WO2016019737A1 - 用于无线通信的装置和方法、电子设备及其方法 - Google Patents

用于无线通信的装置和方法、电子设备及其方法 Download PDF

Info

Publication number
WO2016019737A1
WO2016019737A1 PCT/CN2015/076277 CN2015076277W WO2016019737A1 WO 2016019737 A1 WO2016019737 A1 WO 2016019737A1 CN 2015076277 W CN2015076277 W CN 2015076277W WO 2016019737 A1 WO2016019737 A1 WO 2016019737A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink pilot
cell
pilot sequence
communication device
uplink
Prior art date
Application number
PCT/CN2015/076277
Other languages
English (en)
French (fr)
Inventor
钱辰
陈晋辉
王昭诚
孙晨
Original Assignee
索尼公司
钱辰
陈晋辉
王昭诚
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 钱辰, 陈晋辉, 王昭诚, 孙晨 filed Critical 索尼公司
Priority to US15/327,585 priority Critical patent/US10374766B2/en
Priority to BR112017002378A priority patent/BR112017002378A2/pt
Priority to CA2953167A priority patent/CA2953167A1/en
Priority to KR1020177001196A priority patent/KR20170042280A/ko
Priority to JP2016572705A priority patent/JP6531342B2/ja
Priority to CN201580013532.1A priority patent/CN106576026A/zh
Priority to EP15829160.9A priority patent/EP3179662B1/en
Priority to EP19181824.4A priority patent/EP3599732B1/en
Priority to ES15829160T priority patent/ES2743234T3/es
Publication of WO2016019737A1 publication Critical patent/WO2016019737A1/zh
Priority to US16/446,624 priority patent/US10887065B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular, to an apparatus and method for wireless communication, an electronic device, and a method for the same, and more particularly, embodiments of the present invention relate to large-scale multiple input Pilot allocation and channel estimation techniques in an output (MIMO) communication system.
  • MIMO multiple input Pilot allocation and channel estimation techniques
  • Massive MIMO massive MIMO
  • massive MIMO massive MIMO
  • Theoretical studies have shown that by using simple linear algorithms, such as zero-forcing algorithms and minimum mean square error algorithms, large-scale MIMO systems can significantly improve the spectral efficiency and energy efficiency of the system at the same time, so it is likely to be adopted by the next generation communication standard. Key technology.
  • pilot pollution issues For example in multi-cell time division multiplexing scenarios, is limited by pilot pollution issues. Specifically, since the pilot length is limited by the channel coherence length, the number of orthogonal pilots is limited, and pilot reuse may inevitably occur between different cells. At this time, users using the same or not completely orthogonal pilot sequences in different cells may receive the pilot signals from the same base station, but the base station cannot effectively distinguish the pilot signals, resulting in the base station. The channel estimate is subject to interference.
  • the base station uses the interfered channel estimation for uplink data detection, in addition to receiving the data sent by the user of the local cell, the data of other cell users is also received, thereby causing inter-cell interference of the uplink;
  • the base station generates the precoding matrix by using the interfered channel estimation and transmits the downlink data, the users of other cells receive the data except for the user of the cell, thereby causing inter-cell interference in the downlink.
  • pilot pollution problems are often difficult to adapt to current technical conditions. Therefore, in practical applications, pilot pollution is still one of the serious problems faced by large-scale MIMO systems. In addition, the increasing number of users in the community has also exacerbated this problem.
  • an apparatus for wireless communication comprising: a location determining unit configured to determine a cell partition corresponding to a geographic location of the communication device, each cell including a plurality of cell partitions; and The frequency determining unit is configured to determine an uplink pilot sequence corresponding to the cell partition as an uplink pilot sequence of the communication device.
  • a method for wireless communication including: determining a cell partition corresponding to a geographic location of a communication device, each cell including a plurality of cell partitions; and an uplink guide corresponding to the cell partition
  • the frequency sequence is determined as the uplink pilot sequence of the communication device.
  • an apparatus for wireless communication comprising: a partitioning unit configured to divide each of a plurality of cells into a plurality of cell partitions; and a pilot pattern generating unit And configuring a plurality of uplink pilot sequences to correspond to respective cell partitions to generate a pilot pattern, wherein the pilot pattern is generated based on pilot interference between different cell partitions corresponding to the same uplink pilot sequence.
  • a method for wireless communication comprising: dividing each of a plurality of cells into a plurality of cell partitions; and mapping a plurality of uplink pilot sequences to respective cell partitions A pilot pattern is generated, wherein a pilot pattern is generated based on pilot interference between different cell partitions corresponding to the same uplink pilot sequence.
  • an electronic device includes: an uplink pilot sequence determining unit configured to determine an uplink pilot sequence of an electronic device based on indication information of an uplink pilot sequence allocated by a base station; and location determination a unit, configured to determine a geographic location change of the electronic device, where the uplink pilot sequence determining unit is based on the indication information of the uplink pilot sequence allocated by the base station, where the geographic location of the electronic device corresponds to a different cell partition before and after the geographic location change
  • the uplink pilot sequence of the electronic device is updated, and the updated uplink pilot sequence corresponds to the corresponding cell partition after the geographic location of the electronic device changes.
  • a method for an electronic device comprising: Determining an uplink pilot sequence of the electronic device based on the indication information of the uplink pilot sequence allocated by the base station; and determining a geographic location change of the electronic device, where, in the case that the geographic location of the electronic device changes before and after corresponding to different cell partitions, based on The indication information of the uplink pilot sequence allocated by the base station updates the uplink pilot sequence of the electronic device, and the updated uplink pilot sequence corresponds to the corresponding cell partition after the geographic location of the electronic device changes.
  • an apparatus for wireless communication comprising: a pilot determining unit configured to determine a first uplink pilot sequence for a first communications device; and a channel estimating unit, Configuring to perform channel estimation on the first communications device based on the received signal carrying the first uplink pilot sequence, wherein the channel estimating unit performs filtering in the channel estimation process based on the geographic location of the first communications device to obtain a match The channel estimation result of a communication device.
  • a method for wireless communication comprising: determining a first uplink pilot sequence for a first communication device; and based on the received signal pair carrying the first uplink pilot sequence
  • the first communication device performs channel estimation, wherein filtering is performed in a channel estimation process based on a geographic location of the first communication device to obtain a channel estimation result that matches the first communication device.
  • the apparatus and method for wireless communication according to the present application can significantly reduce inter-cell interference caused by pilot pollution by allocating an uplink pilot sequence according to the location of the communication device and performing channel estimation, thereby improving the overall performance of the system. Furthermore, the apparatus and method for wireless communication according to the present application enable spatial multiplexing of uplink pilot sequences, even if communication devices within the same cell can use the same or related uplink pilot sequences, thereby increasing the ability to The number of supported communication devices.
  • FIG. 1 is a block diagram showing the structure of an apparatus for wireless communication according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing one example of a two-dimensional antenna array
  • FIG. 3 is a block diagram showing the structure of an apparatus for wireless communication according to another embodiment of the present application.
  • FIG. 4 is a block diagram showing the structure of an apparatus for wireless communication according to another embodiment of the present application.
  • FIG. 5 is a block diagram showing the structure of a channel estimation module according to an embodiment of the present application.
  • FIG. 6 is a diagram showing an example of a pilot pattern according to an embodiment of the present application.
  • Figure 7 is a diagram showing a possible pilot pattern for a single cell heterogeneous network
  • FIG. 8 is a flowchart illustrating a method for wireless communication in accordance with another embodiment of the present application.
  • FIG. 9 is a flow chart showing sub-steps of a channel estimation step in the method of FIG. 8;
  • FIG. 10 is a block diagram showing the structure of an apparatus for wireless communication according to another embodiment of the present application.
  • FIG. 11 is a diagram showing an example of partition division of a cell in which an access point employs a one-dimensional evenly spaced linear antenna array
  • FIG. 12 is a diagram showing an example of partition division of a cell in which an access point employs a two-dimensional antenna array
  • FIG. 13 is a graph showing a channel estimation mean square error according to a simulation example
  • FIG. 14 is a graph showing an uplink capacity according to a simulation example
  • FIG. 15 is a graph showing a downlink capacity according to a simulation example
  • FIG. 16 is a block diagram showing the structure of an apparatus for wireless communication according to another embodiment of the present application.
  • 17 is a flow chart showing a method for wireless communication in accordance with another embodiment of the present application.
  • FIG. 18 is a block diagram showing the structure of an electronic device according to an embodiment of the present application.
  • FIG. 19 is a block diagram showing the structure of an electronic device according to another embodiment of the present application.
  • 20 is a structural block diagram showing a method for an electronic device according to an embodiment of the present application.
  • 21 is a structural block diagram showing an apparatus for wireless communication according to another embodiment of the present application.
  • FIG. 22 is a structural block diagram showing one example of a spatial filtering module according to an embodiment of the present application.
  • FIG. 23 is a structural block diagram showing one example of a channel estimation unit according to an embodiment of the present application.
  • 24 is a flow chart showing a method for wireless communication in accordance with another embodiment of the present application.
  • Figure 25 is a flowchart showing sub-steps of an example of step S62 in Figure 24;
  • FIG. 26 is a block diagram showing the structure of an apparatus for wireless communication according to another embodiment of the present application.
  • FIG. 27 is a flowchart showing a method for wireless communication according to another embodiment of the present application.
  • FIG. 28 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • FIG. 1 is a block diagram showing the structure of an apparatus 100 for wireless communication according to an embodiment of the present application.
  • the apparatus 100 includes: a location determining unit 101 configured to determine a cell partition corresponding to a geographic location of the communication device, each A cell includes a plurality of cell partitions; and a pilot determining unit 102 is configured to determine an uplink pilot sequence corresponding to the cell partition as an uplink pilot sequence of the communication device.
  • the apparatus 100 is used, for example, to allocate an uplink pilot sequence for a communication device such that the communication device can perform uplink data transmission using the allocated uplink pilot sequence, and the apparatus 100 can be used, for example, in a MIMO communication system.
  • device 100 may be located at each access point or base station side and determine an uplink pilot sequence for communication devices within its service range.
  • the communication link of the service node to the communication device acts as a downlink
  • the communication link of the communication device to the service node serves as an uplink.
  • the service node in the present application allocates the user equipment to the user equipment.
  • the uplink pilot sequence determined by the pilot determining unit 102 may be multiple, that is, the determined group of uplink pilot sequences, where the uplink pilot sequences in each group are orthogonal to each other.
  • the communication device described herein may be a user device such as a mobile terminal, a vehicle, a smart wearable device, or the like. It should be noted that the communication device of the present application may also be an infrastructure providing services such as a small cell base station. In the case where the communication device is a small cell base station, for example, the device 100 located in the macro base station determines a pilot sequence for the small cell base station as described above.
  • the present application regards a communication link such as a macro base station to a small cell base station as a downlink, and vice versa. In other words, the present application is not limited to the traditional uplink and downlink corresponding communication entity.
  • the first communication device needs to determine the channel condition of the second communication device within the signal coverage range to the first communication device, it is the second communication device.
  • the pilot is allocated, the communication link of the second communication device to the first communication device can be applied as an uplink consideration.
  • each cell is divided into multiple cell partitions, where the cell partitions may be traditional sectors, or partitions having different shapes according to other principles, and the specific division form will be Detailed description will be given later.
  • the location determining unit 101 determines the cell partition in which the geographic location of the communication device is located and provides the information to the pilot determining unit 102 to determine the corresponding uplink pilot sequence as the uplink pilot sequence to be used by the communication device.
  • the location determining unit 101 determines a geographic location change of the communication device.
  • the pilot determining unit 102 determines the uplink pilot sequence corresponding to the changed cell partition as the uplink pilot sequence of the communication device.
  • device 100 can dynamically determine an uplink pilot sequence for a communication device.
  • the location determining unit 101 may periodically determine the geographic location of the communication device to determine whether it changes to other cell partitions, or may determine when the geographic location of the communication device changes beyond a certain degree.
  • location determining unit 101 actively detects the geographic location of the communication device for determination, and in other examples, location determining unit 101 determines the geographic location of the communication device by, for example, a geographic location report from the communication device.
  • the geographic location of the communication device may be characterized by at least one of the following: a direction of arrival angle of the communication device, a direction of arrival angle combined with a distance of the communication device from the device 100, a geographic coordinate/earth coordinate of the latitude and longitude of the communication device, and a communication device.
  • the small cell ID where it is located.
  • the geographic location of the communication device can be characterized by, for example, a direction of arrival angle, a direction of arrival angle, and a distance of the communication device from the device 100.
  • the geographic location of the communication device may be characterized by, for example, the latitude and longitude of the communication device, and the small cell ID in which the communication device is located.
  • the access point may employ a one-dimensional evenly spaced linear antenna array or a two-dimensional antenna array.
  • 2 shows an example of a two-dimensional antenna array in which black dots indicate antennas arranged, D 1 and D 2 are antenna intervals in the horizontal direction and the vertical direction, respectively, and solid lines with arrows represent reception as an example. The direction of the signal.
  • FIG. 2 shows only nine antennas, but this is only an example, and the scale of the antenna is not limited thereto.
  • a one-dimensional array is used, only the antenna on the y-axis can be used.
  • the angle ⁇ is the horizontal direction arrival angle
  • the angle ⁇ is the vertical direction arrival angle
  • the angle ⁇ can also reflect the distance of the communication device from the device 100.
  • the access point is configured with a two-dimensional antenna array, and the position determining unit 101 disposed on the access point side determines the horizontal direction arrival angle ⁇ and the vertical direction arrival angle ⁇ of the signal of the received communication device, The geographic location (including direction and distance information) of the communication device is determined and characterized based on the horizontal and vertical direction of arrival.
  • the access point is configured with a one-dimensional antenna array, and the position determining unit 101 disposed on the access point side determines the horizontal direction arrival angle ⁇ of the signal of the received communication device, and determines and characterizes the communication according to ⁇ The geographic location of the device (including direction information).
  • the access point configuring the one-dimensional antenna array can further estimate the distance of the communication device from the access point according to the timing advance of the communication device/path loss of the signal, etc., and characterize the geographic location of the communication device by ⁇ and the estimated distance.
  • the geodetic coordinates such as latitude and longitude or the ID of the small cell in which the communication device is located may also be used to represent the geographical position of the communication device.
  • the communication device reports, for example, latitude and longitude information determined by its GPS module to the device 100 for determination by the location determining unit 101.
  • the access point where the device 100 is located is a macro base station, and the small cell information of the smaller coverage area deployed within the coverage of the macro base station is generally foreseen for the macro base station or can be queried, for example, through a database, in this case small
  • the cell ID may reflect the geographic location of the small cell within the macro cell range.
  • the small cell ID of the small cell broadcast may be received and fed back to the macro cell, and the location determining unit 101 learns according to the small cell ID and the small cell deployment information or the query database predicted by the macro cell. Communication device location.
  • the information can also be learned from the macro cell by using the communication interface with the macro base station.
  • FIG. 3 is a block diagram showing the structure of an apparatus 200 for wireless communication according to another embodiment of the present application.
  • the apparatus 200 further includes: a receiving unit 201 configured to Receiving information indicating a geographical location transmitted by the communication device; and transmitting unit 202 configured to transmit indication information of the uplink pilot sequence to the communication device by dedicated control signaling to allocate an uplink pilot sequence to the communication device.
  • the information indicating the geographical location described herein may be explicit location information (for example, GPS positioning information), or may be an ordinary signal that implicitly reflects the location information, and the device 200 may obtain, for example, a direction arrival angle and a time advance according to the common signal. Information such as quantity and path loss, and then roughly derive the geographical location of the communication device.
  • the transmitting unit 202 transmits the corresponding indication information to the communication device, and the communication device determines the uplink pilot sequence to use according to the received indication information.
  • the indication information may be an index representing an uplink pilot sequence, or may be an uplink pilot sequence itself.
  • the uplink pilot sequence is a reference sequence for sounding reference signals (SRS) or demodulation reference signals (DMRS) in the LTE standard.
  • the sending unit 202 may send the foregoing indication information by using dedicated control signaling (high layer signaling), for example, using radio resource control (RRC) signaling in the LTE standard.
  • dedicated control signaling high layer signaling
  • RRC radio resource control
  • the foregoing indication information is included in, for example, a sounding reference signal uplink configuration information element (SoundingRS-UL-Config IE), and more specifically, the indication information is, for example, an SRS configuration index. (SRS-ConfigIndex).
  • the communication device may be notified of the uplink pilot sequence to be used in the following manner: the base station (or the device 200) includes the geographical range of each cell partition and the corresponding uplink pilot sequence in the broadcast information and broadcast to all users. Each user determines the cell partition in which it is located and the uplink pilot sequence to be used according to its own geographical location and the received broadcast content. In this case, the communication device may not have to report its geographic location.
  • the receiving unit 201 may be further configured to receive, from the central node, pilot pattern information including a correspondence relationship between each cell partition and its uplink pilot sequence, and the pilot determining unit 102 is configured to determine the communication based on the pilot pattern information.
  • the uplink pilot allocation for all cell partitions is uniformly managed by the central node.
  • the receiving unit 201 may periodically acquire the pilot pattern information from the central node, or may reacquire the pilot pattern information only when the central node updates the pilot pattern information, or combine the two methods.
  • the central node provides at least one cell with pilot pattern information of a plurality of cell partitions included therein.
  • the central node is a management device such as a server that manages multiple cells, such as a server on the core network side, or a borderless network solution.
  • the receiving unit 201 may be further configured to receive uplink pilot sequence information of a cell partition of another cell adjacent to a cell partition in which the communication device is located, and the pilot determining unit 102 is configured to be based on other cells.
  • the uplink pilot sequence information of the cell partition determines the uplink pilot sequence corresponding to the cell partition in which the communication device is located.
  • the receiving unit 201 exchanges uplink pilot sequence information corresponding to the cell partition with the adjacent base station by, for example, an X2 interface.
  • the uplink pilot sequence information of the cell partition of the neighboring cell it is possible to avoid using the same uplink pilot sequence for the neighboring cell partitions.
  • adjacent cell partitions By causing adjacent cell partitions to correspond to different uplink pilot sequences, interference caused by pilot pollution can be reduced.
  • FIG. 4 A block diagram of a structure of an apparatus 300 for wireless communication according to another embodiment of the present application is described below with reference to FIG. 4.
  • the apparatus 300 further includes a channel estimating unit 301 in addition to the various components described with reference to FIG. .
  • the uplink pilot sequences corresponding to the adjacent cell partitions are different.
  • the receiving unit 201 is further configured to receive a signal carrying a first uplink pilot sequence, and the channel estimation unit 301 is configured to allocate to the first based on a signal pair carrying the first uplink pilot sequence
  • the communication device of the uplink pilot sequence performs channel estimation, wherein the channel estimation unit 301 performs filtering in the channel estimation process based on the geographic location of the communication device allocated to the first uplink pilot sequence to obtain a channel estimation result that matches the communication device. .
  • the base station can determine from the uplink by using the information of the uplink pilot sequence.
  • the communication device transmits so that the channel estimation unit 301 can perform filtering based on the geographic location of the communication device.
  • the purpose of filtering during the channel estimation process is to exclude contamination of the same pilot transmitted by other communication devices.
  • FIG. 5 shows a structural block diagram of one example of the channel estimation unit 301.
  • the channel estimation unit 301 includes: a channel coarse estimation module 3001 configured to perform a rough estimation of channel coefficients based on a signal carrying a first uplink pilot sequence and a first uplink pilot sequence; and a spatial filtering module 3002 configured to allocate based A coarse estimate of the channel coefficients is filtered by the geographic location of the communication device to the first uplink pilot sequence.
  • the channel coarse estimation module 3001 can use various existing estimation methods. Since the pilot determining unit 102 determines different uplink pilot sequences for adjacent cell partitions, different users using the same pilot do not substantially have the same location parameters such as direction arrival angle or distance from the base station, and the like. Of course, in order to ensure this, it is also possible to design different position parameters of different users of the same pilot. An example is given below with reference to Fig. 6. In Fig. 6, each hexagon represents one cell, and each cell is divided into 12 cell partitions, and the number marked in each cell partition indicates a guide assigned to the cell. Frequency sequence index.
  • the pilot sequence index of one cell partition of the central cell 0 is 2, and in the case where the location parameter is the horizontal direction arrival angle, the partial cell partition of the neighboring cell 1 of the cell 0 and the cell partition with the index of 2 If the horizontal direction of arrival of the cell to the cell 0 is the same, the index of the pilot sequence corresponding to the partial cell partition of the cell 1 (partial or all of the cell 1) may be specifically designed to take an index value other than 2, thereby avoiding User interference of other cells with the same location parameters.
  • the spatial filtering module 3002 utilizes this to perform spatial filtering based on the geographic location of the communication device, which can significantly reduce the mean square error of the channel estimation.
  • spatial filtering module 3002 can be configured to filter by performing a discrete Fourier transform on the coarse estimate of the channel coefficients and windowing the results of the transform.
  • the channel coarse estimation module 3001 and the spatial filtering module are described below by a specific example. An implementation of the 3002. It should be understood that the implementation of the channel coarse estimation module 3001 and the spatial filtering module 3002 is not limited to the following description.
  • the channel coarse estimation module 3001 multiplies the signal carrying the first uplink pilot sequence by the first uplink pilot sequence to obtain a coarse estimate of the channel coefficients. Then, the spatial filtering module 3002 performs a discrete Fourier transform on the coarse estimate, and adds a rectangular window to the transformed result. Finally, the windowed signal is subjected to inverse discrete Fourier transform to obtain a final channel coefficient estimate.
  • the access point uses a one-dimensional uniformly spaced linear antenna array, and the discrete Fourier transform is a one-dimensional transform.
  • the position of the rectangular window is determined by the direction of arrival angle of the communication device, for example, the minimum of the rectangular window.
  • the index k min and the maximum index k max are determined by the following equation (1):
  • N is the number of discrete Fourier transform points, generally larger than the number of antennas of the access point; D and ⁇ are respectively antennas The pitch and the wavelength of the received signal; [] is the rounding operation.
  • the following filter is directly used to directly filter the coarse estimate of the channel coefficients:
  • each parameter has the same definition as in the formula (1).
  • the filtering process can employ linear convolution or circular convolution. If circular convolution is used, the filtering process is as follows: 1) Calculate the filter according to the detection interval of the direction angle of arrival (as shown in equation (2) above); 2) Zero the received signal so that its length is the same as the filter length N; 3) Cyclically convolving the received signal and the filter after zero-padding; 4) setting the number of antennas to M, and intercepting the first M components of the cyclically convolved signal as channel estimation results.
  • the filtering process is as follows: 1) Calculate the filter according to the detection interval of the direction angle of arrival (as shown in equation (2) above); 2) Linearly convolve the received signal with the filter; 3) Set the antenna The number is M, then the signal after convolution has N+M-1 components, and the last M-1 components are superimposed on the first M-1 components; 4) The first M components are intercepted as channel estimation results.
  • the access point uses a uniformly spaced two-dimensional antenna array (eg, as shown in FIG. 2), and the discrete Fourier transform is performed as a two-dimensional transform, and the position of the rectangular window is determined by the detection interval, for example, a rectangle
  • the minimum and maximum indices of the window in the horizontal direction are:
  • the minimum and maximum indices of the rectangular window in the vertical direction are:
  • [ ⁇ min , ⁇ max ] is the horizontal direction arrival angle detection range
  • [ ⁇ min , ⁇ max ] is the vertical direction arrival angle detection range
  • D 1 is the horizontal direction antenna spacing
  • D 2 is the vertical direction antenna spacing
  • is The wavelength of the received signal
  • N h is the number of discrete Fourier transform points in the horizontal direction
  • N v is the number of discrete Fourier transform points in the vertical direction.
  • the convolution-based filtering method may also be adopted without performing the discrete Fourier transform, and details are not described herein again.
  • the channel coefficients obtained by inverse discrete Fourier transform in the horizontal direction and the vertical direction are estimated as h h and h v , for example, Combining the obtained channel estimates in various directions to obtain an overall channel estimate, wherein Represents Kronecker.
  • the above description has been made only for the antenna array of a single polarization direction, but the above channel estimation method is also applied to the case of cross polarization, for example, performing the above-described transformation and filtering processing for each polarization direction, the first polarization channel coefficients are estimated in the direction h 'h and h' v, the channel coefficients are estimated to be the second polarization direction h "h and h" v, the entire channel coefficient estimation can be used To represent. It will be appreciated that when the antenna array has more polarization directions, an estimate of the channel coefficients for each polarization direction can be combined in a similar manner to obtain an overall channel coefficient estimate.
  • a rectangular window is employed in the above examples, other window functions such as a Hamming window, a Blackman window, and the like may be used in addition to this.
  • a spatial domain filter obtained by performing inverse discrete Fourier transform on the above window function may be employed.
  • the device 300 improves channel estimation by performing channel estimation based on the geographic location of the communication device.
  • the accuracy of the meter reduces the pilot pollution and thus improves the system performance.
  • the device 300 may further include a demodulation module (not shown) that demodulates if the communication device transmits a pilot sequence (eg, SRS) within the data transmission bandwidth.
  • the module can demodulate the data signal by using the channel estimation result obtained by the above channel estimation method, thereby obtaining more accurate demodulated data.
  • the apparatus 300 includes a synchronization module (not shown), and the synchronization module performs correlation operations on the signal that is received by the apparatus 300 and carries the first uplink pilot sequence and the first uplink pilot sequence. Determining an offset of the first uplink pilot sequence to determine timing advance information for the communication device transmitting the first uplink pilot sequence to provide for the communication device to remain synchronized with the device 300.
  • the timing advance determined by the synchronization module for the communication device corresponding to the particular uplink pilot will be more accurate.
  • the cells described herein may include macro cells and small cells. That is, the embodiment of the present application can be applied to a scenario of a heterogeneous network.
  • the number of cell partitions of the small cell may be smaller than the number of cell partitions of the macro cell.
  • the small cell is not partitioned, but is entirely a cell partition.
  • Figure 7 shows a possible pilot pattern for a single cell heterogeneous network, where the entire hexagon represents a macro cell and the gray dots represent a small cell. Assuming that there are 12 uplink pilot sequences that are orthogonal to each other, the macro cell is equally divided into 12 partitions according to the horizontal direction of arrival of the access point, and there are 4 small cells in the macro cell, and each small cell supports up to 2 user.
  • the orthogonality of the uplink pilot sequences used by the users in the small cell and the users in the macro cell needs to be ensured. Therefore, when the small cells are all in the service state, the macro cell can only support 4 users.
  • the channel estimation method including filtering is used in this embodiment, it is only necessary to ensure that the small cell and the cell partition using the same uplink pilot sequence as the small cell can be distinguished at the angle of arrival.
  • the macro cell partition number indicates the uplink pilot sequence number used by the cell partition determined by the pilot determining unit 102, for example, the cell partition numbered 1 uses the uplink pilot sequence 1.
  • the small cell numbered 1 uses the uplink pilot sequences 1, 2, the small cell numbered 2 uses the uplink pilot sequences 3 and 4, and the small cell numbered 3 uses the uplink pilot sequences 5 and 6, and the number 4 is small.
  • the cell uses the uplink pilot sequences 7, 8.
  • the pilot pattern shown here is only an example, and is not limited thereto.
  • the pilot pattern can satisfy the following conditions: it can ensure that the cell partition and the small cell using the same uplink pilot sequence can be distinguished by the angle of arrival, thereby enabling The interference between the small cell and the macro cell user is reduced by the operation of the channel estimation unit 301.
  • this embodiment only gives a pilot allocation method for a single cell heterogeneous network, the conclusion is equally applicable to a multi-cell heterogeneous network.
  • FIG. 8 shows a flow chart of a method for wireless communication according to an embodiment of the present application, comprising the steps of: determining a cell partition corresponding to a geographic location of a communication device, each cell comprising a plurality of cell partitions (S11) And determining an uplink pilot sequence corresponding to the cell partition as an uplink pilot sequence of the communication device (S12).
  • the geographic location of the communication device may be characterized in at least one of the following: a direction of arrival angle, a direction of arrival of the direction and a distance from the base station, geographic coordinates, and a small cell ID.
  • the uplink pilot sequence corresponding to the transformed cell partition is determined as the uplink pilot sequence of the user equipment in step S12.
  • the foregoing method may further include the following steps: receiving the information indicating the geographical location sent by the communication device before the step S11 (S21).
  • the method may further include the step of transmitting the indication information of the uplink pilot sequence to the communication device by using dedicated control signaling to allocate an uplink pilot sequence to the communication device (S22).
  • the method further includes the step of receiving, from the central node, pilot pattern information including a correspondence relationship between each cell partition and its uplink pilot sequence (not shown in FIG. 8), and based on the pilot in step S12.
  • the pattern information determines the uplink pilot sequence of the user equipment.
  • the above method may further include the step of receiving uplink pilot sequence information of a cell partition of another cell adjacent to the cell partition in which the communication device is located (not shown in FIG. 8), and based on the step S12
  • the uplink pilot sequence information of the cell partition of the other cell determines an uplink pilot sequence corresponding to the cell partition in which the communication device is located.
  • the uplink pilot sequence corresponding to the adjacent cell partition is different, and the method may further include: receiving a signal carrying the first uplink pilot sequence (S31); and based on carrying the first uplink pilot sequence
  • the signal performs channel estimation on the communication device allocated to the first uplink pilot sequence (S32), and performs filtering in the channel estimation process based on the geographic location of the communication device allocated to the first uplink pilot sequence to obtain a matching communication device Channel estimation results.
  • step S32 includes the following sub-steps, as shown in FIG. 9 : performing rough estimation of channel coefficients based on the signal carrying the first uplink pilot sequence and the first uplink pilot sequence (S321); The geographic location of the communication device of an uplink pilot sequence filters the coarse estimate of the channel coefficients (S322).
  • step S322 filtering can be implemented by performing a discrete Fourier transform on the coarse estimation of the channel coefficients and windowing the result of the transform.
  • the specific manner has been described in detail in the third embodiment and will not be repeated here.
  • FIG. 10 shows a structural block diagram of an apparatus 400 for wireless communication according to an embodiment of the present application.
  • the apparatus 400 includes a partitioning unit 401 configured to divide each of a plurality of cells into a plurality of cell partitions.
  • a pilot pattern generation unit 402 configured to generate a pilot pattern by mapping a plurality of uplink pilot sequences to respective cell partitions, wherein pilot interference generation between different cell partitions corresponding to the same uplink pilot sequence is generated The pilot pattern.
  • the apparatus 400 functions as a central control node for allocating uplink pilot sequences by generally considering pilot interference for all cell partitions within its control range.
  • the partitioning unit 401 can divide each cell into cell partitions of different shapes and sizes.
  • the partitioning method shown in FIG. 11 may be adopted, that is, the cell is divided into different cell partitions only according to the horizontal direction arrival angle to the access point.
  • This method is simple and easy to implement, and mainly considers horizontal interference.
  • the access point adopts a two-dimensional antenna array such as a uniform interval array (as shown in FIG. 2)
  • the access point has a resolution in the horizontal direction in addition to the resolution in the horizontal direction, and the partition division at this time may be Consider both the angle (horizontal direction angle of arrival) and the distance/vertical direction angle of arrival. High system accuracy.
  • a possible partitioning method is shown in Figure 12.
  • FIGS. 11 and 12 only show two special cases of partition division, which may be determined by cell deployment, and may be designed to have an irregular shape based on, for example, the detection accuracy of the geographic location of the user equipment.
  • the partitioning unit 401 is configured to divide the cell partition according to the distribution condition of the communication device in the cell, for example, in a case where the specific small cell does not sleep for the user equipment to be served within a predetermined time, the partition unit 401 may re The cell partition is divided and the specific small cell is no longer used as a cell partition.
  • the pilot pattern generation unit 402 regenerates the pilot pattern when the division of the cell partition changes. The changes described herein can be changed beyond a predetermined level and can be measured by various criteria. It can be seen that in this case, the pilot pattern is dynamically updated and the frequency of the update can be controlled.
  • the pilot pattern generation unit 402 Preferably, after the cell partition is divided, the pilot pattern generation unit 402 generates a pilot pattern based on pilot interference between different cell partitions corresponding to the same uplink pilot sequence.
  • pilot pattern generation unit 402 can generate a pilot pattern by minimizing the cost function as follows.
  • f 1 is a function proportional to the average inter-cell interference, and is used to measure the average inter-cell interference experienced by the system when the pilot pattern p is used.
  • the cost function f 1 can be selected as:
  • the numerator measures the direction of arrival of an access point of a different user.
  • the degree of correlation measures the distance between the interfering cell partition and the access point in the interfered cell. Since the inter-cell interference is simultaneously related to the direction of the interference user's direction of arrival and distance, the above equation (6) accurately measures the inter-cell interference experienced by all users in the entire system.
  • the cost function f 1 can be selected as:
  • ⁇ msm is the horizontal direction of view angle of arrival of the access point in the mth cell of the virtual user located in the middle of the sth cell partition in the mth cell;
  • ⁇ msl is the sth in the first cell The horizontal direction line-of-sight arrival angle of the access point in the m-th cell of the virtual user in the middle of the cell partition;
  • ⁇ msm is the connection between the virtual user in the m-th cell located in the middle of the s-th cell partition in the m-th cell The vertical direction line of sight arrival angle of the in point;
  • ⁇ msl is the vertical direction line of sight arrival angle of the access point in the mth cell of the virtual user in the middle of the sth cell section in the first cell;
  • the unit length direction vector It It is represented by the following formula (8):
  • cost function A specific form of the cost function is given above, but is not limited thereto, and any cost function that reflects the average inter-cell interference experienced by the system can be used.
  • pilot patterns can be generated by maximizing the following utility functions.
  • the function f 2 is a function proportional to the cell and the rate, which is used to measure the performance that the system can achieve when using the pilot pattern p.
  • the pilot pattern generating unit 402 generates a pilot pattern how. It will be appreciated, without considering complexity, a pilot pattern may be generated by means of a partition traversal search to minimize the cost of all the cells of the functions f 1. However, such calculations are highly complex.
  • the pilot pattern generation unit 402 can be configured to calculate interference to all neighboring cell partitions for a cell partition to which an uplink pilot sequence has been allocated, and allocate the same uplink pilot sequence to the neighboring cell partition with the least interference. .
  • an uplink pilot sequence has been allocated to 12 cell partitions of a centrally located cell (cell 0), wherein the numbers 1-12 are used to represent the cell partition and the assigned mutually orthogonal uplinks. Frequency sequence (or group of uplink pilot sequences).
  • the neighboring cell partitions of these cell partitions are defined in one example as all other cell partitions within the thick dashed line.
  • the cell partition with the least interference is selected in its neighboring cell partition and the same uplink pilot sequence is allocated thereto, and the interference may be, for example, in the above equation (6).
  • R msl to measure.
  • This step is repeated until the cell partition (i.e., cell partition 1-12) to which the uplink pilot sequence has been allocated cannot find the neighbor cell partition.
  • a pilot allocation method for traversal search may be employed, and reference is made to FIG. 6, which shows an example of a pilot pattern obtained by the pilot allocation process described above.
  • FIGS. 11 and 6 only show examples of cell partition division and pilot pattern generation, and the scope of application of the present application is not limited thereto.
  • each uplink pilot sequence in each group is mutually positive. cross.
  • groups of different uplink pilot sequences can be allocated to adjacent cell partitions to reduce interference between users.
  • the plurality of cells mentioned above may include a macro cell and a small cell, and the number of cell partitions of the small cell is smaller than the number of cell partitions of the macro cell.
  • the partition unit 401 performs partition processing only on the macro cell.
  • the macro cell user and the user in the small cell adopt mutually orthogonal pilots.
  • the number of users that the macro cell can support will be reduced.
  • the small cell is also used as the interference source, and the obtained pilot pattern can increase the number of users that the macro cell can simultaneously serve, thereby significantly improving the overall performance of the system.
  • the cell configuration and the cell partition division mode shown in FIG. 11 are adopted, that is, it is assumed that there are seven homogeneous cells, and the access point adopts a one-dimensional evenly spaced linear antenna array, and the number of users in each cell is 12 And according to the horizontal arrival angle range to the access point is divided into 12 cell partitions, and the range of the arrival angle of each cell partition to the respective access point is assumed to be the same.
  • the cell located at the center is the target cell, and the object of the simulation study is the user in the target cell.
  • the inter-cell interference to and the highest uplink data rate and the highest downlink data rate that can be achieved are compared with the conventional method and the situation using the device 300 according to the third embodiment, respectively.
  • the pilot pattern shown in Fig. 6 is generated in the manner of this embodiment.
  • the number of each cell partition in the figure represents the sequence number of the uplink pilot sequence group used by the cell partition, that is, in the cell partition numbered 1, the users use one group of uplink pilot sequences.
  • h ml is the channel vector between the access point of the user in the lth cell to the mth cell; P is the number of multipaths; ⁇ p is the access from the pth multipath to the mth cell The angle of arrival of the point; ⁇ p is the large-scale fading coefficient of the p-th path; the vector a( ⁇ ) is the gradient vector of the angle of arrival ⁇ , expressed as follows:
  • D is the access point antenna spacing
  • is the received signal wavelength
  • L is the cell number (0-6 in this example).
  • the other specific parameters used in the simulation are as follows: the cell radius is 500 meters, the path loss coefficient is 3.5, the shadow fading variance is 8 dB, the carrier frequency is 2 GHz, the antenna spacing is half of the signal wavelength, the multipath number is 50, and the angular expansion is 10°.
  • the angular spread distribution adopts two distribution models, one of which is uniform distribution, which can ensure that the arrival angles of users between different partitions do not overlap at all; the other is a Gaussian distribution with a standard deviation of 10°.
  • the downlink data precoding uses a zero-forcing precoding algorithm, and the uplink data detection also adopts a zero-forcing detection algorithm.
  • the uplink data detection uses a zero-forcing detection algorithm.
  • the mean square error of the access point channel estimation is analyzed.
  • the mean square error in the simulation is calculated as follows:
  • vector h is the actual channel coefficient vector
  • Figure 13 is a simulation result of the mean square error of channel estimation, which is a two-angle extended distribution model for uniform distribution and Gaussian distribution respectively.
  • the traditional method is a pilot-assisted channel rough estimation.
  • the subsequent filtering process based on the geographic location of the communication device is not performed.
  • the filtering method of the present application is also shown, including a discrete Fourier transform based filtering method and a linear convolution filtering method.
  • the method of the present application can significantly reduce the mean square error of channel estimation, and as the number of access point antennas increases, The square error will also decrease.
  • the method of the present application cannot effectively reduce the mean square error of the channel estimation, and as the number of access point antennas increases, the mean square error of the channel estimation is also Not reduced accordingly. This is because for the angular expansion of the Gaussian distribution, the angle of arrival is not completely limited to a certain interval, so when filtering, part of the multipath is filtered out by the rectangular window. At this time, even if the number of antennas of the access point increases, the mean square error of the channel estimation cannot be reduced.
  • the uplink and downlink signal to interference ratio (SIR).
  • SIR uplink and downlink signal to interference ratio
  • h lsm is the channel coefficient vector of the access point in the sth partition to the lth cell in the mth cell
  • matrix A sm is the detection matrix used by the user in the sth partition in the mth cell
  • the downlink signal to interference ratio of the central cell partition 1 is calculated as follows:
  • W sm is the precoding matrix used by the user in the sth partition in the mth cell, and a zero-forcing precoding algorithm is used in the simulation.
  • the uplink and downlink channel capacity can be calculated by the signal-to-interference ratio, and the calculation methods are as follows:
  • Figure 14 is an uplink channel capacity of a user in cell partition 1.
  • the uplink capacity can still be increased as the number of access point antennas increases. improve.
  • Figure 15 is a downlink channel capacity of a user in cell partition 1. Similar to FIG. 14, the method of the present application can increase the downlink capacity as the number of access point antennas increases, regardless of whether the angular expansion obeys a uniform distribution or a Gaussian distribution. Compared with the conventional method, the method of the present application obtains an obvious Gain.
  • the means for wireless communication is a central node that communicates with a plurality of cells
  • FIG. 16 shows a block diagram of the structure of the apparatus 500 for wireless communication according to the embodiment, except that it includes each of FIG.
  • the apparatus 500 further includes a communication interface 501 configured to notify respective cells of the corresponding pilot pattern.
  • the communication interface 501 may transmit a pilot pattern in response to a request of the cell, or periodically transmit, or transmit if the pilot pattern is regenerated.
  • pilot pattern generation unit 402 is configured to generate pilot patterns for different combinations of cell switching states and store them as a mapping table.
  • the change of the switching state of the cell affects the interference condition between the cells, and thus causes a change in the pilot pattern.
  • the switching state change of the small cell may be more common, and the pilot pattern generating unit 402 may generate and store a corresponding pilot pattern for a combination of various switching states.
  • the communication interface 501 can be configured to re-notify the respective pilot patterns in the current switch state to each cell based on the mapping table in the event that the cell switch state changes. Specifically, the information of the uplink pilot sequence allocated to each small cell is notified to the corresponding base station. Alternatively, the communication interface 501 can also adopt a periodic notification manner.
  • pilot pattern generation unit 402 may not previously store pilot patterns combined for various switch states, but may generate them temporarily when needed.
  • the device 500 can provide a pilot pattern suitable for the current environment to each cell, helping to improve system performance.
  • the above devices 400, 500 may be provided in the form of components (for example, a control chip) in a management device such as a server that manages a plurality of cells, such as a server on the core network side, or a borderless network solution (for example, C-RAN).
  • a management device such as a server that manages a plurality of cells, such as a server on the core network side, or a borderless network solution (for example, C-RAN).
  • C-RAN Central Controller
  • the foregoing apparatus 400 and 500 may also be a management device itself, such as a server that manages multiple cells, and the specific conventional components included in the above are the same as the prior art, and are not described herein again.
  • FIG. 17 shows a flowchart of a method for wireless communication according to an embodiment of the present application, the method comprising the steps of: dividing each of a plurality of cells into a plurality of cell partitions (S41); A plurality of uplink pilot sequences are associated with the respective cell partitions to generate a pilot pattern (S42), wherein the pilot pattern is generated based on pilot interference between different cell partitions corresponding to the same uplink pilot sequence.
  • step S41 the cell partition may be divided according to the distribution status of the communication device in the cell, and step S42 is performed again when the division of the cell partition is changed to regenerate the pilot pattern.
  • the plurality of cells include a macro cell and a small cell, and the number of partitions of the small cell is smaller than the number of cell partitions of the macro cell.
  • the small cell may not be partitioned, but the whole is used as one cell partition.
  • the cell partition to which the uplink pilot sequence has been allocated is partitioned in step S42.
  • the interference to all neighboring cell partitions is calculated, and the same uplink pilot sequence is allocated to the neighboring cell partition with the least interference.
  • the above method may be performed at a central node communicating with a base station corresponding to a plurality of cells, and as shown by a broken line frame in FIG. 17, may further include a step of notifying each cell base station of the corresponding pilot pattern (S43).
  • a plurality of cells may have different switch states, and a pilot pattern is generated for different cell switch state combinations in step S42 and stored as a mapping table.
  • step S43 is performed again to re-notify each cell base station of the corresponding pilot pattern in the current switching state based on the mapping table.
  • the method generates a pilot pattern by considering the pilot interference between cells as a whole, which can significantly reduce pilot pollution and improve system performance.
  • the electronic device 600 includes an uplink pilot sequence determining unit 601 configured to determine an electronic based on indication information of an uplink pilot sequence allocated by a base station.
  • An uplink pilot sequence of the device 600 and a location determining unit 602 configured to determine a geographic location change of the electronic device 600, wherein the uplink pilot is corresponding to a different cell partition before and after the geographic location change of the electronic device 600
  • the sequence determining unit 601 updates the uplink pilot sequence of the electronic device 600 based on the indication information of the uplink pilot sequence allocated by the base station, and the updated uplink pilot sequence corresponds to the cell partition corresponding to the geographic location change of the electronic device 600.
  • the indication information of the uplink pilot sequence may be an index indicating an uplink pilot sequence (for example, SRS-ConfigIndex in the LTE standard), or may be an uplink pilot sequence itself.
  • the indication information may be included in dedicated control signaling, such as RRC signaling, sent by the base station.
  • the indication information may also be included in a broadcast signal that is sent by the base station and includes pilot allocation information.
  • the uplink pilot sequence determining unit 601 determines an uplink pilot sequence for the electronic device 600 by parsing the above signaling.
  • the electronic device 600 and the base station have, for example, pre-arranged the correspondence between the index and the uplink pilot sequence, so that the uplink pilot sequence determining unit 601 can correctly determine the uplink guide to be used. Frequency sequence.
  • the location determining unit 602 determines whether the location of the electronic device 600 has changed, such as whether Changing to a different cell partition than the current cell partition, if it is determined that the location has changed, it means that the uplink pilot sequence used by the electronic device 600 may change. Therefore, the uplink pilot sequence determining unit 601 needs to update the uplink pilot sequence of the electronic device 600 to the uplink pilot sequence corresponding to the cell partition after the geographical location change based on the indication information of the uplink pilot sequence allocated by the base station.
  • location determining unit 602 includes a GPS module to determine changes in location.
  • the location determining unit 602 receives the small cell ID broadcast by the small cell base station to determine a location change of the electronic device 600.
  • a base station may schedule each user equipment (UE) to transmit an SRS once or periodically, and determine, by the user equipment that is provided with the electronic device 600, based on indication information of an uplink pilot sequence allocated by the base station. After the uplink pilot sequence, the SRS signal corresponding to the cell partition where the UE is located may be sent to the base station in one time or periodically according to the scheduling of the base station.
  • UE user equipment
  • the electronic device 600 described herein may be a user device such as a mobile terminal, a vehicle, a smart wearable device or a component thereof, or may be an infrastructure such as a small cell base station or a component thereof.
  • the electronic device is a small cell base station
  • the corresponding macro base station allocates indication information of the pilot sequence thereto.
  • the electronic device 600 of the present application can automatically update the uplink pilot sequence to be used according to changes in its own geographical location, which helps to improve communication quality.
  • FIG. 19 is a block diagram showing the structure of an electronic device 700 according to another embodiment of the present application.
  • the electronic device 700 further includes: a transmitting unit 701 configured to Transmitting geographic location information of the electronic device; and receiving unit 702 configured to receive indication information of an uplink pilot sequence allocated by the base station.
  • the sending unit 701 may send the geographical location information in a manner of at least one of: periodically transmitting; the location determining unit 601 determines that the location change exceeds a predetermined range, and sends the information according to the location update request information of the base station. It can be understood that the sending unit 701 can transmit the geographical location information using any existing manner and signal format. In particular, when the electronic device 700 initially accesses the network, signals may be transmitted, for example, using a pre-agreed uplink pilot sequence or in a robust modulation format to report its geographic location information.
  • the receiving unit 702 receives the dedicated control signaling including the indication information of the uplink pilot sequence, and the uplink pilot sequence determining unit 601 parses the dedicated control signaling to determine the uplink pilot sequence of the electronic device 700.
  • the dedicated control signaling is, for example, RRC signaling in the LTE standard.
  • the receiving unit 702 may further receive broadcast signaling that includes indication information of an uplink pilot sequence, where the broadcast signaling includes a correspondence between multiple cell partitions and multiple uplink pilot sequences, and the uplink pilot sequence determining unit 601 parses the broadcast.
  • the signaling and determining an uplink pilot sequence of the electronic device according to the cell partition corresponding to the current location of the electronic device may also not transmit the geographical location information of the electronic device.
  • the apparatus 700 can flexibly change the uplink pilot sequence to be used to improve the performance of the communication system by transmitting its own geographical location information in various manners and receiving indication information of the uplink pilot sequence allocated by the base station.
  • the method for an electronic device includes the steps of: determining an uplink pilot sequence of an electronic device based on indication information of an uplink pilot sequence allocated by a base station (S51); and determining an electronic The geographic location of the device is changed (S52), wherein, in the case that the geographic location of the electronic device changes before and after the geographic location of the electronic device, the step S51 is re-executed to update the electronic device based on the indication information of the uplink pilot sequence allocated by the base station.
  • the uplink pilot sequence, the updated uplink pilot sequence corresponds to the corresponding cell partition after the geographic location of the electronic device changes.
  • the above method may further include the steps of: transmitting geographical location information of the electronic device (S53); and receiving indication information of the uplink pilot sequence allocated by the base station (S54).
  • the geographical location information may be transmitted in a manner of at least one of: periodically transmitting; when it is determined in step S52 that the location change exceeds a predetermined range, the transmission is performed; and the location update request information is transmitted according to the base station.
  • dedicated control signaling including indication information of an uplink pilot sequence may be received in step S54, and the dedicated control signaling is parsed to determine the electronic device in step S52.
  • Uplink pilot sequence may be received in step S54, and the dedicated control signaling is parsed to determine the electronic device in step S52.
  • Uplink pilot sequence may be received in step S54, and the dedicated control signaling is parsed to determine the electronic device in step S52.
  • Uplink pilot sequence is, for example, RRC signaling in the LTE standard.
  • step S54 broadcast signaling including indication information of an uplink pilot sequence, where the broadcast signaling includes a correspondence between a plurality of cell partitions and a plurality of uplink pilot sequences, and parsing the broadcast signal in step S52 And determining, according to the cell partition corresponding to the current location of the electronic device, an uplink pilot sequence of the electronic device.
  • step S53 of transmitting the geographical location information of the electronic device may not be performed.
  • the used uplink pilot sequence can be flexibly changed according to the change of the geographical position of the electronic device, and the communication quality is improved.
  • the details of the method have been described in detail in the eighth and ninth embodiments and will not be repeated here.
  • the apparatus 800 includes a pilot determining unit 801 configured to determine a first uplink guide for a first communication device. a frequency sequence; and a channel estimation unit 802 configured to perform channel estimation on the first communication device based on the received signal carrying the first uplink pilot sequence, wherein the channel estimation unit 802 is based on a geographic location of the first communication device Filtering is performed during the channel estimation process to obtain a channel estimation result that matches the first communication device.
  • the pilot determining unit 801 described herein may be the same as the pilot determining unit 102 previously described in the first to third embodiments, and may also adopt other uplink sequence pilot determining manners, and is not limited to the present application. Open technology.
  • the channel estimation unit 802 can have the same structure as the channel estimation unit 301 described in the third embodiment.
  • the channel estimation unit 802 can include a channel coarse estimation module 3001 configured to perform a coarse estimation of channel coefficients based on a signal carrying a first uplink pilot sequence and a first uplink pilot sequence; and a spatial filtering module 3002 And configured to filter a coarse estimate of the channel coefficients based on a geographic location of the first communication device.
  • a channel coarse estimation module 3001 configured to perform a coarse estimation of channel coefficients based on a signal carrying a first uplink pilot sequence and a first uplink pilot sequence
  • a spatial filtering module 3002 configured to filter a coarse estimate of the channel coefficients based on a geographic location of the first communication device.
  • the spatial filtering module 3002 can estimate the geographic location of the first communication device based on a coarse estimate of the channel coefficients.
  • the geographic location of the first communication device can be characterized at least with its orientation relative to device 800, such as the direction of arrival of the signal. It can be understood that, corresponding to different directional arrival angles of the communication devices at different geographical locations, the spatial filtering module 3002 can filter out the difference from the position of the first communication device by filtering based on the direction of arrival angle. Large interference from other communication devices.
  • the other communication devices described herein may be located in the same cell as the first communication device, or may be located in different cells.
  • the present application can reduce pilot pollution at the cell edge.
  • the spatial filtering scheme of the present application enables spatial multiplexing of uplink pilot signals within the same cell, while allowing different communication devices within the same cell to utilize the same or related uplink pilot sequences.
  • the spatial filtering module 3002 may include: an angle domain transforming unit 30021 configured to perform angular domain transform on a coarse estimate of channel coefficients; and an angular domain filtering section 30022 configured to be based on the foregoing direction The angle domain transform is filtered; and the inverse transform unit 30033 is configured to perform an inverse Fourier transform on the filtered result to obtain a channel estimation result.
  • the antenna array of the base station is configured as (M, N, 2), that is, M ⁇ N antenna arrays with cross polarization, respectively with A preliminary estimate of the vertical direction of arrival angle and the horizontal direction of arrival of the first polarization direction, respectively with A preliminary estimate of the vertical direction arrival angle and the horizontal direction arrival angle of the second polarization direction is indicated, and the predetermined scattering angles are expressed as ⁇ ⁇ and ⁇ ⁇ , respectively .
  • the predetermined scattering angles are expressed as ⁇ ⁇ and ⁇ ⁇ , respectively .
  • the angle domain transform unit 30021 will use, for example, a Fourier transform with Transform to the angle domain separately, as shown in the following equation (17):
  • the angle domain filtering section 30022 can obtain a preliminary estimation of the vertical direction arrival angle and the horizontal direction arrival angle in the two polarization directions according to the equation (17). with as well as with The angle domain transform is filtered using a filter based on the preliminary estimate. For example, the angle corresponding to the maximum value in the angular domain transform can be used as a preliminary estimate of the angle of arrival, and filtered using a bandpass filter centered at the preliminary estimate.
  • An example of the filter is shown in the following formula (18), wherein the pass band width can be set according to a predetermined scattering angle.
  • G( ⁇ ) is one of the equations (17)
  • ⁇ 0 is an estimate of the angle of arrival corresponding to the corresponding direction and polarization
  • is the scattering angle of the corresponding direction.
  • the inverse transform unit 30033 performs inverse Fourier transform on the filtered result to obtain a channel estimation result.
  • the channel estimation result expressed by the following equation (19) can be obtained by the integrated filtering and the inverse transform.
  • the overall channel estimate can be obtained, for example, by combining the obtained channel estimation of each direction and polarization obtained by the following equation (20).
  • the angle domain filtering section 30022 may also use empirical values to design a filter based on preliminary estimates.
  • the bandwidth of the filter shown in the equation (18) or the like can be set based on empirical values such as empirical angle expansion and arrival angle estimation deviation.
  • the spatial filtering module 3002 can mitigate interference from signals of bearer-related uplink pilot sequences from communication devices in other directions.
  • the channel estimation unit 802 may further include an iteration module 8021 configured to provide the channel estimation result obtained by the inverse transform unit 30033 as a coarse estimate of the channel coefficient to the spatial filtering module 3002 for further filtering.
  • the angle domain filtering section 30022 can obtain a more accurate estimation value of the angle of arrival based on the result, thereby performing more accurate filtering to further improve the channel estimation result.
  • the signal carrying the first uplink pilot sequence is, for example, a sounding reference signal SRS or an uplink demodulation reference signal DMRS.
  • the beam-formed downlink reference signal is, for example, at least one of a beam-formed cell reference signal and a beam-formed channel state information reference signal.
  • the measurement of the beamformed downlink reference signal may also be performed by other means, such as by the communication device.
  • a report is used to estimate, for example, the angle of arrival and filter based on the estimate.
  • the device 800 performs beamforming processing on the downlink reference signal, and transmits the beamformed reference signal to different directions, for example, in a time division manner, and receives a measurement report fed back by the communication device served by the communication device, for example, the strongest measurement result.
  • the corresponding beam direction is used as the direction of arrival angle of the communication device.
  • direction estimation may also be performed, for example, by a cell partition in which the communication device is located, such as determining the above according to the ID of the cell partition. with as well as with It can be understood that the direction arrival angle estimation obtained based on the prior art such as feedback of the positioning reference signal, GPS positioning information, and the like can also be used, which is not mentioned here. In this case, the aforementioned operations regarding subsequent filtering and inverse transform are equally applicable.
  • the channel estimation unit 802 performs filtering in the channel estimation process based on the geographic location of the first communication device, filtering out the target communication device by utilizing the difference in the distribution of channel coefficients caused by the difference in the geographical position of the communication device, That is, the channel response of the communication device using the same uplink pilot sequence except the first communication device, so that at least one of the following can be implemented: mitigating uplink pilot sequence interference between cells and/or cells; effectively reducing channel estimation Mean square error; increase the capacity of the communication system.
  • it provides for spatial multiplexing of uplink pilot sequences. A viable way. Especially in the case where the coherence bandwidth is small and the relative mobility is high, more communication devices can be supported.
  • device 800 can operate as a base station, the first communication device is a user device, and device 800 can further include a transceiver unit configured to receive the signals.
  • a method for wireless communication comprising the steps of: determining a first uplink pilot sequence for a first communication device (S61); and based on the received bearer first uplink pilot
  • the sequence of signals performs channel estimation on the first communication device (S62), wherein filtering is performed in a channel estimation process based on a geographic location of the first communication device to obtain a channel estimation result that matches the first communication device.
  • step S62 may comprise the following substeps: a) performing a coarse estimation of the channel coefficients based on the signal carrying the first uplink pilot sequence and the first uplink pilot sequence; b) and based on the geographic location of the first communication device The coarse estimate of the channel coefficients is filtered.
  • the geographic location of the first communication device can be estimated from a coarse estimate of the channel coefficients.
  • the geographic location of the first communication device can be characterized at least with respect to the direction of the base station, such as the direction of arrival of the signal.
  • the geographic location of the first communication device can also be estimated based on measurements from the first communication device for the beam-formed reference signal.
  • the beam-formed downlink reference signal is, for example, at least one of a beam-formed cell reference signal and a beam-formed channel state information reference signal.
  • FIG. 25 is a flowchart showing a sub-step of an example of filtering based on a geographic location, as shown in FIG. 25, including: performing an angular domain transformation on a coarse estimate of a channel coefficient (S6201); performing an angular domain transformation based on the above direction Filtering (S6202); and performing inverse Fourier transform on the filtered result to obtain a channel estimation result (S6203).
  • the angle corresponding to the maximum value in the angle domain transformation may be As a preliminary estimate, and filtering using a bandpass filter centered at this preliminary estimate, empirical values can also be used to design the bandwidth of the filter based on the preliminary estimate.
  • sub-step b) in step S62 can be iteratively performed, i.e., the channel estimation result obtained in step S6203 is taken as a coarse estimate of the channel coefficients for further filtering. This can further improve the accuracy of channel estimation.
  • the signal described herein includes an uplink reference signal, such as a sounding reference signal SRS or an uplink demodulation reference signal DMRS.
  • an uplink reference signal such as a sounding reference signal SRS or an uplink demodulation reference signal DMRS.
  • FIG. 26 is a block diagram showing the structure of an apparatus 900 for wireless communication according to another embodiment of the present application.
  • the apparatus 900 further includes: a reconfiguration unit 901 Configuring to reconfigure the uplink pilot sequence for the first communication device based on the geographic location of the first communication device and the geographic location of other communication devices to which the uplink pilot sequence has been assigned, such that two or more within the same cell A plurality of communication devices multiplex non-orthogonal uplink pilot sequences.
  • the pilot determining unit 801 first allocates an initial first uplink pilot sequence, and the channel estimating unit 802 receives the first uplink pilot.
  • the sequence of signals for example, based on the signal
  • the geographic location of the first communication device is estimated, and spatial filtering is performed in the process of channel estimation based on the geographic location to obtain a more accurate channel estimation result, and the reconfiguration unit 903 can be based on the foregoing geographic location.
  • the geographic location of the other communication device to which the uplink pilot sequence has been allocated reassigning the uplink pilot sequence to the first communication device, eg, the reassigned uplink pilot sequence is being used by a communication device in the same cell
  • the uplink pilot sequences are the same or related.
  • channel estimation unit 802 is configured to obtain a geographic location of the first communication device and perform channel estimation.
  • reconfiguration unit 901 can reconfigure the first uplink pilot sequence assigned to the first communication device based on the geographic location and the geographic location of other communication devices to which the uplink pilot sequence has been assigned.
  • the base station can perform signal reception, demodulation, and the like based on the channel estimation result.
  • channel estimating unit 802 is described in detail in the eleventh embodiment, and will not be repeated here.
  • the pilot determination unit 801 is configured to determine, for the first communication device, a first uplink pilot sequence that is orthogonal to an uplink pilot sequence of other communication devices to which the uplink pilot sequence has been allocated. For example, the pilot determining unit 801 can operate when the first communication device initially accesses. Further, the pilot determining unit 801 can determine the first uplink pilot sequence in the manner described in the first embodiment.
  • the channel estimation unit 802 can estimate the change in its location, and the reconfiguration unit 901 is based on the relative relationship of its location to the geographic location of other communication devices to which the uplink pilot sequence has been assigned. Change to adjust the assigned upstream pilot sequence.
  • the first communication device and the second communication device to which the uplink pilot sequence has been allocated may be multiplexed with a non-orthogonal (identical or related) uplink pilot sequence (hereinafter referred to as a second uplink pilot sequence),
  • the second communication device and the first communication device are different in position.
  • the direction of the first communication device relative to the device 900 (such as the direction of arrival of the signal) is used as a characterization parameter for the geographic location, for example, the direction of arrival of the second communication device and the first communication device differs greatly.
  • the channel estimation unit 802 pairs the first communication based on the received signal carrying the second uplink pilot sequence.
  • the device performs channel estimation.
  • filtering is performed based on the geographic location of the first communication device in the channel estimation process. Since the positions of the first communication device and the second communication device are different, the interference from the second communication device can be filtered out. , still get accurate channel estimation results.
  • apparatus 900 enables communication devices within the same cell to spatially multiplex associated uplink pilot sequences.
  • the reconfiguration unit 901 configures the first communication device and the second communication device with mutually orthogonal uplink pilot sequences.
  • the above signals may include an uplink reference signal.
  • uplink reference signals include, but are not limited to, SRS and uplink DMRS.
  • the apparatus 900 may further include a partitioning unit 902, Configuring to divide a cell in which the device is located into a plurality of cell partitions, wherein the reconfiguration unit 901 is configured to reconfigure the uplink pilot sequence for the first communication device such that uplink pilots of respective communication devices in the same cell partition The sequence is orthogonal.
  • the reconfiguration unit 901 allocates mutually orthogonal uplink pilot sequences to avoid mutual interference. Moreover, to further ensure communication quality, the reconfiguration unit 901 is further configured to reconfigure the uplink pilot sequence for the first communication device such that the uplink pilot sequences of the respective communication devices in the neighboring cells are orthogonal.
  • the pilot pattern may be pre-assigned for each cell partition as previously described, or may not be pre-allocated, but may be randomly assigned by the reconfiguration unit 901 as needed.
  • the apparatus 900 of the present embodiment enables the communication device of the same cell to spatially multiplex the uplink pilot sequence, thereby being able to support more communication devices.
  • the apparatus 900 described above includes a channel estimation unit 802 that performs channel estimation operations for spatially based spatial filtering
  • the unit is not required, for example, to multiplex non-orthogonal uplink pilot sequences.
  • the reconfiguration unit 901 can also configure the non-orthogonal uplink pilot sequence for the first communication device and the second communication device according to the relationship of its geographic location.
  • the apparatus 900 an example of estimating the geographical position of the first communication device based on the coarse estimation of the channel coefficient or the measurement result of the beam-formed reference signal is shown, but the reconfiguration is performed.
  • the manner of acquiring the geographic location of the first communication device used by the unit 901 is not limited thereto.
  • the present application further provides an apparatus for enabling two or more communication devices in the same cell to spatially multiplex an uplink pilot sequence, comprising: a reconfiguration unit 901 configured to be based on a geographic location of the first communication device Position and the geographic location of other communication devices to which the uplink pilot sequence has been allocated, reconfiguring the uplink pilot sequence for the first communication device such that two or more communication devices within the same cell multiplex non-orthogonal uplinks Pilot sequence.
  • the apparatus preferably may comprise the channel estimation unit described above. However, it should be understood that the manner in which spatial filtering is implemented is not limited to the specific examples described in the foregoing embodiments.
  • the number of user equipments that can be supported can be increased without changing the existing pilot sequence, thereby further improving the utilization efficiency of the pilot sequence.
  • the apparatus 900 may be located at each access point or base station side, and Configure an upstream pilot sequence for the communication devices within its service range.
  • the communication device can be a user device such as a mobile terminal, a vehicle, a smart wearable device, or the like. Also, the communication device may be an infrastructure providing a service such as a small cell base station.
  • FIG. 27 shows a flowchart of a method for wireless communication according to an embodiment of the present application, in addition to steps S61-S62 shown in FIG. 24, the method further includes step S72: according to the first communication device Geographic location and geographic location of other communication devices to which the uplink pilot sequence has been assigned, reconfiguring the uplink pilot sequence for the first communication device such that two or more communication devices within the same cell are multiplexed non-orthogonal Uplink pilot sequence.
  • the communication device having a large difference in position is caused to multiplex the non-orthogonal uplink pilot sequence in step S72.
  • a first uplink pilot sequence orthogonal to an uplink pilot sequence of other communication devices to which an uplink pilot sequence has been allocated may be determined for the first communication device.
  • the above method may further include the step S71 of dividing the cell into a plurality of cell partitions, wherein the uplink communication sequence is reconfigured for the first communication device in step S72 to make the same
  • the uplink pilot sequences of the respective communication devices in the cell partition are orthogonal.
  • the uplink pilot sequence is also reconfigured for the first communication device in step S72 such that the uplink pilot sequences of the respective communication devices in the neighboring cell partitions are orthogonal.
  • the signal in the above method includes an uplink reference signal, for example, a sounding reference signal SRS or a demodulation reference signal DMRS.
  • an uplink reference signal for example, a sounding reference signal SRS or a demodulation reference signal DMRS.
  • the present application also provides a method for enabling two or more communication devices in the same cell to spatially multiplex an uplink pilot sequence, including: according to the geographic location of the first communication device, and having allocated uplink pilots The geographic location of the other communication devices of the sequence reconfigures the uplink pilot sequence for the first communication device such that two or more communication devices within the same cell multiplex the non-orthogonal uplink pilot sequences.
  • the method preferably may include the aforementioned spatial filtering based channel estimation process.
  • the devices 400, 500 can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the apparatus 400, 500 can be a control module mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the apparatus 100-300, 800 can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the apparatus 100-300, 800 can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the apparatus 100-300, 800 can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the subject.
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as the devices 100-300, 800 by performing base station functions temporarily or semi-persistently.
  • the electronic devices 600, 700 may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as Car navigation equipment).
  • the electronic devices 600, 700 can also be implemented as terminals (also referred to as machine type communication (MTC) terminals) that perform machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the electronic devices 600, 700 may be wireless communication modules (such as integrated circuit modules including a single wafer) mounted on each of the above-described terminals.
  • the location determining unit, the pilot determining unit, the channel estimating unit, the partitioning unit, the pilot pattern generating unit and the like in the apparatus described above may be provided by one or more processors.
  • the implementation, for example, the transmitting unit, the receiving unit, the notification interface, etc., can be implemented by circuit components such as an antenna, a filter, a modem, and a codec.
  • the present invention also provides an electronic device (1), comprising: a circuit configured to: determine a cell partition corresponding to a geographical location of the communication device, each cell includes a plurality of cell partitions; and partition the cell The corresponding uplink pilot sequence is determined as the uplink pilot sequence of the communication device.
  • the present invention also provides an electronic device (2) comprising: a circuit configured to: divide each of a plurality of cells into a plurality of cell partitions; and to map the plurality of uplink pilot sequences to the respective cells
  • the partition corresponds to generate a pilot pattern, wherein the pilot pattern is generated based on pilot interference between different cell partitions corresponding to the same uplink pilot sequence.
  • the present invention also provides an electronic device (3), comprising: a circuit configured to: determine an uplink pilot sequence of an electronic device based on indication information of an uplink pilot sequence allocated by a base station; and determine an electronic device The geographic location changes, where the uplink pilot sequence of the electronic device is updated based on the indication information of the uplink pilot sequence allocated by the base station, and the updated uplink pilot sequence is updated, before and after the geographic location change of the electronic device corresponds to different cell partitions. Corresponding to the corresponding cell partition after the geographical position of the electronic device changes.
  • the present invention also provides an electronic device (4) comprising: a circuit configured to: determine a first uplink pilot sequence for a first communication device; and base a first uplink pilot sequence based on the received bearer
  • the signal is subjected to channel estimation for the first communication device, wherein filtering is performed in the channel estimation process based on the geographic location of the first communication device to obtain a channel estimation result that matches the first communication device.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2800 shown in FIG. 28), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2801 executes various processes in accordance with a program stored in a read only memory (ROM) 2802 or a program loaded from a storage portion 2808 to a random access memory (RAM) 2803.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2801 performs various processes and the like is also stored as needed.
  • the CPU 2801, the ROM 2802, and the RAM 2803 are connected to each other via a bus 2804.
  • Input/output interface 2805 is also coupled to bus 2804.
  • the following components are connected to the input/output interface 2805: an input portion 2806 (including a keyboard, a mouse, etc.), an output portion 2807 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 2808 (including a hard disk or the like), the communication portion 2809 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2809 performs communication processing via a network such as the Internet.
  • Driver 2810 can also be coupled to input/output interface 2805 as desired.
  • a removable medium 2811 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the driver 2810 as needed so that the meter read therefrom
  • the computer program is installed into the storage portion 2808 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2811.
  • such a storage medium is not limited to the removable medium 2811 shown in FIG. 28 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2811 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2802, a hard disk included in the storage portion 2808, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于无线通信的装置和方法以及电子设备和用于该电子设备的方法,该装置包括:位置确定单元,被配置为确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及导频确定单元,被配置为将小区分区对应的上行导频序列确定为通信设备的上行导频序列。

Description

用于无线通信的装置和方法、电子设备及其方法 技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及用于无线通信的装置和方法、电子设备以及用于该电子设备的方法,更具体地,本发明的实施例涉及大规模多输入多输出(MIMO)通信系统中的导频分配和信道估计技术。
背景技术
大规模MIMO(massive MIMO)系统近年来受到了学术界与工业界的广泛关注。理论研究表明,通过采用简单的线性算法,如迫零算法,最小均方误差算法等,大规模MIMO系统能够同时显著提高系统的频谱效率与能量效率,因此很有可能被下一代通信标准采纳为关键技术。
然而,例如在多小区时分复用情景下的大规模MIMO系统性能受限于导频污染问题。具体地,由于导频长度受限于信道相干长度,因此正交导频的个数是有限的,不同小区间不可避免的会出现导频重复利用的情况。此时,不同小区中采用相同或不完全正交的导频序列的用户,其发送的导频信号均可能会被同一基站接收到,而基站却无法有效区分这些导频信号,导致基站处的信道估计受到干扰。当基站使用受到干扰的信道估计进行上行数据检测时,除了会接收到本小区的用户所发送的数据外,还会接收到其他小区用户的数据,从而造成了上行链路的小区间干扰;当基站使用受到干扰的信道估计生成预编码矩阵并发送下行数据时,除本小区用户外,其他小区的用户也会接收到数据,从而造成了下行链路的小区间干扰。
理论研究表明,虽然大规模MIMO系统的频谱效率与能量效率都能够显著提高,同时随着基站天线数的增加,噪声与信道估计误差对于系统性能的影响越来越小,但是导频污染所造成的小区间干扰却无法消除,并且成为了大规模MIMO系统的性能限制因素之一。
而现有的缓解导频污染问题的方法往往难以适应当前的技术条件,因此实际应用中,导频污染仍然是大规模MIMO系统所面临的严重问题之一。此外,小区内用户数目不断增加也加剧了该问题。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的装置,包括:位置确定单元,被配置为确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及导频确定单元,被配置为将小区分区对应的上行导频序列确定为通信设备的上行导频序列。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及将小区分区对应的上行导频序列确定为通信设备的上行导频序列。
根据本申请的又一个方面,还提供了一种用于无线通信的装置,包括:分区单元,被配置为将多个小区中的每个小区划分为多个小区分区;以及导频图样生成单元,被配置为将多个上行导频序列与各个小区分区对应来生成导频图样,其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成导频图样。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:将多个小区中的每个小区划分为多个小区分区;以及将多个上行导频序列与各个小区分区对应来生成导频图样,其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成导频图样。
根据本申请的另一个方面,提供了一种电子设备,包括:上行导频序列确定单元,被配置为基于基站分配的上行导频序列的指示信息确定电子设备的上行导频序列;以及位置确定单元,被配置为确定电子设备的地理位置变化,其中,在电子设备的地理位置变化前后对应于不同的小区分区的情况下,上行导频序列确定单元基于基站分配的上行导频序列的指示信息更新电子设备的上行导频序列,更新的上行导频序列对应于电子设备的地理位置变化后对应的小区分区。
根据本申请的另一个方面,提供了一种用于电子设备的方法,包括: 基于基站分配的上行导频序列的指示信息确定电子设备的上行导频序列;以及确定电子设备的地理位置变化,其中,在电子设备的地理位置变化前后对应于不同的小区分区的情况下,基于基站分配的上行导频序列的指示信息更新电子设备的上行导频序列,更新的上行导频序列对应于电子设备的地理位置变化后对应的小区分区。
根据本申请的另一个方面,提供了一种用于无线通信的装置,包括:导频确定单元,被配置为确定用于第一通信设备的第一上行导频序列;以及信道估计单元,被配置为基于接收到的承载第一上行导频序列的信号对第一通信设备进行信道估计,其中,信道估计单元基于第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:确定用于第一通信设备的第一上行导频序列;以及基于接收到的承载第一上行导频序列的信号对第一通信设备进行信道估计,其中,基于第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
依据本发明的其它方面,还提供了用于实现上述用于无线通信和电子设备的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信和电子设备的方法的计算机程序代码的计算机可读存储介质。
根据本申请的用于无线通信的装置和方法通过根据通信设备的位置来分配上行导频序列以及进行信道估计,可以显著降低导频污染所带来的小区间干扰,提高了系统的整体性能。此外,根据本申请的用于无线通信的装置和方法使得能够实现上行导频序列的空间复用,即使在同一小区内的通信设备也可以使用相同或相关的上行导频序列,从而增加了能够支持的通信设备的数量。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明 一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的装置的结构框图;
图2是示出了二维天线阵列的一个示例的示意图;
图3是示出了根据本申请的另一个实施例的用于无线通信的装置的结构框图;
图4是示出了根据本申请的另一个实施例的用于无线通信的装置的结构框图;
图5是示出了根据本申请的一个实施例的信道估计模块的结构框图;
图6是示出了根据本申请的实施例的导频图样的示例;
图7是示出了单小区异构网一种可能的导频图样;
图8是示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图9是示出了图8的方法中的信道估计步骤的子步骤的流程图;
图10是示出了根据本申请的另一个实施例的用于无线通信的装置的结构框图;
图11是示出了接入点采用一维均匀间隔线性天线阵列的小区的一种分区划分示例;
图12是示出了接入点采用二维天线阵列的小区的一种分区划分示例;
图13是示出了根据一个仿真示例的信道估计均方误差的曲线图;
图14是示出了根据一个仿真示例的上行容量的曲线图;
图15是示出了根据一个仿真示例的下行容量的曲线图;
图16是示出了根据本申请的另一个实施例的用于无线通信的装置的结构框图;
图17是示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图18是示出了根据本申请的一个实施例的电子设备的结构框图;
图19是示出了根据本申请的另一个实施例的电子设备的结构框图;
图20是示出了根据本申请的一个实施例的用于电子设备的方法的结构框图;
图21是示出了根据本申请的另一个实施例的用于无线通信的装置的结构框图;
图22是示出了根据本申请的一个实施例的空间滤波模块的一个示例的结构框图;
图23是示出了根据本申请的一个实施例的信道估计单元的一个示例的结构框图;
图24是示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图25是示出了图24中的步骤S62的示例的子步骤的流程图;
图26是示出了根据本申请的另一个实施例的用于无线通信的装置的结构框图;
图27是示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;以及
图28是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的装置100的结构框图,该装置100包括:位置确定单元101,被配置为确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及导频确定单元102,被配置为将小区分区对应的上行导频序列确定为通信设备的上行导频序列。
具体地,装置100例如用于为通信设备分配上行导频序列,以便该通信设备能够利用所分配的上行导频序列进行上行数据传输,装置100例如可以用于MIMO通信系统中。作为一个示例,装置100可以位于各个接入点或基站侧,并且为其服务范围内的通信设备确定上行导频序列。通常地,服务节点到通信设备的通信链路作为下行链路,通信设备到服务节点的通信链路作为上行链路,如以上所述的示例,本申请中服务节点为用户设备分配该用户设备向服务节点发送的导频序列。其中,导频确定单元102所确定的上行导频序列可以为多个,即所确定的为上行导频序列的组,其中,每组中的上行导频序列是相互正交的。
这里所述的通信设备可以是用户设备比如移动终端、车辆、智能穿戴设备等。需要注意的是,本申请的通信设备也可以是提供服务的基础设施比如小小区基站。在通信设备是小小区基站的情况下,例如位于宏基站中的装置100如上所述为小小区基站确定导频序列。在这里,本申请将例如宏基站到小小区基站的通信链路视为下行链路,反之视为上行链路。换言之,本申请不限制于传统的上下行链路对应的通信实体,当第一通信设备需要确定其信号覆盖范围内的第二通信设备到该第一通信设备的信道状况而为第二通信设备分配导频时,即可将第二通信设备到第一通信设备的通信链路作为上行链路考虑而应用本申请。
在该实施例中,每一个小区被划分为多个小区分区,这里所述的小区分区可以是传统的扇区,也可以是根据其他原则划分的具有不同形状的分区,其具体划分形式将在后面详细描述。
位置确定单元101确定通信设备的地理位置所在的小区分区,并将该信息提供给导频确定单元102,以使其将相应的上行导频序列确定为该通信设备要使用的上行导频序列。
在一个实施例中,在位置确定单元101确定通信设备的地理位置变化 到其他小区分区时,导频确定单元102将变化后的小区分区对应的上行导频序列确定为通信设备的上行导频序列。换言之,装置100可以为通信设备动态地确定上行导频序列。具体地,位置确定单元101可以周期性地确定通信设备的地理位置以判断其是否变化到其他小区分区,也可以在通信设备的地理位置变化超过一定程度时进行确定。在一些示例中,位置确定单元101主动地检测通信设备的地理位置以进行确定,在另一些示例中,位置确定单元101通过例如来自通信设备的地理位置报告确定该通信设备的地理位置。
其中,通信设备的地理位置可以采用以下至少之一的方式表征:通信设备的方向到达角、方向到达角结合通信设备距装置100的距离、通信设备的经纬度等地理坐标/大地坐标,以及通信设备所在的小小区ID。具体地,在位置确定单元101主动检测通信设备的地理位置的示例中,通信设备的地理位置可以采用例如方向到达角、方向到达角结合通信设备距装置100的距离来表征。在位置确定单元101根据通信设备的地理位置报告确定的示例中,通信设备的地理位置可以采用例如通信设备的经纬度、通信设备所在的小小区ID来表征。
实际的通信系统中,接入点可以采用一维均匀间隔线性天线阵列或者二维天线阵列。图2示出了二维天线阵列的示例,其中,黑点表示所布置的天线,D1和D2分别为水平方向和垂直方向上的天线间隔,带箭头的实线代表了作为示例的接收信号的方向。图2仅示出了9个天线,但是这仅是示例,天线的规模并不限于此。另外,如果采用一维阵列,则可以仅采用y轴上的天线。
其中,角度θ为水平方向到达角,角度β为垂直方向到达角。由于天线高度已知,因此角度β还可以反映通信设备与装置100的距离。在本申请的一个示例中,接入点配置有二维天线阵列,设置于接入点侧的位置确定单元101确定接收到的通信设备的信号的水平方向到达角θ和垂直方向到达角β,并根据水平及垂直方向到达角确定并表征通信设备的地理位置(包括方向和距离信息)。在本申请的另一个示例中,接入点配置有一维天线阵列,设置于接入点侧的位置确定单元101确定接收到的通信设备的信号的水平方向到达角θ,根据θ确定并表征通信设备的地理位置(包括方向信息)。此外,配置一维天线阵列的接入点还可以根据通信设备的时间提前量/信号的路径损耗等进一步估计通信设备距接入点的距离并以θ和估计的距离表征通信设备的地理位置。
此外,在根据通信设备报告的地理位置进行确定的示例中,还可以使用经纬度等大地坐标或者通信设备所在小小区的ID来代表通信设备的地理位置。具体地,通信设备例如将其GPS模块确定的经纬度信息报告至装置100,以供位置确定单元101确定。此外,例如装置100所在的接入点为宏基站,宏基站覆盖的范围内部署的较小覆盖范围的小小区信息对于宏基站通常是预知的或者可以例如通过数据库查询的,这种情况下小小区ID可以反映该小小区在宏小区范围内的地理位置。在通信设备位于小小区覆盖范围内的情况下可接收小小区广播的小小区ID,并反馈给宏小区,位置确定单元101根据小小区ID以及宏小区预知的小小区部署信息或查询数据库而获知通信设备位置。当装置100设置于宏基站之外时也可以利用与宏基站的通信接口从宏小区获知该信息。
<第二实施例>
图3示出了根据本申请的另一个实施例的用于无线通信的装置200的结构框图,除了与图1中的部件相同的部件之外,装置200还包括:接收单元201,被配置为接收通信设备发送的指示地理位置的信息;以及发送单元202,被配置为将上行导频序列的指示信息通过专用控制信令传输至所述通信设备,以便为通信设备分配上行导频序列。
这里所述的指示地理位置的信息可以是显式的位置信息(例如GPS定位信息),也可以是隐式反映位置信息的普通信号,装置200可以根据该普通信号得到比如方向到达角、时间提前量、路径损耗等信息,进而粗略推导得出通信设备的地理位置。
在导频确定单元102确定了通信设备的上行导频序列之后,发送单元202将相应的指示信息发送给通信设备,通信设备根据接收到的指示信息确定要使用的上行导频序列。该指示信息可以是代表上行导频序列的索引,也可以是上行导频序列本身。作为一个示例,该上行导频序列是在LTE标准中用于探测参考信号(SRS)或解调参考信号(DMRS)的参考序列。
其中,发送单元202可以使用专用控制信令(高层信令)比如使用LTE标准中的无线资源控制(RRC)信令,来发送上述指示信息。具体地,例如在探测参考信号上行配置信息元素(SoundingRS-UL-Config IE)中包含上述指示信息,更具体地,指示信息例如是SRS配置索引 (SRS-ConfigIndex)。
或者,还可以采用如下方式向通信设备通知其要使用的上行导频序列:基站(或装置200)将每个小区分区的地理范围和对应的上行导频序列包含在广播信息中广播给所有用户,各个用户根据自身的地理位置和接收的广播内容来确定其所在的小区分区以及要使用的上行导频序列。在这种情况下,通信设备可以不必上报其地理位置。
此外,接收单元201还可以被配置为从中央节点接收包含各个小区分区与其上行导频序列的对应关系的导频图样信息,并且导频确定单元102被配置为基于该导频图样信息来确定通信设备的上行导频序列。在这种情况下,由中央节点统一管理对所有小区分区的上行导频分配。接收单元201可以定期从中央节点获取导频图样信息,也可以仅在中央节点更新导频图样信息时重新获取导频图样信息,或者二种方式结合。中央节点为至少一个小区提供其包含的多个小区分区的导频图样信息,优选地,中央节点是管理多个小区的服务器等管理装置,例如核心网侧的服务器,或者是无边界网络解决方案(例如C-RAN)中的超级控制器(SRC)/Cloud BB(基带云)。在另一个示例中,接收单元201还可以被配置为接收与通信设备所在的小区分区相邻的其他小区的小区分区的上行导频序列信息,并且,导频确定单元102被配置为基于其他小区的小区分区的上行导频序列信息确定该通信设备所在的小区分区对应的上行导频序列。具体地,在装置200设置于基站侧的例子中,接收单元201通过例如X2接口与相邻的基站交互小区分区对应的上行导频序列信息。通过考虑相邻小区的小区分区的上行导频序列信息,可以尽量避免位置相邻的小区分区使用相同的上行导频序列。通过使相邻的小区分区对应不同的上行导频序列,可以减小导频污染所带来的干扰。
<第三实施例>
下面参照图4描述根据本申请的另一个实施例的用于无线通信的装置300的结构框图,如图4所示,除了参照图3描述的各个部件之外,装置300还包括信道估计单元301。在该实施例中,相邻的小区分区对应的上行导频序列不同,
接收单元201还被配置为接收承载第一上行导频序列的信号,信道估计单元301被配置为基于承载第一上行导频序列的信号对分配到该第一 上行导频序列的通信设备进行信道估计,其中,信道估计单元301基于分配到第一上行导频序列的通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该通信设备的信道估计结果。
其中,由于同一时刻基站所服务的通信设备和上行导频序列在这些通信设备间的分配对于基站而言是已知的,因此,基站可以通过上行导频序列的信息来自行确定导频由哪个通信设备发送,从而信道估计单元301可以基于该通信设备的地理位置进行滤波。在信道估计过程中进行滤波的目的是排除其他通信设备发送的相同导频的污染。
图5示出了信道估计单元301的一个示例的结构框图。信道估计单元301包括:信道粗估计模块3001,被配置为基于承载第一上行导频序列的信号以及第一上行导频序列进行信道系数的粗估计;以及空间滤波模块3002,被配置为基于分配到第一上行导频序列的通信设备的地理位置对信道系数的粗估计进行滤波。
其中,信道粗估计模块3001可以使用已有的各种估计方式。由于导频确定单元102为相邻的小区分区确定了不同的上行导频序列,因此,使用相同导频的不同用户基本上不会具有相同的位置参数比如方向到达角或与基站的距离等。当然,为了保证这一点,也可以通过专门设计使得相同导频的不同用户的位置参数不同。以下参照图6给出一个示例,在图6中,每个六边形代表一个小区,且每个小区被划分为12个小区分区,每个小区分区中标出的数字表示分配给该小区的导频序列索引。例如,位于中央的小区0的一个小区分区的导频序列索引为2,在位置参数为水平方向到达角的情况下,小区0的相邻小区1的部分小区分区与该索引为2的小区分区到小区0基站的水平方向到达角范围相同,则可以通过专门设计使得小区1的上述部分小区分区(其中的部分或全部)对应的导频序列索引取2以外的索引值,借此可以避免来自其他小区的具有相同位置参数的用户干扰。
换言之,特定的小区分区内的用户的位置参数基本限制在一定范围内。因此,空间滤波模块3002利用这一点进行基于通信设备的地理位置的空间滤波,可以显著降低信道估计的均方误差。
在一个示例中,空间滤波模块3002可以被配置为通过对信道系数的粗估计进行离散傅里叶变换并且对变换的结果加窗来进行滤波。
下面通过一个具体示例来描述信道粗估计模块3001和空间滤波模块 3002的一种实现。应该理解,信道粗估计模块3001和空间滤波模块3002的实现方式并不限于下述描述。
首先,信道粗估计模块3001将承载第一上行导频序列的信号和第一上行导频序列相乘,得到信道系数的粗估计。然后,空间滤波模块3002对该粗估计作离散傅里叶变换,并对变换的结果加矩形窗,最后,对加窗后的信号作逆离散傅里叶变换以得到最终的信道系数估计。
在一个例子中,接入点采用一维均匀间隔线性天线阵列,则所作的离散傅里叶变换为一维变换,矩形窗的位置由通信设备的方向到达角范围决定,例如,矩形窗的最小索引kmin与最大索引kmax由下式(1)决定:
Figure PCTCN2015076277-appb-000001
其中,θmin与θmax分别为检测区间的最小与最大方向到达角(水平方向到达角),N为离散傅里叶变换的点数,一般大于接入点的天线数量;D与λ分别为天线间距和接收信号的波长;[]为取整操作。
可替选地,也可以不进行离散傅里叶变换,而直接采用如下滤波器对信道系数的粗估计直接进行滤波:
Figure PCTCN2015076277-appb-000002
其中,各个参数具有与式(1)中相同的定义。相应地,滤波过程可以采用线性卷积或循环卷积。若采用循环卷积,则滤波过程如下:1)根据方向到达角的检测区间计算滤波器(如上式(2)所示);2)对接收信号补零使其长度与滤波器长度N相同;3)对补零后的接收信号与滤波器进行循环卷积;4)设天线个数为M,截取循环卷积后信号的前M个分量作为信道估计结果。若采用线性卷积,则滤波过程如下:1)根据方向到达角的检测区间计算滤波器(如上式(2)所示);2)对接收信号与滤波器进行线性卷积;3)设天线个数为M,则卷积后信号有N+M-1个分量,将后M-1个分量叠加到前M-1个分量上;4)截取前M个分量作为信道估计结果。
在另一个例子中,接入点采用均匀间隔二维天线阵列(例如如图2所示),则所作的离散傅里叶变换为二维变换,矩形窗的位置由检测区间决定,例如,矩形窗在水平方向的最小和最大索引分别为:
Figure PCTCN2015076277-appb-000003
矩形窗在垂直方向上的最小和最大索引分别为:
Figure PCTCN2015076277-appb-000004
其中,[θmin,θmax]为水平方向到达角检测范围,[βmin,βmax]为垂直方向到达角检测范围,D1为水平方向天线间隔,D2为垂直方向天线间隔,λ为接收信号的波长,Nh为水平方向的离散傅里叶变换点数,Nv为垂直方向的离散傅里叶变换点数。类似地,也可以不进行离散傅里叶变换而采用基于卷积的滤波方式,在此不再赘述。
假设水平方向和垂直方向分别进行逆离散傅里叶变换后得到的信道系数估计为hh和hv,则例如可以通过
Figure PCTCN2015076277-appb-000005
结合所获得的各个方向的信道估计来获得整体的信道估计,其中
Figure PCTCN2015076277-appb-000006
代表克罗内克积。此外,以上仅针对单个极化方向的天线阵列进行了描述,但是以上信道估计方法同样应用于交叉极化的情形,例如,针对每一个极化方向分别进行上述变换和滤波处理,第一极化方向上的信道系数估计分别为h′h和h′v,第二极化方向上的信道系数估计分别为h″h和h″v,则整体的信道系数估计可以用
Figure PCTCN2015076277-appb-000007
Figure PCTCN2015076277-appb-000008
来表示。可以理解,当天线阵列有更多个极化方向时,可以使用类似的方式将针对各个极化方向的信道系数的估计结合起来以获得整体的信道系数估计。
此外,应该理解,虽然在上述示例中采用了矩形窗,但是除此之外还可以使用其他窗函数比如汉明窗、布莱克曼窗等。与之相应地,在基于卷积的滤波方式中,可以采用对上述窗函数进行逆离散傅里叶变换得到的空域滤波器。
装置300通过基于通信设备的地理位置进行信道估计,提高了信道估 计的准确性,减小了导频污染,从而提升了系统系能。此外,在通信设备向装置300发送数据的情况下,装置300还可以包括解调模块(图中未示出),若通信设备在数据传输带宽内发送导频序列(例如SRS),则解调模块可以利用上述信道估计方式得到的信道估计结果对数据信号进行解调,从而获得更准确的解调数据。
在本发明的一个可选示例中,装置300包括同步模块(图中未示出),同步模块将装置300接收到的承载第一上行导频序列的信号和第一上行导频序列进行相关运算,确定第一上行导频序列的偏移量,从而确定发送第一上行导频序列的通信设备的时间提前量信息以提供给通信设备保持与装置300同步。在这个可选示例中,至少由于前期按小区分区间的干扰来分配导频序列,同步模块为特定上行导频对应的通信设备所确定的时间提前量将更加准确。
此外,这里所述的小区可以包括宏小区和小小区。即本申请的实施例可以应用于异构网的场景。在包括小小区的情况下,小小区的小区分区数目可以比宏小区的小区分区数目少。或者,小小区不进行分区,而是整体作为一个小区分区。
图7示出了单小区异构网一种可能的导频图样,其中,整个六边形表示宏小区,灰色圆点表示小小区。假设相互正交的上行导频序列有12个,宏小区按照到接入点的水平方向到达角平均划分为12个分区,同时宏小区内有4个小小区,每个小小区最多支持2个用户。
若采用传统方法,由于需要保证小小区内用户与宏小区内用户所用上行导频序列的正交性,因此在小小区全部处于服务状态时,宏小区只能支持4个用户。而采用本实施例的包括滤波的信道估计方法时,只需要保证小小区与使用和该小小区相同上行导频序列的小区分区在到达角上可以区分开即可。
在图7中,宏小区分区编号表示由导频确定单元102确定的该小区分区所使用的上行导频序列编号,例如编号为1的小区分区使用上行导频序列1。编号为1的小小区使用上行导频序列1、2,编号为2的小小区使用上行导频序列3、4,编号为3的小小区使用上行导频序列5、6,编号为4的小小区使用上行导频序列7、8。这里所示的导频图样仅是一种示例,并不限于此,导频图样只要满足如下条件即可:能够保证使用相同上行导频序列的小区分区与小小区可以通过到达角区分,从而能够通过信道估计单元301的操作来降低小小区和宏小区用户间的干扰。
在该示例中,由于小小区和宏小区分区间复用了部分上行导频序列,宏小区所能同时服务的用户数从4提高到了12,因此系统的整体性能将会显著提高。
此外,虽然本实施例仅给出了单小区异构网的导频分配方式,但是结论对于多小区异构网络同样适用。
<第四实施例>
在上文的实施方式中描述用于无线通信的装置的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的装置的硬件和/或固件。
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图,包括如下步骤:确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区(S11);以及将所述小区分区对应的上行导频序列确定为所述通信设备的上行导频序列(S12)。
其中,通信设备的地理位置可以以如下至少之一方式表征:方向到达角、方向到达角与距基站的距离、地理坐标与所在小小区ID。
在一个示例中,在步骤S11中确定通信设备的地理位置变化到其他小区分区时,在步骤S12中将变换后的小区分区对应的上行导频序列确定为用户设备的上行导频序列。
如图8中的虚线框所示,上述方法在步骤S11之前还可以包括如下步骤:接收通信设备发送的指示地理位置的信息(S21)。此外,在步骤S12之后,还可以包括如下步骤:将上行导频序列的指示信息通过专用控制信令传输至通信设备,以便为通信设备分配上行导频序列(S22)。
在一个示例中,上述方法还包括从中央节点接收包含各个小区分区与其上行导频序列的对应关系的导频图样信息的步骤(图8中未示出),并且在步骤S12中基于该导频图样信息来确定用户设备的上行导频序列。
在另一个示例中,上述方法还可以包括接收与通信设备所在的小区分区相邻的其他小区的小区分区的上行导频序列信息的步骤(图8中未示出),并且在步骤S12中基于其他小区的小区分区的上行导频序列信息确定该通信设备所在的小区分区对应的上行导频序列。
返回参照图8,使相邻的小区分区对应的上行导频序列不同,上述方法还可以包括如下步骤:接收承载第一上行导频序列的信号(S31);基于承载第一上行导频序列的信号对分配到第一上行导频序列的通信设备进行信道估计(S32),在该信道估计过程中基于分配到第一上行导频序列的通信设备的地理位置进行滤波,以得到匹配该通信设备的信道估计结果。
在一个示例中,步骤S32包括如下子步骤,如图9所示:基于承载第一上行导频序列的信号和第一上行导频序列进行信道系数的粗估计(S321);以及基于分配到第一上行导频序列的通信设备的地理位置对信道系数的粗估计进行滤波(S322)。
其中,在步骤S322中,可以通过对信道系数的粗估计进行离散傅里叶变换并且对变换的结果加窗来实现滤波。具体的方式已在第三实施例中进行了详细描述,在此不再重复。
<第五实施例>
图10示出了根据本申请的一个实施例的用于无线通信的装置400的结构框图,装置400包括:分区单元401,被配置为将多个小区中的每个小区划分为多个小区分区;以及导频图样生成单元402,被配置为将多个上行导频序列与各个小区分区对应来生成导频图样,其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成该导频图样。
可以看出,装置400起到中央控制节点的作用,通过总体考虑其控制范围内的所有小区分区的导频干扰来进行上行导频序列的分配。
其中,分区单元401可以将各个小区划分为不同形状和大小的小区分区。例如,对于接入点采用一维均匀间隔线性天线阵列的小区,可以采用图11所示的分区方法,即仅按照到接入点的水平方向到达角将小区划分为不同的小区分区。这种方法简单易于实现,主要考虑了水平方向的干扰。当接入点采用二维天线阵列比如均匀间隔面阵列(如图2所示)时,接入点除具有水平方向的分辨率外,还将具有垂直方向的分辨率,此时的分区划分可以同时考虑角度(水平方向到达角)与距离/垂直方向到达角而提 高系统的精度。一种可能的分区方法如图12所示。
应该注意,图11和12仅示出了分区划分的两种特殊情形,实际的分区划分可以由小区部署决定,并且基于例如用户设备地理位置的检测精度可以设计具有不规则的形状。
在一个示例中,分区单元401被配置为根据小区中通信设备的分布状况来划分小区分区,例如在特定小小区在预定时间内没有待服务的用户设备而休眠的情况下,分区单元401可以重新划分小区分区而不再将该特定小小区作为一个小区分区。导频图样生成单元402在小区分区的划分改变时重新生成导频图样。这里所述的改变可以是改变超过预定程度,可通过各种标准来衡量。可以看出,在这种情况下,导频图样是动态更新的,并且可以控制更新的频率。
优选地,在划分好了小区分区之后,导频图样生成单元402基于对应相同上行导频序列的不同小区分区之间的导频干扰来生成导频图样。
例如,导频图样生成单元402可以通过最小化如下费用函数来生成导频图样。
R1=f1(p)   (5)
其中,p表示某种导频图样,费用函数f1为与平均小区间干扰成正比的函数,用于衡量采用导频图样p时,系统所承受的平均小区间干扰。
作为一个示例,当接入点采用一维均匀间隔线性天线阵列时,为最小化小区间干扰,费用函数f1可选取为:
Figure PCTCN2015076277-appb-000009
其中,Rmsl为用于衡量位于第l个小区中第s个小区分区中间的虚拟用户对第m个小区中第s个小区分区的干扰的度量;θmsm为位于第m个小区中第s个小区分区中间的虚拟用户对第m个小区中的接入点的方向到达角;θmsl为位于第l个小区中第s个小区分区中间的虚拟用户对第m个小区中的接入点的方向到达角;dmsm为位于第m个小区中第s个小区分区中间的虚拟用户距第m个小区中的接入点的距离;γ为预先定义的路径损耗指数;向量t(θ)=[cos(θ),sin(θ)]T为单位长度的方向向量。本文所述的位于小区分区中间例如指的是位于小区分区的几何重心处。
在该式(6)中,分子衡量了不同用户对某一接入点的方向到达角间的 相关程度,分母衡量了干扰小区分区与受干扰小区内接入点的距离。由于小区间干扰同时和干扰用户的方向到达角与距离相关,因此上式(6)准确衡量了整个系统内所有用户所承受的小区间干扰。
另一方面,当接入点采用二维天线阵列(如图2所示)时,为最小化小区间干扰,费用函数f1可选取为:
Figure PCTCN2015076277-appb-000010
其中,θmsm为位于第m个小区中第s个小区分区中间的虚拟用户对第m个小区中的接入点的水平方向视距到达角;θmsl为位于第l个小区中第s个小区分区中间的虚拟用户对第m个小区中的接入点的水平方向视距到达角;βmsm为位于第m个小区中第s个小区分区中间的虚拟用户对第m个小区中的接入点的垂直方向视距到达角;βmsl为位于第l个小区中第s个小区分区中间的虚拟用户对第m个小区中的接入点的垂直方向视距到达角;单位长度方向向量由下式(8)表示:
t(θ,β)=[cos(θ)cos(β)sin(θ)cos(β)sin(β)]T   (8)
以上给出了费用函数的一种具体形式,但是并不限于此,而是可以采用任何能够反映系统所承受的小区间平均干扰的费用函数。此外,还可以通过最大化如下效用函数来生成导频图样。
R2=f2(p)   (9)
其中,函数f2为与小区和速率成正比的函数,用于衡量采用导频图样p时,系统所能达到的性能。
以下讨论在使用费用函数f1的情况下,导频图样生成单元402如何生成导频图样。可以理解,在不考虑复杂度的情况下,可以通过对所有小区分区遍历搜索来最小化费用函数f1的方式来生成导频图样。然而,这样的计算复杂度很高。
作为一个示例,导频图样生成单元402可以被配置为对已经分配了上行导频序列的小区分区计算其对所有邻近小区分区的干扰,并向干扰最小的邻近小区分区分配相同的上行导频序列。
返回参照图11,例如,已经对位于中心的小区(小区0)的12个小区分区分配了上行导频序列,其中分别用数字1-12来代表小区分区和所分 配的相互正交的上行导频序列(或上行导频序列的组)。这些小区分区的邻近小区分区在一个示例中定义为粗虚线内的所有其他小区分区。对于已经分配了上行导频序列的小区分区比如小区分区1,在其邻近小区分区中选择干扰最小的小区分区并向其分配相同的上行导频序列,干扰比如可以采用上式(6)中的Rmsl来度量。重复该步骤,直到已经分配了上行导频序列的小区分区(即小区分区1-12)无法找到邻近小区分区为止。对于剩余的小区分区,可以采用遍历搜索的导频分配方式,返回参照图6,其示出了通过上述导频分配过程获得的导频图样的一个示例。
此外,对于剩余的小区分区,还可以采用与其直接相邻的小区分区均不同的上行导频序列的导频分配方式,以进一步减小计算复杂度。应该理解,图11和图6仅示出了小区分区划分和导频图样生成的示例,本申请应用的范围并不限于此。
注意,以上的示例中虽然为每个小区分区分配了一个上行导频序列,但是,也可以为每个小区分区分配一组上行导频序列,其中,每组中的各个上行导频序列相互正交。并且,可以向相邻的小区分区分配不同的上行导频序列的组,以降低用户间的干扰。
如前所述,以上提及的多个小区可以包括宏小区和小小区,并且小小区的小区分区数目比宏小区的小区分区数目少。
此外,作为一个示例,如果小小区覆盖范围较小,也可以不对其划分分区,而是将整个小小区作为一个小区分区对待。在这种情况下,分区单元401仅对宏小区进行分区处理。
传统方法中,为了保证宏小区用户与小小区用户间没有相互干扰,宏小区用户和小小区中的用户均采用相互正交的导频。此时,为了保证导频间的正交性,宏小区所能支持的用户数量将会减少。而通过采用本实施例的技术,将小小区也作为干扰源,所得到的导频图样能够增加宏小区所能同时服务的用户数量,从而显著提高系统的整体性能。
为了便于理解本实施例对于系统性能的改进,以下给出一个具体的仿真示例。在该示例中,采用图11所示的小区构成和小区分区划分模式,即假设有7个同构小区,接入点采用一维均匀间隔线性天线阵列,每个小区中的用户个数为12且依据到接入点的水平到达角范围被划分为12个小区分区,并假设每个小区分区到各自的接入点的到达角的范围是相同的。其中位于中心的小区为目标小区,仿真研究的对象是目标小区中的用户受 到的小区间干扰以及所能达到的最高上行数据率和最高下行数据率,分别对传统方法和使用根据第三实施例所述的装置300的情形进行比较。
如上所述,采用本实施例的方式生成了如图6所示的导频图样。图中每个小区分区的编号代表该小区分区所使用的上行导频序列组的序号,即编号为1的小区分区中,其用户均使用1组的上行导频序列。
仿真中采用如下多径信道模型:
Figure PCTCN2015076277-appb-000011
其中,hml为第l个小区内的某一用户到第m个小区接入点间的信道向量;P为多径的数量;θp为第p条多径到第m个小区内接入点的到达角;γp为第p条路径的大尺度衰落系数;向量a(θ)为到达角θ的梯度向量,表示如下:
Figure PCTCN2015076277-appb-000012
其中,D为接入点天线间距;λ为接收信号波长;L为小区编号(在本例中为0-6)。仿真中所用的其他具体参数如下:小区半径为500米,路径损耗系数为3.5,阴影衰落方差为8dB,载波频率为2GHz,天线间距为信号波长的一半,多径个数为50,角度扩展为10°。其中,角度扩展分布采用两种分布模型,其一是均匀分布,能够保证不同分区间的用户的到达角完全不重叠;另一种是标准差为10°的高斯分布。同时,为了保证同一小区内用户能够通过导频辅助的手段完全区分开,下行数据预编码均采用迫零预编码算法,上行数据检测也采用迫零检测算法。为简化分析,这里只列出对小区分区1中用户的分析结果。
首先对接入点信道估计的均方误差进行分析,仿真中均方误差计算如下:
Figure PCTCN2015076277-appb-000013
其中,向量h为实际的信道系数向量,
Figure PCTCN2015076277-appb-000014
为估计得到的信道系数向量。
图13为信道估计均方误差的仿真结果,分别针对均匀分布和高斯分布两种角度扩展分布模型,其中,传统方法为只进行导频辅助的信道粗估计, 而不进行后续基于通信设备的地理位置的滤波处理,此外,还示出了本申请的采用滤波的方法,包括基于离散傅里叶变换的滤波方法以及采用线性卷积的滤波方法。
如图13所示,当使用相同上行导频序列组的用户的到达角不重叠时,采用本申请的方法能够显著降低信道估计的均方误差,并且随着接入点天线数量的增加,均方误差也会随之降低。但当使用相同上行导频序列组的用户到达角相互重叠时,本申请的方法不能有效降低信道估计的均方误差,且随着接入点天线数量的增加,信道估计的均方误差也并没有随之降低。这是由于对于高斯分布的角度扩展,其到达角没有完全被限制于某一区间内,因此在滤波时,部分多径被矩形窗滤除掉。此时,即使接入点的天线数量增加,信道估计的均方误差也无法随之降低。
虽然图13的结果表明,在使用相同上行导频序列的用户到达角相互重叠时,接入点的信道估计均方误差无法显著降低,但是后续的仿真表明,本申请的方法仍然能够有效提高系统的容量。为此,首先定义上下行信干比(SIR)。例如,中心小区(定义为小区0)的小区分区1的上行信干比计算如下:
Figure PCTCN2015076277-appb-000015
其中,hlsm为第m个小区中第s个分区到第l个小区中接入点的信道系数向量;矩阵Asm为第m个小区中对第s个分区中用户所使用的检测矩阵,仿真中采用迫零检测算法。
中心小区分区1的下行信干比计算如下:
Figure PCTCN2015076277-appb-000016
其中,Wsm为第m个小区中对第s个分区中用户所使用的预编码矩阵,仿真中采用迫零预编码算法。
上下行信道容量均可通过信干比计算,计算方法分别如下:
Figure PCTCN2015076277-appb-000017
Figure PCTCN2015076277-appb-000018
图14为小区分区1中用户的上行链路信道容量。如图14所示,采用本申请的上述技术,虽然在高斯分布的角度扩展情况下,无法获得信道估计均方误差的降低,但是其上行容量仍然能够随着接入点天线数的增加而不断提高。不过相比于均匀分布的角度扩展,其上行容量仍然有一定损失。图15为小区分区1中用户的下行链路信道容量。与图14类似,无论角度扩展服从均匀分布还是高斯分布,本申请的方法都能使下行容量随着接入点天线数量的提高而上升,与传统方法相比,本申请的方法获得了明显的增益。
应该理解,该系统示例仅是为了说明的目的,不应认为其是对本申请的范围的限制。
<第六实施例>
在该实施例中,用于无线通信的装置为与多个小区通信的中央节点,图16示出了根据该实施例的用于无线通信的装置500的结构框图,除了包括与图8的各个单元相同的单元之外,装置500还包括:通信接口501,被配置为将相应的导频图样通知各小区。
其中,通信接口501可以响应于小区的请求发送导频图样,或者周期性地进行发送,又或者在重新生成了导频图样的情况下发送。
此外,在一个示例中,多个小区可以分别具有不同的开关状态,导频图样生成单元402被配置为针对不同的小区开关状态组合来生成导频图样,并存储为映射表。
这是由于小区的开关状态的变化影响了小区间的干扰状况,因此会导致导频图样的变化。尤其地,当宏小区中包括小小区时,小小区的开关状态变化可能更为常用,导频图样生成单元402可以针对各种开关状态的组合来生成相应的导频图样并进行存储。
相应地,通信接口501可以被配置为在小区开关状态发生变化的情况下,基于映射表来向各小区重新通知当前开关状态下的相应导频图样。具体地,将分配给各个小小区的上行导频序列的信息通知给相应的基站。可替选地,通信接口501也可以采用定期通知的方式。
当然,导频图样生成单元402也可以不预先存储针对各种开关状态组合的导频图样,而是在需要时临时生成。
通过生成针对不同的小区开关状态的组合的导频图样,装置500可以向各个小区提供适合当前环境的导频图样,有助于提高系统性能。
上文的装置400、500可以以组件的形式(例如控制芯片)设置于管理多个小区的服务器等管理设备中,例如核心网侧的服务器,或者是无边界网络解决方案(例如C-RAN)中的超级控制器(SRC)/Cloud BB(基带云)当中。此外,上文的装置400、500也可以是管理多个小区的服务器等管理设备本身,其包含的具体常规组件与现有技术相同,本申请不再赘述。
<第七实施例>
在上文的实施方式中描述用于无线通信的装置的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的装置的硬件和/或固件。
图17示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括如下步骤:将多个小区中的每个小区划分为多个小区分区(S41);以及将多个上行导频序列与各个小区分区对应来生成导频图样(S42),其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成所述导频图样。
其中,在步骤S41中,可以根据小区中通信设备的分布状况来划分小区分区,并且在小区分区的划分改变时再次执行步骤S42以重新生成导频图样。
上述多个小区包括宏小区和小小区,并且小小区的分区数目比宏小区的小区分区数目少。作为一个示例,也可以不对小小区进行分区,而将其整体作为一个小区分区。
在一个示例中,在步骤S42中对已经分配了上行导频序列的小区分区 计算其对所有邻近小区分区的干扰,并向干扰最小的邻近小区分区分配相同的上行导频序列。
上述方法可以在与多个小区对应的基站通信的中央节点处执行,并且如图17中的虚线框所示,还可以包括将相应的导频图样通知各小区基站的步骤(S43)。
此外,多个小区可以分别具有不同的开关状态,在步骤S42中针对不同的小区开关状态组合来生成导频图样,并存储为映射表。在这种情况下,当小区开关状态发生变化时,再次执行步骤S43以基于映射表来向各小区基站重新通知当前开关状态下的相应导频图样。
上述方法的细节已经在第五和第六实施例中进行了详细描述,在此不再重复。该方法通过整体考虑小区之间的导频干扰来生成导频图样,可以显著减小导频污染,提高系统性能。
<第八实施例>
下面参照图18描述根据本申请的一个实施例的电子设备600的结构框图,该电子设备600包括:上行导频序列确定单元601,被配置为基于基站分配的上行导频序列的指示信息确定电子设备600的上行导频序列;以及位置确定单元602,被配置为确定电子设备600的地理位置变化,其中,在电子设备600的地理位置变化前后对应于不同的小区分区的情况下,上行导频序列确定单元601基于基站分配的上行导频序列的指示信息更新电子设备600的上行导频序列,更新的上行导频序列对应于电子设备600的地理位置变化后对应的小区分区。
这里,上行导频序列的指示信息可以是指示上行导频序列的索引(例如LTE标准中的SRS-ConfigIndex),也可以是上行导频序列本身。例如,在LTE系统中,该指示信息可以包含于基站发送的专用控制信令例如RRC信令当中。此外,该指示信息还可以包含于基站发送的包含导频分配信息的广播信号当中。上行导频序列确定单元601通过解析上述信令确定用于电子设备600的上行导频序列。
在所发送的指示信息为索引的情况下,电子设备600和基站例如已经预先约定好索引与上行导频序列的对应关系,从而使得上行导频序列确定单元601可以正确地确定要使用的上行导频序列。
位置确定单元602确定电子设备600的位置是否发生变化,例如是否 变化到与当前小区分区不同的小区分区,如果确定位置发生了变化,则意味着电子设备600使用的上行导频序列可能会发生变化。因此,需要上行导频序列确定单元601基于基站分配的上行导频序列的指示信息将电子设备600的上行导频序列更新为地理位置变化后的小区分区所对应的上行导频序列。本申请的一个示例中,位置确定单元602包括GPS模块以确定位置的变化。在另一个示例中,位置确定单元602接收小小区基站广播的小小区ID以确定电子设备600的位置变化。此外,例如LTE中,基站(eNodeB)可以调度每个用户设备(UE)一次性或周期性地发送SRS,在设置有上述电子设备600的用户设备基于基站分配的上行导频序列的指示信息确定了上行导频序列后,可以按照基站的调度一次性或周期性的向基站发送对应于该UE所在的小区分区的SRS信号。
这里所述的电子设备600可以是用户设备比如移动终端、车辆、智能穿戴设备或其部件等,也可以是基础设施比如小小区基站或其部件。在电子设备是小小区基站的情况下,对应的宏基站为其分配导频序列的指示信息。
本申请的电子设备600可以根据自身地理位置的变化自动更新要使用的上行导频序列,有助于提高通信质量。
<第九实施例>
图19示出了根据本申请的另一个实施例的电子设备700的结构框图,除了包括与图18所示的各个部件相同的部件之外,电子设备700还包括:发送单元701,被配置为发送所述电子设备的地理位置信息;以及接收单元702,被配置为接收基站分配的上行导频序列的指示信息。
其中,发送单元701可以按照如下至少之一的方式发送地理位置信息:周期性发送;位置确定单元601确定位置变化超过预定范围时发送;按照基站的位置更新请求信息发送。可以理解,发送单元701可以使用已有的任何方式和信号格式来发送该地理位置信息。尤其地,当电子设备700初始接入网络时,例如可以使用预先约定的上行导频序列或者采用鲁棒的调制格式来发送信号以报告其地理位置信息。
接收单元702接收包含上行导频序列的指示信息的专用控制信令,上行导频序列确定单元601解析该专用控制信令以确定电子设备700的上行导频序列。该专用控制信令例如为LTE标准中的RRC信令。
此外,接收单元702还可以接收包含上行导频序列的指示信息的广播信令,广播信令包含多个小区分区与多个上行导频序列的对应关系,上行导频序列确定单元601解析该广播信令并根据电子设备的当前位置所对应的小区分区确定电子设备的上行导频序列。在这种情况下,发送单元701也可以不发送电子设备的地理位置信息。
装置700通过以各种方式发送自身的地理位置信息并且接收基站分配的上行导频序列的指示信息,可以灵活地改变其要使用的上行导频序列从而改善通信系统的性能。
<第十实施例>
在上文的实施方式中描述电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于电子设备的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用电子设备的硬件和/或固件。
如图20所示,根据本申请的该实施例的用于电子设备的方法包括如下步骤:基于基站分配的上行导频序列的指示信息确定电子设备的上行导频序列(S51);以及确定电子设备的地理位置变化(S52),其中,在电子设备的地理位置变化前后对应于不同的小区分区的情况下,重新执行步骤S51,以基于基站分配的上行导频序列的指示信息更新电子设备的上行导频序列,更新的上行导频序列对应于电子设备的地理位置变化后对应的小区分区。
此外,如图20中的虚线框所示,上述方法还可以包括如下步骤:发送电子设备的地理位置信息(S53);以及接收基站分配的上行导频序列的指示信息(S54)。
其中,在步骤S53中,可以按照如下至少之一的方式发送地理位置信息:周期性发送;在步骤S52中确定位置变化超过预定范围时发送;按照基站的位置更新请求信息发送。
在一个示例中,在步骤S54中可以接收包含上行导频序列的指示信息的专用控制信令,并且在步骤S52中解析该专用控制信令以确定电子设备 的上行导频序列。该专用控制信令例如为LTE标准中的RRC信令。
此外,在步骤S54中还可以接收包含上行导频序列的指示信息的广播信令,广播信令包含多个小区分区与多个上行导频序列的对应关系,并且在步骤S52中解析该广播信令并根据电子设备的当前位置所对应的小区分区确定电子设备的上行导频序列。在这种情况下,也可以不执行发送电子设备的地理位置信息的步骤S53。
通过使用上述方法,可以根据电子设备的地理位置的变化灵活地改变所使用的上行导频序列,提高通信质量。该方法的细节已经在第八和第九实施例中进行了详细描述,在此不再重复。
<第十一实施例>
图21示出了根据本申请的另一个实施例的用于无线通信的装置800的结构框图,装置800包括:导频确定单元801,被配置为确定用于第一通信设备的第一上行导频序列;以及信道估计单元802,被配置为基于接收到的承载第一上行导频序列的信号对所述第一通信设备进行信道估计,其中,信道估计单元802基于第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
其中,这里所述的导频确定单元801可以与之前在第一至第三实施例中描述的导频确定单元102相同,也可以采用其他的上行序列导频确定方式,而并不限于本申请公开的技术。
信道估计单元802可以具有与第三实施例中描述的信道估计单元301相同的结构。在一个示例中,信道估计单元802可以包括:信道粗估计模块3001,被配置为基于承载第一上行导频序列的信号以及第一上行导频序列进行信道系数的粗估计;以及空间滤波模块3002,被配置为基于第一通信设备的地理位置对信道系数的粗估计进行滤波。关于信道估计单元802的结构和功能的一个示例已经在第三实施例中给出了详细描述,在此不再重复。
在本实施例中,空间滤波模块3002可以根据信道系数的粗估计来估计第一通信设备的地理位置。例如,第一通信设备的地理位置可以至少用其相对于装置800的方向来表征,例如信号的方向到达角。可以理解,对应于不同地理位置处的通信设备的方向到达角不同,空间滤波模块3002通过基于该方向到达角进行滤波,可以滤除来自与第一通信设备位置差异较 大的其他通信设备的干扰。其中,这里所述的其他通信设备可以与第一通信设备位于同一小区,也可以位于不同小区。例如,在相邻小区间利用相同或相关的上行导频序列的场景下,本申请能够降低小区边缘处的导频污染。又例如,本申请的空间滤波方案使得同小区内对上行导频信号的空间复用成为可行,而允许同小区内的不同通信设备利用相同或相关的上行导频序列。
在一个示例中,如图22所示,空间滤波模块3002可以包括:角度域变换部30021,被配置为对信道系数的粗估计进行角度域变换;角度域滤波部30022,被配置为基于上述方向对角度域变换进行滤波;以及逆变换部30033,被配置为对滤波后的结果进行逆傅里叶变换以获得信道估计结果。
假设基站的天线阵列配置为(M,N,2),即M×N的具有交叉极化的天线阵列,分别用
Figure PCTCN2015076277-appb-000019
Figure PCTCN2015076277-appb-000020
表示第一极化方向的垂直方向到达角和水平方向到达角的初步估计,分别用
Figure PCTCN2015076277-appb-000021
Figure PCTCN2015076277-appb-000022
表示第二极化方向的垂直方向到达角和水平方向到达角的初步估计,并且将预先设定的散射角分别表示为σθ和σφ。此外,分别用
Figure PCTCN2015076277-appb-000023
Figure PCTCN2015076277-appb-000024
表示第一极化方向和第二极化方向的垂直方向和水平方向的信道系数的粗估计,其中,
Figure PCTCN2015076277-appb-000025
Figure PCTCN2015076277-appb-000026
为长度为M的向量,
Figure PCTCN2015076277-appb-000027
Figure PCTCN2015076277-appb-000028
为长度为N的向量。
角度域变换部30021例如使用傅里叶变换将
Figure PCTCN2015076277-appb-000029
Figure PCTCN2015076277-appb-000030
分别变换到角度域,如下式(17)所示:
Figure PCTCN2015076277-appb-000031
角度域滤波部30022根据式(17)可以获得两个极化方向上的垂直方 向到达角和水平方向到达角的初步估计
Figure PCTCN2015076277-appb-000032
Figure PCTCN2015076277-appb-000033
以及
Figure PCTCN2015076277-appb-000034
Figure PCTCN2015076277-appb-000035
并使用基于该初步估计的滤波器对角度域变换进行滤波。例如,可以将角度域变换中的最大值所对应的角度作为到达角的初步估计,并且使用以该初步估计为中心的带通滤波器进行滤波。滤波器的示例如下式(18)所示,其中,通带宽度可以根据预定散射角来设置。
Figure PCTCN2015076277-appb-000036
其中,G(ω)为式(17)中之一,ω0为相应的方向和极化所对应的到达角的估计,σ为相应方向的散射角。
然后,逆变换部30033为对滤波后的结果进行逆傅里叶变换以获得信道估计结果。综合滤波和逆变换可以获得用下式(19)表示的信道估计结果。
Figure PCTCN2015076277-appb-000037
例如可以通过下式(20)结合所获得的各个方向和极化的信道估计来获得整体的信道估计。
Figure PCTCN2015076277-appb-000038
其中,
Figure PCTCN2015076277-appb-000039
代表克罗内克积。注意,虽然这里示出了角度域变换和滤波的具体公式,但是并不限于此,而是可以使用任意能够将信道系数的粗估计变换到角度域的方式。
作为另一个示例,角度域滤波部30022还可以使用经验值来设计基于初步估计的滤波器。例如,可以根据经验角度扩展、到达角估计偏差等经验值来设定式(18)所示的滤波器的带宽等。
可以看出,空间滤波模块3002可以减轻来自其他方向的通信设备的承载相关的上行导频序列的信号的干扰。
此外,如图23所示,信道估计单元802还可以包括:迭代模块8021,被配置为将逆变换部30033获得的信道估计结果作为信道系数的粗估计提供给空间滤波模块3002,以进一步进行滤波。由于逆变换部30033获得的信道估计结果已经滤除了一部分干扰,因此角度域滤波部30022基于该结果可以获得更为准确的到达角的估计值,从而进行更准确的滤波,以进一步改善信道估计结果。
上述承载第一上行导频序列的信号例如为探测参考信号SRS或上行解调参考信号DMRS。波束赋型后的下行参考信号例如为波束赋型后的小区参考信号、波束赋型后的信道状态信息参考信号中至少之一。
此外,以上虽然示出了通过信道系数的粗估计来估计通信设备的大概地理位置(比如方向)的示例,但是也可以通过其他方式,例如根据通信设备对经过波束赋形的下行参考信号的测量报告来对例如到达角进行估计并基于该估计滤波。具体地,装置800对下行参考信号进行波束赋形处理,以例如时分的方式向不同的方向发射波束赋形的参考信号,并接收其服务的通信设备反馈的测量报告,例如将最强测量结果对应的波束方向作为该通信设备的方向到达角。此外,还可以例如通过通信设备所在的小区分区来进行方向估计,比如根据小区分区的ID来确定上述
Figure PCTCN2015076277-appb-000040
Figure PCTCN2015076277-appb-000041
以及
Figure PCTCN2015076277-appb-000042
Figure PCTCN2015076277-appb-000043
可以理解,也可以基于例如定位参考信号的反馈、GPS定位信息等现有技术而获得的方向到达角估计,在此不一一例举。在这种情况下,前述关于后续的滤波和逆变换的操作同样适用。
如上所述,信道估计单元802基于第一通信设备的地理位置在信道估计过程中进行滤波,通过利用通信设备的地理位置的不同所带来的信道系数的分布的差异,滤除目标通信设备、即第一通信设备以外的使用相同上行导频序列的通信设备的信道响应,因此可以实现以下中的至少一个:减轻小区间和/或小区内的上行导频序列干扰;有效地降低信道估计的均方误差;提高通信系统的容量。此外,还为上行导频序列的空间复用提供了 一种可行的方式。尤其在相干带宽小且相对移动性高的情况下,能够支持更多的通信设备。
在一个示例中,装置800可以工作为基站,第一通信设备为用户设备,装置800还可以包括收发单元,被配置为接收上述信号。
类似地,在描述上述用于无线通信的装置的过程中,还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用电子设备的硬件和/或固件。
如图24所示,提供了一种用于无线通信的方法,包括如下步骤:确定用于第一通信设备的第一上行导频序列(S61);以及基于接收到的承载第一上行导频序列的信号对所述第一通信设备进行信道估计(S62),其中,基于所述第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
在一个示例中,步骤S62可以包括如下子步骤:a)基于承载第一上行导频序列的信号以及第一上行导频序列进行信道系数的粗估计;b)以及基于第一通信设备的地理位置对信道系数的粗估计进行滤波。
作为一个示例,可以根据信道系数的粗估计来估计第一通信设备的地理位置。其中,第一通信设备的地理位置至少可以用其相对于基站的方向来表征,例如信号的方向到达角。
在另一个示例中,还可以基于来自第一通信设备的对于波束赋型后的参考信号的测量结果来估计第一通信设备的地理位置。波束赋型后的下行参考信号例如为波束赋型后的小区参考信号、波束赋型后的信道状态信息参考信号中至少之一。
图25示出了基于地理位置进行滤波的一个示例的子步骤的流程图,如图25所示,包括:对信道系数的粗估计进行角度域变换(S6201);基于上述方向对角度域变换进行滤波(S6202);以及对滤波后的结果进行逆傅里叶变换以获得信道估计结果(S6203)。
其中,在步骤S6202中,可以将角度域变换中的最大值所对应的角度 作为初步估计,并且使用以该初步估计为中心的带通滤波器进行滤波还可以使用经验值来设计基于初步估计的滤波器的带宽。
此外,步骤S62中的子步骤b)可以迭代执行,即,将步骤S6203中获得的信道估计结果作为信道系数的粗估计,以进一步进行滤波。这样可以进一步提高信道估计的准确度。
这里所述的信号包括上行参考信号,例如为探测参考信号SRS或上行解调参考信号DMRS。
本方法中各个步骤的实现已经在第三实施例、第四实施例和本实施例的装置部分中进行了详细描述,在此不再重复。
<第十二实施例>
图26示出了根据本申请的另一个实施例的用于无线通信的装置900的结构框图,如图26所示,除了装置800的各个部件之外,该装置900还包括:重配置单元901,被配置为根据第一通信设备的地理位置和已经分配了上行导频序列的其他通信设备的地理位置,为第一通信设备重新配置上行导频序列,以使得同一小区内的两个或更多个通信设备复用非正交的上行导频序列。
具体地,在第一通信设备请求接入装置900所在的小区时,导频确定单元801首先为其分配初始的第一上行导频序列,信道估计单元802在接收到承载该第一上行导频序列的信号后,例如基于该信号估计第一通信设备的地理位置,并基于该地理位置在信道估计的过程中进行空间滤波以获得较为准确的信道估计结果,重配置单元903可以基于前述地理位置和已经分配了上行导频序列的其他通信设备的地理位置,为第一通信设备重新分配上行导频序列,例如,该重新分配的上行导频序列与正被同一小区内某一通信设备使用的上行导频序列相同或相关。通过在信道估计中采用空间滤波,可以避免这些通信设备之间的相互干扰,实现导频序列在小区内的空间复用。
在该示例中,信道估计单元802用于获得第一通信设备的地理位置以及进行信道估计。一方面,重配置单元901可以基于该地理位置以及已经分配了上行导频序列的其他通信设备的地理位置,来重新配置分配给第一通信设备的第一上行导频序列。另一方面,基站可以基于信道估计结果来进行信号接收、解调等。
其中,信道估计单元802的结构和功能的示例在第十一实施例中进行了详细描述,在此不再重复。
在一个示例中,导频确定单元801被配置为为第一通信设备确定与已经分配了上行导频序列的其他通信设备的上行导频序列正交的第一上行导频序列。例如,导频确定单元801可以在第一通信设备初始接入时操作。此外,导频确定单元801可以按第一实施例中所述的方式确定第一上行导频序列。
此外,当第一通信设备处于移动状态时,例如信道估计单元802可以估计其位置的变化,并且重配置单元901根据其位置与已经分配了上行导频序列的其他通信设备的地理位置的相对关系的变化,来调整为其分配的上行导频序列。
例如,可以使第一通信设备和已经分配了上行导频序列的第二通信设备复用非正交的(相同的或相关的)上行导频序列(以下称为第二上行导频序列),其中,第二通信设备和第一通信设备在位置上差异较大。在用第一通信设备相对于装置900的方向(比如信号的方向到达角)作为地理位置的表征参数的情况下,例如第二通信设备和第一通信设备的方向到达角相差较大。
在重配置单元901将第一通信设备配置为与第二通信设备复用第二上行导频序列的情况下,信道估计单元802基于接收到的承载第二上行导频序列的信号对第一通信设备进行信道估计,同样,在信道估计过程中基于第一通信设备的地理位置进行滤波,由于第一通信设备和第二通信设备的位置差异较大,因此可以滤除来自第二通信设备的干扰,仍然可以获得准确的信道估计结果。换言之,装置900使得同一小区内的通信设备能够在空间上复用相关的上行导频序列。
相对应地,如果第二通信设备与第一通信设备在位置上接近,则重配置单元901为第一通信设备与第二通信设备配置相互正交的上行导频序列。
例如,上述信号可以包括上行参考信号。上行参考信号的示例包括但不限于SRS和上行DMRS。关于估计通信设备的地理位置以及考虑空间滤波的信道估计的操作在第十一实施例中已经进行了详细描述,在此不再重复。
此外,如图26中的虚线框所示,装置900还可以包括分区单元902, 被配置为将装置所在的小区划分为多个小区分区,其中,重配置单元901被配置为为第一通信设备重新配置上行导频序列,以使得同一小区分区中的各个通信设备的上行导频序列正交。
由于同一小区分区中的通信设备的地理位置接近,因此,重配置单元901为其分配相互正交的上行导频序列,以避免相互干扰。此外,为了进一步保证通信质量,重配置单元901还被配置为为第一通信设备重新配置上行导频序列,以使得相邻小区中的各个通信设备的上行导频序列正交。
在该示例中,可以如前所述为每一个小区分区预先分配导频图样,也可以不预先分配,而是由重配置单元901根据需要随机分配。
综上所述,本实施例的装置900使得同一小区的通信设备能够空间复用上行导频序列,从而能够支持更多的通信设备。
此外,应该指出,虽然上述装置900包括进行基于地理位置的空间滤波的信道估计操作的信道估计单元802,但是,该单元并不是必需的,例如,在复用非正交的上行导频序列的第一通信设备和第二通信设备的位置差异非常大比如分别位于小区相对的两侧时,即使在信道估计过程中不进行基于地理位置的空间滤波,两者也不会产生相互干扰。换言之,在这种情况下重配置单元901也可以根据其地理位置的关系为第一通信设备和第二通信设备配置非正交的上行导频序列。
另一方面,虽然在上述对装置900的描述中,示出了根据信道系数的粗估计或基于波束赋型后的参考信号的测量结果来估计第一通信设备的地理位置的示例,但是重配置单元901使用的第一通信设备的地理位置的获取方式不限于此。
换言之,本申请还提供了一种使得同一小区内的两个或更多个通信设备能够空间复用上行导频序列的装置,包括:重配置单元901,被配置为根据第一通信设备的地理位置和已经分配了上行导频序列的其他通信设备的地理位置,为第一通信设备重新配置上行导频序列,以使得同一小区内的两个或更多个通信设备复用非正交的上行导频序列。该装置优选地可以包括上述信道估计单元。但是,应该理解,实现空间滤波的方式并不限于前述实施例中所描述的具体示例。
通过上述复用,可以在不改变现有导频序列的基础上增加能够支持的用户设备的数量,从而进一步提高导频序列的利用效率。
与第一实施例类似地,装置900可以位于各个接入点或基站侧,并且 为其服务范围内的通信设备配置上行导频序列。通信设备可以为用户设备比如移动终端、车辆、智能穿戴设备等。并且,通信设备也可以是提供服务的基础设施比如小小区基站。
相应地,图27示出了根据本申请的实施例的用于无线通信的方法的流程图,除了图24所示的步骤S61-S62之外,该方法还包括步骤S72:根据第一通信设备的地理位置和已经分配了上行导频序列的其他通信设备的地理位置,为第一通信设备重新配置上行导频序列,以使得同一小区内的两个或更多个通信设备复用非正交的上行导频序列。
在一个示例中,在步骤S72中使得位置差异大的通信设备复用非正交的上行导频序列。在步骤S61中,可以为第一通信设备确定与已经分配了上行导频序列的其他通信设备的上行导频序列正交的第一上行导频序列。
此外,如图27中的虚线框所示,上述方法还可以包括步骤S71:将小区划分为多个小区分区,其中,在步骤S72中为第一通信设备重新配置上行导频序列,以使得同一小区分区中的各个通信设备的上行导频序列正交。在一个示例中,在步骤S72中还为第一通信设备重新配置上行导频序列,以使得相邻小区分区中的各个通信设备的上行导频序列正交。
上述方法中的信号包括上行参考信号,例如,探测参考信号SRS或解调参考信号DMRS。
此外,本申请还提供了一种使得同一小区内的两个或更多个通信设备能够空间复用上行导频序列的方法,包括:根据第一通信设备的地理位置和已经分配了上行导频序列的其他通信设备的地理位置,为第一通信设备重新配置上行导频序列,以使得同一小区内的两个或更多个通信设备复用非正交的上行导频序列。该方法优选地可以包括前述基于空间滤波的信道估计处理。
其中,各个步骤及其细节的示例可以参照前述各个实施例中的描述,在此不再重复。
本公开内容的技术能够应用于各种产品。例如,装置400、500可以被实现为任何类型的服务器,比如塔式服务器、机架式服务器以及刀片式服务器。装置400、500可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
例如,装置100-300、800可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,装置100-300、800可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。装置100-300、800可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为装置100-300、800工作。
例如,电子设备600、700可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。电子设备600、700还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,电子设备600、700可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
本领域的技术人员可以理解,上文所述的装置中的例如位置确定单元、导频确定单元、信道估计单元、分区单元、导频图样生成单元等,可以由一个或更多个处理器来实现,而例如发送单元、接收单元、通知接口等,可以由天线、滤波器、调制解调器及编解码器等电路元器件实现。
因此,本发明还提出了一种电子设备(1),包括:一种电路,被配置为:确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及将小区分区对应的上行导频序列确定为通信设备的上行导频序列。
本发明还提出了一种电子设备(2),包括:一种电路,被配置为:将多个小区中的每个小区划分为多个小区分区;以及将多个上行导频序列与各个小区分区对应来生成导频图样,其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成导频图样。
此外,本发明还提出了一种电子设备(3),包括:一种电路,被配置为:基于基站分配的上行导频序列的指示信息确定电子设备的上行导频序列;以及确定电子设备的地理位置变化,其中,在电子设备的地理位置变化前后对应于不同的小区分区的情况下,基于基站分配的上行导频序列的指示信息更新电子设备的上行导频序列,更新的上行导频序列对应于电子设备的地理位置变化后对应的小区分区。
本发明还提出了一种电子设备(4),包括:一种电路,被配置为:确定用于第一通信设备的第一上行导频序列;以及基于接收到的承载第一上行导频序列的信号对第一通信设备进行信道估计,其中,基于第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图28所示的通用计算机2800)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图28中,中央处理单元(CPU)2801根据只读存储器(ROM)2802中存储的程序或从存储部分2808加载到随机存取存储器(RAM)2803的程序执行各种处理。在RAM 2803中,也根据需要存储当CPU 2801执行各种处理等等时所需的数据。CPU 2801、ROM 2802和RAM 2803经由总线2804彼此连接。输入/输出接口2805也连接到总线2804。
下述部件连接到输入/输出接口2805:输入部分2806(包括键盘、鼠标等等)、输出部分2807(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2808(包括硬盘等)、通信部分2809(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2809经由网络比如因特网执行通信处理。根据需要,驱动器2810也可连接到输入/输出接口2805。可移除介质2811比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2810上,使得从中读出的计 算机程序根据需要被安装到存储部分2808中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2811安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图28所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2811。可移除介质2811的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2802、存储部分2808中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (38)

  1. 一种用于无线通信的装置,包括:
    位置确定单元,被配置为确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及
    导频确定单元,被配置为将所述小区分区对应的上行导频序列确定为所述通信设备的上行导频序列。
  2. 根据权利要求1所述的装置,还包括:
    接收单元,被配置为接收通信设备发送的指示地理位置的信息;以及
    发送单元,被配置为将上行导频序列的指示信息通过专用控制信令传输至所述通信设备,以便为所述通信设备分配所述上行导频序列。
  3. 根据权利要求2所述的装置,其中,相邻的小区分区对应的上行导频序列不同,所述接收单元还被配置为接收承载第一上行导频序列的信号,所述装置还包括:
    信道估计单元,被配置为基于承载第一上行导频序列的信号对分配到所述第一上行导频序列的通信设备进行信道估计,
    其中,所述信道估计单元基于分配到所述第一上行导频序列的通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该通信设备的信道估计结果。
  4. 根据权利要求1所述的装置,所述通信设备的地理位置以以下至少之一方式表征:方向到达角、方向到达角与距所述装置的距离、地理坐标以及所在小小区ID。
  5. 根据权利要求2所述的装置,其中,所述接收单元还被配置为接收与所述通信设备所在的小区分区相邻的其他小区的小区分区的上行导频序列信息,并且,所述导频确定单元被配置为基于其他小区的小区分区的上行导频序列信息确定该通信设备所在的小区分区对应的上行导频序列。
  6. 根据权利要求3所述的装置,其中,所述信道估计单元包括:
    信道粗估计模块,被配置为基于承载第一上行导频序列的信号以及所 述第一上行导频序列进行信道系数的粗估计;以及
    空间滤波模块,被配置为基于分配到所述第一上行导频序列的通信设备的地理位置对所述信道系数的粗估计进行滤波。
  7. 根据权利要求6所述的装置,其中,所述空间滤波模块被配置为通过对所述信道系数的粗估计进行离散傅里叶变换并且对变换的结果加窗来进行滤波。
  8. 根据权利要求1所述的装置,其中,在所述位置确定单元确定所述通信设备的地理位置变化到其他小区分区时,所述导频确定单元将变化后的小区分区对应的上行导频序列确定为所述通信设备的上行导频序列。
  9. 根据权利要求2所述的装置,其中,所述接收单元还被配置为从中央节点接收包含各个小区分区与其上行导频序列的对应关系的导频图样信息,并且所述导频确定单元被配置为基于该导频图样信息来确定所述通信设备的上行导频序列。
  10. 一种用于无线通信的方法,包括:
    确定通信设备的地理位置所对应的小区分区,每一小区包含多个小区分区;以及
    将所述小区分区对应的上行导频序列确定为所述通信设备的上行导频序列。
  11. 一种用于无线通信的装置,包括:
    分区单元,被配置为将多个小区中的每个小区划分为多个小区分区;以及
    导频图样生成单元,被配置为将多个上行导频序列与各个小区分区对应来生成导频图样,其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成所述导频图样。
  12. 根据权利要求11所述的装置,其中,所述导频图样生成单元被配置为对已经分配了上行导频序列的小区分区计算其对所有邻近小区分区的干扰,并向干扰最小的邻近小区分区分配相同的上行导频序列。
  13. 根据权利要求11所述的装置,其中,所述多个小区包括宏小区和小小区,并且小小区的小区分区数目比宏小区的小区分区数目少。
  14. 根据权利要求11所述的装置,其中,所述用于无线通信的装置 为与所述多个小区通信的中央节点,还包括通信接口,被配置为将相应的导频图样通知各小区。
  15. 根据权利要求14所述的装置,其中,所述多个小区分别具有不同的开关状态,所述导频图样生成单元被配置为针对不同的小区开关状态组合来生成导频图样,并存储为映射表。
  16. 根据权利要求15所述的装置,其中,所述通信接口被配置为在小区开关状态发生变化的情况下,基于所述映射表来向各小区重新通知当前开关状态下的相应导频图样。
  17. 根据权利要求11所述的装置,其中,所述分区单元被配置为根据小区中通信设备的分布状况来划分小区分区,且所述导频图样生成单元在小区分区的划分改变时重新生成导频图样。
  18. 一种用于无线通信的方法,包括:
    将多个小区中的每个小区划分为多个小区分区;以及
    将多个上行导频序列与各个小区分区对应来生成导频图样,其中,基于对应相同上行导频序列的不同小区分区之间的导频干扰生成所述导频图样。
  19. 一种电子设备,包括:
    上行导频序列确定单元,被配置为基于基站分配的上行导频序列的指示信息确定所述电子设备的上行导频序列;以及
    位置确定单元,被配置为确定所述电子设备的地理位置变化,
    其中,在所述电子设备的地理位置变化前后对应于不同的小区分区的情况下,所述上行导频序列确定单元基于基站分配的上行导频序列的指示信息更新所述电子设备的上行导频序列,更新的上行导频序列对应于所述电子设备的地理位置变化后对应的小区分区。
  20. 根据权利要求19所述的电子设备,还包括:
    发送单元,被配置为发送所述电子设备的地理位置信息;以及
    接收单元,被配置为接收基站分配的上行导频序列的指示信息。
  21. 根据权利要求20所述的电子设备,其中,所述接收单元接收包含上行导频序列的指示信息的专用控制信令,所述上行导频序列确定单元解析该专用控制信令以确定所述电子设备的上行导频序列。
  22. 根据权利要求20所述的电子设备,其中,所述接收单元接收包含上行导频序列的指示信息的广播信令,所述广播信令包含多个小区分区与多个上行导频序列的对应关系,所述上行导频序列确定单元解析所述广播信令并根据电子设备的当前位置所对应的小区分区确定所述电子设备的上行导频序列。
  23. 根据权利要求20所述的电子设备,其中,所述发送单元按照如下至少之一的方式发送所述地理位置信息:周期性发送;所述位置确定单元确定位置变化超过预定范围时发送;按照基站的位置更新请求信息发送。
  24. 一种用于电子设备的方法,包括:
    基于基站分配的上行导频序列的指示信息确定所述电子设备的上行导频序列;以及
    确定所述电子设备的地理位置变化,
    其中,在所述电子设备的地理位置变化前后对应于不同的小区分区的情况下,基于基站分配的上行导频序列的指示信息更新所述电子设备的上行导频序列,更新的上行导频序列对应于所述电子设备的地理位置变化后对应的小区分区。
  25. 一种用于无线通信的装置,包括:
    导频确定单元,被配置为确定用于第一通信设备的第一上行导频序列;以及
    信道估计单元,被配置为基于接收到的承载第一上行导频序列的信号对所述第一通信设备进行信道估计,
    其中,所述信道估计单元基于所述第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
  26. 根据权利要求25所述的装置,其中,所述信道估计单元包括:
    信道粗估计模块,被配置为基于承载第一上行导频序列的信号以及所述第一上行导频序列进行信道系数的粗估计;以及
    空间滤波模块,被配置为基于所述第一通信设备的地理位置对所述信道系数的粗估计进行滤波。
  27. 根据权利要求25或26所述的装置,其中,所述第一通信设备的 地理位置的表征参数包含所述第一通信设备相对于所述装置的方向。
  28. 根据权利要求27所述的装置,其中,所述空间滤波模块被配置为基于所述信道系数的粗估计来估计所述第一通信设备的地理位置。
  29. 根据权利要求27所述的装置,其中,所述空间滤波模块被配置为基于来自所述第一通信设备的对于波束赋型后的参考信号的测量结果来估计所述第一通信设备的地理位置。
  30. 根据权利要求27至28中任一项所述的装置,其中,所述空间滤波模块包括:
    角度域变换部,被配置为对所述信道系数的粗估计进行角度域变换;
    角度域滤波部,被配置为基于所述方向对所述角度域变换进行滤波;以及
    逆变换部,被配置为对滤波后的结果进行逆傅里叶变换以获得所述信道估计结果。
  31. 根据权利要求25至30中任意一项所述的装置,还包括:
    重配置单元,被配置为根据所述第一通信设备的地理位置和已经分配了上行导频序列的其他通信设备的地理位置,为所述第一通信设备重新配置上行导频序列,以使得同一小区内的两个或更多个通信设备复用非正交的上行导频序列。
  32. 根据权利要求31所述的装置,其中,所述导频确定单元被配置为为所述第一通信设备确定与已经分配了上行导频序列的其他通信设备的上行导频序列正交的所述第一上行导频序列。
  33. 根据权利要求31所述的装置,其中,所述重配置单元被配置为使得位置差异大的通信设备复用非正交的上行导频序列。
  34. 根据权利要求31所述的装置,还包括:
    分区单元,被配置为将所述装置所在的小区划分为多个小区分区,
    其中,所述重配置单元被配置为为所述第一通信设备重新配置上行导频序列,以使得同一小区分区中的各个通信设备的上行导频序列正交。
  35. 根据权利要求34所述的装置,其中,所述重配置单元还被配置为为所述第一通信设备重新配置上行导频序列,以使得相邻小区分区中的各个通信设备的上行导频序列正交。
  36. 根据权利要求25至35中任一项所述的装置,其中,所述信号为探测参考信号SRS或上行解调参考信号DMRS。
  37. 根据权利要求25至36中任意一项所述的装置,其中,所述装置工作为基站,所述第一通信设备工作为用户设备,该装置还包括收发单元,被配置为接收所述信号。
  38. 一种用于无线通信的方法,包括:
    确定用于第一通信设备的第一上行导频序列;以及
    基于接收到的承载第一上行导频序列的信号对所述第一通信设备进行信道估计,
    其中,基于所述第一通信设备的地理位置在信道估计过程中进行滤波,以得到匹配该第一通信设备的信道估计结果。
PCT/CN2015/076277 2014-08-07 2015-04-10 用于无线通信的装置和方法、电子设备及其方法 WO2016019737A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US15/327,585 US10374766B2 (en) 2014-08-07 2015-04-10 Electronic device that determines an uplink pilot sequence, and method therefor
BR112017002378A BR112017002378A2 (pt) 2014-08-07 2015-04-10 aparelho e método para comunicação sem fio, dispositivo eletrônico, e, método para um dispositivo eletrônico.
CA2953167A CA2953167A1 (en) 2014-08-07 2015-04-10 Apparatus and method for use in radio communication, electronic device, and method therefor
KR1020177001196A KR20170042280A (ko) 2014-08-07 2015-04-10 무선 통신에 사용하기 위한 장치 및 방법, 전자 디바이스, 및 그 방법
JP2016572705A JP6531342B2 (ja) 2014-08-07 2015-04-10 無線通信に用いられる装置と方法、電子機器及びその方法
CN201580013532.1A CN106576026A (zh) 2014-08-07 2015-04-10 用于无线通信的装置和方法、电子设备及其方法
EP15829160.9A EP3179662B1 (en) 2014-08-07 2015-04-10 Apparatus and method for use in radio communication
EP19181824.4A EP3599732B1 (en) 2014-08-07 2015-04-10 Apparatus and method for use in radio communication
ES15829160T ES2743234T3 (es) 2014-08-07 2015-04-10 Aparato y método para utilización en comunicación por radio
US16/446,624 US10887065B2 (en) 2014-08-07 2019-06-20 Electronic device that determines an uplink pilot sequence, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410386345.5 2014-08-07
CN201410386345.5A CN105406950A (zh) 2014-08-07 2014-08-07 用于无线通信的装置和方法、电子设备及其方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/327,585 A-371-Of-International US10374766B2 (en) 2014-08-07 2015-04-10 Electronic device that determines an uplink pilot sequence, and method therefor
US16/446,624 Continuation US10887065B2 (en) 2014-08-07 2019-06-20 Electronic device that determines an uplink pilot sequence, and method therefor

Publications (1)

Publication Number Publication Date
WO2016019737A1 true WO2016019737A1 (zh) 2016-02-11

Family

ID=55263102

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/076277 WO2016019737A1 (zh) 2014-08-07 2015-04-10 用于无线通信的装置和方法、电子设备及其方法
PCT/CN2015/085715 WO2016019831A1 (zh) 2014-08-07 2015-07-31 用于无线通信的装置和方法、电子设备及其方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085715 WO2016019831A1 (zh) 2014-08-07 2015-07-31 用于无线通信的装置和方法、电子设备及其方法

Country Status (9)

Country Link
US (2) US10374766B2 (zh)
EP (2) EP3179662B1 (zh)
JP (1) JP6531342B2 (zh)
KR (1) KR20170042280A (zh)
CN (2) CN105406950A (zh)
BR (1) BR112017002378A2 (zh)
CA (1) CA2953167A1 (zh)
ES (1) ES2743234T3 (zh)
WO (2) WO2016019737A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406950A (zh) * 2014-08-07 2016-03-16 索尼公司 用于无线通信的装置和方法、电子设备及其方法
US10230436B2 (en) * 2014-10-20 2019-03-12 RF DSP Inc. Methods for channel information acquisition, signal detection and transmission in multi-user wireless communication systems
CN107534531B (zh) * 2015-03-31 2020-11-10 瑞典爱立信有限公司 用于导频序列协调的方法和装置
WO2017050389A1 (en) * 2015-09-25 2017-03-30 Huawei Technologies Co., Ltd. Communication protocol for low energy communication links
US10205491B2 (en) * 2015-09-28 2019-02-12 Futurewei Technologies, Inc. System and method for large scale multiple input multiple output communications
US10243631B2 (en) * 2016-06-08 2019-03-26 Nxp Usa, Inc. Method and apparatus for performing distributed computation of precoding estimates
CN107872298B (zh) * 2016-09-26 2023-09-22 华为技术有限公司 免授权传输的方法、网络设备和终端设备
EP3312990B1 (en) 2016-10-24 2019-12-11 NXP USA, Inc. Amplifier devices with input line termination circuits
US10833822B2 (en) * 2017-04-24 2020-11-10 Huawei Technologies Co., Ltd. System and method for MA signature assignment based on UE group separation
CN108737052B (zh) * 2017-04-25 2020-08-28 大唐移动通信设备有限公司 一种导频发送、接收方法及装置
US10237754B1 (en) * 2017-05-12 2019-03-19 Sprint Spectrum L.P. Minimizing interference in different sectors of wireless networks
US10877160B2 (en) * 2018-02-26 2020-12-29 Cisco Technology, Inc. Compensating for access point orientation errors with respect to a predefined area orientation
EP3925257B1 (en) * 2019-03-07 2023-10-11 Telefonaktiebolaget LM Ericsson (publ.) Methods and devices for inter-cell interference estimation
WO2020231301A1 (en) * 2019-05-10 2020-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node and method performed therein for handling
CN110445518B (zh) * 2019-07-02 2021-06-22 厦门大学 大规模mimo异构网络系统下基于微小区分簇的导频分配方法
CN111511009B (zh) * 2020-04-10 2024-03-01 郑州大学 一种导频发送功率分配方法及装置
CN113015225B (zh) * 2021-02-19 2022-03-22 清华大学 一种面向机器通信的无线网络资源编排方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192875A (zh) * 2006-11-27 2008-06-04 上海无线通信研究中心 用于通用陆地无线接入系统的上行正交参考信号分配方法
CN101945395A (zh) * 2009-07-07 2011-01-12 中兴通讯股份有限公司 确定子载波置换的方法以及确定小区导频模式的方法
WO2011041132A2 (en) * 2009-09-29 2011-04-07 Alcatel-Lucent Usa Inc. Pilot signal allocation method and apparatus for multi-user wireless systems
CN102142918A (zh) * 2011-03-29 2011-08-03 电信科学技术研究院 一种导频序列的处理方法及设备
CN103546264A (zh) * 2013-11-13 2014-01-29 东南大学 基于导频复用的大规模mimo无线通信方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL100213A (en) * 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
CN1265655C (zh) * 2000-10-17 2006-07-19 株式会社电装 电信系统的基于前向链路的抢救信道方法及装置
CN1871862B (zh) * 2003-02-24 2012-03-21 高通股份有限公司 在多扇区小区中使用的导频信号
US9520972B2 (en) * 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US7768979B2 (en) * 2005-05-18 2010-08-03 Qualcomm Incorporated Separating pilot signatures in a frequency hopping OFDM system by selecting pilot symbols at least hop away from an edge of a hop region
JP4869724B2 (ja) * 2005-06-14 2012-02-08 株式会社エヌ・ティ・ティ・ドコモ 送信装置、送信方法、受信装置及び受信方法
WO2007013560A1 (ja) * 2005-07-29 2007-02-01 Matsushita Electric Industrial Co., Ltd. マルチキャリア通信における無線通信基地局装置、無線通信移動局装置、および、パイロット信号系列割当方法
CN101005471B (zh) * 2006-01-19 2010-07-28 华为技术有限公司 多载波通信系统导频信道时频资源分配方法、装置及系统
JP4736934B2 (ja) * 2006-04-28 2011-07-27 日本電気株式会社 無線通信システム、パイロット系列割り当て装置及びそれらに用いるパイロット系列割り当て方法
CN100555893C (zh) * 2006-04-30 2009-10-28 鼎桥通信技术有限公司 导频序列生成方法、装置及小区初始搜索方法和系统
ES2418156T3 (es) * 2006-09-11 2013-08-12 Lg Electronics Inc. Método para transmitir y recibir señales basado en esquema de acceso segmentado y método para asignar secuencia para el mismo
JP4608001B2 (ja) * 2006-10-02 2011-01-05 パナソニック株式会社 移動局装置および系列割当方法
JP4786503B2 (ja) * 2006-11-01 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ セルサーチ方法、移動局及び基地局
US8159931B2 (en) * 2007-12-11 2012-04-17 Broadcom Corporation Orthogonal pilot code construction
US8331309B2 (en) * 2008-03-10 2012-12-11 Wi-Lan, Inc. Efficient and consistent wireless downlink channel configuration
CN101557371B (zh) * 2008-04-10 2012-12-12 上海贝尔阿尔卡特股份有限公司 多载波mimo系统的基站中为移动终端确定导频图案的方法
US8897779B2 (en) * 2009-08-05 2014-11-25 Qualcomm Incorporated Message-based exchange of access point pilot signature indicators
US8638746B2 (en) * 2010-11-04 2014-01-28 Ntt Docomo, Inc. Method and apparatus for the joint design and operation of scheduling and transmission for downlink multi-user MIMO with reciprocity-based training
CN103370898B (zh) * 2011-02-07 2017-08-29 瑞典爱立信有限公司 用于探测参考信号srs的上行链路传送的基站(天线)选择的方法和装置
US20130265984A1 (en) * 2011-03-07 2013-10-10 Honggang Li Grouped machine-to-machine communications
US9100835B2 (en) * 2012-05-22 2015-08-04 Alcatel Lucent Method and apparatus of wireless communication using directional antennas
JP2014116644A (ja) * 2012-12-06 2014-06-26 Sharp Corp 受信装置
CN103560985B (zh) * 2013-11-05 2017-01-18 北京工业大学 一种空时相关信道大尺度mimo传输方法
CN106233684B (zh) * 2014-05-08 2019-11-29 华为技术有限公司 无线通信网络节点中的信道估计
CN105406950A (zh) * 2014-08-07 2016-03-16 索尼公司 用于无线通信的装置和方法、电子设备及其方法
CN105991271B (zh) * 2015-02-13 2021-02-26 索尼公司 无线通信的装置、方法和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192875A (zh) * 2006-11-27 2008-06-04 上海无线通信研究中心 用于通用陆地无线接入系统的上行正交参考信号分配方法
CN101945395A (zh) * 2009-07-07 2011-01-12 中兴通讯股份有限公司 确定子载波置换的方法以及确定小区导频模式的方法
WO2011041132A2 (en) * 2009-09-29 2011-04-07 Alcatel-Lucent Usa Inc. Pilot signal allocation method and apparatus for multi-user wireless systems
CN102142918A (zh) * 2011-03-29 2011-08-03 电信科学技术研究院 一种导频序列的处理方法及设备
CN103546264A (zh) * 2013-11-13 2014-01-29 东南大学 基于导频复用的大规模mimo无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3179662A4 *

Also Published As

Publication number Publication date
EP3179662B1 (en) 2019-07-31
EP3179662A1 (en) 2017-06-14
WO2016019831A1 (zh) 2016-02-11
US10887065B2 (en) 2021-01-05
CN105406950A (zh) 2016-03-16
CN106576026A (zh) 2017-04-19
JP6531342B2 (ja) 2019-06-19
EP3179662A4 (en) 2018-03-14
EP3599732A1 (en) 2020-01-29
KR20170042280A (ko) 2017-04-18
JP2017531333A (ja) 2017-10-19
ES2743234T3 (es) 2020-02-18
EP3599732B1 (en) 2021-08-18
BR112017002378A2 (pt) 2017-12-05
CA2953167A1 (en) 2016-02-11
US20190305907A1 (en) 2019-10-03
US10374766B2 (en) 2019-08-06
US20170187504A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2016019737A1 (zh) 用于无线通信的装置和方法、电子设备及其方法
TWI556593B (zh) Channel status information measurement method and device
JP7270751B2 (ja) 連携上りリンクベース測位の方法及びデバイス
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
US20180358688A1 (en) High dimensional (hidi) radio environment characterization and representation
US20170064722A1 (en) Frequency planning in a distributed antenna system
TW201534077A (zh) 通道狀態資訊測量方法和裝置、以及信號傳輸方法和裝置
CN110535578A (zh) 信号传输方法及装置
CN113015192A (zh) 天线权值确定方法、装置、设备及存储介质
WO2017181952A1 (zh) 定位方法和装置
WO2016066098A1 (zh) 用于无线通信的装置和方法
WO2016159851A1 (en) Methods and arrangements for pilot sequence coordination
CN106416104B (zh) 一种设备
WO2020088549A1 (zh) 一种天线校正方法及装置
US20240015693A1 (en) User equipment (ue) positioning
KR101751350B1 (ko) 위치 추정 서비스 및 데이터 통신을 동시에 지원하기 위한 분산 안테나 시스템에서의 빔포밍 방법 및 장치
US9510221B2 (en) Methods and apparatuses for measuring pilot
US11985009B2 (en) Determining covariance using a lossy compression method
WO2024053559A1 (ja) 情報処理装置、端末装置、情報処理方法および通信方法
CN112020889B (zh) 一种通信方法及装置
Tahmid Available 5G NR Reference Signals and Their Potential For 5G NR Positioning
WO2023209081A1 (en) Spatial compensation methods for reciprocity recovery in subband full duplex systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572705

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2953167

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177001196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327585

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015829160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002378

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017002378

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170206