WO2016019901A1 - A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite - Google Patents

A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite Download PDF

Info

Publication number
WO2016019901A1
WO2016019901A1 PCT/CN2015/086370 CN2015086370W WO2016019901A1 WO 2016019901 A1 WO2016019901 A1 WO 2016019901A1 CN 2015086370 W CN2015086370 W CN 2015086370W WO 2016019901 A1 WO2016019901 A1 WO 2016019901A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
polyacrylonitrile
composite
carbon
cnt
Prior art date
Application number
PCT/CN2015/086370
Other languages
French (fr)
Inventor
Nahong ZHAO
Joerg Thielen
Bernd Schumann
Yunhua Chen
Chuanling LI
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201580042528.8A priority Critical patent/CN106661149A/en
Priority to DE112015003654.7T priority patent/DE112015003654T5/en
Publication of WO2016019901A1 publication Critical patent/WO2016019901A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-polyacrylonitrile composite, which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives.
  • the present invention further relates to a method for preparing said sulfur-polyacrylonitrile composite, and an electrode and a lithium-sulfur battery comprising said sulfur-polyacrylonitrile composite.
  • Li-Sulfur (Li-S) batteries have attracted considerable attention for their high energy density and low cost.
  • the theoretical energy density of 2600 Wh/kg cannot be reached because of sulfur’s insulating nature.
  • conductive additives have to be added and consequently the theoretical value is reduced to a realistic 600 Wh/kg.
  • elemental sulfur forms polysulfides, S x 2- , during reduction, which is soluble in the electrolyte. Therefore, several concepts have been elaborated upon that focus on retaining sulfur in the cathode matrix.
  • One of the most promising concepts is to embed sulfur into a conductive matrix of pyrolized polyacrylonitrile (PAN) .
  • PAN pyrolized polyacrylonitrile
  • the present invention provides a sulfur-polyacrylonitrile (SPAN) composite, which provides a high sulfur content and a favorable electrical conductivity. It is promising to deliver a high cathode capacity and a good rate capability when discharging under a large current density.
  • SPAN sulfur-polyacrylonitrile
  • a sulfur-polyacrylonitrile composite which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives, and said one or more carbon conductive additives are adopted and/or embedded in the polyacrylonitrile particles.
  • a method for preparing a sulfur-polyacrylonitrile composite including the following steps:
  • step 1) one or more carbon conductive additives are additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles.
  • the present invention relates an electrode, which comprises the sulfur-polyacrylonitrile composite according to the present invention.
  • the present invention relates a lithium-sulfur battery, which comprises the electrode according to the present invention.
  • FIG. 1a is a schematic diagram of the sulfur-polyacrylonitrile (SPAN) composite in a form of particles with SuperP carbon black;
  • SPAN sulfur-polyacrylonitrile
  • FIG. 1b is a schematic diagram of the sulfur-polyacrylonitrile (SPAN) composite in a form of particles without SuperP carbon black; and
  • Figure 2 is a transmission electron microscope (TEM) image of SuperP carbon black.
  • the present invention relates to a sulfur-polyacrylonitrile composite, which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives, and said one or more carbon conductive additives are adopted and/or embedded in the polyacrylonitrile particles.
  • said sulfur-polyacrylonitrile composite can be formed in such a way that said polyacrylonitrile particles are dehydrogenated and cyclized in the presence of sulfur and bonded with sulfur or polysulfide.
  • the diameter of said polyacrylonitrile particles can be between 100 nm and 10 ⁇ m, preferably between 100 nm and 2 ⁇ m, for example about 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 ⁇ m, 1.5 ⁇ m, 5 ⁇ m, or 8 ⁇ m.
  • said one or more carbon conductive additives can bridge from one polyacrylonitrile particle to another polyacrylonitrile particle, so as to bridge the electron conductive network in-between the the particles.
  • one end of the carbon conductive additive can be embedded in one polyacrylonitrile particle and the other end of the same carbon conductive additive can be embedded in another polyacrylonitrile particle.
  • said one or more carbon conductive additives can be selected from carbon nanotube (CNT) , graphite, and carbon nanoparticle, such as acetylene black, SuperP carbon black (Fig. 2) or ketjen black.
  • the carbon nanotube (CNT) which can be used in the sulfur-polyacrylonitrile composite according to the present invention preferably has a diameter of 1 –100 nm, for example about 2 nm, 3 nm, 5 nm, 10 nm, 30 nm, 40 nm, 60 nm, or 80 nm.
  • the length of the carbon nanotube (CNT) used here is not particularly limited, for example less than 5 ⁇ m, 5 –15 ⁇ m, or more than 15 ⁇ m.
  • a preferable length of the CNT can be 0.3 –6 times the PAN particle diameter.
  • CNT carbon nanotube
  • SWNT Single-walled carbon nanotube
  • DWNT double-walled carbon nanotube
  • MWNT multi-walled carbon nanotube
  • said carbon nanotube (CNT) can be open-ended, and the inner voids of the carbon nanotube (CNT) can be filled with 1 –30 wt. %, preferably 10 –20 wt. %of sulfur to form a sulfur-carbon nanotube composite (S/CNT) , based on the weight of the sulfur-carbon nanotube composite (S/CNT) .
  • the content of said one or more carbon conductive additives is less than or equal to 15 wt. %, preferably less than or equal to 10 wt. %, more preferably less than or equal to 8 wt. %, most preferably less than or equal to 5 wt. %, in each case based on the total weight of the polyacrylonitrile particles and the carbon conductive additives.
  • the sulfur load amount of said sulfur-polyacrylonitrile composite can be 20 –55 wt. %, preferably 30 –50 wt. %, in each case based on the total weight of the sulfur-polyacrylonitrile composite.
  • the present invention relates to a method for preparing a sulfur-polyacrylonitrile composite, said method including the following steps:
  • step 1) heating the product prepared from step 1) together with sulfur, characterized in that during step 1) , one or more carbon conductive additives are additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles.
  • Polyacrylonitrile particles can be prepared by electrospraying or spray drying from a polyacrylonitrile solution or dispersion.
  • concentration of polyacrylonitrile in said solution or dispersion is not particularly limited, for example 3 –20 wt. %, preferably 5 –15 wt.%, more preferably 6 –10 wt. %, and can be determined according to the desired diameter of polyacrylonitrile particles.
  • one or more carbon conductive additives can be additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles, so that said one or more carbon conductive additives can be adopted and/or embedded in the polyacrylonitrile particles.
  • the content of said one or more carbon conductive additives is less than or equal to 15 wt. %, preferably less than or equal to 10 wt. %, more preferably less than or equal to 8 wt.%, most preferably less than or equal to 5 wt. %, in each case based on the total weight of the polyacrylonitrile particles and the carbon conductive additives.
  • said polyacrylonitrile solution or dispersion can additionally contain one or more carbon conductive additives, so that polyacrylonitrile particles with carbon conductive additives adopted and/or embedded therein can be prepared at the same time by electrospraying or spray drying.
  • a solution or dispersion of one or more carbon conductive additives can be sprayed at the same time through a nozzle close to the nozzle for said electrospraying or spray drying, so that said one or more carbon conductive additives can be preferably adopted and/or embedded in the polyacrylonitrile particles, and said one or more carbon conductive additives can bridge from one polyacrylonitrile particle to another polyacrylonitrile particle, so as to bridge the electron conductive network in-between the the particles.
  • one end of the carbon conductive additive can be embedded in one polyacrylonitrile particle and the other end of the same carbon conductive additive can be embedded in another polyacrylonitrile particle.
  • said one or more carbon conductive additives can be selected from carbon nanotube (CNT) , graphite, and carbon nanoparticle, such as acetylene black, SuperP carbon black (Fig. 2) or ketjen black.
  • the carbon nanotube (CNT) which can be used in the polyacrylonitrile solution or dispersion additionally containing carbon conductive additives or in the solution or dispersion of carbon conductive additives preferably has a diameter of 1 –100 nm, for example about 2 nm, 3 nm, 5 nm, 10 nm, 30 nm, 40 nm, 60 nm, or 80 nm.
  • the length of the carbon nanotube (CNT) used here is not particularly limited, for example less than 5 ⁇ m, 5 –15 ⁇ m, or more than 15 ⁇ m.
  • a preferable length of the CNT can be 0.3 –6 times the PAN particle diameter.
  • CNT carbon nanotube
  • SWNT Single-walled carbon nanotube
  • DWNT double-walled carbon nanotube
  • MWNT multi-walled carbon nanotube
  • said carbon nanotube (CNT) can be open-ended, and before the carbon nanotube (CNT) is used in the polyacrylonitrile solution or dispersion additionally containing carbon conductive additives or in the solution or dispersion of carbon conductive additives, it can be calcined together with sulfur in vacuo at 550 –700°C, preferably at about 600°C, for about 48 hours, so that the inner voids or cavities of the carbon nanotube (CNT) can be filled with 1 –30 wt. %, preferably 10 –20 wt. %of sulfur to form a sulfur-carbon nanotube composite (S/CNT) , in each case based on the weight of the sulfur-carbon nanotube composite (S/CNT) .
  • step 2) the product prepared from step 1) together with sulfur can be heated at a temperature of 280 –460 °C, preferably 390 –460 °C, for 0.5 –6 hours, preferably 0.5 –4 hours, more preferably 0.5 –3 hours, in a protective atmosphere, such as argon, so that the polyacrylonitrile can be dehydrogenated and cyclized in the presence of sulfur and bonded with sulfur or polysulfide.
  • a protective atmosphere such as argon
  • the SPAN nanoparticle can be mixed with carbon black and poly- (vinyl difluoride) (PVDF) and pasted on an Al foil.
  • PVDF poly- (vinyl difluoride)
  • Lithium foil can be used as the counter electrode, and assembled with a separator and carbonate electrolyte consisted of LiPF 6 salt and ethylene carbonate solvent.
  • the present invention relates to an electrode, which comprises the sulfur-polyacrylonitrile composite according to the present invention.
  • the present invention relates to a lithium-sulfur battery, which comprises the electrode according to the present invention.
  • the SPAN obtained according to the present invention has a higher electronic conductivity compared to the SPAN synthesized from the conventional PAN and sulfur only. CNTs on the outer surface of the PAN still remain on the outer surface of the SPAN, providing a conductive coating.
  • This SPAN composite electrode thus shows a high cathode capacity, a low resistance, an excellent cycling stability, and a favorable rate performance.
  • the inventors have investigated the chemical process of the dehydrogenation of polyacrylonitrile in the presence of sulfur, and revealed the chemical structure of the polyacrylonitrile-derived cyclized backbone. It has been found that a higher synthesis temperature results in a higher degree of graphitization of the polymer backbone and eventually in a higher C-rate capability and a higher cycling stability. However, the composite degrades when prepared at a higher temperature which results in a lower sulfur content and eventually in a lower cathode capacity. At the same time, the SPAN composite prepared at a higher temperature displays a larger specific surface area, which also supports the higher C-rate performance. Despite of this trade off in between the capacity and the high C-rate capability, an optimum synthesis temperature can be selected from 390 to 460°C.
  • Potential applications of the composite according to the present invention include high-energy-density lithium ion batteries with acceptable high power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a sulfur-polyacrylonitrile composite, which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives. The present invention further relates to a method for preparing said sulfur-polyacrylonitrile composite, and an electrode and a lithium-sulfur battery comprising said sulfur-polyacrylonitrile composite.

Description

A SULFUR-PAN COMPOSITE, A METHOD FOR PREPARING SAID COMPOSITE, AND AN ELECTRODE AND A LITHIUM-SULFUR BATTERY COMPRISING SAID COMPOSITE Technical Field
The present invention relates to a sulfur-polyacrylonitrile composite, which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives. The present invention further relates to a method for preparing said sulfur-polyacrylonitrile composite, and an electrode and a lithium-sulfur battery comprising said sulfur-polyacrylonitrile composite.
Background Art
Lithium-Sulfur (Li-S) batteries have attracted considerable attention for their high energy density and low cost. However, the theoretical energy density of 2600 Wh/kg cannot be reached because of sulfur’s insulating nature. Thus, conductive additives have to be added and consequently the theoretical value is reduced to a realistic 600 Wh/kg. Additionally, elemental sulfur forms polysulfides, Sx 2-, during reduction, which is soluble in the electrolyte. Therefore, several concepts have been elaborated upon that focus on retaining sulfur in the cathode matrix. One of the most promising concepts is to embed sulfur into a conductive matrix of pyrolized polyacrylonitrile (PAN) . This appealing sulfur-polyacrylonitrile (SPAN) composite has been used as an active cathode material showing a high specific capacity, a good efficiency, a low self-discharge, an excellent cycling stability and an improved rate performance. In view of the status quo in high energy density battery applications, the energy density of this Li-sulfur system has to be improved essentially. To do so, many researches have been conducted to improve the material capacity of SPAN composite.
Summary of Invention
The present invention provides a sulfur-polyacrylonitrile (SPAN) composite, which provides a high sulfur content and a favorable electrical conductivity. It is promising to deliver a high cathode capacity and a good rate capability when discharging under a large current density.
According to one aspect of the present invention, a sulfur-polyacrylonitrile composite is provided, which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives, and said one or more carbon conductive additives are adopted and/or embedded in the polyacrylonitrile particles.
According to another aspect of the present invention, a method for preparing a sulfur-polyacrylonitrile composite is provided, said method including the following steps:
1) preparation of polyacrylonitrile particles by electrospraying or spray drying from a polyacrylonitrile solution or dispersion;
2) heating the product prepared from step 1) together with sulfur,
characterized in that during step 1) , one or more carbon conductive additives are additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles.
According to another aspect, the present invention relates an electrode, which comprises the sulfur-polyacrylonitrile composite according to the present invention.
According to a further aspect, the present invention relates a lithium-sulfur battery, which comprises the electrode according to the present invention.
Brief Description of Drawings
Each aspect of the present invention will be illustrated in more detail in conjunction with the accompanying drawings, wherein :
Figure 1a is a schematic diagram of the sulfur-polyacrylonitrile (SPAN) composite in a form of particles with SuperP carbon black;
Figure 1b is a schematic diagram of the sulfur-polyacrylonitrile (SPAN) composite in a form of particles without SuperP carbon black; and
Figure 2 is a transmission electron microscope (TEM) image of SuperP carbon black.
Detailed Description of Preferred Embodiments
All publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
When an amount, concentration, or other value or parameter is given as either a range, preferred range or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range.
The present invention, according to one aspect, relates to a sulfur-polyacrylonitrile composite, which comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives, and said one or more carbon conductive additives are adopted and/or embedded in the polyacrylonitrile particles.
In accordance with an embodiment of the sulfur-polyacrylonitrile composite according to the present invention, said sulfur-polyacrylonitrile composite can be formed in such a way that said polyacrylonitrile particles are dehydrogenated and cyclized in the presence of sulfur and bonded with sulfur or polysulfide.
In accordance with another embodiment of the sulfur-polyacrylonitrile composite according to the present invention, the diameter of said polyacrylonitrile particles can be between 100 nm and 10 μm, preferably between 100 nm and 2 μm, for example about 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 μm, 1.5 μm, 5 μm, or 8 μm.
In accordance with another embodiment of the sulfur-polyacrylonitrile composite according to the present invention, said one or more carbon conductive additives can bridge from one polyacrylonitrile particle to another polyacrylonitrile particle, so as to bridge the electron conductive network in-between the the particles. In particular, one end of the carbon conductive additive can be embedded in one polyacrylonitrile particle and the other end of the same carbon conductive additive can be embedded in another polyacrylonitrile particle.
In accordance with another embodiment of the sulfur-polyacrylonitrile composite according to the present invention, said one or more carbon conductive additives can be selected from carbon nanotube (CNT) , graphite, and carbon nanoparticle, such as acetylene black, SuperP carbon black (Fig. 2) or ketjen black.
The carbon nanotube (CNT) which can be used in the sulfur-polyacrylonitrile composite according to the present invention preferably has a diameter of 1 –100 nm, for example about 2 nm, 3 nm, 5 nm, 10 nm, 30 nm, 40 nm, 60 nm, or 80 nm. The length of the carbon nanotube (CNT) used here is not particularly limited, for example less than 5 μm, 5 –15 μm, or more than 15 μm. A preferable length of the CNT can be 0.3 –6 times the PAN particle diameter.
There is no limit to the specific form of the carbon nanotube (CNT) used here. Single-walled carbon nanotube (SWNT) , double-walled carbon nanotube (DWNT) and multi-walled carbon nanotube (MWNT) can be used.
In accordance with another embodiment of the sulfur-polyacrylonitrile composite according to the present invention, said carbon nanotube (CNT) can be open-ended, and the inner voids of the carbon nanotube (CNT) can be filled with 1 –30 wt. %, preferably 10 –20 wt. %of sulfur to form a sulfur-carbon nanotube composite (S/CNT) , based on the weight of the sulfur-carbon nanotube composite (S/CNT) .
In accordance with another embodiment of the sulfur-polyacrylonitrile composite according to the present invention, the content of said one or more carbon conductive additives is less than or equal to 15 wt. %, preferably less than or equal to 10 wt. %, more preferably less than or equal to 8 wt. %, most preferably less than or equal to 5 wt. %, in each case based on the total weight of the polyacrylonitrile particles and the carbon conductive additives.
In accordance with another embodiment of the sulfur-polyacrylonitrile composite according to the present invention, the sulfur load amount of said sulfur-polyacrylonitrile composite can be 20 –55 wt. %, preferably 30 –50 wt. %, in each case based on the total weight of the sulfur-polyacrylonitrile composite.
The present invention, according to another aspect, relates to a method for preparing a sulfur-polyacrylonitrile composite, said method including the following steps:
1) preparation of polyacrylonitrile particles by electrospraying or spray drying from a polyacrylonitrile solution or dispersion;
2) heating the product prepared from step 1) together with sulfur, characterized in that during step 1) , one or more carbon conductive additives are additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles.
1) Preparation of polyacrylonitrile particles comprising carbon conductive additives Polyacrylonitrile particles can be prepared by electrospraying or spray drying from a polyacrylonitrile solution or dispersion. The concentration of polyacrylonitrile in said solution or dispersion is not particularly limited, for example 3 –20 wt. %, preferably 5 –15 wt.%, more preferably 6 –10 wt. %, and can be determined according to the desired diameter of polyacrylonitrile particles.
During step 1) , one or more carbon conductive additives can be additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles, so that said one or more carbon conductive additives can be adopted and/or embedded in the polyacrylonitrile particles.
Preferably the content of said one or more carbon conductive additives is less than or equal to 15 wt. %, preferably less than or equal to 10 wt. %, more preferably less than or equal to 8 wt.%, most preferably less than or equal to 5 wt. %, in each case based on the total weight of the polyacrylonitrile particles and the carbon conductive additives.
In accordance with another embodiment of the method according to the present invention, said polyacrylonitrile solution or dispersion can additionally contain one or more carbon conductive additives, so that polyacrylonitrile particles with carbon conductive additives adopted and/or embedded therein can be prepared at the same time by electrospraying or spray drying.
In accordance with another embodiment of the method according to the present invention, a solution or dispersion of one or more carbon conductive additives can be sprayed at the same time through a nozzle close to the nozzle for said electrospraying or spray drying, so that said one or more carbon conductive additives can be preferably adopted and/or embedded in the polyacrylonitrile particles, and said one or more carbon conductive additives can bridge from one polyacrylonitrile particle to another polyacrylonitrile particle, so as to bridge the electron conductive network in-between the the particles. In particular, one end of the carbon conductive additive can be embedded in one polyacrylonitrile particle and the other end of the same carbon conductive additive can be embedded in another polyacrylonitrile particle.
In accordance with another embodiment of the method according to the present invention, said one or more carbon conductive additives can be selected from carbon nanotube (CNT) , graphite, and carbon nanoparticle, such as acetylene black, SuperP carbon black (Fig. 2) or ketjen black.
The carbon nanotube (CNT) which can be used in the polyacrylonitrile solution or dispersion additionally containing carbon conductive additives or in the solution or  dispersion of carbon conductive additives preferably has a diameter of 1 –100 nm, for example about 2 nm, 3 nm, 5 nm, 10 nm, 30 nm, 40 nm, 60 nm, or 80 nm. The length of the carbon nanotube (CNT) used here is not particularly limited, for example less than 5 μm, 5 –15 μm, or more than 15 μm. A preferable length of the CNT can be 0.3 –6 times the PAN particle diameter.
There is no limit to the specific form of the carbon nanotube (CNT) used here. Single-walled carbon nanotube (SWNT) , double-walled carbon nanotube (DWNT) and multi-walled carbon nanotube (MWNT) can be used.
In accordance with another embodiment of the method according to the present invention, said carbon nanotube (CNT) can be open-ended, and before the carbon nanotube (CNT) is used in the polyacrylonitrile solution or dispersion additionally containing carbon conductive additives or in the solution or dispersion of carbon conductive additives, it can be calcined together with sulfur in vacuo at 550 –700℃, preferably at about 600℃, for about 48 hours, so that the inner voids or cavities of the carbon nanotube (CNT) can be filled with 1 –30 wt. %, preferably 10 –20 wt. %of sulfur to form a sulfur-carbon nanotube composite (S/CNT) , in each case based on the weight of the sulfur-carbon nanotube composite (S/CNT) .
2) Heating the product prepared from step 1) together with sulfur
In accordance with another embodiment of the method according to the present invention, during step 2) , the product prepared from step 1) together with sulfur can be heated at a temperature of 280 –460 ℃, preferably 390 –460 ℃, for 0.5 –6 hours, preferably 0.5 –4 hours, more preferably 0.5 –3 hours, in a protective atmosphere, such as argon, so that the polyacrylonitrile can be dehydrogenated and cyclized in the presence of sulfur and bonded with sulfur or polysulfide.
In accordance with another embodiment of the method according to the present invention, the sulfur load amount of said sulfur-polyacrylonitrile composite can be 20 –55 wt. %, preferably 30 –50 wt. %, in each case based on the total weight of the sulfur-polyacrylonitrile composite.
Preparation of working electrode
The SPAN nanoparticle can be mixed with carbon black and poly- (vinyl difluoride) (PVDF) and pasted on an Al foil. Lithium foil can be used as the counter electrode, and assembled with a separator and carbonate electrolyte consisted of LiPF6 salt and ethylene carbonate solvent.
The present invention, according to another aspect, relates to an electrode, which comprises the sulfur-polyacrylonitrile composite according to the present invention.
The present invention, according to another aspect, relates to a lithium-sulfur battery, which comprises the electrode according to the present invention.
Due to the high surface area of the PAN according to the present invention which provides a huge reaction interphase to sulfur, a higher sulfur content can be achieved compared to the conventional synthesis procedure starting with conventional crude PAN. At the same time, the SPAN obtained according to the present invention has a higher electronic conductivity compared to the SPAN synthesized from the conventional PAN and sulfur only. CNTs on the outer surface of the PAN still remain on the outer surface of the SPAN, providing a conductive coating. This SPAN composite electrode thus shows a high cathode capacity, a low resistance, an excellent cycling stability, and a favorable rate performance.
The inventors have investigated the chemical process of the dehydrogenation of polyacrylonitrile in the presence of sulfur, and revealed the chemical structure of the polyacrylonitrile-derived cyclized backbone. It has been found that a higher synthesis temperature results in a higher degree of graphitization of the polymer backbone and eventually in a higher C-rate capability and a higher cycling stability. However, the composite degrades when prepared at a higher temperature which results in a lower sulfur content and eventually in a lower cathode capacity. At the same time, the SPAN composite prepared at a higher temperature displays a larger specific surface area, which also supports the higher C-rate performance. Despite of this trade off in between the capacity and the high C-rate capability, an optimum synthesis temperature can be selected from 390 to 460℃.
Potential applications of the composite according to the present invention include high-energy-density lithium ion batteries with acceptable high power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.

Claims (17)

  1. A sulfur-polyacrylonitrile composite, characterized in that said sulfur-polyacrylonitrile composite comprises polyacrylonitrile particles, sulfur and one or more carbon conductive additives, and said one or more carbon conductive additives are adopted and/or embedded in the polyacrylonitrile particles.
  2. The sulfur-polyacrylonitrile composite of claim 1, characterized in that polyacrylonitrile is dehydrogenated and cyclized in the presence of sulfur and bonded with sulfur or polysulfide.
  3. The sulfur-polyacrylonitrile composite of claim 1 or 2, characterized in that said polyacrylonitrile particles have a diameter of between 100 nm and 10 μm, preferably between 100 nm and 2 μm.
  4. The sulfur-polyacrylonitrile composite of any one of claims 1 to 3, characterized in that said one or more carbon conductive additives bridge from one polyacrylonitrile particle to another polyacrylonitrile particle.
  5. The sulfur-polyacrylonitrile composite of any one of claims 1 to 4, characterized in that said one or more carbon conductive additives are selected from carbon nanotube (CNT) , carbon nanoparticle and graphite.
  6. The sulfur-polyacrylonitrile composite of claim 5, characterized in that the carbon nanotube (CNT) is open-ended, and the inner voids of the carbon nanotube (CNT) are filled with 1–30 wt.%, preferably 10–20 wt.% of sulfur to form a sulfur-carbon nanotube composite (S/CNT) , based on the weight of the sulfur-carbon nanotube composite (S/CNT) .
  7. The sulfur-polyacrylonitrile composite of any one of claims 1 to 6, characterized in that the content of said one or more carbon conductive additives is less than or equal to 15 wt.% based on the total weight of the polyacrylonitrile particles and the carbon conductive additives.
  8. The sulfur-polyacrylonitrile composite of any one of claims 1 to 7, characterized in that said sulfur-polyacrylonitrile composite has a sulfur load amount of 20–55 wt.%, preferably 30–50 wt.%, in each case based on the total weight of the sulfur-polyacrylonitrile composite.
  9. A method for preparing a sulfur-polyacrylonitrile composite, said method including the following steps:
    1) preparation of polyacrylonitrile particles by electrospraying or spray drying from a polyacrylonitrile solution or dispersion;
    2) heating the product prepared from step 1) together with sulfur,
    characterized in that during step 1) , one or more carbon conductive additives are additionally applied to the polyacrylonitrile particles in the course of the preparation of polyacrylonitrile particles.
  10. The method of claim 9, characterized in that the polyacrylonitrile solution or dispersion additionally contains one or more carbon conductive additives.
  11. The method of claim 9, characterized in that a solution or dispersion of one or more carbon conductive additives is sprayed at the same time through a nozzle close to the nozzle for said electrospraying or spray drying.
  12. The method of any one of claims 9 to 11, characterized in that said one or more carbon conductive additives are selected from carbon nanotube (CNT) , carbon nanoparticle and graphite.
  13. The method of claim 12, characterized in that the carbon nanotube (CNT) is open-ended, and the inner voids of the carbon nanotube (CNT) are filled with 1–30 wt.%, preferably 10–20 wt.% of sulfur to form a sulfur-carbon nanotube composite (S/CNT) , based on the weight of the sulfur-carbon nanotube composite (S/CNT) .
  14. The method of any one of claims 9 to 13, characterized in that during step 2) , the product prepared from step 1) together with sulfur is heated at a temperature of 280–460 ℃, preferably 390–460 ℃, for 0.5–6 hours, preferably 0.5–4 hours, more preferably 0.5–3 hours, in a protective atmosphere.
  15. The method of any one of claims 9 to 14, characterized in that said sulfur-polyacrylonitrile composite has a sulfur load amount of 20–55 wt.%, preferably 30–50 wt.%, in each case based on the total weight of the sulfur-polyacrylonitrile composite.
  16. An electrode, characterized in that the electrode comprises the sulfur-polyacrylonitrile composite of any one of claims 1 to 8 or the sulfur-polyacrylonitrile composite prepared by the method of any one of claims 9 to 15.
  17. A lithium-sulfur battery, characterized in that the lithium-sulfur battery comprises the electrode of claim 16.
PCT/CN2015/086370 2014-08-07 2015-08-07 A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite WO2016019901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580042528.8A CN106661149A (en) 2014-08-07 2015-08-07 Sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite
DE112015003654.7T DE112015003654T5 (en) 2014-08-07 2015-08-07 SWEEP PAN COMPOSITE MATERIAL, METHOD FOR PRODUCING THE COMPOSIT MATERIAL, AND ELECTRODE AND LITHIUM SULFUR BATTERY CONTAINING THE COMPOSITE MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/083884 WO2016019544A1 (en) 2014-08-07 2014-08-07 Sulfur-polyacrylonitrile composite, preparation and use thereof
CNPCT/CN2014/083884 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016019901A1 true WO2016019901A1 (en) 2016-02-11

Family

ID=55263023

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2014/083884 WO2016019544A1 (en) 2014-08-07 2014-08-07 Sulfur-polyacrylonitrile composite, preparation and use thereof
PCT/CN2015/086358 WO2016019897A1 (en) 2014-08-07 2015-08-07 A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite
PCT/CN2015/086370 WO2016019901A1 (en) 2014-08-07 2015-08-07 A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/083884 WO2016019544A1 (en) 2014-08-07 2014-08-07 Sulfur-polyacrylonitrile composite, preparation and use thereof
PCT/CN2015/086358 WO2016019897A1 (en) 2014-08-07 2015-08-07 A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite

Country Status (3)

Country Link
CN (2) CN106661149A (en)
DE (1) DE112015003654T5 (en)
WO (3) WO2016019544A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355754B2 (en) 2020-01-14 2022-06-07 Phillips 66 Company Carbon-bound polysulfide positive electrode materials for batteries

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078282B (en) * 2014-11-10 2021-04-06 罗伯特·博世有限公司 Electrode additive and electrode comprising same
DE102015200350A1 (en) * 2015-01-13 2016-07-14 Robert Bosch Gmbh Electrode, in particular cathodic electrode of a lithium-sulfur accumulator and method for the production
JP7053337B2 (en) * 2017-03-31 2022-04-12 株式会社Adeka Electrodes for non-aqueous electrolyte secondary batteries
WO2018187407A1 (en) * 2017-04-04 2018-10-11 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Mg alloy mesh reinforced polymer/ecm hybrid scaffolds for critical-sized bone defect regeneration
US20200259207A1 (en) * 2017-09-12 2020-08-13 Qatar Foundation For Education, Science And Community Development Lithium-sulfur rechargeable battery
CN108091828B (en) * 2017-12-15 2020-05-08 苏州大学 Vulcanized polyacrylonitrile flexible positive electrode based on electrostatic spinning technology and preparation method thereof
CN109256554B (en) * 2018-09-28 2020-08-28 河南科技学院 Vulcanized polymer composite material and preparation method and application thereof
KR102150615B1 (en) * 2019-01-07 2020-09-01 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof
CN109888215A (en) * 2019-02-19 2019-06-14 福建翔丰华新能源材料有限公司 A method of nucleocapsid structure lithium ion battery negative electrode material is prepared with electrostatic spinning
CN110350173B (en) * 2019-07-10 2020-08-04 南京海泰纳米材料有限公司 Lithium-sulfur soft package battery and preparation method thereof
CN113823782B (en) * 2021-08-25 2023-08-04 福建师范大学 Preparation method and application of sulfur-doped polyacrylonitrile-chlorella-derived carbon composite sodium ion battery anode material
CN113745477B (en) * 2021-08-25 2023-08-04 福建师范大学 Preparation method and application of sulfur-doped polyacrylonitrile-chlorella derived carbon composite potassium ion battery anode material
CN115160465A (en) * 2022-07-13 2022-10-11 长治医学院 Preparation method and application of high-sulfur-loading high-conductivity sulfurized polyacrylonitrile
CN116960313B (en) * 2023-09-20 2024-06-04 河南师范大学 Preparation method of vulcanized polyacrylonitrile anode material containing double-effect catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160217A (en) * 2008-10-17 2011-08-17 独立行政法人产业技术综合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
CN102906177A (en) * 2010-05-28 2013-01-30 巴斯夫欧洲公司 Composite materials, production thereof and use thereof in electrical cells
WO2013138167A1 (en) * 2012-03-14 2013-09-19 E. I. Du Pont De Nemours And Company Mcm-48 silica particle compositions, articles, methods for making and methods for using
WO2013182360A1 (en) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Method for the production of a polyacrylonitrile-sulfur composite material
CN103502283A (en) * 2011-05-02 2014-01-08 罗伯特·博世有限公司 Cathode material for alkali metal-sulphur cell
CN103502284A (en) * 2011-05-02 2014-01-08 罗伯特·博世有限公司 Polyacrylonitrile-sulphur composite material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214074C (en) * 2002-04-17 2005-08-10 中国科学院上海微系统与信息技术研究所 Sulfur/electric conducting polymer composition used as positive electrode of electrochemical power supply and its method
KR20050006540A (en) * 2003-07-09 2005-01-17 한국과학기술연구원 Lithium secondary battery comprising fine fibrous porous polymer separator and preparation method thereof
CN1569939A (en) * 2004-04-26 2005-01-26 东华大学 Carbon nanotube electrically conductive fibre and method for making same
CN100436493C (en) * 2005-08-03 2008-11-26 厦门大学 In situ polymerization one-dimensional electric high purity carbon/polyacrylonitrile composite polymer
CN101250770B (en) * 2008-03-11 2010-07-21 东华大学 Method for manufacturing polyacrylonitrile-based carbon fiber with enganced carbon nano-tube
CN101577323B (en) * 2009-06-11 2011-08-31 上海交通大学 Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof
CN101891930B (en) * 2010-08-17 2012-01-04 上海交通大学 Carbon nano tube-containing sulfur-based composite cathode material and preparation method thereof
CN103210525B (en) * 2010-11-26 2015-11-25 株式会社爱发科 Lithium-sulfur rechargeable battery positive pole and forming method thereof
DE102011002720A1 (en) * 2011-01-14 2012-07-19 Robert Bosch Gmbh cathode composition
US8663840B2 (en) * 2011-04-12 2014-03-04 GM Global Technology Operations LLC Encapsulated sulfur cathode for lithium ion battery
CN102208608B (en) * 2011-05-18 2013-05-29 刘剑洪 Preparation method of carbon-sulfur composite material for lithium ion battery carbon cathode material
CN102304786A (en) * 2011-07-18 2012-01-04 东华大学 Method for preparing CNT (carbon nano tube)-polyacrylonitrile fibre by melting spinning
CN103794764A (en) * 2012-10-26 2014-05-14 苏州宝时得电动工具有限公司 Electrode composite material preparation method, positive electrode and battery having positive electrode
CN103972480B (en) * 2014-03-26 2017-01-11 北京理工大学 Preparation method of carbon fiber/sulfur composite positive material with multilevel structure
CN103972510B (en) * 2014-05-09 2017-05-10 四川大学 Preparation method of sulfurized polyacrylonitrile anode material used for lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160217A (en) * 2008-10-17 2011-08-17 独立行政法人产业技术综合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
CN102906177A (en) * 2010-05-28 2013-01-30 巴斯夫欧洲公司 Composite materials, production thereof and use thereof in electrical cells
CN103502283A (en) * 2011-05-02 2014-01-08 罗伯特·博世有限公司 Cathode material for alkali metal-sulphur cell
CN103502284A (en) * 2011-05-02 2014-01-08 罗伯特·博世有限公司 Polyacrylonitrile-sulphur composite material
WO2013138167A1 (en) * 2012-03-14 2013-09-19 E. I. Du Pont De Nemours And Company Mcm-48 silica particle compositions, articles, methods for making and methods for using
WO2013182360A1 (en) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Method for the production of a polyacrylonitrile-sulfur composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355754B2 (en) 2020-01-14 2022-06-07 Phillips 66 Company Carbon-bound polysulfide positive electrode materials for batteries

Also Published As

Publication number Publication date
WO2016019897A1 (en) 2016-02-11
CN106661149A (en) 2017-05-10
WO2016019544A1 (en) 2016-02-11
DE112015003654T5 (en) 2017-04-27
CN106575750A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2016019901A1 (en) A sulfur-pan composite, a method for preparing said composite, and an electrode and a lithium-sulfur battery comprising said composite
Mishra et al. Electrode materials for lithium-ion batteries
US11631838B2 (en) Graphene-enhanced anode particulates for lithium ion batteries
JP6704626B2 (en) Sulfur-carbon composite and lithium-sulfur battery containing the same
Li et al. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries
CN104937753B (en) The manufacture method of nano silicon material
US8241793B2 (en) Secondary lithium ion battery containing a prelithiated anode
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
JP6136788B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6068655B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery containing the same, and method for producing negative electrode active material
WO2019027662A1 (en) Hybrid lithium anode electrode layer and lithium-ion battery containing same
JP2016021393A (en) Negative electrode active material for secondary batteries, and method for manufacturing the same
KR20100062297A (en) Negative active material, negative electrode comrprising same, method of preparing negative electrodee, and lithium battery
Zhang et al. Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance
JP2012501515A (en) Composite electrode material, battery electrode including the material, and lithium battery having the electrode
US20130157106A1 (en) Lithium metal powder-carbon powder composite anode for lithium secondary battery and lithium metal secondary battery comprising the same
JP6683265B2 (en) Fast rechargeable lithium ion battery with nanocarbon coated anode material and imide anion based lithium salt electrolyte
TW202209731A (en) Graphene-containing metalized silicon oxide composite materials
KR20230038525A (en) Electrode materials comprising silicon oxide and single-walled carbon nanotubes
Li et al. Carbon/tin oxide composite electrodes for improved lithium-ion batteries
Baikalov et al. High mass-loading sulfur-composite cathode for lithium-sulfur batteries
JP6314563B2 (en) Positive electrode mixture layer
Bai et al. Synthesis of MnO anchored on carbon sheet networks using NaCl as template and its improved lithium-storage properties
Sun et al. Performance and Applications of Lithium Ion Capacitors
Suzanowicz et al. Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries 2022, 8, 45

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003654

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829810

Country of ref document: EP

Kind code of ref document: A1