WO2016019664A1 - 电动机启动方法及启动器 - Google Patents

电动机启动方法及启动器 Download PDF

Info

Publication number
WO2016019664A1
WO2016019664A1 PCT/CN2014/093046 CN2014093046W WO2016019664A1 WO 2016019664 A1 WO2016019664 A1 WO 2016019664A1 CN 2014093046 W CN2014093046 W CN 2014093046W WO 2016019664 A1 WO2016019664 A1 WO 2016019664A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
motor
starter
driving power
diode
Prior art date
Application number
PCT/CN2014/093046
Other languages
English (en)
French (fr)
Inventor
刘永强
张军峰
何波
Original Assignee
刘永强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘永强 filed Critical 刘永强
Publication of WO2016019664A1 publication Critical patent/WO2016019664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor

Definitions

  • the present invention relates to the field of electric motor technology, and in particular to a motor starting method and an actuator.
  • Motor-driven compressors boost low-pressure gas to high-pressure gas and are key equipment in refrigeration systems.
  • Motors used in refrigeration equipment such as refrigerators and air conditioners require frequent start and stop to perform their cooling or heating functions during normal operation to stabilize the ambient temperature at a set value.
  • the main winding and the starting winding are designed in the motor. When the motor starts, the starting winding and the main winding are turned on; when the motor enters the normal working state, the starting winding is cut off only by the main winding.
  • an actuator is provided in the motor.
  • the actuators commonly used in the related art include a polymer polymer positive temperature system PTC starter, a transformer type starter, a PTC pure mechanical starter, and a heavy hammer type starter.
  • the PTC starter controls the gate current of the thyristor in the motor through the characteristic change of the resistance of the PTC with temperature, thereby realizing that after a certain period of time after the start of the motor, the temperature of the PTC heating rises, and the resistance value becomes larger and decreases.
  • the driving current of the thyristor finally turns off the thyristor to achieve the purpose of cutting off the starting winding circuit.
  • This kind of starter realizes the delay turn-off of the starting winding, but the time from the energization to the temperature rise of the PTC to the turn-off of the starting winding is affected by factors such as the ambient temperature and the supply voltage, and precise control cannot be achieved.
  • the other type is the transformer starter.
  • the transformer starter By detecting the magnitude of the motor current (the current is different between the starting moment and the normal running), when the current falls back, the trigger current for driving the thyristor on the transformer becomes smaller. When the open condition of the thyristor is not reached, the thyristor is turned off.
  • Such starters require very precise transformers, complex production processes, relatively high cost, and extremely high requirements for thyristor parameters.
  • PTC pure mechanical starter there will always be power loss on the PTC, and the energy consumption is high.
  • Traditional mechanical heavy hammer type, such starter has mechanical reliability limitation, can not meet the working life requirement of the machine, and also has fire hazard, and is not suitable for efficient flammable and explosive refrigerant environment.
  • the motor starter in the related art has a technical problem that the accuracy of the startup process control is relatively low.
  • a motor starting method comprising: generating a driving power trigger thyristor having a fixed period waveform when receiving a motor starting signal; timing a triggering time of the driving power source, when timing When the time reaches the preset time threshold, the driving power is turned off.
  • generating a driving power source triggering the thyristor having a fixed waveform comprising: generating a counting wave corresponding to a waveform period of the power supply of the motor starter when receiving the motor powering signal Corresponding to the rising edge and the falling edge of the counting wave, generating a driving waveform, the continuous driving waveform constitutes the driving power source; or, when receiving the motor power-on signal, generating a continuous triggering by using the waveform generator SCR drive power supply.
  • the triggering time of the driving power source is counted, and when the timing time reaches a preset time threshold, the driving power is cut off, including: when receiving a motor power-on signal, generating a corresponding to the driving power cycle Counting wave; counting the counting wave, when the counting result is equal to the set threshold, issuing a cutoff signal to cut off the driving power.
  • the generating a counting wave corresponding to the driving power supply period comprises: comparing a power supply of the motor starter with a motor power supply neutral line, and generating a counting wave corresponding to the driving power supply period according to the comparison result; or, using the oscillation The counter generates a count wave corresponding to the drive power cycle.
  • the embodiment of the present invention further provides a motor starter, comprising: a driving power source triggering module, configured to generate a driving power source triggering the thyristor having a fixed period waveform when receiving the motor starting signal; and a timing module, configured to The trigger time of the driving power source is counted, and when the timing time reaches the preset time threshold, the driving power is cut off.
  • a driving power source triggering module configured to generate a driving power source triggering the thyristor having a fixed period waveform when receiving the motor starting signal
  • a timing module configured to The trigger time of the driving power source is counted, and when the timing time reaches the preset time threshold, the driving power is cut off.
  • the driving power source triggering module includes: a first counting wave generator, configured to generate a counting wave corresponding to a waveform period of a power supply of the motor starter when receiving the motor powering signal; and driving the power generator And generating a driving waveform corresponding to the rising edge and the falling edge of the counting wave, wherein the continuous driving waveform constitutes the driving power source;
  • the driving power triggering module is a waveform generator, configured to generate a driving power source for continuously triggering the thyristor when receiving the motor powering signal.
  • the timing module includes: a second counting wave generator, configured to generate a counting wave corresponding to the driving power supply period when receiving the motor power-on signal; and a counter for counting the counting wave, When the counting result is equal to the set threshold, a cutoff signal is issued to cut off the driving power.
  • a second counting wave generator configured to generate a counting wave corresponding to the driving power supply period when receiving the motor power-on signal
  • a counter for counting the counting wave When the counting result is equal to the set threshold, a cutoff signal is issued to cut off the driving power.
  • the second counting wave generator comprises: a comparator; the comparator comprises two inputs, which are respectively connected to a power supply of the motor starter and a power supply neutral line of the motor, And comparing the power supply with the motor power supply neutral line, and generating a counting wave corresponding to the driving power supply period according to the comparison result;
  • the second count wave generator is an oscillator for generating a count wave corresponding to the drive power cycle.
  • the starter further includes: a starter power supply processing module, configured to output a positive power supply VDD and a negative power supply VEE;
  • the starter power supply processing module includes: a high voltage capacitor C1, a diode D1, a diode D2, and an energy storage a capacitor C2, a storage capacitor C3, a Zener diode D3, and a Zener diode D4; one end of the high voltage capacitor C1 is connected to a power supply of the motor starter, and the other end is respectively connected to an anode of the diode D1 and the diode a cathode connection of D2, a cathode of the diode D1, the storage capacitor C2, the storage capacitor C3, and an anode of the diode D2 are sequentially connected in series; a series node of the diode D1 and the storage capacitor C2 The cathode of the Zener diode D3 is connected; the series node of the diode D2 and the storage capacitor C3 is connected to the ano
  • the initiator further includes: a starter power supply processing module, configured to output a DC power supply VDD;
  • the starter power supply processing module includes: a diode D5, a resistor R, a Zener diode D6, an NMOS transistor, and an energy storage a capacitor C4; an anode of the diode D5 is connected to a power supply of the motor starter, and a cathode of the diode D5 is respectively connected to one end of the resistor R and a drain of the NMOS transistor; One end is respectively connected to the cathode of the Zener diode D6 and the gate of the NMOS transistor, and the anode of the Zener diode D6 is respectively associated with the The power supply neutral of the motor is connected to one end of the storage capacitor C4, and the other end of the storage capacitor C4 is connected to the source of the NMOS transistor.
  • the motor starting method and the starter provided by the embodiment of the invention trigger the thyristor by using a driving power source with a fixed period waveform, and time the triggering time, and cut off the driving power according to the timing result, so that the starting process is precisely controllable, thereby It avoids the interference of the ambient temperature and the power supply of the starter to the starting process, improves the accuracy of the motor starter control of the starting process, and better meets the starting requirements of the motor.
  • FIG. 1 is a flow chart showing a method of starting a motor in an embodiment of the present invention
  • FIG. 2 is a partial structural view showing an electric motor in an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a motor starter in an embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a motor starter in the first example of the present invention.
  • Figure 5 is a view showing a waveform generated in the first example of the present invention.
  • Fig. 6 is a view showing the structure of a motor starter in a second example of the present invention.
  • the embodiment of the invention provides a motor starting method. As shown in FIG. 1 , the main processing steps include:
  • Step S11 When receiving the motor start signal, generate a driving power source with a fixed period waveform to trigger the thyristor;
  • Step S12 The triggering time of the driving power source is counted, and when the timing time reaches the preset time threshold, the driving power is cut off.
  • the thyristor is triggered by a driving power source having a fixed period waveform, and the triggering time is counted, and the driving power source is cut off according to the timing result, so that the starting process is precisely controllable, thereby avoiding the ambient temperature.
  • the interference of the starter power supply to the starting process improves the accuracy of the motor starter control of the starting process, and more satisfies the motor starting requirements.
  • the trigger of the thyristor is controlled by a driving power source having a fixed waveform, and in order to improve the accuracy of the control, it is necessary to control the waveform, period, peak value, and trigger time of the driving power source.
  • the power supply of the motor starter is generally sinusoidal or cosine alternating current, it is possible to generate the driving power for triggering the thyristor by utilizing the periodicity of the power supply of the starter itself.
  • the periodic waveform of the driving power source generated in the embodiment of the present invention may be set according to actual needs, for example, the generated waveform is a square wave, a sine wave or a cosine wave.
  • the thyristor is triggered by the driving power source having a fixed period waveform, because the periodic waveforms of the driving power source are fixed, so that the precise control of the triggering time of the thyristor can be realized by timing the triggering time.
  • the timing mode includes: when the motor power-on signal is received, the driving power source triggers the thyristor, so the timing is started when the motor power-on signal is received.
  • the timing of the driving power source can be counted by counting the driving power source.
  • the accuracy of the thyristor trigger is increased by timing the drive supply.
  • the starter such as the PTC starter, still needs to consume a certain current to maintain the temperature of the PTC after the start of the start, thereby causing the motor to have a certain power consumption throughout the working time.
  • the driving power source is cut off, which can save energy compared with the prior art.
  • the counter wave corresponding to the drive power supply period can be directly generated by the oscillator.
  • the power supply of the motor starter is generally a sinusoidal or cosine power supply having a fixed period, the periodicity of the power supply of the starter can be utilized to generate a corresponding count wave.
  • the specific implementation manner may be: comparing the power supply of the motor starter with the motor power supply neutral line, and generating a counting wave corresponding to the driving power supply period according to the comparison result.
  • the period of the driving power source and the counting wave for timing can be corresponding to the period of the power supply of the motor starter, when the startup control of the starter is specifically implemented, the periodicity of the power supply of the starter can be utilized. A counting wave is generated, and the corresponding driving power is generated by using the periodicity of the counting wave and corresponding timing is performed.
  • the embodiment of the invention also provides a motor starter, as shown in FIG. 2, which can accurately control the trigger current and trigger of the thyristor in the starter by introducing a high-precision analog and digital circuit to form a control circuit.
  • Time, to achieve precise control of the working time of the starting winding is not affected by factors such as ambient temperature and supply voltage; the triggering mode and trigger current of the thyristor remain unchanged throughout the starting process, and can be widely adapted to a wide range of
  • the silicon control parameters reduce the requirements on the device; after the startup process, the shutdown state of the startup winding can be maintained with very low power consumption.
  • the starter of the embodiment of the present invention includes: a driving power source triggering module 31, configured to generate a driving power source with a fixed period waveform to trigger the thyristor when receiving the motor starting signal;
  • the timing module 32 is configured to time the triggering time of the driving power source, and when the timing time reaches the preset time threshold, the driving power is cut off.
  • the driving power supply triggering module 31 includes: a first counting wave generator for generating a counting wave corresponding to a waveform period of a power supply of the motor starter when receiving the motor power-on signal; and driving the power generator, It is used to generate a driving waveform corresponding to the rising edge and the falling edge of the counting wave, and the continuous driving waveform constitutes a driving power source.
  • the driving power trigger module 31 may further be a waveform generator for generating a driving power source for continuously triggering the thyristor when receiving the power-on signal of the motor.
  • the second counting wave generator is configured to generate a counting wave corresponding to the driving power supply cycle when receiving the motor power-on signal, and a counter for counting the counting wave, when the counting result is equal to the set threshold , cut off the signal, cut off the drive power.
  • the second counting wave generator includes: a comparator; the comparator includes two input ends respectively connected to the power supply of the motor starter and the power supply neutral of the motor for power supply and the motor The power supply neutral line is compared, and a counting wave corresponding to the driving power supply period is generated according to the comparison result;
  • the second count wave generator described above is an oscillator for generating a count wave corresponding to a drive power cycle.
  • the first counter wave generator and the second counter wave generator described above may be the same module.
  • the motor starter includes a comparator, and the two input ends of the comparator are respectively connected with the power supply S of the motor starter and the power supply neutral line N of the motor for supplying the power supply S and the motor power supply neutral.
  • N compares and generates a counting square wave CK corresponding to the driving power supply period based on the comparison result.
  • Figure 5 shows the waveforms of the power supply S and the square wave CK. It can be seen from the figure that the power supply S is a sine wave, and the power supply S and the square wave CK cycle are the same; the corresponding power supply S is greater than zero.
  • the value of the square wave CK is positive, corresponding to the value of the power supply S that is less than zero, and the square wave CK takes a value of zero.
  • the rising edge of the corresponding square wave CK drives the power generator to generate a square wave waveform with a fixed fixed length and a positive value, which is output to the G terminal of the thyristor, which is the trigger of the first quadrant.
  • the driving power generator Corresponding to the falling edge of the square wave CK, the driving power generator generates a square wave waveform with a fixed fixed length and a negative value, and outputs it to the G terminal of the thyristor, which is the trigger of the third quadrant; the continuously generated positive value waveform and the negative
  • the value waveform constitutes a driving power source to trigger the thyristor, wherein the waveform value of the driving power source can be set according to actual needs, for example, the rising edge of the corresponding square wave CK drives the power generator to generate a square wave waveform with a fixed fixed length and a negative negative value.
  • the falling edge of the corresponding square wave CK drives the power generator to generate a square wave waveform with a fixed fixed duration and a positive value.
  • this example uses the counter square wave CK to count, and when the set threshold is reached, the cutoff signal PD is issued to cut off the driving power.
  • the threshold is set to 60.
  • the cutoff signal PD is output to stop the working process of each module, and the precise control of the startup process is realized while saving power consumption. Taking a 50 Hz power supply as an example, the entire startup process is 1.2 seconds; if the power supply is 60 Hz, the startup process is 1 second.
  • the motor starter of the embodiment of the present invention further includes: a starter power supply processing module for outputting a positive power supply VDD and a negative power supply VEE, wherein the output positive power supply VDD and negative power supply VEE are used as starters. Power supply for each module;
  • the power supply processing module of the starter includes: a high voltage capacitor C1, a diode D1, a diode D2, a storage capacitor C2, a storage capacitor C3, a Zener diode D3, and a Zener diode D4;
  • One end of the high voltage capacitor C1 is connected to the power supply S of the motor starter, and the other end is connected to the anode of the diode D1 and the cathode of the diode D2, respectively.
  • the cathode of the diode D1, the storage capacitor C2, the storage capacitor C3 and the anode of the diode D2 are sequentially
  • the series connection of the diode D1 and the storage capacitor C2 is connected to the cathode of the Zener diode D3;
  • the series node of the diode D2 and the storage capacitor C3 is connected to the anode of the Zener diode D4;
  • the anode of the Zener diode D3 is separately regulated
  • the cathode of the diode D4 and the storage capacitor C2 are connected to the series node of the storage capacitor C3.
  • the functions of the first counter wave generator and the second wave counter described above are realized by using the comparator, thereby realizing the simple design of the circuit, making the circuit structure more reasonable and satisfying the circuit.
  • the actual design needs.
  • the motor starter of the present example includes: a waveform generator, an oscillator, and a counter; wherein the waveform generator is configured to generate a driving power source for continuously triggering the thyristor when receiving the motor power-on signal;
  • the oscillator is configured to generate a counting wave corresponding to the driving power cycle;
  • the counter is configured to count the counting wave, and when the counting result is equal to the set threshold, a cutting signal is issued to cut off the driving power.
  • the motor starter of this example further includes a starter power supply processing module for outputting a DC power supply VDD, and the output DC power supply VDD is used to supply power to each module of the starter.
  • the starter power supply processing module includes: a diode D5, a resistor R, a Zener diode D6, an NMOS transistor, and an energy storage capacitor C4;
  • the anode of the diode D5 is connected to the power supply of the motor starter, and the cathode of the diode D5 is respectively connected to one end of the resistor R and the drain of the NMOS transistor; the other end of the resistor R is respectively connected to the cathode of the Zener diode D6 and the gate of the NMOS transistor. Connected, the anode of the Zener diode D6 The other end of the storage capacitor C4 is connected to the source of the NMOS transistor.
  • the square wave CK can be generated by using the comparator in the first example to compare the power supply S with the motor power supply neutral N, and generate a counting square wave CK corresponding to the driving power cycle according to the comparison result;
  • the manner in which the comparator generates the square wave CK can also be generated using the oscillator in this example.
  • the DC power supply VDD output from the initiator power supply processing module is used to supply power to each module of the initiator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)

Abstract

一种电动机启动方法及启动器,该启动方法包括接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅,对驱动电源的触发时间计时,当计时时间达到预设时间阈值时,切断驱动电源,该方法提高了启动的精确程度,避免了环境温度及供电电源对启动过程的干扰。

Description

电动机启动方法及启动器 技术领域
本发明涉及电动机技术领域,具体而言,涉及电动机启动方法及启动器。
背景技术
电动机驱动压缩机将低压气体提升为高压气体,是制冷系统中的关键设备。冰箱、空调等制冷设备中使用的电动机正常工作中需要频繁的启动和停止以实现其制冷或制热的功能,以使环境温度稳定在设定的数值。为实现电动机的启动,在电动机中设计有主绕组及启动绕组,当电动机启动时,接通启动绕组和主绕组;电动机进入正常工作状态时,切断启动绕组仅由主绕组进行工作。为控制主绕组与启动绕组之间的切换,在电动机中设置有启动器。
相关技术中常用的启动器包括高分子聚合物正温度系统PTC启动器、互感器型启动器、PTC纯机械式起动器及重锤式启动器。
其中,PTC启动器通过PTC的阻值随温度变化的特性控制电动机中可控硅的门极电流,由此实现当电动机启动后经过一定时间,PTC发热温度升高,阻值变大从而减小可控硅的驱动电流,最终关断可控硅,达到切断启动绕组回路的目的。此类启动器实现了延时关断启动绕组,但从通电到PTC升温至关断启动绕组这段时间受环境温度、供电电压等因素影响,无法做到精确控制。
另一类是互感器启动器,此类启动器通过检测电机电流的大小(启动瞬间和正常运行时电流大小不同),当电流回落后,互感器上用于驱动可控硅的触发电流变小,当达不到可控硅的开通条件时,可控硅关断。此类启动器需要很精确的互感器,生产工序复杂,成本相对较高,对可控硅的参数亦有极高的要求。
PTC纯机械式起动器,在PTC上会始终有功率损耗,能耗较高。传统机械重锤式,此类启动器存在机械可靠性的限制,不能达到机器工作寿命的要求,亦会有打火隐患,不适用于高效易燃易爆的冷媒环境。
由此看出,相关技术中的电动机启动器存在对启动过程控制的精确度相对较低的技术问题。
发明内容
本发明的目的在于提供电动机启动方法及启动器,以解决上述的问题。
在本发明的实施例中提供了一种电动机启动方法,包括:接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅;对所述驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断所述驱动电源。
优选地,所述接收到电动机启动信号时,生成具有固定波形的驱动电源触发可控硅,包括:接收到电动机上电信号时,生成与电动机启动器的供电电源的波形周期相对应的计数波;对应所述计数波的上升沿及下降沿,生成驱动波形,连续的所述驱动波形构成所述驱动电源;或,接收到电动机上电信号时,利用波形生成器生成用于连续触发所述可控硅的驱动电源。
优选地,所述对所述驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断所述驱动电源,包括:接收到电动机上电信号时,生成与所述驱动电源周期对应的计数波;对所述计数波计数,当计数结果等于设定阈值时,发出切断信号,切断所述驱动电源。
优选地,所述生成与所述驱动电源周期对应的计数波,包括:将电动机启动器的供电电源与电动机供电零线比较,根据比较结果生成与驱动电源周期对应的计数波;或,利用振荡器生成与所述驱动电源周期对应的计数波。
本发明实施例还提供了一种电动机启动器,包括:驱动电源触发模块,用于接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅;计时模块,用于对所述驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断所述驱动电源。
优选地,所述驱动电源触发模块,包括:第一计数波生成器,用于接收到电动机上电信号时,生成与电动机启动器的供电电源的波形周期相对应的计数波;驱动电源生成器,用于对应所述计数波的上升沿及下降沿,生成驱动波形,连续的所述驱动波形构成所述驱动电源;
或,所述驱动电源触发模块为波形生成器,用于接收到电动机上电信号时,生成用于连续触发所述可控硅的驱动电源。
优选地,所述计时模块,包括:第二计数波生成器,用于接收到电动机上电信号时,生成与所述驱动电源周期对应的计数波;计数器,用于对所述计数波计数,当计数结果等于设定阈值时,发出切断信号,切断所述驱动电源。
优选地,所述第二计数波生成器,包括:比较器;所述比较器包括两个输入端,该两个输入端分别与电动机启动器的供电电源及所述电动机的供电零线连接,用于将所述供电电源与电动机供电零线比较,并根据比较结果生成与驱动电源周期对应的计数波;
或,所述第二计数波生成器为振荡器,用于生成与所述驱动电源周期对应的计数波。
优选地,所述启动器还包括:启动器供电电源处理模块,用于输出正电源VDD及负电源VEE;所述启动器供电电源处理模块包括:高压电容C1、二极管D1、二极管D2、蓄能电容C2、蓄能电容C3、稳压二极管D3及稳压二极管D4;所述高压电容C1的一端与所述电动机启动器的供电电源连接,另一端分别与所述二极管D1的阳极及所述二极管D2的阴极连接,所述二极管D1的阴极、所述蓄能电容C2、所述蓄能电容C3及所述二极管D2的阳极依次串联;所述二极管D1与所述蓄能电容C2的串联节点与所述稳压二极管D3的阴极连接;所述二极管D2与所述蓄能电容C3的串联节点与所述稳压二极管D4的阳极连接;所述稳压二极管D3的阳极分别与所述稳压二极管D4的阴极及所述蓄能电容C2与所述蓄能电容C3的串联节点连接。
优选地,所述启动器还包括:启动器供电电源处理模块,用于输出直流电源VDD;所述启动器供电电源处理模块包括:二极管D5、电阻R、稳压二极管D6、NMOS晶体管、蓄能电容C4;所述二极管D5的阳极与所述电动机启动器的供电电源连接,所述二极管D5的阴极分别与所述电阻R的一端及所述NMOS晶体管的漏极连接;所述电阻R的另一端分别与所述稳压二极管D6的阴极及所述NMOS晶体管的栅极连接,所述稳压二极管D6的阳极分别与所述 电动机的供电零线及所述蓄能电容C4的一端连接;所述蓄能电容C4的另一端与所述NMOS晶体管的源极连接。
本发明实施例提供的电动机启动方法及启动器,利用具有固定周期波形的驱动电源触发可控硅,并且对触发时间进行计时,根据计时的结果切断驱动电源,使得启动过程精确可控,由此避免了环境温度及启动器供电电源对启动过程的干扰,提高了电动机启动器对启动过程控制的精确度,更能满足电动机启动需求。
附图说明
图1示出了本发明实施例中电动机启动方法的流程图;
图2示出了本发明实施例中电动机的部分结构示意图;
图3示出了本发明实施例中电动机启动器的结构示意图;
图4示出了本发明第一示例中电动机启动器的结构示意图;
图5示出了本发明第一示例中所产生波形的示意图;
图6示出了本发明第二示例中电动机启动器的结构示意图。
具体实施方式
下面通过具体的实施例子并结合附图对本发明做进一步的详细描述。
本发明实施例提供了一种电动机启动方法,如图1所示,主要处理步骤包括:
步骤S11:接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅;
步骤S12:对驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断驱动电源。
本发明实施例的电动机启动方法,利用具有固定周期波形的驱动电源触发可控硅,并且对触发时间进行计时,根据计时的结果切断驱动电源,使得启动过程精确可控,由此避免了环境温度及启动器供电电源对启动过程的干扰,提高了电动机启动器对启动过程控制的精确度,更能满足电动机启动需求。
本发明中,利用具有固定波形的驱动电源对可控硅的触发进行控制,为了提高控制的精度,则需要对驱动电源的波形、周期、峰值及触发时间进行控制。
其中,提供上述具有固定周期波形的驱动电源触发可控硅的方式有多种,本发明实施例中仅给出相关示例进行说明。
因为电动机启动器的供电电源一般为正弦或余弦交流电,由此可以利用启动器供电电源本身所具有的周期性,产生触发可控硅的驱动电源。
具体地,当接收到电动机上电信号时,生成与电动机启动器的供电电源的波形周期相对应的计数波;对应计数波的上升沿及下降沿,生成具有驱动波形,连续的驱动波形构成驱动电源。
另外,为了使生成的驱动电源的波形固定,还可以在接收到电动机上电信号时,利用波形生成器生成用于连续触发可控硅的驱动电源。
本发明实施例中生成的驱动电源的周期波形可根据实际需要设置,例如生成的波形为方波、正弦波或余弦波等。
本发明中,利用具有固定周期波形的驱动电源触发可控硅,因为驱动电源的周期波形均固定,因此为实现对可控硅触发时间的精确控制,可通过对触发时间进行计时的方式实现。
具体地计时方式包括:因为接收到电动机上电信号时,驱动电源触发可控硅,因此该接收到电动机上电信号时即开始计时。
因为驱动电源具有固定周期,因此可以利用对驱动电源计数的方式实现对驱动电源的计时。
基于该思想,当接收到电动机上电信号时,生成与驱动电源周期对应的计数波;对计数波计数,当计数结果等于设定阈值时,发出切断信号,切断驱动电源。
通过对驱动电源计时的方式提高了对可控硅触发的精确程度。
另外,相关技术中启动器,例如PTC启动器在启动结束后,仍需要消耗一定的电流以维持PTC的温度,由此使得电动机在整个工作时间中存在一定的能耗。
而本发明实施例的启动方法中,可控硅的触发时间达到设定值时,即切断驱动电源,相对于现有技术更能节约能耗。
对于上述生成计数波,可以利用振荡器直接生成与驱动电源周期对应的计数波。
另外,因为电动机启动器的供电电源一般为具有固定周期的正弦或余弦电源,因此可以利用启动器供电电源的周期性,生成相应的计数波。
具体实现方式可以为:将电动机启动器的供电电源与电动机供电零线比较,根据比较结果生成与驱动电源周期对应的计数波。
将电动机启动器的供电电源与电动机供电零线比较时,当供电电源大于供电零线时,生成正值方波,否则生成负值或零值方波;或当供电电源大于供电零线时,生成负值或零值方波;否则,生成正值方波。
进一步地,因为驱动电源及用于计时的计数波的周期均可以与电动机启动器的供电电源的周期产生对应关系,因此在具体实现启动器的启动控制时,可以利用启动器供电电源的周期性产生计数波,利用该计数波的周期性产生相应的驱动电源及进行相应的计时。
本发明实施例还提供了一种电动机启动器,如图2所示,该启动器通过引入高精度的模拟和数字电路组成控制电路,可以精确控制启动器中的可控硅的触发电流和触发时间,实现对启动绕组工作时间的精确控制,不受环境温度和供电电压等因素影响;在整个启动过程中对可控硅的触发方式和触发电流保持不变,可广泛适配大范围的可控硅参数,降低对器件的要求;启动过程结束后也只需极低功耗即可维持启动绕组的关断状态。
基于上述的设计思想,本发明实施例的启动器,如图3所示,包括:驱动电源触发模块31,用于接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅;计时模块32,用于对驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断驱动电源。
对于上述的驱动电源触发模块31,包括:第一计数波生成器,用于接收到电动机上电信号时,生成与电动机启动器的供电电源的波形周期相对应的计数波;驱动电源生成器,用于对应计数波的上升沿及下降沿,生成驱动波形,连续的驱动波形构成驱动电源。
另外上述的驱动电源触发模块31还可以为波形生成器,用于接收到电动机上电信号时,生成用于连续触发可控硅的驱动电源。
对于计时模块32,包括第二计数波生成器,用于接收到电动机上电信号时,生成与驱动电源周期对应的计数波;计数器,用于对计数波计数,当计数结果等于设定阈值时,发出切断信号,切断驱动电源。
上述的第二计数波生成器,包括:比较器;比较器包括两个输入端,该两个输入端分别与电动机启动器的供电电源及电动机的供电零线连接,用于将供电电源与电动机供电零线比较,并根据比较结果生成与驱动电源周期对应的计数波;
或者,上述的第二计数波生成器为振荡器,用于生成与驱动电源周期对应的计数波。
对于上述的第一计数波生成器及第二计数波生成器可以为同一模块。
针对上述电动机启动器的设计思路,本发明实施例中进一步地提供了启动器的两种具体示例。
示例一:
如图4所示,该电动机启动器包括比较器,比较器的两个输入端分别与电动机启动器的供电电源S及电动机的供电零线N连接,用于将供电电源S与电动机供电零线N比较,并根据比较结果生成与驱动电源周期对应的计数方波CK。
如图5示出了供电电源S及方波CK的波形,从图中可以看出供电电源S为正弦波,且供电电源S与方波CK周期相同;对应供电电源S的大于零 的值,方波CK取值为正,对应供电电源S的小于零的值,方波CK取值为零。
如图5中的波形G所示,对应方波CK的上升沿驱动电源生成器生成一个固定时长固定正值的方波波形,其输出到可控硅的G端,此为第一象限的触发;对应方波CK的下降沿驱动电源生成器生成一个固定时长固定负值的方波波形,其输出到可控硅的G端,此为第三象限的触发;连续生成的正值波形与负值波形组成驱动电源触发可控硅,其中驱动电源的波形取值可以根据实际需要进行设定,例如,对应方波CK的上升沿驱动电源生成器生成一个固定时长固定负值的方波波形,对应方波CK的下降沿驱动电源生成器生成一个固定时长固定正值的方波波形。
对于计时,本示例采用计数器对方波CK进行计数,当达到设定阈值时,发出切断信号PD,切断驱动电源。
例如,设定阈值为60,当方波CK的周期个数为60个时,输出切断信号PD,用于停止各模块的工作进程,实现启动过程的精确控制同时节约功耗。以50Hz供电电源为例,整个启动过程为1.2秒;若供电电源为60Hz,则启动过程为1秒。
如图4所示,本发明实施例的电动机启动器还包括:启动器供电电源处理模块,用于输出正电源VDD及负电源VEE,其中输出的正电源VDD及负电源VEE用于为启动器各模块供电;
具体地,启动器供电电源处理模块包括:高压电容C1、二极管D1、二极管D2、蓄能电容C2、蓄能电容C3、稳压二极管D3及稳压二极管D4;
高压电容C1的一端与电动机启动器的供电电源S连接,另一端分别与二极管D1的阳极及二极管D2的阴极连接,二极管D1的阴极、蓄能电容C2、蓄能电容C3及二极管D2的阳极依次串联;二极管D1与蓄能电容C2的串联节点与稳压二极管D3的阴极连接;二极管D2与蓄能电容C3的串联节点与稳压二极管D4的阳极连接;稳压二极管D3的阳极分别与稳压二极管D4的阴极及蓄能电容C2与蓄能电容C3的串联节点连接。
本示例的电动机启动器在实现过程中,利用比较器,同时实现了上述的第一计数波生成器与第二波计数器的功能,实现了电路的简洁设计,使电路结构更加合理更能满足电路的实际设计需求。
示例二:
如图6所示,本示例的电动机启动器包括:波形生成器、振荡器及计数器;其中波形生成器,用于接收到电动机上电信号时,生成用于连续触发可控硅的驱动电源;振荡器,用于生成与驱动电源周期对应的计数波;计数器,用于对计数波计数,当计数结果等于设定阈值时,发出切断信号,切断驱动电源。
该示例的电动机启动器还包括:启动器供电电源处理模块,用于输出直流电源VDD,输出的直流电源VDD用于为启动器的各模块供电。
启动器供电电源处理模块包括:二极管D5、电阻R、稳压二极管D6、NMOS晶体管、蓄能电容C4;
二极管D5的阳极与电动机启动器的供电电源连接,二极管D5的阴极分别与电阻R的一端及NMOS晶体管的漏极连接;电阻R的另一端分别与稳压二极管D6的阴极及NMOS晶体管的栅极连接,稳压二极管D6的阳极分别 与电动机的供电零线及蓄能电容C4的一端连接;蓄能电容C4的另一端与NMOS晶体管的源极连接。
本示例中方波CK的生成方式也可以采用示例一中采用比较器将供电电源S与电动机供电零线N比较,并根据比较结果生成与驱动电源周期对应的计数方波CK;同理示例一中采用比较器生成计数方波CK的方式也可采用本示例中的振荡器生成。
本示例中启动器供电电源处理模块输出的直流电源VDD用于为启动器各模块提供电源。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电动机启动方法,其特征在于,包括:
    接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅;
    对所述驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断所述驱动电源。
  2. 根据权利要求1所述的方法,其特征在于,所述接收到电动机启动信号时,生成具有固定波形的驱动电源触发可控硅,包括:
    接收到电动机上电信号时,生成与电动机启动器的供电电源的波形周期相对应的计数波;对应所述计数波的上升沿及下降沿,生成驱动波形,连续的所述驱动波形构成所述驱动电源;
    或,接收到电动机上电信号时,利用波形生成器生成用于连续触发所述可控硅的驱动电源。
  3. 根据权利要求1所述的方法,其特征在于,所述对所述驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断所述驱动电源,包括:
    接收到电动机上电信号时,生成与所述驱动电源周期对应的计数波;对所述计数波计数,当计数结果等于设定阈值时,发出切断信号,切断所述驱动电源。
  4. 根据权利要求3所述的方法,其特征在于,所述生成与所述驱动电源周期对应的计数波,包括:
    将电动机启动器的供电电源与电动机供电零线比较,根据比较结果生成与驱动电源周期对应的计数波;或,利用振荡器生成与所述驱动电源周期对应的计数波。
  5. 一种电动机启动器,其特征在于,包括:
    驱动电源触发模块,用于接收到电动机启动信号时,生成具有固定周期波形的驱动电源触发可控硅;
    计时模块,用于对所述驱动电源的触发时间进行计时,当计时时间达到预设时间阈值时,切断所述驱动电源。
  6. 根据权利要求5所述的启动器,其特征在于,所述驱动电源触发模块,包括:第一计数波生成器,用于接收到电动机上电信号时,生成与电动机启动器的供电电源的波形周期相对应的计数波;驱动电源生成器,用于对应所述计数波的上升沿及下降沿,生成驱动波形,连续的所述驱动波形构成所述驱动电源;
    或,所述驱动电源触发模块为波形生成器,用于接收到电动机上电信号时,生成用于连续触发所述可控硅的驱动电源。
  7. 根据权利要求5所述的启动器,其特征在于,所述计时模块,包括:第二计数波生成器,用于接收到电动机上电信号时,生成与所述驱动电源周期对应的计数波;计数器,用于对所述计数波计数,当计数结果等于设定阈值时,发出切断信号,切断所述驱动电源。
  8. 根据权利要求7所述的启动器,其特征在于,所述第二计数波生成器,包括:比较器;所述比较器包括两个输入端,该两个输入端分别与电动机启动器的供电电源及所述电动机的供电零线连接,用于将所述供电 电源与电动机供电零线比较,并根据比较结果生成与驱动电源周期对应的计数波;
    或,所述第二计数波生成器为振荡器,用于生成与所述驱动电源周期对应的计数波。
  9. 根据权利要求5所述的启动器,其特征在于,还包括:启动器供电电源处理模块,用于输出正电源VDD及负电源VEE;
    所述启动器供电电源处理模块包括:高压电容C1、二极管D1、二极管D2、蓄能电容C2、蓄能电容C3、稳压二极管D3及稳压二极管D4;
    所述高压电容C1的一端与所述电动机启动器的供电电源连接,另一端分别与所述二极管D1的阳极及所述二极管D2的阴极连接,所述二极管D1的阴极、所述蓄能电容C2、所述蓄能电容C3及所述二极管D2的阳极依次串联;所述二极管D1与所述蓄能电容C2的串联节点与所述稳压二极管D3的阴极连接;所述二极管D2与所述蓄能电容C3的串联节点与所述稳压二极管D4的阳极连接;所述稳压二极管D3的阳极分别与所述稳压二极管D4的阴极及所述蓄能电容C2与所述蓄能电容C3的串联节点连接。
  10. 根据权利要求5所述的启动器,其特征在于,还包括:启动器供电电源处理模块,用于输出直流电源VDD;
    所述启动器供电电源处理模块包括:二极管D5、电阻R、稳压二极管D6、NMOS晶体管、蓄能电容C4;
    所述二极管D5的阳极与所述电动机启动器的供电电源连接,所述二极管D5的阴极分别与所述电阻R的一端及所述NMOS晶体管的漏极连接;所述电阻R的另一端分别与所述稳压二极管D6的阴极及所述NMOS晶体管的 栅极连接,所述稳压二极管D6的阳极分别与所述电动机的供电零线及所述蓄能电容C4的一端连接;所述蓄能电容C4的另一端与所述NMOS晶体管的源极连接。
PCT/CN2014/093046 2014-08-06 2014-12-04 电动机启动方法及启动器 WO2016019664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410383442.9 2014-08-06
CN201410383442.9A CN104124903A (zh) 2014-08-06 2014-08-06 电动机启动方法及启动器

Publications (1)

Publication Number Publication Date
WO2016019664A1 true WO2016019664A1 (zh) 2016-02-11

Family

ID=51770196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093046 WO2016019664A1 (zh) 2014-08-06 2014-12-04 电动机启动方法及启动器

Country Status (2)

Country Link
CN (1) CN104124903A (zh)
WO (1) WO2016019664A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124903A (zh) * 2014-08-06 2014-10-29 刘永强 电动机启动方法及启动器
CN109066596A (zh) * 2018-09-20 2018-12-21 哈尔滨理工大学 可调节电机工作状态的电机电路保护器及其工作方法
CN110932605A (zh) * 2019-11-28 2020-03-27 昆山芯信安电子科技有限公司 电动机启动方法及启动器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2650389Y (zh) * 2003-09-08 2004-10-20 浙江嘉科电子有限公司 电子式压缩机电机启动器
CN201422093Y (zh) * 2009-04-27 2010-03-10 中山大洋电机股份有限公司 单相交流电机电子启动电路
CN104124903A (zh) * 2014-08-06 2014-10-29 刘永强 电动机启动方法及启动器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095207B1 (en) * 2002-10-22 2006-08-22 Ykm Technologies, Llc Load and speed sensitive motor starting circuit and method
CN201585174U (zh) * 2009-12-18 2010-09-15 深圳市福瑞康电子有限公司 Led驱动电路
CN102158149B (zh) * 2011-04-22 2019-05-07 上海施达电子科技有限公司 一种用于小型制冷压缩机电机起动的电子电路
CN202475283U (zh) * 2012-02-07 2012-10-03 苏州路之遥科技股份有限公司 一种双半波双电压稳压电源电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2650389Y (zh) * 2003-09-08 2004-10-20 浙江嘉科电子有限公司 电子式压缩机电机启动器
CN201422093Y (zh) * 2009-04-27 2010-03-10 中山大洋电机股份有限公司 单相交流电机电子启动电路
CN104124903A (zh) * 2014-08-06 2014-10-29 刘永强 电动机启动方法及启动器

Also Published As

Publication number Publication date
CN104124903A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
JP4815502B2 (ja) 内燃機関の制御装置
WO2016019664A1 (zh) 电动机启动方法及启动器
US10284122B2 (en) Method for stopping a compressor and compressor of a refrigeration appliance
JP2013207363A5 (zh)
US20100208395A1 (en) Surge current protection circuit and motor using the same
US8248020B2 (en) Starting circuit for single-phase AC motor
CN110932605A (zh) 电动机启动方法及启动器
US8988000B2 (en) Power supply device and illumination device
JP5957373B2 (ja) 充放電装置
CN109405378A (zh) 一种半导体制冷片的工作控制方法和除湿器
RU2009133822A (ru) Способ управления электродвигателями реверсора тяги
JP2009127438A (ja) スタータ制御装置及びガスタービン発電装置
WO2015061950A1 (zh) 直流变频电动机控制装置
JP2017093281A5 (zh)
JP2009228955A (ja) 冷蔵庫
TWM520155U (zh) 用於啟動兼發電系統之電源控制電路
BRPI1104773A2 (pt) eletrodomÉstico, sistema e mÉtodo de controle de eletrodomÉsticos
JP2013051777A (ja) 過電流保護回路
JP2014060904A (ja) 電源装置及び照明装置
WO2008038125A3 (en) Electronic starter device for an electric motor, in particular for a compressor of a refrigerating circuit of an electric household appliance
KR102041395B1 (ko) 압축식 냉각 제어시스템 및 이를 이용한 압축식 냉각 제어방법
Jos et al. Thyristorised Starter for Induction Machine Drive
CN104378860A (zh) 单结晶体管触发电路
CN206628432U (zh) 开关设备脱扣线圈保护装置
KR20020039067A (ko) 리니어 컴프레샤의 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/07/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14899100

Country of ref document: EP

Kind code of ref document: A1