WO2016019476A1 - Method for supplying gas to an environment assigned to artificial cell culture and device for implementation of said method - Google Patents

Method for supplying gas to an environment assigned to artificial cell culture and device for implementation of said method Download PDF

Info

Publication number
WO2016019476A1
WO2016019476A1 PCT/CH2015/000116 CH2015000116W WO2016019476A1 WO 2016019476 A1 WO2016019476 A1 WO 2016019476A1 CH 2015000116 W CH2015000116 W CH 2015000116W WO 2016019476 A1 WO2016019476 A1 WO 2016019476A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
predetermined
petri dish
gaseous composition
rate
Prior art date
Application number
PCT/CH2015/000116
Other languages
French (fr)
Inventor
Jean-Baptiste Menut
Original Assignee
Smtec, Sport & Medical Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smtec, Sport & Medical Technologies Sa filed Critical Smtec, Sport & Medical Technologies Sa
Publication of WO2016019476A1 publication Critical patent/WO2016019476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution

Definitions

  • the present invention relates to a method for supplying gas to a space allocated to cell culture, comprising at least one petri dish or the like, containing a physiological liquid and brought into contact with a predetermined gaseous composition containing for example oxygen or a another gas, or mixture of gases or the like, the rate of which is adjusted sequentially, said at least one petri dish having a bottom made of a semi-permeable material permitting the gas and being liquid-tight.
  • It also relates to a device for supplying gas to a space allocated to artificial cell culture, comprising at least one petri dish or the like, containing a physiological liquid and placed in an enclosure in which circulates a predetermined gaseous composition containing, for example, oxygen or another gas, or mixture of gases or the like, whose rate must be adjusted sequentially, said at least one petri dish having a bottom made of a semi-permeable material permitting the gas and being liquid-tight, for the implementation of the method.
  • Laboratory cell cultures are being used more and more as a substitute for animal experimentation. They are generally carried out in Petri dishes containing one or more wells, each containing a physiological liquid, these petri dishes being placed in a 37 ° oven to meet the natural conditions of temperature and humidity required to perform the treatment. cell growth. To reproduce the oxygenation conditions, Petri dishes or the like are placed in controlled atmosphere ovens. But in real conditions, cells are often subject to rapid changes in oxygenation, sometimes significant. To subject these cells, bathed in said physiological fluid, to rapid changes in the oxygen content, special petri dishes, comprising a semi-permeable bottom, have been developed to promote gas exchange. The bottom of the petri dish is made of a semi-permeable material that allows the gases to pass but retains the liquids.
  • Petri dishes offer the cultured cells, which are always fixed against the bottom surface, the advantage of being subjected very quickly to the same partial pressures of the gases as the atmosphere prevailing in the immediate environment of the boxes. Since, in order to vary the partial pressures to which the cells must be subjected, the atmosphere prevailing around the petri dishes is varied, it is essential that the variations in the immediate environment of the culture dishes can be transmitted as quickly as possible. possible to the cells in culture in said petri dishes.
  • climate chambers are used in which the composition of the gases can be varied, in order to modify the culture environment, first around the Petri dishes and then, at the level of the cell cultures themselves. even through the semi-permeable bottom of the boxes.
  • the known process has many disadvantages. It is initially relatively slow since it lasts several minutes, it requires a complete filling of the oven by the predetermined gaseous composition, this oven having a large volume, which implies on the one hand a very high consumption of said gaseous composition and considerably slows the absorption of a new gaseous composition if that which has been used previously has been modified.
  • the present invention aims to overcome these disadvantages by significantly reducing the duration of transmission to the cells in culture, modifications of the predetermined gaseous composition which feeds them, more particularly the duration of the variations of the oxygen content present in said predetermined composition. by substantially decreasing the volume of the space in which said composition is located, so as to be able to modify the feed of the cells in culture as soon as possible, if necessary, by adapting the required gaseous composition and bringing it immediately in contact with cells in culture.
  • the method according to the invention is characterized in that said predetermined gaseous composition is circulated in a circulation channel adjacent said bottom of said at least one Petri dish, said circulation channel having an arranged upper wall. to communicate with said bottom of said at least one petri dish, such that said predetermined gaseous composition which is conveyed in said circulation channel communicates with the contents of said at least one Petri dish through said upper wall of said channel and said bottom of the box, which are at least partially common, in that said predetermined gaseous composition is injected at an inlet end of said circulation channel and in that said predetermined gaseous composition is discharged at an end of output of said flow channel, opposite said input end.
  • said gaseous composition is injected predetermined at one end of said channel disposed upstream of said at least one petri dish and that said predetermined gaseous composition is discharged at an end of said channel disposed downstream of said at least one petri dish.
  • a circulation channel arranged under a plurality of Petri dishes, each of said boxes comprising a semi-permeable bottom at least partially common with the upper wall of said circulation channel, wherein said predetermined gaseous composition is injected upstream of said plurality of Petri dishes and said predetermined gaseous composition is discharged at one end of said circulation channel disposed downstream of said at least one Petri dish.
  • a predetermined gaseous composition in order to adjust the partial pressure of a selected gas of said predetermined gaseous composition, to a fixed fixed rate called a set rate, a predetermined gaseous composition is injected into said channel in which the partial pressure of said gas selected is equal to a set rate, so that the partial pressure of said selected gas in the contact zone with the biological fluid locally reaches said setpoint value for a defined time to transmit to the cell culture said selected gas.
  • a predetermined gaseous composition in which the partial pressure of said gas is advantageously injected into said channel is advantageously injected into said channel.
  • selected has a value greater than said setpoint rate, this value is maintained above said setpoint rate for a predetermined time and said value is lowered to that of said setpoint rate after said predetermined time, so that the pressure part of said selected gas in the biological fluid reaches said setpoint more rapidly.
  • a predetermined gaseous composition in which the partial pressure of said gas selected has a value greater than the set point, it can gradually decrease this value above the set point for a predetermined time and can maintain said value to that of said set point after said predetermined time, so that the partial pressure of said selected gas in the biological fluid reaches said setpoint more quickly.
  • a predetermined gaseous composition in which the partial pressure of said gas selected has a value lower than the set point, can then increase this lower value to the set point for a predetermined time and can maintain said value to that of said set point after said predetermined time, so that the partial pressure of said selected gas in the biological fluid reaches said set point.
  • the device according to the invention is characterized in that it comprises a circulation channel adjacent said bottom of said petri dish, said circulation channel having an upper wall constituted by said bottom of said at least one box of Petri, such that said predetermined gaseous composition which is conveyed in said circulation channel communicates with the contents of said at least one petri dish through said upper wall of the circulation channel and said bottom of the box, which are at least partially common, means for injecting said predetermined gaseous composition at an inlet end of said circulation channel and means for recovering said predetermined gaseous composition at an outlet end of said circulation channel, opposed to said entrance end.
  • said means for injecting said predetermined gaseous composition at one end of said circulation channel are arranged upstream of said at least one Petri dish and in that said means for recovering said predetermined gaseous composition at the other end of said channel of circulation are arranged downstream of said at least one Petri dish.
  • the device comprises a single circulation channel disposed under a plurality of petri dishes, each of said boxes comprising a semi-permeable bottom which coincides with windows formed in the upper wall of said single circulation channel, provided with means for injecting said predetermined gaseous composition upstream of said plurality of Petri dishes and means for recovering said predetermined gaseous composition downstream of said plurality of Petri dishes.
  • control means arranged to define both the value of the pressure are preferably provided. partial oxygen in the physiological fluid and the duration of injection of said gaseous composition in said circulation channel.
  • the device advantageously comprises a base in which is formed said adjacent circulation channel at the bottom of said at least one Petri dish, and communicating with the latter through said semi-permeable membrane.
  • said base comprises a bottom plate, side walls, an inlet mouth in said circulation channel and an outlet mouth, this assembly being closed on the top, by a cover plate cut in half. bottom of said at least one petri dish, the cut being partially closed by said semi-permeable membrane.
  • said base comprises a bottom plate, side walls, inlet mouth in said circulation channel and an outlet mouth, this assembly being closed on the top, by a cover plate cut in correspondence. the bottom of the wells of said multi-well Petri dish, the cuts being partially closed by said semi-permeable membrane.
  • said base comprises a bottom plate and side walls, this assembly being closed on the top, by the bottom of a multi-well integrated multi-well petri dish, the side walls being respectively equipped with an input end and an output end.
  • FIG. 1 represents a longitudinal sectional view of a first embodiment. of a cell culture device according to the invention
  • FIG. 2 represents a top view of the cell culture device of FIG. 1
  • FIG. 3 represents a perspective view of the cell culture device of FIG. 1
  • FIGS. 4A, 4B, 4C and 4D are views which illustrate the evolution of the partial pressure of oxygen (PO2) in the biological fluid lying above the semipermeable membrane
  • FIGS. 5A, 5B and 5C represent views, respectively in perspective and in longitudinal section, total and partial of a second embodiment of a cell culture device using a "multi-well" type Petri dish
  • FIG. 6 represents a longitudinal sectional view of a third embodiment of a culture device cell according to the invention.
  • the device 10 for supplying gas to an environment assigned to artificial cell culture comprises at least one Petri dish 1 1 or the like consisting of a container 12, usually circular, square or rectangular, preferably provided with a lid 1 3 and a bottom 14.
  • the lid 13 is arranged to fit on the top of the container 12 to close it.
  • the bottom 14 of the container 12 consists of a semi-permeable membrane 15 which has the characteristic of allowing the gases to pass and of stopping the liquids.
  • the semipermeable membrane 15 constitutes an exchange interface between the cells of a cell culture 16 and the gas passing through the membrane.
  • the container 12 of the Petri dish 1 1 contains a biological fluid and the culture cell 16 fixed on the inner surface of the semi-permeable membrane 15 constituting the bottom of the container 12.
  • the device of the invention comprises a base 21 in which is provided a channel 20 for circulation of the gaseous composition, this circulation channel 20 being disposed below said container 12. It comprises a bottom plate 22a, side walls 22b, an inlet end 23 and an outlet end 24, this assembly being closed on the top, by a cover plate 25.
  • this cover plate is provided at least one window 26, or a plurality of windows 26, corresponding to the bottom 14 of the container 12, when the device comprises only one container 12 or the respective bottoms of the different containers 12, in the case where the device comprises a plurality of containers of the type Petri dishes, for example.
  • the window or windows 26 have a shape and dimensions such that they can or can receive and house the bottom or bottoms 14 of containers 12 of said at least one or of the plurality of Petri dishes 1 1.
  • a seal 27 is advantageously fixed around the periphery at the base of the container 12.
  • the closure plate 25 is equipped with injection means 28 positioned upstream of said at least one petri dish 1 1 and suction means 29 may be positioned downstream to evacuate the predetermined gaseous composition out of said channel 20.
  • the contact between the biological fluid and the predetermined gas composition is very direct.
  • the predetermined volume of gaseous composition to be injected to vary the environment of the cells is reduced, since it does not exceed the volume of the circulation channel 20, which makes it possible to perform fast transitions and, in addition, to realize considerable savings in gas. Rinse channel 20 by the gaseous composition can be performed quickly and cheaply.
  • FIGS. 4A, 4B and 4C show the evolution of the PO2 oxygen partial pressure in the biological fluid 16 on the surface of the semipermeable membrane 15 to which the cell culture 17 is attached. It is recalled that the partial pressure of the a gas in a given volume of a gaseous mixture is equal to the pressure that this gas would have if it were all alone in said given volume. For example, if the barometric pressure is 760 mmHg and the oxygen fraction in the gas mixture is 5% the oxygen partial pressure is 760x0.05 or 38mmHg.
  • the partial pressure of the oxygen or possibly another gas or gas mixture in the channel is designated a, and the corresponding partial pressure in the liquid which contains or irrigates the cells is designated b.
  • the graph of FIG. 4A represents the curve 41 illustrating the evolution of the PO2 oxygen partial pressure which passes abruptly from a state 1, where its value is, for example, from 38 mmHg to a state 2 where its value is example of 121 mmHg, which corresponds respectively to 5% and 16% levels in the gas composition.
  • a time ti is necessary to achieve equilibrium in the liquid at the level of the cell culture, ie on the other side of the semipermeable membrane with respect to said circulation channel.
  • the graph of FIG. 4B represents the curve 42 which illustrates the evolution of the PO2 oxygen partial pressure.
  • the oxygen partial pressure PO2 of the gas is initially higher than the desired final value after the equilibrium.
  • a gaseous composition is circulated in the channel for a predetermined period tt>, the rate of which is greater than the setpoint value and then returns to said setpoint value. It can be seen that the process is greatly accelerated, the equilibrium is reached more rapidly and the oxygen transfer takes place in a time shorter than the time t in the example of FIG. 4A.
  • the graph of FIG. 4C represents the curve 43 which illustrates the evolution of the PO2 oxygen partial pressure. There is also an overshoot of the PO2 oxygen partial pressure which is then asymptotically reduced to the set value for a time te. The time required to reach equilibrium is reached at time t 3 , which is less than the previous time, but the advantage is a greater stability of the system. The risk of exceeding the setpoint, as shown in curve 42, is less.
  • the graph of FIG. 4D represents the curve 44 which illustrates the evolution of the PO2 oxygen partial pressure. Instead of exceeding, as shown in FIG. 4C, the oxygen partial pressure PO2, a reduced injection is provided and this partial pressure is then increased to the setpoint value during a time td. The time necessary to reach equilibrium is reached at time t 4 , which is shortened compared to the time ti mentioned above. The risk of exceeding the setpoint, as shown in curve 42, is less.
  • oxygen partial pressure PO2 It evokes primarily the oxygen partial pressure PO2, but it is understood that it could also be other gas or gas mixture, such as for example carbon dioxide, nitrogen gas medication or an aerosol, according to specific needs in a context of cell culture. Indeed, there are always several gases in the gas mixture which consists mainly of oxygen, nitrogen and carbon dioxide (CO2). Currently CO2 is kept constant at 5% or 10%, and the oxygen and nitrogen levels are interdependent, ie if the oxygen level drops, that of nitrogen rises and vice versa.
  • the device is advantageously associated with gas flow management means. At the time of a change of setpoint, there may be an interest in increasing the flows and then lowering them. Temporary overrun of the setpoint may be accompanied temporarily by an increase in flow to improve trade.
  • FIGS. 5A, 5B and 5C show an alternative embodiment of the device for supplying gas to an environment assigned to the artificial cell culture according to the invention, this environment consisting of a Petri dish of the "multi-well" type.
  • This type of Petri dishes known per se, is a box manufactured by injection molding or by thermoforming molding, comprising a plurality of cavities assigned to the cell culture.
  • the device of the invention comprises, as for the embodiment described above, a circulation channel 120 delimited by a base 121, lateral walls 122 and equipped with an inlet end 123 and an outlet end 124.
  • the individual petri dishes 12 of the previous embodiment are replaced by individual wells January 12 of the multi-well Petri dish 130 used in the present embodiment.
  • FIG. 5B represents the multi-well petri dish assembly seen in longitudinal section, the petri dish 130 being mounted on the base 121.
  • FIG. 5C shows the base 121 only seen in longitudinal section, the multi-well Petri dish 1 12 being separated from its base 121.
  • FIG. 6 represents a third variant embodiment in which a base 221 and a multi-well petri dish 230 are integrated and made in one piece according to manufacturing methods known per se.
  • the individual containers or wells 212 each have a bottom 215 in the form of a semi-permeable membrane 215 and the circulation channel 220 is formed in the space between the double-wall elements of the base 221 and which communicates with an inlet end 223 and outlet end 224.
  • the present invention is not limited to the embodiments described, but can be extended to various variations obvious to those skilled in the art and which flow from the present description without the need for an inventive effort.
  • the rectangular or square boxes called multiwells for performing multiple crops simultaneously and under identical conditions give excellent results.
  • the gas evacuation means may be replaced by means for managing leaks between the circulation channel of the gaseous composition and the containers 12 or the wells 12 and 212 of the multi-well petri dishes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The device (10) for supplying gas to an environment assigned to artificial cell culture comprises at least one Petri dish (11) or similar comprising a receptacle (12), that is commonly circular, square or rectangular in shape, preferably provided with a lid (13) and a base (14). The lid (13) is arranged to be fitted over the receptacle (12) in order to close same. The base (14) comprises a semipermeable membrane (15) having the feature of allowing the passage of gases and stopping the passage of liquids. The semipermeable membrane (15) consists of an interface for exchange between the cells of a cell culture (17) and the gas crossing the membrane. The receptacle (12) contains a biological liquid (16), and the cell culture (17) which is fixed on the interior surface of the semipermeable membrane (15) constitutes the base of the receptacle (12).

Description

PROCEDE POUR ALIMENTER EN GAZ UN ENVIRONNEMENT AFFECTE A LA CULTURE CELLULAIRE ARTIFICIELLE ET DISPOSITIF POUR LA PROCESS FOR GAS SUPPLYING AN ENVIRONMENT AFFECTING ARTIFICIAL CELL CULTURE AND DEVICE FOR THE PRODUCTION
MISE EN ŒUVRE DE CE PROCEDE Domaine technique IMPLEMENTING THIS METHOD Technical field
La présente invention concerne un procédé pour alimenter en gaz un espace affecté à la culture cellulaire, comportant au moins une boîte de Pétri ou similaire, contenant un liquide physiologique et mise en contact avec une composition gazeuse prédéterminée contenant par exemple de l'oxygène ou un autre gaz, ou mélange de gaz ou similaire, dont le taux est ajusté séquentiellement, ladite au moins une boîte de Pétri comportant un fond réalisé en un matériau semi-perméable laissant passer les gaz et étant étanche aux liquides. The present invention relates to a method for supplying gas to a space allocated to cell culture, comprising at least one petri dish or the like, containing a physiological liquid and brought into contact with a predetermined gaseous composition containing for example oxygen or a another gas, or mixture of gases or the like, the rate of which is adjusted sequentially, said at least one petri dish having a bottom made of a semi-permeable material permitting the gas and being liquid-tight.
Elle concerne également un dispositif pour alimenter en gaz un espace affecté à la culture cellulaire artificielle, comportant au moins une boîte de Pétri ou similaire, contenant un liquide physiologique et placé dans une enceinte dans laquelle circule une composition gazeuse prédéterminée contenant par exemple de l'oxygène ou un autre gaz, ou mélange de gaz ou similaire, dont le taux doit être ajusté séquentiellement, ladite au moins une boîte de Pétri comportant un fond réalisé en un matériau semi-perméable laissant passer les gaz et étant étanche aux liquides, pour la mise en œuvre du procédé. It also relates to a device for supplying gas to a space allocated to artificial cell culture, comprising at least one petri dish or the like, containing a physiological liquid and placed in an enclosure in which circulates a predetermined gaseous composition containing, for example, oxygen or another gas, or mixture of gases or the like, whose rate must be adjusted sequentially, said at least one petri dish having a bottom made of a semi-permeable material permitting the gas and being liquid-tight, for the implementation of the method.
Les cultures cellulaires de laboratoire sont de plus en plus pratiquées notamment comme substitut à l'expérimentation animale. Elles sont généralement effectuées dans des boîtes de Pétri comportant un ou plusieurs puits, contenant chacun un liquide physiologique, ces boîtes de Pétri étant placées dans une étuve à 37° pour respecter les conditions naturelles de température et d'humidité requises pour effectuer de la croissance cellulaire. Pour reproduire les conditions d'oxygénation, les boîtes de Pétri ou similaires sont placées dans des étuves à atmosphère contrôlée. Mais en conditions réelles, les cellules sont souvent soumises à des variations rapides d'oxygénation, parfois importantes. Pour soumettre ces cellules, baignant dans ledit liquide physiologique, à des variations rapides du taux d'oxygène, des boîtes de Pétri spéciales, comportant un fond semi perméable, ont été développées pour favoriser les échanges gazeux. Le fond de la boîte de Pétri est constitué d'une matière semi-perméable qui laisse passer les gaz mais retient les liquides. Ces boîtes de Pétri offrent aux cellules en culture, qui sont toujours fixées contre la surface du fond, l'avantage d'être soumises très rapidement aux mêmes pressions partielles des gaz que l'atmosphère régnant dans l'environnement immédiat des boîtes. Étant donné que pour faire varier les pressions partielles auxquelles les cellules doivent être soumises, on fait varier l'atmosphère régnant autour des boîtes de Pétri, il est essentiel que les variations de l'environnement immédiat des boîtes de culture puissent être transmises le plus rapidement possible aux cellules en culture dans lesdites boîtes de Pétri. Laboratory cell cultures are being used more and more as a substitute for animal experimentation. They are generally carried out in Petri dishes containing one or more wells, each containing a physiological liquid, these petri dishes being placed in a 37 ° oven to meet the natural conditions of temperature and humidity required to perform the treatment. cell growth. To reproduce the oxygenation conditions, Petri dishes or the like are placed in controlled atmosphere ovens. But in real conditions, cells are often subject to rapid changes in oxygenation, sometimes significant. To subject these cells, bathed in said physiological fluid, to rapid changes in the oxygen content, special petri dishes, comprising a semi-permeable bottom, have been developed to promote gas exchange. The bottom of the petri dish is made of a semi-permeable material that allows the gases to pass but retains the liquids. These Petri dishes offer the cultured cells, which are always fixed against the bottom surface, the advantage of being subjected very quickly to the same partial pressures of the gases as the atmosphere prevailing in the immediate environment of the boxes. Since, in order to vary the partial pressures to which the cells must be subjected, the atmosphere prevailing around the petri dishes is varied, it is essential that the variations in the immediate environment of the culture dishes can be transmitted as quickly as possible. possible to the cells in culture in said petri dishes.
Technique antérieure Prior art
Selon la pratique actuelle, on utilise des étuves climatiques dans lesquelles on peut faire varier la composition des gaz, dans le but de modifier l'environnement de culture, d'abord autour des boîtes de Pétri et ensuite, au niveau des cultures cellulaires elles-mêmes à travers le fond semi- perméable des boîtes. Mais le processus connu a de nombreux inconvénients. Il est tout d'abord relativement lent puisqu'il dure plusieurs minutes, il nécessite un remplissage complet de l'étuve par la composition gazeuse prédéterminée, cette étuve ayant un volume important, ce qui implique d'une part une très forte consommation de ladite composition gazeuse et ralentit considérablement l'absorption d'une nouvelle composition gazeuse si celle qui a été utilisée précédemment a été modifiée. On notera que plus un cycle est court, plus la difficulté d'ajuster la composition gazeuse requise est longue, avec le système connu, et plus il devient difficile, voire impossible de reproduire, par cultures cellulaires, ce qui se passe en réalité, lors de tels cycles courts, comme par exemple pour les cas d'apnées du sommeil ou d'autres affections de ce type. According to current practice, climate chambers are used in which the composition of the gases can be varied, in order to modify the culture environment, first around the Petri dishes and then, at the level of the cell cultures themselves. even through the semi-permeable bottom of the boxes. But the known process has many disadvantages. It is initially relatively slow since it lasts several minutes, it requires a complete filling of the oven by the predetermined gaseous composition, this oven having a large volume, which implies on the one hand a very high consumption of said gaseous composition and considerably slows the absorption of a new gaseous composition if that which has been used previously has been modified. It should be noted that the shorter a cycle, the more difficult it is to adjust the gas composition long, with the known system, and the more it becomes difficult or impossible to reproduce, by cell cultures, what actually happens during such short cycles, as for example for cases of sleep apnea or dizziness. other conditions of this type.
Exposé de l'invention Presentation of the invention
La présente invention vise à pallier ces inconvénients en réduisant de manière conséquente la durée de la transmission aux cellules en culture, des modifications de la composition gazeuse prédéterminée qui les alimente, plus particulièrement la durée des variations du taux d'oxygène présent dans ladite composition prédéterminée, en diminuant de manière importante le volume de l'espace dans lequel ladite composition est localisée, de manière à pourvoir modifier l'alimentation des cellules en culture au plus vite, si nécessaire, en adaptant la composition gazeuse requise et en l'amenant immédiatement au contact des cellules en culture.  The present invention aims to overcome these disadvantages by significantly reducing the duration of transmission to the cells in culture, modifications of the predetermined gaseous composition which feeds them, more particularly the duration of the variations of the oxygen content present in said predetermined composition. by substantially decreasing the volume of the space in which said composition is located, so as to be able to modify the feed of the cells in culture as soon as possible, if necessary, by adapting the required gaseous composition and bringing it immediately in contact with cells in culture.
Dans ce but, le procédé selon l'invention est caractérisé en ce que l'on fait circuler ladite composition gazeuse prédéterminée dans un canal de circulation adjacent audit fond de ladite au moins une boîte de Pétri, ledit canal de circulation ayant une paroi supérieure agencée pour communiquer avec ledit fond de ladite au moins une boîte de Pétri, de telle manière que ladite composition gazeuse prédéterminée qui est véhiculée dans ledit canal de circulation communique avec le contenu de ladite au moins une boîte de Pétri à travers ladite paroi supérieure dudit canal et ledit fond de la boîte, qui sont au moins partiellement communs, en ce que l'on injecte ladite composition gazeuse prédéterminée à une extrémité d'entrée dudit canal de circulation et en ce que l'on évacue ladite composition gazeuse prédéterminée à une extrémité de sortie dudit canal de circulation, opposée à ladite extrémité d'entrée. For this purpose, the method according to the invention is characterized in that said predetermined gaseous composition is circulated in a circulation channel adjacent said bottom of said at least one Petri dish, said circulation channel having an arranged upper wall. to communicate with said bottom of said at least one petri dish, such that said predetermined gaseous composition which is conveyed in said circulation channel communicates with the contents of said at least one Petri dish through said upper wall of said channel and said bottom of the box, which are at least partially common, in that said predetermined gaseous composition is injected at an inlet end of said circulation channel and in that said predetermined gaseous composition is discharged at an end of output of said flow channel, opposite said input end.
D'une manière préférentielle, l'on injecte ladite composition gazeuse prédéterminée à une extrémité dudit canal disposée en amont de ladite au moins une boîte de Pétri et que l'on évacue ladite composition gazeuse prédéterminée à une extrémité dudit canal disposée en aval de ladite au moins une boîte de Pétri. In a preferential manner, said gaseous composition is injected predetermined at one end of said channel disposed upstream of said at least one petri dish and that said predetermined gaseous composition is discharged at an end of said channel disposed downstream of said at least one petri dish.
Selon un mode de mise en œuvre avantageux du procédé, l'on utilise un canal de circulation disposé sous une pluralité de boîtes de Pétri, chacune desdites boîtes comportant un fond semi-perméable au moins partiellement commun avec la paroi supérieure dudit canal de circulation, dans lequel on injecte ladite composition gazeuse prédéterminée en amont de ladite pluralité de boîtes de Pétri et que l'on évacue ladite composition gazeuse prédéterminée à une extrémité dudit canal de circulation disposée en aval de ladite au moins une boîte de Pétri. Selon un premier mode de réalisation, pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée, à un taux fixe défini appelé taux de consigne, on injecte dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné est égale à un taux de consigne, pour que la pression partielle dudit gaz sélectionné dans la zone de contact avec le liquide biologique atteigne localement ladite valeur de consigne pendant un temps défini pour transmettre à la culture cellulaire ledit gaz sélectionné. According to an advantageous embodiment of the method, use is made of a circulation channel arranged under a plurality of Petri dishes, each of said boxes comprising a semi-permeable bottom at least partially common with the upper wall of said circulation channel, wherein said predetermined gaseous composition is injected upstream of said plurality of Petri dishes and said predetermined gaseous composition is discharged at one end of said circulation channel disposed downstream of said at least one Petri dish. According to a first embodiment, in order to adjust the partial pressure of a selected gas of said predetermined gaseous composition, to a fixed fixed rate called a set rate, a predetermined gaseous composition is injected into said channel in which the partial pressure of said gas selected is equal to a set rate, so that the partial pressure of said selected gas in the contact zone with the biological fluid locally reaches said setpoint value for a defined time to transmit to the cell culture said selected gas.
Selon un deuxième mode de réalisation, pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée à un taux fixe défini appelé taux de consigne, on injecte avantageusement dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné a une valeur supérieure audit taux de consigne, l'on maintient cette valeur supérieure audit taux de consigne pendant un temps prédéterminé et l'on abaisse ladite valeur à celle dudit taux de consigne après ledit temps prédéterminé, pour que la pression partielle dudit gaz sélectionné dans le liquide biologique atteigne plus rapidement ladite valeur de consigne. According to a second embodiment, in order to adjust the partial pressure of a selected gas of said predetermined gaseous composition to a defined fixed rate called a set rate, a predetermined gaseous composition in which the partial pressure of said gas is advantageously injected into said channel is advantageously injected into said channel. selected has a value greater than said setpoint rate, this value is maintained above said setpoint rate for a predetermined time and said value is lowered to that of said setpoint rate after said predetermined time, so that the pressure part of said selected gas in the biological fluid reaches said setpoint more rapidly.
Selon un troisième mode de réalisation, pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée à un taux fixe défini appelé taux de consigne, on peut injecter dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné a une valeur supérieure au taux de consigne, on peut diminuer progressivement cette valeur supérieure au taux de consigne pendant un temps prédéterminé et on peut maintenir ladite valeur à celle dudit taux de consigne après ledit temps prédéterminé, pour que la pression partielle dudit gaz sélectionné dans le liquide biologique atteigne plus rapidement ladite valeur de consigne. Selon un quatrième mode de réalisation, pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée à un taux fixe défini appelé taux de consigne, on peut injecter dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné a une valeur inférieure au taux de consigne, on peut augmenter ensuite cette valeur inférieure au taux de consigne pendant un temps prédéterminé et on peut maintenir ladite valeur à celle dudit taux de consigne après ledit temps prédéterminé, pour que la pression partielle dudit gaz sélectionné dans le liquide biologique atteigne ladite valeur de consigne. Dans ce but également le dispositif selon l'invention est caractérisé en ce qu'il comporte un canal de circulation adjacent audit fond de ladite boîte de Pétri, ledit canal de circulation ayant une paroi supérieure constituée par ledit fond de ladite au moins une boîte de Pétri, de telle manière que ladite composition gazeuse prédéterminée qui est véhiculée dans ledit canal de circulation communique avec le contenu de ladite au moins une boîte de Pétri à travers ladite paroi supérieure du canal de circulation et ledit fond de la boîte, qui sont au moins partiellement communs, des moyens pour injecter ladite composition gazeuse prédéterminée à une extrémité d'entrée dudit canal de circulation et des moyens pour récupérer ladite composition gazeuse prédéterminée à une extrémité de sortie dudit canal de circulation, opposée à ladite extrémité d'entrée. According to a third embodiment, in order to adjust the partial pressure of a selected gas of said predetermined gaseous composition to a fixed fixed rate known as a set rate, it is possible to inject into said channel a predetermined gaseous composition in which the partial pressure of said gas selected has a value greater than the set point, it can gradually decrease this value above the set point for a predetermined time and can maintain said value to that of said set point after said predetermined time, so that the partial pressure of said selected gas in the biological fluid reaches said setpoint more quickly. According to a fourth embodiment, in order to adjust the partial pressure of a selected gas of said predetermined gaseous composition to a fixed fixed rate called the target rate, it is possible to inject into said channel a predetermined gaseous composition in which the partial pressure of said gas selected has a value lower than the set point, can then increase this lower value to the set point for a predetermined time and can maintain said value to that of said set point after said predetermined time, so that the partial pressure of said selected gas in the biological fluid reaches said set point. For this purpose also the device according to the invention is characterized in that it comprises a circulation channel adjacent said bottom of said petri dish, said circulation channel having an upper wall constituted by said bottom of said at least one box of Petri, such that said predetermined gaseous composition which is conveyed in said circulation channel communicates with the contents of said at least one petri dish through said upper wall of the circulation channel and said bottom of the box, which are at least partially common, means for injecting said predetermined gaseous composition at an inlet end of said circulation channel and means for recovering said predetermined gaseous composition at an outlet end of said circulation channel, opposed to said entrance end.
De façon préférentielle, lesdits moyens pour injecter ladite composition gazeuse prédéterminée à une extrémité dudit canal de circulation sont disposés en amont de ladite au moins une boîte de Pétri et en ce que lesdits moyens pour récupérer ladite composition gazeuse prédéterminée à l'autre extrémité dudit canal de circulation sont disposés en aval de ladite au moins une boîte de Pétri. Preferably, said means for injecting said predetermined gaseous composition at one end of said circulation channel are arranged upstream of said at least one Petri dish and in that said means for recovering said predetermined gaseous composition at the other end of said channel of circulation are arranged downstream of said at least one Petri dish.
Selon une forme de réalisation avantageuse, le dispositif comporte un canal de circulation unique disposé sous une pluralité de boîtes de Pétri, chacune desdites boîtes comportant un fond semi-perméable qui coïncide avec des fenêtres ménagées dans la paroi supérieure dudit canal de circulation unique, pourvu de moyens pour injecter ladite composition gazeuse prédéterminée en amont de ladite pluralité de boîtes de Pétri et de moyens pour récupérer ladite composition gazeuse prédéterminée en aval de ladite pluralité de boîtes de Pétri. According to an advantageous embodiment, the device comprises a single circulation channel disposed under a plurality of petri dishes, each of said boxes comprising a semi-permeable bottom which coincides with windows formed in the upper wall of said single circulation channel, provided with means for injecting said predetermined gaseous composition upstream of said plurality of Petri dishes and means for recovering said predetermined gaseous composition downstream of said plurality of Petri dishes.
Pour un dispositif dans lequel le gaz de ladite composition gazeuse dont le taux est ajusté de manière séquentielle est l'oxygène et /ou l'anhydride carbonique, on prévoit de préférence des moyens de contrôle agencés pour définir à la fois la valeur de la pression partielle de l'oxygène dans le liquide physiologique et la durée de l'injection de ladite composition gazeuse dans ledit canal de circulation. Le dispositif comporte avantageusement une embase dans laquelle est ménagé ledit canal de circulation adjacent au fond de ladite au moins une boîte de Pétri, et communiquant avec cette dernière à travers ladite membrane semi-perméable. For a device in which the gas of said gas composition whose rate is adjusted sequentially is oxygen and / or carbon dioxide, control means arranged to define both the value of the pressure are preferably provided. partial oxygen in the physiological fluid and the duration of injection of said gaseous composition in said circulation channel. The device advantageously comprises a base in which is formed said adjacent circulation channel at the bottom of said at least one Petri dish, and communicating with the latter through said semi-permeable membrane.
Selon un mode de réalisation avantageux, ladite embase comporte une plaque de fond, des parois latérales, une embouchure d'entrée dans ledit canal de circulation et une embouchure de sortie, cet ensemble étant obturé sur le dessus, par une plaque de couverture découpée en correspondance du fond de ladite au moins une boîte de Pétri, la découpe étant partiellement obturée par ladite membrane semi-perméable. According to an advantageous embodiment, said base comprises a bottom plate, side walls, an inlet mouth in said circulation channel and an outlet mouth, this assembly being closed on the top, by a cover plate cut in half. bottom of said at least one petri dish, the cut being partially closed by said semi-permeable membrane.
Selon un autre mode de réalisation, ladite embase comporte une plaque de fond, des parois latérales, embouchure d'entrée dans ledit canal de circulation et une embouchure de sortie, cet ensemble étant obturé sur le dessus, par une plaque de couverture découpée en correspondance du fond des puits de ladite boîte de Pétri à multi-puits, les découpes étant partiellement obturées par ladite membrane semi-perméable. According to another embodiment, said base comprises a bottom plate, side walls, inlet mouth in said circulation channel and an outlet mouth, this assembly being closed on the top, by a cover plate cut in correspondence. the bottom of the wells of said multi-well Petri dish, the cuts being partially closed by said semi-permeable membrane.
Selon un autre mode de réalisation, ladite embase comporte une plaque de fond et des parois latérales, cet ensemble étant obturé sur le dessus, par le fond d'une boîte de Pétri à multi-puits intégrée, les parois latérales étant équipées respectivement d'une extrémité d'entrée et d'une extrémité de sortie. According to another embodiment, said base comprises a bottom plate and side walls, this assembly being closed on the top, by the bottom of a multi-well integrated multi-well petri dish, the side walls being respectively equipped with an input end and an output end.
Description sommaire des dessins Brief description of the drawings
La présente invention et ses avantages apparaîtront mieux dans la description suivante de modes de réalisation donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, dans lesquels: la figure 1 représente une vue en coupe longitudinale d'une première forme de réalisation d'un dispositif de culture cellulaire selon l'invention, la figure 2 représente une vue de dessus du dispositif de culture cellulaire de la figure 1 , la figure 3 représente une vue en perspective du dispositif de culture cellulaire de la figure 1 , les figures 4A, 4B, 4C et 4D sont des vues qui illustrent l'évolution de la pression partielle d'oxygène (PO2) dans le liquide biologique se trouvant au-dessus de la membrane semi-perméable, les figures 5A, 5B et 5C représentent des vues, respectivement en perspective et en coupe longitudinale totale et partielle d'une deuxième forme de réalisation d'un dispositif de culture cellulaire utilisant un boîte de Pétri du type « multi-puits », et la figure 6 représente une vue en coupe longitudinale d'une troisième forme de réalisation d'un dispositif de culture cellulaire selon l'invention. The present invention and its advantages will become more apparent in the following description of embodiments given by way of nonlimiting example, with reference to the appended drawings, in which: FIG. 1 represents a longitudinal sectional view of a first embodiment. of a cell culture device according to the invention, FIG. 2 represents a top view of the cell culture device of FIG. 1, FIG. 3 represents a perspective view of the cell culture device of FIG. 1, FIGS. 4A, 4B, 4C and 4D are views which illustrate the evolution of the partial pressure of oxygen (PO2) in the biological fluid lying above the semipermeable membrane, FIGS. 5A, 5B and 5C represent views, respectively in perspective and in longitudinal section, total and partial of a second embodiment of a cell culture device using a "multi-well" type Petri dish, and FIG. 6 represents a longitudinal sectional view of a third embodiment of a culture device cell according to the invention.
Illustrations de l'invention et différentes manières de la réaliser Illustrations of the invention and different ways of achieving it
En référence aux figures 1 à 3, le dispositif 10 pour alimenter en gaz un environnement affecté à la culture cellulaire artificielle, comporte au moins une boîte de Pétri 1 1 ou similaire se composant d'un récipient 12, habituellement de forme circulaire, carrée ou rectangulaire, pourvue de préférence d'un couvercle 1 3 et d'un fond 14. Le couvercle 13 est agencé pour s'emboîter sur le dessus du récipient 12 pour le fermer. Le fond 14 du récipient 12 est constitué d'une membrane semi-perméable 15 qui a comme caractéristique de laisser passer les gaz et d'arrêter les liquides. La membrane semi-perméable 15 constitue une interface d'échange entre les cellules d'une culture cellulaire 16 et le gaz traversant la membrane. Le récipient 12 de la boîte de Pétri 1 1 contient un liquide biologique et la culture cellulaire 16 fixée sur la surface intérieure de la membrane semi-perméable 15 constituant le fond du récipient 12. With reference to FIGS. 1 to 3, the device 10 for supplying gas to an environment assigned to artificial cell culture comprises at least one Petri dish 1 1 or the like consisting of a container 12, usually circular, square or rectangular, preferably provided with a lid 1 3 and a bottom 14. The lid 13 is arranged to fit on the top of the container 12 to close it. The bottom 14 of the container 12 consists of a semi-permeable membrane 15 which has the characteristic of allowing the gases to pass and of stopping the liquids. The semipermeable membrane 15 constitutes an exchange interface between the cells of a cell culture 16 and the gas passing through the membrane. The container 12 of the Petri dish 1 1 contains a biological fluid and the culture cell 16 fixed on the inner surface of the semi-permeable membrane 15 constituting the bottom of the container 12.
Une boîte de Pétri affectée à une culture cellulaire doit être alimentée avec une composition gazeuse contenant de l'oxygène ou de l'oxygène et de l'anhydride carbonique, cette composition devant être régulièrement ajustée pour permettre d'étudier le comportement des cellules dans un milieu où les pressions partielles de l'oxygène et/ou du C02 sont modifiées. Afin d'assurer une réactivité rapide du système et afin de pouvoir modifier rapidement le taux de gaz, notamment de l'oxygène au niveau de l'interface avec les cellules de la culture, le dispositif de l'invention comporte une embase 21 dans laquelle est ménagé un canal 20 de circulation de la composition gazeuse, ce canal de circulation 20 étant disposé en-dessous dudit récipient 12. Il comprend une plaque de fond 22a, des parois latérales 22b, une extrémité d'entrée 23 et une extrémité de sortie 24, cet ensemble étant obturé sur le dessus, par une plaque de couverture 25. Dans cette plaque de couverture est ménagée au moins une fenêtre 26, ou une pluralité de fenêtres 26, correspondant au fond 14 du récipient 12, lorsque le dispositif ne comporte qu'un seul récipient 12 ou aux fonds respectifs des différents récipients 12, dans le cas où le dispositif comporte une pluralité de récipients du type boîtes de Pétri, par exemple. La ou les fenêtres 26 ont une forme et des dimensions telles qu'elle peut ou qu'elles peuvent recevoir et loger le ou les fonds 14 de récipients 12 de ladite au moins une ou de la pluralité de boîtes de Pétri 1 1 . Pour éviter ou minimiser les fuites entre ledit canal de circulation et l'extérieur des récipients 12, un joint d'étanchéité 27 est avantageusement fixé sur le pourtour à la base du récipient 12. A petri dish assigned to a cell culture must be fed with a gaseous composition containing oxygen or oxygen and carbon dioxide, this composition having to be regularly adjusted to enable the behavior of the cells to be studied in a medium where the partial pressures of oxygen and / or CO 2 are modified. To ensure fast response of the system and in order to rapidly change the gas rate, especially of the oxygen at the interface with the cell culture, the device of the invention comprises a base 21 in which is provided a channel 20 for circulation of the gaseous composition, this circulation channel 20 being disposed below said container 12. It comprises a bottom plate 22a, side walls 22b, an inlet end 23 and an outlet end 24, this assembly being closed on the top, by a cover plate 25. In this cover plate is provided at least one window 26, or a plurality of windows 26, corresponding to the bottom 14 of the container 12, when the device comprises only one container 12 or the respective bottoms of the different containers 12, in the case where the device comprises a plurality of containers of the type Petri dishes, for example. The window or windows 26 have a shape and dimensions such that they can or can receive and house the bottom or bottoms 14 of containers 12 of said at least one or of the plurality of Petri dishes 1 1. To avoid or minimize leakage between said circulation channel and the outside of the containers 12, a seal 27 is advantageously fixed around the periphery at the base of the container 12.
Pour amener la composition gazeuse prédéterminée dans le canal de circulation 20, la plaque de fermeture 25 est équipée de moyens d'injection 28 positionnés en amont de ladite au moins une boîte de Pétri 1 1 et de moyens d'aspiration 29 peuvent être positionnés en aval pour évacuer la composition gazeuse prédéterminée hors dudit canal 20. To bring the predetermined gaseous composition into the circulation channel 20, the closure plate 25 is equipped with injection means 28 positioned upstream of said at least one petri dish 1 1 and suction means 29 may be positioned downstream to evacuate the predetermined gaseous composition out of said channel 20.
De ce fait, le contact entre le liquide biologique et la composition gazeuse prédéterminée est très direct. Le volume de composition gazeuse prédéterminée à injecter pour faire varier l'environnement des cellules est réduit, puisqu'il n'excède pas le volume du canal de circulation 20, ce qui permet d'effectuer des transitions rapides et en outre, de réaliser des économies considérables de gaz. Un rinçage du canal 20 par la composition gazeuse peut être effectué rapidement et à moindre coût. As a result, the contact between the biological fluid and the predetermined gas composition is very direct. The predetermined volume of gaseous composition to be injected to vary the environment of the cells is reduced, since it does not exceed the volume of the circulation channel 20, which makes it possible to perform fast transitions and, in addition, to realize considerable savings in gas. Rinse channel 20 by the gaseous composition can be performed quickly and cheaply.
Les figures 4A, 4B et 4C montrent l'évolution de la pression partielle d'oxygène PO2 dans le liquide biologique 16 à la surface de la membrane semi-perméable 15 sur laquelle est fixée la culture cellulaire 17. On rappelle que la pression partielle d'un gaz dans un volume donné d'un mélange gazeux est égale à la pression qu'aurait ce gaz s'il était tout seul dans ledit volume donné. Par exemple si la pression barométrique est de 760 mm Hg et que la fraction d'oxygène dans le mélange gazeux est de 5% la pression partielle d'oxygène est de 760x0,05 soit 38mmHg. La pression partielle de l'oxygène ou éventuellement d'un autre gaz ou mélange de gaz dans le canal est désigné par a, et la pression partielle correspondante dans le liquide qui contient ou irrigue les cellules est désigné par b. FIGS. 4A, 4B and 4C show the evolution of the PO2 oxygen partial pressure in the biological fluid 16 on the surface of the semipermeable membrane 15 to which the cell culture 17 is attached. It is recalled that the partial pressure of the a gas in a given volume of a gaseous mixture is equal to the pressure that this gas would have if it were all alone in said given volume. For example, if the barometric pressure is 760 mmHg and the oxygen fraction in the gas mixture is 5% the oxygen partial pressure is 760x0.05 or 38mmHg. The partial pressure of the oxygen or possibly another gas or gas mixture in the channel is designated a, and the corresponding partial pressure in the liquid which contains or irrigates the cells is designated b.
Le graphique de la figure 4A représente la courbe 41 illustrant l'évolution de la pression partielle d'oxygène PO2 qui passe brusquement d'un état 1 , où sa valeur est par exemple de 38 mm Hg à un état 2 où sa valeur est par exemple de 121 mm Hg, ce qui correspond respectivement à des taux de 5% et de 16% dans la composition gazeuse. Un temps ti est nécessaire pour atteindre l'équilibre dans le liquide au niveau de la culture cellulaire, soit de l'autre côté de la membrane semi-perméable par rapport audit canal de circulation. Le graphique de la figure 4B représente la courbe 42 qui illustre l'évolution de la pression partielle d'oxygène PO2. La pression partielle d'oxygène PO2 du gaz est dans un premier temps plus élevée que la valeur finale souhaitée après l'équilibre. On fait circuler une composition gazeuse dans le canal pendant une durée déterminée tt>, dont le taux est supérieur à la valeur de consigne puis on revient à ladite valeur de consigne. On constate que le processus est fortement accéléré, l'équilibre est atteint plus rapidement et le transfert d'oxygène s'effectue dans un temps te plus court que le temps ti dans l'exemple de la figure 4A. Le graphique de la figure 4C représente la courbe 43 qui illustre l'évolution de la pression partielle d'oxygène PO2. Il y a aussi un dépassement de la pression partielle d'oxygène PO2 qui est ensuite asymptotiquement ramenée à la valeur de consigne pendant un temps te. Le temps nécessaire pour atteindre l'équilibre est atteint au temps t3, qui est inférieur au temps te précédent, mais l'avantage est une stabilité plus grande du système. Le risque de dépassement de la valeur consigne, comme le montre la courbe 42, est moindre. The graph of FIG. 4A represents the curve 41 illustrating the evolution of the PO2 oxygen partial pressure which passes abruptly from a state 1, where its value is, for example, from 38 mmHg to a state 2 where its value is example of 121 mmHg, which corresponds respectively to 5% and 16% levels in the gas composition. A time ti is necessary to achieve equilibrium in the liquid at the level of the cell culture, ie on the other side of the semipermeable membrane with respect to said circulation channel. The graph of FIG. 4B represents the curve 42 which illustrates the evolution of the PO2 oxygen partial pressure. The oxygen partial pressure PO2 of the gas is initially higher than the desired final value after the equilibrium. A gaseous composition is circulated in the channel for a predetermined period tt>, the rate of which is greater than the setpoint value and then returns to said setpoint value. It can be seen that the process is greatly accelerated, the equilibrium is reached more rapidly and the oxygen transfer takes place in a time shorter than the time t in the example of FIG. 4A. The graph of FIG. 4C represents the curve 43 which illustrates the evolution of the PO2 oxygen partial pressure. There is also an overshoot of the PO2 oxygen partial pressure which is then asymptotically reduced to the set value for a time te. The time required to reach equilibrium is reached at time t 3 , which is less than the previous time, but the advantage is a greater stability of the system. The risk of exceeding the setpoint, as shown in curve 42, is less.
Le graphique de la figure 4D représente la courbe 44 qui illustre l'évolution de la pression partielle d'oxygène PO2. A la place d'un dépassement, tel que le montre la figure 4C, de la pression partielle d'oxygène PO2, on prévoit une injection réduite et on augmente ensuite cette pression partielle à la valeur de consigne pendant un temps td. Le temps nécessaire pour atteindre l'équilibre est atteint au temps t4, qui est raccourci par rapport au temps ti évoqué précédemment. Le risque de dépassement de la valeur consigne, comme le montre la courbe 42, est moindre. The graph of FIG. 4D represents the curve 44 which illustrates the evolution of the PO2 oxygen partial pressure. Instead of exceeding, as shown in FIG. 4C, the oxygen partial pressure PO2, a reduced injection is provided and this partial pressure is then increased to the setpoint value during a time td. The time necessary to reach equilibrium is reached at time t 4 , which is shortened compared to the time ti mentioned above. The risk of exceeding the setpoint, as shown in curve 42, is less.
Les essais ont montré que dans le cas de la figure 4A le temps ta est d'environ 3 minutes, le temps tb et tc nécessaire pour atteindre l'équilibre dans le cas des figures 2 et 3 étant réduit à environ 40 secondes. Comparés aux 10 minutes requises lorsque les cultures sont disposées dans des étuves, et que le traitement s'effectue selon l'art antérieur connu, le gain de temps est colossal sans oublier la diminution de la consommation de gaz qui est de l'ordre d'un facteur 100. The tests have shown that in the case of Figure 4A the time ta is about 3 minutes, the time tb and t c needed to reach equilibrium in the case of Figures 2 and 3 being reduced to about 40 seconds. Compared to the 10 minutes required when crops are grown in incubators, and that the treatment is carried out according to the known prior art, the time saving is huge without forgetting the reduction in gas consumption which is of the order of a factor of 100.
On évoque principalement la pression partielle d'oxygène PO2, mais il est bien entendu qu'il pourrait également s'agir d'autres gaz ou de mélange de gaz, tels que par exemple l'anhydride carbonique, l'azote, un gaz médicament ou un aérosol, en fonction des besoins spécifiques dans un contexte de mise en culture de cellules. En effet, il y a toujours plusieurs gaz dans le mélange gazeux qui se compose principalement d'oxygène, d'azote et d'anhydride carbonique (CO2). Actuellement le CO2 est maintenu constant à 5% ou 10%, et le taux d'oxygène et d'azote sont interdépendants, à savoir que si le taux d'oxygène baisse, celui de l'azote monte et réciproquement. It evokes primarily the oxygen partial pressure PO2, but it is understood that it could also be other gas or gas mixture, such as for example carbon dioxide, nitrogen gas medication or an aerosol, according to specific needs in a context of cell culture. Indeed, there are always several gases in the gas mixture which consists mainly of oxygen, nitrogen and carbon dioxide (CO2). Currently CO2 is kept constant at 5% or 10%, and the oxygen and nitrogen levels are interdependent, ie if the oxygen level drops, that of nitrogen rises and vice versa.
Le dispositif est avantageusement associé à des moyens de gestion des flux de gaz. Au moment d'un changement de consigne, il peut y avoir un intérêt à augmenter les débits, puis de les baisser. Le dépassement temporaire de la valeur de consigne peut être accompagné temporairement d'une augmentation des débits afin d'améliorer les échanges. The device is advantageously associated with gas flow management means. At the time of a change of setpoint, there may be an interest in increasing the flows and then lowering them. Temporary overrun of the setpoint may be accompanied temporarily by an increase in flow to improve trade.
Les figures 5A, 5B et 5C représentent une variante de réalisation du dispositif pour alimenter en gaz un environnement affecté à la culture cellulaire artificielle selon l'invention, cet environnement étant constitué d'une boîte de Pétri du type « multi-puits ». Ce type de boîtes de Pétri, connue en soi, est une boîte fabriquée par moulage par injection ou par moulage par thermoformage, comportant une pluralité de cavités affectées à la culture cellulaire. Le dispositif de l'invention comporte comme pour la réalisation décrite ci-dessus, un canal de circulation 120 délimité par une embase 121 , des parois latérales 122 et équipé d'une extrémité d'entrée 123 et d'une extrémité de sortie 124. Les boîtes de Pétri individuelles 12 de la réalisation précédente sont remplacées par des puits individuels 1 12 de la boîte de Pétri multi-puits 130 utilisée dans la présente variante de réalisation. La figure 5B représente l'ensemble boîte de Pétri multi-puits vu en coupe longitudinale, la boîte de pétri 130 étant montée sur l'embase 121 . La figure 5C représente l'embase 121 seule vue en coupe longitudinale, la boîte de Pétri multi-puits 1 12, étant séparée de son embase 121 . FIGS. 5A, 5B and 5C show an alternative embodiment of the device for supplying gas to an environment assigned to the artificial cell culture according to the invention, this environment consisting of a Petri dish of the "multi-well" type. This type of Petri dishes, known per se, is a box manufactured by injection molding or by thermoforming molding, comprising a plurality of cavities assigned to the cell culture. The device of the invention comprises, as for the embodiment described above, a circulation channel 120 delimited by a base 121, lateral walls 122 and equipped with an inlet end 123 and an outlet end 124. The individual petri dishes 12 of the previous embodiment are replaced by individual wells January 12 of the multi-well Petri dish 130 used in the present embodiment. FIG. 5B represents the multi-well petri dish assembly seen in longitudinal section, the petri dish 130 being mounted on the base 121. FIG. 5C shows the base 121 only seen in longitudinal section, the multi-well Petri dish 1 12 being separated from its base 121.
La figure 6 représente une troisième variante de réalisation selon laquelle une embase 221 et une boîte de Pétri multi-puits 230 sont intégrées et réalisées d'une seule pièce selon des procédés de fabrication connus en soi. Les récipients ou puits individuels 212 ont chacun un fond 215 sous la forme d'une membrane semi-perméable 215 et le canal de circulation 220 est ménagé dans l'espace qui sépare les éléments de double paroi de l'embase 221 et qui communique avec une extrémité d'entrée 223 et une extrémité de sortie 224. FIG. 6 represents a third variant embodiment in which a base 221 and a multi-well petri dish 230 are integrated and made in one piece according to manufacturing methods known per se. The individual containers or wells 212 each have a bottom 215 in the form of a semi-permeable membrane 215 and the circulation channel 220 is formed in the space between the double-wall elements of the base 221 and which communicates with an inlet end 223 and outlet end 224.
La présente invention n'est pas limitée aux formes de réalisation décrites, mais peut s'étendre à diverses variantes évidentes pour l'homme du métier et qui découlent de la présente description sans qu'un effort inventif ne soit nécessaire. A titre d'exemple, les boîtes rectangulaires ou carrées dite multi- puits permettant d'effectuer plusieurs cultures simultanément et dans des conditions identiques donnent d'excellents résultats. Les moyens d'évacuation des gaz peuvent être remplacés par des moyens de gestion des fuites entre le canal de circulation de la composition gazeuse et les récipients 12 ou les puits 1 12 et 212 des boîtes de Pétri multi-puits. The present invention is not limited to the embodiments described, but can be extended to various variations obvious to those skilled in the art and which flow from the present description without the need for an inventive effort. For example, the rectangular or square boxes called multiwells for performing multiple crops simultaneously and under identical conditions give excellent results. The gas evacuation means may be replaced by means for managing leaks between the circulation channel of the gaseous composition and the containers 12 or the wells 12 and 212 of the multi-well petri dishes.

Claims

Revendications claims
1. Procédé pour alimenter en gaz un environnement affecté à la mise en culture de cellules, comportant au moins une boîte de Pétri ou similaire, contenant un liquide physiologique et mise en contact avec une composition gazeuse prédéterminée contenant par exemple de l'oxygène ou un autre gaz, ou mélange de gaz ou similaire, dont le taux est ajusté séquentiellement, ladite au moins une boîte de Pétri comportant un fond réalisé en une membrane semi-perméable laissant passer les gaz et étanche aux liquides, caractérisé en ce que l'on fait circuler ladite composition gazeuse prédéterminée dans un canal de circulation adjacent audit fond de ladite au moins une boîte de Pétri, pour communiquer avec ladite au moins une boîte de Pétri, à travers ladite membrane semi- perméable de telle manière que ladite composition gazeuse prédéterminée qui est véhiculée dans ledit canal de circulation communique avec le contenu de ladite au moins une boîte de Pétri à travers ladite membrane semi- perméable, en ce que l'on injecte ladite composition gazeuse prédéterminée à une extrémité d'entrée dudit canal de circulation et en ce que l'on évacue ladite composition gazeuse prédéterminée à une extrémité de sortie dudit canal de circulation, opposée à ladite extrémité d'entrée. A method for supplying gas to an environment for culturing cells, comprising at least one petri dish or the like, containing a physiological liquid and contacted with a predetermined gaseous composition containing, for example, oxygen or a another gas, or gas mixture or the like, the rate of which is adjusted sequentially, said at least one petri dish having a bottom made of a gas-permeable and liquid-tight semi-permeable membrane, characterized in that circulating said predetermined gaseous composition in a circulation channel adjacent said bottom of said at least one petri dish, to communicate with said at least one petri dish, through said semipermeable membrane such that said predetermined gaseous composition which is conveyed in said circulation channel communicates with the contents of said at least one petri dish before said semipermeable membrane, in that said predetermined gaseous composition is injected at an inlet end of said circulation channel and in that said predetermined gaseous composition is discharged at an outlet end of said circulation channel, opposite to said input end.
2. Procédé selon la revendication 1 , caractérisé en ce que l'on injecte ladite composition gazeuse prédéterminée à une extrémité dudit canal disposée en amont de ladite au moins une boîte de Pétri et que l'on évacue ladite composition gazeuse prédéterminée à une extrémité dudit canal disposée en aval de ladite au moins une boîte de Pétri. 2. Method according to claim 1, characterized in that said predetermined gaseous composition is injected at one end of said channel disposed upstream of said at least one petri dish and that said predetermined gaseous composition is discharged at an end of said channel disposed downstream of said at least one Petri dish.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'on utilise un canal de circulation disposé sous une pluralité de boîtes de Pétri, chacune desdites boîtes comportant un fond semi-perméable au moins partiellement commun avec la paroi supérieure dudit canal de circulation, dans lequel on injecte ladite composition gazeuse prédéterminée en amont de ladite pluralité de boîtes de Pétri et que l'on évacue ladite composition gazeuse prédéterminée à une extrémité dudit canal de circulation disposée en aval de ladite au moins une boîte de Pétri. 3. Method according to one of claims 1 or 2, characterized in that one uses a circulation channel disposed under a plurality of Petri dishes, each of said boxes having a semi-permeable bottom at least partially common with the wall upper of said circulation channel, wherein said predetermined gas composition is injected upstream of said plurality of Petri dishes and said predetermined gaseous composition is discharged at an end of said circulation channel disposed downstream of said at least one Petri dish.
4. Procédé selon l'une des revendications 2 ou 3, caractérisé en ce que pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée, à un taux fixe défini appelé taux de consigne, on injecte dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné est égale à un taux de consigne, pour que la pression partielle dudit gaz sélectionné dans la zone de contact avec le liquide biologique atteigne localement ladite valeur de consigne pendant un temps défini pour transmettre à la culture cellulaire ledit gaz sélectionné. 4. Method according to one of claims 2 or 3, characterized in that for adjusting the partial pressure of a selected gas of said predetermined gaseous composition, at a fixed rate defined called set rate, is injected into said channel, a predetermined gas composition in which the partial pressure of said selected gas is equal to a set rate, so that the partial pressure of said selected gas in the contact zone with the biological fluid locally reaches said setpoint value for a defined time to transmit to the cell culture said selected gas.
5. Procédé selon l'une des revendications 2 ou 3, caractérisé en ce que pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée à un taux fixe défini appelé taux de consigne, on injecte avantageusement dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné a une valeur supérieure audit taux de consigne, l'on maintient cette valeur supérieure audit taux de consigne pendant un temps prédéterminé et l'on abaisse ladite valeur à celle dudit taux de consigne après ledit temps prédéterminé, pour que la pression partielle dudit gaz sélectionné dans le liquide biologique atteigne plus rapidement ladite valeur de consigne. 5. Method according to one of claims 2 or 3, characterized in that to adjust the partial pressure of a selected gas of said predetermined gaseous composition at a fixed rate defined called setpoint rate is advantageously injected into said channel, a a predetermined gas composition in which the partial pressure of said selected gas has a value greater than said setpoint rate, this value is maintained higher than said setpoint rate for a predetermined time and said value is lowered to that of said setpoint rate after said predetermined time, so that the partial pressure of said selected gas in the biological fluid reaches more quickly said set value.
6. Procédé selon la revendication 3, caractérisé en ce que pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée à un taux fixe défini appelé taux de consigne, on peut injecter dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné a une valeur supérieure au taux de consigne, on peut diminuer progressivement cette valeur supérieure au taux de consigne pendant un temps prédéterminé et on peut maintenir ladite valeur à celle dudit taux de consigne après ledit temps prédéterminé, pour que la pression partielle dudit gaz sélectionné dans le liquide biologique atteigne plus rapidement ladite valeur de consigne. 6. Method according to claim 3, characterized in that to adjust the partial pressure of a selected gas of said predetermined gaseous composition to a fixed fixed rate called set point, can be injected into said channel, a predetermined gaseous composition in which the partial pressure of said selected gas has a value greater than the setpoint, it can gradually decrease this value above the set point rate for a predetermined time and can maintain said value to that of said set point after said predetermined time, so that the partial pressure of said selected gas in the biological fluid reaches faster said setpoint.
7. Procédé selon la revendication 3, caractérisé en ce que pour ajuster la pression partielle d'un gaz sélectionné de ladite composition gazeuse prédéterminée à un taux fixe défini appelé taux de consigne, on peut injecter dans ledit canal, une composition gazeuse prédéterminée dans laquelle la pression partielle dudit gaz sélectionné a une valeur inférieure au taux de consigne, on peut augmenter ensuite cette valeur au taux de consigne pendant un temps prédéterminé et on peut maintenir ladite valeur à celle dudit taux de consigne après ledit temps prédéterminé, pour que la pression partielle dudit gaz sélectionné dans le liquide biologique atteigne ladite valeur de consigne. 7. Method according to claim 3, characterized in that for adjusting the partial pressure of a selected gas of said predetermined gaseous composition to a fixed fixed rate called the target rate, it is possible to inject into said channel a predetermined gaseous composition in which the partial pressure of said selected gas has a value lower than the set rate, then this value can be increased to the setpoint rate for a predetermined time and said value can be maintained at that setpoint rate after said predetermined time, so that the pressure partial of said selected gas in the biological fluid reaches said setpoint.
8. Dispositif pour alimenter en gaz un environnement affecté à la culture cellulaire artificielle, comportant au moins une boîte de Pétri (12, 130, 230) ou similaire, contenant un liquide physiologique et placé dans une enceinte dans laquelle circule une composition gazeuse prédéterminée contenant de l'oxygène ou un autre gaz, ou mélange de gaz ou similaire, dont le taux doit être ajusté séquentiellement, ladite au moins une boîte de Pétri comportant un fond réalisé en une membrane semi-perméable (15, 1 15, 215) laissant passer les gaz et étant étanche aux liquides, pour la mise en œuvre du procédé, caractérisé en ce qu'il comporte un canal de circulation (20, 120, 220) adjacent audit fond de ladite au moins une boîte de Pétri, pour communiquer avec ladite au moins une boîte de Pétri, à travers ladite membrane semi-perméable de telle manière que ladite composition gazeuse prédéterminée qui est véhiculée dans ledit canal de circulation et communique avec le contenu de ladite au moins une boîte de Pétri à travers ladite membrane semi-perméable, des moyens (28) pour injecter ladite composition gazeuse prédéterminée à une extrémité d'entrée (23, 123, 223) dudit canal de circulation et des moyens (29) pour évacuer ladite composition gazeuse prédéterminée à une extrémité de sortie (24, 124, 224) dudit canal de circulation, opposée à ladite extrémité d'entrée. 8. Device for supplying gas to an environment assigned to artificial cell culture, comprising at least one petri dish (12, 130, 230) or the like, containing a physiological liquid and placed in an enclosure in which circulates a predetermined gaseous composition containing oxygen or another gas, or mixture of gases or the like, the rate of which must be adjusted sequentially, said at least one petri dish having a bottom made of a semi-permeable membrane (15, 1, 15, 215) leaving passing the gases and being liquid-tight, for the implementation of the method, characterized in that it comprises a circulation channel (20, 120, 220) adjacent said bottom of said at least one Petri dish, to communicate with said at least one Petri dish, through said semipermeable membrane such that said predetermined gaseous composition which is conveyed in said circulation channel and communicates with the contents of said at least one petri dish through said semipermeable membrane, means (28) for injecting said predetermined gas composition at an inlet end (23, 123, 223) of said circulation channel and means (29) for discharging said predetermined gas composition at an end of output (24, 124, 224) of said flow channel, opposite said input end.
9. Dispositif, selon la revendication 8, caractérisé en ce que lesdits moyens pour injecter ladite composition gazeuse prédéterminée à une extrémité dudit canal de circulation sont disposés en amont de ladite au moins une boîte de Pétri et en ce que lesdits moyens pour évacuer ladite composition gazeuse prédéterminée à l'autre extrémité dudit canal de circulation sont disposés en aval de ladite au moins une boîte de Pétri. 9. Device according to claim 8, characterized in that said means for injecting said predetermined gaseous composition at an end of said circulation channel are arranged upstream of said at least one petri dish and in that said means for discharging said composition predetermined gas at the other end of said circulation channel are disposed downstream of said at least one Petri dish.
10. Dispositif, selon la revendication 8, caractérisé en ce qu'il comporte un canal de circulation unique disposé sous une pluralité de boîtes de Pétri,10. Device according to claim 8, characterized in that it comprises a single circulation channel disposed under a plurality of Petri dishes,
(12) chacune desdites boîtes comportant chacune un fond constitué d'une membrane semi-perméable (15) au moins partiellement commun avec la paroi supérieure dudit canal de circulation (20), pourvu de moyens pour injecter (28) ladite composition gazeuse prédéterminée en amont de ladite pluralité de boîtes de Pétri et de moyens pour évacuer (29) ladite composition gazeuse prédéterminée en aval de ladite pluralité de boîtes de Pétri. (12) each of said boxes each having a bottom consisting of a semipermeable membrane (15) at least partially common with the upper wall of said circulation channel (20), provided with means for injecting (28) said predetermined gas composition into upstream of said plurality of Petri dishes and means for discharging (29) said predetermined gaseous composition downstream of said plurality of petri dishes.
1 1 . Dispositif, selon l'une au moins des revendications 8 à 10, dans lequel le gaz de ladite composition gazeuse dont le taux est ajusté de manière séquentielle est l'oxygène et/ou l'anhydride carbonique, ou un autre gaz, ou mélange de gaz ou similaire, caractérisé en ce qu'il comporte des moyens de contrôle agencés pour définir à la fois la valeur de la pression partielle de l'oxygène dans le liquide physiologique et la durée de l'injection de ladite composition gazeuse dans ledit canal de circulation. 1 1. Device according to at least one of claims 8 to 10, wherein the gas of said gaseous composition whose rate is adjusted sequentially is oxygen and / or carbon dioxide, or another gas, or mixture of gas or the like, characterized in that it comprises control means arranged to define both the value of the partial pressure of the oxygen in the physiological liquid and the duration of the injection of said gaseous composition into said channel of circulation.
12. Dispositif, selon la revendication 8, caractérisé en ce qu'il comporte une embase dans laquelle est ménagé ledit canal de circulation adjacent au fond de ladite au moins une boîte de Pétri, et communiquant avec cette dernière à travers ladite membrane semi-perméable. 12. Device according to claim 8, characterized in that it comprises a base in which is formed said adjacent circulation channel at the bottom of said at least one petri dish, and communicating with the latter through said semi-permeable membrane .
13. Dispositif, selon la revendication 12, caractérisé en ce que ladite embase (21 , 121 , 221 ) comporte une plaque de fond, des parois latérales, une embouchure d'entrée (23, 123, 223) et une embouchure de sortie (24, 124, 224) cet ensemble étant obturé sur le dessus, par une plaque de couverture découpée en correspondance du fond de ladite au moins une boîte de Pétri, la découpe étant partiellement obturée par ladite membrane semi- perméable. 13. Device according to claim 12, characterized in that said base (21, 121, 221) comprises a bottom plate, side walls, an inlet mouth (23, 123, 223) and an outlet mouth ( 24, 124, 224) this assembly being closed on the top, by a cover plate cut in correspondence with the bottom of said at least one Petri dish, the cut being partially closed by said semi-permeable membrane.
14. Dispositif, selon la revendication 12, caractérisé en ce que ladite embase (21 , 121 , 221 ) comporte une plaque de fond, des parois latérales, une embouchure d'entrée (23, 123, 223) et une embouchure de sortie (24, 124, 224) (24, 124, 224), cet ensemble étant obturé sur le dessus, par une plaque de couverture découpée en correspondance du fond des puits de ladite boîte de Pétri à multi-puits, les découpes étant partiellement obturées par ladite membrane semi-perméable. 14. Device according to claim 12, characterized in that said base (21, 121, 221) comprises a bottom plate, side walls, an inlet mouth (23, 123, 223) and an outlet mouth ( 24, 124, 224) (24, 124, 224), this assembly being closed at the top, by a cover plate cut in correspondence with the bottom of the wells of said multi-well petri dish, the cuts being partially closed by said semipermeable membrane.
15. Dispositif, selon la revendication 12, caractérisé en ce que ladite embase comporte une plaque de fond et des parois latérales, cet ensemble étant obturé sur le dessus, par le fond d'une boîte de Pétri à multi-puits intégrée (230), les parois latérales étant équipées respectivement d'une embouchure d'entrée (223) et d'une embouchure de sortie (224). 15. Device according to claim 12, characterized in that said base comprises a bottom plate and side walls, this assembly being closed on the top, by the bottom of a multi-well integrated Petri dish (230). , the side walls being respectively equipped with an inlet mouth (223) and an outlet mouth (224).
PCT/CH2015/000116 2014-08-08 2015-08-06 Method for supplying gas to an environment assigned to artificial cell culture and device for implementation of said method WO2016019476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01211/14A CH709970A1 (en) 2014-08-08 2014-08-08 A method for supplying gas to an affected environment under artificial cell culture device for the implementation of this process.
CH1211/14 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016019476A1 true WO2016019476A1 (en) 2016-02-11

Family

ID=52423524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2015/000116 WO2016019476A1 (en) 2014-08-08 2015-08-06 Method for supplying gas to an environment assigned to artificial cell culture and device for implementation of said method

Country Status (2)

Country Link
CH (1) CH709970A1 (en)
WO (1) WO2016019476A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055407A1 (en) * 2016-09-23 2018-03-29 Dnanudge Limited Method and apparatus for analysing a biological sample
US10467679B1 (en) 2019-04-15 2019-11-05 Dnanudge Limited Product recommendation device and method
US10699806B1 (en) 2019-04-15 2020-06-30 Dnanudge Limited Monitoring system, wearable monitoring device and method
US10811140B2 (en) 2019-03-19 2020-10-20 Dnanudge Limited Secure set-up of genetic related user account
US10919320B2 (en) 2019-02-22 2021-02-16 Fuji Xerox Co., Ltd. Light irradiation device, image forming apparatus, computer readable medium storing program, and light irradiation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2268187A (en) * 1992-07-01 1994-01-05 Univ Hull Cell culture vessels
US20030186217A1 (en) * 2000-09-19 2003-10-02 Augustinus Bader Method and device for growing and/or treating cells
WO2008106515A1 (en) * 2007-02-27 2008-09-04 The Board Of Trustees Of The University Of Illinois Insert device for multiwell plate
US20140142000A1 (en) * 2012-10-25 2014-05-22 Academia Sinica Microfluidic array platform for simultaneous cell culture under oxygen tensions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2268187A (en) * 1992-07-01 1994-01-05 Univ Hull Cell culture vessels
US20030186217A1 (en) * 2000-09-19 2003-10-02 Augustinus Bader Method and device for growing and/or treating cells
WO2008106515A1 (en) * 2007-02-27 2008-09-04 The Board Of Trustees Of The University Of Illinois Insert device for multiwell plate
US20140142000A1 (en) * 2012-10-25 2014-05-22 Academia Sinica Microfluidic array platform for simultaneous cell culture under oxygen tensions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055407A1 (en) * 2016-09-23 2018-03-29 Dnanudge Limited Method and apparatus for analysing a biological sample
US10093965B2 (en) 2016-09-23 2018-10-09 Dna Nudge Limited Method and apparatus for analysing a biological sample
EP3862089A1 (en) * 2016-09-23 2021-08-11 DnaNudge Limited Test cartridge for analysing a biological sample
US10919320B2 (en) 2019-02-22 2021-02-16 Fuji Xerox Co., Ltd. Light irradiation device, image forming apparatus, computer readable medium storing program, and light irradiation method
US10811140B2 (en) 2019-03-19 2020-10-20 Dnanudge Limited Secure set-up of genetic related user account
US11901082B2 (en) 2019-03-19 2024-02-13 Dnanudge Limited Secure set-up of genetic related user account
US10467679B1 (en) 2019-04-15 2019-11-05 Dnanudge Limited Product recommendation device and method
US10699806B1 (en) 2019-04-15 2020-06-30 Dnanudge Limited Monitoring system, wearable monitoring device and method

Also Published As

Publication number Publication date
CH709970A1 (en) 2016-02-15

Similar Documents

Publication Publication Date Title
WO2016019476A1 (en) Method for supplying gas to an environment assigned to artificial cell culture and device for implementation of said method
EP1121414B1 (en) Method for improving the performance of a photobioreactor
EP1118657A1 (en) Cell and tissue culture apparatus with enhanced culture fluid circulation
WO2010049653A2 (en) Method for maturing wine and device for implementing same
CA2652462C (en) Device for culture of cells or micro-organisms
FR2761575A1 (en) Hydroponic forcing troughs for growing chicory
WO2009087567A2 (en) Photobioreactor for the culture of photosynthetic microorganisms
FR3070044A1 (en) PROCESS FOR FERMENTATION OF JUICE CONTAINING SUGARS AND APPARATUS FOR ITS IMPLEMENTATION
FR3026043A1 (en) VULCANIZATION DEVICE FOR TIRES
CH700388A2 (en) Digester-photobioreactor for culturing photosynthetic microorganisms e.g. microalgae and producing biogas, comprises first enclosure with microorganisms and growth medium, and second enclosure with microorganisms and digestive medium
FR2551457A2 (en) Process and plant for carrying out a decomposition in anaerobic environment of organic products, byproducts and waste
EP1180134B1 (en) Multi- applicable cell-culture method and apparatus
EP1431030B1 (en) Thermo-formed cell culture vessel
EP1874632B1 (en) Method for heat treating a product contained in a package such as a tray
EP3095852B1 (en) Method and device for controlling the temperature of an exothermal or endothermal reaction
EP2288689B1 (en) Method for packaging dry yeast
FR2481571A3 (en) PROPHYLACTIC-TYPE BACTER FOR PLANT CULTURE
FR3101638A1 (en) CELL CULTURE FILTRATION DEVICE WITH A VIEW TO OBTAINING CONCENTRATED BIOMASS.
FR3101639A1 (en) DEVICE FOR THE PRODUCTION OF BIOMASS FROM CELL CULTURE OF MICROALGAE OR CYANOBACTERIA.
FR2961699A1 (en) Method for sanitizing barrel containing wine, involves sealing envelope and extracting gas from envelope until pressure exceeds threshold value to limit development of micro-organisms, where envelope is made of flexible material
EP2796214B1 (en) Method for treating fermentable materials and facility for treating fermentable materials
OA21456A (en) Digester with reduced volume of gaseous sky.
FR3031752A1 (en) DEVICE FOR REALIZING FERMENTATION TESTS WITH A SMALL VOLUME OF MOUT
FR3103079A1 (en) Device for invitro plant culture by temporary immersion in a nutrient liquid
EP3635090A1 (en) Device for fermentation in solid medium and associated method of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15767078

Country of ref document: EP

Kind code of ref document: A1