WO2016021324A1 - ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法 - Google Patents

ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法 Download PDF

Info

Publication number
WO2016021324A1
WO2016021324A1 PCT/JP2015/068346 JP2015068346W WO2016021324A1 WO 2016021324 A1 WO2016021324 A1 WO 2016021324A1 JP 2015068346 W JP2015068346 W JP 2015068346W WO 2016021324 A1 WO2016021324 A1 WO 2016021324A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
peripheral surface
gas
groove
surface side
Prior art date
Application number
PCT/JP2015/068346
Other languages
English (en)
French (fr)
Inventor
桑原 正光
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201580001299.5A priority Critical patent/CN105452609B/zh
Priority to US14/903,124 priority patent/US9540934B2/en
Priority to KR1020167000137A priority patent/KR101660679B1/ko
Priority to EP15816353.5A priority patent/EP3009605B1/en
Publication of WO2016021324A1 publication Critical patent/WO2016021324A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/305Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the pressure side of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Definitions

  • the present invention relates to a high-temperature part of a gas turbine, a gas turbine including the same, and a method for manufacturing the high-temperature part of the gas turbine.
  • combustion gas In a gas turbine, air compressed by a compressor is mixed with fuel in a combustor to generate combustion gas that is a high-temperature fluid. Combustion gas is introduced into a combustion gas flow path of a turbine in which stationary blades and moving blades are alternately arranged. In the turbine, the rotor blades and the rotor are rotated by the combustion gas flowing in the combustion gas flow path. Thus, the turbine outputs the combustion gas energy as rotational energy and gives rotational driving force to the compressor and the generator.
  • the combustion gas flow path through which the combustion gas flows is formed in an annular shape with the inner peripheral side and the outer peripheral side surrounded by a wall portion.
  • the wall portion of the combustion gas flow path is configured by arranging plate-like high-temperature parts in the circumferential direction and the axial direction.
  • inner shrouds attached to the stationary blade proximal end are arranged annularly in the circumferential direction.
  • platforms attached to the moving blade base end are annularly arranged in the circumferential direction at positions adjacent to each other in the axial direction along the combustion gas flow path.
  • the annular bodies of the inner shroud and the platform are alternately arranged in the axial direction of the rotor, and the inner peripheral wall portion is configured.
  • the outer shroud attached to the tip of the stationary blade is annularly arranged in the circumferential direction.
  • divisional rings that are curved in an arc shape are arranged annularly in the circumferential direction at positions adjacent to each other in the axial direction along the combustion gas flow path.
  • the high-temperature components that constitute such a combustion gas flow path and come into contact with the high-temperature combustion gas are cooled by using a part of the compressed air as cooling air.
  • a cooling structure for cooling high-temperature components of a gas turbine for example, there is a cooling structure disclosed in Patent Document 1.
  • a cooling air passage extending in the axial direction is formed on the end face of the shroud of the stationary blade.
  • a groove extending in the axial direction is formed on the end face of the shroud of the stationary blade.
  • a cooling air flow path extending in the axial direction is formed by closing the opening of the groove with a plug.
  • the present invention provides a high-temperature component of a gas turbine capable of efficiently cooling an outer peripheral surface, a gas turbine including the high-temperature component of the gas turbine, and a method for manufacturing the high-temperature component of the gas turbine.
  • the high-temperature component of the gas turbine in the first aspect of the present invention defines an annular combustion gas flow path through which combustion gas flows around the rotor.
  • the high-temperature component of the gas turbine includes a plate-like member having a gas path surface facing at least one of the inner side and the outer side in the radial direction of the rotor in the combustion gas flow path.
  • the plate-like member has a cooling flow passage formed therein along an outer peripheral surface intersecting the gas path surface.
  • the plate-like member has an outer peripheral surface side turbulator protruding from the outer peripheral surface side of the inner surface of the cooling flow passage.
  • the outer peripheral surface side turbulator that protrudes from the outer peripheral surface side of the inner surface of the cooling flow passage is formed. Therefore, the cooling air flows through the cooling flow passage while colliding with the outer peripheral surface side turbulator.
  • the flow of the cooling air can be disturbed so as to break the boundary layer of the cooling air generated along the inner surface on the outer peripheral surface side of the cooling flow passage. Therefore, the flow velocity of the cooling air flowing in the vicinity of the inner surface on the outer peripheral surface side of the cooling flow passage is increased, and the heat transfer coefficient on the outer peripheral surface side can be improved.
  • the high-temperature component of the gas turbine may include a gas path surface side turbulator protruding from the gas path surface side of the inner surface of the cooling flow passage.
  • the gas path surface side turbulator that protrudes from the gas path side in the inner surface of the cooling flow passage is formed. Therefore, the cooling air flows through the cooling flow passage while colliding with the gas path surface side turbulator.
  • the cooling air collides with the gas path surface side turbulator the flow of the cooling air can be disturbed so as to break the boundary layer of the cooling air generated along the inner surface of the cooling flow passage on the gas path surface side. Therefore, the flow velocity of the cooling air flowing in the vicinity of the inner surface of the cooling flow passage on the gas path surface side is increased, and the heat transfer coefficient on the gas path surface side can be improved. Therefore, the gas path surface of the high-temperature component can be efficiently cooled.
  • the cooling flow passage may be formed by a groove that is recessed from the outer peripheral surface of the plate-like member and a lid that closes the opening of the groove.
  • the outer peripheral surface side turbulator may be provided on the lid.
  • the cooling flow passage can be easily formed by closing the groove recessed from the outer peripheral surface with the lid.
  • the outer peripheral surface side turbulator By forming the outer peripheral surface side turbulator in the lid portion separable from the plate-like member, the outer peripheral surface side turbulator can be easily processed. Therefore, it is possible to easily form the outer peripheral surface side turbulator in an arbitrary place or an arbitrary shape in the cooling flow passage. Thereby, the cooling flow path which can cool an outer peripheral surface efficiently can be formed easily.
  • the cooling flow passage may be formed by a groove that is recessed from the outer peripheral surface of the plate-like member and a lid that closes the opening of the groove.
  • the outer peripheral surface side turbulator may be provided in the lid portion, and the gas path surface side turbulator may be provided in the groove portion.
  • the gas path surface side turbulator protruding from the inner surface on the gas path surface side is formed in the groove portion recessed from the outer peripheral surface.
  • a gas path surface side turbulator can be formed easily.
  • the gas path surface side turbulator can be easily processed from the outer peripheral surface side by forming the gas path surface side turbulator so as to protrude from the inner surface of the gas path surface side connected to the opening of the groove portion. Therefore, the gas path surface side turbulator can be easily formed in the cooling flow passage at any location or in any shape. Thereby, the cooling flow path which can cool a gas path surface efficiently can be formed easily.
  • the cooling flow passage may be formed by a groove that is recessed from the outer peripheral surface of the plate-like member and a lid that closes the opening of the groove.
  • the outer peripheral surface side turbulator and the gas path surface side turbulator may be provided on the lid.
  • the gas path surface side turbulator and the outer peripheral surface side turbulator are formed on the lid portion separable from the plate member.
  • the gas path surface side turbulator can be processed easily.
  • a cooling flow passage can be formed only by forming a simple depression on the outer peripheral surface as the groove. Therefore, it is possible to more easily form the gas path surface side turbulator in an arbitrary place or an arbitrary shape in the cooling flow passage. Thereby, the cooling flow path which can cool a gas path surface efficiently can be formed more easily.
  • the gas turbine according to the second aspect of the present invention includes the high-temperature component of the gas turbine.
  • the cooling air can be efficiently used. Therefore, the quantity which supplies a part of compressed air as cooling air to a turbine can be reduced, and efficiency as a gas turbine can be improved.
  • the method for manufacturing a high-temperature part of a gas turbine according to the third aspect of the present invention defines an annular combustion gas flow path through which combustion gas flows around the rotor.
  • a manufacturing method of a high-temperature part of a gas turbine is an outer peripheral surface intersecting the gas path surface with respect to a plate-like member having a gas path surface facing at least one of the inner side and the outer side in the radial direction of the rotor in the combustion gas flow path.
  • the outer peripheral surface side turbulator can be formed on the lid portion in the lid portion forming step while forming the groove portion from the outer peripheral surface side in the groove portion forming step. Therefore, the outer peripheral surface side turbulator can be easily processed by forming the outer peripheral surface side turbulator on the lid portion separable from the plate-like member.
  • the cooling flow passage can be easily formed from the outer peripheral surface side by fixing the lid to the groove and closing the opening of the groove with the lid. Therefore, the cooling flow passage provided with the outer peripheral surface side turbulator can be easily formed.
  • the gas path surface side turbulator protruding from the gas path surface side of the inner surface of the groove portion may be formed by performing processing from the outer peripheral surface side in the groove portion forming step.
  • the gas path surface side turbulator can be easily formed by forming the gas path surface side turbulator together with the groove portion from the outer peripheral surface side in the groove portion forming step. Thereby, the cooling flow path provided with the gas path surface side turbulator can be easily formed.
  • the cooling flow passage in which the outer peripheral turbulator is provided is formed.
  • the outer peripheral surface can be efficiently cooled.
  • the gas turbine 1 includes a compressor 10 that compresses outside air to generate compressed air, and a plurality of combustions that generate combustion gas G by burning fuel from a fuel supply source in the compressed air. And a turbine 30 driven by the combustion gas G.
  • the turbine 30 includes a casing 31 and a turbine rotor 33 that rotates around the rotor axis Ar in the casing 31.
  • the turbine rotor 33 is connected to, for example, a generator (not shown) that generates electricity by the rotation of the turbine rotor 33.
  • the compressor 10 is disposed on one side of the axial direction Da parallel to the rotor axis Ar with respect to the turbine 30.
  • the casing 31 of the turbine 30 has a cylindrical shape with the rotor axis Ar as the center.
  • the plurality of combustors 20 are attached to the casing 31 at intervals in the circumferential direction Dc with respect to the rotor axis Ar.
  • a part of the generated compressed air is supplied to the turbine 30 and the combustor 20 as cooling air.
  • the side where the compressor 10 is arranged in the axial direction Da is the upstream side
  • the side where the opposite turbine 30 is arranged is the downstream side.
  • the side away from the rotor axis Ar is defined as the radially outer side
  • the side approaching the rotor axis Ar is defined as the radially inner side.
  • the turbine rotor 33 includes a rotor body 34 extending in the axial direction Da around the rotor axis Ar, and a plurality of blade rows attached to the rotor body 34 side by side in the axial direction Da. 35.
  • Each of the blade rows 35 has a plurality of blades 36 that are attached to the rotor shaft Ar along the circumferential direction Dc with respect to the rotor shaft Ar.
  • the rotor blade 36 includes a rotor blade body 37 extending in the radial direction Dr, a platform 38 provided on the radially inner side of the rotor blade body 37, and a blade root 39 provided on the radially inner side of the platform 38. have.
  • the rotor blade 36 is fixed to the rotor body 34 by the blade root 39 being embedded in the rotor body 34.
  • a stationary blade row 40 is disposed on each upstream side of the plurality of blade rows 35.
  • Each of the stator blade rows 40 includes a plurality of stator blades 41 arranged in the circumferential direction Dc.
  • Each of the stationary blades 41 is provided on the radially inner side of the stationary blade body 42, the stationary blade body 42 extending in the radial direction Dr, the outer shroud 43 provided on the radially outer side of the stationary blade body 42.
  • An inner shroud 45 is provided on the radially inner side of the stationary blade body 42.
  • a cylindrical blade ring 50 is arranged around the rotor axis Ar on the radially outer side of the moving blade row 35 and the stationary blade row 40 and inside the casing 31 in the radial direction.
  • the blade ring 50 is fixed to the casing 31.
  • the outer shroud 43 of the stationary blade 41 and the blade ring 50 are connected by a heat shield ring 52.
  • a plurality of split rings 61 arranged in the circumferential direction Dc with the rotor axis Ar as a center are arranged.
  • the plurality of split rings 61 arranged in the circumferential direction Dc have a ring shape.
  • a moving blade row 35 is disposed on the radially inner side.
  • Each of the plurality of split rings 61 arranged in the circumferential direction Dc is connected to the blade ring 50 by a heat shield ring 52.
  • a combustion gas flow path Pg through which the combustion gas G flows is formed in the casing 31 of the turbine 30.
  • the combustion gas flow path Pg includes an inner shroud 45 and an outer shroud 43 of the plurality of stationary blades 41 constituting the stationary blade row 40, and a platform 38 of the plurality of blades 36 constituting the moving blade row 35 on the downstream side thereof.
  • the rotor ring 34 is defined in an annular shape around the rotor body 34.
  • the stationary blade 41, the moving blade 36, and the split ring 61 are all high-temperature components of the gas turbine 1 that are in contact with the high-temperature and high-pressure combustion gas G that circulates in the combustion gas flow path Pg.
  • the outer shroud 43 and the inner shroud 45 of the stationary blade 41 constituting the stationary blade row 40 will be collectively referred to as the high temperature component, and the shroud 450 will be described as an example.
  • the shroud 450 is a plate-like member having a gas path surface 451 facing the inside in the radial direction Dr of the rotor shaft Ar in the combustion gas flow path Pg of the present embodiment.
  • the shroud 450 has a plate shape that is curved in an arc shape around the rotor axis Ar.
  • FIG. 3 is a schematic diagram illustrating a schematic shape of the shroud 450 in the present embodiment.
  • the shroud 450 projects from the gas path surface 451 toward the outside in the radial direction with the stationary blade body 42 integrated therewith.
  • the side end surface 452 is a surface of the shroud 450 that intersects with the gas path surface 451 at the end in the circumferential direction Dc of the gas path surface 451 and extends long in the axial direction Da.
  • the front edge end surface 453 is a surface that intersects with the gas path surface 451 at the upstream end in the axial direction Da of the gas path surface 451 and extends long in the circumferential direction Dc.
  • the trailing edge end surface 454 is a surface that intersects with the gas path surface 451 at the downstream end in the axial direction Da of the gas path surface 451 and extends long in the circumferential direction Dc.
  • the shroud 450 has a cooling flow passage 46 through which cooling air flows.
  • the cooling flow passage 46 of the present embodiment is formed along the side end face 452 inside the shroud 450.
  • the stationary blade body 42 is formed with a leading edge passage 421 and a trailing edge passage 422 for circulating cooling air therein.
  • the cooling flow passage 46 of the present embodiment includes a connection flow passage 461 communicating with the leading edge passage 421 and a main cooling flow passage 462 formed along the side end surfaces 452 on both sides.
  • the connecting flow passage 461 extends from the front edge passage 421 toward the front edge end face 453 side in the shroud 450 and then branches along the front edge end face 453 toward the side end faces 452 on both sides. Yes.
  • the main cooling flow passage 462 is connected to the connection flow passage 461.
  • the main cooling flow passages 462 are formed along the side end surfaces 452 on both sides.
  • the main cooling flow passage 462 of this embodiment is connected to the connection flow passage 461 on the front edge end face 453 side.
  • the main cooling flow passage 462 is connected to an opening formed on the rear edge end face 454 on the front edge end face 453 side.
  • the shroud 450 includes a groove portion 47 that is recessed from the side end surface 452 or the front edge end surface 453 that is the outer peripheral surface of the plate-like member, and a lid portion 48 that closes the opening of the groove portion 47.
  • a cooling flow passage 46 is formed inside the shroud 450 along the side end surface 452 and the front edge end surface 453 by the groove portion 47 and the lid portion 48.
  • the groove 47 is formed from the front edge end face 453 side to the rear edge end face 454 along the direction including the axial Da component, which is the direction in which the side end face 452 extends.
  • the groove portion 47 of the present embodiment is also formed between the side end surfaces 452 along the direction including the circumferential direction Dc component, which is the direction in which the front edge end surface 453 extends.
  • the groove portion 47 of the present embodiment has a first groove portion 471 into which the lid portion 48 is fitted, and a second groove portion 472 formed inside the shroud 450 rather than the first groove portion 471.
  • the first groove portion 471 is a square groove that is recessed vertically from the side end face 452 or the front edge end face 453.
  • the second groove part 472 has a smaller cross-sectional shape than the first groove part 471.
  • the second groove portion 472 is a square groove that is recessed vertically from the inner surface parallel to the side end surface 452 and the front edge end surface 453 among the inner surfaces of the first groove portion 471.
  • a gas path surface side turbulator 473 is formed on the gas path surface 451 side of the inner surface.
  • the gas path surface side turbulator 473 protrudes from the inner surface of the second groove portion 472 on the gas path surface 451 side.
  • the gas path surface side turbulator 473 of the present embodiment projects in a rectangular shape from the opening on the first groove portion 471 side toward the inside on the inner surface of the second groove portion 472 on the gas path surface 451 side.
  • a plurality of gas path surface side turbulators 473 of the groove portion 47 formed in the side end surface 452 are formed apart from each other in the direction in which the side end surface 452 extends.
  • a plurality of gas path surface side turbulators 473 of the groove portion 47 formed on the front edge end surface 453 are formed apart from each other in the extending direction of the front edge end surface 453.
  • the lid portion 48 that closes the opening of the groove portion 47 formed on the side end surface 452 is formed to extend from the front edge end surface 453 side to the rear edge end surface 454 along the side end surface 452.
  • the lid portion 48 that closes the opening of the groove portion 47 formed on the front edge end surface 453 is formed to extend between the side end surfaces 452 along the front edge end surface 453.
  • the lid portion 48 of the present embodiment has a lid main body 481 formed so as to be fitted into the first groove portion 471 and the second groove portion 472 with the lid main body 481 fitted into the first groove portion 471. And an outer peripheral surface side turbulator 482 projecting out.
  • the lid body 481 extends along the direction in which the side end surface 452 and the front edge end surface 453 extend so as to fit into the first groove 471.
  • a groove portion closing surface 481 a that is a plane for closing the opening of the second groove portion 472 is formed on the second groove portion 472 side in the cross-sectional shape.
  • the lid main body 481 is formed so as to reduce in diameter as it goes outward in the cross-sectional shape.
  • the lid main body 481 disposed on the side end surface 452 is formed such that the side end surface 452 side, which is the outer side in the cross-sectional shape, is reduced in diameter toward the side end surface 452 side.
  • the outer peripheral surface side turbulator 482 protrudes from the groove closing surface 481a of the lid main body 481. Therefore, the outer peripheral surface side turbulator 482 protrudes from the side end surface 452 side or the front edge end surface 453 side of the cooling flow passage 46 in a state in which the lid main body 481 is fitted in the first groove portion 471.
  • the outer peripheral surface side turbulator 482 protrudes in a rectangular shape from the groove portion closing surface 481a so as to cross in the width direction of the groove portion closing surface 481a.
  • a plurality of outer peripheral surface side turbulators 482 are formed apart from each other along the direction in which the lid main body 481 extends.
  • the manufacturing method of the high temperature component of the gas turbine 1 in this embodiment is demonstrated.
  • the high-temperature component of the gas turbine 1 that defines the combustion gas flow path Pg through which the combustion gas G flows around the rotor body 34 is manufactured.
  • a case where a shroud 450 that is a plate-like member is manufactured will be described as an example.
  • the manufacturing method of the high-temperature component of the gas turbine 1 of the present embodiment includes a groove portion forming step S1 for forming the groove portion 47 recessed from the outer peripheral surface with respect to the shroud 450, and a lid portion for forming the lid portion 48 for closing the opening of the groove portion 47.
  • a forming step S2 and a lid fixing step S3 for fixing the lid 48 to the groove 47 are included.
  • Groove part formation process S1 forms the groove part 47 in the side end surface 452 or the front edge end surface 453 of the shroud 450.
  • the groove portion 47 is formed along the direction in which the side end surface 452 extends by processing from the side end surface 452 side.
  • the groove portion 47 is formed along the extending direction of the front edge end surface 453 by processing from the front edge end surface 453 side.
  • the first groove 471 is formed on the side end surface 452 by performing processing from the side end surface 452 side. Thereafter, in the groove forming step S1, processing is performed from the side end face 452 side.
  • the groove forming step S1 forms the second groove 472 recessed from the inner surface of the first groove 471 parallel to the side end surface 452 while forming the gas path surface turbulator 473 protruding from the inner surface on the gas path surface 451 side.
  • the groove forming step S1 of the present embodiment engraves the shroud 450 from the side end face 452 side by electric discharge machining.
  • the groove forming step S1 forms the first groove 471, the second groove 472, and the gas path surface side turbulator 473.
  • electric discharge machining is performed from the front edge end surface 453 side.
  • the first groove 471, the second groove 472, and the gas path surface side turbulator 473 are formed on the front edge end surface 453.
  • the lid forming step S2 forms a lid 48 that is fitted into the groove 47.
  • a lid main body 481 shaped to fit in the first groove 471 and close the opening of the second groove 472, and an outer peripheral surface side turbulator protruding from the groove closing surface 481a. 482.
  • the groove portion forming step S1 the side end surface 452 side or the front edge end surface of the lid portion main body 481 without projecting the lid portion main body 481 from the side end surface 452 in a state where the lid portion main body 481 is fitted in the first groove portion 471.
  • the lid body 481 is formed so that a space is created with respect to the first groove 471 on the 453 side.
  • the lid portion 48 formed in the lid portion forming step S2 is fitted and fixed to the groove portion 47 formed in the groove portion forming step S1 so that the outer peripheral surface side turbulator 482 faces the groove portion 47.
  • the lid main body 481 is fitted into the first groove 471 with the outer peripheral surface side turbulator 482 facing the second groove 472.
  • the lid fixing step S3 is fixed by welding while forming the weld bead 49 so as to fill the gap between the lid main body 481 and the first groove 471 from the side end face 452 side or the front edge end face 453 side.
  • the compressed air sent from the compressor 10 enters the casing 31 of the turbine 30 and flows into the combustor 20.
  • the fuel supplied from the outside is burned together with the compressed air, and the combustion gas G is generated.
  • This combustion gas G is in contact with the rotor blade main body 37 in the process of passing through the combustion gas flow path Pg, and rotates the turbine rotor 33 around the rotor axis Ar.
  • the combustion gas G passing through the combustion gas flow path Pg flows into a gap between adjacent high-temperature components such as a gap in the circumferential direction Dc between the shrouds 450 and a gap in the axial direction Da between the shroud 450 and the platform 38. However, it flows downstream.
  • a part of the compressed air from the compressor 10 is used as cooling air, and in order to cool the moving blades 36 and the stationary blades 41, the region inside the platform 38 in the radial direction and the diameter of the blade ring 50 in the casing 31 of the turbine 30. It flows into the area outside the direction.
  • the cooling air that has flowed into the radially inner region of the platform 38 cools the platform 38 and the rotor blade body 37 from the inside through a flow path (not shown) formed inside each component.
  • the cooling air that has flowed into the radially outer region of the blade ring 50 flows radially outward of the outer shroud 43 and the split ring 61 disposed on the radially inner side, and cools the outer shroud 43 and the split ring 61.
  • the cooling air that has flowed to the outer side in the radial direction of the outer shroud 43 flows into the leading edge passage 421 and the trailing edge passage 422 of the stationary blade body 42 through a flow path (not shown) inside the outer shroud 43. Thereafter, the cooling air flows from the leading edge passage 421 into the connection flow passage 461 of the shroud 450.
  • the lid portion 48 is fitted into the first groove portion 471 and welded and fixed. Thereby, the cooling air that has flowed into the connection flow passage 461 flows into the main cooling flow passage 462 formed by the second groove portion 472 and the groove portion closing surface 481a of the lid portion 48.
  • the outer peripheral surface side turbulator 482 protruding from the inner surface on the side end surface 452 side and the front edge end surface 453 side, and the gas path surface side protruding from the inner surface on the gas path surface 451 side.
  • a turbulator 473 is formed.
  • the cooling air flowing in from the leading edge passage 421 flows toward the trailing edge end surface 454 while colliding with the outer peripheral surface side turbulator 482 and the gas path surface side turbulator 473.
  • the cooling air in the cooling flow passage 46 flows along the axial direction Da from the front edge end face 453 side, and is discharged from the opening of the rear edge end face 454 to the outside of the shroud 450.
  • the outer peripheral surface side turbulator 482 is formed so as to protrude from the side end surface 452 side or the front edge end surface 453 side of the inner surface of the cooling flow passage 46.
  • the cooling air flows through the cooling flow passage 46 while colliding with the outer peripheral surface side turbulator 482.
  • the boundary layer of the cooling air generated along the groove closing surface 481a of the lid portion 48 which is the inner surface on the side end surface 452 side or the front edge end surface 453 side of the cooling flow passage 46 by the collision of the cooling air with the outer peripheral surface side turbulator 482.
  • the flow of cooling air can be disturbed so as to break the air.
  • the flow velocity of the cooling air flowing in the vicinity of the groove portion closing surface 481a is increased, and the heat transfer coefficient on the side end surface 452 side or the front edge end surface 453 side can be improved. Therefore, the side end face 452 and the front edge end face 453 that are exposed to the high-temperature combustion gas G flowing into the gap between the shroud 450 adjacent in the circumferential direction Dc from the combustion gas flow path Pg can be efficiently cooled. it can.
  • a gas path surface side turbulator 473 protruding from the gas path surface 451 side of the inner surface of the second groove portion 472 is formed. Therefore, the cooling air in the cooling flow passage 46 flows while colliding with the gas path surface side turbulator 473.
  • the flow of the cooling air can be disturbed so as to break the boundary layer of the cooling air generated along the inner surface of the second groove portion 472 on the gas path surface 451 side. Therefore, the flow velocity of the cooling air flowing in the vicinity of the inner surface of the second groove 472 on the gas path surface 451 side is increased, and the heat transfer coefficient on the gas path surface 451 side can be improved. Therefore, the gas path surface 451 of the shroud 450 exposed to the high-temperature combustion gas G can be efficiently cooled by facing the combustion gas flow path Pg.
  • the main cooling flow passage 462 is formed along the direction in which the side end surface 452 extends, the side end surface 452 can be efficiently cooled over the entire area.
  • the connecting flow passage 461 along the direction in which the front edge end surface 453 extends, the front edge end surface 453 can be efficiently cooled over the entire region.
  • the cooling flow passage 46 can be easily formed by closing the groove portion 47 recessed from the side end surface 452 or the front edge end surface 453 with the lid portion 48.
  • the outer peripheral surface side turbulator 482 can be easily processed. Therefore, it is possible to easily form the outer peripheral surface side turbulator 482 in the cooling flow passage 46 at an arbitrary location or an arbitrary shape. Thereby, the cooling flow passage 46 capable of efficiently cooling the side end face 452 and the front edge end face 453 can be easily formed in the shroud 450.
  • the gas path surface side turbulator 473 By forming the gas path surface side turbulator 473 protruding from the inner surface on the gas path surface 451 side with respect to the second groove portion 472 recessed from the side end surface 452 or the front edge end surface 453, the gas path surface side turbulator 473 can be easily formed. Can do. Specifically, it is formed so as to protrude from the inner surface on the gas path surface 451 side connected to the opening of the second groove portion 472, so that the gas path passes through the opening of the second groove portion 472 from the side end surface 452 side or the front edge end surface 453 side.
  • the surface side turbulator 473 can be easily processed. Therefore, the gas path surface side turbulator 473 can be easily formed in the cooling flow passage 46 at an arbitrary position or an arbitrary shape. Thereby, the cooling flow passage 46 capable of efficiently cooling the gas path surface 451 can be easily formed in the shroud 450.
  • the cooling air can be efficiently used. Therefore, the amount of part of the compressed air supplied as cooling air to the turbine 30 can be reduced, and the efficiency of the gas turbine 1 can be improved.
  • the lid portion is formed while forming the first groove portion 471 and the second groove portion 472 from the side end face 452 side or the front edge end face 453 side in the groove portion forming step S1.
  • the outer peripheral surface side turbulator 482 can be formed on the lid portion 48 in the forming step S2. Therefore, the outer peripheral surface side turbulator 482 can be easily processed by forming the outer peripheral surface side turbulator 482 in the lid portion 48 that can be separated from the main body of the shroud 450.
  • the lid 48 is welded and fixed to the first groove 471, and the opening of the second groove 472 is blocked by the groove blocking surface 481 a of the lid 48.
  • the cooling flow path 46 can be easily formed from the side end face 452 side or the front edge end face 453 side. Therefore, the cooling flow passage 46 provided with the outer peripheral surface side turbulator 482 can be easily formed.
  • the gas path surface side turbulator 473 can be easily formed by carving the gas path surface side turbulator 473 together with the second groove part 472 from the side end surface 452 side or the front edge end surface 453 side. Thereby, the cooling flow path 46 provided with the gas path surface side turbulator 473 can be easily formed.
  • Second Embodiment High temperature components of the gas turbine 1 of the second embodiment will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the high temperature component of the gas turbine 1 of the second embodiment is different from that of the first embodiment regarding the configuration of the groove 47 and the lid 48.
  • a shroud 450 will be described as an example of a high temperature component.
  • a gas path surface side turbulator 473 is formed not on the groove portion 47 but on the lid portion 48.
  • the shroud 450 of the second embodiment includes a deformation groove portion 47a in which the gas path surface side turbulator 473 is not formed, and a deformation lid portion 48a in which the outer peripheral surface side turbulator 482 and the gas path surface side turbulator 473 are formed.
  • the deformed groove 47a is different from the groove 47 of the first embodiment in that the gas path surface side turbulator 473 is not provided.
  • the deformed groove portion 47 a of this embodiment includes a first groove portion 471 and a second groove portion 472 having the same shape as the groove portion 47.
  • the deformation lid portion 48a differs from the lid portion 48 of the first embodiment in that a gas path surface side turbulator 473 is formed.
  • the deformed lid portion 48 a of this embodiment includes a lid portion main body 481, an outer peripheral surface side turbulator 482, and a deformed gas path surface side turbulator 483 that protrudes from the cover portion main body 481 more than the outer peripheral surface side turbulator 482.
  • the lid main body 481 and the outer peripheral surface side turbulator 482 have the same shape as in the first embodiment.
  • a plurality of deformed gas path surface side turbulators 483 are formed on the deformed lid portion 48a so as to protrude from the inner surface of the cooling flow passage 46 on the gas path surface 451 side in a state where the deformed lid portion 48a closes the opening of the deformed groove portion 47a.
  • the deformed gas path surface side turbulator 483 of the present embodiment is formed at a position where the outer peripheral surface side turbulator 482 of the lid body 481 is formed.
  • the deformed gas path surface side turbulator 483 protrudes perpendicularly from a predetermined position in the width direction of the groove closing surface 481a in a rectangular shape.
  • the predetermined position in the width direction of the groove closing surface 481a in the present embodiment is that the deformed gas path surface side turbulator 483 protruding from the lid main body 481 in the state where the lid main body 481 is fitted in the first groove 471 is the second position. This is the position where the groove portion 472 contacts the inner surface of the gas path surface 451 side.
  • the deformed gas path surface side turbulator 483 and the outer peripheral surface side turbulator 482 are formed in the lid portion 48 that is separable from the shroud 450, so that the deformed gas path surface side turbulator 483 is formed. It can be easily processed.
  • the cooling flow passage 46 can be formed only by forming a square groove, which is a simple depression, on the side end face 452 or the front edge end face 453 as the deformed groove 47a. Therefore, it is possible to more easily form the deformed gas path surface side turbulator 483 in the cooling flow passage 46 at an arbitrary position or an arbitrary shape. Thereby, the cooling flow passage 46 capable of efficiently cooling the gas path surface 451 can be more easily formed in the shroud 450.
  • the shroud 450 is described as an example of the high-temperature component of the gas turbine 1, but the high-temperature component of the gas turbine 1 of the present invention is not limited to the shroud 450.
  • the high temperature component of the gas turbine 1 including a plate-like component may be the platform 38 of the moving blade 36 or the split ring 61.
  • the high temperature component of the gas turbine 1 may be a component including a plate-like member having a gas path surface 451 facing at least one of the inside and the outside in the radial direction Dr of the rotor shaft Ar in the combustion gas flow path Pg.
  • the cooling flow path 46a may be formed in the platform front edge end surface 383 side which faces the upstream of the axial direction Da.
  • a cooling flow passage 46b may be formed on the side of the front end surface 613 of the split ring that faces the upstream side.
  • the main cooling flow passage 462 is not limited to being formed along the side end surface 452, but may be formed along the outer peripheral surface.
  • the main cooling flow passage 462 may be formed along the front edge end surface 453 and the rear edge end surface 454 of the outer peripheral surface, and the front edge end surface 453 and the rear edge end surface along the entire circumference of the outer peripheral surface. It may be formed along all the surfaces of 454 and side end surface 452. Even when the main cooling flow passage 462 is formed along the side end face 452, it is not limited to being formed along the side end faces 452 on both sides, but only on either one side. It may be formed along the side end face 452.
  • the shape of the outer peripheral surface side turbulator 482 and the gas path surface side turbulator 473 is not limited to the shape of the present embodiment, and the outer peripheral surface side turbulator 482 may protrude from the outer peripheral surface side of the inner surface of the cooling flow passage 46. Good.
  • the gas path surface side turbulator 473 may protrude from the gas path surface 451 side of the inner surface of the cooling flow passage 46.
  • the connecting flow passage 461 of the cooling flow passage 46 is not limited to the shape as in the present embodiment, and it is sufficient that the leading edge passage 421 of the stationary blade body 42 and the main cooling flow passage 462 are connected.
  • the connecting flow passage 461 does not have a shape that extends from the front edge passage 421 toward the front edge end face 453 and branches to the main cooling flow passage 462 as in the present embodiment, but is connected to the main cooling flow passage 462 on both sides.
  • Different connection flow paths 461 may be formed so as to be connected to the path 462, respectively.
  • the outer peripheral surface can be efficiently cooled by forming the cooling flow passage provided with the outer peripheral turbulator inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 ガスタービンの高温部品(450)は、燃焼ガス流路における前記ロータの径方向の内側または外側の少なくとも一方に面するガスパス面(451)を有する板状部材を備える。この板状部材は、ガスパス面(451)と交差する外周面(452)に沿って内部に冷却流通路が形成されている。板状部材は、冷却流通路の内面のうち外周面(452)側から突出する外周面側タービュレータ(482)を有する。

Description

ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法
 本発明は、ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法に関する。
 本願は、2014年8月4日に出願された特願2014-158535号について優先権を主張し、その内容をここに援用する。
 ガスタービンでは、圧縮機で加圧された空気が燃焼器において燃料と混合されて高温の流体である燃焼ガスが発生する。燃焼ガスは、静翼及び動翼が交互に配設されたタービンの燃焼ガス流路内に導入される。タービンでは、燃焼ガス流路内を流通する燃焼ガスによって動翼及びロータを回転させる。これにより、タービンは、燃焼ガスのエネルギーを回転エネルギーとして出力するとともに、圧縮機や発電機に回転駆動力を与えている。
 燃焼ガスが流通する燃焼ガス流路は、内周側と外周側とが壁部で囲まれて環状に形成されている。燃焼ガス流路の壁部は、板状の高温部品を周方向及び軸方向に配列することによって構成されている。具体的には、燃焼ガス流路の内周側においては、静翼基端に取り付けられた内側シュラウドが周方向に環状に配列される。加えて、燃焼ガス流路の内周側では、燃焼ガス流路に沿って軸方向に隣り合う位置には動翼基端に取り付けられたプラットフォームが周方向に環状に配列される。これにより、内側シュラウド及びプラットフォームのそれぞれの環状体がロータの軸方向に交互に配列され、内周側の壁部が構成されている。燃焼ガス流路の外周側においては、静翼先端に取り付けられた外側シュラウドが周方向に環状に配列される。加えて、燃焼ガス流路の外周側では、燃焼ガス流路に沿って軸方向に隣り合う位置には円弧状に湾曲した分割環が周方向に環状に配列される。これにより、外側シュラウド及び分割環のそれぞれの環状体が軸方向に交互に配列され、外周側の壁部が構成されている。
 このような燃焼ガス流路を構成して高温の燃焼ガスに接する高温部品は、圧縮空気の一部を冷却空気として利用して冷却されている。ガスタービンの高温部品を冷却する構造としては、例えば、特許文献1に開示されている冷却構造がある。この冷却構造では、静翼のシュラウドの端面に軸方向に延びる冷却空気流路を形成している。具体的には、静翼のシュラウドの端面に軸方向に延びる溝が形成されている。この溝の開口部をプラグで塞ぐことで、軸方向に延びる冷却空気流路が形成されている。
特開平09-228803号公報
 ところで、上述した静翼の外側シュラウドや内側シュラウド、及び分割環のような高温部品は、他の高温部品と軸方向に隣接するために、軸方向に隙間が形成されている。これらの高温部品は、環状に配列されることで、ロータの周方向に隙間が形成されて隣接している。燃焼ガス流路を流通する燃焼ガスが軸方向や周方向の隙間に流入してしまう。これにより、高温部品の燃焼ガス流路に面するガスパス面だけでなく、ガスパス面の周りの外周面も高温となってしまう。そのため、高温部品の外周面を効率的に冷却することが望まれている。
 本発明は、外周面を効率的に冷却することが可能なガスタービンの高温部品、該ガスタービンの高温部品を備えるガスタービン、及びガスタービンの高温部品の製造方法を提供する。
 本発明の第一の態様におけるガスタービンの高温部品は、ロータの周りに燃焼ガスが流れる環状の燃焼ガス流路を画定する。ガスタービンの高温部品は、前記燃焼ガス流路における前記ロータの径方向の内側または外側の少なくとも一方に面するガスパス面を有する板状部材を備える。前記板状部材は、前記ガスパス面と交差する外周面に沿って内部に冷却流通路が形成されている。前記板状部材は、前記冷却流通路の内面のうち前記外周面側から突出する外周面側タービュレータを有する。
 このような構成によれば、冷却流通路の内面のうち外周面側から突出する外周面側タービュレータが形成されている。そのため、冷却空気は外周面側タービュレータに衝突しながら冷却流通路内を流通する。冷却空気が外周面側タービュレータに衝突することで、冷却流通路の外周面側の内面に沿って生じる冷却空気の境界層を壊すように、冷却空気の流れを乱すことができる。そのため、冷却流通路の外周面側の内面の近傍を流れる冷却空気の流速が上昇し、外周面側の熱伝達率を向上させることができる。
 上記ガスタービンの高温部品では、前記冷却流通路の内面のうち前記ガスパス面側から突出するガスパス面側タービュレータを備えていてもよい。
 このような構成によれば、冷却流通路の内面のうちガスパス側から突出するガスパス面側タービュレータが形成されている。そのため、冷却空気はガスパス面側タービュレータに衝突しながら冷却流通路内を流通する。冷却空気がガスパス面側タービュレータに衝突することで、冷却流通路のガスパス面側の内面に沿って生じる冷却空気の境界層を壊すように、冷却空気の流れを乱すことができる。そのため、冷却流通路のガスパス面側の内面の近傍を流れる冷却空気の流速が上昇し、ガスパス面側の熱伝達率を向上させることができる。したがって、高温部品のガスパス面を効率的に冷却することができる。
 上記ガスタービンの高温部品では、前記冷却流通路は、前記板状部材の前記外周面から凹む溝部と、前記溝部の開口を閉塞する蓋部とによって形成されていてもよい。前記外周面側タービュレータは、前記蓋部に設けられていてもよい。
 このような構成によれば、外周面から凹む溝部を蓋部で閉塞することによって、冷却流通路を容易に形成できる。板状部材と分離可能な蓋部に外周面側タービュレータが形成されることで、外周面側タービュレータを容易に加工することができる。したがって、冷却流通路内に外周面側タービュレータを任意の箇所や任意の形状で形成することが容易にできる。これにより、外周面を効率的に冷却可能な冷却流通路を容易に形成することができる。
 上記ガスタービンの高温部品では、前記冷却流通路は、前記板状部材の前記外周面から凹む溝部と、前記溝部の開口を閉塞する蓋部とによって形成されていてもよい。前記外周面側タービュレータは、前記蓋部に設けられ、前記ガスパス面側タービュレータは、前記溝部に設けられていてもよい。
 このような構成によれば、外周面から窪む溝部に対して、ガスパス面側の内面から突出するガスパス面側タービュレータを形成する。これにより、ガスパス面側タービュレータを容易に形成することができる。具体的には、溝部の開口に繋がるガスパス面側の内面から突出するようにガスパス面側タービュレータを形成することで、外周面側からガスパス面側タービュレータを容易に加工することができる。したがって、冷却流通路内にガスパス面側タービュレータを任意の箇所や任意の形状で形成することが容易にできる。これにより、ガスパス面を効率的に冷却可能な冷却流通路を容易に形成することができる。
 上記ガスタービンの高温部品では、前記冷却流通路は、前記板状部材の前記外周面から凹む溝部と、前記溝部の開口を閉塞する蓋部とによって形成されていてもよい。前記外周面側タービュレータ及び前記ガスパス面側タービュレータは、前記蓋部に設けられていてもよい。
 このような構成によれば、ガスパス面側タービュレータが外周面側タービュレータとともに板状部材と分離可能な蓋部に形成される。これにより、ガスパス面側タービュレータを容易に加工することができる。溝部として、単純な窪みを外周面に形成するだけで、冷却流通路を形成することができる。したがって、冷却流通路内にガスパス面側タービュレータを任意の箇所や任意の形状で形成することが、より容易にできる。これにより、ガスパス面を効率的に冷却可能な冷却流通路を、より容易に形成することができる。
 本発明の第二の態様におけるガスタービンは、前記ガスタービンの高温部品を備える。
 このような構成によれば、外周面を効率的に冷却することができるため、冷却空気を効率的に利用することができる。そのため、冷却空気として圧縮空気の一部をタービンに供給する量を減少でき、ガスタービンとして効率を向上させることができる。
 本発明の第三の態様におけるガスタービンの高温部品の製造方法は、ロータの周りに燃焼ガスが流れる環状の燃焼ガス流路を画定する。ガスタービンの高温部品の製造方法は、前記燃焼ガス流路における前記ロータの径方向の内側または外側の少なくとも一方に面するガスパス面を有する板状部材に対して、前記ガスパス面と交差する外周面から凹む溝部を前記外周面に沿って形成する溝部形成工程と、前記溝部の開口を閉塞する蓋部を形成する蓋部形成工程と、前記蓋部を前記溝部に固定する蓋部固定工程とを含む。前記蓋部形成工程では、前記蓋部から突出する外周面側タービュレータを形成する。前記蓋部固定工程では、前記外周面側タービュレータを前記溝部に向けて固定する。
 このような構成によれば、溝部形成工程で外周面側から溝部を形成しながら、蓋部形成工程で外周面側タービュレータを蓋部に形成することができる。そのため、板状部材と分離可能な蓋部に外周面側タービュレータを形成することで、外周面側タービュレータを容易に加工することができる。蓋部固定工程で、蓋部を溝部に固定し、溝部の開口を蓋部によって閉塞することで、冷却流通路を外周面側から容易に形成することができる。したがって、外周面側タービュレータが設けられた冷却流通路を容易に形成することができる。
 上記ガスタービンの高温部品の製造方法では、前記溝部形成工程では、前記外周面側から加工を施すことによって、前記溝部の内面の前記ガスパス面側から突出するガスパス面側タービュレータを形成してもよい。
 このような構成によれば、溝部形成工程で、溝部とともにガスパス面側タービュレータを外周面側から形成することで、ガスパス面側タービュレータを容易に形成することができる。これにより、ガスパス面側タービュレータが設けられた冷却流通路を容易に形成することができる。
 この発明に係るガスタービンの高温部品、該ガスタービンの高温部品を備えるガスタービン、及びガスタービンの高温部品の製造方法によれば、内部に外周側タービュレータが設けられた冷却流通路が形成されることで、外周面を効率的に冷却することができる。
本発明の実施形態におけるガスタービンの要部切欠側面である。 本発明の実施形態におけるガスタービンの要部断面図である。 本発明の実施形態におけるガスタービンの内側シュラウド(高温部品)の概略形状を説明する模式図である。 本発明の第一実施形態における冷却流通路の断面図である。 本発明の第二実施形態における冷却流通路の断面図である。 本発明の変形例として冷却流通路の形成された動翼のプラットフォームの概略形状を説明する模式図である。 本発明の変形例として冷却流通路の形成された分割環の概略形状を説明する模式図である。
《第一実施形態》
 以下、本発明に係る第一実施形態について図1から図4を参照して説明する。
 ガスタービン1は、図1に示すように、外気を圧縮して圧縮空気を生成する圧縮機10と、燃料供給源からの燃料を圧縮空気中で燃焼させて燃焼ガスGを生成する複数の燃焼器20と、燃焼ガスGにより駆動するタービン30と、を備えている。
 タービン30は、ケーシング31と、このケーシング31内でロータ軸Arを中心として回転するタービンロータ33とを備えている。このタービンロータ33は、例えば、このタービンロータ33の回転で発電する発電機(不図示)と接続されている。
 圧縮機10は、タービン30に対して、ロータ軸Arに平行な軸方向Daの一方側に配置されている。タービン30のケーシング31は、ロータ軸Arを中心として円筒状をなしている。複数の燃焼器20は、ロータ軸Arに対する周方向Dcに互いの間隔をあけて、このケーシング31に取り付けられている。圧縮機10では、生成した圧縮空気の一部を冷却空気としてタービン30や燃焼器20に供給している。
 なお、以下では、軸方向Daで圧縮機10が配置されている側を上流側、その反対側のタービン30が配置されている側を下流側とする。ロータ軸Arに対する径方向Drで、ロータ軸Arから遠ざかる側を径方向外側、ロータ軸Arに近づく側を径方向内側とする。
 タービンロータ33は、図2に示すように、ロータ軸Arを中心として、軸方向Daに延びているロータ本体34と、軸方向Daに並んでロータ本体34に取り付けられている複数の動翼列35と、を有している。各動翼列35は、いずれも、ロータ軸Arに対して周方向Dcに並んでロータ軸Arに取り付けられている複数の動翼36を有している。動翼36は、径方向Drに延びる動翼本体37と、この動翼本体37の径方向内側に設けられているプラットフォーム38と、このプラットフォーム38の径方向内側に設けられている翼根39とを有している。動翼36は、この翼根39がロータ本体34に埋め込まれることで、ロータ本体34に固定されている。
 複数の動翼列35の各上流側には、静翼列40が配置されている。各静翼列40は、いずれも、複数の静翼41が周方向Dcに並んで構成されている。各静翼41は、いずれも、径方向Drに延びる静翼本体42と、静翼本体42の径方向外側に設けられている外側シュラウド43と、静翼本体42の径方向内側に設けられている内側シュラウド45と、を有している。
 動翼列35及び静翼列40の径方向外側であって、ケーシング31の径方向内側には、ロータ軸Arを中心として円筒状の翼環50が配置されている。この翼環50は、ケーシング31に固定されている。静翼41の外側シュラウド43と翼環50とは、遮熱環52により連結されている。
 軸方向Daで隣接する静翼列40の外側シュラウド43同士の間には、ロータ軸Arを中心として周方向Dcに並んだ複数の分割環61が配置されている。周方向Dcに並んだ複数の分割環61は環状を成している。その径方向内側には、動翼列35が配置されている。周方向Dcに並んだ複数の分割環61は、いずれも、遮熱環52により翼環50に連結されている。
 タービン30のケーシング31内には燃焼ガスGが流れる燃焼ガス流路Pgが形成されている。燃焼ガス流路Pgは、静翼列40を構成する複数の静翼41の内側シュラウド45及び外側シュラウド43と、その下流側の動翼列35を構成する複数の動翼36のプラットフォーム38及びこれに対向する分割環61とによって、ロータ本体34の周りに環状に画定されている。静翼41、動翼36及び分割環61は、いずれも、燃焼ガス流路Pg内を流通する高温高圧の燃焼ガスGに接するガスタービン1の高温部品である。
 次に、図3及び図4を用いて、本発明に係る高温部品の一実施形態について説明する。
 本実施形態では、高温部品として、静翼列40を構成する静翼41の外側シュラウド43や内側シュラウド45を総称して、シュラウド450を例に挙げて説明する。
 シュラウド450は、本実施形態の燃焼ガス流路Pgにおけるロータ軸Arの径方向Drの内側に面するガスパス面451を有する板状部材である。シュラウド450は、ロータ軸Arを中心とする円弧状に湾曲した板状をなしている。図3は、本実施形態におけるシュラウド450の概略形状を説明する模式図である。シュラウド450は、ガスパス面451から静翼本体42が一体をなして径方向外側に向かって突出している。本実施形態のシュラウド450では、ガスパス面451と交差する外周面として、ロータを基準に周方向Dcを向く側端面452と、ロータを基準に軸方向Daの上流側を向く前縁端面453と、下流側を向く後縁端面454とが形成されている。即ち、側端面452は、シュラウド450において、ガスパス面451の周方向Dcの端部でそれぞれガスパス面451と交差し、軸方向Daに長く延在する面である。前縁端面453は、ガスパス面451の軸方向Daの上流側の端部でガスパス面451と交差し、周方向Dcに長く延在する面である。後縁端面454は、ガスパス面451の軸方向Daの下流側の端部でガスパス面451と交差し、周方向Dcに長く延在する面である。
 シュラウド450は、内部に冷却空気を流通させる冷却流通路46が形成されている。
 本実施形態の冷却流通路46は、シュラウド450の内部で側端面452に沿って形成されている。具体的には、図3に示すように、本実施形態では、静翼本体42には、内部に冷却空気を流通させるための前縁通路421と後縁通路422とが形成されている。本実施形態の冷却流通路46は、この前縁通路421と連通する接続流通路461と、両側の側端面452に沿って形成される主冷却流通路462とを有する。
 接続流通路461は、シュラウド450の内部において前縁通路421から前縁端面453側に向かって延びた後に、前縁端面453に沿って両側の側端面452に向うように分岐して形成されている。
 主冷却流通路462は、接続流通路461と接続されている。主冷却流通路462は、両側の側端面452に沿ってそれぞれ形成されている。本実施形態の主冷却流通路462は、前縁端面453側が接続流通路461に接続されている。主冷却流通路462は、前縁端面453側が後縁端面454に形成されている開口に接続されている。
 シュラウド450は、図4に示すように、板状部材の外周面である側端面452や前縁端面453から凹む溝部47と、溝部47の開口を閉塞する蓋部48とを有する。この溝部47と蓋部48とによって、冷却流通路46がシュラウド450の内部に側端面452や前縁端面453に沿って形成されている。
 溝部47は、側端面452の延在する方向である軸方向Da成分を含む方向に沿って前縁端面453側から後縁端面454まで形成されている。本実施形態の溝部47は、前縁端面453の延在する方向である周方向Dc成分を含む方向に沿って側端面452同士の間にも形成されている。本実施形態の溝部47は、蓋部48がはめ込まれる第一溝部471と、第一溝部471よりもシュラウド450の内部に形成される第二溝部472とを有する。
 第一溝部471は、側端面452や前縁端面453から垂直に窪む角溝である。
 第二溝部472は、第一溝部471よりも小さな断面形状をなしている。第二溝部472は、第一溝部471の内面のうち、側端面452や前縁端面453と平行な内面から垂直に窪む角溝である。本実施形態の第二溝部472は、内面のうち、ガスパス面451側にガスパス面側タービュレータ473が形成されている。
 ガスパス面側タービュレータ473は、第二溝部472のガスパス面451側の内面から突出している。本実施形態のガスパス面側タービュレータ473は、第二溝部472のガスパス面451側の内面において、第一溝部471側の開口から内側に向かって直方状をなして突出している。側端面452に形成される溝部47のガスパス面側タービュレータ473は、側端面452の延在する方向に離間して複数形成されている。前縁端面453に形成される溝部47のガスパス面側タービュレータ473は、前縁端面453の延在する方向に離間して複数形成されている。
 側端面452に形成される溝部47の開口を閉塞する蓋部48は、側端面452に沿って前縁端面453側から後縁端面454まで延在して形成されている。前縁端面453に形成される溝部47の開口を閉塞する蓋部48は、前縁端面453に沿って側端面452同士の間を延在して形成されている。本実施形態の蓋部48は、第一溝部471に嵌まり込むように形成される蓋部本体481と、蓋部本体481が第一溝部471に嵌まり込んだ状態で第二溝部472に向かって突出する外周面側タービュレータ482とを有する。
 蓋部本体481は、第一溝部471に嵌まり込むように側端面452や前縁端面453の延在する方向に沿って延在している。蓋部本体481は、第一溝部471に嵌まり込んだ状態で、その断面形状における第二溝部472側に、第二溝部472の開口を閉塞する平面である溝部閉塞面481aが形成されている。蓋部本体481は、その断面形状における外側に向かうにしたがって縮径するよう形成されている。例えば、側端面452に配置される蓋部本体481は、その断面形状における外側である側端面452側が、側端面452側に向かうにしたがって縮径するよう形成されている。
 外周面側タービュレータ482は、蓋部本体481の溝部閉塞面481aから突出している。したがって、外周面側タービュレータ482は、蓋部本体481が第一溝部471に嵌まり込んだ状態で、冷却流通路46における側端面452側や前縁端面453側から突出している。外周面側タービュレータ482は、溝部閉塞面481aの幅方向に横切るように、溝部閉塞面481aから直方状をなして突出している。外周面側タービュレータ482は、蓋部本体481の延在する方向に沿って離間して複数形成されている。
 次に、本実施形態におけるガスタービン1の高温部品の製造方法について説明する。
 ガスタービン1の高温部品の製造方法では、ロータ本体34の周りに燃焼ガスGが流れる燃焼ガス流路Pgを画定するガスタービン1の高温部品を製造する。本実施形態のガスタービン1の高温部品の製造方法では、板状部材であるシュラウド450を製造する場合を例に挙げて説明する。本実施形態のガスタービン1の高温部品の製造方法は、シュラウド450に対して外周面から凹む溝部47を形成する溝部形成工程S1と、溝部47の開口を閉塞する蓋部48を形成する蓋部形成工程S2と、蓋部48を溝部47に固定する蓋部固定工程S3とを含む。
 溝部形成工程S1は、シュラウド450の側端面452や前縁端面453に溝部47を形成する。溝部形成工程S1では、側端面452側から加工を施すことによって、側端面452の延在する方向に沿って溝部47を形成する。溝部形成工程S1では、前縁端面453側から加工を施すことによって、前縁端面453の延在する方向に沿って溝部47を形成する。具体的には、本実施形態の溝部形成工程S1は、側端面452側から加工を施すことによって、第一溝部471を側端面452に形成する。その後、溝部形成工程S1は、側端面452側から加工を施す。これにより、溝部形成工程S1は、ガスパス面451側の内面から突出するガスパス面側タービュレータ473を形成しながら、側端面452と平行な第一溝部471の内面にから窪む第二溝部472を形成する。より具体的には、本実施形態の溝部形成工程S1は、放電加工によって側端面452側からシュラウド450を彫り込む。これにより、溝部形成工程S1は、第一溝部471、第二溝部472及びガスパス面側タービュレータ473を形成する。同様に、本実施形態の溝部形成工程S1は、前縁端面453側から放電加工を施す。これにより、溝部形成工程S1は、第一溝部471、第二溝部472及びガスパス面側タービュレータ473を前縁端面453に形成する。
 蓋部形成工程S2は、溝部47に嵌め込まれる蓋部48を形成する。本実施形態の蓋部形成工程S2では、第一溝部471に嵌まり込んで第二溝部472の開口を閉塞するような形状の蓋部本体481と、溝部閉塞面481aから突出する外周面側タービュレータ482とを形成する。溝部形成工程S1では、蓋部本体481が第一溝部471に嵌まり込んだ状態で、側端面452から蓋部本体481を突出させずに、蓋部本体481の側端面452側や前縁端面453側に第一溝部471に対して空間が生じるよう蓋部本体481を形成する。
 蓋部固定工程S3は、溝部形成工程S1で形成した溝部47に、蓋部形成工程S2で形成した蓋部48を外周面側タービュレータ482が溝部47を向くように嵌め込んで固定する。本実施形態の蓋部固定工程S3は、外周面側タービュレータ482を第二溝部472に向けて第一溝部471に蓋部本体481を嵌め込む。その後、蓋部固定工程S3は、側端面452側や前縁端面453側から蓋部本体481と第一溝部471との隙間を埋めるように溶接ビード49を形成しながら溶接することで固定する。
 次に、上記ガスタービン1の高温部品の作用について説明する。
 第一実施形態のガスタービン1によれば、圧縮機10から送られてきた圧縮空気は、タービン30のケーシング31内に入り、燃焼器20内に流れ込む。燃焼器20では、この圧縮空気と共に外部から供給される燃料を燃焼して、燃焼ガスGが生成される。この燃焼ガスGは、燃焼ガス流路Pgを通る過程で、動翼本体37に接して、タービンロータ33をロータ軸Ar回りに回転させる。この際、燃焼ガス流路Pgを通る燃焼ガスGは、シュラウド450同士の周方向Dcの隙間や、シュラウド450とプラットフォーム38との軸方向Daの隙間等の隣接する高温部品同士の隙間に流入しながら、下流側に流れていく。
 圧縮機10からの圧縮空気の一部は冷却空気として、動翼36や静翼41を冷却するために、タービン30のケーシング31内において、プラットフォーム38の径方向内側の領域や翼環50の径方向外側の領域に流れ込む。プラットフォーム38の径方向内側の領域に流れ込んだ冷却空気は、各部品の内部に形成されている不図示の流路を介してプラットフォーム38や動翼本体37を内部から冷却する。
 翼環50の径方向外側の領域に流れ込んだ冷却空気は、その径方向内側に配置されている外側シュラウド43や分割環61の径方向外側に流れ込み、外側シュラウド43や分割環61を冷却する。外側シュラウド43の径方向外側に流れ込んだ冷却空気は、外側シュラウド43の内部の不図示の流路を介して静翼本体42の前縁通路421や後縁通路422に流れ込む。その後、冷却空気は、前縁通路421からシュラウド450の接続流通路461に流れ込む。
 蓋部48が第一溝部471に嵌め込まれて溶接されて固定されている。これにより、接続流通路461に流れ込んだ冷却空気は、第二溝部472と蓋部48の溝部閉塞面481aとによって形成される主冷却流通路462に流れ込む。主冷却流通路462や接続流通路461では、内面のうち、側端面452側や前縁端面453側の内面から突出する外周面側タービュレータ482と、ガスパス面451側の内面から突出するガスパス面側タービュレータ473とが形成されている。そのため、前縁通路421から流入してくる冷却空気は、外周面側タービュレータ482とガスパス面側タービュレータ473とに衝突しながら後縁端面454に向かって流通する。冷却流通路46内の冷却空気は、前縁端面453側から軸方向Daに沿って流通し、後縁端面454の開口からシュラウド450の外部に排出される。
 上記のようなガスタービン1の高温部品によれば、冷却流通路46の内面のうち側端面452側や前縁端面453側から突出する外周面側タービュレータ482が形成されている。これにより、冷却空気は外周面側タービュレータ482に衝突しながら冷却流通路46内を流通する。冷却空気が外周面側タービュレータ482に衝突することで、冷却流通路46の側端面452側や前縁端面453側の内面である蓋部48の溝部閉塞面481aに沿って生じる冷却空気の境界層を壊すように、冷却空気の流れを乱すことができる。そのため、溝部閉塞面481aの近傍を流れる冷却空気の流速が上昇し、側端面452側や前縁端面453側の熱伝達率を向上させることができる。したがって、燃焼ガス流路Pgから周方向Dcに隣接するシュラウド450の隙間に流入する高温の燃焼ガスGに曝されて、高温となる側端面452や前縁端面453を効率的に冷却することができる。
 第二溝部472の内面のうちガスパス面451側から突出するガスパス面側タービュレータ473が形成されている。そのため、冷却流通路46内の冷却空気はガスパス面側タービュレータ473に衝突しながら流通する。冷却空気がガスパス面側タービュレータ473に衝突することで、第二溝部472のガスパス面451側の内面に沿って生じる冷却空気の境界層を壊すように、冷却空気の流れを乱すことができる。そのため、第二溝部472のガスパス面451側の内面の近傍を流れる冷却空気の流速が上昇し、ガスパス面451側の熱伝達率を向上させることができる。したがって、燃焼ガス流路Pgに面することで高温の燃焼ガスGに曝されるシュラウド450のガスパス面451を効率的に冷却することができる。
 主冷却流通路462が側端面452の延在する方向に沿って形成されていることで、側端面452を全域にわたって効率的に冷却することができる。接続流通路461が前縁端面453の延在する方向に沿って形成されていることで、前縁端面453を全域にわたって効率的に冷却することができる。
 側端面452や前縁端面453から凹む溝部47を蓋部48で閉塞することによって、冷却流通路46を容易に形成できる。シュラウド450と分離可能な蓋部48に外周面側タービュレータ482が形成されることで、外周面側タービュレータ482を容易に加工することができる。したがって、冷却流通路46内に外周面側タービュレータ482を任意の箇所や任意の形状で形成することが容易にできる。これにより、側端面452や前縁端面453を効率的に冷却可能な冷却流通路46をシュラウド450に容易に形成することができる。
 側端面452や前縁端面453から窪む第二溝部472に対して、ガスパス面451側の内面から突出するガスパス面側タービュレータ473を形成することで、ガスパス面側タービュレータ473を容易に形成することができる。具体的には、第二溝部472の開口に繋がるガスパス面451側の内面から突出するように形成することで、側端面452側や前縁端面453側から第二溝部472の開口を介してガスパス面側タービュレータ473を容易に加工することができる。したがって、冷却流通路46内にガスパス面側タービュレータ473を任意の箇所や任意の形状で形成することが容易にできる。これにより、ガスパス面451を効率的に冷却可能な冷却流通路46をシュラウド450に容易に形成することができる。
 上記のようなガスタービン1によれば、側端面452や前縁端面453を効率的に冷却することができるため、冷却空気を効率的に利用することができる。そのため、冷却空気として圧縮空気の一部をタービン30に供給する量を減少でき、ガスタービン1として効率を向上させることができる。
 上記のようなガスタービン1の高温部品の製造方法によれば、溝部形成工程S1で側端面452側や前縁端面453側から第一溝部471と第二溝部472とを形成しながら、蓋部形成工程S2で外周面側タービュレータ482を蓋部48に形成することができる。そのため、シュラウド450の本体と分離可能な蓋部48に外周面側タービュレータ482を形成することで、外周面側タービュレータ482を容易に加工することができる。蓋部固定工程S3で、蓋部48を第一溝部471に溶接して固定し、第二溝部472の開口を蓋部48の溝部閉塞面481aによって閉塞している。これにより、冷却流通路46を側端面452側や前縁端面453側から容易に形成することができる。したがって、外周面側タービュレータ482が設けられた冷却流通路46を容易に形成することができる。
 溝部形成工程S1で、第二溝部472とともにガスパス面側タービュレータ473を側端面452側や前縁端面453側から彫り込んで形成することで、ガスパス面側タービュレータ473を容易に形成することができる。これにより、ガスパス面側タービュレータ473が設けられた冷却流通路46を容易に形成することができる。
《第二実施形態》
 次に、図5を参照して第二実施形態のガスタービン1の高温部品について説明する。
 第二実施形態においては第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。この第二実施形態のガスタービン1の高温部品は、溝部47と蓋部48の構成について第一実施形態と相違する。なお、第二実施形態においても高温部品として、シュラウド450を例に挙げて説明する。
 第二実施形態のシュラウド450では、図5に示すように、溝部47ではなく、蓋部48にガスパス面側タービュレータ473が形成されている。具体的には、第二実施形態のシュラウド450は、ガスパス面側タービュレータ473が形成されていない変形溝部47aと、外周面側タービュレータ482及びガスパス面側タービュレータ473が形成される変形蓋部48aとを有する。
 変形溝部47aは、ガスパス面側タービュレータ473を有していない点で第一実施形態の溝部47と異なる。本実施形態の変形溝部47aは、溝部47と同様の形状の第一溝部471と、第二溝部472とを有する。
 変形蓋部48aは、ガスパス面側タービュレータ473が形成されている点で第一実施形態の蓋部48と異なる。本実施形態の変形蓋部48aは、蓋部本体481と、外周面側タービュレータ482と、蓋部本体481から外周面側タービュレータ482よりも突出する変形ガスパス面側タービュレータ483とを有する。なお、蓋部本体481及び外周面側タービュレータ482は、第一実施形態と同様の形状をなしている。
 変形ガスパス面側タービュレータ483は、変形蓋部48aが変形溝部47aの開口を閉塞した状態で、冷却流通路46のガスパス面451側の内面から突出するよう変形蓋部48aに複数形成されている。具体的には、本実施形態の変形ガスパス面側タービュレータ483は、蓋部本体481の外周面側タービュレータ482が形成されている位置に形成されている。変形ガスパス面側タービュレータ483は、溝部閉塞面481aの幅方向の所定の位置から垂直に直方状をなして突出している。本実施形態における溝部閉塞面481aの幅方向の所定の位置とは、蓋部本体481が第一溝部471に嵌め込まれた状態で、蓋部本体481から突出する変形ガスパス面側タービュレータ483が第二溝部472のガスパス面451側の内面に当接する位置である。
 上記のようなガスタービン1の高温部品によれば、変形ガスパス面側タービュレータ483が外周面側タービュレータ482とともにシュラウド450と分離可能な蓋部48に形成されることで、変形ガスパス面側タービュレータ483を容易に加工することができる。変形溝部47aとして、単純な窪みである角溝を側端面452や前縁端面453に形成するだけで、冷却流通路46を形成することができる。したがって、冷却流通路46内に変形ガスパス面側タービュレータ483を任意の箇所や任意の形状で形成することが、より容易にできる。これにより、ガスパス面451を効率的に冷却可能な冷却流通路46をシュラウド450内に、より容易に形成することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 なお、本実施形態ではガスタービン1の高温部品として、シュラウド450を例に挙げて説明したが、本発明のガスタービン1の高温部品はシュラウド450に限定されるものではない。例えば、板状部品を備えるガスタービン1の高温部品としては、動翼36のプラットフォーム38や、分割環61であってもよい。ガスタービン1の高温部品は、燃焼ガス流路Pgにおけるロータ軸Arの径方向Drの内側または外側の少なくとも一方に面するガスパス面451を有する板状部材を備える部品であればよい。
 具体的には、板状部品を備えるガスタービン1の高温部品が動翼36のプラットフォーム38である場合には、図6に示すように、プラットフォーム38の周方向Dcを向くプラットフォーム側端縁382側と、軸方向Daの上流側を向くプラットフォーム前縁端面383側とに冷却流通路46aが形成されていてもよい。
 板状部品を備えるガスタービン1の高温部品が分割環61である場合には、図7に示すように、分割環61の周方向Dcを向く分割環側端縁612側と、軸方向Daの上流側を向く分割環前縁端面613側とに冷却流通路46bが形成されていてもよい。
 本実施形態のように、主冷却流通路462は側端面452に沿って形成されることに限定されるものではなく、外周面に沿って形成されていればよい。例えば、主冷却流通路462は、外周面のうちの前縁端面453や後縁端面454に沿って形成されていてもよく、外周面の全周に沿うように前縁端面453、後縁端面454、及び側端面452の全ての面に沿って形成されていてもよい。主冷却流通路462は、側端面452に沿って形成される場合であっても、両側の側端面452に沿ってそれぞれ形成されていることに限定されるものではなく、いずれか一方側のみの側端面452に沿って形成されていてもよい。
 外周面側タービュレータ482やガスパス面側タービュレータ473の形状は、本実施形態の形状に限定されるものではなく、外周面側タービュレータ482は冷却流通路46の内面のうち外周面側から突出していればよい。例えば、ガスパス面側タービュレータ473は冷却流通路46の内面のうちガスパス面451側から突出していればよい。
 冷却流通路46の接続流通路461は、本実施形態のような形状に限定されるものではなく、静翼本体42の前縁通路421と主冷却流通路462とを接続していればよい。例えば、接続流通路461は、本実施形態のように前縁通路421から前縁端面453側に向かって延びた後に分岐して主冷却流通路462に接続する形状ではなく、両側の主冷却流通路462に対して異なる接続流通路461がそれぞれ接続されるように形成されていてもよい。
 上記ガスタービンの高温部品によれば、内部に外周側タービュレータが設けられた冷却流通路が形成されることで、外周面を効率的に冷却することができる。
1            ガスタービン
10          圧縮機
20          燃焼器
30          タービン
Da          軸方向
Dc          周方向
Dr          径方向
31          ケーシング
Ar          ロータ軸
33          タービンロータ
34          ロータ本体
35          動翼列
36          動翼
37          動翼本体
38          プラットフォーム
39          翼根
40          静翼列
41          静翼
42          静翼本体
421        前縁通路
422        後縁通路
43          外側シュラウド
45          内側シュラウド
451        ガスパス面
452        側端面
453        前縁端面
454        後縁端面
46          冷却流通路
461        接続流通路
462        主冷却流通路
47          溝部
471        第一溝部
472        第二溝部
473        ガスパス面側タービュレータ
48          蓋部
481        蓋部本体
481a      溝部閉塞面
482        外周面側タービュレータ
50          翼環
52          遮熱環
61          分割環
G            燃焼ガス
Pg          燃焼ガス流路
S1          溝部形成工程
S2          蓋部形成工程
S3          蓋部固定工程
47a        変形溝部
48a        変形蓋部
483        変形ガスパス面側タービュレータ
382        プラットフォーム側端縁
383        プラットフォーム前縁端面
612        分割環側端縁
613        分割環前縁端面

Claims (8)

  1.  ロータの周りに燃焼ガスが流れる環状の燃焼ガス流路を画定するガスタービンの高温部品であって、
     前記燃焼ガス流路における前記ロータの径方向の内側または外側の少なくとも一方に面するガスパス面を有する板状部材を備え、
     前記板状部材は、前記ガスパス面と交差する外周面に沿って内部に冷却流通路が形成され、前記冷却流通路の内面のうち前記外周面側から突出する外周面側タービュレータを有するガスタービンの高温部品。
  2.  前記冷却流通路の内面のうち前記ガスパス面側から突出するガスパス面側タービュレータを備える請求項1に記載のガスタービンの高温部品。
  3.  前記冷却流通路は、前記板状部材の前記外周面から凹む溝部と、前記溝部の開口を閉塞する蓋部とによって形成され、
     前記外周面側タービュレータは、前記蓋部に設けられる請求項1または請求項2に記載のガスタービンの高温部品。
  4.  前記冷却流通路は、前記板状部材の前記外周面から凹む溝部と、前記溝部の開口を閉塞する蓋部とによって形成され、
     前記外周面側タービュレータは、前記蓋部に設けられ、
     前記ガスパス面側タービュレータは、前記溝部に設けられる請求項2に記載のガスタービンの高温部品。
  5.  前記冷却流通路は、前記板状部材の前記外周面から凹む溝部と、前記溝部の開口を閉塞する蓋部とによって形成され、
     前記外周面側タービュレータ及び前記ガスパス面側タービュレータは、前記蓋部に設けられる請求項2に記載のガスタービンの高温部品。
  6.  請求項1から請求項5のいずれか一項に記載のガスタービンの高温部品を備えるガスタービン。
  7.  ロータの周りに燃焼ガスが流れる環状の燃焼ガス流路を画定するガスタービンの高温部品の製造方法であって、
     前記燃焼ガス流路における前記ロータの径方向の内側または外側の少なくとも一方に面するガスパス面を有する板状部材に対して、前記ガスパス面と交差する外周面から凹む溝部を前記外周面に沿って形成する溝部形成工程と、
     前記溝部の開口を閉塞する蓋部を形成する蓋部形成工程と、
     前記蓋部を前記溝部に固定する蓋部固定工程とを含み、
     前記蓋部形成工程では、前記蓋部から突出する外周面側タービュレータを形成し、
     前記蓋部固定工程では、前記外周面側タービュレータを前記溝部に向けて固定するガスタービンの高温部品の製造方法。
  8.  前記溝部形成工程では、前記外周面側から加工を施すことによって、前記溝部の内面の前記ガスパス面側から突出するガスパス面側タービュレータを形成する請求項7に記載のガスタービンの高温部品の製造方法。
PCT/JP2015/068346 2014-08-04 2015-06-25 ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法 WO2016021324A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580001299.5A CN105452609B (zh) 2014-08-04 2015-06-25 燃气涡轮机的高温部件、具备此高温部件的燃气涡轮机、以及燃气涡轮机高温部件的制造方法
US14/903,124 US9540934B2 (en) 2014-08-04 2015-06-25 Hot part of gas turbine, gas turbine including the same, and manufacturing method of hot part of gas turbine
KR1020167000137A KR101660679B1 (ko) 2014-08-04 2015-06-25 가스터빈의 고온부품, 이를 구비하는 가스터빈, 및 가스터빈의 고온부품 제조방법
EP15816353.5A EP3009605B1 (en) 2014-08-04 2015-06-25 High-temperature component of gas turbine, gas turbine equipped with same, and method for manufacturing high-temperature component of gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014158535A JP5679246B1 (ja) 2014-08-04 2014-08-04 ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法
JP2014-158535 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016021324A1 true WO2016021324A1 (ja) 2016-02-11

Family

ID=52684770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068346 WO2016021324A1 (ja) 2014-08-04 2015-06-25 ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法

Country Status (7)

Country Link
US (1) US9540934B2 (ja)
EP (1) EP3009605B1 (ja)
JP (1) JP5679246B1 (ja)
KR (1) KR101660679B1 (ja)
CN (1) CN105452609B (ja)
TW (1) TWI609128B (ja)
WO (1) WO2016021324A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCO20130063A1 (it) * 2013-11-28 2015-05-29 Nuovo Pignone Srl Strumento per misurare l'angolo di impilamento radiale di pale, metodo di misura e pala.
USD976255S1 (en) 2020-06-01 2023-01-24 Samsung Electronics Co., Ltd. Smart watch
JP7530307B2 (ja) 2021-01-22 2024-08-07 三菱重工業株式会社 流路形成板、これを備える翼及びガスタービン、並びに、流路形成板の製造方法
GB202213804D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228803A (ja) 1996-02-26 1997-09-02 Mitsubishi Heavy Ind Ltd ガスタービン静翼シュラウドにおける冷却空気流路の加工方法
JPH10184310A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd ガスタービン静翼
JPH10184309A (ja) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd 冷却溝用プラグ蓋の取付方法
JPH11132005A (ja) * 1997-10-28 1999-05-18 Mitsubishi Heavy Ind Ltd ガスタービン静翼
JP2001254605A (ja) * 2000-03-08 2001-09-21 Mitsubishi Heavy Ind Ltd ガスタービン冷却静翼
JP2006188962A (ja) * 2004-12-28 2006-07-20 Mitsubishi Heavy Ind Ltd ガスタービン高温部品の冷却構造
JP2008229841A (ja) * 2007-03-22 2008-10-02 General Electric Co <Ge> タービュレータ付き冷却孔を形成するための方法及びシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957657A (en) * 1996-02-26 1999-09-28 Mitisubishi Heavy Industries, Ltd. Method of forming a cooling air passage in a gas turbine stationary blade shroud
DE10248548A1 (de) * 2002-10-18 2004-04-29 Alstom (Switzerland) Ltd. Kühlbares Bauteil
EP1621730B1 (de) * 2004-07-26 2008-10-08 Siemens Aktiengesellschaft Gekühltes Bauteil einer Strömungsmaschine und Verfahren zum Giessen dieses gekühlten Bauteils
US20130313307A1 (en) * 2012-05-24 2013-11-28 General Electric Company Method for manufacturing a hot gas path component
JP5627718B2 (ja) 2013-01-11 2014-11-19 三菱重工業株式会社 ガスタービン翼およびこれを備えたガスタービン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228803A (ja) 1996-02-26 1997-09-02 Mitsubishi Heavy Ind Ltd ガスタービン静翼シュラウドにおける冷却空気流路の加工方法
JPH10184310A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd ガスタービン静翼
JPH10184309A (ja) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd 冷却溝用プラグ蓋の取付方法
JPH11132005A (ja) * 1997-10-28 1999-05-18 Mitsubishi Heavy Ind Ltd ガスタービン静翼
JP2001254605A (ja) * 2000-03-08 2001-09-21 Mitsubishi Heavy Ind Ltd ガスタービン冷却静翼
JP2006188962A (ja) * 2004-12-28 2006-07-20 Mitsubishi Heavy Ind Ltd ガスタービン高温部品の冷却構造
JP2008229841A (ja) * 2007-03-22 2008-10-02 General Electric Co <Ge> タービュレータ付き冷却孔を形成するための方法及びシステム

Also Published As

Publication number Publication date
CN105452609B (zh) 2017-06-30
TWI609128B (zh) 2017-12-21
US20160222786A1 (en) 2016-08-04
KR20160034888A (ko) 2016-03-30
US9540934B2 (en) 2017-01-10
CN105452609A (zh) 2016-03-30
JP5679246B1 (ja) 2015-03-04
EP3009605A1 (en) 2016-04-20
JP2016035239A (ja) 2016-03-17
EP3009605B1 (en) 2018-05-09
KR101660679B1 (ko) 2016-09-27
EP3009605A4 (en) 2016-08-31
TW201621149A (zh) 2016-06-16

Similar Documents

Publication Publication Date Title
US11181006B2 (en) Turbine tip shroud assembly with plural shroud segments having inter-segment seal arrangement
CN108019239B (zh) 用于被冷却结构的交织的近表面被冷却通道
EP2388435B1 (en) Turbine bucket
US9879544B2 (en) Turbine rotor blades with improved tip portion cooling holes
JP6366180B2 (ja) シール構造
US20170175540A1 (en) Cooling circuit for a multi-wall blade
JP2011185270A (ja) ガスタービンノズルの優先的冷却
CN103906896A (zh) 用于燃气涡轮发动机的不对称径向花键密封件
US9719362B2 (en) Turbine nozzles and methods of manufacturing the same
EP2458152B1 (en) Gas turbine of the axial flow type
WO2016021324A1 (ja) ガスタービンの高温部品、これを備えるガスタービン、及びガスタービンの高温部品の製造方法
US11519281B2 (en) Impingement insert for a gas turbine engine
US9816389B2 (en) Turbine rotor blades with tip portion parapet wall cavities
JP2019002397A (ja) ターボ機械冷却システム
US20150198048A1 (en) Method for producing a stator blade and stator blade
JP2019056366A (ja) タービンエンジン翼形部用のシールド
KR20190008104A (ko) 터보기계의 충돌 냉각 인서트
JP6489823B2 (ja) タービン・ノズルおよびガスタービン・エンジンのタービン・ノズルを冷却する方法
JP5852191B2 (ja) 端壁部材及びガスタービン
JP2010275953A (ja) 端壁部材及びガスタービン
JP5852190B2 (ja) 端壁部材及びガスタービン
JP5591986B2 (ja) 端壁部材及びガスタービン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001299.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20167000137

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903124

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2015816353

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15816353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE