WO2016019640A1 - 微粒板共振吸声结构 - Google Patents

微粒板共振吸声结构 Download PDF

Info

Publication number
WO2016019640A1
WO2016019640A1 PCT/CN2014/089987 CN2014089987W WO2016019640A1 WO 2016019640 A1 WO2016019640 A1 WO 2016019640A1 CN 2014089987 W CN2014089987 W CN 2014089987W WO 2016019640 A1 WO2016019640 A1 WO 2016019640A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
particle
sound absorbing
sound absorption
cavity
Prior art date
Application number
PCT/CN2014/089987
Other languages
English (en)
French (fr)
Inventor
钱伟鑫
沈加曙
Original Assignee
四川正升声学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川正升声学科技有限公司 filed Critical 四川正升声学科技有限公司
Publication of WO2016019640A1 publication Critical patent/WO2016019640A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/165Particles in a matrix
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the invention relates to a sound absorbing structure for noise control, in particular to a particle plate resonance sound absorbing structure.
  • Perforated plate resonant sound absorbing structures and micro-perforated plate resonant sound absorbing structures are widely used in the field of noise control.
  • the mechanism of the sound absorbing structure of the perforated plate is that when the sound wave enters the small hole, the air vibration in the cavity is excited. If the acoustic wave frequency is equal to the resonant frequency of the structure, the air in the cavity resonates and turns from friction to heat loss, thereby causing sound absorption.
  • the perforated plate structure can be considered as a plurality of air resonance sound absorbing structures or Helmholtz resonators in parallel.
  • the micro-perforated plate sound absorbing structure is a box-shaped structure including a micro-perforated plate facing one side of the sound source, the micro-perforated plate is opposite to the bottom plate which is usually a rigid plate, and the two sides are connected by a side plate, the micro-perforated plate and the bottom plate There is no cavity between the bottom plate and the side plate, and the cavity communicates with the outside through the hole on the microperforation plate.
  • the micro-perforated plate resonance sound absorption structure has the main feature that the perforation diameter is less than 1 mm, and the sound absorption band width can be superior to the conventional perforated plate resonance sound absorption structure.
  • the sound absorbing structure of the micro-perforated plate has a single-layer structure and a multi-layer structure.
  • the single-layer structure has only one micro-perforated plate at the front end of the bottom plate, and the multi-layer structure is spaced between the frontmost micro-perforated plate and the bottom plate at the last end.
  • the resonant sound absorbing structure and the perforated sound absorbing structure currently used are very narrow in the sound absorption band. Affect its use.
  • the micro-perforated plate sound absorption theory established by Ma Dazhao in China has solved the problem of sound absorption coefficient and sound absorption frequency band.
  • the frequency band of the micro-perforated sound absorbing structure is about 3 octaves and the sound absorption coefficient is greater than 0.5.
  • an ultra-microporous structure having a hole diameter of 0.3 mm or less is required. Millions of ultra-micropores with a pore size as small as 0.3 mm need to be punched out per square meter of plate.
  • micro-perforated plate processing technologies mainly include: laser drilling technology, mechanical stamping technology and chemical etching technology.
  • Mechanical stamping technology has the advantages of low equipment investment, low maintenance cost, easy to master, fast processing speed and good quality. However, when the processing aperture and the pore distribution parameters change, the mold needs to be replaced, and the mechanical stamping die processing is difficult.
  • the chemical etching technique is suitable for processing micropores on metal sheets, but there is no mature processing method for processing micropores on fiber-free plastic films.
  • the price of the micro-perforated sound-absorbing structure reaches about 500-900 yuan / square meter.
  • the micro-perforated plate sound absorption structure Due to its own periodic sound absorption characteristics, the micro-perforated plate sound absorption structure is in practical use, on the one hand, its resonance frequency corresponds to the main frequency component of the actual noise; on the other hand, the sound absorption bandwidth should be maximized.
  • Professor Ma Dazhao calculated and analyzed in the literature that the sound absorption bandwidth of the microperforated plate resonance structure is directly related to its acoustic resistance, and the sound absorption bandwidth becomes larger as the acoustic resistance increases, but the sound absorption coefficient decreases.
  • the bandwidth of the sound absorption coefficient greater than 0.5 is about 3 octaves, which is The bandwidth limit of the microperforated panel sound absorbing structure.
  • the calculation can be performed or the chart can be checked, and the calculation result is similar to the measured result.
  • a double-layer or multi-layer micro-perforated plate composite structure with different apertures and different perforation rates is often used.
  • the performance of the microperforated sound absorbing structure is mainly determined by the thickness of the microperforated plate, the diameter of the perforation, the perforation rate and the depth of the cavity.
  • the plate thickness mainly affects the absorption performance of the sound absorbing structure at resonance. As the thickness increases, the sound absorption coefficient increases at the resonance frequency; the resonance frequency shifts slightly toward the low frequency direction.
  • the diameter of the perforation affects the width of the sound absorption band, the position of the resonance frequency, and the sound absorption coefficient at the sound absorption resonance frequency.
  • the diameter of the perforation becomes smaller, the sound absorption band width increases, the resonance frequency moves toward the high frequency, and the sound absorption coefficient increases.
  • the perforation rate also affects the width of the sound absorption band, the position of the resonance frequency, and the sound absorption coefficient at the resonance frequency. As the perforation rate increases, the sound absorption band width increases; the resonance frequency shifts toward the high frequency; but the sound absorption coefficient decreases.
  • the depth of the cavity primarily affects the resonant frequency. As the depth of the cavity increases, the resonant frequency moves toward the low frequency end, and for every doubling of the cavity depth, the sound absorption peak shifts approximately one octave toward the low frequency, and the bandwidth generally remains unchanged.
  • Micro-perforated plates with a diameter of less than 0.3mm require complex mechanical equipment to be processed, resulting in high prices and affecting their promotion.
  • the micropores of the microperforated sound absorbing structure tend to be clogged. Cannot be used in complex environments, especially outdoor and industrial locations. It is also inconvenient to clean.
  • the cavity thickness directly affects the outer dimensions of the micro-perforated plate resonance sound absorbing structure.
  • the micro-perforated plate thickness, perforation diameter and perforation rate directly affect the processing difficulty, which is the key factor determining the cost of the micro-perforated plate resonance sound absorption structure.
  • the acquisition technology of the small aperture micro-perforated plate is the key technology to convert the micro-perforated plate resonance sound absorption structure from theory to practical application.
  • the technical problem to be solved by the present invention is to provide a particle board resonance sound absorbing structure which is easy to manufacture.
  • the invention application "a particulate sound absorbing panel and a preparation method thereof".
  • the use of inexpensive particles such as grit, ceramsite, and recycled building waste particles is bonded by an adhesive, and micropores are formed by the particles that are pressed against each other.
  • the microporosity of the particle sound absorbing plate is formed by closely pressing the particles of different diameters, and relies on the skeleton particles to form the skeleton of the sound absorbing plate, and fills the skeleton by filling a certain proportion of fine particles (filling particles).
  • the voids are divided into communication voids capable of conducting communication of at least two adjacent voids and semi-communication voids communicating with at most one adjacent void, thereby forming a specific microporous structure required for sound absorption.
  • the equivalent diameter of the micropores formed is related to the particle size of the particles. For example, a cross-sectional area S X ⁇ 0.163R 2 of micropores formed by mutually pressing circular particles of the same size having a radius R,
  • the diameter of the microvoid is about 0.182 to 0.2 mm, and the porosity is about 25%.
  • the microvoid When a 10 mm particle plate (particle diameter of 0.5 to 0.8 mm) formed of 24 to 40 mesh fine particles is used, the microvoid has a diameter of about 0.12 to 0.182 mm and a porosity of about 25%.
  • the microvoid When a 10 mm particle plate (particle diameter of 0.37 to 0.5 mm) formed of 40 to 50 mesh fine particles is used, the microvoid has a diameter of about 0.09 to 0.12 mm and a porosity of about 25%.
  • the particle plate resonance sound absorbing structure it is only necessary to adjust the particle size of the particles to obtain the micropores of different equivalent diameters. The cost of getting it is very low. This is the core of the invention. Even with the cheapest materials, the particle sound absorbing panels with excellent sound absorption properties can be obtained in the simplest process.
  • the resonant sound absorbing structure made of the particulate sound absorbing panel has the following sound absorbing characteristics.
  • the voids of the particle plate become smaller, the frequency band is widened, and the sound absorption coefficient is increased.
  • the resonant sound absorbing structure made of the microparticle sound absorbing plate basically conforms to the sound absorbing characteristics of the microperforated sound absorbing structure, and the difference lies in the cavity depth.
  • the sound absorption curve of a microperforated plate + 50 mm (depth) cavity is almost identical to the sound absorption curve of a 10 mm (thickness) particle sound absorbing plate + 40 mm (depth) cavity.
  • the reason for the above deviation, according to the inventor's analysis, is that in the particle sound absorbing plate, the micro hole is not a straight line, and it is curved and curved, which is equivalent to increasing the depth of the cavity.
  • the present invention proposes a technical solution for solving the technical problem: a particle plate resonance sound absorbing structure, comprising an orifice plate and a bottom plate at the rear thereof, and a cavity between the bottom plate and the orifice plate to form a resonance sound absorbing structure , the hole
  • the plate adopts a particle sound absorbing plate, the particle sound absorbing plate comprises a particle and an adhesive, the adhesive covers the outer surface of the particle to form an adhesive layer, and the gap between the particles covering the adhesive forms sound absorption. Porosity.
  • the resonant sound absorbing structure is a single layer structure comprising a single layer of microsonic sound absorbing plate and a single layer cavity, the particle sound absorbing plate has a thickness of 5 mm to 30 mm, and the cavity has a depth of 10 mm to 500 mm.
  • the resonant sound absorbing structure is a two-layer structure comprising two layers of micro-particle sound absorbing plates and two layers of cavities, and another layer of micro-particle sound absorbing plates is disposed between the micro-particle sound-absorbing plates at the front end and the bottom plate.
  • each of the particle sound absorbing plates is 5 mm to 15 mm
  • the sum of the depths of the two layers of cavities is 50 mm to 500 mm
  • the depth ratio of the front end cavity to the rear end cavity is 1..1 to 1..5.
  • the resonant sound absorbing structure is a multi-layer structure of three or more layers, and two or more layers of sound absorbing panels are disposed between the particle sound absorbing plate at the front end and the bottom plate, and an air between the adjacent two layers of the sound absorbing panels Cavity.
  • Each of the microparticle sound absorbing panels has a thickness of 5 mm to 15 mm, and a sum of depths of the cavities of the respective layers is 100 mm to 500 mm.
  • the fine particles are fine particles having a particle diameter of 20 to 50 mesh.
  • the thickness of the adhesive layer on the surface of the fine particles is 0.1 to 0.2 mm.
  • the angular coefficient of the particles after covering the binder is less than 1.3.
  • the particles have an angular shape of less than 1.5.
  • the invention has the advantages of large sound absorption coefficient, low sound absorption frequency bandwidth, simple manufacturing process and low cost, and can be widely applied to various fields of noise control, such as indoor sound absorption processing, industrial noise control, railway sound barrier and the like.
  • FIG. 1 is a schematic view (single layer) of a particle plate resonance sound absorbing structure of the present invention.
  • Fig. 2 is a schematic view (double layer) of the particle plate resonance sound absorbing structure of the present invention.
  • Fig. 3 is a schematic view (three layers) of the particle plate resonance sound absorbing structure of the present invention.
  • FIG. 4 is a schematic view showing the microporous structure of the microparticle sound absorbing plate.
  • Figure 5 is a microphotograph of a 20-24 mesh particulate sound absorbing panel.
  • Figure 6 shows the sound absorption performance of a single-layer particle plate resonant sound absorbing structure (10 mm particle plate (20-24 mesh) + 40 mm cavity).
  • Figure 7 shows the sound absorption performance of a single-layer particle plate resonant sound absorbing structure (10 mm particle plate (24-40 mesh) + 40 mm cavity).
  • Figure 8 shows the sound absorption performance of a single-layer particle plate resonance sound absorbing structure (10 mm particle plate (40-50 mesh) + 40 mm cavity).
  • Figure 9 shows the sound absorption performance of a two-layer particle plate resonant sound absorbing structure.
  • the particle plate resonance sound absorbing structure of the present invention comprises an orifice plate and a bottom plate 5 at the rear thereof, and the cavity plate 4 and the orifice plate have a cavity 4 therebetween.
  • the orifice plate adopts a microparticle sound absorbing panel 7
  • the microparticle sound absorbing panel 7 includes the microparticles 1 and an adhesive
  • the adhesive covers the outer surface of the microparticles 1 to form an adhesive layer.
  • the voids between the particles 1 covering the binder form sound absorbing pores.
  • the particle plate resonance sound absorbing structure may also be a single layer or a multilayer structure of two or more layers.
  • the resonant sound absorbing structure is a single-layer structure, including a single-layer particle sound absorbing plate 7 and a single-layer cavity 4.
  • the thickness of the particle sound absorbing plate 7 can be selected from 5 mm to 30 mm.
  • the cavity 4 has a depth of 10 mm to 500 mm.
  • the resonant sound absorbing structure When the resonant sound absorbing structure is a two-layer structure, it comprises two layers of micro-acoustic sound absorbing panels 7 and two layers of cavities 4, and another layer of particulate sound absorbing sound is disposed between the micro-particle sound absorbing panels 7 at the front end and the bottom plate 5.
  • the resonant sound absorbing structure is a multi-layer structure of three or more layers, two or more layers of the sound absorbing panels 7 are disposed between the particle absorbing plate 7 at the front end and the bottom plate 5, and the adjacent two layers of the sound absorbing panels are disposed.
  • the microparticles 1 adopt particles having a particle diameter of 20 to 50 mesh, and the equivalent diameter of the pores corresponding to the micropores can be formed in a range to obtain a wide sound absorption band width. And a resonance sound absorption structure with a large sound absorption coefficient.
  • the thickness of the adhesive layer on the surface of the fine particles 1 is 0.1 to 0.2 mm. Because the film (binder layer) on the surface of the particles is too thick, “teardrops" will form on the surface of the particles under the action of gravity. This extra teardrop will block the gap and affect the acoustic performance of the particle sound absorbing panels; If the film is too thin, the particles are not easily rounded, and it is difficult to form a large bonding area, and the bonding strength is insufficient.
  • the thickness of the adhesive layer is 0.1 to 0.2 mm, which can ensure the bonding strength of the particles, reduce the amount of the binder, and reduce the cost.
  • the angular coefficient of the microparticles 1 after the covering of the binder is less than 1.3.
  • the angular coefficient is used to characterize the roundness of the particle. It is obtained by the actual specific surface area of the particle compared to the specific surface area of the corresponding ideal sphere of the same volume. Therefore, it can indicate the degree to which the particle shape deviates from the spherical shape.
  • the larger the angular coefficient the larger the particle shape. The more irregular the shape, the more deviated from the spherical shape.
  • the angle coefficient of the particles used for preparing the particle sound absorbing plate should be less than 1.3, and the particles should be as circular as possible.
  • the particle shape of the particles 1 is less than 1.5, that is, the particles before the film are preferably also screened.
  • 20 ⁇ 24 mesh particles are used to make 10mm microporous sound absorbing plate, the particle size range is 0.8-0.9mm, the micro-void diameter is about 0.182-0.2mm, the porosity is about 25%, and then the cavity 4 is set.
  • the sound absorption performance is shown in Fig. 6. It can be seen that the measured performance of the particle plate resonance sound absorption structure is consistent with the theoretical sound absorption characteristics of the microporous plate sound absorption structure of the same parameter, and the difference is that the cavity depth is different, causing the cavity size deviation. The reason is that in the particle board, the micropore is not a straight line, it is curved and curved, which is equivalent to increasing the depth of the cavity behind it, and the increase obtained by experiment is about 10 mm.
  • the microfiber sound absorbing plate of 10 mm is prepared by using 24 to 40 mesh particles, the particle size ranges from 0.5 to 0.8 mm, the diameter of the microvoid is about 0.12 to 0.182 mm, the porosity is about 25%, and then the cavity 4 is disposed.
  • the micro-perforated plate sound absorption structure parameters are: plate thickness 10mm, perforation diameter 0.15mm, perforation rate 25%, cavity depth 50mm.
  • the sound absorption performance is shown in Fig. 7. It can be seen that the measured performance of the particle plate resonance sound absorption structure is consistent with the theoretical sound absorption characteristics of the microperforated sound absorption structure of the same parameter, and the difference is that the cavity depth is different, causing the cavity size deviation. The reason is that in the particle sound absorbing plate, the micro hole is not a straight line, it is curved and curved, which is equivalent to increasing the depth of the cavity behind it, and the increase obtained by experiment is about 10 mm. The conclusion of Example 1 was verified.
  • 40 ⁇ 50 mesh particles are used to make 10mm microporous sound absorbing plate, the particle size range is 0.37 ⁇ 0.5mm, the microvoid diameter is about 0.09 ⁇ 0.12mm, the porosity is about 25%, and then the closed cavity is set. The depth is 40mm.
  • the micro-perforated plate sound absorption structure parameters are: plate thickness 10mm, perforation diameter 0.12mm, perforation rate 25%, cavity depth 50mm.
  • the sound absorption performance is shown in Fig. 8. It can be seen that the measured performance of the particle plate resonance sound absorption structure is consistent with the theoretical sound absorption characteristics of the microperforated sound absorption structure of the same parameter, and the difference is that the cavity depth is different, causing the cavity size deviation. The reason is that in the particle sound absorbing plate, the micro hole is not a straight line, it is curved and curved, which is equivalent to increasing the depth of the cavity behind it, and the increase obtained by experiment is about 10 mm. The conclusion of Example 1 was verified again.
  • the utility model relates to a double-layer particle plate resonance sound absorbing structure, wherein the two-layer particle sound absorbing plate is made of 20 to 24 mesh particles, the particle size ranges from 0.8 to 0.9 mm, the plate thickness is 10 mm, and the diameter of the microvoid is about 0.182. ⁇ 0.2mm, the porosity is about 25%, and the depth of the front and rear cavities is 40mm.
  • the sound absorption structure parameters of the double-layer microperforated plate are as follows: the plate thickness is 10 mm, the perforation diameter is 0.2 mm, the perforation rate is 25%, and the depths of the front and rear cavities are both 50 mm.
  • the sound absorption performance is shown in Fig. 9. It can be seen that the measured performance of the double-layer particle plate resonant sound absorbing structure is consistent with the theoretical sound absorption characteristics of the double-layer microperforated sound absorbing structure of the same parameter, and the difference is that the cavity depth is different, resulting in The reason for the deviation of the cavity size is that in the particle sound absorbing plate, the micro hole is not a straight line, and it is curved and curved, which is equivalent to increasing the depth of the cavity behind it, and the increase amount is 10 mm by experiments. The conclusion of Example 1 was verified again.
  • the particle-plate resonance sound absorbing structure of the present invention is bonded by an adhesive using inexpensive particles such as grit, ceramsite, and recycled building waste particles, and formed by mutually colliding particles.
  • the resonance sound absorption structure obtained by the micropores proves that the sound absorption characteristics are highly consistent with the sound absorption theory of the microperforated plate.
  • the contribution of the present invention to the prior art is to significantly reduce the difficulty of obtaining a microperforated plate resonant sound absorbing structure having a diameter of 0.3 mm or less, particularly 0.1 to 0.2 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种易制造的微粒板共振吸声结构,所述共振吸声结构包括孔板及其后方的底板(5),底板(5)与孔板之间具有空腔(4)而形成共振吸声结构,所述孔板采用微粒吸声板(7),所述的微粒吸声板(7)包括微粒(1)和粘结剂,粘结剂覆盖在所述微粒(1)外表面形成粘结剂层,覆盖粘结剂后的微粒(1)间的空隙形成吸声孔隙。微粒板共振吸声结构可以是单层或双层以上的多层结构,改变微粒吸声板(7)的粒径可相应影响共振吸声结构的吸声性能,其实测性能与同参数的微穿孔板吸声结构的理论吸声特性相近,因此可以根据应用环境设计相应的微粒板共振吸声结构,其吸声系数大,吸声频带宽,制作工艺简单,可广泛应用于噪声控制的各个领域,如室内吸声处理、工业噪声控制、铁路声屏障等。

Description

微粒板共振吸声结构 技术领域
本发明涉及噪声控制用吸声结构,尤其是一种微粒板共振吸声结构。
背景技术
目前在噪声治理领域广泛使用穿孔板共振吸声结构以及微穿孔板共振吸声结构。
穿孔板吸声结构的机理是:当声波进入小孔后便激发空腔内空气振动。如果声波频率与该结构共振频率相等时,腔内空气便发生共振,并由摩擦转为热损,从而引起吸声作用。可以把穿孔板结构可看作是许多个空气共振吸声结构或称亥姆霍兹共鸣器相并联。
微穿孔板吸声结构为一箱式结构,其包括朝向声源一侧的微穿孔板,微穿孔板与通常为刚性板的底板相对,四周由侧板将二者连接,微穿孔板与底板之间为空气层所在的空腔,底板、侧板上均无开孔,空腔经由微穿孔板上的孔与外界相通。微穿孔板共振吸声结构与普通穿孔板吸声结构相比,其主要特点是穿孔直径在1mm以下,其吸声频带宽度可优于常规的穿孔板共振吸声结构。在共振吸声结构中,唯有该结构具有宽吸声频带特性,因此,在吸声降噪和改善室内音质方面有着十分广泛。微穿孔板吸声结构有单层结构和多层结构,单层结构只有位于底板前端的一层微穿孔板,多层结构则是在最前端的微穿孔板与最后端的底板之间还间隔设置有一层以上的微穿孔板,每层微穿孔板及其后邻接的空腔构成一层吸声结构。
目前使用的共振吸声结构、穿孔吸声结构在吸声频带上非常窄。影响其使用。我国马大猷创立的微穿孔板吸声理论,很好的解决了吸声系数与吸声频段的问题。微穿孔吸声结构的频段约3个倍频程且吸声系数大于0.5。
若要微穿孔板共振吸声结构的吸声频带更宽,需要采用孔径为0.3mm以下的超微孔结构。需要在每平方米的板上穿出几百万个孔径小到0.3mm的超微孔。
制约微穿孔板吸声结构广泛使用的瓶颈是加工难度大以及成本高等原因。目前,广泛使用的微穿孔板加工技术主要有:激光打孔技术、机械冲压技术和化学刻蚀技术。
采用激光打孔技术,可以加工直径小于0.2mm的孔、适应材料范围广、对孔径和孔分布变化适应快。但是该技术设备投资大(目前还没有适合大面积群孔加工的激光加工设备,需要重新设计和制造新型激光加工设备)、维护费用高。
机械冲压技术具有设备投资低、维护费用低、容易掌握、加工速度快、质量较好等优势。但是当加工孔径和孔分布参数变化时,需要更换模具,机械冲压模具加工较困难。
化学刻蚀技术适合在金属薄板上加工微孔,但在无纤维塑料膜上加工微孔还没有成熟的加工方法。
目前,微穿孔吸声结构的价格达到500-900元/平方米左右。
由于其自身的周期性吸声特性,微穿孔板吸声结构在实际使用中,一方面要使其共振频率与实际噪声的主要频率成分相对应;另一方面则应追求吸声带宽最大化。马大猷教授在文献中通过计算分析,认为微穿孔板共振结构的吸声带宽与其声阻直接有关,吸声带宽随声阻增大而变大,但吸声系数会减小。
以吸声系数0.5作为有效吸声范围的低限,在声阻r=2或r=3时,达到或接近最大值,此时吸声系数大于0.5的带宽约3个倍频程,这是微穿孔板吸声结构的带宽极限。
具体设计微穿孔板吸声结构时,可通过计算,也可查图表,计算结果与实测结果相近。在实际工程中为了扩大吸声频带的宽度,往往采用不同孔径、不同穿孔率的双层或多层微穿孔板复合结构。影响微穿孔吸声结构性能主要取决于微穿孔板厚度、穿孔直径、穿孔率和空腔深度。
板厚主要影响吸声结构共振时的吸收性能,随厚度的增加,共振频率处吸声系数增加;共振频率稍向低频方向移动。
穿孔直径影响吸声频带的宽度、共振频率的位置及吸声共振频率处的吸声系数。当穿孔直径变小时,吸声频带宽度增加,共振频率向高频移动,且吸声系数增加。
穿孔率同样影响吸声频带的宽度、共振频率的位置及共振频率处的吸声系数。随着穿孔率的增大,吸声频带宽度增加;共振频率向高频移动;但是吸声系数减小。
空腔深度主要影响共振频率。随着空腔深度的增加,共振频率向低频端移动,空腔深度每增加一倍,吸声峰值大致向低频移动一个倍频程,频带宽度基本保持不变。
直径0.3mm以下的微穿孔板需要复杂的机械设备加工才能获得,造成其价格居高不下,影响其推广使用。同时,微穿孔吸声结构的微孔往往容易被堵塞。不能使用在复杂环境中,特别是户外及工业场所。同时不便清洗。
在复杂的应用环境下,要使其微穿孔板共振吸声结构的吸声频带满足应用环境要求,就必须调整相应的参数,即微穿孔板厚度、穿孔直径、穿孔率和空腔厚度,空腔厚度直接影响微穿孔板共振吸声结构的外形尺寸,微穿孔板厚度、穿孔直径、穿孔率直接影响加工难度,是决定微穿孔板共振吸声结构成本的关键因素。小孔径微穿孔板的获取技术,是把微穿孔板共振吸声结构由理论转化为实际应用的关键技术。
发明内容
本发明所要解决的技术问题是提供一种易制造的微粒板共振吸声结构。
发明人在对微粒板进行研究的过程中,提出了一种具有优良吸声的新型微粒板,即微 粒吸声板,并于2014年7月22日向中国国家知识产权局提交了申请号为2014103477351的发明申请“一种微粒吸声板及其制备方法”。使用廉价的微粒如砂粒、陶粒和再生建筑废料颗粒等用粘接剂粘接,靠相互挤靠的微粒形成微孔。这种微粒吸声板的微孔隙是依靠不同直径的微粒紧密挤靠而形成的,它依靠骨架颗粒形成吸声板的骨架,通过填入一定比例的较细颗粒(填充颗粒)来填充骨架间空隙,这些空隙分为能导通至少两个相邻空隙连通的连通空隙和至多与一个相邻空隙连通的半连通空隙,从而形成吸声所需要的一种特定微孔隙结构。通过研究,我们发现所形成微孔隙的等效直径与微粒的粒径有关。例如,以半径均为R的同样大小圆形微粒相互挤靠所形成的微孔的横截面积SX≈0.163R2
微孔直径d≈(4×0.163R2/3.14)1/2=(0.207R2)1/2≈0.455R,
即:当选用20~24目微粒形成的10mm的微粒板(微粒直径为0.8~0.9mm),其微空隙的直径约为0.182~0.2mm,孔隙率约为25%。
当选用24~40目微粒形成的10mm的微粒板(微粒直径为0.5~0.8mm),其微空隙的直径约为0.12~0.182mm,孔隙率约为25%。
当选用40~50目微粒形成的10mm的微粒板(微粒直径为0.37~0.5mm),其微空隙的直径约为0.09~0.12mm,孔隙率约为25%。
因此,对微粒板共振吸声结构来说,要获得不同等效直径的微孔只需调整微粒的粒径即可。其获取的成本十分低廉。这是本发明的核心。即用最便宜的材料,用最简单的工艺,就能获得具有优良吸声性能的微粒吸声板。
在对该微粒吸声板的吸声机理进行理论研究并进行大量试验后,发明人发现,以微粒吸声板制作成的共振吸声结构具有以下吸声特性。
随板厚增加,吸声峰值增加,共振频率向低频移动。
随着使用的微粒的目数增加,微粒板的空隙变小,频带加宽,吸声系数增加。
当微粒的配比一定、板厚一定时,增加后部空腔深度,吸声频谱向低频移动。
通过比较,以该种微粒吸声板制作成的共振吸声结构,基本上与微穿孔板吸声结构的吸声特性一致,其区别在于空腔深度。例如:微穿孔板+50mm(深度)空腔的吸声曲线与10mm(板厚)微粒吸声板+40mm(深度)空腔的吸声曲线几乎完全一致。造成上述偏差的原因,据发明人分析,在于微粒吸声板中,微孔不是直线,它是弯曲拐弯的,等同于增加了其后空腔的深度。
基于上述的研究,本发明提出了解决其技术问题所采用的技术方案:微粒板共振吸声结构,包括孔板及其后方的底板,底板与孔板之间具有空腔而形成共振吸声结构,所述孔 板采用微粒吸声板,所述的微粒吸声板包括微粒和粘结剂,粘结剂覆盖在所述微粒外表面形成粘结剂层,覆盖粘结剂后的微粒间的空隙形成吸声孔隙。
所述共振吸声结构为单层结构,包括单层微粒吸声板和单层空腔,所述微粒吸声板的厚度为5mm~30mm,所述空腔的深度为10mm~500mm。
所述共振吸声结构为双层结构,包括两层微粒吸声板和两层空腔,位于前端的微粒吸声板与底板之间设置有另一层微粒吸声板。
所述各微粒吸声板的厚度为5mm~15mm,所述两层空腔的深度之和为50mm~500mm,前端空腔与后端空腔的深度比为1︰1~1︰5。
所述共振吸声结构为三层以上的多层结构,位于前端的微粒吸声板与底板之间设置有两层以上的微粒吸声板及位于相邻两层微粒吸声板之间的空腔。
所述各微粒吸声板的厚度为5mm~15mm,所述各层空腔的深度之和为100mm~500mm。
所述微粒采用粒径为20~50目的微粒。
所述微粒表面的粘结剂层的厚度为0.1~0.2mm。
所述覆盖粘结剂后微粒的角形系数小于1.3。
所述微粒的角形系数小于1.5。
本发明的有益效果是:吸声系数大,吸声频带宽,制作工艺简单,成本低,可广泛应用于噪声控制的各个领域,如室内吸声处理、工业噪声控制、铁路声屏障等。
附图说明
图1是本发明的微粒板共振吸声结构示意图(单层)。
图2是本发明的微粒板共振吸声结构示意图(双层)。
图3是本发明的微粒板共振吸声结构示意图(三层)。
图4是微粒吸声板的微孔结构示意图。
图5是20-24目微粒吸声板的微观照片。
图6为单层微粒板共振吸声结构吸声性能(10mm微粒板(20-24目)+40mm空腔)。
图7为单层微粒板共振吸声结构吸声性能(10mm微粒板(24-40目)+40mm空腔)。
图8为单层微粒板共振吸声结构吸声性能(10mm微粒板(40-50目)+40mm空腔)。
图9为双层微粒板共振吸声结构吸声性能。
图中标记为:1-微粒,2-连通空隙,3-半连通空隙,4-空腔,5-底板,6-侧板,7-微粒吸声板,D、D1、D2、D3-微粒吸声板的厚度,M、M1、M2、M3-空腔的深度。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
如图1、图2、图3、图4和图5所示,本发明的微粒板共振吸声结构,包括孔板及其后方的底板5,底板5与孔板之间具有空腔4而形成共振吸声结构,所述孔板采用微粒吸声板7,所述的微粒吸声板7包括微粒1和粘结剂,粘结剂覆盖在所述微粒1外表面形成粘结剂层,覆盖粘结剂后的微粒1间的空隙形成吸声孔隙。微粒板共振吸声结构同样可以是单层或双层以上的多层结构。
所述共振吸声结构为单层结构,包括单层微粒吸声板7和单层空腔4,根据微穿孔板共振吸声理论,所述微粒吸声板7的厚度可选取5mm~30mm,所述空腔4的深度为10mm~500mm。
当所述共振吸声结构为双层结构时,其包括两层微粒吸声板7和两层空腔4,位于前端的微粒吸声板7与底板5之间设置有另一层微粒吸声板7,根据多层微穿孔板共振吸声理论及吸声结构重量的考虑,建议所述各微粒吸声板7的厚度为5mm~15mm,所述两层空腔4的深度之和为50mm~500mm,前端空腔与后端空腔的深度比为1︰1~1︰5。
所述共振吸声结构为三层以上的多层结构时,位于前端的微粒吸声板7与底板5之间设置有两层以上的微粒吸声板7及位于相邻两层微粒吸声板7之间的空腔4,此时,建议所述各微粒吸声板7的厚度为5mm~15mm,所述各层空腔4的深度之和为100mm~500mm。
根据形成微孔共振吸声结构的需要,优选所述微粒1采用粒径为20~50目的微粒,对应可形成的微孔孔隙的等效直径约在范围,以获得具有较宽吸声频带宽度和较大吸声系数的共振吸声结构。
为保证微粒1间的绝大多数空隙均形成为连通空隙2,所述微粒1表面的粘结剂层的厚度为0.1~0.2mm。因为微粒表面的覆膜(粘结剂层)过厚的话,在重力的作用下会在微粒表面形成“泪滴”,这种多余的泪滴会堵塞缝隙,影响微粒吸声板的声学性能;而覆膜太薄的话,微粒不容易被修圆,不易形成较大的粘结面积,粘结强度不够。粘结剂层的厚度在0.1~0.2mm,既可以保证颗粒的粘结强度,又可以减少粘结剂的用量,降低成本。
所述覆盖粘结剂后微粒1的角形系数小于1.3。角形系数用于表征颗粒的圆度,它是以颗粒的实际比表面积比上同体积的相应理想球体的比表面积得到的,因此它可以表示颗粒形状偏离圆球状的程度,角形系数越大,颗粒的形状越不规则,越偏离圆球状。因此为了获得较大的孔隙率及吸声孔隙,取得更好的吸声效果,推荐选择用于制备微粒吸声板的微粒的角形系数应小于1.3,尽量保证微粒呈圆形。
基于同样的考虑,为了减小覆膜厚度,同时保证微粒被修圆,所述微粒1的角形系数小于1.5,即覆膜前的微粒最好也要进行筛选。
实施例1:
选用20~24目微粒制作成10mm的微粒吸声板,微粒粒径范围为0.8~0.9mm,其微空隙的直径约为0.182~0.2mm,孔隙率约为25%,其后设置空腔4的深度M=40mm。与之对比的微穿孔板吸声结构参数为:板厚D=10mm,穿孔直径0.8mm,穿孔率25%,空腔深度50mm。
其吸声性能如图6所示,可见微粒板共振吸声结构的实测性能与同参数的微穿孔板吸声结构的理论吸声特性一致,其差别在于空腔深度不同,造成空腔大小偏差的原因,在于微粒板中,微孔不是直线,它是弯曲拐弯的,等同于增加了其后空腔的深度,通过实验获得增加量约为10mm。
实施例2:
选用24~40目微粒制作成10mm的微粒吸声板,微粒粒径范围为0.5~0.8mm,其微空隙的直径约为0.12~0.182mm,孔隙率约为25%,其后设置空腔4的深度M=40mm。与之对比的微穿孔板吸声结构参数为:板厚10mm,穿孔直径0.15mm,穿孔率25%,空腔深度50mm。
其吸声性能如图7所示,可见微粒板共振吸声结构的实测性能与同参数的微穿孔板吸声结构的理论吸声特性一致,其差别在于空腔深度不同,造成空腔大小偏差的原因,在于微粒吸声板中,微孔不是直线,它是弯曲拐弯的,等同于增加了其后空腔的深度,通过实验获得增加量约为10mm。验证了实施例1的结论。
实施例3:
选用40~50目微粒制作成10mm的微粒吸声板,微粒粒径范围为0.37~0.5mm,其微空隙的直径约为0.09~0.12mm,孔隙率约为25%,其后设置密闭空腔的深度为40mm。与之对比的微穿孔板吸声结构参数为:板厚10mm,穿孔直径0.12mm,穿孔率25%,空腔深度50mm。
其吸声性能如图8所示,可见微粒板共振吸声结构的实测性能与同参数的微穿孔板吸声结构的理论吸声特性一致,其差别在于空腔深度不同,造成空腔大小偏差的原因,在于微粒吸声板中,微孔不是直线,它是弯曲拐弯的,等同于增加了其后空腔的深度,通过实验获得增加量约为10mm。再次验证了实施例1的结论。
实施例4:
是一种双层微粒板共振吸声结构,其两层微粒吸声板均选用20~24目微粒制作,微粒粒径范围为0.8~0.9mm,板厚10mm,其微空隙的直径约为0.182~0.2mm,孔隙率约为25%,前、后空腔的深度均为40mm。与之对比的双层微穿孔板吸声结构参数为:板厚均为10mm,穿孔直径0.2mm,穿孔率25%,前、后空腔的深度均为50mm。
其吸声性能如图9所示,可见双层微粒板共振吸声结构的实测性能与同参数的双层微穿孔板吸声结构的理论吸声特性一致,其差别在于空腔深度不同,造成空腔大小偏差的原因,在于微粒吸声板中,微孔不是直线,它是弯曲拐弯的,等同于增加了其后空腔的深度,通过实验获得增加量各为10mm。再次验证了实施例1的结论。
从以上各实施例的结果可以看出,本发明的微粒板共振吸声结构,使用廉价的微粒如砂粒、陶粒和再生建筑废料颗粒等用粘接剂粘接,靠相互挤靠的微粒形成微孔获得的共振吸声结构,实验证实其吸声特性与微穿孔板吸声理论高度吻合。本发明对现有技术的贡献在于显著降低了获取直径0.3mm以下特别是0.1~0.2mm的微穿孔板共振吸声结构的难度。

Claims (10)

  1. 微粒板共振吸声结构,包括孔板及其后方的底板(5),底板(5)与孔板之间具有空腔(4)而形成共振吸声结构,其特征是:所述孔板采用微粒吸声板(7),所述的微粒吸声板(7)包括微粒(1)和粘结剂,粘结剂覆盖在所述微粒(1)外表面形成粘结剂层,覆盖粘结剂后的微粒(1)间的空隙形成吸声孔隙。
  2. 如权利要求1所述的微粒板共振吸声结构,其特征是:所述共振吸声结构为单层结构,包括单层微粒吸声板(7)和单层空腔(4),所述微粒吸声板(7)的厚度为5mm~30mm,所述空腔(4)的深度为10mm~500mm。
  3. 如权利要求1所述的微粒板共振吸声结构,其特征是:所述共振吸声结构为双层结构,包括两层微粒吸声板(7)和两层空腔(4),位于前端的微粒吸声板(7)与底板(5)之间设置有另一层微粒吸声板(7)。
  4. 如权利要求3所述的微粒板共振吸声结构,其特征是:所述各微粒吸声板(7)的厚度为5mm~15mm,所述两层空腔(4)的深度之和为50mm~500mm,前端空腔与后端空腔的深度比为1︰1~1︰5。
  5. 如权利要求1所述的微粒板共振吸声结构,其特征是:所述共振吸声结构为三层以上的多层结构,位于前端的微粒吸声板(7)与底板(5)之间设置有两层以上的微粒吸声板(7)及位于相邻两层微粒吸声板(7)之间的空腔(4)。
  6. 如权利要求5所述的微粒板共振吸声结构,其特征是:所述各微粒吸声板(7)的厚度为5mm~15mm,所述各层空腔(4)的深度之和为100mm~500mm。
  7. 如权利要求1~6中任意一项权利要求所述的微粒板共振吸声结构,其特征是:所述微粒(1)采用粒径为20~50目的微粒。
  8. 如权利要求1~6中任意一项权利要求所述的微粒板共振吸声结构,其特征是:所述微粒(1)表面的粘结剂层的厚度为0.1~0.2mm。
  9. 如权利要求1~6中任意一项权利要求所述的微粒板共振吸声结构,其特征是:所述覆盖粘结剂后微粒(1)的角形系数小于1.3。
  10. 如权利要求1~6中任意一项权利要求所述的微粒板共振吸声结构,其特征是:所述微粒(1)的角形系数小于1.5。
PCT/CN2014/089987 2014-08-07 2014-10-31 微粒板共振吸声结构 WO2016019640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410383823.7 2014-08-07
CN201410383823.7A CN104167204A (zh) 2014-08-07 2014-08-07 微粒板共振吸声结构

Publications (1)

Publication Number Publication Date
WO2016019640A1 true WO2016019640A1 (zh) 2016-02-11

Family

ID=51910986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089987 WO2016019640A1 (zh) 2014-08-07 2014-10-31 微粒板共振吸声结构

Country Status (2)

Country Link
CN (1) CN104167204A (zh)
WO (1) WO2016019640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189736A (zh) * 2019-05-09 2019-08-30 江苏师范大学 最大化超阈值采样点数的双层串联微穿孔板结构设计方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427853B (zh) * 2015-10-30 2022-09-23 东南大学 宽频带微穿孔板吸声体及其性能预测方法、结构设计方法
CN106601224B (zh) * 2017-02-14 2023-07-18 正升环境科技股份有限公司 一种混联结构公路声屏障板
CN109231884A (zh) * 2017-07-10 2019-01-18 正升环境科技股份有限公司 聚合微粒吸声板及其制作方法
CN107842120A (zh) * 2017-11-30 2018-03-27 江苏标榜装饰新材料股份有限公司 一种隔音装置
CN108117312A (zh) * 2017-12-26 2018-06-05 正升环境科技股份有限公司 一种装饰吸声板及其制备方法
CN110106999A (zh) * 2019-03-29 2019-08-09 深圳中天精装股份有限公司 一种装配式建筑吸音木隔墙及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2528078Y (zh) * 2002-02-22 2002-12-25 湖北华恒科技有限公司 复合吸声板
US20030062217A1 (en) * 2001-09-28 2003-04-03 Ping Sheng Acoustic attenuation materials
CN1805005A (zh) * 2006-01-12 2006-07-19 上海交通大学 微孔吸声结构
CN102044239A (zh) * 2009-10-22 2011-05-04 北京绿创声学工程股份有限公司 一种具有共振吸声结构的微穿孔板
CN204010668U (zh) * 2014-08-07 2014-12-10 四川正升声学科技有限公司 微粒板共振吸声结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866860B2 (ja) * 1993-06-07 1999-03-08 ゼオン化成株式会社 防音材
JP2835005B2 (ja) * 1994-08-23 1998-12-14 ミサワセラミックス株式会社 吸音材
JP3217646B2 (ja) * 1995-07-03 2001-10-09 三菱重工業株式会社 セラミックス吸音材
JPH09256503A (ja) * 1996-03-22 1997-09-30 Matsushita Electric Works Ltd 吸音材
JP2001134270A (ja) * 1999-11-01 2001-05-18 Toyota Motor Corp 高耐熱性吸音材
CN102968985B (zh) * 2012-11-07 2015-04-22 江苏大学 复合多层机械阻抗板的薄型宽频吸声结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062217A1 (en) * 2001-09-28 2003-04-03 Ping Sheng Acoustic attenuation materials
CN2528078Y (zh) * 2002-02-22 2002-12-25 湖北华恒科技有限公司 复合吸声板
CN1805005A (zh) * 2006-01-12 2006-07-19 上海交通大学 微孔吸声结构
CN102044239A (zh) * 2009-10-22 2011-05-04 北京绿创声学工程股份有限公司 一种具有共振吸声结构的微穿孔板
CN204010668U (zh) * 2014-08-07 2014-12-10 四川正升声学科技有限公司 微粒板共振吸声结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189736A (zh) * 2019-05-09 2019-08-30 江苏师范大学 最大化超阈值采样点数的双层串联微穿孔板结构设计方法
CN110189736B (zh) * 2019-05-09 2022-11-04 江苏师范大学 最大化超阈值采样点数的双层串联微穿孔板结构设计方法

Also Published As

Publication number Publication date
CN104167204A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2016019640A1 (zh) 微粒板共振吸声结构
US8251175B1 (en) Corrugated acoustical panel
CN103700366B (zh) 复合共振腔的机械阻抗与微穿孔板结合的宽频吸声结构
CN104700827B (zh) 宽频穿孔板吸声结构
CN103154401A (zh) 具有卓越吸声性能的石膏面板及其制造方法
CN204303339U (zh) 一种复合吸声结构
CN102044239A (zh) 一种具有共振吸声结构的微穿孔板
CN109635396A (zh) 一种多层cfrp结构平板的振动声学分析方法
CN204010668U (zh) 微粒板共振吸声结构
Sakagami et al. Absorption characteristics of a space absorber using a microperforated panel and a permeable membrane
CN109707060A (zh) 一种连续渐扩梯度开孔双孔隙率吸声装置及其应用
CN107610688B (zh) 一种腔管复合隔声结构
CN105040845A (zh) 一种单元结构的吸声板
WO2017000454A1 (zh) 一种单元结构的吸声板
CN105575380B (zh) 聚合微粒吸声体
CN206344516U (zh) 一种新型隔音板材
CN100492491C (zh) 微孔吸声结构
Mu et al. Improvement of sound insulation performance of multilayer windows by using microperforated panel
JP6663659B2 (ja) 吸音構造を構成する有孔吸音ボードの貫通孔の寸法設定方法
CN206143942U (zh) 一种基于立体网格式结构的吸声体单元
CN206034674U (zh) 一种墙面吸声体
CN111341292A (zh) 穿孔板层合吸声结构
CN207535413U (zh) 一种新型泡沫金属材料结构
CN106049696B (zh) 一种基于立体网格式结构的吸声体单元
CN207397705U (zh) 一种腔管复合隔声结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899313

Country of ref document: EP

Kind code of ref document: A1