WO2016021538A1 - Friction stir welding device - Google Patents

Friction stir welding device Download PDF

Info

Publication number
WO2016021538A1
WO2016021538A1 PCT/JP2015/071929 JP2015071929W WO2016021538A1 WO 2016021538 A1 WO2016021538 A1 WO 2016021538A1 JP 2015071929 W JP2015071929 W JP 2015071929W WO 2016021538 A1 WO2016021538 A1 WO 2016021538A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
actuator
load
friction stir
stir welding
Prior art date
Application number
PCT/JP2015/071929
Other languages
French (fr)
Japanese (ja)
Inventor
眞実 安齋
佐山 満
佳佑 蔦
亮二 北村
Original Assignee
本田技研工業株式会社
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, ファナック株式会社 filed Critical 本田技研工業株式会社
Publication of WO2016021538A1 publication Critical patent/WO2016021538A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a friction stir welding apparatus having an upper rotating body and a lower rotating body.
  • Friction stir welding in which a rotating body that rotates at high speed is applied to a workpiece to generate frictional heat and promote stirring. Furthermore, a joining technique in which a workpiece is sandwiched between an upper rotating body and a lower rotating body is known (for example, Patent Document 1).
  • the friction stir welding apparatus disclosed in Patent Document 1 includes an upper rotating body, an upper actuator that presses the upper rotating body against a workpiece with a predetermined load, a lower rotating body, and the lower rotating body with another predetermined load.
  • a lower actuator that presses against the workpiece and a rotation actuator that rotates the upper and lower rotating bodies are provided.
  • the apparatus according to Patent Document 1 requires three actuators, that is, an upper actuator, a lower actuator, and a rotation actuator.
  • robots have been introduced as part of productivity improvements. Considering attaching the upper rotating body and the lower rotating body to the tip of the robot, further reduction in weight and size of the friction stir welding apparatus is required in order to reduce the burden on the robot.
  • An object of the present invention is to provide a lightweight and compact friction stir welding apparatus in a friction stir welding apparatus including an upper rotating body and a lower rotating body.
  • the invention according to claim 1 is provided integrally with the upper rotating body disposed on the workpiece, the lower rotating body disposed below the workpiece, and the lower rotating body, and inside the upper rotating body.
  • a rotating main shaft that passes through the first rotating shaft, a first actuator that applies a rotational force to the rotating main shaft, a second actuator that moves the upper rotating body in the axial direction, and a load that detects an axial load applied to the second actuator.
  • a sensor a load control unit that controls a load applied to the workpiece by the upper rotating body based on load information obtained from the load sensor, a position sensor that detects a position of the lower rotating body, and a position sensor And a controller for controlling the position of the lower rotating body based on the position information.
  • the rotation spindle moves up and down by a robot controlled by a controller.
  • the axis of the first actuator, the axis of the second actuator, and the rotation main axis are supported by the robot while being arranged in parallel.
  • the lower side rotary body does not have the actuator for load control.
  • the present invention can be accomplished with two actuators. Therefore, according to the present invention, a lightweight and compact friction stir welding apparatus provided with an upper rotating body and a lower rotating body is provided.
  • the axis of the first actuator and the axis of the second actuator are arranged in parallel on the rotation main shaft.
  • FIG. 1 is a front view of a friction stir welding apparatus according to the present invention. It is an effect
  • the friction stir welding apparatus 10 includes a substrate 11 that extends downward, a rotary spindle 14 that is rotatably supported on the substrate 11 by a pair of bearings 12 and 13, and a rotary spindle 14 that extends downward.
  • a lower rotary body 15 formed integrally with the lower end of the first actuator 16, a first actuator 16 attached to the substrate 11, and a first drive pulley 18 attached to the rotary shaft 17 of the first actuator 16.
  • the rotary cylinder 35 surrounds the rotary spindle 14.
  • the rotary cylinder 35 is connected to the rotary main shaft 14 via a spline 34.
  • the first actuator 16 is controlled by the rotation control unit 38.
  • a load sensor 39 is attached to the rotary shaft 28 of the second actuator 27.
  • the load sensor 39 is, for example, a strain gauge that replaces the mechanical strain amount with an electrical signal.
  • the load sensor 39 may detect a current and convert the current into a load.
  • the second actuator 27 is controlled by a load control unit 41 that controls the downward load of the upper rotating body 36 based on information from the load sensor 39.
  • the rotating shaft 17 of the first actuator 16, the rotating shaft 28 of the second actuator 27, and the rotating main shaft 14 are arranged in parallel to each other.
  • the distance between the rotation main shaft 14 and the rotation shafts 17 and 28 can be set arbitrarily. This can be done by adjusting the length of the belts 21 and 32. By reducing the distance between the shafts as much as possible, the friction stir welding apparatus 10 can be made compact, particularly the width in the horizontal direction can be reduced.
  • the robot 42 has a position sensor 43 that monitors the coordinates of the tip and a controller 44 that controls the robot 42 while feeding back information from the position sensor 43.
  • the substrate 11 is carried to an arbitrary position by the robot 42. Since the rotation main shaft 14 is attached to the substrate 11 via the bearings 12 and 13, the position (particularly the height position) of the lower rotating body 15 at the lower end of the rotation main shaft 14 is controlled by the controller 44.
  • the rotating cylinder 35 is connected to the rotating main shaft 14 by a spline 34 and is movable along the rotating main shaft 14. Therefore, when the ball screw 26 is rotated by the second actuator 27, the slider 23 is raised or lowered along the rails 22 and 22. Then, the rotating cylinder 35 and the upper rotating body 36 move together with the slider 23. Therefore, the upper rotating body 36 is moved to an arbitrary position independently of the lower rotating body 15 using the second actuator 27 as a drive source, and the load control unit 41 performs load control.
  • the friction stir welding apparatus 10 includes a first actuator 16 that applies a rotational force to the rotary main shaft 14, a second actuator 27 that moves the upper rotating body 36 in the axial direction (moves in the axial direction), and a lower rotation.
  • the controller 44 that controls the position of the body 15 is provided.
  • the second actuator 27 performs load control based on the load obtained from the load sensor 39, and the controller 44 detects the position of the lower rotating body 15. Based on the information from the position sensor 43, the position of the lower rotating body 15 is controlled.
  • the position sensor 43 may be built in the controller 44.
  • the driving pulleys 18 and 29 and the driven pulleys 19 and 31 may be gears.
  • the rotation main shaft 14 may be directly rotated by the first actuator 16 via a coupling.
  • the ball screw 26 may be directly rotated by the second actuator 27 via a coupling. Therefore, the configuration of the friction stir welding apparatus 10 shown in FIG. 1 can be changed as appropriate.
  • the operation of the friction stir welding apparatus 10 having the above configuration will be described.
  • the workpieces 46 and 47 which are metal plates are brought into contact with each other.
  • the workpieces 46 and 47 may be overlapped with each other.
  • two or more workpieces can be superposed and joined.
  • the upper rotator 36 and the lower rotator 15 are brought close to one end of the joint portion 48.
  • FIG. 2C which is a CC arrow view of FIG. 2B
  • the lower rotating body 15 is applied to the lower surface of the work 46 and is held at that height.
  • the upper rotating body 36 is lowered and the upper surface of the work 46 is pressed with a predetermined load.
  • FIG. 2D the upper rotating body 36 and the lower rotating body 15 are rotated at a predetermined rotation speed. Then, frictional heat is generated and fluidization occurs. In this state, it moves like an arrow.
  • FIG. 2 (e) the workpieces 46 and 47 were joined together by the bead 49.
  • the technology of the present invention is compared with the conventional technology.
  • the position of the lower rotator 15 is controlled and the load of the upper rotator 36 is controlled.
  • the lower rotating body 101 is pressed against the workpiece 103 with the upward load Fg2.
  • the upper rotating body 102 is pressed against the workpiece 103 with the downward load Fg1. That is, both the lower rotator 101 and the upper rotator 102 are subjected to load control.
  • the workpiece 103 becomes soft due to the frictional heat.
  • the lower rotating body 101 or the upper rotating body 102 bites into the work 103 excessively.
  • reduce the load according to softening reduce the load according to softening.
  • the downward load Fg1 of the upper rotating body 102 the workpiece 103 may be lifted if the upward load Fg2 of the lower rotating body 101 is constant. Therefore, the upward load Fg2 of the lower rotating body 101 is reduced.
  • the spline 34 described in FIG. 1 can be deleted. That is, as shown in FIG. 4, the third actuator 51 is mounted on the extension 23 a of the slider 23, and the third drive pulley 52 is provided on the rotation shaft of the third actuator 51. Further, a third driven pulley 53 is provided on the rotating cylinder 35. The belt 54 is transferred to the third driven pulley 53 and the third drive pulley 52.
  • the other components are the same as those in FIG.
  • the rotation control unit 38 controls the rotation speeds of the first actuator 16 and the third actuator 51. In addition to synchronizing the rotation speeds of the first actuator 16 and the third actuator 51, it is possible to make a difference. It is possible to change the heat input for each material in the case of dissimilar material overlapping joining by changing the vertical rotation speed.
  • the third actuator 51 described with reference to FIG. 4 can be deleted.
  • a first drive gear 56 and a third drive gear 57 are provided on the rotating shaft 17 of the first actuator 16.
  • a first driven gear 58 is provided on the rotation main shaft 14, and a first intermediate gear 59 is provided between the first driven gear 58 and the first drive gear 56.
  • the first intermediate gear 59 is rotatably supported by the substrate 11 and plays a role of transmitting the rotation of the first drive gear 56 to the first driven gear 58.
  • a wide third driven gear 61 is provided on the upper portion of the rotary cylinder 35, and a third intermediate gear 62 is provided between the third driven gear 61 and the third drive gear 57.
  • the third intermediate gear 62 is rotatably supported by the substrate 11 and plays a role of transmitting the rotation of the third drive gear 57 to the third driven gear 61.
  • the third driven gear 61 moves in the axial direction together with the slider 23. Since the third driven gear 61 is sufficiently wide, there is no fear that the third driven gear 61 will come off the third intermediate gear 62 even if it moves in the axial direction.
  • the first drive gear 56 and the third drive gear 57 are rotated by the rotating shaft 17.
  • the lower rotating body 15 and the upper rotating body 36 can be rotated by the first actuator 16.
  • the other components are the same as those in FIG.
  • gears 56, 57, 58 and 61 shown in FIG. 5 can be replaced with pulleys, and the gears 59 and 62 can be changed to belts.
  • a specific example will be described with reference to FIG.
  • the slider 23 extends to the vicinity of the first actuator 16. Then, the first drive pulley 18 is fixed to the distal end side of the rotary shaft 17 of the first actuator 16, and the third drive pulley 52 is attached to the rotary shaft 17 through the spline 66.
  • the third drive pulley 52 is rotatably supported by the slider 23 by bearings 67 and 67.
  • a first driven pulley 19 is attached to the rotation main shaft 14 in the center of the drawing, and a first belt 21 is passed to the first driven pulley 19 and the first drive pulley 18. Further, a third driven pulley 53 is attached to the rotating cylinder 35, and the third belt 54 is passed to the third driven pulley 53 and the third drive pulley 52.
  • Other configurations are the same as those in FIG.
  • the structure shown in FIG. 7 can be adopted. That is, as shown in FIG. 7, the support cylinder 64 is fixed to the slider 23, and the upper disk 65 is integrally formed at the tip of the support cylinder 64. Although the upper disk 65 corresponds to the upper rotating member 36 but is a non-rotating member, the name and the code are changed. Since only the lower rotating body 15 is rotated, a bead can be formed only on the lower side.
  • the other components are the same as those in FIG.
  • the present invention is suitable for a friction stir welding apparatus that joins two or more metal plates by a friction stir welding method.

Abstract

The purpose of the present invention is to provide a lightweight and compact friction stir welding device equipped with an upper rotating body and a lower rotating body. This friction stir welding device (10) is configured so as to be equipped with: an upper rotating body (36); a lower rotating body (15); a rotating principal shaft (14) for passing through the interior of the upper rotating body and integrally provided with the lower rotating body; a first actuator (16) for imparting a rotational force on the rotating principal shaft; a second actuator (27) for moving the upper rotating body in the axial direction; a load sensor (39) for detecting an axial load applied to the second actuator; a load control unit (41) for controlling the load to be applied to a workpiece by the upper rotating body, on the basis of load information obtained from the load sensor; a position sensor (43) for detecting the position of the lower rotating body; and a controller (44) for controlling the position of the lower rotating body on the basis of the position information from the position sensor.

Description

摩擦撹拌接合装置Friction stir welding equipment
 本発明は、上側回転体と下側回転体とを有している摩擦撹拌接合装置に関する。 The present invention relates to a friction stir welding apparatus having an upper rotating body and a lower rotating body.
 ワークに、高速で回転する回転体を当て、摩擦熱を発生し撹拌を促す、摩擦撹拌接合が知られている。さらには、上側回転体と下側回転体でワークを挟む接合技術が知られている(例えば、特許文献1)。 ∙ Friction stir welding is known, in which a rotating body that rotates at high speed is applied to a workpiece to generate frictional heat and promote stirring. Furthermore, a joining technique in which a workpiece is sandwiched between an upper rotating body and a lower rotating body is known (for example, Patent Document 1).
 特許文献1に示される摩擦撹拌接合装置は、上側回転体と、この上側回転体を所定の荷重でワークに押し付ける上側アクチュエータと、下側回転体と、この下側回転体を別の所定荷重でワークに押し付ける下側アクチュエータと、上側・下側回転体を回す回転用アクチュエータとを備えている。 The friction stir welding apparatus disclosed in Patent Document 1 includes an upper rotating body, an upper actuator that presses the upper rotating body against a workpiece with a predetermined load, a lower rotating body, and the lower rotating body with another predetermined load. A lower actuator that presses against the workpiece and a rotation actuator that rotates the upper and lower rotating bodies are provided.
 すなわち、特許文献1による装置は、上側アクチュエータと下側アクチュエータと回転用アクチュエータとの3つのアクチュエータが必要となる。
 近年、生産性向上の一環としてロボットが導入される。ロボットの先端に上側回転体及び下側回転体を取付けることを考えると、ロボットの負担を軽減するために、摩擦撹拌接合装置の更なる軽量化及びコンパクト化が求められる。
That is, the apparatus according to Patent Document 1 requires three actuators, that is, an upper actuator, a lower actuator, and a rotation actuator.
In recent years, robots have been introduced as part of productivity improvements. Considering attaching the upper rotating body and the lower rotating body to the tip of the robot, further reduction in weight and size of the friction stir welding apparatus is required in order to reduce the burden on the robot.
米国特許第6199745号明細書US Pat. No. 6,1997,745
 本発明は、上側回転体と下側回転体を備える摩擦撹拌接合装置において、軽量で且つコンパクトな摩擦撹拌接合装置を提供することを課題とする。 An object of the present invention is to provide a lightweight and compact friction stir welding apparatus in a friction stir welding apparatus including an upper rotating body and a lower rotating body.
 請求項1に係る発明は、ワークの上に配置される上側回転体と、前記ワークの下に配置される下側回転体と、前記下側回転体を一体的に備えると共に前記上側回転体内部を貫通する回転主軸と、前記回転主軸に回転力を与える第1のアクチュエータと、前記上側回転体を軸方向に移動する第2のアクチュエータと、この第2のアクチュエータに加わる軸荷重を検出する荷重センサと、この荷重センサから得られる荷重情報に基づいて、前記上側回転体がワークに加える荷重を制御する荷重制御部と、前記下側回転体の位置を検出する位置センサと、この位置センサからの位置情報に基づいて、前記下側回転体の位置を制御するコントローラとを備えている。 The invention according to claim 1 is provided integrally with the upper rotating body disposed on the workpiece, the lower rotating body disposed below the workpiece, and the lower rotating body, and inside the upper rotating body. A rotating main shaft that passes through the first rotating shaft, a first actuator that applies a rotational force to the rotating main shaft, a second actuator that moves the upper rotating body in the axial direction, and a load that detects an axial load applied to the second actuator. A sensor, a load control unit that controls a load applied to the workpiece by the upper rotating body based on load information obtained from the load sensor, a position sensor that detects a position of the lower rotating body, and a position sensor And a controller for controlling the position of the lower rotating body based on the position information.
 請求項2に係る発明では、好ましくは、回転主軸は、コントローラにより制御されるロボットにより、上下に移動する。 In the invention according to claim 2, preferably, the rotation spindle moves up and down by a robot controlled by a controller.
 請求項3に係る発明では、好ましくは、第1のアクチュエータの軸と、第2のアクチュエータの軸と、回転主軸とが、並列に配置されつつロボットに支持されている。 In the invention according to claim 3, preferably, the axis of the first actuator, the axis of the second actuator, and the rotation main axis are supported by the robot while being arranged in parallel.
 請求項1に係る発明では、下側回転体は荷重制御のためのアクチュエータを有していない。結果、本発明では2つのアクチュエータで済ませることができる。
 よって、本発明によれば、上側回転体と下側回転体を備えるものにおいて、軽量で且つコンパクトな摩擦撹拌接合装置が提供される。
In the invention which concerns on Claim 1, the lower side rotary body does not have the actuator for load control. As a result, the present invention can be accomplished with two actuators.
Therefore, according to the present invention, a lightweight and compact friction stir welding apparatus provided with an upper rotating body and a lower rotating body is provided.
 請求項2に係る発明では、ロボットは位置制御能力に優れているため、このロボットを利用して直接回転主軸の位置制御を行う。また、別の観点から、本発明の摩擦撹拌接合装置が小型、軽量であるため、ロボットに容易に取付けることができると言える。 In the invention according to claim 2, since the robot is excellent in position control capability, the position of the rotating spindle is directly controlled using this robot. From another point of view, it can be said that the friction stir welding apparatus of the present invention is small and light, and can be easily attached to a robot.
 請求項3に係る発明では、回転主軸に、第1のアクチュエータの軸と、第2のアクチュエータの軸とが並列に配置されている。軸と軸の間の距離を縮めることで、容易に摩擦撹拌接合装置の小型化を図ることができる。 In the invention according to claim 3, the axis of the first actuator and the axis of the second actuator are arranged in parallel on the rotation main shaft. By reducing the distance between the shafts, the friction stir welding apparatus can be easily downsized.
本発明に係る摩擦撹拌接合装置の正面図である。1 is a front view of a friction stir welding apparatus according to the present invention. 上側回転体及び下側回転体の作用図である。It is an effect | action figure of an upper side rotary body and a lower side rotary body. 実施例と比較例とを比較する図である。It is a figure which compares an Example and a comparative example. 本発明に係る摩擦撹拌接合装置の変更例を示す図である。It is a figure which shows the example of a change of the friction stir welding apparatus which concerns on this invention. 本発明に係る摩擦撹拌接合装置の更なる変更例を示す図である。It is a figure which shows the further example of a change of the friction stir welding apparatus which concerns on this invention. 本発明に係る摩擦撹拌接合装置の更なる変更例を示す図である。It is a figure which shows the further example of a change of the friction stir welding apparatus which concerns on this invention. 本発明に係る摩擦撹拌接合装置の更なる変更例を示す図である。It is a figure which shows the further example of a change of the friction stir welding apparatus which concerns on this invention.
 本発明の実施の形態を添付図に基づいて以下に説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
 図1に示されるように、摩擦撹拌接合装置10は、下へ延びる基板11と、この基板11に一対の軸受12、13で回転自在に支持され下へ延びる回転主軸14と、この回転主軸14の下端に一体形成されている下側回転体15と、基板11に取付けられている第1のアクチュエータ16と、この第1のアクチュエータ16の回転軸17に取付けられている第1駆動プーリ18と、一対の軸受12、13で挟まる位置にて回転主軸14に設けられている第1従動プーリ19と、この第1従動プーリ19と第1駆動プーリ18に掛け渡す第1ベルト21と、回転主軸14に平行になるようにして基板11に敷設されるレール22、22と、これらのレール22、22に移動自在に取付けられるスライダ23と、このスライダ23に取付けられているボールナット24と、このボールナット24に螺合し基板11に支持片25、25で回転自在に支持されているボールねじ26と、基板11に取付けられている第2のアクチュエータ27と、この第2のアクチュエータ27の回転軸28に取付けられている第2駆動プーリ29と、一方の支持片25の近傍にてボールねじ26に設けられている第2従動プーリ31と、この第2従動プーリ31と第2駆動プーリ29に掛け渡す第2ベルト32と、スライダ23にベアリング33、33を介して回転自在に支持されている回転筒35と、この回転筒35の下端に一体形成されている上側回転体36とを備えている。回転筒35は回転主軸14を囲む。回転筒35はスプライン34を介して回転主軸14に連結されている As shown in FIG. 1, the friction stir welding apparatus 10 includes a substrate 11 that extends downward, a rotary spindle 14 that is rotatably supported on the substrate 11 by a pair of bearings 12 and 13, and a rotary spindle 14 that extends downward. A lower rotary body 15 formed integrally with the lower end of the first actuator 16, a first actuator 16 attached to the substrate 11, and a first drive pulley 18 attached to the rotary shaft 17 of the first actuator 16. , A first driven pulley 19 provided on the rotary main shaft 14 at a position sandwiched between the pair of bearings 12, 13, a first belt 21 spanning the first driven pulley 19 and the first drive pulley 18, and the rotary main shaft 14, rails 22, 22 laid on the substrate 11 so as to be parallel to the board 14, a slider 23 movably attached to the rails 22, 22, and a slider 23 attached to the slider 23. A ball nut 24, a ball screw 26 screwed into the ball nut 24 and rotatably supported on the substrate 11 by support pieces 25, 25, a second actuator 27 attached to the substrate 11, A second drive pulley 29 attached to the rotating shaft 28 of the second actuator 27, a second driven pulley 31 provided on the ball screw 26 in the vicinity of one support piece 25, and the second driven pulley. 31 and a second belt 32 that spans the second drive pulley 29, a rotary cylinder 35 that is rotatably supported by the slider 23 via bearings 33, 33, and a lower end of the rotary cylinder 35. And an upper rotating body 36. The rotary cylinder 35 surrounds the rotary spindle 14. The rotary cylinder 35 is connected to the rotary main shaft 14 via a spline 34.
 第1のアクチュエータ16は、回転制御部38で制御される。
 第2のアクチュエータ27の回転軸28に荷重センサ39が付設されている。この荷重センサ39は、例えば、機械的歪み量を電気信号に置き換える歪ゲージである。または、荷重センサ39は第2のアクチュエータ27がサーボモータである場合、電流を検知し、電流を荷重に変換するものであってもよい。
 第2のアクチュエータ27は、荷重センサ39の情報に基づいて、上側回転体36の下向き荷重を制御する荷重制御部41で制御される。
The first actuator 16 is controlled by the rotation control unit 38.
A load sensor 39 is attached to the rotary shaft 28 of the second actuator 27. The load sensor 39 is, for example, a strain gauge that replaces the mechanical strain amount with an electrical signal. Alternatively, when the second actuator 27 is a servo motor, the load sensor 39 may detect a current and convert the current into a load.
The second actuator 27 is controlled by a load control unit 41 that controls the downward load of the upper rotating body 36 based on information from the load sensor 39.
 本実施例では、第1のアクチュエータ16の回転軸17と、第2のアクチュエータ27の回転軸28と、回転主軸14とは、互いに並行になるように配列されている。回転主軸14と回転軸17、28の軸間距離は任意に設定できる。ベルト21、32の長さ調整で対応できる。
 軸間距離を極力小さくすることで、摩擦撹拌接合装置10のコンパクト化、特に水平方向の幅を小さくすることができる。
In the present embodiment, the rotating shaft 17 of the first actuator 16, the rotating shaft 28 of the second actuator 27, and the rotating main shaft 14 are arranged in parallel to each other. The distance between the rotation main shaft 14 and the rotation shafts 17 and 28 can be set arbitrarily. This can be done by adjusting the length of the belts 21 and 32.
By reducing the distance between the shafts as much as possible, the friction stir welding apparatus 10 can be made compact, particularly the width in the horizontal direction can be reduced.
 このような摩擦撹拌接合装置10は、小型で軽量であるため、ロボット42の先端に容易に取付けることができる。ロボット42は、先端の座標をモニターする位置センサ43及びこの位置センサ43の情報をフィードバックしつつロボット42を制御するコントローラ44を常備している。 Since such a friction stir welding apparatus 10 is small and lightweight, it can be easily attached to the tip of the robot 42. The robot 42 has a position sensor 43 that monitors the coordinates of the tip and a controller 44 that controls the robot 42 while feeding back information from the position sensor 43.
 ロボット42により、基板11が任意の位置へ運ばれる。回転主軸14が軸受12、13を介して基板11に取付けられているため、回転主軸14下端の下側回転体15の位置(特に高さ位置)は、コントローラ44で制御される。 The substrate 11 is carried to an arbitrary position by the robot 42. Since the rotation main shaft 14 is attached to the substrate 11 via the bearings 12 and 13, the position (particularly the height position) of the lower rotating body 15 at the lower end of the rotation main shaft 14 is controlled by the controller 44.
 一方、回転筒35は、回転主軸14にスプライン34で繋がっており、回転主軸14に沿って移動可能である。そこで、第2のアクチュエータ27でボールねじ26を回すと、スライダ23がレール22、22に沿って上昇又は下降する。すると、スライダ23と共に回転筒35及び上側回転体36が移動する。よって、上側回転体36は、第2のアクチュエータ27を駆動源として下側回転体15とは独立して任意の位置へ移動され且つ荷重制御部41により、荷重制御がなされる。 On the other hand, the rotating cylinder 35 is connected to the rotating main shaft 14 by a spline 34 and is movable along the rotating main shaft 14. Therefore, when the ball screw 26 is rotated by the second actuator 27, the slider 23 is raised or lowered along the rails 22 and 22. Then, the rotating cylinder 35 and the upper rotating body 36 move together with the slider 23. Therefore, the upper rotating body 36 is moved to an arbitrary position independently of the lower rotating body 15 using the second actuator 27 as a drive source, and the load control unit 41 performs load control.
 第1のアクチュエータ16で回転主軸14が回されるとスプライン34を介して回転筒35が回される。よって、上側回転体36と下側回転体15は同期して回転する。 When the rotating main shaft 14 is rotated by the first actuator 16, the rotating cylinder 35 is rotated through the spline 34. Therefore, the upper rotator 36 and the lower rotator 15 rotate in synchronization.
 すなわち、摩擦撹拌接合装置10にて、下側回転体15は回転主軸14と一体形成され、回転主軸14は上側回転体36の内部を貫通している。そして、摩擦撹拌接合装置10は、回転主軸14に回転力を与える第1のアクチュエータ16と、上側回転体36を軸方向に移動(軸方向に移動)させる第2のアクチュエータ27と、下側回転体15の位置を制御するコントローラ44を備え、第2のアクチュエータ27は、その荷重センサ39から得られる荷重に基づいて荷重制御を行うと共に、コントローラ44は、下側回転体15の位置を検出する位置センサ43からの情報を基に、下側回転体15の位置を制御する。 That is, in the friction stir welding apparatus 10, the lower rotating body 15 is integrally formed with the rotating main shaft 14, and the rotating main shaft 14 passes through the upper rotating body 36. The friction stir welding apparatus 10 includes a first actuator 16 that applies a rotational force to the rotary main shaft 14, a second actuator 27 that moves the upper rotating body 36 in the axial direction (moves in the axial direction), and a lower rotation. The controller 44 that controls the position of the body 15 is provided. The second actuator 27 performs load control based on the load obtained from the load sensor 39, and the controller 44 detects the position of the lower rotating body 15. Based on the information from the position sensor 43, the position of the lower rotating body 15 is controlled.
 なお、位置センサ43はコントローラ44に内蔵しても良い。また、駆動プーリ18、29や従動プーリ19、31はギヤであっても良い。さらには、回転主軸14はカップリングを介して第1のアクチュエータ16で直接回すようにしても良い。同様に、ボールねじ26はカップリングを介して第2のアクチュエータ27で直接回すようにしても良い。
 したがって、図1に示される摩擦撹拌接合装置10の構成を適宜変更することは差し支えない。
The position sensor 43 may be built in the controller 44. The driving pulleys 18 and 29 and the driven pulleys 19 and 31 may be gears. Further, the rotation main shaft 14 may be directly rotated by the first actuator 16 via a coupling. Similarly, the ball screw 26 may be directly rotated by the second actuator 27 via a coupling.
Therefore, the configuration of the friction stir welding apparatus 10 shown in FIG. 1 can be changed as appropriate.
 以上の構成からなる摩擦撹拌接合装置10の作用を次に説明する。
 図2(a)に示されるように、金属板であるワーク46、47同士を突き当てる。この例では突き当てたが、ワーク46、47同士を重ね合わせてもよい。重ね合わせであれば、2枚以上のワーク同士を重ね合わせて接合することができる。
 図2(b)に示されるように、接合部48の一端に上側回転体36及び下側回転体15を接近させる。
Next, the operation of the friction stir welding apparatus 10 having the above configuration will be described.
As shown in FIG. 2A, the workpieces 46 and 47 which are metal plates are brought into contact with each other. In this example, the workpieces 46 and 47 may be overlapped with each other. In the case of superposition, two or more workpieces can be superposed and joined.
As shown in FIG. 2B, the upper rotator 36 and the lower rotator 15 are brought close to one end of the joint portion 48.
 図2(b)のC-C矢視図である図2(c)に示されるように、ワーク46の下面に下側回転体15を当てて、その高さに保持する。次に、上側回転体36を下げて、所定の荷重でワーク46上面を押し付ける。
 図2(d)に示されるように、所定の回転速度で上側回転体36及び下側回転体15を回転させる。すると、摩擦熱が発生し流動化現象が起こる。この状態で、矢印のように移動する。
 結果、図2(e)に示されるように、ビード49でワーク46、47同士が接合された。
As shown in FIG. 2C, which is a CC arrow view of FIG. 2B, the lower rotating body 15 is applied to the lower surface of the work 46 and is held at that height. Next, the upper rotating body 36 is lowered and the upper surface of the work 46 is pressed with a predetermined load.
As shown in FIG. 2D, the upper rotating body 36 and the lower rotating body 15 are rotated at a predetermined rotation speed. Then, frictional heat is generated and fluidization occurs. In this state, it moves like an arrow.
As a result, as shown in FIG. 2 (e), the workpieces 46 and 47 were joined together by the bead 49.
 次に本発明技術と従来の技術を比較する。
 図3(a)に示される実施例では、下側回転体15が位置制御され、上側回転体36が荷重制御される。
Next, the technology of the present invention is compared with the conventional technology.
In the embodiment shown in FIG. 3A, the position of the lower rotator 15 is controlled and the load of the upper rotator 36 is controlled.
 一方、図3(b)に示される比較例では、下側回転体101は、上向き荷重Fg2でワーク103に押し付けられる。また、上側回転体102は、下向き荷重Fg1でワーク103に押し付けけられる。すなわち、下側回転体101と上側回転体102が、共に荷重制御される。摩擦熱により、ワーク103が軟らかくなる。荷重が過大であると下側回転体101又は上側回転体102が過度にワーク103に食い込む。対策として、軟化に応じて荷重を小さくする。
 今、上側回転体102の下向き荷重Fg1を軽減するとき、下側回転体101の上向き荷重Fg2が一定であると、ワーク103が浮き上がる虞がある。そこで、下側回転体101の上向き荷重Fg2を軽減する。
On the other hand, in the comparative example shown in FIG. 3B, the lower rotating body 101 is pressed against the workpiece 103 with the upward load Fg2. Further, the upper rotating body 102 is pressed against the workpiece 103 with the downward load Fg1. That is, both the lower rotator 101 and the upper rotator 102 are subjected to load control. The workpiece 103 becomes soft due to the frictional heat. When the load is excessive, the lower rotating body 101 or the upper rotating body 102 bites into the work 103 excessively. As a countermeasure, reduce the load according to softening.
Now, when reducing the downward load Fg1 of the upper rotating body 102, the workpiece 103 may be lifted if the upward load Fg2 of the lower rotating body 101 is constant. Therefore, the upward load Fg2 of the lower rotating body 101 is reduced.
 すなわち、下側回転体101と上側回転体102が、共に荷重制御されると、一方が他方に影響し、いわゆるハンチング(荷重信号が上下に変動すること。)が起こり、荷重が必要以上に増減を繰り返し、荷重が安定しない。
 また、ワーク103が温度上昇に伴って膨張する。放置すると荷重が過大となる。このときにもハンチングが起こる。
That is, when both the lower rotating body 101 and the upper rotating body 102 are subjected to load control, one affects the other, so-called hunting (the load signal fluctuates up and down) occurs, and the load increases or decreases more than necessary. Repeatedly, the load is not stable.
Further, the work 103 expands as the temperature rises. If left unattended, the load becomes excessive. Hunting also occurs at this time.
 この点、図3(a)であれば、下側回転体15が位置制御され、上側回転体36が荷重制御されるため、一方が他方に影響することはない。結果、ワーク46の軟化や膨張に対して、安定した接合作業が維持できる。 In this regard, in FIG. 3A, the position of the lower rotating body 15 is controlled and the load of the upper rotating body 36 is controlled, so that one does not affect the other. As a result, a stable joining operation can be maintained against the softening and expansion of the workpiece 46.
 次に、本発明の変更例を説明する。
 図1で説明したスプライン34を削除することができる。
 すなわち、図4に示されるように、スライダ23の延長部23aに、第3のアクチュエータ51を載せ、この第3のアクチュエータ51の回転軸に第3駆動プーリ52を設ける。また、回転筒35に第3従動プーリ53を設ける。この第3従動プーリ53と第3駆動プーリ52とにベルト54を渡す。その他の構成要素は図1と同じであるため、説明を省略する。
Next, a modified example of the present invention will be described.
The spline 34 described in FIG. 1 can be deleted.
That is, as shown in FIG. 4, the third actuator 51 is mounted on the extension 23 a of the slider 23, and the third drive pulley 52 is provided on the rotation shaft of the third actuator 51. Further, a third driven pulley 53 is provided on the rotating cylinder 35. The belt 54 is transferred to the third driven pulley 53 and the third drive pulley 52. The other components are the same as those in FIG.
 回転制御部38で、第1のアクチュエータ16と第3のアクチュエータ51との回転速度を制御する。第1のアクチュエータ16と第3のアクチュエータ51との回転速度を同期させる他、差をつけることが可能となる。上下の回転速度を変化させ、異材重ね合わせ接合の場合の材料毎の入熱量に変化を与えることができる。 The rotation control unit 38 controls the rotation speeds of the first actuator 16 and the third actuator 51. In addition to synchronizing the rotation speeds of the first actuator 16 and the third actuator 51, it is possible to make a difference. It is possible to change the heat input for each material in the case of dissimilar material overlapping joining by changing the vertical rotation speed.
 図4で説明した第3のアクチュエータ51を削除することができる。
 例えば、図5に示されるように、第1アクチュエータ16の回転軸17に第1駆動ギヤ56と第3駆動ギヤ57を設ける。また、回転主軸14に第1従動ギヤ58を設け、この第1従動ギヤ58と第1駆動ギヤ56の間に第1中間ギヤ59を設ける。この第1中間ギヤ59は基板11に回転自在に支持されており、第1駆動ギヤ56の回転を第1従動ギヤ58に伝達する役割を果たす。
The third actuator 51 described with reference to FIG. 4 can be deleted.
For example, as shown in FIG. 5, a first drive gear 56 and a third drive gear 57 are provided on the rotating shaft 17 of the first actuator 16. Further, a first driven gear 58 is provided on the rotation main shaft 14, and a first intermediate gear 59 is provided between the first driven gear 58 and the first drive gear 56. The first intermediate gear 59 is rotatably supported by the substrate 11 and plays a role of transmitting the rotation of the first drive gear 56 to the first driven gear 58.
 また、回転筒35の上部に幅広の第3従動ギヤ61を設け、この第3従動ギヤ61と第3駆動ギヤ57の間に第3中間ギヤ62を設ける。この第3中間ギヤ62は基板11に回転自在に支持されており、第3駆動ギヤ57の回転を第3従動ギヤ61に伝達する役割を果たす。 Further, a wide third driven gear 61 is provided on the upper portion of the rotary cylinder 35, and a third intermediate gear 62 is provided between the third driven gear 61 and the third drive gear 57. The third intermediate gear 62 is rotatably supported by the substrate 11 and plays a role of transmitting the rotation of the third drive gear 57 to the third driven gear 61.
 第1駆動ギヤ56、第3駆動ギヤ57、第1従動ギヤ58、第1中間ギヤ59及び第3中間ギヤ62は、直接又は間接的に基板11に支持されているため、基板11に対しては軸方向へ移動しない。一方、第3従動ギヤ61はスライダ23と共に軸方向へ移動する。
 第3従動ギヤ61は十分に幅広であるため、軸方向へ移動しても第3中間ギヤ62から外れる心配はない。
Since the first drive gear 56, the third drive gear 57, the first driven gear 58, the first intermediate gear 59 and the third intermediate gear 62 are supported directly or indirectly on the substrate 11, Does not move in the axial direction. On the other hand, the third driven gear 61 moves in the axial direction together with the slider 23.
Since the third driven gear 61 is sufficiently wide, there is no fear that the third driven gear 61 will come off the third intermediate gear 62 even if it moves in the axial direction.
 回転軸17で第1駆動ギヤ56及び第3駆動ギヤ57を回すようにする。第1のアクチュエータ16で、下側回転体15と上側回転体36を回すことができる。その他の構成要素は図1と同じであるため、説明を省略する。 The first drive gear 56 and the third drive gear 57 are rotated by the rotating shaft 17. The lower rotating body 15 and the upper rotating body 36 can be rotated by the first actuator 16. The other components are the same as those in FIG.
 第1駆動ギヤ56と第3駆動ギヤ57のギヤ径に差をつけることにより、容易に、下側回転体15の回転速度と上側回転体36に回転速度に差をつけることができる。 By making a difference between the gear diameters of the first drive gear 56 and the third drive gear 57, it is possible to easily make a difference between the rotation speed of the lower rotating body 15 and the rotation speed of the upper rotating body 36.
 また、図5に示されるギヤ56、57、58、61をプーリに換え、ギヤ59、62をベルトに変更することができる。その具体例を図6で説明する。 Further, the gears 56, 57, 58 and 61 shown in FIG. 5 can be replaced with pulleys, and the gears 59 and 62 can be changed to belts. A specific example will be described with reference to FIG.
 図6に示されるように、スライダ23は第1アクチュエータ16の近傍まで延ばす。そして、第1アクチュエータ16の回転軸17の先端側に第1駆動プーリ18を固定し、回転軸17の途中にスプライン66を介して第3駆動プーリ52を取付ける。この第3駆動プーリ52は軸受67、67でスライダ23に回転自在に支持させる。 As shown in FIG. 6, the slider 23 extends to the vicinity of the first actuator 16. Then, the first drive pulley 18 is fixed to the distal end side of the rotary shaft 17 of the first actuator 16, and the third drive pulley 52 is attached to the rotary shaft 17 through the spline 66. The third drive pulley 52 is rotatably supported by the slider 23 by bearings 67 and 67.
 回転軸17は長いため先端が軸受68を介してスライダ23に支持されている。
 図面中央の回転主軸14に第1従動プーリ19を取付け、この第1従動プーリ19と第1駆動プーリ18に第1ベルト21を渡す。また、回転筒35に第3従動プーリ53を取付け、この第3従動プーリ53と第3駆動プーリ52に第3ベルト54を渡す。その他の構成は図5と同じであるため、説明は省略する。
Since the rotary shaft 17 is long, the tip is supported by the slider 23 via a bearing 68.
A first driven pulley 19 is attached to the rotation main shaft 14 in the center of the drawing, and a first belt 21 is passed to the first driven pulley 19 and the first drive pulley 18. Further, a third driven pulley 53 is attached to the rotating cylinder 35, and the third belt 54 is passed to the third driven pulley 53 and the third drive pulley 52. Other configurations are the same as those in FIG.
 上側回転体36がスライダ23と共に上又は下へ移動するときには、スプライン66に沿って第3駆動プーリ52が回転軸17に沿って移動する。よって、基板11に固定されている第1アクチュエータ16から、スライダ23と共に移動する上側回転体36へ回転力が円滑に伝達される。 When the upper rotating body 36 moves up or down together with the slider 23, the third drive pulley 52 moves along the rotating shaft 17 along the spline 66. Therefore, the rotational force is smoothly transmitted from the first actuator 16 fixed to the substrate 11 to the upper rotating body 36 that moves together with the slider 23.
 上側のワークへの入熱が不要な場合は、上側回転部材36を回転させない。この場合、図7に示される構造が採用可能となる。
 すなわち、図7に示されるように、スライダ23に支持筒64を固定し、この支持筒64の先端に上側円板65を一体形成する。上側円板65は、上側回転部材36に相当するが非回転部材であるため、名称及び符号を変更した。下側回転体15だけを回転させるので、下側にだけビードを形成させることができる。その他の構成要素は図1と同じであるため、説明を省略する。
When heat input to the upper workpiece is unnecessary, the upper rotating member 36 is not rotated. In this case, the structure shown in FIG. 7 can be adopted.
That is, as shown in FIG. 7, the support cylinder 64 is fixed to the slider 23, and the upper disk 65 is integrally formed at the tip of the support cylinder 64. Although the upper disk 65 corresponds to the upper rotating member 36 but is a non-rotating member, the name and the code are changed. Since only the lower rotating body 15 is rotated, a bead can be formed only on the lower side. The other components are the same as those in FIG.
 本発明は、2枚以上の金属板を摩擦撹拌接合法で接合する摩擦撹拌接合装置に好適である。 The present invention is suitable for a friction stir welding apparatus that joins two or more metal plates by a friction stir welding method.
 10…摩擦撹拌接合装置、14…回転主軸、15…下側回転体、16…第1のアクチュエータ、17…回転軸(第1のアクチュエータの軸)、27…第2のアクチュエータ、28…回転軸(第2のアクチュエータの軸)、36…上側回転体、39…荷重センサ、41…荷重制御部、42…ロボット、43…位置センサ、44…コントローラ、46、47…ワーク、48…接合部、49…ビード。 DESCRIPTION OF SYMBOLS 10 ... Friction stir welding apparatus, 14 ... Rotation main shaft, 15 ... Lower side rotating body, 16 ... 1st actuator, 17 ... Rotation axis (axis | shaft of 1st actuator), 27 ... 2nd actuator, 28 ... Rotation axis (Axis of second actuator), 36 ... upper rotating body, 39 ... load sensor, 41 ... load control unit, 42 ... robot, 43 ... position sensor, 44 ... controller, 46, 47 ... work, 48 ... joint, 49 ... Bead.

Claims (3)

  1.  ワークの上に配置される上側回転体と、
     前記ワークの下に配置される下側回転体と、
     前記下側回転体を一体的に備えると共に前記上側回転体内部を貫通する回転主軸と、
     前記回転主軸に回転力を与える第1のアクチュエータと、
     前記上側回転体を軸方向に移動する第2のアクチュエータと、
     この第2のアクチュエータに加わる軸荷重を検出する荷重センサと、
     この荷重センサから得られる荷重情報に基づいて、前記上側回転体がワークに加える荷重を制御する荷重制御部と、
     前記下側回転体の位置を検出する位置センサと、
     この位置センサからの位置情報に基づいて、前記下側回転体の位置を制御するコントローラとを備えている摩擦撹拌接合装置。
    An upper rotating body arranged on the workpiece;
    A lower rotating body arranged under the workpiece;
    A rotating main shaft that integrally includes the lower rotating body and penetrates the upper rotating body;
    A first actuator that applies a rotational force to the rotary spindle;
    A second actuator for moving the upper rotating body in the axial direction;
    A load sensor for detecting an axial load applied to the second actuator;
    Based on load information obtained from the load sensor, a load control unit that controls a load applied to the workpiece by the upper rotating body,
    A position sensor for detecting the position of the lower rotating body;
    A friction stir welding apparatus comprising: a controller that controls the position of the lower rotating body based on position information from the position sensor.
  2.  前記回転主軸は、前記コントローラにより制御されるロボットにより、上下に移動する請求項1記載の摩擦撹拌接合装置。 The friction stir welding apparatus according to claim 1, wherein the rotating spindle moves up and down by a robot controlled by the controller.
  3.  前記第1のアクチュエータの軸と、前記第2のアクチュエータの軸と、前記回転主軸とが、並列に配置されつつ前記ロボットに支持されている請求項2記載の摩擦撹拌接合装置。 The friction stir welding apparatus according to claim 2, wherein the axis of the first actuator, the axis of the second actuator, and the rotation main axis are supported by the robot while being arranged in parallel.
PCT/JP2015/071929 2014-08-07 2015-08-03 Friction stir welding device WO2016021538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161404 2014-08-07
JP2014161404 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021538A1 true WO2016021538A1 (en) 2016-02-11

Family

ID=55263804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071929 WO2016021538A1 (en) 2014-08-07 2015-08-03 Friction stir welding device

Country Status (1)

Country Link
WO (1) WO2016021538A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002689B1 (en) 2021-03-31 2022-01-20 株式会社日立パワーソリューションズ How to insert a robot-type friction stir welding device and its joining tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199745B1 (en) * 1998-07-09 2001-03-13 Mts Systems Corporation Welding head
JP2004298900A (en) * 2003-03-28 2004-10-28 Mitsubishi Heavy Ind Ltd Friction stir welding method, its welding equipment, and friction welding body
EP1864747A1 (en) * 2006-06-07 2007-12-12 Abb Ab System and method for frictional stir welding with means for supporting the workpiece during welding moving synchronously with the rotary tool relative to the workpiece
JP2008093733A (en) * 2006-10-13 2008-04-24 Alstom Transport Sa Method for assembling structure with exterior and interior formed from plurality of double skin elements like railway vehicle, and structure obtained thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199745B1 (en) * 1998-07-09 2001-03-13 Mts Systems Corporation Welding head
JP2004298900A (en) * 2003-03-28 2004-10-28 Mitsubishi Heavy Ind Ltd Friction stir welding method, its welding equipment, and friction welding body
EP1864747A1 (en) * 2006-06-07 2007-12-12 Abb Ab System and method for frictional stir welding with means for supporting the workpiece during welding moving synchronously with the rotary tool relative to the workpiece
JP2008093733A (en) * 2006-10-13 2008-04-24 Alstom Transport Sa Method for assembling structure with exterior and interior formed from plurality of double skin elements like railway vehicle, and structure obtained thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002689B1 (en) 2021-03-31 2022-01-20 株式会社日立パワーソリューションズ How to insert a robot-type friction stir welding device and its joining tool
JP2022157191A (en) * 2021-03-31 2022-10-14 株式会社日立パワーソリューションズ Robotic friction stir welding device and method of inserting weld tool thereof

Similar Documents

Publication Publication Date Title
JP4332157B2 (en) Friction stir welding equipment
JP4520927B2 (en) Friction stir welding apparatus and control method thereof
JP4630172B2 (en) Friction stir welding apparatus and control method thereof
JP2012076183A (en) Work clamping device in machine tool
JP2006021250A (en) Workpiece joining apparatus using friction stir welding method
US9975201B2 (en) Friction stir welding apparatus
JP6256096B2 (en) Grinder
JP2018015836A5 (en) Drive mechanism, robot apparatus, article manufacturing method, and control method
WO2013140579A1 (en) Work robot and robot system
KR101597777B1 (en) Friction Welding Device
KR100743906B1 (en) Auto carriage for minimizing non-welding region and welding method thereof
WO2016021538A1 (en) Friction stir welding device
WO2015146185A1 (en) Friction stir welding device and friction stir welding method
JP2007268558A (en) Apparatus and method for friction stir welding
JP5848528B2 (en) Rotating tool for friction stir welding, friction stir welding apparatus, and friction stir welding method
JP2008030050A (en) Method and apparatus for friction stir welding
KR20120067239A (en) One axis robot using belt
CN101137468A (en) Five-bar mechanism with dynamic balancing means and method for dynamically balancing a five-bar mechanism
KR101534779B1 (en) controlling system of friction stir welding equipment and controlling methods thereby
KR101558561B1 (en) Motor control device of ring mill
JP2015516642A (en) Automatic device for plasma surface treatment of thermoplastic parts
KR101607970B1 (en) Grinding friction stir welding apparatus
JP4584212B2 (en) Motor rotation speed control device
JP6662719B2 (en) Equipment for manufacturing wheel rims for automobiles
JP2014077514A (en) Linear motion table device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP