.
  • the tunnel BFD is configured on the TE.
  • the session ID is 11.
  • FIG. 7 is a schematic flowchart of a specific implementation of Embodiment 3 of the present invention. As shown in FIG. 7, the method includes:
  • Step 701 Establish a four-layer flow point model according to the configuration of the data service corresponding to the IPRAN, and create an inflow point and an outflow point in each level;
  • the method for establishing the four-layer flow point model is the same as the method described in the second embodiment, and details are not described herein again;
  • Table 5 is a topology table for the inbound flow point path, including the OAM associated with the layer and the service layer flow point relationship mapping;
  • Table 6 is a topology table for the flow point path, including the label and the service layer flow point relationship map; table 5
  • Step 702 Configure two layers of protection on the topology of the four-layer flow point according to the service configuration.
  • the first layer VS stream point includes: VS stream point 4, VS stream point 5, VS stream point 6, VS. Flow point 7, VS Flow point 14, VS flow point 15, VS flow point 16 and VS flow point 17;
  • second layer VS-VP flow point includes: VS-VP flow point 22, VS-VP flow point 3, VS-VP flow point 32, and VS-VP stream point 13;
  • the third layer VP stream point includes: VP stream point 21, VP stream point 31;
  • the fourth layer VC stream point includes VC stream point 20;
  • the first layer TE FRR protection acts on the second layer VS-VP flow point, that is, a working route and a protection route are arranged on the flow point of the second layer VS-VP flow point, that is, the second layer At least one protection group in the VS-VP flow point;
  • the third layer of VPN FRR protection acts on the fourth layer VC stream point, that is, a working route and a protection route are arranged on the flow point of the fourth layer VC stream point, so that two layers of protection layers are determined;
  • Table 7 is the association table between the protection group and the flow point. As shown in Table 7, the protection group 3 corresponds to the third layer protection;
  • Step 703 Determine an alarm mechanism of each flow point according to the service configuration, and according to the hierarchically distributed structure of the layer flow points.
  • BFD detection and service layer flow point propagation are performed on the inbound flow point topology, as shown in Table 5.
  • the BFD packet is sent on the outbound flow point path, including the label and the service layer flow point relationship mapping. 6 is shown.
  • the topology of the 4-layer flow point can be established, that is, the service flow point topology, as shown in FIG.
  • the 4-layer flow point model shown in Figure 8 there are 8 bitmaps, and the pw 1:1 overlay te frr 1:1 two-layer protection is configured: for the layer without configuration protection, the default working path; from this model can be very Clearly, for the inflow in the second layer VS-VP flow point The point path, the alarm is derived from the BFD of the local layer; for the inbound flow point in the third layer VP flow point, the alarm is originated from the service layer alarm. Further, the working path service layer of the third layer VP flow point 21 has TEFRR protection. The alarm source is the alarm of the current effective path of the service layer.
  • the alarm is generated from the alarm of the PEER BFD and the service layer VP flow point 21.
  • the service starting from the VC stream point there are three paths to choose from, namely bitmap0, bitmap1, and bitmap4; and the currently valid path is bitmap0;
  • bitmap0 is from the VC stream point 20, sequentially to the VP stream point 21, the VS-VP stream point 22 to the VS stream point 4;
  • bitmap1 is from the VC stream point 20, and sequentially to the VP stream point.
  • said bitmap4 is from VC flow point 20, sequentially to VP flow point 31, VS-VP flow point 32 to VS flow point 14.
  • Step 704 Determine, according to the alarm mechanism of each flow point, and the path information of the service corresponding to the IPRAN at the flow point, a switching decision method of the service corresponding to the IPRAN;
  • the LSP BFD11 on the TE tunnel detects the LOC alarm and generates the SF in the working path of the inbound flow point 22 in the second layer VS-VP flow point.
  • the protection path is selected on the protection group 4, that is, it is switched to the FRR alternate path; the TE FRR protection switching of the second layer VS-VP flow point is completed; and the current inbound and outbound flow point topological relationships are updated; for the client layer VPN FRR protection, Generally, there is no holdoff time configuration.
  • the SF is not immediately propagated to the client layer, but a certain delay is added to ensure that the client layer does not perceive the service.
  • Layer switching when there is no holdoff configuration on the fourth layer VC flow point, the PEER BFD session ID 10 of the local layer is usually configured to be slightly larger than the sum of the detection time and the switching time of the service layer BFD, and the switching alarm is not detected. That is, the customer layer protection group has no switching action. Therefore, the service starting with the fourth layer VC stream point, the bitmap automatically finds the effective path as bitmap1 according to the switched topology table; the client layer BFD will automatically encapsulate the packet according to the new topology relationship;
  • the upper layer protocol starts the route re-optimization process.
  • the MBB ends, it is strong.
  • the system will cut back the bitmap to bitmap0 to implement the switchback.
  • Step 705 Output the result of the switching decision:
  • Tables 5 and 6 above have maintained the current path selection status of the inbound and outbound flow points of each level.
  • the hierarchical switching result of the receiving direction and the sending direction can be directly output.
  • the result of the flattening switching decision can be obtained;
  • the table 8 is the starting flow point bitmap maintenance table of the third embodiment; the specific process is: periodically polling all the initial flows Point, for each transmission starting stream point, through iterative lookup table 6, finally get its current bitmap number in the first layer stream point, if the current bitmap and historical bitmap are inconsistent, output the starting stream point and bitmap;
  • the starting stream point is 20, and at the layer 4 stream point, there are 8 kinds of bitmaps.
  • the initial bitmap is 0. After the TEFRR is switched, the bitmap becomes 1.
  • the result of the final switching can be notified to the switching execution module in the form of a packet to perform service switching.
  • bitmap4 when both ports 5/1 and 5/3 have faults, according to a similar principle, the service starting with the fourth layer VC stream point, the bitmap automatically finds that the effective path is bitmap4 according to the switched topology table.
  • the method in the embodiment of the present invention can be used in a PTN and IPRAN converged device to solve the protection switching problem in the PTN and IPRAN networks.
  • embodiments of the embodiments of the invention may be provided as a method, system, or computer program product. Therefore, the present invention can employ hardware embodiments, software embodiments, Or in the form of an embodiment of the software and hardware aspects. Moreover, embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the embodiment of the present invention determines a hierarchical protection structure by using a unified hierarchical flow point structure, and then unifies the path switching decision method of the service corresponding to the PTN and the IPRAN according to the hierarchical flow point structure and the hierarchical protection structure. Moreover, the embodiment of the present invention can clearly and completely determine the path switching decision method of the service corresponding to the PTN and the IPRAN according to the hierarchical flow point structure, the protection path set in each flow point, and the alarm mechanism of each flow point. In this way, the embodiment of the present invention can reduce the design complexity and design cost of the path protection and path selection, shorten the development cycle, and further improve the reliability, scalability, and switching performance of the system using the method of the embodiment of the present invention. basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种网络保护倒换方法,包括:根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化的流点模型;根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。本发明实施例还公开了一种网络设备及存储介质。

Description

一种网络保护倒换方法、网络设备及存储介质 技术领域
本发明涉及分组传送网(PTN,Packet Transport Network)及无线接入网互联网协议(IP,Internet Protocol)化(IPRAN,IP Radio Access Network)技术,尤其涉及一种网络保护倒换方法、网络设备及存储介质。
背景技术
PTN技术通常为具有二层数据交换功能、面向连接技术进行设计和开发的分组传送网络技术,所述PTN技术不仅集成了二层设备所具有的统计复用、组播等功能,同时还提供了基于分层服务提供程序(LSP,Layered Service Provider)实现端到端的电信级以太网业务保护、带宽规划等功能,从而与传统的二层数据网络优势相比,所述PTN技术在高等级的业务传送、网络故障定位等方面具有明显优势;现在,随着业务需求的进一步明确和细化,所述PTN技术逐步开发并完善具有三层数据交互能力的功能。
IPRAN技术主要用于IP城域网中,所述IPRAN设备处于城域网的接入、汇聚层;而且,所述IPRAN设备向上与业务路由器(SR)相连,向下与客户设备和基站设备连接;其中,所述IPRAN技术的主要优势在于具有完备和成熟的三层数据交换功能,包括支持全面的IP的第四版(IPV4)或IP的第六版(IPV6)三层数据的转发及路由功能,以及支持多协议标签交换(MPLS)三层数据交换功能、三层数据交换的MPLS虚拟专用网络(VPN,Virtual Private Network)功能和三层数据交换组播功能,同时,所述IPRAN技术还在网管、操作管理维护(OAM,Operation Administration and Maintenance)、同步和保护等方面融合了传统传输技术的一些元素;其中,路由功能包括静态路由功能和动态路由功能,所述动态路由功能包括域内 路由协议RIP/OSPF/ISIS功能,域间路由协议BGP功能。
所述PTN技术和IPRAN技术均可支持层次化OAM机制;其中,所述层次化的OAM机制指的是所述PTN技术和IPRAN技术均支持网络层、业务层和接入链路层的OAM、以及支持精细的控制网络的监控和检测,实现快速的故障判断和恢复,增强网络的可预知性和可控性;区别在于,所述PTN技术主要采用多协议标签交换传送架构(MPLS-TP,Muti-protocol label switching-Transport Profile)的OAM机制;而所述IPRAN技术通常采用双向转发检测(BFD,Bidirectional Forwarding Detection)的OAM机制;而且,所述PTN技术支持对伪线(PW)层和LSP层的线性保护功能、以及对环网等多重保护功能;所述IPRAN技术则是重点依靠快速重路由(FRR,Fast ReRoute)等实现基于三层数据交换功能的动态协议的保护技术。
目前无论是PTN技术还是IPRAN技术,都不能完美地解决运营商对于承载网络的所有需求,因此,将PTN技术与IPRAN技术进行融合的趋势越发明显,而且,网络融合趋势无疑已经成为电信乃至整个通信行业未来的主要发展方向。
发明内容
为解决现有存在的技术问题,本发明实施例提供了一种网络保护倒换方法、网络设备及存储介质,能够将PTN和IPRAN对应的业务的路径倒换决策方法统一,清晰、完整地确定出PTN和IPRAN对应的业务的路径倒换决策方法。
本发明实施例的技术方案是这样实现的:本发明实施例提供了一种网络保护倒换方法,包括:
根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的 业务的倒换决策方法。
上述方案中,所述根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化的流点模型,包括:
将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
上述方案中,所述根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型之后,所述方法还包括:
根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
上述方案中,所述根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法,包括:
根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
上述方案中,所述根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法,包括:
根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定途经一个流点的分组传送网或无线接入网互联网协议化对应的业务的路径信息,根据分组传送网或无线接入网互联网协议化对应的业务途经的各流点的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务途经所有流点的最佳路径信息;或者,
根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务预途经的所有流点的最佳路径信息。
上述方案中,所述方法还包括:
根据所述倒换决策方法,确定分组传送网或无线接入网互联网协议化对应的业务的最优路径信息,并输出所述最优路径信息;其中,
所述最优路径信息为预途径所述流点模型中的各流点的有效路径信息。
上述方案中,所述方法还包括:
根据有效路径信息,确定所述流点模型中的各流点的工作指令信息或保护指令信息;
其中,所述工作指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径工作路径的指令信息;
所述保护指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径保护路径的指令信息。
上述方案中,所述方法还包括:
根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作 路径或保护路径的操作管理维护标签。
上述方案中,所述方法还包括:
确定所述流点模型中各流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径的唯一标识、以及确定各流点上分组传送网或无线接入网互联网协议化对应的业务的保护路径的唯一标识,并将各流点对应的工作路径的唯一标识以及保护路径的唯一标识作为各路径对应的操作管理维护标签。
上述方案中,所述第一层流点的客户层为自身对应地下一层流点;所述第一层流点无服务层,或者,所述第一层流点的服务层为分组传送网或无线接入网互联网协议化对应的端口;所述第一层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径。
上述方案中,所述方法还包括:
当根据分组传送网或无线接入网互联网协议化对应的业务类型以及第一预设规则确定出具有N层结构的流点时,所述第i层流点为第i-1层流点的客户层;所述第i层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径;所述第i层流点的客户层为第i+1层流点、或者为本层用户业务;所述第i层流点的服务层为所述i-1层流点;
当所述i等于N时,所述第N层流点的客户层为本层用户业务;
其中,所述N为大于等于2的正整数;所述i为大于等于2小于等于N的正整数。
上述方案中,所述根据所述各层流点的层次化分布的结构确定各流点的告警机制,包括:
确定第一层流点中的各流点的告警信息来源于分组传送网或无线接入 网互联网协议化对应的物理端口产生的告警信息、或物理链路通道层中对应的段层操作管理维护产生的告警信息;
确定第i层流点中的各流点的告警信息来源于本层的操作管理维护或服务层产生的告警信息;
其中,所述i为大于等于2小于等于N的正整数。
本发明实施例还提供了一种网络设备,包括:
建模单元,配置为根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
决策单元,配置为根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
上述方案中,所述建模单元,还配置为将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
上述方案中,所述设备还包括:
路径单元,配置为根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
告警单元,配置为根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
上述方案中,所述决策单元,还配置为根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的 业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
上述方案中,所述设备还包括:
标签单元,配置为根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
本发明实施例又提供了一种网络设备,包括:
建模处理器件,配置为根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
决策处理器件,配置为根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
上述方案中,所述建模处理器件,还配置为将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
上述方案中,所述设备还包括:
路径处理器件,配置为根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
告警处理器件,配置为根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
上述方案中,所述决策处理器件,还配置为根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径 信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
上述方案中,所述设备还包括:
标签处理器件,配置为根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利以上所述的网络保护倒换方法。
本发明实施例网络保护倒换方法、网络设备及存储介质,能够通过统一的层次化的流点结构确定层次化的保护结构,进而根据所述层次化的流点结构和层次化的保护结构将PTN和IPRAN对应的业务的路径倒换决策方法统一,而且,本发明实施例能够根据层次化的流点结构、各流点中设置的保护路径、以及各流点的告警机制,清晰、完整地确定出PTN和IPRAN对应的业务的路径倒换决策方法,如此,采用本发明实施例能够降低路径保护及路径选择的设计复杂度以及设计成本,缩短开发周期,进而能够为提高采用本发明实施例方法的系统的可靠性、可扩展性以及倒换性能等奠定基础。
附图说明
图1为本发明实施例网络保护倒换方法的实现流程示意图;
图2为本发明实施例网络设备的结构示意图;
图3为本发明实施例二具体实现的组网示意图
图4为本发明实施例二具体实现的流程示意图;
图5为本发明实施例二4层流点的拓扑图;
图6为本发明实施例三具体实现的组网示意图;
图7为本发明实施例三具体实现的流程示意图;
图8为本发明实施例三4层流点的拓扑图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明。
实施例一
图1为本发明实施例网络保护倒换方法的实现流程示意图,如图1所示,所述方法包括:
步骤101:根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
上述方案中,所述根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化的流点模型,包括:步骤101A;
上述方案中,所述根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型之后,所述方法还包括:步骤101B以及步骤101C。
其中,
步骤101A:将PTN或IPRAN对应的所有端口、或物理连接通道层(VS层)中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点 以及第一预设规则确定下一层流点,确定层次化分布的流点模型;
上述方案中,所述第一层流点的客户层为自身对应地下一层流点;所述第一层流点无服务层,或者,所述第一层流点的服务层为PTN或IPRAN对应的端口;所述第一层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径。
上述方案中,所述方法还包括:
当根据PTN或IPRAN对应的业务类型以及第一预设规则确定出具有N层结构的流点时,所述第i层流点为第i-1层流点的客户层;所述第i层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径;所述第i层流点的客户层为第i+1层流点、或者为本层用户业务;所述第i层流点的服务层为所述i-1层流点;
当所述i等于N时,所述第N层流点的客户层为本层用户业务;
其中,所述N为大于等于2的正整数;所述i为大于等于2小于等于N的正整数。
这里,所述PTN或IPRAN对应的业务模型都是层次化的,对于PTN对应的业务模型而言,通常有段层(TMS)、通路层(TMP)以及电路层(TMC);对于IPRAN对应的业务模型而言,通常有IP层、LSP层、PW层等;为了准确描述所有PTN和IPRAN对应的业务的层次化关系以及保护关系,将PTN或IPRAN对应的多层业务抽象成层次化的流点,并建立N层流点模型;
其中,所述N与PTN或IPRAN对应的业务类型有关,所述N可以根据PTN或IPRAN对应的业务类型和第一预设规则而确定;
所述N层流点模型具体为:
(1)确定第一层流点,所述第一层流点包括但不限于以下特征:
PTN或IPRAN对应的所有端口、或VS层中对应的所有端口;所述端 口包括但不限于物理端口、逻辑端口或则中端口实体;具体地,所述端口包括但不限于:GE、FE、Trunk组、ML-PPP组、PPP-POS、VCG组、DSL端口/DSL组、GRE隧道、E1通道、IMA组。
上述方案中,所述第一层流点为双向流点;
所述第一层流点的客户层为自身对应地下一层流点,也即第二层流点;
所述第一层流点无服务层,或者,当所述第一层流点为VS层中对应的所有端口时,所述第一层流点的服务层为PTN或IPRAN对应的端口;
所述第一层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径;
这里,通常所述第一层流点中的各流点仅有一条工作路线,无保护路线。
(2)确定第二层流点;
其中,所述第二层流点为所述第一层流点的客户层,也即所述第二层流点用于描述第一层流点的客户层模型;
所述第二层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径;这里,由于根据第二预设规则能够在各层流点上配置PTN或IPRAN对应的业务的保护路径,通常第一层流点中的各流点仅有一条工作路径、无保护路径,而从第二层流点开始,可以在第二层流点中的各流点上配置保护路径,因此,可以说从第二层流点开始拓展了PTN或IPRAN对应的业务的传输路径,以保障PTN或IPRAN对应的业务的数据信息的顺利传输;
所述第二层流点中的各流点为双向流点,也即入向流点和出向流点,其中,所述入向流点为PTN或IPRAN对应的业务的下环接收方向,所述出向流点为PTN或IPRAN对应的业务的上环发送方向;例如,当PTN或IPRAN对应的业务的数据信息从第一层流点向上发送至第二层流点时,所 述第二层流点为入向流点,当PTN或IPRAN对应的业务的数据信息从第二层流点向下发送至第一层流点时,所述第二层流点为出向流点;
所述第二层流点的客户层为第三层流点、或者为本层用户业务;
所述第二层流点的服务层为第一层流点;
(3)确定第三层流点;
其中,所述第三层流点为所述第二层流点的客户层,也即所述第三层流点
用于描述第二层流点的客户层模型;
所述第三层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径;这里,由于根据第二预设规则能够在各层流点上配置PTN或IPRAN对应的业务的保护路径,通常第一层流点中的各流点仅有一条工作路径、无保护路径,而从第二层流点开始,可以在第二层流点中的各流点、以及第三层流点对应的各流点上配置保护路径,因此,可以说从第二层流点开始、结合第三层流点配置的保护路径拓展了PTN或IPRAN对应的业务的传输路径,以保障PTN或IPRAN对应的业务的数据信息的顺利传输;
所述第三层流点中的各流点为双向流点,也即入向流点和出向流点,例如,当PTN或IPRAN对应的业务的数据信息从第二层流点发送至第三层流点时,所述第三层流点为入向流点,当PTN或IPRAN对应的业务的数据信息从第三层流点发送至第二层流点时,所述第三层流点为出向流点;
所述第三层流点的客户层为第四层流点、或者为本层用户业务;
所述第三层流点的服务层为第二层流点;
(4)依此类推,根据步骤(2)和(3)的方法确定第i层流点;
其中,所述第i层流点为第i-1层流点的客户层,也即所述第i层流点用于描述第i-1层流点的客户层模型;
所述第i层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径;
所述i层流点中的各流点为双向流点,也即入向流点和出向流点;
所述第i层流点的客户层为第i+1层流点、或者为本层用户业务;
所述第i层流点的服务层为所述i-1层流点;
(5)直至根据步骤(2)、(3)和(4)的方法确定第N层流点为止;
其中,所述第N层流点为N-1层流点的客户层,也即所述第N层流点用于描述第N-1层流点的客户层模型;
所述第N层流点中各流点上的PTN或IPRAN对应的业务有一条工作路径、或者一条工作路径和一条保护路径;
所述N层流点中的各流点为双向流点,也即入向流点和出向流点;
所述第N层流点的客户层为本层各流点上的PTN或IPRAN对应的业务;
所述第N层流点的服务层为所述N-1层流点。
步骤101B:根据第二预设规则确定所述流点模型中流点上PTN或IPRAN对应的业务的工作路径、或者工作路径和保护路径;
这里,根据第二预设规则确定流点上PTN或IPRAN对应的业务的工作路径、或者工作路径和保护路径,并根据各层流点的层次化分布的结构确定层次化的保护模型,以保障PTN或IPRAN对应的业务的数据信息的顺利传输;
具体地,由于通常情况下第一层流点没有保护组,也就是说,通常情况下第一层流点中的各流点仅有工作路线,无保护路线,因此,层次化的保护模型通常从第二层流点开始,也即从第二层流点开始,各流点有一条保护路线和一条工作路线;进一步,由于第二层流点中的各流点既是出口流点又是入口流点,因此,可以将第二层流点中既有工作路线又有保护路 线的各流点称为一个保护组,也即一个保护组对应一个入向流点和一个出向流点;
值得注意的是,第二层流点中的各流点可以均既有一条工作路线又有一条保护路线,也可以是第二层流点中的部分流点即有一条工作路线又有一条保护路线,也就是说,第二层流点中的各流点是否具有保护路线,可以根据配置于流点上的业务类型而定,或者根据第二预设规则确定各流点是否具有保护路线。
以N层流点模型为例,根据所述N层流点模型以及第二预设规则最多可以确定N-1层保护模型,具体地,
(1)第一层保护:对应所述N层流点模型中最底层保护,也即对应所述N层流点模型中的第二层流点实施的保护;
所述第一层保护包括但不限于:普通环网保护、共享环网保护、流量工程(TE,Traffic Engineer)FRR保护、TE热备份(HSB,Hotstandby)保护等;
(2)第二层保护:对应所述N层流点模型中次底层保护,也即对应所述N层流点模型中的第三层流点实施的保护;
所述第二层保护包括但不限于:线性隧道1+1/1:1、标签分发协议(LDP,Label Distribution Protocol)FRR保护、IP FRR保护等;
(3)第三层保护:对应所述N层流点模型中倒数第三层保护,也即对应所述N层流点模型中的第四层流点实施的保护;
所述第三层保护包括但不限于:伪线1+1/1:1、VPN FRR保护、PW FRR保护等;
(4)第N-1层保护:对应所述N层流点模型中次最高层的保护,也即对应所述N层流点模型中的第N层流点实施的保护;
所述第一层保护、第二层保护至第N-1层保护叠加的N-1层保护、也 即N-1层保护对所述N层流点叠加的保护包括但不限于:PW FRR叠加LDP FRR叠加TE HSB、IP叠加IP/LDP FRR叠加TE FRR/HSB、VPN FRR叠加LDP FRR叠加TE HSB、pw 1:1/1+1叠加LSP1:1/1+1叠加wrapping保护等叠加场景保护;
如此,可得到完整的流点拓扑模型,也即业务拓扑模型,根据业务类型及业务配置,每个流点层次上都可以启用保护,即选择保护路线,也可以不启用保护,即不建立保护路线;对于没有保护的流点,默认认为只有工作路径有效;对于有保护的流点,有工作路径和保护路径两条路径;根据各层次的工作路径及保护路径的告警状态或APS决策等机制,选择当前有效业务预途经的路径,适时维护流点拓扑模型,并通过保护组和流点的映射关系,完成保护组的切换,待切换后将原有业务拓扑模型更新成新的业务拓扑模型,如此,实现对业务的保护任务,完成业务对应的数据信息的顺利传输。
步骤101C:根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
当根据PTN或IPRAN对应的业务类型以及第一预设规则确定出具有N层结构的流点时,上述方案中,所述根据所述各层流点的层次化分布的结构确定各流点的告警机制,包括:
确定第一层流点中的各流点的告警信息来源于PTN或IPRAN对应的物理端口产生的告警信息、或VS层中对应的段层OAM产生的告警信息;
确定第i层流点中的各流点的告警信息来源于本层的OAM或服务层产生的告警信息;
其中,所述i为大于等于2小于等于N的正整数。
以所述N层流点模型为例,确定各层流点的告警机制,具体地:
每一个保护组的路径状态的维护,依据于保护组所属层次中入向流点 产生的告警信息;而入向流点的工作路径和保护路径上的告警信息产生机制如下,其中,所述入向流点的工作路径和保护路径上的告警信息产生机制也称为繁殖告警机制;这里,由于每一层的流点均是双向的,因此,也即所述N层流点模型中的所有流点均可以作为入向流点;
入向流点的工作路径和保护路径上的告警信息产生机制,包括:
(1)第一层流点中各流点的告警信息来源于PTN或IPRAN对应的物理端口产生的告警信息、或VS层中对应的段层OAM产生的告警信息;
其中,第一层流点中各流点的告警信息来源包括但不限于:物理端口故障、光模块未安装以及链路层未同步等故障产生的告警信息;
这里,当所述第一层流点为PTN或IPRAN对应的所有端口时,所述第一层流点中各流点的告警信息来源于PTN或IPRAN对应的物理端口产生的告警信息;
当所述第一层流点为VS层中对应的所有端口时,所述第一层流点中各流点的告警信息来源于VS层中对应的物理端口产生的告警信息。
(2)第二层流点中各流点的告警信息来源于本层的OAM或服务层产生的告警信息;
其中,所述本层的OAM产生的告警信息,也即第二层流点的OAM产生的告警信息包括但不限于:PTN网络中的OAM的连续性丧失(LOC,Loss of Continuity)、远端缺陷指示(RDI,Remote Defect Indicator)、错误合并(MMG,Mismerge)、错误消息交换模式(UNMEP,Unexpected Message Exchange Pattern),或IPRAN网络中的BFD LOC等产生的告警信息;
本层的服务层产生的告警信息,也即第二层流点的服务层产生的告警信息为第一层流点产生的告警信息;
具体地,第二层流点中的第一流点产生的告警信息来源于与所述第一流点对应的第一层流点中第二流点产生的告警信息;其中,所述第二流点 为所述第一层流点中、与所述第一流点对应的一流点;第一流点与第二流点的对应关系指的是用户业务能够从所述第一流点,经所述第一流点与第二流点之间的路径后途经第二流点,如此,说明所述第一流点与所述第二流点对应。
(3)第三层流点中各流点的告警信息来源于本层的OAM或服务层产生的告警信息;
其中,所述本层的OAM产生的告警信息,也即第三层流点的OAM产生的告警信息包括但不限于:PTN网络中的OAM LOC、RDI、MMG、UNMEP,或IPRAN网络中的BFD LOC等产生的告警信息;
本层的服务层产生的告警信息,也即第三层流点的服务层产生的告警信息为第二层流点产生的告警信息;
具体地,第三层流点中的第三流点产生的告警信息来源于与所述第三流点对应的第二层流点中第四流点产生的告警信息;其中,所述第四流点为所述第二层流点中、与所述第三流点对应的一流点;第三流点与第四流点的对应关系指的是用户业务能够从所述第三流点,经所述第三流点与第四流点之间的路径后途经第四流点,如此,说明所述第三流点与所述第四流点对应。
这里,如果第二层流点中的流点有保护路径,则所述第三层流点的服务层产生的告警信息仅为第二层流点中有效路径产生的告警信息,其中,所述有效路径为根据第二层流点按照倒换决策方法倒换后,自动更新的当前各流点对应的路径;当业务在所述第二层流点中发生倒换时,即业务的预途经路径发生切换时,做适当的拖延后再往第三层流点路径上繁殖告警,如此,在第三层流点中不配置延时(holdoff)、且在第二层流点通往第三层流点的繁殖告警时做时延处理时,能够有效防止第二层流点的告警在倒换前就被第三层流点感知到,导致所述第三层流点发生误倒换的问题;例如 业务途经所述第二层流点中的流点A时按最初路径信息选择途经工作路径,若此时所述流点A的工作路径有告警信息,则业务途经流点A时会发生路径的倒换,但是,若第三层流点不配置时延,第三层流点会通过服务层流点繁殖告警,即第三层流点中、与流点A的工作路径对应的流点B会由于流点A告警而产生告警,如此,导致第三层流点中的流点B发生误倒换;因此,为了避免第三层流点发生误倒换的问题,在第三层流点中不配置延时、且第二层流点通往第三层流点的繁殖告警时做时延处理,而且,时延时间大于第二层流点从检测到告警信息到根据倒换决策方法发生路径倒换后更新完毕第二层流点的流点拓扑处理时间即可,如此,才能有效防止第二层流点的告警在倒换前就被第三层流点感知到,导致所述第三层流点发生误倒换的问题。其中,更新第二层流点的流点拓扑指的是更新第二层流点中,当前状态下各流点所处的工作指令信息。
(4)第N层流点中各流点的告警信息来源于本层的OAM或服务层产生的告警信息;
其中,所述本层的OAM产生的告警信息,也即第N层流点的OAM产生的告警信息包括但不限于:PTN网络中的OAM LOC、RDI、MMG、UNMEP,或IPRAN网络中的BFD LOC等产生的告警信息;
本层的服务层产生的告警信息,也即第N层流点的服务层产生的告警信息为第N-1层流点产生的告警信息。
这里,如果第N层流点中的流点有保护路径,则所述第N层流点的服务层产生的告警信息仅为当前有效路径产生的告警信息;当业务在所述第N-1层流点中发生倒换时,即业务的预途经路径发生切换时,做适当的拖延后再往第N层流点路径上繁殖告警,如此,在第N层流点中不配置延时(holdoff)时,能够防止第N-1层流点的告警在倒换前就被第N层流点感知到,导致所述第N层流点发生误倒换的问题。
值得注意的是,本实施例中流点的告警信息均是由流点对应的路径产生的告警信息而生成的,因此,本示例中所提到的流点产生的告警信息均是指流点对应的路径产生的告警信息。
步骤102:根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
上述方案中,所述根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法,包括:
根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
上述方案中,所述方法还包括:
根据所述倒换决策方法,确定PTN或IPRAN对应的业务的最优路径信息,并输出所述最优路径信息;其中,
所述最优路径信息为预途径所述流点模型中的各流点的有效路径信息。
上述方案中,所述方法还包括:
根据有效路径消息,确定所述流点模型中的各流点的工作指令信息或保护指令信息;
其中,所述工作指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径工作路径的指令信息;
所述保护指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径保护路径的指令信息。
上述方案中,所述根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法,包括:
根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定途经一个流点的分组传送网或无线接入网互联网协议化对应的业务的路径信息,根据分组传送网或无线接入网互联网协议化对应的业务途经的各流点的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务途经所有流点的最佳路径信息;或者,
根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务预途经的所有流点的最佳路径信息。
这里,对于线性保护或环网保护而言,所述倒换决策方法可基于G.8131、G.8132等APS协议进行倒换决策确定;对于IPRAN中的FRR等保护,所述倒换决策方法可基于步骤101C中的告警机制确定。
其中,所述倒换决策结果可按照两种方式进行路径的切换,如此确定出最佳路径信息;以所述N层流点模型为例,对倒换决策结果的输出进行解释:
第一,层次化切换方式,也即按照所述N层流点模型的拓扑结构,逐层对业务进行切换;
具体地,根据所述各流点的告警机制、以及流点上PTN或IPRAN对应的业务的路径信息,确定途经一个流点的PTN或IPRAN对应的业务的路径信息,例如,以第N层流点中A流点为例,确定PTN或IPRAN对应的业务是选择A流点对应的工作路径还是保护路径,如根据实际情况确定PTN或IPRAN对应的业务途经A流点的工作路径,依次类推,逐层确定PTN或 IPRAN对应的业务预途经的各流点的路径信息,确定PTN或IPRAN对应的业务途经所有流点的最佳路径信息;
第二,扁平化切换方式;
具体地,将起始流点确定为承载业务的流点;不同的业务,起始流点所处的层次可能不同,对于任意一条业务A,如果建立了N层流点模型的拓扑结构,从业务A起始流点的第N层流点开始,最多可以配置N-1层保护,由于每一个流点均有一条保护路径和一条工作路径,因此,在第一层流点上最多存在2N-1条路径选择;如果将每层流点都走工作路径最后到达第一层流点的路径信息编号为0,则从编号0到2N-1的每条路径信息都反映了起始流点在N层流点模型的拓扑结构中的一种保护倒换方式;为了方便后文中的引用,这些编号暂定义为bitmap;
进一步的,起始流点的bitmap生成后,业务路径的选择并不仅是依赖于N层流点模型的拓扑结构中确定的保护倒换方式,业务路径的选择还可以直接由外部控制;例如,对于IPRAN中常用的MBB(make before break)流程而言,在无保护组场景下,对路由的重优化时,可以预先将业务倒到备用的bitmap中,待路由重优化结束后,直接更新bitmap,将业务回切,如此,以达到无损切换。
上述方案中,所述方法还包括:
根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
上述方案中,所述方法还包括:
确定所述流点模型中各流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径的唯一标识、以及确定各流点上分组传送网或无线 接入网互联网协议化对应的业务的保护路径的唯一标识,并将各流点对应的工作路径的唯一标识以及保护路径的唯一标识作为各路径对应的操作管理维护标签。
这里,本发明实施例还提供了建立倒换前后标签处理机制:
首先确定各流点上PTN或IPRAN对应的业务的工作路径的唯一标识、以及确定各流点上PTN或IPRAN对应的业务的保护路径的唯一标识,并将各流点对应的工作路径的唯一标识以及保护路径的唯一标识作为各路径对应的OAM标签,如此,使得OAM标签能够唯一指示一条路径;随后,根据所述各层流点的层次化分布的结构,将OAM信息配置到各流点的工作路径和保护路径上,当OAM机制途径某一特定流点对应的一特定路径时,例如途径流点C时,其中流点C对应的上一流点为流点B,而且,所述流点B指向流点C的路径为路径A,如此,PTN或IPRAN对应的业务A经路径A后到达流点C,随后,根据流点C的指令信息确定所述业务A在流点C处选择流点C的保护路径B,此时,所述OAM机制途径路径B时,选择封装路径B对应的唯一的OAM标签,并在所述路径B对应的OAM信息中显示所述业务A在途径流点C时的上一路径的标识信息以及本路径的标识信息,本实施例中也即路径A的OAM标识以及保护路径B的OAM标识,使得路径B对应的OAM信息中记录有上一路经的OAM标识信息,若所述业务A在流点C发生倒换,由于所述OAM信息中记录有上一路径的标识,也即记录有倒换前的路径的标识,因此,本实施例OAM标签机制能够便于技术人员检测倒换前后的路径状况。
具体地,确定各流点上PTN或IPRAN对应的业务的工作路径的唯一标识、以及确定各流点上PTN或IPRAN对应的业务的保护路径的唯一标识,这里,唯一标识即为OAM标签,而且,所述OAM标签可以是由自身路径中的OAM信息分配的;当OAM机制发包途经每层流点时,先确定流点当 前的有效路径,即工作路径或保护路径,若当前的有效路径为工作路径,则OAM机制选择封装工作路径对应的OAM标签,若当前的有效路径为保护路径,则OAM机制选择封装保护路径对应的OAM标签,如此,在OAM机制途经每层流点时,均将流点对应的客户层流点选择的OAM标签一起携带到服务层,以最终在第一层流点上可以得到所有层次的最优路径封装信息;其中,所述有效路径的选择机制是由倒换决策方法自动更新的。
值得注意的是,根据N层流点模型的拓扑结构,将OAM信息配置在各流点的工作路径和保护路径上,其中,所述OAM信息按照配置周期发送,而且,所述OAM信息从N层流点模型的拓扑结构中逐层得到封装的下一层(或上一层)OAM信息,其中,每层OAM信息中均记录有业务途经的流点的路径的OAM标签,随后,再将得到的下一层(或上一层)OAM信息与本层OAM信息一起封装后发送出去;
这里,OAM信息中的OAM标签在路径倒换前后可能会发生变化,因此,需要对各层次流点的工作路径和保护路径的OAM信息中的OAM标签动作定义如下:
第一层流点、第二层流点直至第N层流点中的各流点在工作路径和保护路径上可以设置独立的标签处理动作,例如不封装、封装一层标签、交换一层、交换以及封装各一层。例如,对于PTN,通常在VC层封装一层伪线标签,VP层封装一层隧道标签,如果配置了普通环网保护,环网工作路径不封装标签;环网保护路径替换原有的隧道标签;而对于IPRAN,在VPN和LDP上分别各自的封装标签或空标签(即不封装或封装标签0),对于TE FRR保护,在TE保护路径上增加一层FRR标签,同时还会替换TE隧道标签;如此,可以归类为不封装、封装一层标签、交换一层、交换以及封装各一层四种情况;
这里,层次的定义以及标签动作可以根据具体的业务场景作预先配置。
这里,本发明实施例首先确定层次化的流点拓扑结构,根据所述层次化的流点拓扑结构以及预设规则确定各流点的工作路径或保护路径,即层次化的保护结构,如此,根据所述层次化的流点拓扑结构以及层次化的保护结构确定各流点的告警机制,进而根据告警机制确定各流点对应的工作路径或保护路径的失效情况,并根据各流点对应的工作路径或保护路径的失效情况,确定PTN或IPRAN对应的业务途经的各流点的有效路径,也即倒换决策方法,进而确定出PTN或IPRAN对应的业务的最优路径;其中,在倒换决策方法确定之前,各流点有自身对应的当前状态下的初始有效路径,可以为工作路径或保护路径,待倒换决策方法确定后,本发明实施例能够根据实际路径情况,更新各流点的有效路径。
本发明实施例网络保护倒换方法及网络设备能够通过统一的流点模型、保护模型将PTN和IPRAN对应的业务的路径倒换决策方法统一,而且,本发明实施例能够层次化的流点结构、各层流点中设置的保护路径、以及各流点告警机制,清晰、完整地确定PTN和IPRAN对应的业务的路径倒换决策方法,如此,采用本发明实施例能够降低路径保护及路径选择的设计复杂度以及设计成本,缩短开发周期,进而能够为提高采用本发明实施例方法的设备的可靠性、可扩展性以及倒换性能等奠定基础。
为实现上述方法,本发明实施例还提供了一种网络设备,如图2所示,所述设备包括:
建模单元21,配置为根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
决策单元22,配置为根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
上述方案中,所述建模单元,还配置为将分组传送网或无线接入网互 联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
上述方案中,所述设备还包括:
路径单元23,配置为根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
告警单元24,配置为根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
上述方案中,所述决策单元24,还配置为根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
上述方案中,所述决策单元24,还配置为根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定途经一个流点的分组传送网或无线接入网互联网协议化对应的业务的路径信息,根据分组传送网或无线接入网互联网协议化对应的业务途经的各流点的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务途经所有流点的最佳路径信息;或者,
根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务预途经的所有流点的最佳路径信息。
上述方案中,所述设备还包括:
第一确定单元,配置为根据所述倒换决策方法,确定分组传送网或无线接入网互联网协议化对应的业务的最优路径信息,并输出所述最优路径信息;其中,
所述最优路径信息为预途径所述流点模型中的各流点的有效路径信息。
上述方案中,所述设备还包括:
第二确定单元,配置为根据有效路径信息,确定所述流点模型中的各流点的工作指令信息或保护指令信息;
其中,所述工作指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径工作路径的指令信息;
所述保护指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径保护路径的指令信息。
上述方案中,所述设备还包括:
标签单元25,配置为根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
上述方案中,所述标签单元,还配置为确定所述流点模型中各流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径的唯一标识、以及确定各流点上分组传送网或无线接入网互联网协议化对应的业务的保护路径的唯一标识,并将各流点对应的工作路径的唯一标识以及保护路径的唯一标识作为各路径对应的操作管理维护标签。
上述方案中,所述建模单元,还配置为确定所述第一层流点的客户层为自身对应地下一层流点;确定所述第一层流点无服务层,或者,确定所述第一层流点的服务层为分组传送网或无线接入网互联网协议化对应的端 口;以及确定所述第一层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径。
上述方案中,所述建模单元,还配置为当根据分组传送网或无线接入网互联网协议化对应的业务类型以及第一预设规则确定出具有N层结构的流点时,确定所述第i层流点为第i-1层流点的客户层;确定所述第i层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径;以及确定所述第i层流点的客户层为第i+1层流点、或者为本层用户业务;所述第i层流点的服务层为所述i-1层流点;
当所述i等于N时,所述第N层流点的客户层为本层用户业务;
其中,所述N为大于等于2的正整数;所述i为大于等于2小于等于N的正整数。
上述方案中,当根据分组传送网或无线接入网互联网协议化对应的业务类型以及第一预设规则确定出具有N层结构的流点时,所述告警单元,还配置为确定第一层流点中的各流点的告警信息来源于分组传送网或无线接入网互联网协议化对应的物理端口产生的告警信息、或物理链路通道层中对应的段层操作管理维护产生的告警信息;
确定第i层流点中的各流点的告警信息来源于本层的操作管理维护或服务层产生的告警信息;
其中,所述i为大于等于2小于等于N的正整数。
这里,所述网络设备可以为PTN设备或IPRAN设备;其中,所述建模单元、决策单元、路径单元、告警单元、第一确定单元、第二确定单元以及标签单元均可以运行于计算机上,可由位于计算机上的中央处理器(CPU)、或微处理器(MPU)、或数字信号处理器(DSP)、或可编程门阵列(FPGA)实现。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令配置为图1所示的网络保护倒换方法。
为实现上述方法,本发明实施例又提供了一种网络设备,所述设备包括:
建模处理器件,配置为根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
决策处理器件,配置为根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
上述方案中,所述建模处理器件,还配置为将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
上述方案中,所述设备还包括:
路径处理器件,配置为根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
告警处理器件,配置为根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
上述方案中,所述决策处理器件,还配置为根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的 业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
上述方案中,所述决策处理器件,还配置为根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定途经一个流点的分组传送网或无线接入网互联网协议化对应的业务的路径信息,根据分组传送网或无线接入网互联网协议化对应的业务途经的各流点的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务途经所有流点的最佳路径信息;或者,
根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务预途经的所有流点的最佳路径信息。
上述方案中,所述设备还包括:
第一处理器件,配置为根据所述倒换决策方法,确定分组传送网或无线接入网互联网协议化对应的业务的最优路径信息,并输出所述最优路径信息;其中,
所述最优路径信息为预途径所述流点模型中的各流点的有效路径信息。
上述方案中,所述设备还包括:
第二处理器件,配置为根据有效路径信息,确定所述流点模型中的各流点的工作指令信息或保护指令信息;
其中,所述工作指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径工作路径的指令信息;
所述保护指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径保护路径的指令信息。
上述方案中,所述设备还包括:
标签处理器件,配置为根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
上述方案中,所述标签处理器件,还配置为确定所述流点模型中各流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径的唯一标识、以及确定各流点上分组传送网或无线接入网互联网协议化对应的业务的保护路径的唯一标识,并将各流点对应的工作路径的唯一标识以及保护路径的唯一标识作为各路径对应的操作管理维护标签。
上述方案中,所述建模处理器件,还配置为确定所述第一层流点的客户层为自身对应地下一层流点;确定所述第一层流点无服务层,或者,确定所述第一层流点的服务层为分组传送网或无线接入网互联网协议化对应的端口;以及确定所述第一层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径。
上述方案中,所述建模处理器件,还配置为当根据分组传送网或无线接入网互联网协议化对应的业务类型以及第一预设规则确定出具有N层结构的流点时,确定所述第i层流点为第i-1层流点的客户层;确定所述第i层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径;以及确定所述第i层流点的客户层为第i+1层流点、或者为本层用户业务;所述第i层流点的服务层为所述i-1层流点;
当所述i等于N时,所述第N层流点的客户层为本层用户业务;
其中,所述N为大于等于2的正整数;所述i为大于等于2小于等于N的正整数。
上述方案中,当根据分组传送网或无线接入网互联网协议化对应的业务类型以及第一预设规则确定出具有N层结构的流点时,所述告警处理器件,还配置为确定第一层流点中的各流点的告警信息来源于分组传送网或无线接入网互联网协议化对应的物理端口产生的告警信息、或物理链路通道层中对应的段层操作管理维护产生的告警信息;
确定第i层流点中的各流点的告警信息来源于本层的操作管理维护或服务层产生的告警信息;
其中,所述i为大于等于2小于等于N的正整数。
这里,所述网络设备可以为PTN设备或IPRAN设备;其中,所述建模处理器件、决策处理器件、路径处理器件、告警处理器件、第一处理器件、第二处理器件以及标签处理器件的功能均可由位于PTN设备或IPRAN设备中的处理器实现,或PTN设备或IPRAN设备上的集成电路芯片或FPGA实现。
实施例二
按照现有技术,由于协议标准原理的差异,设备上基于MPLS-TP的PTN静态保护模块和基于MPLS/IP的IPRAN动态保护模块通常是各自独立的模块;而本发明实施例能够通过两个典型组网,实现PTN和IPRAN的业务保护场景的统一,下面结合具体实施例对本发明实施例方法做进一步详细解释;
如图3所示,在设备1上配置一条PTN对应的数据业务,对伪线建立保护;其中,工作伪线标签为100,在标签为100的伪线上配置OAM1信息;保护伪线标签为101,在标签为101的保护伪线上配置OAM4信息;承载保护伪线101的隧道标签为202,在标签为202的隧道上配置OAM5信息;承载工作伪线100的工作隧道标签为200,在标签为200的工作隧道上配置OAM2信息;承载工作伪线100的保护隧道标签为201,在标签为 201的保护隧道上配置OAM3信息;
图4为本发明实施例二具体实现的流程示意图,即在图3所示的背景下,采用本发明实施例网络保护倒换方法确定倒换决策方法的实现流程示意图,如图4所示,所述方法包括:
步骤401:根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
具体地,
确定第一层VS流点;所述第一层VS流点为VS、TMS实体中的所有端口;所述第一层流点中的各流点为双向的,均可以为入向流点或出向流点;所述第一层VS流点能够在设备1和设备2所处节点(PE节点)和设备3所处节点(P节点)的网络和网络的接口(NNI)侧使用;且所述第一层流点中的各流点仅有一条工作路径;可以在该流点的路径上启用VSOAM、peer bfd或者link bfd信息作为告警信息,所述第一层流点的客户层为VS-VP流点,服务层为VS、TMS实体中对应的物理端口;
确定第二层VS-VP流点;其中,对于PTN而言,所述第二层VS-VP流点表示段层保护作用在VP层时的一个虚拟流点,无对应实体存在,如普通和共享环网保护;对于IPRAN而言,所述第二层VS-VP流点表示作用于TE FRR、TE HSB保护的实体流点;所述第二层VS-VP流点中的各流点为双向的,分别有入向和出向两个方向;所述第二层VS-VP流点能够在PE和P点NNI侧使用;所述第二层VS-VP流点中的各流点有两条路径,对于PTN而言,两条路径分别为LSP工作段层路径和LSP的Wrapping/Steering保护路径;对于IPRAN而言,两条路径分别为TE FRR或TE HSB工作路径,以及TE FRR或TE HSB保护路径;对于实体流点而言,可以在流点路径上启用OAM信息作为告警信息,如TE隧道BFD信息;对于虚拟流点 而言,需要用本层的服务层即第一层VS流点告警触发倒换;所述第二层VS-VP流点的客户层为第三层VP流点,所述第二层VS-VP流点的服务层为第一层VS流点;
确定第三层VP流点,所述第三层VP流点表示隧道实体;具体的,对于PTN而言,所述第三层VP流点表示LSP隧道实体;对于IPRAN而言,所述第三层VP流点表示LDP、TE隧道或IP实体;所述第三层VP流点中各流点为双向的,分别有入向和出向两个方向;所述第三层VP流点能够在PE和P点NNI侧使用;所述第三层VP流点中的各流点有两条路径,分别为工作路径和保护路径;对于PTN而言,保护路径可以启用隧道1+1/1:1保护;对于IPRAN而言,保护路径可以启用LDP FRR、IP FRR保护;PTN可以在保护路径和工作路径上均启用TMP OAM信息;IPRAN可以在保护路径和工作路径上均启用LSP BFD信息;所述第三层VP流点的客户层是第四层VC流点,所述第三层VP流点的服务层是VS-VP流点。
确定第四层VC流点;对于L2VPN而言,所述第四层VC流点表示PW实体(动态实体或者静态)实体;对应PW的第四层VC流点可以启用PW1+1/1:1保护作为保护路径;这里,所述第四层VC流点中的各流点有工作路径和保护路径两条路径,而且可以在两条路径上均启用PW OAM信息;对于L3VPN而言,所述第四层VC流点表示VRF Peer PE,无实体存在;对应VRF Peer PE的第四层VC流点可以启用VPN FRR保护作为保护路径;这里,所述第四层VC流点有VRF工作路径和VPN FRR保护路径两条路径,无法在该流点上启用OAM,因此,将所述第四层VC流点中的各流点关联BGP Peer BFD或者服务层告警触发保护倒换;所述第四层VC流点中的各流点为单向,分别有入向和出向两个方向。所述第四层VC流点能够在PE点NNI侧使用;所述第四层VC流点的客户层是本层对应的业务,所述第四层VC流点的服务层是第三层VP流点。
这里,如表1为入向流点路径建立拓扑表,表2为出向流点路径建立拓扑表;
步骤402:根据业务配置,在四层流点的拓扑结构上配置两层保护;
其中,图5为本发明实施例二4层流点的拓扑图,如图5所示,所述第一层VS流点包括:VS流点4、VS流点5、VS流点6、VS流点7、VS流点14、VS流点15、VS流点16以及VS流点17;第二层VS-VP流点包括:VS-VP流点2、VS-VP流点3、VS-VP流点12以及VS-VP流点13;第三层VP流点包括:VP流点1、VP流点11;第四层VC流点包括VC流点0。
具体地,第一层LSP保护,作用于第三层VP流点上,即在第三层VP流点的流点上配置一条工作路线和一条保护路线;如图5所示,第三层VP流点中的VP流点1具有一条工作路径指向第二层VS-VP流点中的VS-VP流点2,以及一条保护路径指向第二层VS-VP流点中VS-VP流点3,而且,所述VS-VP流点2和VS-VP流点3的工作路径均指向与物理接口连接的流点,分别为第一层VS流点中的VS流点4和VS流点6;因此,所述VP流点1为一个保护组,也即本实施例中的第一层LSP保护;
第二层PW保护,作用于第四层VC流点上,即在第四层VC流点的流点上配置一条工作路线和一条保护路线;如图5所示,所述第四层VC流点中的VC流点0具有一条工作路径指向VP流点1,一条保护路指向VP流点11,又由于,所述VP流点1有两条路径均能通向与物理端口的连接的流点,分别为从VP流点1流向VS-VP流点2、最终流向VS流点4,以及从VP流点1流向VS-VP流点3、最终流向VS流点6;其中,所述VS流点4与物理端口5/1连接;所述VS流点6与物理端口5/3连接;这里,图5中第一层VS流点中灰色圆圈表示的流点为与物理端口连接的流点;因此,所述VC流点中的VC流点0也为一个保护组,也即本实施例中的第二层 PW保护;如此确定出两层保护层;
表3为保护组与流点的关联表;如表3所示,
表3
保护组编号 入向流点编号 出向流点编号 保护组类型 holdoff
1 0 0 1:1 50ms
2 1 1 1:1
步骤403:根据业务配置,以及根据所述各层流点的层次化分布的结构确定各流点的告警机制;
在入向流点拓扑上关联告警检测,包括本层OAM检测以及服务层流点繁殖,如表1所示;并根据业务配置,在出向流点路径上关联OAM发包,包含标签以及服务层流点关系映射;如表2所示;其中,表1为入向流点表,结合表1以及图5可以看出,流点编号为4、6、11的流点为第一层VS流点中的流点,所述第一层VS流点中的各流点只有工作路径,而且流点4、6、11的工作路径分别对应物理端口5/1、应物理端口5/3、应物理端口5/4;而且,所述第一层VS流点中的各流点无保护路径,也即无保护组;流点编号为2、3、12的流点为第二层VS-VP流点中的流点,且对应的服务层分别为流点编号为4、6、14的流点,也即所述第二层VS-VP流点中的流点2、流点3、流点12对应的服务层为第一层VS流点中的流点4、流点6、流点14;这里,由于流点13对应的第一层VS流点中的各流点均不与物理端口对应,也即所述流点13无服务层,因此,流点13不能作为一保护组;流点编号为1和11的流点为第三层VP流点中的流点,其中,所述流点1有保护组,也就是说流点1既有工作路径又有保护路径,即流点1的工作路径对应流点2,保护路径对应流点3,也即流点1对应的服务层为流点2和流点3,所述流点2和流点3分别对应的第一层VS流点中的流点4和流点5,而且,所述流点4和流点5均和物理端口连接;因此,说明所述流点 1有保护组;同理,所述流点11无保护组,因为,所述流点11仅有一工作路径对应的流点12有服务层,也即流点11保护路径对应的流点13无服务层,即流点13对应的第一层VS流点中的流点16和流点17均不与物理端口对应,如此,所述流点12无服务层;编号为0的流点为第一层VC流点中的流点,流点0有保护组,而且服务层分别为第三层VP流点中的流点1和流点11;表2为出向流点表,其拓扑关系与表1类似,因此不再赘述。
表1
Figure PCTCN2014090254-appb-000001
表2
Figure PCTCN2014090254-appb-000002
通过以上三个步骤,可以建立出4层流点的拓扑结构,也即业务流点 拓扑结构,如图5所示;对于4层流点,由于在第三层VP流点上设置有保护路径、以及在第四层VC流点上设置有保护路径,也即有两层保护,所述两层保护可以为PW 1:1叠加LSP 1:1的两层保护,因此,从第四层VC流点到第一层VS流点共有8中路径可选,即8个bitmap。对于没有配置保护现在的层次,默认走工作路径;从所述4层流点模型中可以很清晰的看出,对于VP入向流点路径,告警来源于本层OAM;对于VC入向流点路径,告警来源于本层OAM和服务层告警,进一步的,VC流点0的工作路径服务层有LSP保护,告警来源为服务层中的当前有效路径的告警;对于VC层出向流点,工作路径上的OAM1在VP流点上有两种封装方式:封装VP流点工作标签或保护标签;其他OAM只有一种封装;
由于流点模型是从第一层流点往上建立的,即从第一层流点开始,向上逐层建立,直至根据预设规则建立第N层流点结构为止;而且,本示例中所述第一层VS流点中仅有三个流点与物理端口对应,即图4中第一层VS流点中,圆圈为灰色的流点与物理端口对应;也就是说,第一层流点中圆圈为灰色的流点,即VS流点4、VS流点6和VS流点14,与实体对应,即与物理端口对应,而第一层VS流点中其他流点,即VS流点5、VS流点7、VS流点15、VS流点16和VS流点17均不与物理端口对应,即无服务层实体,VS流点5、VS流点7、VS流点15、VS流点16和VS流点17的路径视为无效,因此,以VC流点0出向为起始的业务,可以有三种路径供选择,即从VC流点0开始、依次途至VP流点1、VS-VP流点2至VS流点4,此路径编号为bitmap0;从VC流点0开始、依次途至VP流点1、VS-VP流点3至VS流点4,此路径编号为bitmap2;从VC流点0开始、依次途至VP流点11、VS-VP流点12至VS流点14,此路径编号为bitmap4;假设本示例中当前有效的路径为bitmap0。
步骤404:根据所述各流点的告警机制、以及流点上PTN对应的业务 的路径信息确定PTN对应的业务的倒换决策方法;
对于线性保护而言,所述倒换决策方法可以基于G.8131协议决策。当端口5/1有故障时,LSP OAM2只有唯一的5/1出口,会检测到LOC告警,并在第三层VP流点1的工作路径生成SF,并通过G.8131 APS决策机制,在保护组2上选择保护路径;完成第三层VP流点的保护倒换;并修改当前入向和出向流点的拓扑关系;对于第四层VC流点的工作路径OAM 1,如果其检测时间小于第三层VP流点的OAM 2的检测时间与LSP保护倒换时间之和,也将产生LOC,在产生LOC时,第四层VC流点不立即生成SF,而是启用holdoff定时器,在第三层VP倒换动作完成之后,第三层VP流点因为做了一定的拖延再往客户层VC繁殖,即第四层VC流点感知不到服务层流点的告警;而VC本层的OAM1将按照新的拓扑关系封装标签,如图5所示,即在第三层VP流点1上,按照保护路径标签201封装LSP标签,最终从端口5/3发出报文,holdoff定时器到达50ms后,LOC告警已经消失。最终在第四层VC流点上不倒换;
当故障恢复后,对返回式保护启动WTR流程,WTR时间到后自动回切。
步骤405:输出倒换决策结果;
具体地,层次化输出倒换决策结果;上述表1、表2已经维护了各层次的入向和出向流点当前路径选择状态,因此,根据表1和表2即可以看出本示例能够直接输出接收方向和发送方向的层次化倒换结果。
或者,扁平化输出倒换决策结果;通过维护一张起始流点bitmap表4,得到扁平化倒换决策结果。其中,所述表4为实施例二起始流点bitmap维护表;具体过程为:周期性轮询所有起始流点,对每个起始流点,通过迭代式查找表2,最终得到其在第一层流点的当前bitmap编号,如果当前bitmap和历史bitmap不一致,输出起始流点和bitmap;对于本实施例,起 始流点为0,处于第4层流点,共有8种bitmap。初始bitmap为0,VP倒换后,bitmap变为2;
表4
起始流点编号 bitmap模型 历史bitmap 当前bitmap
0 N=4,23种路径 0 2
当端口5/1和5/3都有故障时,按照类似的原理,以第四层VC流点为起始的业务,bitmap按照倒换后的拓扑表,自动发现有效路径为bitmap4的可选路径;
最终的倒换结果,可以通过报文的形式通知倒换执行模块进行业务切换。
实施例三
图6为本发明实施例三具体实现的组网示意图;如图6所示,在设备1上同时再配置一条IPRAN的L3VPN业务,配置VPN FRR保护叠加TE FRR,主用VPN标签为300,TE隧道标签为400,TE FRR标签为500;备用VPN标签为301,TE隧道标签为402;在VPN FRR上配置BGP PEER BFD检测,会话ID为10,TE上配置隧道BFD检测,会话ID为11;
图7为本发明实施例三具体实现的流程示意图;如图7所示,所述方法包括:
步骤701:根据IPRAN对应的数据业务的配置,建立四层流点模型,在各层次中创建入向流点和出向流点;
这里,所述四层流点模型的建立方法与实施例二所述的方法相同,这里不再赘述;
其中,表5为入向流点路径建立拓扑表,包含本层关联的OAM以及服务层流点关系映射;
表6为出向流点路径建立拓扑表,包含标签以及服务层流点关系映射; 表5
Figure PCTCN2014090254-appb-000003
表6
Figure PCTCN2014090254-appb-000004
步骤702:根据业务配置,在四层流点的拓扑结构上配置两层保护;
其中,图8为本发明实施例三4层流点的拓扑图,如图8所示,所述第一层VS流点包括:VS流点4、VS流点5、VS流点6、VS流点7、VS 流点14、VS流点15、VS流点16以及VS流点17;第二层VS-VP流点包括:VS-VP流点22、VS-VP流点3、VS-VP流点32以及VS-VP流点13;第三层VP流点包括:VP流点21、VP流点31;第四层VC流点包括VC流点20;
具体地,第一层TE FRR保护,作用于第二层VS-VP流点上,即在第二层VS-VP流点的流点上配置一条工作路线和一条保护路线,也即第二层VS-VP流点中至少具有一个保护组;
本实施例中无第二层LDP FRR保护;
第三层VPN FRR保护,作用于第四层VC流点上,即在第四层VC流点的流点上配置一条工作路线和一条保护路线,如此确定出两层保护层;
表7为保护组与流点的关联表,如表7所示,保护组3对应第三层保护;
表7
保护组编号 入向流点编号 出向流点编号 保护组类型 holdoff
3 20 20 1:1
4 22 22 1:1
步骤703:根据业务配置,以及根据所述各层流点的层次化分布的结构确定各流点的告警机制;
在入向流点拓扑上关联BFD检测及服务层流点繁殖,如表5所示;并根据业务配置,在出向流点路径上关联BFD发包,包含标签以及服务层流点关系映射,如表6所示。
通过上述步骤,可以建立出4层流点的拓扑结构,也即业务流点拓扑结构,如图8所示。对于图8所示的4层流点模型,共有8个bitmap,配置了pw 1:1叠加te frr 1:1两层保护:对于没有配置保护的层次,默认走工作路径;从该模型可以很清晰的看出,对于第二层VS-VP流点中的入向流 点路径,告警来源于本层BFD;对于第三层VP流点中的入向流点,告警来源于服务层告警,进一步的,第三层VP流点21的工作路径服务层有TEFRR保护,告警来源为服务层当前有效路径的告警;对于第四层VC流点中的入向流点,告警来源于本层PEER BFD以及服务层VP流点21的告警。以VC流点为起始的业务,可以有三种路径供选择,分别为bitmap0、bitmap1、bitmap4;而当前有效的路径为bitmap0;
其中,所述bitmap0为从VC流点20开始、依次途至VP流点21、VS-VP流点22至VS流点4;所述bitmap1为从VC流点20开始、依次途至VP流点21、VS-VP流点22至VS流点6;所述bitmap4为从VC流点20开始、依次途至VP流点31、VS-VP流点32至VS流点14。
步骤704:根据所述各流点的告警机制、以及流点上IPRAN对应的业务的路径信息确定IPRAN对应的业务的倒换决策方法;:
当端口5/1有故障时,TE隧道上的LSP BFD11会检测到LOC告警,并在第二层VS-VP流点中的入向流点22的工作路径生成SF;通过告警决策机制,在保护组4上选择保护路径有效,即倒换到FRR备用路径;完成第二层VS-VP流点的TE FRR保护倒换;并更新当前入向和出向流点拓扑关系;对于客户层VPN FRR保护,通常无holdoff时间配置,在第二层VS-VP流点中的入向流点22的工作路径生成SF后,不立即繁殖到客户层,而是增加一定的拖延,保证客户层感知不到服务层的倒换。此外,在第四层VC流点无holdoff配置时,本层关联的PEER BFD会话ID10,通常会配置得比服务层BFD的检测时间与倒换时间之和要稍大,也感知不到倒换告警,即客户层保护组无倒换动作。因此,以第四层VC流点为起始的业务,bitmap按照倒换后的拓扑表,自动发现有效路径为bitmap1;客户层BFD也将自动按照新的拓扑关系封装报文;
当故障恢复后,上层协议启动路由重优化流程,当MBB结束之后,强 制将bitmap回切到bitmap0上,实现回切;
步骤705:输出倒换决策结果:
具体地,层次化输出倒换决策结果;。上述表5、表6已经维护了各层次的入向和出向流点当前路径选择状态。可以直接输出接收方向和发送方向的层次化倒换结果。
或者,扁平化输出倒换决策结果。通过维护一张起始流点bitmap表8,可得到扁平化倒换决策结果;其中,所述表8为实施例三起始流点bitmap维护表;具体过程为:周期性轮询所有起始流点,对每个发送起始流点,通过迭代式查找表6,最终得到其在第一层流点的当前bitmap编号,如果当前bitmap和历史bitmap不一致,输出起始流点和bitmap;对于本实施例,起始流点为20,处于第4层流点,共有8种bitmap。初始bitmap为0,TEFRR倒换后,bitmap变为1;
表8
起始流点 bitmap模型 历史bitmap 当前bitmap
0 N=4,23种路径 0 2
20 N=4,23种路径 0 1
最终的倒换结果,可以通过报文的形式通知倒换执行模块进行业务切换;
这里,当端口5/1和5/3都有故障时,按照类似的原理,以第四层VC流点为起始的业务,bitmap按照倒换后的拓扑表,自动发现有效路径为bitmap4的可选路径;
综上所述,本发明实施例方法能用于PTN和IPRAN的融合设备,解决PTN和IPRAN网络中的保护倒换问题。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、 或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明实施例的保护范围。
工业实用性
本发明实施例通过统一的层次化的流点结构确定层次化的保护结构,进而根据所述层次化的流点结构和层次化的保护结构将PTN和IPRAN对应的业务的路径倒换决策方法统一,而且,本发明实施例能够根据层次化的流点结构、各流点中设置的保护路径、以及各流点的告警机制,清晰、完整地确定出PTN和IPRAN对应的业务的路径倒换决策方法,如此,采用本发明实施例能够降低路径保护及路径选择的设计复杂度以及设计成本,缩短开发周期,进而能够为提高采用本发明实施例方法的系统的可靠性、可扩展性以及倒换性能等奠定基础。

Claims (23)

  1. 一种网络保护倒换方法,所述方法包括:
    根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
    根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
  2. 根据权利要求1所述的方法,其中,所述根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化的流点模型,包括:
    将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
  3. 根据权利要求2所述的方法,其中,所述根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型之后,所述方法还包括:
    根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
    根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
  4. 根据权利要求3所述的方法,其中,所述根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法,包括:
    根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
    其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
  5. 根据权利要求4所述的方法,其中,所述根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法,包括:
    根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定途经一个流点的分组传送网或无线接入网互联网协议化对应的业务的路径信息,根据分组传送网或无线接入网互联网协议化对应的业务途经的各流点的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务途经所有流点的最佳路径信息;或者,
    根据所述流点模型中各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息,确定分组传送网或无线接入网互联网协议化对应的业务预途经的所有流点的最佳路径信息。
  6. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    根据所述倒换决策方法,确定分组传送网或无线接入网互联网协议化对应的业务的最优路径信息,并输出所述最优路径信息;其中,
    所述最优路径信息为预途径所述流点模型中的各流点的有效路径信息。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    根据有效路径信息,确定所述流点模型中的各流点的工作指令信息或保护指令信息;
    其中,所述工作指令信息为分组传送网或无线接入网互联网协议化对 应的业务经流点时选择途径工作路径的指令信息;
    所述保护指令信息为分组传送网或无线接入网互联网协议化对应的业务经流点时选择途径保护路径的指令信息。
  8. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    确定所述流点模型中各流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径的唯一标识、以及确定各流点上分组传送网或无线接入网互联网协议化对应的业务的保护路径的唯一标识,并将各流点对应的工作路径的唯一标识以及保护路径的唯一标识作为各路径对应的操作管理维护标签。
  10. 根据权利要求3至5任一项所述的方法,其中,所述第一层流点的客户层为自身对应地下一层流点;所述第一层流点无服务层,或者,所述第一层流点的服务层为分组传送网或无线接入网互联网协议化对应的端口;所述第一层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    当根据分组传送网或无线接入网互联网协议化对应的业务类型以及第一预设规则确定出具有N层结构的流点时,所述第i层流点为第i-1层流点的客户层;所述第i层流点中各流点上的分组传送网或无线接入网互联网协议化对应的业务有一条工作路径、或者一条工作路径和一条保护路径;所述第i层流点的客户层为第i+1层流点、或者为本层用户业务;所述第i层 流点的服务层为所述i-1层流点;
    当所述i等于N时,所述第N层流点的客户层为本层用户业务;
    其中,所述N为大于等于2的正整数;所述i为大于等于2小于等于N的正整数。
  12. 根据权利要求11所述的方法,其中,所述根据所述各层流点的层次化分布的结构确定各流点的告警机制,包括:
    确定第一层流点中的各流点的告警信息来源于分组传送网或无线接入网互联网协议化对应的物理端口产生的告警信息、或物理链路通道层中对应的段层操作管理维护产生的告警信息;
    确定第i层流点中的各流点的告警信息来源于本层的操作管理维护或服务层产生的告警信息;
    其中,所述i为大于等于2小于等于N的正整数。
  13. 一种网络设备,所述设备包括:
    建模单元,配置为根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
    决策单元,配置为根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
  14. 根据权利要求13所述的设备,其中,所述建模单元,还配置为将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
  15. 根据权利要求14所述的设备,其中,所述设备还包括:
    路径单元,配置为根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径 和保护路径;
    告警单元,配置为根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
  16. 根据权利要求15所述的设备,其中,所述决策单元,还配置为根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
    其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
  17. 根据权利要求13至16任一项所述的设备,其中,所述设备还包括:
    标签单元,配置为根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
  18. 一种网络设备,所述设备包括:
    建模处理器件,配置为根据分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合确定层次化分布的流点模型;
    决策处理器件,配置为根据所述流点模型确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法。
  19. 根据权利要求18所述的设备,其中,所述建模处理器件,还配置为将分组传送网或无线接入网互联网协议化对应的所有端口、或物理连接通道层中的物理端口或物理端口集合作为第一层流点,根据所述第一层流 点以及第一预设规则确定下一层流点,确定层次化分布的流点模型。
  20. 根据权利要求19所述的设备,其中,所述设备还包括:
    路径处理器件,配置为根据第二预设规则确定所述流点模型中流点上分组传送网或无线接入网互联网协议化对应的业务的工作路径、或者工作路径和保护路径;
    告警处理器件,配置为根据所述流点模型中各层流点的层次化分布的结构确定各流点的告警机制。
  21. 根据权利要求20所述的设备,其中,所述决策处理器件,还配置为根据所述各流点的告警机制、以及流点上分组传送网或无线接入网互联网协议化对应的业务的路径信息确定分组传送网或无线接入网互联网协议化对应的业务的倒换决策方法;
    其中,所述路径信息为分组传送网或无线接入网互联网协议化对应的业务预途经的所述流点模型中的各流点的工作路径的标识和/或保护路径的标识。
  22. 根据权利要求18至21任一项所述的设备,其中,所述设备还包括:
    标签处理器件,配置为根据所述流点模型中各层流点的层次化分布的结构,将操作管理维护信息配置到各流点的工作路径和保护路径上,以根据操作管理维护信息确定分组传送网或无线接入网互联网协议化对应的业务途径的各流点的工作路径或保护路径的操作管理维护标签。
  23. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至12任一项所述的网络保护倒换方法。
PCT/CN2014/090254 2014-08-15 2014-11-04 一种网络保护倒换方法、网络设备及存储介质 WO2016023278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14899653.1A EP3182645B1 (en) 2014-08-15 2014-11-04 Network protection switching method, network device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410403362.5 2014-08-15
CN201410403362.5A CN105471599B (zh) 2014-08-15 2014-08-15 一种保护倒换方法及网络设备

Publications (1)

Publication Number Publication Date
WO2016023278A1 true WO2016023278A1 (zh) 2016-02-18

Family

ID=55303838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090254 WO2016023278A1 (zh) 2014-08-15 2014-11-04 一种网络保护倒换方法、网络设备及存储介质

Country Status (3)

Country Link
EP (1) EP3182645B1 (zh)
CN (1) CN105471599B (zh)
WO (1) WO2016023278A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656661B (zh) * 2016-11-30 2019-07-02 瑞斯康达科技发展股份有限公司 一种实现设备间线性保护机制互通的方法、装置及系统
CN106941445B (zh) * 2017-02-27 2019-11-26 烽火通信科技股份有限公司 Mpls-tp快速层次化保护倒换的方法及系统
CN109218176B (zh) * 2017-06-30 2020-12-15 华为技术有限公司 一种报文处理的方法及装置
CN109672617B (zh) * 2017-10-16 2021-07-27 深圳市中兴微电子技术有限公司 一种mpls层次化保护倒换的方法、装置及存储介质
CN110690983B (zh) * 2018-07-05 2022-04-08 中兴通讯股份有限公司 一种告警方法、装置及计算机可读存储介质
CN111884840B (zh) * 2020-07-16 2022-09-06 中盈优创资讯科技有限公司 Ipran网络设备故障告警归并分析处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653833A (zh) * 2002-05-15 2005-08-10 诺基亚公司 用于无线接入网络的面向服务的保护方案
CN102916842A (zh) * 2012-11-06 2013-02-06 烽火通信科技股份有限公司 利用多种保护方式叠加实现ptn设备双归保护的方法
EP2713536A2 (en) * 2012-09-26 2014-04-02 Ciena Corporation Optical transport network generic non-client specific protection systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020198995A1 (en) * 2001-04-10 2002-12-26 International Business Machines Corporation Apparatus and methods for maximizing service-level-agreement profits
FR2830094B1 (fr) * 2001-09-27 2004-12-10 Cit Alcatel Procede et dispositif de simulation du comportement d'un reseau, permettant un dimensionnement a la demande
JP2003132178A (ja) * 2001-10-25 2003-05-09 Ntt Docomo Inc 情報取得システム及び情報取得方法
CN101471849B (zh) * 2007-12-29 2011-04-06 华为技术有限公司 一种分组传送网的保护方法
CN103580886B (zh) * 2012-07-25 2017-10-27 中兴通讯股份有限公司 分组传送网络保护倒换装置和方法
CN102857420B (zh) * 2012-08-24 2016-01-20 中兴通讯股份有限公司 跨线卡保护方法、相关装置及线卡业务接入ptn的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653833A (zh) * 2002-05-15 2005-08-10 诺基亚公司 用于无线接入网络的面向服务的保护方案
EP2713536A2 (en) * 2012-09-26 2014-04-02 Ciena Corporation Optical transport network generic non-client specific protection systems and methods
CN102916842A (zh) * 2012-11-06 2013-02-06 烽火通信科技股份有限公司 利用多种保护方式叠加实现ptn设备双归保护的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182645A4 *

Also Published As

Publication number Publication date
EP3182645A1 (en) 2017-06-21
CN105471599A (zh) 2016-04-06
CN105471599B (zh) 2020-08-11
EP3182645B1 (en) 2018-10-10
EP3182645A4 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2016023278A1 (zh) 一种网络保护倒换方法、网络设备及存储介质
US9509591B2 (en) Technique for dual homing interconnection between communication networks
EP2242215B1 (en) Method for client data transmission through a packet switched provider network
US7093027B1 (en) Fast connection protection in a virtual local area network based stack environment
CN101523354B (zh) 用于多段伪线的保护的装置和方法
US9077561B2 (en) OAM label switched path for fast reroute of protected label switched paths
US7345991B1 (en) Connection protection mechanism for dual homed access, aggregation and customer edge devices
CN104253736B (zh) 通告pe设备的信息的方法和pe设备
US20120236730A1 (en) Method, device and system for processing service traffic based on pseudo wires
US20130272114A1 (en) Pseudo wire switching method and device
US9210075B2 (en) Method and apparatus for managing end-to-end consistency of bi-directional MPLS-TP tunnels via in-band communication channel (G-ACH) protocol
WO2018058639A1 (zh) 伪线负载分担的方法和设备
WO2020186803A1 (zh) 一种故障保护方法、节点及存储介质
WO2018095095A1 (zh) 建立分离路径的方法和装置
US9215136B2 (en) Aggregated delivery of tunnel fault messages on common ethernet segments
WO2012146097A1 (zh) Vpls网络和以太环网的倒换方法及装置
WO2018076908A1 (zh) 一种备用路径的检测方法及装置
CN101964743A (zh) 多协议标签交换路径aps保护管理方法、设备及系统
CN110224886A (zh) 隧道连通性检测方法、装置及网络边缘设备
WO2011147298A1 (zh) 三层vpn路由重置方法和装置
WO2018149294A1 (zh) 一种分组网络中处理业务流的方法及装置
CN106817302B (zh) 一种实现二层与三层虚拟专用网协调倒换的方法及装置
WO2017124685A1 (zh) 一种业务转发方法及装置
WO2017124722A1 (zh) 一种伪线业务转发方法及装置
WO2024001633A1 (zh) 网络管理方法及装置、网元、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014899653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014899653

Country of ref document: EP