WO2016019615A1 - 一种分体式半导体激光二极管能量合束装置 - Google Patents

一种分体式半导体激光二极管能量合束装置 Download PDF

Info

Publication number
WO2016019615A1
WO2016019615A1 PCT/CN2014/086938 CN2014086938W WO2016019615A1 WO 2016019615 A1 WO2016019615 A1 WO 2016019615A1 CN 2014086938 W CN2014086938 W CN 2014086938W WO 2016019615 A1 WO2016019615 A1 WO 2016019615A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
semiconductor laser
laser
laser module
type semiconductor
Prior art date
Application number
PCT/CN2014/086938
Other languages
English (en)
French (fr)
Inventor
吴彦林
Original Assignee
西安精英光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安精英光电技术有限公司 filed Critical 西安精英光电技术有限公司
Priority to US14/775,609 priority Critical patent/US9548586B2/en
Priority to DE112014006860.8T priority patent/DE112014006860T5/de
Publication of WO2016019615A1 publication Critical patent/WO2016019615A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the invention belongs to the field of optoelectronic technology, in particular to a four-head laser indicating structure.
  • Laser medical and cosmetic technology is a fast-growing industry in recent years.
  • Small-scale standard-packaged semiconductor laser diodes have advantages of wide temperature range, simple driving, high electro-optical conversion efficiency, diverse wavelengths, and good monochromaticity.
  • Traditional large-scale gas or solid-state laser devices are used in the medical and cosmetic industries.
  • the power of a single-tube laser diode is relatively small, and a single semiconductor laser diode cannot be used in a case where a large laser power is required, it is necessary to integrate the light beams emitted from a plurality of semiconductor laser diodes.
  • the traditional integration methods are divided into two categories. One is to array the semiconductor wafers of the semi-conductive laser diodes, to make a palladium-type laser device, and the other is to use a fiber-coupled system to couple and combine the beams of multiple semiconductor laser diodes. bundle.
  • the method of wafer array requires a lens array with high precision to carry out beam integration.
  • the heat generation of the wafer array is large, and the process is slightly inferior to affect the life of the wafer.
  • the use of heat dissipation has extremely high requirements;
  • the fiber coupling system is complex and the combining efficiency is low. Most of the fibers used for energy transmission are multimode fibers, which have great damage to the characteristics of the laser source itself, and cannot be used in some occasions where the beam mode is required.
  • the object of the present invention is to provide a split-type semiconductor laser diode energy combining structure device, which has a compact structure and a clever design, which greatly simplifies the complexity of the conventional laser combining device; and satisfies the current market for such semiconductor laser diodes. The demand for several devices.
  • a split type semiconductor laser diode energy combining device comprises a mounting seat, wherein the mounting seat is a disc-shaped structure with a positioning hole at the center, and four laser device assemblies are arranged symmetrically along one side of the disc a module base, the laser module assembly is mounted in the base of the assembly; one side of the base of the assembly is provided with a PCB drive circuit board connected to the laser module assembly through a spacer, and the PCB drive circuit board is provided a cable and a plug connected to the power supply; the laser module assembly is positioned by the top wire and the laser beam is emitted through the through hole of the disc-shaped mounting end, and the laser beam emitted from the laser module assembly is focused by the positive lens into one Spot.
  • the assembly base is provided with a mounting hole for mounting the laser module assembly
  • the laser module assembly provided with the boss is mounted into the assembly base mounting hole, and the mounting hole is formed through the boss and the assembly base.
  • the gap between the outer diameter of the boss and the inner diameter of the mounting hole of the component base is 0.5 mm.
  • the three directions of the mounting holes in the assembly base are respectively provided with inserting grooves for inserting the top wire, and the angle between the center lines of the adjacent mounting grooves in the three mounting grooves is 100°.
  • the top wire contacts the outer wall of the front laser module assembly of the boss provided on the laser module assembly.
  • the laser module assembly is composed of a semiconductor laser diode mounted on a laser tube holder, a lens barrel disposed outside the semiconductor laser diode, and an aspherical lens disposed at the front end of the semiconductor laser diode illuminator to become a laser
  • the base unit is launched.
  • the laser module assembly uses a low-power 808 nm laser diode as a light source, and the laser diode is provided with an aspheric surface that shapes the diverging beam of the laser diode into far-field collimated light and the laser spot at 50 meters can reach within 10 mm. lens.
  • the PCB driving circuit board adopts a CN5611 type constant current control chip, which inputs a power supply voltage of 2.6 to 3.3 V and a current of 30 to 800 mA.
  • the positive lens is an aspherical positive lens with a focal length of 60 mm and a diameter of 27 mm, and has an optical effective aperture of 20 mm, which can converge a beam of the same axial direction within a diameter of 20 mm at a 60 mm intersection.
  • the mount is machined from a metal aluminum material.
  • the top wire mounting groove is filled with 703 silicone rubber.
  • the structure drives four semiconductor laser diodes through four independent semiconductor laser diode driving units, and four independent semiconductor laser diodes are collimated by one pass, and then four collimated lights are paralleled by a parallel-coaxial adjustment structure.
  • the four parallel collimated lights are combined and integrated by a pair of aspherical lenses, and a spot of about 4 times the energy intensity of a single independent semiconductor laser diode can be obtained at the optical intersection.
  • the position of the lens is adjusted back and forth in the axial direction, the spot position can be precisely adjusted, and the beams of the plurality of independent semiconductor laser diodes can be combined; the compact structure, the design is smart and reasonable, and the traditional laser beam combining device is greatly simplified.
  • the complexity meets the current market demand for such semiconductor laser diode assembly devices.
  • the invention has the advantages of compact structure, reasonable design, simple assembly and convenient implementation.
  • the invention performs two optical precision adjustments on a standardized semiconductor laser diode to realize the function of energy combining multiple semiconductor laser diodes.
  • the present invention directly simplifies the complicated structure such as a conventional optically combined lens array, a multimode fiber bundle, a fiber-coupled collimating focusing lens, and a coupling adjustment mechanism by a standardized machining structure and an aspherical lens.
  • the craft
  • the realization cost of the invention is low, the complexity of the traditional optical energy combining method is reduced, the production process is simple, the product has long service life, strong practicability, and is convenient for popularization and use.
  • 1 is a schematic view showing the use of the principle of illumination of the present invention.
  • Figure 2 is a schematic view showing the structure of a four-head laser energy combiner.
  • Figure 3 is a schematic diagram of the installation of a four-head laser energy combiner module.
  • Figure 4 is a schematic diagram of the module.
  • Figure 5 is a schematic diagram of a laser module assembly.
  • Figure 6 is a schematic diagram of a four-head laser indicating PCB driving circuit board.
  • Figure 7 is a schematic diagram of a four-head laser indicating explosion.
  • Figure 8 is a schematic diagram of an 808 nm spot before focusing without positive lens focusing.
  • the split semiconductor laser diode energy combining device comprises a mounting seat 1 , and as shown in FIG. 4 , the mounting seat 1 is a disc-shaped structure with a positioning hole at the center. One side of the disc is symmetrically provided with four assembly bases 1-1 for mounting the laser module assembly 3. The front of the assembly base 1-1 is open, and the laser module assembly 3 is mounted on the assembly base 1-1. The laser beam is emitted through the end hole of the disc-shaped mounting seat 1; the laser module assembly 3 is mounted in the base of the assembly and is adjusted by the top wire 2, and the laser beam emitted from the laser module assembly 3 passes through the positive lens 8 Focus on 1 spot.
  • the positive lens 8 is an aspherical positive lens with a focal length of 60 mm and a diameter of 27 mm, and its optical effective aperture is 20 mm, and can converge the beam of the same axial direction within a diameter of 20 mm at the intersection of 60 mm.
  • the mounting seat 1 is provided with a PCB driving circuit board 5 connected through a spacer 4, and the PCB driving circuit board 5 is provided with a power cable 6 and a plug 7;
  • the assembly base is provided with a mounting laser mode Group a mounting hole of the member 3, a mounting hole for mounting the laser module assembly 3 in the component base 1-1, and a laser module assembly 3 having a boss 3-1 mounted to the mounting base 1-1 mounting hole And, by the gap between the boss 3-1 and the mounting hole of the component base 1-1, the distance between the outer diameter of the boss 3-1 and the inner diameter of the mounting hole of the component base 1-1 is 0.5 mm.
  • the top wire 2 is in contact with the outer wall of the front laser module assembly 3 of the boss 3-1 provided with the laser module assembly 3.
  • a ⁇ 7.5*0.5 boss is arranged on the ⁇ 7 laser module assembly, and the ⁇ 7 module assembly is assembled into the ⁇ 7.5 assembly hole, and the gap is positioned by the boss to adjust the angle to 3.5 degrees. Then, the adjustment is performed within a range in which the hole diameter of the mounting hole is larger than 0.5 mm of the outer diameter of the laser module assembly.
  • the outer side, the left side and the right side of the assembly base 1-1 are respectively provided with a mounting groove for inserting the top wire 2, and between the center lines of the adjacent mounting grooves in the three mounting grooves.
  • the angle is 100°.
  • the laser module assembly 3 is composed of a semiconductor laser diode mounted on a laser tube holder, a lens barrel disposed outside the semiconductor laser diode, and an aspherical lens disposed at the front end of the semiconductor laser diode illuminator.
  • a laser emission basic unit, the device has 4 identical laser modules.
  • the laser module assembly 3 uses a low-power 808 nm laser diode as a light source.
  • the laser diode is provided with an aspherical lens that shapes the divergent beam of the laser diode into far-field collimated light and the laser spot at 50 meters can reach within 10 mm.
  • the PCB driving circuit board 5 uses four symmetrically distributed CN5611 type constant current control chips 5-2, which input a power supply voltage of 2.6 to 3.3 V and a current of 30 to 800 mA.
  • a power adjustment potentiometer 5-1 is provided on each CN5611 type constant current control chip 5-2 side, and four LD pins 5-3 are provided on the PCB drive circuit board 5.
  • the PCB driver circuit board uses two spacers to solder the diode pins to the PCB drive circuit board, and the power plug is soldered to the circuit board through the 26AWG red and black cable.
  • the mount 1 is machined from a metal aluminum material.
  • FIG. 7 is a schematic view showing the three-dimensional structure of the device according to the present invention.
  • Four identical laser module assemblies 3 are mounted in the component base 1-1 of the mounting base 1, and are adjusted from three directions by three top wires 2 in sequence.
  • the front end of the component base 1-1 of the laser module assembly 3 is provided with four corresponding openings, and the four openings are The front light exit holes of the laser module assembly 3 correspond to each other.
  • FIG. 8 the 808 nm spot before the synthesis of the four-headed laser without focusing by the positive lens is shown.
  • 9 is a schematic representation of the pre-synthesis spot without focusing with a positive lens.
  • the laser module assembly 3 is mounted into the component base 1-1 of the mounting base 1, and the PCB 5 and the power plug 7 are sequentially powered on, and the PCB driving circuit board 5 passes the four modules through the two spacers. 4 respectively soldered to the diode, the power socket is connected to the 26AWG red and black cable and soldered to the PCB drive circuit board.
  • the four laser module assemblies 3 modulated by the auxiliary laser module are sequentially adjusted from three directions (at an angle of 100°) by three M2*2 top wires 2, and the bosses 3 are provided through the laser module assembly 3.
  • the angle of contact of -1 with the inner wall of the unit base 1-1 is adjusted to 3.5 degrees.
  • the laser beams emitted from the laser module assembly 3 are adjusted into parallel beams and focused by the positive lens 8, and the laser beams are concentrated at the intersection of 60 mm, and the spot is evenly adjusted and locked. And drop 703 silicone rubber.
  • the four-head laser energy combiner then focuses the modulated four beams of light into a spot at a distance by means of the positive lens 8.

Abstract

一种分体式半导体激光二极管能量合束装置,包括安装座(1),所述安装座(1)为中心设有定位孔的圆盘状结构,沿圆盘的一侧对称设有四个用于安装激光模组组件(3)的组件基座(1-1),激光模组组件(3)镶装在所述组件基座(1-1)中;所述组件基座(1-1)的一侧设有通过隔套与激光模组组件(3)连接的PCB驱动线路板(5),PCB驱动线路板(5)上设有连接电源的排线(6)和插头(7);激光模组组件(3)经顶丝(2)调整定位并通过圆盘状安装座(1)端面透孔出射激光束,将激光模组组件(3)出射的激光束经正透镜聚焦为1个光斑。通过调整顶丝(2)调整,使激光模组组件(3)光斑经正透镜(8)聚焦在60mm处成十字。其设计巧妙合理,提高了可靠性和稳定性,聚焦后的光斑强度显著增加,满足了市场对小体积高强度激光能量合束器的需求。

Description

一种分体式半导体激光二极管能量合束装置 技术领域
本发明型属于光电技术领域,尤其是涉及四头激光指示结构。
背景技术
激光医疗以及美容技术是近年来高速发展的行业,小型化标准封装的半导体激光二极管,具有使用温度范围宽、驱动简单、电—光转换效率高、波长多样,单色性好等优点,正在替代传统的大型气体或者固体激光器件在医疗和美容行业的应用。但是,由于半导激光二极管单管功率相对较小,在需要较大激光功率的场合不能使用单颗半导激光二极管,就需要对多颗半导激光二极管发出的光束进行整合。
传统的整合方式分为两类,一是对半导激光二极管发光晶圆部分进行列阵,做出钯条类型的激光器件,二是使用光纤耦合系统进行多颗半导体激光二极管的光束进行耦合和合束。
两种方法存在以下问题:
1、晶圆列阵的方式需要精度极高的透镜列阵来进行光束整合,晶圆列阵的发热量大,工艺稍差就会影响晶圆寿命,使用上对散热有极高的要求;
2、光纤耦合方式系统复杂,合束效率低下,能量传输所使用的光纤多为多模光纤,对激光光源本身的特性破坏较大,在有些对光束模式有需求的场合不能使用。
3、成本都比较高,无论是透镜列阵还是光纤合束系统,所需要的附属调节结构和其本身即为昂贵的,在日渐普及的家用理疗行业,显然已经不具备竞争价值。
4、工艺复杂,几乎无法大规模生产,仅适合于研究机构或者专业医疗结构的大型设备所使用。
发明内容
本发明的目的是提供一种分体式半导体激光二极管能量合束结构装置,结构紧凑,设计巧妙合理,极大简化了传统激光合束装置的复杂性;满足了目前市场对此类半导体激光二极管合数装置的需求。
本发明的目的是通过下述技术方案来实现的。
一种分体式半导体激光二极管能量合束装置,包括安装座,所述安装座为中心设有定位孔的圆盘状结构,沿圆盘的一侧对称设有四个用于安装激光模组组件的组件基座,激光模组组件镶装在所述组件基座中;所述组件基座的一侧设有通过隔套与激光模组组件连接的PCB驱动线路板,PCB驱动线路板上设有连接电源的排线和插头;所述激光模组组件经顶丝调整定位并通过圆盘状安装座端面透孔出射激光束,将激光模组组件出射的激光束经正透镜聚焦为1个光斑。
优选地,所述组件基座中设有镶装激光模组组件的安装孔,设有凸台的激光模组组件镶装到组件基座安装孔中,并通过凸台与组件基座安装孔之间的间隙定位,凸台外径与组件基座安装孔内径之间的间距为0.5mm。
优选地,所述组件基座中安装孔的三个方向分别设有镶装顶丝的镶装槽,三个镶装槽中相邻镶装槽中心线之间的夹角为100°。
优选地,所述顶丝接触在的激光模组组件所设凸台的前部激光模组组件外壁上。
优选地,所述激光模组组件由镶装在激光管座上的半导体激光二极管、设在半导体激光二极管外侧的透镜筒、以及置于半导体激光二极管发光体前端的非球面透镜组成,成为一个激光发射基本单元。
优选地,所述激光模组组件使用小功率808nm激光二极管作为光源,激光二极管前设有将激光二极管的发散光束整形为远场准直光、且50米处激光光斑能够达到10mm以内的非球面透镜。
优选地,所述PCB驱动线路板采用CN5611型恒流控制芯片,其输入2.6~3.3V电源电压,30~800mA的电流。
优选地,所述正透镜为焦距60mm,直径27mm的非球面正透镜,其光学有效口径为20mm,能将20mm直径内同轴向的光束汇聚于60mm交点处。
优选地,所述安装座由金属铝材料机加工而成。
优选地,所述顶丝镶装槽中填充有703硅橡胶。
该结构通过4个独立的半导体激光二极管驱动单元来驱动4颗半导体激光二极管,把4只独立的半导体激光二极管通过一次准直,然后通过平行—同轴调整结构将4束准直光平行,最后通过一片非球面镜片将4束平行的准直光进行合束整合,在其光学交点处可以得到约为单个独立半导体激光二极管4倍的能量强度的光斑。实际使用中在轴向前后调整镜片的位置,可以精确调整光斑位置,达到了对多颗独立半导体激光二极管的光束进行合束;其结构紧凑,设计巧妙合理,极大简化了传统激光合束装置的复杂性;满足了目前市场对此类半导体激光二极管合数装置的需求。
本发明与现有技术相比具有以下优点:
1、本发明的结构紧凑,设计合理,装配简单,实现方便。
2、本发明将标准化的半导体激光二极管进行两次光学精准调整,实现将多颗半导体激光二极管进行能量合束的功能。
3、本发明直接通过标准化的机加工结构和非球面透镜,替代了传统光学合束的透镜列阵、多模光纤束、光纤耦合准直聚焦透镜、耦合调整机构等复杂的结构,由此简化了工艺。
4、本发明的实现成本低,降低了传统光学能量合束方法的复杂程度,生产工艺流程简单,产品使用寿命长,实用性强,便于推广使用。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分, 并不构成对本发明的不当限定,在附图中:
图1为本发明发光原理使用示意图。
图2为四头激光能量合束器结构示意图。
图3为四头激光能量合束器模组安装示意图。
图4为模组示意图。
图5为激光模组组件示意图。
图6为四头激光指示PCB驱动线路板示意图。
图7为四头激光指示爆炸示意图。
图8为未经正透镜聚焦合成前的808nm光斑示意图。
图中:1-安装座;1-1-组件基座;2-顶丝;3-激光模组组件;3-1-凸台;4-隔套;5-PCB驱动线路板;5-1-功率调整电位器;5-2-恒流控制芯片;5-3-LD管脚;6-排线;7-插头;8-正透镜;9-未经正透镜聚焦合成前光斑示意。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
如图1、图2和图3所示,该分体式半导体激光二极管能量合束装置,包括安装座1,结合图4所示,安装座1为中心设有定位孔的圆盘状结构,沿圆盘的一侧对称设有四个用于安装激光模组组件3的组件基座1-1,组件基座1-1前部开口,激光模组组件3镶装在组件基座1-1中并通过圆盘状安装座1端面透孔出射激光束;激光模组组件3镶装在组件基座中并通过顶丝2调整定位,将激光模组组件3出射的激光束经正透镜8聚焦为1个光斑。正透镜8为焦距60mm,直径27mm的非球面正透镜,其光学有效口径为20mm,能将20mm直径内同轴向的光束汇聚于60mm交点处。
所述安装座1的一侧设有通过隔套4连接的PCB驱动线路板5,PCB驱动线路板5上设有连接电源的排线6和插头7;组件基座中设有镶装激光模组组 件3的安装孔,组件基座1-1中设有镶装激光模组组件3的安装孔,设有凸台3-1的激光模组组件3镶装到组件基座1-1安装孔中,并通过凸台3-1与组件基座1-1安装孔之间的间隙定位,凸台3-1外径与组件基座1-1安装孔内径之间的间距为0.5mm。顶丝2接触在的激光模组组件3所设凸台3-1的前部激光模组组件3外壁上。
本实施例采用φ7激光模组组件上设有φ7.5*0.5的凸台,将φ7模组组件组装到φ7.5装配孔中,依靠凸台进行间隙定位,调整角度为3.5度。然后在安装孔的孔径大于激光模组组件外径0.5mm范围内进行调整。
如图4所示,组件基座1-1中的外侧、左侧和右侧分别设有镶装顶丝2的镶装槽,三个镶装槽中相邻镶装槽中心线之间的夹角为100°。
如图5所示,激光模组组件3由镶装在激光管座上的半导体激光二极管、设在半导体激光二极管外侧的透镜筒、以及置于半导体激光二极管发光体前端的非球面透镜组成,成为一个激光发射基本单元,本装置共有4个相同的激光模组。激光模组组件3使用小功率808nm激光二极管作为光源,激光二极管前设有将激光二极管的发散光束整形为远场准直光、且50米处激光光斑可达到10mm以内的非球面透镜。
如图6所示,PCB驱动线路板5采用四个对称分布的CN5611型恒流控制芯片5-2,其输入2.6~3.3V电源电压,30~800mA的电流。在各CN5611型恒流控制芯片5-2侧设有一功率调整电位器5-1,在PCB驱动线路板5上设有四个LD管脚5-3。PCB驱动线路板用两个隔套分别将二极管管脚于PCB驱动线路板焊接,电源插头通过26AWG红黑排线于线路板焊接。安装座1由金属铝材料机加工而成。
图7所示,为本发明装置安装立体结构示意图,4个相同的激光模组组件3镶装在安装座1的组件基座1-1中,用3个顶丝2依次从3个方向调整,在激光模组组件3镶装的组件基座1-1前端部开有四个对应的开孔,该四个开孔与 激光模组组件3前部出光孔相对应。
如图8所示,为四头激光器通电后未经正透镜聚焦合成前的808nm光斑示意。图中9为未经正透镜聚焦合成前光斑示意。
工作时,将激光模组组件3镶装进安装座1的组件基座1-1中,依次将PCB5、电源插头7接通电源,PCB驱动线路板5将4个模组通过两个隔套4分别与二极管焊接,电源插座接于26AWG红黑排线焊接于PCB驱动线路板上。借辅助激光模组将调制好的4个激光模组组件3用3个M2*2顶丝2依次从3个方向(夹角100°处)调整,通过激光模组组件3所设凸台3-1与组件基座1-1内壁的接触调整角度为3.5度。通过顶丝2在三个角度的微调整,将激光模组组件3各出射的激光束调整为平行光束并经正透镜8聚焦,将激光束汇聚在60mm交点处,将光斑调整均匀后锁紧并滴入703硅橡胶。然后四头激光能量合束器借助于正透镜8将调制均匀的4束光在远处聚焦为一个光斑。
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据发明实施例,在具体实施方式以及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种分体式半导体激光二极管能量合束装置,包括安装座(1),其特征在于:所述安装座(1)为中心设有定位孔的圆盘状结构,沿圆盘的一侧对称设有四个用于安装激光模组组件的组件基座(1-1),激光模组组件(3)镶装在所述组件基座(1-1)中;所述组件基座(1-1)的一侧设有通过隔套(4)与激光模组组件(3)连接的PCB驱动线路板(5),PCB驱动线路板(5)上设有连接电源的排线(6)和插头(7);所述激光模组组件(3)经顶丝(2)调整定位并通过圆盘状安装座(1)端面透孔出射激光束,将激光模组组件(3)出射的激光束经正透镜(8)聚焦为1个光斑。
  2. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述组件基座(1-1)中设有镶装激光模组组件(3)的安装孔,设有凸台(3-1)的激光模组组件(3)镶装到组件基座(1-1)安装孔中,并通过凸台(3-1)与组件基座(1-1)安装孔之间的间隙定位,凸台(3-1)外径与组件基座(1-1)安装孔内径之间的间距为0.5mm。
  3. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述组件基座(1-1)中安装孔的三个方向分别设有镶装顶丝(2)的镶装槽,三个镶装槽中相邻镶装槽中心线之间的夹角为100°。
  4. 根据权利要求2或3所述的分体式半导体激光二极管能量合束装置,其特征在于:所述顶丝(2)接触在的激光模组组件(3)所设凸台(3-1)的前部激光模组组件(3)外壁上。
  5. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述激光模组组件(3)由镶装在激光管座上的半导体激光二极管、设在半导体激光二极管外侧的透镜筒、以及置于半导体激光二极管发光体前端的非球面透镜组成,成为一个激光发射基本单元。
  6. 根据权利要求5所述的分体式半导体激光二极管能量合束装置,其特征在于:所述激光模组组件(3)使用小功率808nm激光二极管作为光源,激光二极管前设有将激光二极管的发散光束整形为远场准直光、且50米处激光光斑能够达到10mm以内的非球面透镜。
  7. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述PCB驱动线路板(5)采用CN5611型恒流控制芯片,其输入2.6~3.3V电源电压,30~800mA的电流。
  8. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述正透镜(8)为焦距60mm,直径27mm的非球面正透镜,其光学有效口径为20mm,能将20mm直径内同轴向的光束汇聚于60mm交点处。
  9. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述安装座(1)由金属铝材料机加工而成。
  10. 根据权利要求1所述的分体式半导体激光二极管能量合束装置,其特征在于:所述顶丝镶装槽中填充有703硅橡胶。
PCT/CN2014/086938 2014-08-07 2014-09-19 一种分体式半导体激光二极管能量合束装置 WO2016019615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/775,609 US9548586B2 (en) 2014-08-07 2014-09-19 Energy integrating device for split semiconductor laser diodes
DE112014006860.8T DE112014006860T5 (de) 2014-08-07 2014-09-19 Energieintegrierende Vorrichtung für geteilte Halbleiter-Laserdioden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410387104.2A CN104104013A (zh) 2014-08-07 2014-08-07 一种分体式半导体激光二极管能量合束装置
CN201410387104.2 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016019615A1 true WO2016019615A1 (zh) 2016-02-11

Family

ID=51671933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086938 WO2016019615A1 (zh) 2014-08-07 2014-09-19 一种分体式半导体激光二极管能量合束装置

Country Status (4)

Country Link
US (1) US9548586B2 (zh)
CN (1) CN104104013A (zh)
DE (1) DE112014006860T5 (zh)
WO (1) WO2016019615A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821480A (zh) * 2015-05-14 2015-08-05 西安近代化学研究所 大口径窄带宽激光照射器
CN105169571B (zh) * 2015-09-30 2017-08-25 西安炬光科技股份有限公司 一种接触式激光工作头及其医疗美容设备
CN106099626B (zh) * 2016-07-27 2021-12-24 山东大学 可调整接头位置的激光耦合器及激光系统
CN208752384U (zh) * 2018-09-25 2019-04-16 中强光电股份有限公司 投影机及其激光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343560A (ja) * 2000-05-30 2001-12-14 Kyocera Corp 光モジュール
CN1367557A (zh) * 2002-02-01 2002-09-04 中国科学院长春光学精密机械与物理研究所 密封装单片式微通道热沉冷却激光二极管阵列的制备
JP2005033019A (ja) * 2003-07-04 2005-02-03 Sumitomo Electric Ind Ltd 発光モジュール
CN201256245Y (zh) * 2008-09-18 2009-06-10 西安华科光电有限公司 一种激光二极管封装
CN102053319A (zh) * 2009-10-28 2011-05-11 三菱电机株式会社 光源装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929436A1 (de) * 1999-06-26 2001-01-11 Hilti Ag Strahlteiler zur Aufspaltung eines Lichtstrahlenbündels in Teilstrahlenbündel
US7116694B2 (en) * 2002-12-11 2006-10-03 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Transmitter array with pixel element that has primary semiconductor laser and at least one secondary semiconductor laser
JP5473535B2 (ja) * 2009-10-28 2014-04-16 三菱電機株式会社 光源装置
US9303958B2 (en) * 2013-12-23 2016-04-05 Advanced Laser Technologies, LLC Laser-weapon module for a portable laser weapon
CN103762502B (zh) * 2013-12-31 2017-03-29 维林光电(苏州)有限公司 多色半导体激光器合束装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343560A (ja) * 2000-05-30 2001-12-14 Kyocera Corp 光モジュール
CN1367557A (zh) * 2002-02-01 2002-09-04 中国科学院长春光学精密机械与物理研究所 密封装单片式微通道热沉冷却激光二极管阵列的制备
JP2005033019A (ja) * 2003-07-04 2005-02-03 Sumitomo Electric Ind Ltd 発光モジュール
CN201256245Y (zh) * 2008-09-18 2009-06-10 西安华科光电有限公司 一种激光二极管封装
CN102053319A (zh) * 2009-10-28 2011-05-11 三菱电机株式会社 光源装置

Also Published As

Publication number Publication date
DE112014006860T5 (de) 2017-05-04
CN104104013A (zh) 2014-10-15
US9548586B2 (en) 2017-01-17
US20160204572A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
US20200371367A1 (en) High efficiency optical combiner for multiple non-coherent light sources
CN204885804U (zh) 一种窄线宽合束模块及具有该模块的多波长拉曼激光器
US11526001B2 (en) Laser systems and optical devices for manipulating laser beams
US7668214B2 (en) Light source
WO2015043521A1 (zh) 激光模组
CN203688067U (zh) 一种数字可控光谱光源系统
WO2016019615A1 (zh) 一种分体式半导体激光二极管能量合束装置
CN202548385U (zh) 一种平台式折转反射单管半导体激光器光纤耦合模块
CN103698007B (zh) 一种数字可控光谱光源系统及其调控方法
CN102401949A (zh) 一种平台式折转反射单管半导体激光器光纤耦合模块
WO2019128232A1 (zh) 一种多只To封装半导体激光器的空间耦合结构
CN101833150A (zh) 一种大功率半导体激光器光纤耦合模块
CN105071196A (zh) 一种窄线宽合束模块及具有该模块的多波长拉曼激光器
CN102279446A (zh) 一种半导体激光器光纤耦合模块
CN109586163B (zh) 多单管大功率半导体激光器封装结构及激光器
US9229145B2 (en) Lighting device
CN107606531B (zh) 一种uv-led平行点光源
CN105207058A (zh) 白光激光模组、激光显示系统和激光投影系统
CN104009395A (zh) 多单管半导体激光器光纤耦合模块
CN203553607U (zh) 激光模组
CN203455547U (zh) 一种光纤激光器的多路合并耦合系统
CN103744186A (zh) 一种激光二极管线阵/面阵的光束整形系统
CN103487902B (zh) Dfb半导体激光器阵列芯片的光纤耦合封装结构及其方法
CN201740890U (zh) 一种半导体激光器光纤耦合模块
CN203671317U (zh) Led环式棱镜光源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14775609

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006860

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899489

Country of ref document: EP

Kind code of ref document: A1