WO2016021702A1 - ユーザ端末 - Google Patents

ユーザ端末 Download PDF

Info

Publication number
WO2016021702A1
WO2016021702A1 PCT/JP2015/072419 JP2015072419W WO2016021702A1 WO 2016021702 A1 WO2016021702 A1 WO 2016021702A1 JP 2015072419 W JP2015072419 W JP 2015072419W WO 2016021702 A1 WO2016021702 A1 WO 2016021702A1
Authority
WO
WIPO (PCT)
Prior art keywords
discovery
frequency
plmn
information
enb
Prior art date
Application number
PCT/JP2015/072419
Other languages
English (en)
French (fr)
Inventor
真人 藤代
裕之 安達
智春 山▲崎▼
優志 長坂
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP15830278.6A priority Critical patent/EP3179805A4/en
Priority to JP2016540746A priority patent/JP6321810B2/ja
Publication of WO2016021702A1 publication Critical patent/WO2016021702A1/ja
Priority to US15/083,645 priority patent/US20160212609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present invention relates to a user terminal used in a mobile communication system that supports D2D proximity services.
  • 3GPP 3rd Generation Partnership Project
  • D2D Device to Device
  • the serving cell supports the D2D discovery procedure and can provide a frequency different from the serving cell frequency (hereinafter referred to as another D2D frequency) by SIB (System Information Block).
  • SIB System Information Block
  • a user terminal can discover other user terminals by monitoring D2D discovery signals transmitted at other D2D frequencies acquired by SIB.
  • the time / frequency resource used for transmitting the D2D discovery signal is not provided in all time zones but in a specific time zone divided by a predetermined time.
  • the user terminal is provided with another D2D frequency from the serving cell, it is not agreed that the user terminal is provided up to the specific location of the time / frequency resource used for transmitting the D2D discovery signal in the other D2D frequency. Since the user terminal cannot monitor the D2D discovery signal and transmit / receive the uplink signal at the same time, the user terminal appropriately monitors the D2D discovery signal transmitted in another D2D frequency, or appropriately performs D2D in the other D2D frequency. It is desirable to transmit a discovery signal.
  • D2D discovery signal not only the D2D discovery signal but also a D2D communication signal used in D2D communication is desired to perform the same operation.
  • an object of the present invention is to enable a user terminal to appropriately monitor a D2D radio signal transmitted at another D2D frequency or appropriately transmit a D2D radio signal at another D2D frequency.
  • the user terminal which concerns on one Embodiment is provided with the control part which announces the D2D discovery signal used in the D2D discovery procedure for discovering a neighboring terminal in the frequency of a serving cell.
  • the control unit gives priority to cellular communication over the announcement of the D2D discovery signal even during the period in which the resource pool for the D2D discovery procedure is arranged.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram.
  • FIG. 5 is a configuration diagram of a radio frame.
  • FIG. 6 is an explanatory diagram for explaining an example of the operating environment according to the first embodiment.
  • FIG. 7 is a sequence diagram for explaining an example of the operation (UE initiative) according to the first embodiment.
  • FIG. 8 is a sequence diagram for explaining an example of an operation (eNB initiative) according to the first embodiment.
  • FIG. 9 is a diagram for explaining a period for monitoring the Discovery signal according to the second embodiment.
  • FIG. 10 is a diagram for explaining a period during which the Discovery signal according to the second embodiment is monitored.
  • FIG. 10 is a diagram for explaining a period during which the Discovery signal according to the second embodiment is monitored.
  • FIG. 11 is a sequence diagram for explaining an example of an operation according to the second embodiment.
  • FIG. 12 is a diagram for explaining a control signal according to the second embodiment.
  • FIG. 13 is a diagram for explaining the operation of U100 according to another embodiment.
  • FIG. 14 is a diagram for explaining the SIB18 provisioning scheme.
  • FIG. 15 is a diagram for explaining an example of a list mismatch in the SIB 18 from different PLMNs.
  • FIG. 16 is a diagram for explaining a case where a UE camping on a non-ProSe support cell monitors.
  • FIG. 17 is a diagram for explaining discovery monitoring without cell reselection.
  • the user terminal includes a control unit that acquires information capable of identifying a resource pool for a D2D discovery procedure for discovering a neighboring terminal from an SIB (System Information Block) at another frequency different from the frequency of the serving cell. Prepare.
  • the control unit monitors a D2D discovery signal in the D2D discovery procedure at the other frequency based on information that can identify the resource pool.
  • SIB System Information Block
  • control unit determines a monitoring period for monitoring the D2D discovery signal based on information indicating the capability of the user terminal.
  • the information indicating the capability of the user terminal means that the user terminal includes a plurality of receivers.
  • the user terminal further includes a receiving unit that receives a downlink signal.
  • the said control part controls the intermittent reception mode which starts the said receiving part intermittently.
  • the control unit determines a monitoring period for monitoring the D2D discovery signal based on whether the receiving unit is activated or stopped in the intermittent reception mode.
  • control unit determines a monitoring period for monitoring the D2D discovery signal based on whether the user terminal is in an RRC idle state or an RRC connected state.
  • the user terminal includes a control unit that acquires information that can identify a resource pool for a D2D discovery procedure for discovering a neighboring terminal from an SIB (System Information Block) at another frequency different from the frequency of the serving cell. Prepare.
  • the control unit performs a D2D operation, which is transmission of the discovery signal, in a period different from a period in which an uplink signal transmission operation is performed based on information that can identify the resource pool.
  • SIB System Information Block
  • the user terminal which concerns on embodiment is provided with the control part which announces the D2D discovery signal used in the D2D discovery procedure for discovering a neighboring terminal in the frequency of a serving cell.
  • the control unit gives priority to cellular communication over the announcement of the D2D discovery signal even during the period in which the resource pool for the D2D discovery procedure is arranged.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network (LTE network).
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM (Operation and Maintenance) 400.
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 corresponds to a storage unit
  • the processor 160 corresponds to a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 'that constitutes the control unit.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 'that constitutes the control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines (schedules) uplink / downlink transport formats (transport block size, modulation / coding scheme) and resource blocks allocated to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks
  • time resources are configured by subframes (or slots).
  • the D2D proximity service (D2D ProSe) is a service that enables direct UE-to-UE communication within a synchronized cluster composed of a plurality of synchronized UEs 100.
  • the D2D proximity service includes a D2D discovery procedure (Discovery) for discovering a nearby UE and D2D communication (Communication) which is direct UE-to-UE communication.
  • D2D communication is also referred to as direct communication.
  • a scenario in which all the UEs 100 forming the synchronous cluster are located in the cell coverage is referred to as “in coverage”.
  • a scenario in which all UEs 100 forming a synchronous cluster are located outside cell coverage is referred to as “out of coverage”.
  • a scenario in which some UEs 100 in the synchronization cluster are located within the cell coverage and the remaining UEs 100 are located outside the cell coverage is referred to as “partial coverage”.
  • the eNB 200 becomes the D2D synchronization source.
  • the D2D asynchronous source synchronizes with the D2D synchronous source without transmitting the D2D synchronous signal.
  • the eNB 200 that is the D2D synchronization source transmits D2D resource information indicating radio resources that can be used for the D2D proximity service by a broadcast signal.
  • the D2D resource information includes, for example, information indicating radio resources that can be used for the D2D discovery procedure (Discovery resource information) and information indicating radio resources that can be used for D2D communication (communication resource information).
  • the UE 100 that is the D2D asynchronous source performs the D2D discovery procedure and D2D communication based on the D2D resource information received from the eNB 200.
  • Communication resource information includes not only information (data resource information) indicating radio resources that can be used for data transmission / reception, but also information (SA resource information) indicating radio resources that can be used for transmission / reception of scheduling assignment (SA). May be included.
  • SA is information indicating the position of a time / frequency resource for data reception in D2D communication.
  • the UE 100 becomes a D2D synchronization source. Outside the coverage, the UE 100 that is the D2D synchronization source transmits D2D resource information indicating radio resources that can be used for the D2D proximity service using, for example, a D2D synchronization signal.
  • the D2D synchronization signal is a signal transmitted in the D2D synchronization procedure for establishing the synchronization between terminals.
  • the D2D synchronization signal includes D2DSS and a physical D2D synchronization channel (PD2DSCH).
  • D2DSS is a signal that provides a time / frequency synchronization reference.
  • PD2DSCH is a physical channel that carries more information than D2DSS.
  • the PD2DSCH carries the above-described D2D resource information (Discovery resource information, Communication resource information). Alternatively, PD2DSCH may be unnecessary by associating D2D resource information with D2DSS.
  • a discovery signal (hereinafter, a Discovery signal) for discovering a nearby terminal is transmitted.
  • a method of D2D discovery procedure a first discovery method (Type 1 discovery) in which radio resources that are not uniquely allocated to the UE 100 are used for transmission of Discovery signals, and radio resources that are uniquely allocated to each UE 100 are included in the Discovery signal.
  • a second discovery method (Type 2 discovery) used for transmission.
  • a radio resource individually assigned for each transmission of the Discovery signal or a radio resource assigned semi-persistently is used.
  • a mode of D2D communication (D2D communication)
  • a first mode (Mode 1) in which the eNB 200 or a relay node allocates radio resources for transmitting D2D data (D2D data and / or control data)
  • a second mode (Mode 2) for selecting a radio resource for transmitting D2D data from the resource pool.
  • the UE 100 performs D2D communication in any mode. For example, the UE 100 in the RRC connected state performs D2D communication in the first mode, and the UE 100 outside the coverage performs D2D communication in the second mode.
  • the operation according to the first embodiment includes (A) UE-led operation and (B) eNB-led operation.
  • the eNB 200-1 is included in the first PLMN that is the LTE network of the network operator 1.
  • the UE 100 is located within the coverage of the first cell managed by the eNB 200-1.
  • the operation of the eNB 200-1 may be read as the operation of the first cell.
  • the first PLMN also includes a first server 400-1 that maintains a D2D frequency list of frequencies for which the D2D discovery procedure is supported.
  • the eNB 200-2 is included in the second PLMN that is the LTE network of the network operator 2.
  • the UE 100 is located within the coverage of the second cell managed by the eNB 200-1.
  • the second cell is a cell adjacent to the first cell and is operated at a frequency different from the frequency of the first cell.
  • the operation of the eNB 200-2 may be read as the operation of the second cell.
  • the second PLMN also includes a second server 400-2 that maintains a D2D frequency list of frequencies for which the D2D discovery procedure is supported.
  • the second server 400-2 may notify the eNB 200-2 of the stored D2D frequency list.
  • the eNB 200-2 may transmit the D2D frequency list by SIB, and the UE 100 may receive the D2D frequency list transmitted from the eNB 200-2.
  • the first server 400-1 and the second server 400-2 may exchange the stored list. Thereafter, the first server 400-1 may notify the UE 100 of the D2D frequency list in the second PLMN as well as the D2D frequency list in the first PLMN. Alternatively, the first server 400-1 may notify the UE 100 of the D2D frequency list in the first PLMN updated based on the D2D frequency list in the second PLMN. Alternatively, the eNB 200-1 and the eNB 200-2 may exchange the D2D frequency list, and the eNB 200-1 may notify the UE 100 of the D2D frequency list in the second PLMN.
  • step S101 the UE 100 receives an SIB from another cell and starts an operation of decoding the received SIB.
  • the UE 100 may monitor (receive) a frequency included in the D2D frequency list in the second PLMN received from the eNB 200-1.
  • the eNB 200-2 transmits the setting information including the Discovery resource information through the SIB 18.
  • the Discovery resource information indicates radio resources that can be used for the D2D discovery procedure, and indicates at least a reception resource pool.
  • the setting information is used for setting a reception resource pool (and transmission resource pool) used by the UE camping on the second cell for the D2D discovery procedure.
  • the eNB 200-2 may transmit a UTC (Coordinated Universal Time) indicating the time set in the second PLMN by the SIB16.
  • UTC Coordinated Universal Time
  • step S104 the UE 100 acquires the setting information by decoding the SIB received from the eNB 200-2 (second cell which is another PLMN cell).
  • the UE 100 may acquire UTC from the eNB 200-2.
  • step S105 the UE 100 receives an SIB from another PLMN cell and stops the operation of decoding the received SIB.
  • the eNB 200-1 may transmit a UTC (Coordinated Universal Time) indicating the time set in the first PLMN by the SIB16.
  • UTC Coordinated Universal Time
  • step S107 based on the Discovery resource information from the eNB 200-2, the UE 100 determines a monitor gap (Discovery Monitor Gap) that is a period for monitoring a Discovery signal at another frequency.
  • a monitor gap Discovery Monitor Gap
  • the UE 100 When the UE 100 has acquired the D2D frequency list in the second PLMN, the UE 100 knows the D2D frequencies that can be used for the D2D discovery procedure in the second PLMN. Further, the UE 100 can specify the position of the reception resource pool in the time direction and the frequency direction based on the Discovery resource information from the eNB 200-2. For this reason, UE100 can determine a monitor gap appropriately based on at least Discovery resource information.
  • the UE 100 may determine a plurality of types of monitor gaps. For example, the monitoring gap (hereinafter referred to as IDLE gap) set when the UE 100 is in the RRC idle state and the monitoring gap (hereinafter referred to as CONNECTED gap) that is set when the UE 100 is in the RRC connected state. May be determined. For example, the cycle of the IDLE gap is shorter than the cycle of the CONNECTED gap.
  • the UE 100 may determine the monitor gap based on a predetermined reference value of the first PLMN in consideration of a time lag between the first PLMN and the second PLMN.
  • the predetermined reference value may be SFN (System Frame Number) or UTC.
  • SFN System Frame Number
  • UTC User Transmission Control Protocol
  • the UE 100 performs predetermined processing when a transmission / reception period in which a communication operation that is an uplink signal transmission operation with the eNB 200-1 or a downlink signal reception operation from the eNB 200-1 and a monitor gap overlap in the time direction.
  • a communication operation that is an uplink signal transmission operation with the eNB 200-1 or a downlink signal reception operation from the eNB 200-1 and a monitor gap overlap in the time direction.
  • One of the communication operation and the discovery signal monitoring at another frequency is performed in accordance with the priority order of the first and second communication. An example of priority order is shown below. In the following, monitoring of the Discovery signal at other frequencies is appropriately omitted as monitoring of the Discovery signal.
  • Each priority may be combined as appropriate. Further, the eNB 200-1 may instruct the priority order.
  • the priority order is determined based on information (UE Capability) indicating the capability of the UE 100 regarding communication with a plurality of cells including the serving cell.
  • the priority order is determined based on carrier aggregation (CA) capability.
  • UE100 has CA capability
  • communication with the primary cell (PCell) which provides predetermined information when UE100 starts RRC connection is 1st priority operation
  • movement. Monitoring the Discovery signal at another frequency is the second priority operation.
  • SCell secondary cell
  • a carrier (frequency band) in LTE is positioned as a component carrier, and UE 100 performs communication by using a plurality of component carriers (a plurality of serving cells) simultaneously.
  • the priority order is determined based on the dual connection (DC) capability.
  • DC dual connection
  • the stopping operation of the receiving unit is the first priority operation
  • the monitoring of the Discovery signal is the second priority operation. That is, the Discovery signal is not monitored during the off period, and the Discovery signal is monitored only during the on period. Thereby, since the DRX operation is not hindered by the monitoring of the Discovery signal, an increase in power consumption of the UE 100 can be suppressed.
  • the priority order is determined by the UE 100 based on the relationship between the frequency of the serving cell and other frequencies used for monitoring the Discovery signal.
  • the monitoring of the Discovery signal at the serving cell frequency (Intra-frequency) is the first priority operation.
  • the second priority operation is the monitoring of the Discovery signal at the frequency (Inter-frequency & Intra-PLMN) of another PLMN different from the serving cell frequency and different from the first PLMN.
  • the monitoring of the Discovery signal at the frequency (Inter-frequency & Inter-PLMN) of another PLMN different from the first PLMN is the third priority operation.
  • the priority order is determined based on whether or not the trigger condition for the measurement report of the radio status of the UE 100 is satisfied. For example, only when the trigger condition is not satisfied, the monitoring of the Discovery signal is the first priority operation. Therefore, when the trigger condition is satisfied, the Discovery signal is not monitored.
  • the UE 100 performs one of the communication operation or the discovery signal monitoring at another frequency in accordance with at least one of the above priorities.
  • step S108 the UE 100 transmits a monitor gap report (Discovery Monitor Gap Report) including information indicating the determined monitor gap to the serving cell (eNB 200-1).
  • a monitor gap report (Discovery Monitor Gap Report) including information indicating the determined monitor gap to the serving cell (eNB 200-1).
  • the information indicating the monitor gap may be the start / end subframe of the monitor gap or a bitmap of the subframe pattern of the monitor gap.
  • the information indicating the monitor gap may include information indicating the number of repetitions of the subframe pattern.
  • the information indicating the monitor gap may be information indicating the monitor gap in which the offset value is reflected.
  • the monitor gap report may include information indicating the offset value calculated in step S107.
  • the monitor gap report may include information indicating the priority of the monitor gap. Note that the priority of the monitor gap can be determined based on, for example, information of another UE that desires to be discovered.
  • the eNB 200-1 receives the monitor gap report and stores the monitor gap of the UE 100.
  • the eNB 200-1 that has received the monitor gap report can know the monitor gap of the UE 100.
  • the radio resources for cellular communication can be effectively utilized.
  • the eNB 200-1 may determine whether to permit the monitor gap based on the monitor gap report. When the eNB 200-1 cannot permit the monitor gap, the eNB 200-1 can permit a part of the monitor gap. Alternatively, when there are a plurality of monitor gaps, some monitor gaps can be permitted. For example, the eNB 200-1 permits a period of the monitor gap that does not overlap with a period in which radio resources are allocated to the UE 100.
  • step S110 the eNB 200-1 transmits information indicating the permitted monitor gap.
  • step S111 another UE (other PLMN UE) that selects the second PLMN transmits a Discovery signal.
  • the UE 100 receives the Discovery signal by monitoring the Discovery signal and discovers another UE.
  • the UE 100 cancels the setting for monitoring the Discovery signal and ends the monitoring of the Discovery signal.
  • the UE 100 transmits information (Discovery Monitor Gap Cancel) indicating cancellation of the setting of the monitor gap to the eNB 200-1.
  • the eNB 200-1 that has received the information deletes the stored monitor gap of the UE 100. Thereby, eNB200-1 can suppress restrict
  • the monitor gap request includes Discovery resource information (at least information on the reception resource pool) included in the setting information acquired in step S204. Accordingly, the eNB 200-1 receives Discovery resource information in another PLMN (second PLMN) different from the first PLMN. For this reason, even when the Discovery resource information cannot be exchanged between the eNB 200-1 of the first PLMN and the eNB 200-2 of the second PLMN, the eNB 200-1 can acquire the Discovery resource information in other PLMNs.
  • second PLMN another PLMN
  • the UE 100 may include the Discovery resource information as it is in the monitor gap request.
  • the UE 100 may include a part of the Discovery resource pool among the Discovery resource pools indicated by the Discovery resource information in the monitor gap request.
  • UE100 can determine a part of Discovery resource pool according to the above-mentioned priority.
  • the monitor gap request may include any of information (for example, information indicating the capability of the UE) used for determining the priority order described above.
  • the monitor gap request includes information indicating a priority for giving priority to a part of the Discovery resource pool or for giving priority to a predetermined Discovery resource pool among a plurality of types of Discovery resource pools. But you can.
  • step S208 the eNB 200-1 allocates a monitor gap to the UE 100 in response to receiving the monitor gap request. Specifically, the eNB 200-1 determines (sets) the monitor gap of the UE 100 based on the Discovery resource pool acquired from the UE 100 in the same manner as the UE 100 in Step S107.
  • step S209 the eNB 200-1 transmits the setting information including the allocated monitoring gap (allocation Discovery Monitor Gap) to the UE 100 as a response to the monitoring gap request.
  • UE100 sets the monitor gap contained in the received setting information, and monitors the Discovery signal in another frequency.
  • Step S210 corresponds to step S111.
  • the eNB 200-1 when canceling the setting of the monitor gap, transmits information indicating the canceling of the setting of the monitor gap to the UE 100.
  • the eNB 200-1 may transmit information indicating the release of the setting of the monitor gap to the UE 100 in response to a request from the UE 100.
  • the UE 100 cancels the setting of the monitor gap based on the information.
  • the monitor gap can be appropriately set by the above-described UE-driven operation or eNB-driven operation.
  • the UE 100 cannot perform transmission / reception based on HARQ retransmission, cannot perform transmission / reception of ACK / NACK, or cannot transmit periodic CSI set in advance by monitoring Discovery signals at other frequencies.
  • eNB200 allocates the useless radio
  • FIGS. 9 and 10 are diagrams for explaining a period during which the Discovery signal according to the second embodiment is monitored.
  • FIG. 11 is a sequence diagram for explaining an example of an operation according to the second embodiment.
  • FIG. 12 is a diagram for explaining a control signal according to the second embodiment.
  • the monitor gap is set.
  • the monitoring gap is not set, and the UE 100 monitors the Discovery signal at another frequency only during the off period of the intermittent reception mode. Since the eNB 200 knows at least the off period of the UE 100, it is possible to avoid allocating unnecessary radio resources that cannot be transmitted and received by the UE 100 to the UE 100.
  • a monitoring period (monitoring time) in which the UE 100 monitors the Discovery signal at another frequency will be described.
  • the UE 100 monitors the Discovery signal at another frequency only during the off period.
  • the UE 100 does not always monitor the Discovery signal during the off period, but monitors the Discovery signal only during the monitoring period in the off period.
  • the monitoring period is a period in which a Discovery resource pool (at least a reception resource pool) of an adjacent cell operated at another frequency different from the serving cell frequency is arranged (hereinafter referred to as a resource pool period) and an off period. It is an overlapping period in the direction.
  • the UE 100 may monitor the Discovery signal by switching to any one of a plurality of settings that are operation settings during the off period.
  • a plurality of settings are defined by different operation priorities.
  • the UE 100 is pre-configured with a first setting (D2D monitoring Setting A) and a second setting (D2D monitoring Setting B).
  • D2D monitoring Setting A transmission of the uplink signal to the serving cell that occurs during the off period
  • D2D monitoring Setting B transmission of the uplink signal to the serving cell that occurs during the off period
  • the monitoring of the Discovery signal is the second priority operation. Therefore, the monitoring period in the first setting is a period in which the period during which no uplink signal is transmitted and the resource pool period overlap in the off period.
  • monitoring of the Discovery signal is the first priority operation
  • transmission of the uplink signal is the second priority operation. Therefore, the monitoring period in the second setting is the resource pool period in the off period, and is the same as the monitoring period in FIG.
  • the reception of PDCCH is only exempted in the off period of the intermittent reception mode. Therefore, transmission of an uplink signal can occur during the off period of the intermittent reception mode.
  • transmission of an uplink signal can occur during the off period of the intermittent reception mode.
  • reduction of the opportunity of transmission of an uplink signal can be controlled. That is, since the UE 100 can switch between the first setting and the second setting, only one operation (for example, transmission of an uplink signal) is performed, and only the other operation (for example, monitoring of a Discovery signal) is performed. The problem of not being performed can be solved. That is, it is possible to achieve a good balance between uplink signal transmission and discovery signal monitoring.
  • the UE 100 may switch between the first setting and the second setting when the number of times of monitoring of the Discovery signal at another frequency reaches a threshold value. A specific operation will be described with reference to FIG.
  • step S301 the UE 100 applies the first setting (Setting A) as an initial setting.
  • step S302 the UE 100 counts the number of times (opportunities) for monitoring the Discovery signal.
  • the number of times of the present embodiment is the number of times per unit time.
  • UE100 may count the frequency
  • step S303 the UE 100 determines that the counted number (N) has reached the first threshold (N thresh-A ), that is, the counted number has become equal to or less than the first threshold.
  • step S304 the UE 100 transmits control information indicating switching from the first setting to the second setting to the eNB 200 (serving cell).
  • UE100 transmits to eNB200 by a MAC control element (MAC CE: MAC Control Element), for example.
  • MAC CE MAC Control Element
  • FIG. 12 when the control information (D) is “0”, switching to the first setting (that is, application of the first setting) is indicated.
  • the control information (D) is “1”, this indicates switching to the second setting (that is, application of the second setting).
  • step S306 as in step S302, the UE 100 starts counting the number of times the Discovery signal is monitored.
  • step S307 the UE 100 determines that the counted number (N) has reached the second threshold value (N thresh-B ), that is, the counted number has reached or exceeded the second threshold value.
  • step S308 the UE 100 transmits control information indicating switching from the second setting to the first setting to the eNB 200, similarly to step S304.
  • step S302 is executed.
  • the UE 100 may stop the control for switching between the first setting and the second setting, and monitor the Discovery signal according to one of the settings.
  • the UE 100 can transmit control information indicating that switching control has been stopped to the eNB 200.
  • eNB200 may transmit the control information for stopping the control which switches a 1st setting and a 2nd setting to UE100.
  • the UE 100 may perform switching according to an instruction from the eNB 200 instead of switching independently. Specifically, the UE 100 may switch between the first setting and the second setting based on an instruction from the eNB 200 to switch between the first setting and the second setting.
  • eNB200 can control operation
  • the eNB 200 counts the number of times an uplink signal is received from the UE 100.
  • the eNB 200 may count (calculate) the number of times of monitoring the Discovery signal from the number of times of reception of the uplink signal.
  • the eNB 200 can issue a switching instruction according to control information as shown in FIG.
  • the switching instruction indicates “0”
  • the UE 100 switches to the first setting (that is, starts applying the first setting).
  • the switching instruction indicates “1”
  • the UE 100 switches to the second setting (that is, starts applying the second setting).
  • the eNB 200-1 has acquired the Discovery resource information of other PLMNs from the UE 100, but is not limited thereto.
  • the eNB 200-1 may acquire the Discovery resource information from the eNB 200-2 via the X2 interface.
  • the eNB 200-1 may obtain the Discovery resource information from the OAM of the second PLMN via the OAM of the first PLMN.
  • a D2D interest index (D2D Interest Indication) indicating whether the UE 100 is interested in D2D communication may be used as signaling from the UE 100 to the eNB 200.
  • the D2D interest index may include information indicating activation / deactivation of the monitor gap or information indicating release of the monitor gap.
  • the UE 100 When performing the D2D discovery procedure between PLMNs, it is assumed that the UE 100 becomes the D2D synchronization source, and the UE 100 is synchronized by the D2D synchronization signal transmitted from the UE 100 that is the D2D synchronization source. In this case, the synchronization procedure of the UE 100 is different between the same PLMN and between different PLMNs, and in some cases, the reception procedure of the Discovery signal of the UE 100 is different.
  • the D2D frequency list of frequencies that can be used in the D2D proximity service includes not only frequencies that can be used in the same PLMN but also information on frequencies that can be used in different frequencies.
  • the UE 100 specifies whether the frequency selected based on the D2D frequency list is a frequency used in the same PLMN as the selected PLMN of the UE 100 or a frequency used in a PLMN different from the selected PLMN of the UE 100. There is a need.
  • the UE 100 includes not only information indicating a (neighboring) frequency supporting the D2D discovery procedure but also information indicating a corresponding PLMN in the D2D frequency list.
  • the UE 100 specifies the frequency by using the following method without increasing the amount of information in the D2D frequency list.
  • the UE 100 acquires from the serving cell a neighboring frequency list that is used in the PLMN selected by the UE 100 and indicates a frequency (adjacent frequency) that is different from the serving cell. For example, the UE 100 can acquire the adjacent frequency list by decoding the information transmitted by the SIB5.
  • the UE 100 acquires the D2D frequency list from the serving cell. For example, the UE 100 can acquire the D2D frequency list by decoding the information transmitted by the SIB 18.
  • the UE 100 compares the adjacent frequency list with the D2D frequency list (see FIG. 13). As shown in FIG. 13, the UE 100 determines that the frequency F1 common to the adjacent frequency list and the D2D frequency list can be used in the D2D discovery procedure in the same PLMN. Specifically, the UE 100 determines that the Inter-Freq. & Intra-PLMN D2D discovery procedure is determined to be possible.
  • the UE 100 determines that the frequency F3 indicated only in the D2D frequency list can be used in the D2D discovery procedure in a different PLMN. Specifically, UE 100 determines that Inter-Freq. & Inter-PLMN D2D discovery procedure is determined to be possible. Therefore, the UE 100 can specify that the frequency F3 is a frequency used in different PLMNs.
  • the D2D frequency list does not include frequencies that can be used by the forbidden PLMN (only) that is a PLMN that the UE 100 cannot select.
  • the VPLMN is selected based on the roaming contract between the HPLM and the VPLMN, not the direct subscriber contract between the UE 100 and the VPLMN. Therefore, the setting for the UE 100 may be different between the HPLM and the VPLMN. Therefore, the D2D frequency list received by the UE 100 from the roaming destination serving cell is considered to include frequencies that can be used in the prohibited PLMN.
  • the UE 100 may transmit a Discovery signal without permission at a frequency that can be used in the prohibited PLMN. Therefore, the following method can prevent the UE 100 from transmitting a Discovery signal without permission at a frequency that can be used by the prohibited PLMN.
  • the UE 100 receives the D2D frequency list from the roaming serving cell.
  • the prohibited PLMN list is preferably stored in the USIM. Therefore, even when the USIM of the UE 100 is changed (that is, when the subscriber information is changed), malfunction of the UE 100 can be prevented.
  • the UE 100 when the UE 100 receives authentication of the PLMN and can select the PLMN, the UE 100 transmits a use request requesting to transmit a Discovery signal using the selected D2D frequency to the cell belonging to the selected PLMN. To do. On the other hand, if the UE 100 cannot select the PLMN, the UE 100 selects another D2D frequency. Alternatively, the UE 100 gives up transmission of the Discovery signal. The UE 100 may register the PLMN in the prohibited PLMN list.
  • the server in the PLMN to which the cell that received the use request belongs determines whether or not the UE 100 can authenticate the Discovery signal transmission. If the server can authenticate the discovery signal transmission, the server notifies the acceptance of the discovery signal transmission. If the server cannot authenticate the discovery signal transmission, the server notifies the rejection of the discovery signal transmission.
  • the UE 100 can transmit the Discovery signal using the D2D frequency without authentication of the PLMN (and consent to transmit the Discovery signal).
  • PS information is at least a part of authentication information indicating, for example, authentication of a public safety organization.
  • the authentication information may be a password (authentication key).
  • the said authentication information is a some authentication key,
  • the authentication key applied according to time (UTC) may change. For example, when the UE 100 stores a first authentication key (used from 0:00 to 12:00) and a second authentication key (used from 12:00 to 24:00), authentication for generating PS information according to the current time Select a key.
  • the said authentication information is memorize
  • the bitmap is a subframe that the eNB 200-1 desires not to use (for example, in the HARQ process).
  • the bit frame indicating “0” and the subframe that may be used by the eNB 200-1 may be “1”.
  • a subframe that may receive control information (UL grant) for the uplink signal, a subframe that performs retransmission of the uplink signal (eg, UL HARQ retransmission subframe), an uplink signal, and / or A subframe (DL / UL HARQ feedback) for transmitting feedback information for retransmission of a downlink signal may be indicated by “1”.
  • information indicating one monitor gap may indicate a gap pattern at all frequencies of interest. For example, assume that “0” indicates a subframe that is desired to be monitored and “1” indicates a subframe that is not desired to be monitored. When the subframe pattern of the transmission resource pool in the first frequency is “11100000” and the subframe pattern of the transmission resource pool in the second frequency is “00000111”, the information indicating one monitor gap is “11100111” may also be indicated. Thereby, overhead can be reduced.
  • information indicating one monitor gap may indicate information indicating a gap pattern for each frequency of interest.
  • a UE that is interested in a plurality of frequencies that is, a UE that wants to use a D2D proximity service at a plurality of frequencies transmits information indicating a plurality of monitor gaps to the eNB 200.
  • Each piece of information indicating a plurality of monitor gaps is associated with an identifier of each frequency.
  • the eNB 200 may determine (set) the monitor gap of another UE 100 based on the information indicating the gap pattern transmitted from the UE 100. For example, the UE 100 transmits information indicating a gap pattern associated with an identifier of a predetermined frequency as information indicating the monitor gap to the eNB 200, and the other UE 100 includes the identifier of the desired predetermined frequency.
  • the eNB 200 can set the same gap pattern as the gap pattern from the UE 100 as the monitor gap of the other UE 100.
  • the UE 100 monitors the Discovery signal at another frequency during the off period of the intermittent reception mode, but is not limited thereto.
  • the UE 100 may monitor a Discovery signal at another frequency in a measurement gap (Measurement Gap) that is a period allocated to measure the radio field intensity from the base station in another system.
  • UE (connected UE) 100 connected to the cell may monitor the Discovery signal at another frequency only in the measurement gap.
  • the connected cell does not transmit a radio signal to the UE 100, so that the UE 100 cannot receive information from the connected cell by transmitting or receiving a D2D radio signal. There is no problem.
  • the UE 100 determines the monitor gap when determining that the monitoring of the Discovery signal at other frequencies cannot be sufficiently performed only by the set off period of the intermittent reception mode and / or the set measurement gap.
  • the UE 100 may transmit a monitor gap request to the eNB 200. For example, even if the UE 100 is difficult to monitor the Discovery signal at other frequencies in the off period and / or the measurement gap of the intermittent reception mode, or even when monitoring the Discovery signal at other frequencies, the UE 100 may discover from the other UE 100 the Discovery signal. When a signal cannot be received, a monitor gap may be determined or a monitor gap request may be transmitted to the eNB 200.
  • the UE 100 determines the monitor gap when the quality of the reference value or higher (for example, discovery probability) cannot be ensured by monitoring the Discovery signal only in the off period of the intermittent reception mode and / or the measurement gap. Or a monitor gap request may be transmitted to the eNB 200. For example, the UE 100 determines that the quality (accuracy) of the monitor cannot be secured when the intermittent reception mode off period and / or the measurement gap time is too short.
  • the quality of the reference value or higher for example, discovery probability
  • the reference value may be set by the eNB 200 (serving cell), or may be set by a network device higher than the eNB 200 (for example, a server having an MME, OAM, NAS entity, ProSe Function, etc.) Alternatively, it may be a predetermined threshold (pre-defined value).
  • the server having ProSe Function is a server that performs management related to the D2D proximity service, and is, for example, the first server 400-1 (or the second server 400-2) described above.
  • the eNB 200-2 transmits the setting information including the Discovery resource information in the second PLMN by the SIB 18, but the eNB 200-1 includes the Discovery resource information in the first PLMN to which the eNB 200-1 belongs.
  • the setting information may be transmitted by the SIB 18.
  • the eNB 200-1 may transmit Discovery resource information in another PLMN (or another eNB 200-2) by SIB.
  • the eNB 200-1 may transmit Discovery resource information in another PLMN (or another eNB 200-2) to each UE 100 by unicast using a dedicated signal (dedicated signaling).
  • the description has focused on the monitoring (reception) of the Discovery signal, but the present invention is not limited to this.
  • the contents described above may be applied to the announcement (transmission) of the Discovery signal. Therefore, the above discovery (reception) of the Discovery signal may be replaced with an announcement (transmission) of the Discovery signal.
  • the above-described content may be applied not only to the D2D discovery procedure but also to other operations (for example, D2D communication). Therefore, the above-described Discovery signal may be replaced with a D2D communication signal.
  • the UE 100 may determine a gap for transmitting and / or receiving D2D communication signals at other frequencies.
  • eNB200 serving cell
  • the LTE system has been described as an example of a mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • Proposal 1 Inter-PLMN D2D discovery procedure (inter-PLMN discovery) should be supported in Release 12.
  • discovery resource information is further required for D2D UEs to monitor Discovery signals transmitted in cells belonging to other PLMNs.
  • the UE obtains from the serving cell SIB (eg, SIB18) a full set of information for receiving the Discovery signal within the same frequency and at least an indication as to which frequency supports the discovery procedure. can do.
  • SIB 18 transmitted from the serving cell includes a full set of information for the inter-frequency discovery procedure has not yet been determined, but within the same frequency / between frequencies as long as the frequencies are provided by the same PLMN. It may be assumed that the serving cell has knowledge about such information about the reception of the Discovery signal.
  • Option 1 The serving cell provides a copy of the SIB 18 from the other PLMN in the SIB.
  • Option 1 may be included in a setting based on a roaming contract, or a setting by a server that is shared or available by a plurality of PLMNs.
  • discovery procedure information shared from the SIB 18 is static or quasi-static. It is assumed that the UE may decode the SIB 18 of this UE's serving cell to obtain discovery procedure information belonging to different PLMN (s).
  • the disadvantage of this option is that the size of SIB 18 increases significantly, especially when discovery procedure information from different PLMNs (multiple inter-PLMNs) needs to be supported.
  • RAN level SIB18 sharing This may use direct X2 communication by PLMN (s). More dynamic SIB 18 sharing can be easily implemented, but is at least outside the scope of release 12.
  • Option 2 The UE acquires the SIB 18 directly from a cell belonging to another PLMN.
  • the UE needs to acquire the SIB 18 directly from a neighboring cell belonging to another PLMN (s). This facilitates dynamic SIB 18 sharing, and the serving cell need not provide different PLMN (s) SIBs 18 within its own SIB 18.
  • This option increases the complexity of the UE decoding multiple SIBs 18 for the inter-PLMN discovery procedure. Whether a UE needs to cooperate with the serving cell of the UE in order to obtain an SIB 18 belonging to another PLMN is a further challenge.
  • the size of the SIB 18 will need to be significantly increased to accommodate discovery procedure information from multiple PLMNs.
  • the size of the SIB is limited within the same PLMN, especially when the discovery procedure information is assumed to be quasi-static, the complexity for the UE to decode multiple SIBs 18 is limited. Is done. Therefore, we conclude that Option 2 should be adopted.
  • Proposal 3 The serving cell should agree that it is sufficient to provide the SIB 18 belonging to its own PLMN.
  • the serving cell may notify which neighboring frequency supports ProSe discovery in the SIB information.
  • the UE If frequency information is not available from the SIB of the UE's serving cell, the UE only needs to check if cells from other PLMNs are in coverage and whether SIB 18 is provided. Often, it will be necessary to adjust the frequency of the receiver to a frequency different from the frequency of the serving cell. However, if other PLMN frequencies are provided listed in the serving cell's SIB, the UE only needs to tune to the specified frequency and use existing DRX opportunities and cells belonging to different PLMNs. SIB18 may be obtained directly from
  • Proposal 4 The serving cell SIB should agree to provide other PLMN frequencies with the D2D discovery procedure between PLMNs in mind.
  • the serving cell may not be able to properly configure the UE for monitoring the inter-PLMN discovery signal.
  • the following two options may be considered for the UE to obtain SIB18 information and monitor the Discovery signal from a cell belonging to another PLMN.
  • the UE may perform reception of SIB18 or SIB19 belonging to different PLMNs and monitoring of Discovery signals during the DRX off period using the existing DRX settings.
  • Option 2a Discovery procedure information between PLMNs is indirectly provided to the serving cell by the UE. For example, the UE forwards all (full set) or part (subset) of SIBs 18 received from cells belonging to different PLMNs.
  • Option 1a does not require significant changes to existing specifications to support discovery procedures between PLMNs, but with existing DRX, the discovery procedure opportunity between PLMNs is based on “best effort”. Yes. There is no guarantee that the UE can monitor the Discovery signal between the preferred PLMNs using only DRX. Moreover, the UE may perform UL cellular communications such as, for example, HARQ retransmission and scheduling request (SR) during the DRX off period, and the UE may perform discovery monitoring and ULWAN communications that occur simultaneously. Since no support is provided, the opportunity for inter-PLMN discovery monitoring is reduced.
  • SR HARQ retransmission and scheduling request
  • the UE provides discovery procedure information between PLMNs that are interested in the serving cell.
  • the serving cell receives the discovery procedure information, it is left to the serving cell to decide whether to set the UE with an appropriate opportunity for the inter-PLMN discovery procedure.
  • the disadvantage of this option is that signaling over the Uu interface may increase.
  • Proposal 5 It should be agreed that UE behavior regarding inter-PLMN discovery monitoring should be under the control of the serving cell.
  • Proposal 6 If SIB18 information is not exchanged between PLMNs, it should be considered whether option 1a is preferred or option 2a is preferred.
  • SIB18 information is exchanged between PLMNs.
  • the serving cell has an opportunity to discover between PLMNs of cells belonging to other PLMNs. It may be assumed that you know. However, due to the number of neighboring cells from other PLMNs, it is not feasible for the serving cell to include all discovery resources from other PLMNs in the SIB 18. The size of SIB 18 will be significantly increased. The serving cell will have two options when setting up gap opportunities for the UE to monitor and receive discovery resources from cells belonging to other PLMNs.
  • Option 1b If the serving cell does not broadcast discovery procedure information in the SIB 18, it is left to the serving cell to set the inter-PLMN discovery opportunity on the UE for one or more discoverable frequencies.
  • the serving cell may set an inter-PLMN discovery opportunity for the UE according to the UE capabilities.
  • the serving cell does not need to provide inter-PLMN discovery procedure information including some inter-PLMN frequency information in the SIB18.
  • the serving cell does not require feedback from the UE to set up an inter-PLMN discovery opportunity for the UE. This is a simpler way to support the inter-PLMN discovery procedure, but option 1b has the disadvantage that the serving cell cannot take into account the UE's preference for the inter-PLMN discovery procedure.
  • the serving cell broadcasts frequencies that can be discovered in other PLMNs in the SIB 18.
  • the UE may indicate to the serving cell the UE's intention to monitor discovery resources on one or more frequencies in other PLMNs. Based on the discovery interest indication, the serving cell may set up an appropriate inter-PLMN discovery opportunity for the UE for the needs of the UE.
  • Option 2b has the advantage that the serving cell can accurately determine the discovery opportunity setting based on the frequency that the UE is interested in. This has the disadvantage that additional signaling is required to broadcast the PLMN frequency in the SIB and the UE needs to send discovery interest indications to the serving cell before the discovery opportunity is properly set for the UE. is there.
  • option 2b is desirable because the serving cell may limit discovery opportunities to only those frequencies that the UE is interested in.
  • Proposal 7 Given that SIB18 information is exchanged between PLMNs, the inter-PLMN discovery opportunity should be based on the frequency of interest to the UE.
  • Proposal 1 At least in Release 12, it should be assumed that only the RAN provides a list of inter-PLMN frequencies that support ProSe discovery.
  • the UE may monitor the discovery signal transmitted on the additional ProSe carrier.
  • the UE is allowed to receive another permission regardless of whether the frequency is in the list of SIBs 18 received from PLMN1 or PLMN2 only if the UE has permission from the higher layer and does not affect Uu reception. It may be further determined whether to monitor the discovery signal at the PLMN (ie, PLMN 3 not depicted in FIG. 15).
  • Proposal 2 The UE is not requested from the serving cell to match a carrier other than the ProSe carrier existing in the SIB18 list. Furthermore, there is no restriction on the UE monitoring frequencies that are not present in the serving cell SIB18 list.
  • ProSe reception does not affect Uu reception (for example, UE performs ProSe discovery reception) To use DRX opportunities in idle and connected state, or to use a second RX chain when available).
  • the main purpose of this agreement is to avoid the UE using an autonomous gap for ProSe discovery. This means that the gap set by the eNB (eNB-configured gap) is based on the existing mechanism for the measurement gap procedure and is not considered to affect Uu reception.
  • Confirmation 1 A gap clearly set from the eNB is not considered to affect Uu reception.
  • ProSe discovery using only DRX opportunities may result in a decrease in discovery probability, that is, best effort discovery.
  • a UE with dual Rx chain capability has an additional advantage, but currently assumes a single receiver for discovery. Furthermore, it is assumed that a non-public safety UE may not be able to receive simultaneously on the DL and UL spectrum of an FDD carrier that supports D2D proximity services.
  • the discovery opportunity should be based on the existing gap mechanism.
  • the serving cell since the gap mechanism works for discovery, the serving cell has detailed ProSe discovery procedure information for other inter-PLMN carriers to set the appropriate parameters for UEs interested in Discovery monitoring. Should. Since it has been agreed that the UE needs to read the SIB 18 of the other Inter-PLMN carrier in order to monitor the discovery signal transmitted on the other Inter-PLMN carrier, the UE has already acquired It will be assumed that it is necessary to have the ability to notify the serving cell of detailed ProSe discovery procedure information for other inter-PLMN carriers.
  • the serving cell has no detailed ProSe discovery configuration information for different PLMNs of interest, ie there is no network level coordination (ie sharing detailed discovery information between OAMs or RANs)
  • the following two options are considered as options for the serving cell to obtain this information before deciding whether to set a gap for the UE:
  • Option 1 The UE transfers a part or all of the SIB 18 received from the inter-PLMN cell (a cell belonging to a different PLMN) to the serving cell.
  • a further issue is when the UE has to send inter-PLMN SIB18 information to the serving cell.
  • Option 2 The UE notifies the serving cell of possible gap opportunities, eg, the gap pattern determined by the UE based on the SIB 18 received from the inter-PLMN cell.
  • Option 1 is more preferable than Option 1 from the viewpoint of signaling overhead because the UE may need to transfer multiple SIBs 18 to the serving cell.
  • Option 2 only requires the UE to inform the serving cell of the desired gap pattern. Whether the serving cell can indicate whether inter-PLMN coordination between NWs can be assumed or whether the NW can determine whether UE assistance is required for inter-PLMN discovery is a further issue. is there.
  • Proposal 3 The serving cell should set a gap for Inter-PLMN discovery monitoring (receiving discovery signals between different PLMNs) in the UE.
  • the setting may be based on a gap pattern requested from the UE.
  • Intra-PLMN discovery D2D discovery procedure in the same PLMN
  • the serving cell regardless of whether the serving cell directly provides detailed ProSe discovery procedure information of neighboring cells to the UE, It may be premised on having detailed ProSe discovery procedure information of neighboring cells.
  • the above FFS suggests that the serving cell may not only provide its own SIB 18 but also provide detailed ProSe discovery procedure information for other intra-PLMN frequencies.
  • the significance of the FFS is not whether the serving cell can provide ProSe discovery procedure information of an inter-frequency cell (different frequency cell) to the UE, but that the serving cell can actually cooperate with the inter-frequency cell.
  • the serving cell can set an appropriate gap for the UE for inter-frequency ProSe discovery without providing detailed ProSe discovery procedure information.
  • Table 1 compares two cases: (1) the UE directly acquires SIB18 from other carriers (baseline), and (2) the UE acquires SIB18 information only from its serving cell (FFS). Show.
  • the FFS scheme (Case 2) has the advantage of reducing UE complexity and allowing network configurable operation.
  • the baseline scheme (Case 1) relies on existing DRX mechanisms. Thus, even if the UE obtains the SIB 18 directly from another carrier, that information is not at all useful for the UE if the discovery opportunities are very limited. Therefore, as a configuration option, we propose that the eNB has the ability to provide detailed ProSe discovery procedure information for other intra-PLMN frequencies (same PLMN frequency).
  • the eNB may provide detailed ProSe discovery procedure information for other Intra-PLMN carriers via SIB and / or individual signals as configuration options.
  • Proposal 4 cannot be agreed, it is possible to consider alternative schemes. As shown in Table 1, network-configurable discovery opportunities are beneficial to ensure discovery performance as well as a reduction in UE complexity. It may be assumed that the serving cell may acquire SIB18 information of the inter-frequency neighbor cell via the OAM. In this alternative, not only does the serving cell not provide the entire contents of the SIB 18 on other Intra-PLMN frequencies, but the UE does not need to inform the serving cell of some or all of the SIB 18 on other carriers. However, the serving cell has the ability to set a gap for the discovery monitor in the UE. This alternative scheme can be a compromise, since the drawbacks (signaling load) can be removed.
  • Proposal 5 Even if the serving cell cannot agree to provide detailed ProSe discovery procedure information to the UE, the serving cell should set an appropriate gap for the discovery monitor in the UE.
  • FIG. 16 shows an example in which a monitor UE camping on a serving cell that does not support ProSe discovery wants to know a list of carriers that support ProSe discovery.
  • the serving cell provides a list of carriers in the SIB
  • the operation of the monitor UE is similar to the agreed inter-frequency discovery.
  • Proposal 6 A serving cell that does not support ProSe discovery on its own carrier should also provide a list of other ProSe carriers (and detailed ProSe discovery procedure information (if Proposal 4 is agreed)) in SIB.
  • B3.2.2 NW operation to receive ProSe instructions It is agreed that the UE sends a ProSe instruction to the serving cell in order to notify the intention about discovery for both ProSe discovery (D2D discovery procedure) and communication (D2D communication) It was done.
  • the eNB operation that receives the ProSe indication includes an option for handover that moves the UE to a carrier that supports ProSe communication.
  • the NW operation for receiving the ProSe instruction is still unclear. Therefore, the UE operation is also unclear, for example, the trigger for the UE to send a ProSe indication is unclear.
  • Proposal 7 The operation expected from the NW that receives the ProSe instruction related to discovery should be considered.
  • the eNB assigns the UE to allocate a carrier depending on whether the UE indicates “interested” or “no longer interested” in the ProSe indication message for discovery. It may be moved (ie, handed over).
  • the eNB receives the ProSe indication that the UE is interested in inter-frequency discovery and then receives the DRX parameter or (if Proposal 3, 4 Or (if 5 is acceptable) any of the gap updates may be reconfigured in the UE.
  • the serving cell Upon receiving the ProSe instruction for discovery, the serving cell has the option to perform handover and / or change the DRX of the UE to assist the discovery monitor.
  • the ProSe instruction for communication is desired to support ProSe communication including transmission and reception It is agreed to include the ProSe frequency.
  • the ProSe indication contains the desired frequency. For example, if the UE indicates that the frequency of interest is the serving frequency, it is likely that no handover is required.
  • the serving cell needs to provide the UE with a gap for handing over the UE to the frequency of interest or at least monitoring the discovery on that frequency. May be.
  • the UE may not have a preference for the frequency of interest, but in the future application-specific frequencies will be indicated in higher layers, or the UE will keep historical information about discovery at a particular frequency There is a possibility. For example, if a serving cell sets a gap for a UE on a particular frequency and the UE can receive a discovery signal of interest on that frequency, the serving cell indicates to the serving cell the frequency of interest, It is then useful to prevent the UE from setting gaps for different frequencies that are not of interest.
  • the method by which the UE indicates interest in the inter-frequency discovery monitor, for example, whether the UE just sends the serving frequency as the frequency of interest is FFS.
  • Proposal 8 It should allow the UE to include the frequency list of interest in the ProSe instructions.
  • the serving cell can know that the ProSe instruction notifies the interest regarding the inter-PLMN discovery using means for comparing the frequency list of the ProSe instruction and the list of its SIB 18. If Proposal 3 for obtaining information for setting the gap is acceptable, the serving cell receives the ProSe indication indicating the inter-PLMN discovery monitor and then performs inter-PLMN discovery monitor on the UE. Appropriate actions should be taken.
  • Proposal 9 In addition to intra- or inter-frequency discovery, ProSe instructions for notifying the intention regarding reception of inter-PLMN discovery should be permitted.
  • the UE auxiliary information is only intended for a request for transmission resources in an intra-frequency operation.
  • the ProSe instruction may have many functions including an inter-frequency operation.
  • the eNB and / or UE operation is consistent, there is no reason to have two independent messages for similar functionality. If Proposition 11 is acceptable, such a conflict may occur when the ProSe indication indicates that it is interested in an intra-frequency discovery announcement, but it can be distinguished by the type of serving cell that receives the indication. is there. That is, if it is a ProSe support cell, a Type 2B resource is allocated, and if it is a non-ProSe support cell, handover can be started. Therefore, it is preferable to unify both messages into one message.
  • Proposal 10 One RRC message should be introduced to unify existing functions assigned to UE auxiliary information as baseline.
  • the UE can be handed over to a non-ProSe supported cell (probably one cell that is less congested) and the UE It may be appropriate to allow the use of a second receiver for monitoring.
  • Proposal 11 The UE should notify the serving cell of the intention for the discovery announcement.
  • Confirmation 2 The UE is not required to camp on a cell that supports ProSe discovery (see FIG. 17) when attempting UE inter-frequency (and inter-PLMN) discovery monitoring.
  • the load balance between the frequency cells may be optimized.
  • existing reselection procedures and priorities need to be changed to accommodate UEs that are interested in discovery monitors.
  • the reselection procedure and priority are considered, taking into account the idle mode load balance issues specifically set for the UE via the cell reselection priority provided by the SIB5 or individual signals. Changes need to be carefully considered.
  • the UE should follow the existing reselection priority set by the eNB.
  • the idle UE is interested in ProSe discovery, it should be further considered whether to allow the ProSe discovery to be prioritized over the existing cell reselection procedure. If the inter-frequency cell is not synchronized with the serving cell, it should be considered whether the existing DRX opportunities are sufficient for discovery monitoring on other frequencies. In addition, if a UE interested in a ProSe discovery monitor also tends to be interested in a ProSe discovery announcement, it may be better for the UE to camp on a cell operating on a carrier on the SIN18 list. . This is because reselection can be avoided before transmitting the discovery signal.
  • ProSe carriers need to be prioritized depends on the premise regarding UEs that are interested in ProSe discovery monitors.
  • Proposal 12 The UE should be allowed to prioritize for ProSe discovery during cell reselection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本実施形態に係るユーザ端末は、サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備える。前記制御部は、前記リソースプールを特定可能な情報に基づいて、前記他の周波数において、前記D2D発見手順におけるD2D発見信号をモニタする。

Description

ユーザ端末
 本発明は、D2D近傍サービスをサポートする移動通信システムにおいて用いられるユーザ端末に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)近傍サービスの導入が検討されている(非特許文献1参照)。
 D2D近傍サービス(D2D ProSe)は、同期がとられた複数のユーザ端末からなる同期クラスタ内で直接的な端末間通信を可能とするサービスである。D2D近傍サービスは、近傍端末を発見するD2D発見手順(Discovery)と、直接的な端末間通信であるD2D通信(Communication)と、を含む。
 ここで、サービングセルは、D2D発見手順がサポートされ且つサービングセルの周波数と異なる周波数(以下、他のD2D周波数)をSIB(System Information Block)で提供できることが合意されている。ユーザ端末は、SIBによって取得した他のD2D周波数において送信されるD2D発見信号のモニタを行うことによって、他のユーザ端末を発見できる。
3GPP技術報告書 「TR 36.843 V12.0.1」 2014年3月27日
 ところで、D2D発見信号の送信に用いられる時間・周波数リソースは、全時間帯に設けられるものではなく、所定時間で区切られた特定の時間帯に設けられることが想定される。
 ユーザ端末は、他のD2D周波数がサービングセルから提供されるものの、他のD2D周波数においてD2D発見信号の送信に用いられる時間・周波数リソースの具体的な位置まで提供されることは合意されていない。ユーザ端末は、D2D発見信号のモニタと上りリンク信号の送受信とを同時に行うことができないため、他のD2D周波数において送信されるD2D発見信号を適切にモニタしたり、他のD2D周波数において適切にD2D発見信号を送信したりすることが望まれる。
 また、D2D発見信号に限らず、D2D通信において使用されるD2D通信信号に関しても、同様の動作が望まれる。
 そこで、本発明は、ユーザ端末が、他のD2D周波数において送信されるD2D無線信号の適切なモニタ又は他のD2D周波数においてD2D無線信号の適切な送信を可能とすることを目的とする。
 一実施形態に係るユーザ端末は、サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備える。前記制御部は、前記リソースプールを特定可能な情報に基づいて、前記他の周波数において、前記D2D発見手順におけるD2D発見信号をモニタする。
 一実施形態に係るユーザ端末は、サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備える。前記制御部は、前記リソースプールを特定可能な情報に基づいて、上りリンク信号の送信動作を行う期間とは異なる期間に前記発見信号の送信であるD2D動作を行う。
 一実施形態に係るユーザ端末は、サービングセルの周波数において、近傍端末を発見するためのD2D発見手順において用いられるD2D発見信号をアナウンスする制御部を備える。前記制御部は、前記D2D発見手順用のリソースプールが配置されている期間であっても、前記D2D発見信号のアナウンスよりもセルラ通信を優先する。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、プロトコルスタック図である。 図5は、無線フレームの構成図である。 図6は、図6は、第1実施形態に係る動作環境の一例を説明するための説明図である。 図7は、第1実施形態に係る動作(UE主導)の一例を説明するためのシーケンス図である。 図8は、第1実施形態に係る動作(eNB主導)の一例を説明するためのシーケンス図である。 図9は、第2実施形態に係るDiscovery信号をモニタする期間を説明するための図である。 図10は、第2実施形態に係るDiscovery信号をモニタする期間を説明するための図である。 図11は、第2実施形態に係る動作の一例を説明するためのシーケンス図である。 図12は、第2実施形態に係る制御信号を説明するための図である。 図13は、その他実施形態に係るU100の動作を説明するための図である。 図14は、SIB18プロビジョニングスキームを説明するための図である。 図15は、異なるPLMNからのSIB18におけるリストの不一致の一例を説明するための図である。 図16は、非ProSeサポートセル上にキャンプするUEがモニタするケースを説明するための図である。 図17は、セル再選択なしでの発見モニタリングを説明するための図である。
 [実施形態の概要]
 実施形態に係るユーザ端末は、サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備える。前記制御部は、前記リソースプールを特定可能な情報に基づいて、前記他の周波数において、前記D2D発見手順におけるD2D発見信号をモニタする。
 実施形態において、前記制御部は、前記ユーザ端末の能力を示す情報に基づいて、前記D2D発見信号をモニタするモニタ期間を決定する。
 実施形態において、前記ユーザ端末の能力を示す情報とは、前記ユーザ端末が複数の受信機を備えていることである。
 実施形態に係るユーザ端末は、下りリンク信号を受信する受信部をさらに備える。前記制御部は、前記受信部を間欠的に起動する間欠受信モードを制御する。前記制御部は、前記間欠受信モードにおいて前記受信部が起動している期間か停止している期間かに基づいて前記D2D発見信号をモニタするモニタ期間を決定する。
 実施形態において、前記制御部は、前記ユーザ端末がRRCアイドル状態であるかRRC接続状態であるかに基づいて前記D2D発見信号をモニタするモニタ期間を決定する。
 実施形態に係るユーザ端末は、サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備える。前記制御部は、前記リソースプールを特定可能な情報に基づいて、上りリンク信号の送信動作を行う期間とは異なる期間に前記発見信号の送信であるD2D動作を行う。
 実施形態に係るユーザ端末は、サービングセルの周波数において、近傍端末を発見するためのD2D発見手順において用いられるD2D発見信号をアナウンスする制御部を備える。前記制御部は、前記D2D発見手順用のリソースプールが配置されている期間であっても、前記D2D発見信号のアナウンスよりもセルラ通信を優先する。
 [第1実施形態]
 以下において、本発明をLTEシステムに適用する場合の第1実施形態を説明する。
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成図である。図1に示すように、実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワーク(LTEネットワーク)が構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM(Operation and Maintenance)400とを含む。MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150は記憶部に相当し、プロセッサ160は制御部に相当する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)を、制御部を構成するプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)を、制御部を構成するプロセッサ240’としてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロックを決定(スケジューリング)するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態であり、そうでない場合、UE100はRRCアイドル状態である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンク(DL)にはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンク(UL)にはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。
 (D2D近傍サービス)
 以下において、D2D近傍サービスについて説明する。実施形態に係るLTEシステムは、D2D近傍サービスをサポートする。D2D近傍サービスについては非特許文献1に記載されているが、ここではその概要を説明する。
 D2D近傍サービス(D2D ProSe)は、同期がとられた複数のUE100からなる同期クラスタ内で直接的なUE間通信を可能とするサービスである。D2D近傍サービスは、近傍UEを発見するD2D発見手順(Discovery)と、直接的なUE間通信であるD2D通信(Communication)と、を含む。D2D通信は、Direct communicationとも称される。
 同期クラスタを形成する全UE100がセルカバレッジ内に位置するシナリオを「カバレッジ内(In coverage)」という。同期クラスタを形成する全UE100がセルカバレッジ外に位置するシナリオを「カバレッジ外(Out of coverage)」という。同期クラスタのうち一部のUE100がセルカバレッジ内に位置し、残りのUE100がセルカバレッジ外に位置するシナリオを「部分的カバレッジ(Partial coverage)」という。
 カバレッジ内では、例えばeNB200がD2D同期元となる。D2D非同期元は、D2D同期信号を送信せずにD2D同期元に同期する。D2D同期元であるeNB200は、D2D近傍サービスに使用可能な無線リソースを示すD2Dリソース情報を、ブロードキャスト信号により送信する。D2Dリソース情報は、例えば、D2D発見手順に使用可能な無線リソースを示す情報(Discoveryリソース情報)及びD2D通信に使用可能な無線リソースを示す情報(Communicationリソース情報)を含む。D2D非同期元であるUE100は、eNB200から受信するD2Dリソース情報に基づいて、D2D発見手順及びD2D通信を行う。Communicationリソース情報は、データの送受信に使用可能な無線リソースを示す情報(データリソース情報)だけでなく、スケジューリング割当(SA:Scheduling Assignment)の送受信に使用可能な無線リソースを示す情報(SAリソース情報)を含んでもよい。SAは、D2D通信におけるデータの受信のための時間・周波数リソースの位置を示す情報である。
 カバレッジ外又は部分的カバレッジでは、例えばUE100がD2D同期元となる。カバレッジ外では、D2D同期元であるUE100は、D2D近傍サービスに使用可能な無線リソースを示すD2Dリソース情報を、例えばD2D同期信号により送信する。D2D同期信号は、端末間同期を確立するD2D同期手順において送信される信号である。D2D同期信号は、D2DSS及び物理D2D同期チャネル(PD2DSCH)を含む。D2DSSは、時間・周波数の同期基準を提供する信号である。PD2DSCHは、D2DSSよりも多くの情報を運搬する物理チャネルである。PD2DSCHは、上述したD2Dリソース情報(Discoveryリソース情報、Communicationリソース情報)を運搬する。或いは、D2DSSにD2Dリソース情報を関連付けることにより、PD2DSCHを不要としてもよい。
 D2D発見手順では、近傍端末を発見するための発見信号(以下、Discovery信号)が送信される。D2D発見手順の方式として、UE100に固有に割り当てられない無線リソースがDiscovery信号の送信に使用される第1の発見方式(Type 1 discovery)と、UE100毎に固有に割り当てられる無線リソースがDiscovery信号の送信に使用される第2の発見方式(Type 2 discovery)とがある。第2の発見方式では、Discovery信号の送信毎に個別に割り当てられた無線リソース、又は、半固定的(semi-persistently)に割り当てられた無線リソースが使用される。
 また、D2D通信(D2D Communication)のモードとして、eNB200又はリレーノードがD2Dデータ(D2Dデータ及び/又は制御データ)を送信するための無線リソースを割り当てる第1のモード(Mode 1)と、UE100自身が、D2Dデータを送信するための無線リソースをリソースプールから選択する第2のモード(Mode 2)と、がある。UE100は、いずれかのモードでD2D通信を行う。例えば、RRCコネクティッド状態のUE100は、第1のモードでD2D通信を行い、カバレッジ外のUE100は、第2のモードでD2D通信を行う。
 (第1実施形態に係る動作)
 次に、第1実施形態に係る動作について、図6及び図7を用いて説明する。図6は、第1実施形態に係る動作環境の一例を説明するための説明図である。図7は、第1実施形態に係る動作(UE主導)の一例を説明するためのシーケンス図である。図8は、第1実施形態に係る動作(eNB主導)の一例を説明するためのシーケンス図である。
 第1実施形態に係る動作は、(A)UE主導の動作と、(B)eNB主導の動作とがある。
 (A)UE主導の動作
 UE主導の動作について図6及び図7を用いて説明する。
 図6に示すように、eNB200-1は、ネットワークオペレータ1のLTEネットワークである第1PLMNに含まれている。eNB200-1が管理する第1セルのカバレッジ内にUE100は位置する。以下において、eNB200-1の動作を第1セルの動作と読み替えてもよい。また、第1PLMNは、D2D発見手順がサポートされる周波数のD2D周波数リストを保持する第1サーバ400-1を含む。
 eNB200-2は、ネットワークオペレータ2のLTEネットワークである第2PLMNに含まれている。eNB200-1が管理する第2セルのカバレッジ内にUE100は位置する。第2セルは、第1セルの隣接セルであり、第1セルの周波数と異なる周波数で運用される。以下において、eNB200-2の動作を第2セルの動作と読み替えてもよい。また、第2PLMNは、D2D発見手順がサポートされる周波数のD2D周波数リストを保持する第2サーバ400-2を含む。
 UE100は、第1セルにキャンプしており、第1PLMNに位置登録を行っている。すなわち、UE100は、第1PLMNに属する。例えば、UE100は、第1セルにおいてRRCアイドル状態である。或いは、UE100は、第1セルにおいてRRCコネクティッド状態であってもよい。第1セルは、UE100のサービングセルである。
 第1サーバ400-1は、保持するD2D周波数リストを、eNB200-1を経由して、UE100に通知してもよい。eNB200-1は、SIBによってUE100に送信できる(図7の「SIB:Freq.list」参照)。
 同様に、第2サーバ400-2は、保持するD2D周波数リストをeNB200-2に通知してもよい。eNB200-2は、D2D周波数リストをSIBによって送信し、UE100は、eNB200-2から送信されたD2D周波数リストを受信してもよい。
 また、第1サーバ400-1と第2サーバ400-2とは、保持するリストのやり取りを行ってもよい。その後、第1サーバ400-1は、第1PLMNにおけるD2D周波数リストだけでなく、第2PLMNにおけるD2D周波数リストをUE100に通知してもよい。或いは、第1サーバ400-1は、第2PLMNにおけるD2D周波数リストに基づいて更新した第1PLMNにおけるD2D周波数リストをUE100に通知してもよい。或いは、eNB200-1とeNB200-2とがD2D周波数リストのやり取りを行って、eNB200-1は、第2PLMNにおけるD2D周波数リストをUE100に通知してもよい。
 このような動作環境において、以下の動作が行われる。
 図7に示すように、ステップS101において、UE100は、他のセルからのSIBを受信し、受信したSIBをデコードする動作を開始する。UE100は、eNB200-1から受信した第2PLMNにおけるD2D周波数リストに含まれる周波数を対象としてモニタ(受信)してもよい。
 ステップS102において、eNB200-2は、Discoveryリソース情報を含む設定情報をSIB18によって送信する。Discoveryリソース情報は、D2D発見手順に使用可能な無線リソースを示し、少なくとも受信リソースプールを示す。設定情報は、第2セルにキャンプするUEが、D2D発見手順に使用する受信リソースプール(及び送信リソースプール)を設定するために用いられる。
 ステップS103において、eNB200-2は、第2PLMNで設定されている時刻を示すUTC(Coordinated Universal Time)をSIB16によって送信してもよい。
 ステップS104において、UE100は、eNB200-2(他のPLMNのセルである第2セル)から受信したSIBをデコードすることによって、設定情報を取得する。UE100は、eNB200-2からUTCを取得してもよい。
 ステップS105において、UE100は、他のPLMNのセルからのSIBを受信し、受信したSIBをデコードする動作を停止する。
 ステップS106において、eNB200-1は、第1PLMNで設定されている時刻を示すUTC(Coordinated Universal Time)をSIB16によって送信してもよい。
 ステップS107において、UE100は、eNB200-2からのDiscoveryリソース情報に基づいて、他の周波数におけるDiscovery信号をモニタするための期間であるモニタギャップ(Discovery Moniter Gap)を決定する。
 UE100は、第2PLMNにおけるD2D周波数リストを取得している場合、第2PLMNにおいてD2D発見手順に使用可能なD2D周波数が分かる。また、UE100は、eNB200-2からのDiscoveryリソース情報によって、受信リソースプールの時間方向及び周波数方向の位置を特定できる。このため、UE100は、少なくともDiscoveryリソース情報に基づいて、モニタギャップを適切に決定できる。
 UE100は、複数種類のモニタギャップを決定してもよい。例えば、UE100がRRCアイドル状態である場合に設定されるモニタギャップ(以下、IDLE用Gap)と、UE100がRRC接続状態である場合に設定されるモニタギャップ(以下、CONNECTED用Gap)と、をUE100は決定してもよい。例えば、IDLE用Gapの周期は、CONNECTED用Gapの周期よりも短い。
 UE100は、第1PLMNと第2PLMNとの時間のズレを考慮して、第1PLMNの所定の基準値に基づいて、モニタギャップを決定してもよい。所定の基準値は、SFN(System Frame Number)であってもよいし、UTCであってもよい。UE100は、例えば、第1PLMNのSFNを基準とした場合、第1PLMNのSFNと同じ値の第2PLMNのSFNとの時間のズレ(第1PLMNのSFN1-第2PLMNのSFN2)をオフセット値として算出する。
 また、UE100は、eNB200-1との上りリンク信号の送信動作又はeNB200-1からの下りリンク信号の受信動作である通信動作を行う送通信期間とモニタギャップとが時間方向において重複した場合、所定の優先順位に従って通信動作又は他の周波数におけるDiscovery信号のモニタの一方を行う。以下に、優先順位の例を示す。以下において、他の周波数におけるDiscovery信号のモニタをDiscovery信号のモニタと適宜省略する。
 各優先順位は、適宜組み合わされてもよい。また、eNB200-1が優先順位を指示してもよい。
 第1に、セルラ通信をDiscovery信号のモニタよりも優先する。この場合、セルラ通信(データ、制御信号の送受信)がスケジューリングされている場合、セルラ通信を行う。
 第2に、サービングセルを含む複数のセルとの通信に関するUE100の能力を示す情報(UE Capability)に基づいて優先順位が決定される。例えば、キャリアアグリゲーション(Carrier Aggregation:CA)能力に基づいて優先順位が決定される。UE100がCA能力を有する場合、UE100がRRC接続を開始する際に所定の情報の提供を行うプライマリセル(PCell)との通信が第1優先動作である。他の周波数におけるDiscovery信号のモニタが第2優先動作である。プライマリセルと対をなす補助的なサービングセルであるセカンダリセル(SCell)がとの通信が第3優先動作である。
 なお、CAでは、LTEにおけるキャリア(周波数帯)をコンポーネントキャリアと位置付け、UE100が複数のコンポーネントキャリア(複数のサービングセル)を同時に使用して通信を行う。
 また、例えば、二重接続方式(Dual Connectivity:DC)能力に基づいて優先順位が決定される。UE100がDC能力を有する場合、マスタeNB(MeNB)が管理するセルとの通信が第1優先動作である。他の周波数におけるDiscovery信号のモニタが第2優先動作である。セカンダリeNB(SeNB)が管理するセルとの通信が第3優先動作である。
 なお、DCでは、UE100との接続を確立する複数のeNB200のうち、マスタeNBのみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNBは、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。
 第3に、下りリンク信号を受信する受信部(無線送受信機110の受信部)を間欠的に起動する間欠受信(DRX)モードにおいて受信部が起動している期間(以下、オン期間)か停止している期間(以下、オフ期間)かに基づいて優先順位が決定される。
 オフ期間では、受信部の停止動作が第1優先動作であり、Discovery信号のモニタが第2優先動作である。すなわち、オフ期間には、Discovery信号のモニタを行わず、オン期間にのみ、Discovery信号のモニタを行う。これにより、Discovery信号のモニタによってDRX動作が妨げられないため、UE100の消費電力の増加を抑制できる。
 或いは、オン期間では、受信部の起動動作が第1優先動作であり、Discovery信号のモニタが第2優先動作である。すなわち、オン期間には、Discovery信号のモニタを行わず、オフ期間にのみ、Discovery信号のモニタを行う。これにより、Discovery信号のモニタによってセルラ通信の受信動作が妨げられないため、eNB200-1がUE100を適切に制御可能である。
 なお、この動作と後述の第2実施形態の動作とが適宜組み合わされてもよい。
 或いは、UE100が間欠受信モードである場合、間欠受信の動作が第1優先動作であり、Discovery信号のモニタが第2優先動作である。すなわち、UE100が間欠受信モードである場合には、Discovery信号のモニタを行わない。これにより、UE100の消費電力の増加を抑制できる。
 第4に、UE100がRRCアイドル状態であるかRRC接続状態であるかに基づいて優先順位が決定される。例えば、UE100がRRCアイドル状態である場合、Discovery信号のモニタが第1優先動作であり、セルラ通信のための動作が第2優先動作である。一方、UE100がRRC接続状態である場合、セルラ通信のための動作が第1優先動作であり、Discovery信号のモニタが第2優先動作である。
 第5に、UE100が、異なる種類のDiscovery信号のリソースプールに基づいて、Discovery信号のモニタを行う場合、Discovery信号のリソースプールの設定値に基づいて優先順位が決定される。例えば、リソースプールのサイズ、リソースプールの時間方向における周期に基づいて優先順位が決定される。具体的には、サイズの小さいリソースプールにおけるDiscovery信号のモニタが、サイズの大きいリソースプールにおけるDiscovery信号のモニタよりも優先される。または、時間方向における周期が短いリソースプールにおけるDiscovery信号のモニタが、時間方向における周期が長いリソースプールにおけるDiscovery信号のモニタよりも優先される。
 或いは、UE100がサービングセルの周波数と、Discovery信号のモニタに使用される他の周波数との関係性に基づいて優先順位が決定される。例えば、サービングセルの周波数(Intra-frequency)におけるDiscovery信号のモニタが第1優先動作である。サービングセルの周波数と異なり、且つ、第1PLMNと異なる他のPLMNの周波数(Inter-frequency & Intra-PLMN)におけるDiscovery信号のモニタが第2優先動作である。第1PLMNと異なる他のPLMNの周波数(Inter-frequency & Inter-PLMN)におけるDiscovery信号のモニタが第3優先動作である。
 第6に、UE100が、RRC接続状態でサービングセルを変更するハンドオーバ手順を行っているか否かに基づいて優先順位が決定される。UE100が、ハンドオーバ手順を行っている場合、ハンドオーバ手順における動作が第1優先動作であり、Discovery信号のモニタが第2優先動作である。なお、ここでのハンドオーバ手順の開始の基準は、無線状況の測定報告を送信した時点であってもよいし、UE100がeNB200-1からハンドオーバのための下りリンクの無線リソース割り当てを受信した時点であってもよいし、UE100がeNB200-1からハンドオーバのためのRRC接続再設定情報を受信した時点であってもよい。
 第7に、UE100の無線状況の測定報告のトリガ条件を満たしているか否かに基づいて優先順位が決定される。例えば、トリガ条件が満たされていない場合にのみ、Discovery信号のモニタが第1優先動作である。従って、トリガ条件が満たされている場合、Discovery信号のモニタを行わない。
 第8に、発見を望む他のUEの情報に基づいて、優先順位が決定される。なお、UE100は、他のUEが選択しているPLMN情報、セル識別子などの他のUEの情報に基づいて、優先順位を決定する。
 UE100は、以上の少なくともいずれかの優先順位に従って通信動作又は他の周波数におけるDiscovery信号のモニタの一方を行う。
 ステップS108において、UE100は、決定したモニタギャップを示す情報を含むモニタギャップ報告(Disvovery Monitor Gap Report)をサービングセル(eNB200-1)に送信する。
 モニタギャップを示す情報は、モニタギャップの開始/終了サブフレームであってもよいし、モニタギャップのサブフレームパターンのビットマップであってもよい。モニタギャップを示す情報は、サブフレームパターンの繰り返し回数を示す情報を含んでもよい。また、モニタギャップを示す情報は、オフセット値が反映されたモニタギャップを示す情報であってもよい。或いは、モニタギャップを示す情報が、オフセット値が反映されていないモニタギャップを示す情報である場合、モニタギャップ報告が、ステップS107において算出したオフセット値を示す情報を含んでもよい。
 また、モニタギャップ報告は、複数のモニタギャップを示す情報を含む場合、モニタギャップの優先度を示す情報を含んでもよい。なお、モニタギャップの優先度は、例えば、発見を望む他のUEの情報に基づいて決定できる。
 一方、eNB200-1は、モニタギャップ報告を受信し、UE100のモニタギャップを記憶する。モニタギャップ報告を受信したeNB200-1は、UE100のモニタギャップを知ることができる。その結果、モニタギャップにおいて、セルラ通信の無線リソースをUE100に割り当て及びページングを行わないように制御できるため、セルラ通信用の無線リソースを有効に活用できる。
 ステップS109において、eNB200-1は、モニタギャップ報告に基づいて、モニタギャップを許可するか否かを判定してもよい。eNB200-1は、モニタギャップを許可できない場合は、eNB200-1は、モニタギャップの一部の期間を許可できる。或いは、複数のモニタギャップがある場合、一部のモニタギャップを許可できる。例えば、eNB200-1は、モニタギャップのうち、UE100に無線リソースを割り当てている期間と重複しない期間を許可する。
 ステップS110において、eNB200-1は、許可されたモニタギャップを示す情報を送信する。
 なお、ステップS108からS110は、省略されてもよい。
 UE100は、決定したモニタギャップ(或いは、許可されたモニタギャップ)を設定し、他の周波数におけるDiscovery信号のモニタを行う。
 ステップS111において、第2PLMNを選択する他のUE(Other PLMN UE)は、Discovery信号を送信する。UE100は、Discovery信号のモニタによって、当該Discovery信号を受信し、他のUEを発見する。
 その後、UE100は、Discovery信号のモニタの設定を解除し、Discovery信号のモニタを終了する。UE100は、モニタギャップの設定解除を示す情報(Disvovery Monitor Gap Cancel)をeNB200-1に送信する。当該情報を受信したeNB200-1は、記憶するUE100のモニタギャップを削除する。これにより、eNB200-1は、UE100にモニタギャップが設定されていない場合にまで、セルラ通信のための無線リソースの割り当てを制限することを抑制できる。
 なお、モニタギャップの設定解除は、モニタギャップをディアクティベートにすることであってもよいし、モニタギャップの設定をリセットすることであってもよい。
 (B)eNB主導の動作
 次に、eNB主導の動作について図6及び図8を用いて説明する。なお、UE主導の動作と同様の部分は、適宜説明を省略する。
 図8に示すように、ステップS201からS206は、ステップS101からS106に対応する。
 ステップS207において、UE100は、モニタギャップ要求(Disvovery Monitor Gap Request)を送信する。モニタギャップ要求は、他の周波数におけるDiscovery信号をモニタするための期間の設定をeNB200-1に要求するものである。
 モニタギャップ要求は、ステップS204で取得した設定情報に含まれるDiscoveryリソース情報(少なくとも受信リソースプールの情報)を含む。従って、eNB200-1は、第1PLMNと異なる他PLMN(第2PLMN)におけるDiscoveryリソース情報を受信する。このため、第1PLMNのeNB200-1と第2PLMNのeNB200-2との間で、Discoveryリソース情報のやり取りができない場合であっても、eNB200-1は、他PLMNにおけるDiscoveryリソース情報を取得できる。
 UE100は、Discoveryリソース情報をそのままモニタギャップ要求に含ませてもよい。或いは、UE100は、Discoveryリソース情報によって示されるDiscoveryリソースプールのうち、一部のDiscoveryリソースプールをモニタギャップ要求に含ませてもよい。UE100は、上述の優先順位に従って一部のDiscoveryリソースプールを決定することができる。
 モニタギャップ要求は、上述の優先順位の決定に用いられる情報(例えば、UEの能力を示す情報など)のいずれかを含んでもよい。また、モニタギャップ要求は、優先度は、Discoveryリソースプールのうちの一部を優先するため又は複数種類のDiscoveryリソースプールのうち、所定のDiscoveryリソースプールを優先するための優先度を示す情報を含んでもよい。
 ステップS208において、eNB200-1は、モニタギャップ要求の受信に応じて、UE100にモニタギャップを割り当てる。具体的には、eNB200-1は、ステップS107のUE100と同様にして、UE100から取得したDiscoveryリソースプールに基づいて、UE100のモニタギャップを決定(設定)する。
 ステップS209において、eNB200-1は、割り当てたモニタギャップ(allocating Discovery Monitor Gap)を含む設定情報を、モニタギャップ要求の応答としてUE100に送信する。UE100は、受信した設定情報に含まれるモニタギャップを設定し、他の周波数におけるDiscovery信号のモニタを行う。
 ステップS210は、ステップS111に対応する。
 なお、eNB200-1は、モニタギャップの設定を解除する場合、モニタギャップの設定解除を示す情報をUE100に送信する。eNB200-1は、UE100からの要求に応じて、モニタギャップの設定解除を示す情報をUE100に送信してもよい。UE100は、当該情報に基づいて、モニタギャップの設定を解除する。
 (まとめ)
 上述のUE主導の動作又はeNB主導の動作によって、モニタギャップを適切に設定することができる。その結果、UE100が、他の周波数におけるDiscovery信号のモニタによって、HARQ再送信に基づく送受信をできなかったり、ACK/NACKの送受信をできなかったり、予め設定された周期的CSIの送信をできなかったり、ページングの受信ができなかったりすることを避けることができる。また、eNB200が、UE100が送受信できない無駄な無線リソースをUE100に割り当てることを避けることができる。
 [第2実施形態]
 次に、第2実施形態について、図9から図12を用いて説明する。図9及び図10は、第2実施形態に係るDiscovery信号をモニタする期間を説明するための図である。図11は、第2実施形態に係る動作の一例を説明するためのシーケンス図である。図12は、第2実施形態に係る制御信号を説明するための図である。
 上述した第1実施形態では、モニタギャップが設定されていた。第2実施形態では、モニタギャップが設定されずに、UE100が、間欠受信モードのオフ期間にのみ、他の周波数におけるDiscovery信号をモニタする。eNB200は、少なくともUE100のオフ期間を把握しているため、UE100が送受信できない無駄な無線リソースをUE100に割り当てることを避けることができる。
 (モニタ期間)
 UE100が他の周波数におけるDiscovery信号をモニタするモニタ期間(モニタタイム)について説明する。
 図9に示すように、UE100は、オフ期間にのみ他の周波数におけるDiscovery信号をモニタする。UE100は、オフ期間の間中Discovery信号を常にモニタするのではなく、オフ期間のうちモニタ期間のみDiscovery信号をモニタする。ここで、モニタ期間は、サービングセルの周波数と異なる他の周波数で運用される隣接セルのDiscoveryリソースプール(少なくとも受信リソースプール)が配置された期間(以下、リソースプール期間)と、オフ期間とが時間方向において重複する期間である。
 また、図10に示すように、UE100には、オフ期間中の動作設定である複数の設定のうち、どれか1つの設定に切り替えて、Discovery信号をモニタしてもよい。動作の優先順位が異なることによって複数の設定が規定される。例えば、UE100には、第1の設定(D2D monitoring Setting A)及び第2の設定(D2D monitoring Setting B)が事前設定(pre-configured)されていると仮定する。第1の設定では、オフ期間中に発生したサービングセルへの上りリンク信号の送信が第1優先動作であり、Discovery信号のモニタが第2優先動作である。従って、第1の設定におけるモニタ期間は、オフ期間のうち、上りリンク信号が送信されていない期間とリソースプール期間とが重複している期間である。一方、第2の設定では、Discovery信号のモニタが第1優先動作であり、上りリンク信号の送信が第2優先動作である。従って、第2の設定におけるモニタ期間は、オフ期間のうちのリソースプール期間であり、図9のモニタ期間と同じである。
 ところで、間欠受信モードのオフ期間では、PDCCHの受信が免除されているだけである。従って、間欠受信モードのオフ期間に、上りリンク信号の送信が発生し得る。複数の設定のうちどれか1つの設定に切り替えることによって、Discovery信号のモニタの機会の低減を抑制できる。或いは、上りリンク信号の送信の機会の低減を抑制できる。すなわち、UE100が、第1設定と第2設定とを切り替えることができるため、一方の動作(例えば、上りリンク信号の送信)のみが行われ、他方の動作(例えば、Discovery信号のモニタ)のみが行われないという問題を解消することができる。すなわち、上りリンク信号の送信とDiscovery信号のモニタとの良好なバランスを取ることができる。
 また、UE100は、他の周波数におけるDiscovery信号のモニタの回数が閾値に達した場合に、第1設定と第2設定とを切り替えてもよい。具体的な動作について、図11を用いて説明する。
 図11に示すように、ステップS301において、UE100は、初期設定として、第1設定(Setting A)を適用する。
 ステップS302において、UE100は、Discovery信号のモニタの回数(機会)をカウントする。なお、本実施形態の回数は、単位時間当たりの回数である。また、UE100は、Discovery信号のモニタの回数の代わりに、上りリンク信号の送信の回数をカウントしてもよい。
 ステップS303において、UE100は、カウントした回数(N)が第1閾値(Nthresh-A)に達した、すなわち、カウントした回数が第1閾値以下になったと判定する。
 ステップS304において、UE100は、第1設定から第2設定へと切り替えることを示す制御情報をeNB200(サービングセル)に送信する。
 UE100は、例えば、マックコントロールエレメント(MAC CE:MAC Control Element)によってeNB200に送信する。この場合、図12に示すように、制御情報(D)が「0」である場合、第1設定への切り替え(すなわち、第1設定の適用)を示す。制御情報(D)が「1」である場合、第2設定への切り替え(すなわち、第2設定の適用)を示す。
 或いは、UE100は、PUCCH又はPUSCHによって制御情報を送信してもよい。この場合、当該制御情報のための新規フォーマットが規定されてもよい。或いは、UE100は、RRCシグナリングによって制御情報を送信してもよい。
 ステップS305において、UE100は、第1設定から第2設定へと切り替える。また、UE100からの制御情報を受信したeNB200は、第1設定から第2設定へと切り替える。
 ステップS306において、UE100は、ステップS302と同様に、Discovery信号のモニタの回数のカウントを開始する。
 ステップS307において、UE100は、カウントした回数(N)が第2閾値(Nthresh-B)に達した、すなわち、カウントした回数が第2閾値以上になったと判定する。
 ステップS308において、UE100は、ステップS304と同様に、第2設定から第1設定へと切り替えることを示す制御情報をeNB200に送信する。
 ステップS309において、UE100は、ステップS305と同様に、第2設定から第1設定へと切り替える。また、UE100からの制御情報を受信したeNB200は、第2設定から第1設定へと切り替える。
 その後、ステップS302の動作が実行される。
 なお、UE100は、第1設定と第2設定とを切り替える制御を停止し、一方の設定によってDiscovery信号をモニタしてもよい。この場合、UE100は、切り替える制御を停止したことを示す制御情報を、eNB200に送信できる。或いは、eNB200が、第1設定と第2設定とを切り替える制御を停止するための制御情報をUE100に送信してもよい。
 或いは、UE100が、主体的に切り替えるのではなく、eNB200からの指示に従って切り替えてもよい。具体的には、UE100は、eNB200からの第1設定と第2設定とを切り替える指示に基づいて、第1設定と第2設定とを切り替えてもよい。これによって、eNB200が、UE100の動作を制御することができるため、セルラ通信のための無線リソースをUE100に効率よく割り当てることが可能となる。
 この場合、eNB200は、UE100からの上りリンク信号の受信の回数をカウントする。或いは、eNB200は、上りリンク信号の受信の回数から、Discovery信号をモニタの回数をカウント(算出)してもよい。
 また、eNB200は、図12に示すような制御情報によって、切り替え指示ができる。UE100は、切り替え指示が「0」を示す場合、第1設定に切り替える(すなわち、第1設定の適用を開始する)。UE100は、切り替え指示が「1」を示す場合、第2設定に切り替える(すなわち、第2設定の適用を開始する)。
 [その他の実施形態]
 上述した第1実施形態では、PLMNが異なる場合のDiscovery信号(Inter-PLMN Discovery)のモニタのケースを説明したが、これに限られない。PLMNが同一の場合のDiscovery信号(Intra-PLMN & Inter-freq.Discovery)のモニタのケースであっても、本発明を適用可能である。
 上述し第1実施形態では、eNB200-1は、他PLMNのDiscoveryリソース情報をUE100から取得していたが、これに限られない。例えば、eNB200-1は、eNB200-2からX2インターフェイスを介して、Discoveryリソース情報を取得してもよい。或いは、eNB200-1は、第2PLMNのOAMから第1PLMNのOAMを経由して、Discoveryリソース情報を取得してもよい。
 上述した第2実施形態では、第1設定と第2設定との切り替えについて説明したがこれに限られない。UE100は、3つ以上の設定の切り替えを行ってもよい。この場合、3つ以上の設定は、第1実施形態で説明したいずれかの優先順位によって規定できる。例えば、UE100が、CAを実行している場合、「PCellとの通信>Discovery信号のモニタ>SCellとの通信」となるように第1設定が規定され、「PCellとの通信>SCellとの通信>Discovery信号のモニタ」となるように第1設定が規定され、「Discovery信号のモニタ>PCellとの通信>SCellとの通信」となるように第1設定が規定されてもよい。
 上述した各実施形態において、UE100からeNB200へのシグナリングとして、UE100がD2D通信に興味があるか否かを示すD2D興味指標(D2D Interest Indication)を使用してもよい。例えば、D2D興味指標は、モニタギャップのアクティベート/ディアクティベートを示す情報又は、モニタギャップの解除を示す情報を含んでもよい。
 上述した各実施形態では説明しなかったが、同一PLMN間(Intra-PLMN)でD2D近傍サービスを利用する場合と、異なるPLMN間(Inter-PLMN)でD2D近傍サービスを利用する場合とで、UE100の振る舞い(動作仕様)が異なることが想定される。例えば、同一PLMN間でD2D発見手順を行う場合には、eNB200がD2D同期元となり、UE100は、D2D同期元であるeNB200(セル)から送信される同期信号(PSS/SSS)によって同期し、異なるPLMN間でD2D発見手順を行う場合には、UE100がD2D同期元となり、UE100は、D2D同期元であるUE100から送信されるD2D同期信号によって同期することが想定される。この場合、同一PLMN間と異なるPLMN間とで、UE100の同期手順が異なるし、場合によっては、UE100のDiscovery信号の受信手順が異なる。
 ところで、D2D近傍サービス(具体的には、D2D発見手順)で使用可能な周波数のD2D周波数リストが、同一PLMNで使用可能な周波数だけでなく、異なる周波数で使用可能な周波数の情報も含むことを想定する。この場合、UE100は、D2D周波数リストに基づいて選択した周波数が、UE100の選択PLMNと同一のPLMNで使用される周波数なのか、UE100の選択PLMNと異なるPLMNで使用される周波数なのかを特定する必要がある。
 ここで、UE100が、D2D周波数リストに、D2D発見手順をサポートする(隣接)周波数を示す情報だけでなく、対応するPLMNを示す情報を含めることが考えられる。しかしながら、D2D周波数リストの情報量が増大するという問題がある。そこで、以下の方法によって、D2D周波数リストの情報量を増大させることなく、UE100が周波数を特定することが考えられる。
 第1に、UE100は、UE100が選択しているPLMNで使用され、且つ、サービングセルと異なる周波数(隣接周波数)を示す隣接周波数リストをサービングセルから取得する。例えば、UE100は、SIB5によって送信される情報をデコードすることによって、隣接周波数リストを取得できる。
 第2に、UE100は、D2D周波数リストをサービングセルから取得する。例えば、UE100は、SIB18によって送信される情報をデコードすることによって、D2D周波数リストを取得できる。
 第3に、UE100は、隣接周波数リストとD2D周波数リストとを比較する(図13参照)。図13に示すように、UE100は、隣接周波数リストとD2D周波数リストとに共通する周波数F1は、同一PLMNでのD2D発見手順で使用可能であると判定する。具体的には、UE100は、周波数F1によって、Inter-Freq.&Intra-PLMNのD2D発見手順が可能と判定する。
 UE100は、隣接周波数リストにのみ示される周波数F2は、D2D発見手順で使用不能であると判定する。
 UE100は、D2D周波数リストにのみ示される周波数F3は、異なるPLMNでのD2D発見手順で使用可能であると判定する。具体的には、UE100は、周波数F3によって、Inter-Freq.&Inter-PLMNのD2D発見手順が可能と判定する。従って、UE100は、周波数F3が異なるPLMNで使用される周波数であることを特定できる。
 また、上述した各実施形態では説明しなかったが、UE100が、HPLMN(Home PLMN)或いは、EHPLMN(Equivalent Home PLMN)を選択している場合、UE100とHPLMNとの間に直接的な加入者契約があるため、D2D周波数リストは、UE100が選択できないPLMNである禁止PLMN(Forbidden PLMN)(のみ)で使用可能な周波数を含まないと考えられる。
 一方、UE100が、VPLMN(Visited PLMN)を選択している場合、UE100とVPLMNとの間に直接的な加入者契約ではなく、HPLMとVPLMNとの間のローミング契約に基づいてVPLMNが選択されているため、HPLMとVPLMNとの間でUE100に対する設定が異なる可能性がある。従って、ローミング先のサービングセルからUE100が受信したD2D周波数リストは、禁止PLMNで使用可能な周波数を含むことあると考えられる。
 現状、D2D周波数リストが禁止PLMNで使用可能な周波数を含む場合におけるUE100の動作について規定がないため、UE100が、禁止PLMNで使用可能な周波数においてDiscovery信号を許可なく送信する虞がある。そこで、以下の方法によって、UE100が、禁止PLMNで使用可能な周波数においてDiscovery信号を許可なく送信することを避けることができる。
 第1に、UE100は、D2D周波数リストをローミング先のサービングセルから受信する。
 第2に、UE100は、受信したD2D周波数リストの中から、Discovery信号の送信に使用するD2D周波数を選択する。また、UE100は、選択D2D周波数を提供するPLMNが禁止PLMNであるか否かを判定する。UE100は、上述の動作によって、選択D2D周波数を同一のPLMNが提供する場合、禁止PLMNにないと判定する。或いは、D2D周波数リストが、各D2D周波数に対応するPLMNを示す情報を含む場合、UE100は、当該情報に基づいて、PLMNを特定する。UE100は、特定したPLMNが禁止PLMNにあるか否かを判定してもよい。
 なお、禁止PLMNリストは、USIMに記憶することが好ましい。これにより、UE100のUSIMが変更された場合(すなわち、加入者情報が変更した場合)であっても、UE100の誤作動を防ぐことができる。
 第3に、UE100は、選択D2D周波数を提供するPLMNが、禁止PLMNリストにない場合に、当該PLMNの選択を開始する。UE100は、選択D2D周波数が禁止PLMNにある場合、他のD2D周波数を選択する。或いは、UE100は、Discovery信号の送信を諦める。
 第4に、UE100は、当該PLMNの認証を受け、当該PLMNを選択できた場合に、選択D2D周波数を使用してDiscovery信号を送信することを要求する使用要求を選択したPLMNに属するセルに送信する。一方、UE100は、当該PLMNを選択できない場合、他のD2D周波数を選択する。或いは、UE100は、Discovery信号の送信を諦める。UE100は、当該PLMNを禁止PLMNリストに登録してもよい。
 第5に、使用要求を受信したセルが属するPLMN内のサーバは、UE100のDiscovery信号送信の認証可能か判定する。サーバは、Discovery信号送信を認証できる場合、Discovery信号送信の承諾を通知し、Discovery信号送信を認証できない場合、Discovery信号送信の拒否を通知する。
 第6に、UE100は、Discovery信号送信の承諾通知を受信した場合、選択D2D周波数においてDiscovery信号を送信する。一方、UE100は、Discovery信号送信の拒否通知を受信した場合、UE100は、当該選択D2D周波数におけるDiscovery信号の送信を諦める。UE100は、選択D2D周波数及び当該PLMNの少なくとも一方を記憶してもよい。具体的には、UE100は、当該PLMNをDiscovery信号送信が承諾されないPLMNのリストであるDiscovery禁止PLMNリストに登録してもよい。また、UE100は、選択D2D周波数を、Discovery信号送信が承諾されない禁止D2D周波数のリストに登録してもよい。UE100は、これらのリストを用いて、選択D2D周波数を提供するPLMNが禁止PLMNであるか否かを判定できる。
 また、UE100は、これらのリストに基づいて、禁止PLMNのD2D周波数を選択できないように外してもよい。また、UE100は、禁止PLMNのDiscoveryリソースプールが分かる場合は、当該Discoveryリソースプールの時間領域をDiscovery信号のモニタ候補から外してもよい。
 次に、UE100が、公共の安全のために使用されるパブリックセーフティUE(Public safety UE)であるケースを想定する。この場合、UE100が、使用要求を送信しなくても、Discovery信号を送信可能であることが望まれる。
 そこで、UE100が、パブリックセーフティUEである場合、使用要求を送信する代わりに、パブリックセーフティUEであることを示すPS情報を通知する特別手順を行うことによって、Discovery信号送信の認証を省略できる。
 例えば、UE100は、ローミング先のPLMNに、PS情報を通知し、PS情報で認証を受けている場合、D2D周波数リストに含まれるD2D周波数を提供するPLMNの認証(及びDiscovery信号送信の承諾)なく、当該D2D周波数を使用してDiscovery信号を送信できる。
 或いは、UE100は、選択D2D周波数を提供するPLMNにおいて、PS情報を通知した場合に、当該PLMNの認証(及びDiscovery信号送信の承諾)なく、当該D2D周波数を使用してDiscovery信号を送信できる。
 或いは、UE100は、選択D2D周波数を提供するPLMNの認証の前に、パブリックセーフティ認証サーバにアクセスする。UE100は、パブリックセーフティ認証サーバから認証を受けた場合に、当該PLMNの認証(及びDiscovery信号送信の承諾)なく、当該D2D周波数を使用してDiscovery信号を送信できる。
 PS情報は、例えば、パブリックセーフティの機関の認証を示す認証情報の少なくとも一部である。当該認証情報は、パスワード(認証キー)であってもよい。また、当該認証情報は、複数の認証キーであり、時刻(UTC)によって適用される認証キーが変わってもよい。例えば、UE100は、第1認証キー(0時~12時に使用)と第2認証キー(12時~24時に使用)とを記憶している場合、現在時刻によって、PS情報を生成するための認証キーを選択する。なお、当該認証情報は、例えば、UE100のUSIMに記憶されている。
 或いは、PS情報は、パブリックセーフティの機関によって発行されたパブリックセーフティ固有IDの少なくとも一部であってもよい。例えば、PS情報は、パブリックセーフティ固有IDの最初の16ビットである。なお、パブリックセーフティ固有IDは、所定の機関に発行された機関IDであってもよいし、個人に発行された個人IDであってもよい。
 なお、UE100からPS情報を受信したeNB200は、UE100に対して、D2D近傍サービス(少なくともD2D発見手順)に使用される無線リソース(送信リソース又は送受信リソース)を割り当てなければならない。
 また、上述した第1実施形態において、モニタギャップ報告は、モニタの対象を示す情報(例えば、PLMNの識別子、周波数帯の識別子(EARFCN)、中心周波数の情報の少なくともいずれかのリスト)を含んでもよい。また、モニタギャップを示す情報は、ギャップパターンの周期長さ(例えば、サブフレーム数)を示す情報、ギャップパターンの開始とモニタの開始とのオフセット値(例えば、整数)を示す情報及びギャップパターンのうちモニタが行われる期間(有効期間)を示す情報を含む情報であってもよい。或いは、モニタギャップを示す情報が、第1実施形態で説明したように、サブフレームパターンのビットマップを示す場合、ビットマップは、(例えば、HARQプロセスにおいて)eNB200-1が使用しないことを望むサブフレームが「0」を示し、eNB200-1が使用してもよいサブフレームが「1」を示すビット列であってもよい。この場合、上りリンク信号のための制御情報(UL grant)を受信する可能性があるサブフレーム、上りリンク信号の再送を行うサブフレーム(例えば、UL HARQ 再送サブフレーム)、上りリンク信号及び/又は下りリンク信号の再送のためのフィードバック情報を送信するためのサブフレーム(DL/UL HARQ feedback)が「1」で示されてもよい。
 また、モニタギャップを示す情報として、ギャップパターンを示す情報を送信する場合、1つのモニタギャップを示す情報が、興味のある全ての周波数におけるギャップパターンを示してもよい。例えば、「0」がモニタを希望するサブフレームを示し、「1」がモニタを希望しないサブフレームを示すと仮定する。第1の周波数における送信リソースプールのサブフレームパターンが、「11100000」であり、第2の周波数における送信リソースプールのサブフレームパターンが、「00000111」である場合、1つのモニタギャップを示す情報は、「11100111」を示してもよい。これにより、オーバヘッドが減少できる。
 或いは、1つのモニタギャップを示す情報が、興味のあるPLMN毎のギャップパターンを示してもよい。この場合、複数のPLMNに興味があるUE(すなわち、複数のPLMNにおいてD2D近傍サービスを利用したいUE)は、複数のモニタギャップを示す情報をeNB200に送信する。複数のモニタギャップを示す情報のそれぞれは、各PLMNの識別子と対応付けられている。
 或いは、1つのモニタギャップを示す情報が、興味のある周波数毎のギャップパターンを示す情報を示してもよい。この場合、複数の周波数に興味があるUE(すなわち、複数の周波数においてD2D近傍サービスを利用したいUE)は、複数のモニタギャップを示す情報をeNB200に送信する。複数のモニタギャップを示す情報のそれぞれは、各周波数の識別子と対応付けられている。
 なお、UE100は、モニタギャップ要求に含まれるDiscoveryリソース情報として、上述にて説明したモニタギャップを示す情報又はモニタギャップ報告に含まれる情報と同じ形式の情報を送信してもよい。また、eNB200-1は、許可されたモニタギャップを示す情報及びモニタギャップ要求の応答として、上述にて説明したモニタギャップを示す情報又はモニタギャップ報告に含まれる情報と同じ形式の情報を送信してもよい。
 なお、eNB200は、UE100から送信されたギャップパターンを示す情報に基づいて、他のUE100のモニタギャップを決定(設定)してもよい。例えば、UE100が、モニタギャップを示す情報として所定の周波数の識別子と対応付けられたギャップパターンを示す情報をeNB200に送信し、且つ、他のUE100が、希望する所定の周波数の識別子を含むモニタギャップ要求をeNB200に送信した場合、eNB200は、UE100からのギャップパターンと同じギャップパターンを他のUE100のモニタギャップに設定することができる。
 また、上述した第2実施形態では、UE100は、間欠受信モードのオフ期間に他の周波数におけるDiscovery信号をモニタしていたが、これに限られない。UE100は、他のシステムにおける基地局からの電波強度を測定するために割り当てられた期間であるメジャメントギャップ(Measurement Gap)において、他の周波数におけるDiscovery信号をモニタしてもよい。また、セルに接続しているUE(コネクティッドUE)100が、メジャメントギャップにおいてのみ、他の周波数におけるDiscovery信号をモニタしてもよい。メジャメントギャップが設定されている期間は、接続中のセルが、UE100に対して無線信号を送信しないため、UE100がD2D無線信号の送信又は受信を行うことによって接続中のセルから情報を受信できないという問題が発生しない。なお、UE100は、単一の受信機(又は送受信機)を備えている場合にのみ、メジャメントギャップ(及び間欠受信モードのオフ期間)においてのみ、D2D無線信号の送信又は受信を行ってもよい。UE100は、複数の受信機(又は送受信機)を備えている場合、メジャメントギャップ以外の期間において、D2D無線信号の送信又は受信を行ってもよい。
 或いは、UE100は、設定されている間欠受信モードのオフ期間及び/又は設定されているメジャメントギャップのみでは、他の周波数におけるDiscovery信号のモニタが充分に実行できないと判定した場合、モニタギャップを決定してもよい、或いは、UE100は、eNB200にモニタギャップ要求を送信してもよい。例えば、UE100は、間欠受信モードのオフ期間及び/又はメジャメントギャップにおいて、他の周波数におけるDiscovery信号のモニタが困難であったり、他の周波数におけるDiscovery信号のモニタを行っても、他のUE100からDiscovery信号を受信できない場合に、モニタギャップを決定したり、eNB200にモニタギャップ要求を送信したりしてもよい。また、UE100は、間欠受信モードのオフ期間及び/又はメジャメントギャップのみのDiscovery信号のモニタでは、基準値以上の品質(例えば、発見可能性(discovery probability))を確保できない場合に、モニタギャップを決定したり、eNB200にモニタギャップ要求を送信したりしてもよい。例えば、UE100は、間欠受信モードのオフ期間及び/又はメジャメントギャップの時間が短すぎる場合、モニタの品質(精度)が確保できないと判定する。基準値(閾値)は、eNB200(サービングセル)によって設定されてもよいし、eNB200よりも上位のネットワーク装置(例えば、MME、OAM、NASエンティティ、ProSe Functionを有するサーバなど)によって設定されてもよいし、予め決定されている閾値(pre-defined value)であってもよい。なお、ProSe Functionを有するサーバは、D2D近傍サービスに関する管理を行うサーバであり、例えば、上述した第1サーバ400-1(又は第2サーバ400-2)である。
 また、上述した第1実施形態において、eNB200-2は、第2PLMNにおけるDiscoveryリソース情報を含む設定情報をSIB18によって送信していたが、eNB200-1が、自身の属する第1PLMNにおけるDiscoveryリソース情報を含む設定情報をSIB18によって送信してもよいことは勿論である。さらに、eNB200-1は、他のPLMN(又は他のeNB200-2)におけるDiscoveryリソース情報をSIBによって送信してもよい。或いは、eNB200-1は、他のPLMN(又は他のeNB200-2)におけるDiscoveryリソース情報を専用の信号(dedicated signalling)によって個々のUE100にユニキャストで送信してもよい。eNB200-1は、他のPLMN(又は他のeNB200-2)におけるDiscoveryリソース情報を、モニタギャップとして送信する場合にのみ、専用の信号によってUE100にユニキャストで送信してもよい。この場合、UE100は、SIBではなく、専用の信号によって受信した他のPLMN(又は他のeNB200-2)におけるDiscoveryリソース情報に基づいて特定されるリソースプールの期間をモニタギャップとみなすことができる。
 また、eNB200-1は、所定のUE100に対して許可したモニタギャップを示す情報又は所定のUE100に割り当てたモニタギャップを示す情報を、他のPLMN又は他のeNB200におけるDiscoveryリソース情報(の少なくとも一部)として、SIBによって送信してもよい。UE100は、SIBによって受信した、他のPLMN又は他のeNB200におけるDiscoveryリソース情報に基づいて、モニタギャップを決定してもよいし、モニタギャップ要求に含ませるDiscoveryリソースプールを決定してもよい。
 上述した第2実施形態において、UE100は、無線送受信機110を1つのみ備える場合(すなわち、複数の周波数(サービングセルの周波数と興味があるD2D周波数)において同時に受信する能力がない場合)、間欠受信モードのオフ期間にのみ、他の周波数におけるDiscovery信号をモニタしてもよい。また、UE100は、間欠受信モードのオフ期間に他の周波数におけるDiscovery信号をモニタするために、干渉(例えば、UE自身のWLAN通信に基づく干渉、GNSSの使用に基づくGNSSからの/への干渉など)を抑制するために使用されるIDCメッセージ(InDeviceCoexindication message)を、eNB200に送信してもよい。
 上述した各実施形態では、Discovery信号のモニタ(受信)を中心に説明したが、これに限られない。上述した内容は、Discovery信号のアナウンス(送信)に適用されてもよい。従って、上述のDiscovery信号のモニタ(受信)をDiscovery信号のアナウンス(送信)に置き換えてもよい。また、上述した内容は、D2D発見手順だけでなく、他の動作(例えば、D2D通信)に適用されてもよい。従って、上述のDiscovery信号をD2D通信(communication)信号に置き換えてもよい。例えば、UE100が、他の周波数においてD2D通信信号を送信及び/又は受信するためのギャップを決定してもよいし。或いは、eNB200(サービングセル)が、他の周波数(他のセル)においてD2D通信信号を送信及び/又は受信するためのギャップを決定し、当該ギャップをUE100に送信してもよい。
 上述した各実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 [付記]
 以下に、実施形態の補足事項について付記する。
 (A)付記1
 (A1)導入
 この付記1では、PLMN間発見機能(inter-PLMN D2D discovery functiolity)をサポートするための方法及び可能な解決策を検討する。
 (A2)PLMN間発見手順(inter-PLMN discovery)サポート
 一部の企業は、特に、既存のピア・ツー・ピア発見機能に優る利点を考慮して、LTE D2DにおけるPLMN間機能をサポートすることに関心を示した。SA2は、リリース12におけるPLMN間発見手順のサポートもキャプチャーした。さらに、D2Dは、交通事故(トラフィックアクシデント)を削減する可能性のある有望なテクノロジーのうちの1つとして既に確認されている。D2D発見手順が同一PLMN内での運用に制限される場合、D2Dの有用性は、著しく低減されるであろう。
 提案1:PLMN間D2D発見手順(inter-PLMN discovery)は、リリース12においてサポートされるべきである。
 (A3)PLMN間発見手順のステージ2デザイン
 (A3.1)課題
 提案1が採用される場合、PLMN間発見手順を行う1つの単純な方法は、セル間/周波数間発見手順サポートのためのメカニズムに、PLMN間発見手順の機能を組み込むことである。換言すると、PLMN間発見手順は、セル間/周波数間発見手順のために合意済みであるSIBの使用を通じてサポートされるべきである。
 (A3.2)SIBプロビジョニングスキーム
 PLMN間発見手順をサポートするために、発見リソース情報は、D2D UEが他のPLMNに属するセルにおいて送信されたDiscovery信号をモニタするためにさらに必要とされる。UEは、サービングセルのSIB(例えば、SIB18)から、同一周波数内でDiscovery信号を受信するための情報のフルセットと、少なくとも発見手順をサポートするのはどの周波数であるかについてのインディケーションとを取得することができる。サービングセルから送信されたSIB18が周波数間発見手順のための情報のフルセットを含むか否かは、未だ決定されていないが、同じPLMNから提供される周波数である限り、同一周波数内/周波数間でのDiscovery信号の受信についてのこのような情報に関する知識をサービングセルが有することが前提とされてもよい。
 PLMN間発見手順サポートに関する状況は、異なるPLMNに属するセルがどのような方法でお互いから情報のフルセットを取得するかが不明確であるので、異なる。以下の2つのオプションが考慮されてもよい(図14参照):
 ・オプション1:サービングセルは、他のPLMNからのSIB18のコピーをSIBの中で提供する。
 オプション1は、ローミング契約に基づく設定、または、複数のPLMNによって共有される、もしくは、利用できるサーバによる設定に含まれてもよい。このオプションでは、SIB18から共有される発見手順情報(discovery information)は、静的または準静的であることが前提とされる。UEは、異なるPLMN(群)に属する発見手順情報を取得するためにこのUEのサービングセルのSIB18をデコードしてもよいことが前提とされる。このオプションの欠点は、特に、異なる複数のPLMN(multiple inter-PLMNs)からの発見手順情報がサポートされる必要がある場合、SIB18のサイズが著しく増大する。
 RANレベルSIB18共有:これは、PLMN(群)による直接X2通信を用いてもよい。より動的なSIB18共有を容易に実現することができるが、少なくともリリース12の範囲外である。
 ・オプション2:UEは、別のPLMNに属するセルから直接的にSIB18を取得する。
 オプション2では、UEは、別のPLMN(群)に属する隣接セルから直接的にSIB18を取得する必要がある。これは、動的なSIB18共有を容易に実現し、サービングセルは、サービングセル自身のSIB18の中で異なったPLMN(群)のSIB18を提供する必要はない。このオプションは、UEがPLMN間発見手順のために複数のSIB18をデコードする複雑性を増大させる。UEが別のPLMNに属するSIB18を取得するために、当該UEのサービングセルとの協調を必要とするかどうかは、さらなる課題である。
 オプション1が採用される場合、SIB18のサイズは、複数のPLMNからの発見手順情報を収容するために著しく増大される必要があるであろう。オプション2では、SIBのサイズは、同一PLMN内に限定され、特に、発見手順情報が準静的であることが前提とされる場合、UEが複数のSIB18を復号するための複雑性は、限定される。従って、オプション2が採用されるべきである、と結論を出す。
 提案3:サービングセルは、サービングセル自身のPLMNに属するSIB18を提供すれば十分である、ことを合意すべきである。
 (A3.3)他のPLMNの周波数の識別
 下記合意において、「隣接周波数」が他のPLMNの周波数を含むか否かは明確でない。
 サービングセルは、SIB情報の中で、どの隣接周波数がProSe発見をサポートしているのかを、通知してもよい。
 周波数情報がUEのサービングセルのSIBから得られない場合、UEは、他のPLMNからのセルがカバレッジ範囲内に存在するか否か、および、SIB18が提供されているか否かを確認するためだけに、頻繁にサービングセルの周波数とは異なる周波数に、受信機の周波数を調整する必要があるであろう。しかしながら、他のPLMNの周波数がサービングセルのSIBの中で一覧化されて提供される場合、UEは、指定された周波数に同調するだけでよく、既存のDRX機会を使用して異なるPLMNに属するセルから直接的にSIB18を取得してもよい。
 提案4:サービングセルのSIBは、PLMN間のD2D発見手順を念頭に入れて他のPLMNの周波数を提供することに合意すべきである。
 (A4)課題
 PLMN間のSIB18情報交換の有無の前提の各事例に関して、論点が検討され得る。この章では、2つの観点について考察する。
 (A4.1)PLMN間のSIB18情報の交換なし
 上記提案に合意できる場合、PLMN間の発見手順は、周波数間発見メカニズムに加えて容易に実現されるであろう。しかしながら、異なるPLMN(inter-PLMN)の発見手順情報の共有がサポートされていないことが前提とされる場合、異なるPLMNに属するセルからSIB18情報を取得する機会をサービングセルがUEに適切に設定する簡単な方法は、存在しないであろう。特に、RAN1は、UEがサポートするFDDキャリアのスペクトルをDLおよびULで同時に受信できない可能性があることを既に前提としている。
 ・所見:異なるPLMNの発見手順情報の共有がない場合、サービングセルは、PLMN間Discovery信号のモニタリングのためにUEを適切に設定できない可能性がある。
 この所見の観点から、UEがSIB18情報を取得し、別のPLMNに属するセルからのDiscovery信号をモニタするために、以下の2つのオプションが検討されてもよい。
 ・オプション1a:UEは、既存のDRX設定を用いて、DRXオフ期間中に、異なるPLMNに属するSIB18又はSIB19の受信とDiscovery信号のモニタとを行ってもよい。
 ・オプション2a:PLMN間の発見手順情報は、UEによってサービングセルに間接的に提供される。例えば、UEは、異なるPLMNに属するセルから受信されたSIB18の全て(フルセット)または一部(サブセット)を転送する。
 比較すると、オプション1aは、PLMN間の発見手順をサポートするために既存の仕様への著しい変更を要求しないが、既存のDRXでは、PLMN間の発見手順の機会は、「ベストエフォート」に基づいている。UEがDRXだけを使用して好ましいPLMN間のDiscovery信号をモニタできる保証はない。その上、UEは、DRXオフ期間中に、例えば、HARQ再送信およびスケジューリング要求(SR)などのULセルラ通信を実行しても差し支えなく、かつ、UEは、同時に行われる発見モニタリングおよびULWAN通信をサポートしないことが前提なので、PLMN間発見モニタリングの機会は、低減される。
 オプション2aでは、UEは、サービングセルにとって関心のあるPLMN間の発見手順情報を提供する。サービングセルが発見手順情報を受信すると、PLMN間発見手順のための適切な機会をUEに設定するか否かを決定することはサービングセルに委ねられる。このオプションの欠点は、Uuインターフェイスによるシグナリングが増加する可能性がある。
 どちらのオプションにも欠点があるので、2つのオプションのうち、許容範囲にあると考えられ得るより大きい仕様へのインパクトを有するが、D2D発見手順のため十分な利益をもたらすオプションを決定すべきである。しかしながら、どちらのオプションが採用されるかとは無関係に、UEの挙動がサービングセルの制御下にあるべきことは明確であるべきである。
 提案5:PLMN間発見モニタリングに関するUEの挙動がサービングセルの制御下にあるべきことが合意されるべきである。
 提案6:SIB18情報がPLMNの間で交換されない場合、オプション1aが好ましいか、オプション2aが好ましいかを検討すべきである。
 (A4.2)PLMN間でのSIB18情報の交換あり
 SIB18のフルセットが異なるPLMNに属するセルの間で交換されることを前提として、サービングセルが、他のPLMNに属するセルのPLMN間発見機会を知っていることが前提とされてもよい。しかしながら、他のPLMNからの隣接セルの個数に起因して、サービングセルが他のPLMNからの全ての発見リソースをSIB18に含めることは実現可能でない。SIB18のサイズは、著しく増大されるであろう。サービングセルは、UEが他のPLMNに属するセルからの発見リソースをモニタ及び受信するためのギャップ機会(gap occasions)を設定する際に2つのオプションを有するであろう。
 ・オプション1b:サービングセルがSIB18において発見手順情報をブロードキャストしない場合、1つ以上のディスカバリ可能な周波数に関してPLMN間発見機会をUEに設定することはサービングセルに委ねられる。サービングセルは、UEの能力に従って、PLMN間発見機会をUEに設定してもよい。
 オプション1bでは、サービングセルは、SIB18において、何らかのPLMN間周波数情報を含む、PLMN間発見手順情報を提供する必要がない。サービングセルは、PLMN間発見機会をUEに設定するためにUEからのフィードバックを要求しない。これは、PLMN間発見手順をサポートするより簡単な方法であるが、オプション1bは、サービングセルがPLMN間発見手順のためUEの優先傾向(preferences)を考慮できない、という欠点がある。
 ・オプション2b:このオプションでは、サービングセルは、他のPLMNにおけるディスカバリ可能な周波数をSIB18においてブロードキャストする。UEは、他のPLMNにおける1つ以上の周波数において、発見リソースをモニタするUEの意図をサービングセルに示すこともあり得る。発見興味インディケーションに基づいて、サービングセルは、UEのニーズのために適切なPLMN間発見機会をUEに設定してもよい。
 オプション2bは、発見機会の設定を、UEが興味のある周波数に基づいてサービングセルが正確に決定できる、という利点がある。これは、追加のシグナリングがPLMN周波数をSIBにおいてブロードキャストするために必要とされ、UEに発見機会が適切に設定される前にUEが発見興味インディケーションをサービングセルに送信する必要がある、という欠点がある。
 どちらのオプションもいくつかの欠点がある。しかしながら、サービングセルが、発見機会をUEが関心のある周波数だけに制限するかもしれないので、オプション2bが望ましい。
 提案7:SIB18情報がPLMNの間で交換されることを前提として、PLMN間発見機会は、UEに関心のある周波数に基づくべきである。
 (A5)結論
 この付記1では、PLMN間D2D発見手順の必要性を検討し、PLMN間D2D発見手順をサポートするためにシンプルなメカニズムを提供した。また、想定される課題及び潜在的な解決方法を述べた。
 (B)付記2
 (B1)導入
 この付記2では、inter-Frequency及びinter-PLMN discovery(異なる周波数間及び異なるPLMN間におけるD2D発見手順)をサポートするための未解決の課題を、可能な解決策に沿って考察する。
 (B2)Inter-PLMN discovery観点での未解決の課題
 この章では、inter-frequency/inter-PLMN discoveryを考察する。
 (B2.1)上位レイヤがinter-PLMNキャリアリストを提供するかどうかに関するFFS
 inter-PLMNキャリアに関して、上位レイヤが、他のProSeキャリアのリストを代わりに提供できるかどうかは、FFSである。これは、サービングセルが所定の理由のためにSIB18を提供できない場合に、UEにとって有益な可能性がある。しかしながら、既存のコンセプトを引き継ぐために、RAN(無線アクセスネットワーク)自身が、自身のセルの動作周波数を決定して、且つ、どのキャリアがdiscoveryをサポートするかを決定する責任を有さなくてはならない。さらに、現時点では、上位レイヤ、すなわち、ProSe機能は、ProSe discovery(D2D発見手順)のためのキャリアのリストを提供できない、すなわち、E-UTRANがサービスを提供できない時にProSe直接通信に使用される無線パラメータのみが提供されてもよい。そのような上位レイヤ信号を導入した場合、RANとProSe機能との間の追加のインターフェイスの導入が必要となる。従って、少なくともリリース12では、上位レイヤによって提供されるinter-PLMN ProSe discoveryのための他のキャリアのリストをサポートすべきでないということを提案する。
 提案1:少なくともリリース12において、ProSe discoveryをサポートするinter-PLMN周波数のリストをRANのみが提供することを前提とすべきである。
 (B2.2)現状の合意のさらなる明確化
 (B2.2.1)ProSe discoveryキャリアのリストを受信する上でのUE動作
 UEがProSe discovery信号の受信を目的にできるキャリアのリストを、eNBはSIBで提供してもよい。これは、当該リストを制限するものであるか、当該リストがUEを補助するものであるかの一方又は両方のように思える。inter-PLMN discovery信号のモニタは、既存のPLMN選択手順の後に実行されるので、より明確にリストを受信する上でのUE動作を定義する必要がある。リストが、モニタUEの不必要な電力消費を減少させるための単なる補助情報である、すなわち、UEは、リストで提供されたキャリア上で送信されたProSe discovery信号のみをモニタしてもしなくてもよい、ことが好ましいと理解する。これは、例えば、図15に示すように、他のPLMN(すなわち、PLMN2)のSIB18におけるリストに存在し、サービングセル(すなわち、PLMN1)のSIB18のリストには存在しない追加のProSeキャリア(D2D周波数)に、UEが気付いた場合、当該UEは、追加のProSeキャリア上で送信されたdiscovery信号をモニタしてもよいことを意味している。さらに、UEが上位レイヤから許可を得ており、且つ、Uu受信に影響を与えない場合に限り、PLMN1又はPLMN2から受信したSIB18のリストに存在する周波数かどうかに関係なく、UEは、さらに他のPLMN(すなわち、図15には描かれていないPLMN3)でdiscovery信号をモニタするかどうかをさらに決定してもよい。
 提案2:UEは、SIB18のリストに存在するProSeキャリア以外のキャリアに合わせることをサービングセルから要求されない。さらに、UEが、サービングセルのSIB18のリストに存在しない周波数をモニタすることに何ら制限を与えない。
 (B2.2.2)「ProSe受信がUu受信に影響を与えない」の明確化
 上述の合意事項では、ProSe受信は、Uu受信に影響を与えない(例えば、UEが、ProSe discovery受信を実行するために、アイドル及び接続状態でDRX機会を利用したり、利用可能な場合は第2のRXチェインを使用したりする)ことが表明されている。この合意の主な目的は、UEがProSe discoveryのための自律的なギャップを使用することを避けるためである。これは、eNBから設定されたギャップ(eNB-configured gap)は、メジャメントギャップ手順に関する既存のメカニズムに基づいており、Uu受信に影響を与えると見なされないことを意味する。
 確認1:明確にeNBから設定されたギャップは、Uu受信に影響を与えると見なされない。
 DRX機会のみを用いるProSe discoveryは、発見確率の低下、すなわち、ベストエフォートdiscovery、になってもよい。二重のRxチェイン能力を有するUEは、追加の利点を有するけれども、現状、discoveryに関して単一の受信機が前提となっている。さらに、非公安UE(non-public safety UE)は、D2D近傍サービスをサポートするFDDキャリアのDL及びULスペクトル上で同時に受信できなくてもよいことが前提となっている。
 所見1:DRX機会のみが利用される場合、discovery機会は非常に限定されることがある。
 DRX機会のみが利用されることによって潜在的にdiscovery機会が低下することを考慮すると、discovery機会は、既存のギャップメカニズムに基づくべきである。しかしながら、ギャップメカニズムがdiscoveryのために機能するために、サービングセルは、Discoveryモニタに興味があるUEに適切なパラメータを設定するために、他のinter-PLMNキャリアについての詳細なProSe発見手順情報を有するべきである。UEが、他のInter-PLMNキャリア上で送信されたdiscovery信号をモニタするために、他のInter-PLMNキャリアのSIB18を読む必要があることが合意されたので、UEは、既に取得している他のinter-PLMNキャリアについての詳細なProSe発見手順情報をサービングセルに通知する能力を有する必要があることが前提となるであろう。サービングセルが、関心のある異なるPLMNの詳細なProSe発見設定の情報を全く持っていない、すなわち、ネットワークレベルでの協調(すなわち、OAM間又はRAN間での詳細なdiscovery情報の共有)がない場合に、サービングセルが、UEのためにギャップを設定するかどうかを決定する前に当該情報を取得するためのオプションとして、以下の2つのオプションが考えられる。
 ・オプション1:UEは、inter-PLMNセル(異なるPLMNに属するセル)から受信したSIB18の一部又は全部をサービングセルに転送する。UEが、inter-PLMN SIB18情報をサービングセルに送らなくてはならない場合は、さらなる課題である。
 ・オプション2:UEは、可能なギャップ機会、例えば、UEがinter-PLMNセルから受信したSIB18に基づいて決定したギャップパターン、をサービングセルに通知する。
 オプション1は、UEが複数のSIB18をサービングセルに転送することが必要かもしれないので、シグナリングオーバヘッドの観点から、オプション2の方が、オプション1よりも好ましい。比較した場合、オプション2は、UEが希望するギャップパターンをサービングセルに通知することを必要とするだけである。NW間でのinter-PLMN協調を前提にできるかをサービングセルが示すことができるかどうか、また、inter-PLMN discoveryのためにUE補助が必要かどうかをNWが決定できるかどうかは、さらなる課題である。
 提案3:サービングセルは、Inter-PLMN discoveryモニタ(異なるPLMN間におけるdiscovery信号の受信)のためのギャップをUEに設定すべきである。当該設定は、UEから要求されたギャップパターンに基づいてもよい。
 (B3)inter-frequency discovery観点での未解決の課題
 この章では、inter-frequency/intra-PLMN discoveryを考察する。
 (B3.1)eNBが、他のintra-PLMNキャリアについての詳細なProSe発見手順情報を提供してもよいという(設定としての)オプションがあるかどうかは、FFSである。
 Inter-PLMN discoveryとは対照的に、Intra-PLMN discovery(同一PLMNにおけるD2D発見手順)に関して、サービングセルがUEに近隣セルの詳細なProSe発見手順情報を直接提供しているかどうかに関係なく、サービングセルが近隣セルの詳細なProSe発見手順情報を有することを前提としてもよい。
 上記FFSは、サービングセルが自身のSIB18を提供しているだけでなく、他のintra-PLMN周波数の詳細なProSe発見手順情報を提供してもよいことを示唆している。上記FFSの意義は、サービングセルがinter-frequencyセル(異周波数セル)のProSe発見手順情報をUEに提供できるかどうかではなく、サービングセルがinter-frequencyセルとの協調が実際にできることである。後者のFFSの意義のみに関して、サービングセルは、詳細なProSe発見手順情報を提供せずに、inter-frequency ProSe discoveryのためにUEに適切なギャップを設定できる。
 表1は、2つのケース、(1)UEが他のキャリアからSIB18を直接取得する(ベースライン)、(2)UEが自身のサービングセルからのみSIB18情報を取得する(FFS)ケース、に関する比較を示す。両方のスキームとも欠点を有しているが、FFSスキーム(ケース2)は、UE複雑性を減少させ、ネットワークが設定可能な動作を許容できるという利点を有する。ベースラインスキーム(ケース1)は、既存のDRXメカニズムに依存している。従って、たとえUEが他のキャリアからSIB18を直接取得したとしても、discovery機会が非常に限定されている場合、その情報は、UEにとって全く有用でない。従って、設定オプションとして、eNBが他のintra-PLMN周波数(同一PLMN周波数)についての詳細なProSe発見手順情報を提供できる能力を有することを提案する。
Figure JPOXMLDOC01-appb-T000001
 提案4:eNBは、設定オプションとして、SIB及び/又は個別信号を介して他のIntra-PLMNキャリアについての詳細なProSe発見手順情報を提供してもよい。
 たとえ提案4が合意できない場合であっても、代替的なスキームを考察することが可能である。表1に示すように、ネットワークが設定可能なdiscovery機会は、UE複雑性の減少だけでなく、discoveryパフォーマンスを確保するのに有益である。サービングセルが、OAMを介してinter-frequency近隣セルのSIB18情報を取得してもよいことを前提にしてもよい。この代替案では、サービングセルが他のIntra-PLMN周波数上でのSIB18の全部の内容を提供しないだけでなく、UEが他のキャリア上でのSIB18の一部又は全部をサービングセルに通知する必要もないが、サービングセルは、discoveryモニタのためのギャップをUEに設定する能力を有している。欠点(シグナリング負荷)を取り除くことができるので、この代替的なスキームは、妥協案になる可能性がある。
 提案5:たとえサービングセルが詳細ProSe発見手順情報をUEに提供することに合意できない場合であっても、サービングセルがdiscoveryモニタのための適切なギャップをUEに設定すべきである。
 (B3.2)現在の合意のさらなる明確化
 (B3.2.1)自身のキャリアでProSe discoveryをサポートしないサービングセルが他のProSeキャリアのリストを提供できるかどうか
 eNBは、(可能であれば、対応するPLMN IDと共に)UEがProSe discovery信号の受信を試みるキャリア(intra-PLMN-inter-frequency及び/又はinter-PLMN-inter-frequency)のリストをSIBで提供してもよいことが合意されているが、図16に示すように、自身のキャリアでProSe discoveryをサポートしないセービングセルが他のProSeキャリアのリストを提供できるかどうかを明確にすべきである。
 図16は、ProSe discoveryをサポートしないサービングセルにキャンプするモニタUEがProSe discoveryをサポートするキャリアのリストを知りたい場合の一例を示す。サービングセルがSIBでキャリアのリストを提供する場合、モニタUEの動作は、合意されたinter-frequency discoveryと同様である。
 提案6:自身のキャリアでProSe discoveryをサポートしないサービングセルも他のProSeキャリアのリスト(及び詳細なProSe発見手順情報(もし提案4が合意された場合))をSIBで提供すべきである。
 (B3.2.2)ProSe指示を受信するNW動作
 ProSe discovery(D2D発見手順)及びcommunication(D2D通信)の両方に関して、UEがdiscoveryに関する意図を通知するためにProSe指示をサービングセルに送ることが合意された。ProSe communicationに関して、ProSe指示を受信するeNB動作は、ProSe communicationをサポートするキャリアへUEを移動させるハンドオーバに関するオプションを含む。しかしながら、ProSe discoveryに関して、ProSe指示を受信するNW動作はまだ不明確である。従って、UE動作もまた不明確であり、例えば、UEがProSe指示を送信するトリガが不明確である。
 提案7:discoveryに関するProSe指示を受信するNWに期待される動作を考察すべきである。
 以下に示すように、いくつかの候補NW動作がある。
 (A)ハンドオーバ;ロードバランスの目的として、eNBは、discoveryのためのProSe指示メッセージ内にUEが「興味がある」又は「興味がなくなった」ことを示すかどうかによってキャリアを割り当てるようにUEを移動させてもよい(すなわち、ハンドオーバさせてもよい)。
 (B)ProSe discovery設定変更;discoveryモニタに関する適切な機会を割り当てるために、eNBは、UEがinter-frequency discoveryに興味があるというProSe指示を受信した上で、DRXパラメータ又は(もし提案3、4又は5が容認可能な場合)ギャップの更新のいずれかをUEに再設定してもよい。
 intra-frequency discovery興味の受信のための他の観点が考察されてもよいことに留意する。
 所見2:discoveryのためのProSe指示を受信した上で、サービングセルは、discoveryモニタを補助するために、ハンドオーバの実行及び/又はUEのDRXを変更するオプションを有する。
 (B3.2.3)ProSe指示詳細
 (B3.2.3.1)周波数情報
 discoveryに関して考察されていないが、communicationのためのProSe指示が、送信及び受信を含むProSe communicationをサポートするための所望のProSe周波数を含むことは、合意されている。discovery目的に関して、ProSe指示が所望の周波数を含むこともまた利点がある。例えば、興味のある周波数がサービング周波数であることをUEが示す場合、ハンドオーバは必要とされない可能性が高い。
 そして、興味のある周波数が異なる周波数であることをUEが示す場合、サービングセルがUEを興味のある周波数にハンドオーバさせる又は少なくともその周波数上でdiscoveryをモニタするためのギャップをUEに提供する必要があってもよい。UEは、興味がある周波数の優先傾向(preferences)がないかもしれないが、将来的に、上位レイヤにおいてアプリケーション特有の周波数が示されたり、UEが特定の周波数でのdiscoveryに関する履歴情報を保持したりする可能性がある。例えば、サービングセルが特定の周波数上でUEのためにギャップを設定し、UEが当該周波数上で興味があるdiscovery信号を受信できる場合、UEが興味のある周波数をサービングセルに示すことは、サービングセルが、その後、UEが興味のない異なる周波数に関するギャップを設定させないために役に立つ。
 興味のある周波数がサービング周波数であるケースにおいて、UEがinter-frequency discoveryモニタに関する興味を示す方法、例えば、UEが興味のある周波数としてサービング周波数をただ送るかどうかは、FFSである。
 提案8:UEがProSe指示に興味のある周波数リストを含ませることを許可すべきである。
 discoveryのためのProSe指示がinter-PLMN discoveryに関する興味も通知できるかどうかは、まだFFSであるが、提案8の周波数リストは、ProSe指示がinter-PLMN discoveryに関する興味を通知するものかどうかを区別するために用いられてもよい。例えば、サービングセルは、ProSe指示の周波数リストと自身のSIB18のリストとを比較する手段を用いて、ProSe指示がinter-PLMN discoveryに関する興味を通知していることを知ることができる。もしギャップを設定するための情報を取得するための提案3が容認可能である場合、サービングセルは、inter-PLMN discoveryモニタを示唆するProSe指示を受信した上で、UEにinter-PLMN discoveryモニタを行わせるための適切な動作を実行すべきである。
 提案9:intra-又はinter-frequency discoveryに加えて、inter-PLMN discovery受信に関する意図を通知するためのProSe指示を許可すべきである。
 (B3.2.3.2)UE補助情報(UEAssistanceInfomation)の独立又は統一
 ProSe指示と同様の機能性に関して、ProSe discoveryリソースを要求するためにUE補助情報メッセージを再利用することが、ベースラインとして合意され、それは、Type2B discovery(すなわち、各UE個別にdiscovery信号のアナウンスのためのリソースが割り当てられる手順)のための送信リソースの要求にのみ関して基本的に前提としていた。従って、ProSe指示をベースライン合意と統一すべきかどうかが課題である。表2に機能がリストアップされている。
Figure JPOXMLDOC01-appb-T000002
 比較において、UE補助情報は、単にintra-frequency動作における送信リソースの要求を対象としている。一方、ProSe指示は、inter-frequency動作を含む多くの機能を有してもよい。しかしながら、eNB及び/又はUE動作が矛盾しない限り、同様の機能性に関する2つの独立したメッセージを備える理由は見当たらない。提案11が容認可能である場合に、ProSe指示がintra-frequency discovery アナウンスに興味があることを示す場合にそのような矛盾が生じるかもしれないが、当該指示を受信するサービングセルの種類によって区別可能である。すなわち、ProSeサポートセルであれば、Type2Bリソースを割り当てて、非ProSeサポートセルであれば、ハンドオーバを開始できる。従って、両方のメッセージを1つのメッセージに統一することが好ましい。
 提案10:ベースラインとしてUE補助情報に割り当てられた既存の機能を統一するために、1つのRRCメッセージが導入されるべきである。
 (B3.2.3.3)アナウンス意図
 モニタに関する意図を通知するためのdiscoveryのためのProSe指示が合意された。UEがdiscoveryアナウンス(送信)を実行したいが非ProSeサポートセル(すなわち、ProSe近傍サービスをサポートしていないセル)に現在接続しているケース(図16参照)において、UEのためにそのような行き詰まった状況への対処法を考察すべきである。可能な解決法は、サービングセルがProSeサポートキャリアへのハンドオーバを実行することをUEが期待しており、UEがProSe指示で当該アナウンス意図をサービングセルに通知することかもしれない。この通知によって、サービングセルは、例えば、UEをProSeサポートセルにハンドオーバさせる必要があるかどうかを決定できる。UEが二重に受信機を備えており、且つdiscoveryアナウンスの意図を有さないケースでは、UEを非ProSeサポートセル(おそらく、より輻輳していない1つのセル)にハンドオーバさせて、UEがdiscoveryモニタのために第2の受信機を使用することを許可することが適切かもしれない。
 提案11:UEは、discoveryアナウンスのための意図をサービングセルに通知すべきである。
 (B3.2.4)RRCアイドルにおける優先処理
 RRCアイドルUEにおける優先処理を考察する前に、inter-frequency discoveryをサポートする方法を明確にすべきである。MBMSケースにおいて、MBMS受信を試みるUEは、単一の受信機を備えている場合に限り、UEは興味のあるMBMSサービスを提供しているセルにキャンプする必要がある。一方で、「intra-及びinter-frequency(及びinter-PLMN) ProSe受信は、Uu受信に影響を与えない(例えば、UEが、ProSe discovery受信を実行するために、アイドル及び接続状態でDRX機会を利用したり、利用可能な場合は第2のRXチェインを使用したりする)。UEは、自律的なギャップを作り出すべきではない。」によれば、discoveryモニタは、ProSe discoveryをサポートするセルにキャップすることを要求していないように思える。これは、既存のinter-frequency測定におけるCRS受信と同様のアプローチである可能性が高い。しかしながら、UEがinter-frequency discoveryモニタのためにそのセルにキャンプすることを要求されるか否かがまだ明確でない。
 確認2:UEは、inter-frequency(及びinter-PLMN)discoveryモニタを試みるUEは、ProSe discoveryをサポートするセルにキャンプすることを要求されない(図17参照)。
 (B3.2.2)章で考察したように、RRC接続中のUEがProSe discoveryに興味があるかどうかに基づいたProSe指示に付随したハンドオーバを利用して、非ProSeサポートセルを含むinter-frequencyセル間でのロードバランスが最適化されてもよい。しかしながら、discoveryモニタに興味のあるUEを収容するために、既存の再選択手順及び優先度を変更する必要があるかが明確でない。SIB5又は個別信号によって提供されるセル再選択優先度(CellReselectionPriority)を介してUEに対して具体的に設定されているアイドルモードロードバランスに対する問題を考慮しつつ、特に、再選択手順及び優先度の変更を慎重に考慮する必要がある。
 少なくともProSe discoveryに興味がないUEに関して、当該UEは、eNBによって設定された既存の再選択優先度に従うべきである。
 観察3:ProSe discoveryに興味がなくなったアイドルUEは、セル再選択優先度に関して既存の規則に従うべきである。
 従って、アイドルのUEが、ProSe discoveryに興味がある場合に、既存のセル再選択手順よりもProSe discoveryを優先させることを許可するかどうかがさらに考慮すべきである。inter-frequencyセルがサービングセルと同期してない場合、既存のDRX機会が、他の周波数上でのdiscoveryモニタに十分であるかを考慮すべきである。さらに、ProSe discoveryモニタに興味があるUEが、ProSe discoveryアナウンスに興味がある傾向もある場合には、UEが、SIN18のリストにあるキャリア上で動作するセルにキャンプすることがより良いかもしれない。これは、discovery信号を送信する前に再選択を実行することを避けることができるからである。しかしながら、UEがdiscoveryモニタにだけ興味がある場合、セル再選択の間、SIB18のリストにあるキャリアが優先される決定的な理由がないように思える。従って、ProSeキャリアの優先順位付けが必要かどうかは、ProSe discoveryモニタに興味があるUEに関する前提に依存する。
 提案12:UEがセル再選択の間にProSe discoveryのための優先順位付けを行うことを許可すべきである。
 (B4)結論
 この付記2では、inter-frequency及びinter-PLMN discoveryに関する未解決の課題を考察し、現在の合意の明確性を与えている。discoveryモニタ手順及びProSe指示に関する拡張の必要性を主張している。さらに、既存のセル再選択手順への考慮を与えている。
 なお、米国仮出願第62/035151号(2014年8月8日出願)及び米国仮出願第62/056042号(2014年9月26日出願)の全内容が、参照により、本願明細書に組み込まれている。

Claims (7)

  1.  サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備え、
     前記制御部は、前記リソースプールを特定可能な情報に基づいて、前記他の周波数において、前記D2D発見手順におけるD2D発見信号をモニタすることを特徴とするユーザ端末。
  2.  サービングセルの周波数と異なる他の周波数におけるSIB(System Information Block)から、近傍端末を発見するためのD2D発見手順用のリソースプールを特定可能な情報を取得する制御部を備え、
     前記制御部は、前記リソースプールを特定可能な情報に基づいて、上りリンク信号の送信動作を行う期間とは異なる期間に前記発見信号の送信であるD2D動作を行うことを特徴とするユーザ端末。
  3.  前記制御部は、前記ユーザ端末の能力を示す情報に基づいて、前記D2D発見信号をモニタするモニタ期間を決定することを特徴とする請求項1に記載のユーザ端末。
  4.  前記ユーザ端末の能力を示す情報とは、前記ユーザ端末が複数の受信機を備えていることであることを特徴とする請求項3に記載のユーザ端末。
  5.  下りリンク信号を受信する受信部をさらに備え、
     前記制御部は、前記受信部を間欠的に起動する間欠受信モードを制御し、
     前記制御部は、前記間欠受信モードにおいて前記受信部が起動している期間か停止している期間かに基づいて前記D2D発見信号をモニタするモニタ期間を決定することを特徴とする請求項1に記載のユーザ端末。
  6.  前記制御部は、前記ユーザ端末がRRCアイドル状態であるかRRC接続状態であるかに基づいて前記D2D発見信号をモニタするモニタ期間を決定することを特徴とする請求項1に記載のユーザ端末。
  7.  サービングセルの周波数において、近傍端末を発見するためのD2D発見手順において用いられるD2D発見信号をアナウンスする制御部を備え、
     前記制御部は、前記D2D発見手順用のリソースプールが配置されている期間であっても、前記D2D発見信号のアナウンスよりもセルラ通信を優先するユーザ端末。
PCT/JP2015/072419 2014-08-08 2015-08-06 ユーザ端末 WO2016021702A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15830278.6A EP3179805A4 (en) 2014-08-08 2015-08-06 User terminal
JP2016540746A JP6321810B2 (ja) 2014-08-08 2015-08-06 通信方法、ユーザ端末及びプロセッサ
US15/083,645 US20160212609A1 (en) 2014-08-08 2016-03-29 User terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462035151P 2014-08-08 2014-08-08
US62/035,151 2014-08-08
US201462056042P 2014-09-26 2014-09-26
US62/056,042 2014-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/083,645 Continuation US20160212609A1 (en) 2014-08-08 2016-03-29 User terminal

Publications (1)

Publication Number Publication Date
WO2016021702A1 true WO2016021702A1 (ja) 2016-02-11

Family

ID=55263959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072419 WO2016021702A1 (ja) 2014-08-08 2015-08-06 ユーザ端末

Country Status (4)

Country Link
US (1) US20160212609A1 (ja)
EP (1) EP3179805A4 (ja)
JP (1) JP6321810B2 (ja)
WO (1) WO2016021702A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155906A (zh) * 2016-05-12 2019-01-04 株式会社Ntt都科摩 用户装置以及信号发送方法
WO2020114326A1 (zh) * 2018-12-07 2020-06-11 电信科学技术研究院有限公司 资源池配置方法、装置及设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11356834B2 (en) * 2015-01-21 2022-06-07 Samsung Electronics Co., Ltd. System and method of D2D discovery message transmission
EP3332592B1 (en) * 2015-08-06 2023-01-25 Samsung Electronics Co., Ltd. Method and apparatus for performing inter-carrier d2d communication
WO2017052451A1 (en) * 2015-09-25 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods of operating wireless terminals and related wireless terminals
CN110855415B (zh) * 2015-10-29 2021-10-22 华为技术有限公司 传输系统信息的方法及基站、终端和系统
US10225754B2 (en) * 2015-12-16 2019-03-05 Futurewei Technologies, Inc. System and method for a hub device search
CN109121162A (zh) * 2017-06-26 2019-01-01 中国移动通信有限公司研究院 一种小区信息的处理方法、网络设备及终端
KR20220014763A (ko) * 2020-07-29 2022-02-07 삼성전자주식회사 무선 통신 시스템에서 사이드링크의 비연속적 수신을 지원하기 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012166969A1 (en) * 2011-06-01 2012-12-06 Ntt Docomo, Inc. Enhanced local access in mobile communications
WO2013179472A1 (ja) * 2012-05-31 2013-12-05 富士通株式会社 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法
WO2014050556A1 (ja) * 2012-09-26 2014-04-03 京セラ株式会社 移動通信システム
WO2014087720A1 (ja) * 2012-12-05 2014-06-12 ソニー株式会社 通信制御装置、通信制御方法、端末装置及びプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9578649B2 (en) * 2011-01-20 2017-02-21 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US9510177B2 (en) * 2011-06-10 2016-11-29 Interdigital Patent Holdings, Inc. Method and apparatus for performing neighbor discovery
US20140342747A1 (en) * 2012-01-18 2014-11-20 Lg Electronics Inc. Device-to-device communication method and a device therefor
US20130229931A1 (en) * 2012-03-02 2013-09-05 Electronics And Telecommunications Research Institute Methods of managing terminal performed in base station and terminal
KR102461556B1 (ko) * 2012-08-23 2022-10-31 인터디지탈 패튼 홀딩스, 인크 디바이스간 탐색을 수행하기 위한 방법 및 장치
US20150098414A1 (en) * 2013-10-04 2015-04-09 Innovative Sonic Corporation Method and apparatus for supporting device-to-device (d2d) discovery in a wireless communication system
CN110876190B (zh) * 2014-01-29 2022-03-25 交互数字专利控股公司 用于设备到设备发现或通信的资源选择
US9992744B2 (en) * 2014-02-24 2018-06-05 Intel Corporation Mechanisms to optimize and align discontinuous reception configuration of device to-device capable user equipment
US9609502B2 (en) * 2014-02-24 2017-03-28 Intel IP Corporation Adaptive silencing mechanism for device-to-device (D2D) discovery
RU2687958C2 (ru) * 2014-04-30 2019-05-17 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ для передачи сигнала между устройствами в системе беспроводной связи и устройство для этого
WO2016021942A1 (en) * 2014-08-06 2016-02-11 Samsung Electronics Co., Ltd. Signal transmission/reception method and apparatus of d2d terminal
US10225810B2 (en) * 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
WO2016021653A1 (ja) * 2014-08-07 2016-02-11 株式会社Nttドコモ ユーザ装置、基地局、及び異周波d2d信号モニタリング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012166969A1 (en) * 2011-06-01 2012-12-06 Ntt Docomo, Inc. Enhanced local access in mobile communications
WO2013179472A1 (ja) * 2012-05-31 2013-12-05 富士通株式会社 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法
WO2014050556A1 (ja) * 2012-09-26 2014-04-03 京セラ株式会社 移動通信システム
WO2014087720A1 (ja) * 2012-12-05 2014-06-12 ソニー株式会社 通信制御装置、通信制御方法、端末装置及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3179805A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155906A (zh) * 2016-05-12 2019-01-04 株式会社Ntt都科摩 用户装置以及信号发送方法
WO2020114326A1 (zh) * 2018-12-07 2020-06-11 电信科学技术研究院有限公司 资源池配置方法、装置及设备

Also Published As

Publication number Publication date
EP3179805A1 (en) 2017-06-14
US20160212609A1 (en) 2016-07-21
EP3179805A4 (en) 2018-06-13
JP6321810B2 (ja) 2018-05-09
JPWO2016021702A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6261745B2 (ja) ユーザ端末、プロセッサ、及び移動通信システム
JP6441264B2 (ja) 通信制御方法、ユーザ端末、基地局、及びプロセッサ
JP6174279B2 (ja) ユーザ端末、装置、及び方法
JP6501930B2 (ja) ユーザ端末及び装置
JP6321810B2 (ja) 通信方法、ユーザ端末及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540746

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015830278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015830278

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE