WO2016018114A1 - 폐암 치료제 치료 반응성 진단용 자동화 시스템 - Google Patents
폐암 치료제 치료 반응성 진단용 자동화 시스템 Download PDFInfo
- Publication number
- WO2016018114A1 WO2016018114A1 PCT/KR2015/008024 KR2015008024W WO2016018114A1 WO 2016018114 A1 WO2016018114 A1 WO 2016018114A1 KR 2015008024 W KR2015008024 W KR 2015008024W WO 2016018114 A1 WO2016018114 A1 WO 2016018114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pcr reaction
- reaction solution
- seq
- sample
- lung cancer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/36—Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
- C12M1/38—Temperature-responsive control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
Definitions
- the present invention relates to an automated system for diagnosing treatment reactivity of lung cancer therapeutic agents, and more particularly, to provide information necessary for diagnosing treatment response of lung cancer patients, and to calculate treatment response predictive values from samples of patients.
- the present invention relates to a method suitable for automation, and an apparatus suitable for the method.
- Cancer is a group of abnormal cells caused by continuous division and proliferation due to the disruption of the balance between cell division and death by various causes, also called tumors or neoplasms. It usually affects more than 100 different parts of the body, including organs, white blood cells, bones, lymph nodes, etc., and develops severe symptoms through infiltration into surrounding tissues and metastases to other organs.
- the second difficulty is the presence of a large number of patients who do not respond to the treatment. Is the point.
- lapatinib a breast cancer drug
- HER2 protein HER2-positive
- EGRF protein EGRF protein
- the drug suitable for the patient can be selected in advance to reduce the dropout rate and increase the compliance of the medication.
- the drug suitable for the patient can be selected in advance to reduce the dropout rate and increase the compliance of the medication.
- the conventional method may cause an error in the diagnosis result depending on the place, time, and experimenter. Therefore, in order to obtain a stable result, a method or an automated process that requires the involvement of the experimenter is preferably excluded.
- the present inventors have made intensive efforts to develop a method for calculating treatment response by using FFPE samples of tissues containing lung cancer cells of patients, in particular, to develop a method suitable for automation.
- the present invention has been completed by developing a suitable primer / probe set for application and developing a suitable method, in particular, a method suitable for automation.
- Another object of the present invention is to provide a diagnosing device for treating lung cancer in lung cancer patients.
- the present invention provides
- step (B) treating the sample of step (a) with a proteinase
- step (C) removing the protein or cell debris (debr i s) from the sample of step (b);
- step (D) treating the sample of step (c) with an RNA degrading enzyme to obtain genomic DNA;
- a standard comprising a standard DNA, a primer and probes specific for genomic DNA gene mutations, wherein the standard vector is processed to form a linear DNA by restriction enzymes.
- step (G) the PCR reaction solution of step (e) and the standard PCR reaction solution of step (f), respectively, ⁇ Attention ⁇ small r r op i e fy ⁇ l ⁇ ⁇ Min ⁇ Huajika
- the present invention provides a method for calculating a therapeutic response predictive value, the method comprising calculating a predictive value predicting that the higher the mutation rate, the higher the therapeutic responsiveness.
- PCR means capable of performing a PCR reaction and capable of measuring fluorescence values by detecting fluorescence signals
- (F) a lung cancer therapeutic agent which is executed by an arithmetic processing apparatus, comprising a computer readable medium which calculates a mutation rate by comparing the fluorescence value with a threshold value, and calculates a treatment response predictive value according to a predetermined formula.
- an arithmetic processing apparatus comprising a computer readable medium which calculates a mutation rate by comparing the fluorescence value with a threshold value, and calculates a treatment response predictive value according to a predetermined formula.
- the present invention provides a method of calculating a treatment response predictive value from a sample of a patient comprising:
- FFPE formalin-fixed paraffin embedded
- step (B) treating the sample of step (a) with a proteinase
- step (C) removing protein or cell debris from the sample of step (b);
- step (D) treating the sample of step (c) with an RNA degrading enzyme to obtain genomic DNA;
- step (G) micronizing the PCR reaction solution of step (e) and the standard PCR reaction solution of step (f) into a plurality of small droplets, respectively;
- the method is preferably an automated or semi-automated method. Automation in the above is the introduction of a sample (sample); Extraction, separation, rearrangement or movement of the reaction complete substrates (eg, ribs, plates); Dosing, replenishment of reagents, buffers into stock; All or most of the processes except for the maintenance of the equipment may Lot yr ⁇ ⁇ Fu ⁇ ji ⁇ ⁇
- Tissues obtained from patients after biopsy are usually immobilized with formalin (formaldehyde) or the like.
- the immobilized biological sample is generally dehydrated and embedded in a solid support such as paraffin.
- the sample thus prepared is called an FFPE sample. Since nucleic acids, particularly DNA, on FFPE samples are present in fixed cells, fragmented or crosslinked by formalin, it is necessary to remove paraffins and lyse the fixed cells to elute nucleic acids, including DNA, in cells.
- the term "paraffin” refers to the embedding medium of a biological sample used in all interpretations including morphological, immunohistochemical and enzymatic histochemical interpretation. That is, the paraffin in the present invention may be a petroleum paraffin wax monolith, or may be added for the purpose of improving the quality of the embedding medium using the petroleum paraffin wax as a base (base! 1). May contain all other ingredients present.
- petroleum paraffin wax refers to a mixture of hydrocarbons which are solid at room temperature derived from petroleum.
- a microtome can be used to cut the FFPE sample. Cutting thickness is not limited to this, but 5 to 15 ⁇ is preferred.
- the cleaved FFPE sample is placed in a DNA extraction tube, particularly genomic DNA extraction process.
- the protein in the sample is broken down and fragmented by the action of the protease.
- the protease in the present invention is protease K.
- Protease K (Proteinase K, EC 3.4.21.64) is a protease found in the Engyodontium album, a kind of bear, and is a type of serine protease.
- Treatment of protease K is preferably performed at conditions of 20 to 40 minutes, 45 to 70 ° C., more preferably 25 to 35 minutes, 60 to 65 ° C., most preferably 30 minutes, 65 ° C. do.
- the treatment below the lower limit of the treatment condition is less protein degradation efficiency ultimately decrease the DNA separation efficiency
- the treatment above the upper limit decreases the DNA separation efficiency due to the decomposition of DNA during the separation process, the overall separation time increases productivity Will fall.
- Step (c) is a step of removing protein or cell debris from the sample of step (b).
- the fragmented protein and undecomposed cell debris are separated from nucleic acids such as RNA and DNA by the treatment of the protease of step (b).
- the removal process can be performed by combining with magnetic beads and then applying a magnetic force, obtaining a supernatant that has not been precipitated or gathered to one side, removing the precipitate by centrifugation, or obtaining only the supernatant.
- Step (d) is a step of processing the RNA degrading enzyme and obtaining genomic DNA from the sample of step (c).
- step (c) results in the separation of nucleic acids including DNA and RNA.
- RNAase is treated to isolate DNA only.
- step (e) is a step of preparing a PCR reaction solution containing primers and probes specific for the DNA, genomic DNA gene mutations.
- the isolated DNA is then mixed with a mixture of primer / probe sets and a buffer for PCR reaction (eg, commercial PCR premixes) for the PCR reaction.
- the primer set can specifically amplify the mutation (mutation) of the genomic DNA gene of interest.
- PCR premixes may include DNA polymerase for PCR reactions (eg Tag polymerase), dyes for quantitative detection of PCR reactions (eg fluorescent dyes), buffers suitable for PCR reactions, dNTPs, and the like. .
- Step (f) includes primers and probes specific for the standard DNA, genomic DNA gene mutations, to which the standard vector is subjected to restriction enzymes to form linear DNA. Is the step of preparing a standard PCR reaction solution.
- step (f) the procedure for step (e) is used except that a standard material vector is used instead of genomic DNA in step (e) as a template for PCR amplification.
- Restriction enzymes to be treated in the standard vector can be selected from any of the restriction enzymes present in the vector if the vector can be linearized, Clal was used in the embodiment of the present invention.
- the level after PCR amplification of the detection target in the present invention may vary widely depending on the target sample, a criterion for determining whether to amplify by a primer / probe specific to a mutation is necessary.
- the standard vector is for this purpose
- 100-350 bp of polynucleotides covering DNA gene mutations can be used transformed into a conventional vector.
- the standard vector of the present invention may be used by inserting about 300bp into the pIDTSmart Amp vector by mutating the exon of the EGFR, that is, the probe position in the center.
- the standard vector of the present invention may be a vector including a DNA fragment of about 300 bp with a mutation region in each exon of the EGFR, that is, a probe position in the center, which is applied to a host cell such as E. coli. After transformation, amplification and extraction can be used. More preferably, the standard vector of the present invention comprises 1597 of the EGFR gene (genbank accession no. NG_007726) in the case of axon 18 to 100 to 350 bp of the polynucleotide at the base of the 100100th, for the axon 19, the EGFR gene.
- 100 to 350 bp polynucleotide DNA fragment may be inserted into the pIDTSmart Amp vector.
- primer refers to an oligonucleotide, a nucleic acid chain
- primer extension products complementary to (template) can serve as an initiation point for synthesis under conditions in which the synthesis of primer extension products complementary to (template) is induced, i.e., the presence of polymerizers such as nucleotides and DNA polymerases, and conditions of suitable temperature and pH.
- the primer is deoxyribonucleotide and single chain.
- Primers used in the present invention may be naturally occurring dNMP (ie, dAMP, dGMP, dCMP and dTMP), modified nucleotides or non-characters It may comprise lead nucleotides.
- the Fry ⁇ dimmer as ribonucleotides - ⁇ may hamhal.
- the primer should be long enough to prime the synthesis of the extension product in the presence of the polymerizer. Suitable lengths of primers are typically 15-30 nucleotides, depending on a number of factors, such as silver, application, and source of the primer. Short primer molecules generally require lower temperatures to form a more complex stable complex with the template.
- annealing or “priming” 'means the oligodeoxynucleotide or nucleic acid is juxtaposed to the template nucleic acid, which juxtapositions the polymerase nucleotides to complement the template nucleic acid or portion thereof. To form nucleic acid molecules.
- probe is designed as a kind of taqman probe used for quantitative PCR.
- the probe is attached with fluorescent material (HEX, VIC, FAM dye), and TAMRA may be used as a quencher on all 3 'sides of the probe.
- TaqMan probes are generally ol igonucleotides tagged with 5 'terminus as fluorescent material and 3' terminus as quencher material.
- TaqMan probes specifically hybr idi zat ion to template DNA in the anneal step, but the 3 ' Since the quencher at the end does not fluoresce even when light is applied, the fluorescent substance is decomposed when the TaqMan probe hybridi zat ion is decomposed by the 5 ' ⁇ 3' exonuc lease activity of Taq DNA polymerase in the extension step.
- the fluorescence generated by the PCR reaction is quantitatively emitted by the principle of separation from the probe, release of the quencher, and fluorescence.
- primers and probes specific for genomic DNA gene mutations are used in the same sequence for PCR reaction and standard PCR reaction solutions, each independently a forward primer of SEQ ID NO: 1, a reverse primer of SEQ ID NO: 2, and SEQ ID NO: 9 Polynucleotide set of probes selected from the group consisting of 13 to 13, forward primer of SEQ ID NO: 3, reverse primer of SEQ ID NO: 4 and polynucleotide set of probes selected from the group consisting of SEQ ID NOs: 14 to 42, forward primer of SEQ ID NO: 5 Quick ⁇ ⁇ ⁇ " , the station v of the column No. 6
- the polynucleotide set of the selected probe, the forward primer of SEQ ID NO: 7, the reverse primer of SEQ ID NO: 8 and the polynucleotide set of the probe selected from the group consisting of SEQ ID NO: 51 to 54 may be one or more selected.
- Step (g) is a step of micronizing the PCR reaction solution of step (e) and the standard PCR reaction solution of step (f) into a plurality of droplets, respectively.
- micronized microdroplets of the present invention may be about lnl in size, and may be micronized to 10, 000 to 25, 000 for convenience of PCR reaction and measurement of the reaction.
- Step (h) is a step of performing a PCR reaction so that a PCR reaction is performed in each of the plurality of small droplets.
- PCR reactions are performed using sample genomic DNA or DNA of a standard material vector as a template.
- PCR reaction can be carried out according to methods known in the art, generally should be carried out under conditions that do not cross-link primer / probe, according to the method of the present invention by a standard vector (vector) Because the baseline can be set, PCR reactions can be performed even under conditions that allow some cross-linking.
- PCR reaction conditions for example at 95 ° C 10 bungan enzyme activation banung and, 94 ° 30 sec at C, the 40/1 cycle, 98 ° C to 10 seconds and 4 ° C cool ing process at 60 ° C PCR can be performed via.
- step is to determine the PCR reaction in all or part of each micronized droplet.
- Measurement of the PCR reaction may be performed according to a method known in the art, but may be measured by an optical quantitative analysis system using a probe labeled with a reporter fluorescent dye and / or a quencher fluorescent dye. And preferably, by measuring the fluorescence value for the PCR reaction of each micronized droplet.
- the probe may be FAM, HEX, VIC fluorescent dye (fluorescent material) or EvaGreen type. Since the photo dye is used in combination, it can be carried out by measuring the fluorescence for them. This process can be performed by a commercially available detection device (e.g., Biorad's Droplet Reader), which detects the droplet fluorescence signal of each sample in the device and determines the number of posi- tive and negat ive droplets, respectively. Counting can be completed automatically until the analysis.
- a commercially available detection device e.g., Biorad's Droplet Reader
- the probe added to the PCR reaction solution and the probe added to the standard PCR reaction solution for detection may be associated with different fluorescent materials.
- Step (j) is a step of calculating the mute ion (% mutat ion) from the measurement of the PCR reaction in the PCR reaction solution and the standard PCR reaction solution.
- the mutation rate () mutat ion is calculated by comparing the measured value of PCR reaction in the PCR reaction solution with the standard PCR reaction solution, and the mutation rate at a ratio equal to or greater than the threshold value that corresponds to the measurement value in the standard PCR reaction solution. (% mutat ion) can be calculated.
- ⁇ i i3> (k) is a step of calculating a predictive value predicted that the higher the mutation rate, the higher the responsiveness.
- the therapeutic reactivity in the present invention may be defined as "responsiveness" to the therapeutic agent if the lung cancer growth rate is inhibited as a result of contact with the therapeutic agent as compared to its growth not in contact with the therapeutic agent.
- responsiveness to the therapeutic agent if the lung cancer growth rate is inhibited as a result of contact with the therapeutic agent as compared to its growth not in contact with the therapeutic agent.
- Lung cancer is "unresponsive" to a therapeutic agent if the growth rate is inhibited or not inhibited to a very low degree as a result of contact with the therapeutic agent as compared to its growth not in contact with the therapeutic agent.
- the growth of lung cancer can be measured in a variety of ways, eg, the expression of tumor markers appropriate to the size of the tumor or its tumor type can be measured. Nonresponsiveness measures can be assessed using additional criteria beyond the growth size of the tumor, including patient quality of life, metastasis, etc.
- the therapeutic responsiveness to a lung cancer therapeutic agent may be a therapeutic responsiveness to an inhibitor of epidermal growth factor receptor (EGFR).
- EGFR epidermal growth factor receptor
- EGFR is a protein product of the oncogene erbB or ErbBl.
- erbB or ErbBl is part of the ERBB family of protooncogenes known to be important factors in numerous cancer developments.
- EGFR target drugs have been developed for the treatment of epithelial cell carcinoma such as lung cancer, in particular Gefitinib (Gef it inibKAstraZeneca UK Ltd., trade name "IRESSA”) and Erlotinib (Er lot inibXGenentech, Inc.). & OSI Pharmaceuticals, Inc., trade name "TARCEVA”) are representative drugs.
- Zephytinib and erlotinib are quinazoline compounds that inhibit cell growth by inhibiting tyrosine kinase activity of EGFR to inhibit phosphorylation.
- the sample may be tissue of a lung cancer patient.
- the sample in the present invention may be lung cancer tissue of lung cancer patients.
- the tissue may also include some normal cells, and preferably may be a formal in-fixed paraff in-embedded (FFPE) sample of tissue including lung cancer cells of a patient.
- FFPE formal in-fixed paraff in-embedded
- (C) means for micronizing the sample into a number of small droplets
- PCR means capable of performing a PCR reaction and capable of accumulating fluorescence values by detecting fluorescence signals
- a lung cancer therapeutic agent comprising a computer readable medium, which is executed by an arithmetic processing unit, calculating a mutation rate by comparing the fluorescence value with a threshold value, and calculating a predictive value of treatment reactivity according to a predetermined formula.
- the nucleic acid to be separated from the FFPE sample in the apparatus of the present invention is preferably genomic DNA, more preferably genomic DNA that is assumed to carry mutations.
- the device of the present invention is suitable for automated or semi-automated or automated / semi-automated. 3 ⁇ 4 square
- the system of the present invention is useful for the purpose of presenting clues about the direction of future treatment including the determination of the necessity of the administration of anticancer drugs, since the reaction can predict and diagnose the treatment of lung cancer patient prognosis through an automated process. Can be used.
- Figure 2 shows a flow chart of the separation process in the FFPE sample of the method of the present invention.
- the prepared material was separated and the upper solution was transferred to a new tube pre-loaded with magnetic beads and lysis buffer (VERSANT tissue preparation reagents, Box 1, Siemens). At this time, the paraffin layer formed on the upper part of the tube should not be transferred to the new tube.
- lysis buffer VERSANT tissue preparation reagents, Box 1, Siemens.
- ⁇ i60> A standard vector (named mini-clone) was constructed to validate the designed primers and probes, and to make the standards needed to perform ddPCR. irnFc l-one and yo body jakgwa blue ⁇ me 'lGFR ⁇ ]' W o is suddenly 3 ⁇ 4.1 eu in exon F ⁇ , - approximately 300bp were synthesized by the probe position to the center. The synthesized DNA fragment was inserted between the universal link sequence of the pIDTSmart Amp vector (see FIG. 1), and the produced clone was transformed into E. coli DH5a cells.
- restriction enzyme was applied to the standard vector.
- Standard Vector Miniclone DNA
- Clal restriction enzyme was reacted at 37 ° C. for 30 minutes and the reaction product was quantified and stored at -20 ° C until use.
- the probe was designed as a taqman probe by selecting those that meet the conditions.
- HEX / VIC reporter fluorescence was attached to the 5? Wild type probe, and FAM dye was attached to the 5? Mutant probe to detect amplification.
- TAMRA was used as the quencher for all probes.
- EGFR exon 18, 19, 20, 21, 4, 31, 8, 4 probes were designed and synthesized, respectively. Probes designed by the inventors had allele specifics and almost all probes had cosmic numbers.
- Samples adjusted by dilution in 7 steps up to 0.02% and 0.01% were simultaneously measured by the method according to the Covas EGFR gene mutation test kit and the method in the present invention. COVAS EGFR gene mutation testing was performed according to the manufacturer's instructions.
- the minimum mutation frequency was measured using a templ ate spiked with gDNA on Miniclone, and the minimum measurement result of the Kobas EGFR gene mutation test was 0.5% to 5%, but the method of the present invention. According to the method of the present invention, it was confirmed that the test can be performed from 0.02% to 0.01%. In particular, it is noted that the mutation position of 2239_2257> GT cannot be measured by the COVAS EGFR gene mutation test. The case showed a sensitivity of 0.05 >
- Cobas EGFR mutat ion kit uses 50ng (1.5x10 copies) as template
- the Cobas EGFR mutation kit uses 50ngCL5xK copies) as a template.
- the system of the present invention is capable of predicting and diagnosing the responsiveness and treatment of the prognosis of lung cancer patients through an automated process. It can be usefully used.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 폐암 치료제 치료 반응성 진단용 자동화 시스템에 관한 것으로, 보다 상세하게는 폐암 환자의 치료 반응성의 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 치료 반응성 예측치를 산출하는 방법으로 자동화에 적합한 방법, 그 방법에 적합한 장치에 관한 것이다. 본 발명의 시스템은 자동화된 과정으로 폐암 환자 예후의 치료제에 대한 반응성 예측, 진단이 가능하므로 항암치료제의 투여 필요성 판단을 비롯하여 향후 치료의 방향에 대한 단서를 제시하는 목적으로 유용하게 사용할 수 있다.
Description
【발명의 명칭】
폐암 치료제 치료 반옹성 진단용 자동화 시스템
【기술분야】
<ι> 본 출원은 2014년 8월 1일에 출원된 대한민국 특허출원 제 10-2014-0098969 호를 우선권으로주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
<2>
<3> 본 발명은 폐암 치료제 치료 반응성 진단용 자동화 시스템에 관한 것으로, 보다 상세하게는 폐암 환자의 치료 반웅성의 진단에 필요한 정보를 제공하기 위하 여 , 환자의 시료로부터 치료 반웅성 예측치를 산출하는 방법으로 자동화에 적합합 방법, 그 방법에 적합한 장치에 관한 것이다.
<4>
【배경기술】
<5> 암이란 다양한 원인에 의해 세포의 분열과 사멸 간의 균형이 파괴됨으로써 계속적인 분열과 증식에 의해 발생한 비정상적인 세포의 집단올 의미하며 , 종양 또 는 신생물이라고도 한다. 일반적으로 장기 , 백혈구, 뼈 , 림프절 등을 포함한 100 가지 이상의 신체의 여러 부분에 발병하며, 주변조직으로 침윤하는 현상 및 다른 기관으로 이동하는 전이를 통해 심각한 증상으로 발전한다.
<6>
<7> 암의 치료제는 지속적으로 개발되고 있어, 현재 임상에서 사용되는 각종 암 에 대한 치료제는 수십 가지에 이르고 있다. 하지만, 현재까지도 임상의들은 두 가 지의 어려움을 겪고 있는데, 첫째는 치료제가 치료 효과를 나타내기까지는 몇 주 정도의 시간이 소요되고 개개 환자들에게 효과가 있는 치료제를 미리 알 수가 없다 는 것이다. 즉, 항암제의 치료 효과는 며칠 내에 판정할 수 있는 것이 아니라 수주 에 걸쳐서 서서히 나타나기 때문에 처방된 약물이 효과가 없다고 판단하기까지는 오랜 시간이 걸린다는 것이다. 그 후 치료 효과가 부적절하다면 다른 종류의 치료 제로 변경을 고려하는데, 결국 치료 개시 시기에 임상의가 환자에게 적절한 치료제 를 선택하지 못하였다면 , 그만큼 효과적인 치료에 이르는데, 시간이 그만큼 지체하 게 되며, 병의 진행, 재발 및 예후에 치명적인 영향을 미치게 된다.
<8>
<9> 두 번째 어려움은 치료제에 치료 반응을 보이지 않는 환자가 다수 존재하는
점이다. 예를 들어, 유방암 치료제인 라파티닙 ( lapat inib)은 HER2 단백질의 수치가 높고 (HER2 양성) EGRF 단백질의 수치가 낮은 경우에 치료효과가 있는 것으로 밝혀 진 바 있다. 그러나 전이성의 HER2 음성 유방암은 라파티닙에 반웅을 하지 않아 라 파티닙이 ,효과가 없는 것으로 드러났다. 이러한 연구결과를 참고하면, 일단 유방암 환자들은 치료를 받기 전에 정확한 검사를 통하여 HER2 음성인지 혹은 양성인지를 확실히 밝혀야 적절한 치료를 선택할 수 있음을 알 수 있다.
<10>
<1 1> 따라서, 치료제에 대한 치료반웅과 그 부작용을 미리 예측할 수 있다면, 환 자에게 맞는 약물을 미리 선별하여 약물을 잘못 선택함으로 인하여 생기는 치료 탈 락 (dropout )률을 낮추고 약물의 순응도를 높일 수 있을 것이다. 또한, 약물의 효과 가 나타나기까지 걸리는 시간과 환자가 겪을지도 모르는 부작용의 위험을 피해 갈 수 있을 것이다.
<12>
<13> 이러한 개념하에 여러 약물 반응성과 관련된 마커의 탐색이나 이를 활용한 상용의 체외진단 또는 동반진단 키트가 개발되고 있고, 그 중 몇 가지는 이미 상용 화 되어 임상에서 활용되고 있다. 하지만, 이러한 방법들은 일반적으로 고도로 숙 련된 실험자에 의하지 않으면 결과의 신뢰성이 떨어지는 경우가 많다. 이에 따라 일부의 경우 central lab 방식으로 환자의 시료를 정해진 과정에 따라서 서비스 제 공회사에 제공하여야 비교적 의미있는 결과를 얻을 수 있는 경우도 있고, 실험실간 오차 ( inter-laboratory variat ion) , 실험자간 오차 ( inter-observer variat ion) , 실험시기간 오차 (day-to-day variat ion)로 인해 전체적인 시스템의 신뢰성에 의문 이 제기될 수 있기도 하다.
<14>
<15> 이와 같이 종래의 방법은 장소, 시간, 실험자에 따라서 진단 결과에 오류가 생길 우려가 있어 안정적인 결과를 얻기 위하여 실험자의 관여가 가급적 배제된 방 법이나 자동화 과정이 필요한 실정이다.
<16>
<17> 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되었고 그 인용이 표 시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참 조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확 하게 설명된다.
<18>
【발명의 샴세한설명】
【기술적 과제】
<19> 이에 본 발명자들은 환자의 폐암세포를 포함하는 조직의 FFPE 시료를 이용하 여 치료 반웅성 예측치를 산출하는 방법, 특히 자동화에 적합한 방법을 개발하기 위하여 예의 연구 노력한 결과, 폐암 조직의 FFPE 시료에서 적용시키기 적합한 프 라이머 /프로브 세트를 발굴하고, 이에 적합한 방법, 특히 자동화에 적합한 방법을 개발함으로써 본 발명을 완성하였다.
<20>
<21> 따라서, 본 발명의 목적은 폐암 환자의 치료 반웅성의 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 치료 반응성 예측치를 산출하는 방법을 제공 하는 것이다.
<22> 본 발명의 다른 목적은 폐암 환자의 폐암 치료제 치료 반웅성 진단 장치를 제공하는 것이다.
<23>
【기술적 해결방법】
<24> 상기와 같은 목적을 달성하기 위하여, 본 발명은
<25> 폐암 환자의 치료 반응성의 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터
<26> ( a) 환자의 폐암 조직을 포함하는 포르말린 고정 파라핀 포매 ( formal in- f ixed paraf f in-embedded, FFPE) 시료에 파라핀 제거 및 세포용해용 버퍼를 처리하 는 단계;
<27> (b) 상기 (a) 단계의 시료에 단백질분해효소 (proteinase)를 처리하는 단계;
<28> ( c) 상기 (b) 단계의 시료에서 단백질 또는 세포 잔해물 (debr i s )을 제거하 는 단계 ;
<29> (d) 상기 (c) 단계의 시료에 RNA 분해효소를 처리하고 게놈 DNA를 수득하는 단계; '
<30> (e) 상기 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브를 포함 하는 PCR 반응 용액을 준비하는 단계 ;
<3i> ' ( f ) 표준 물질 백터 (vector )를 제한효소를 처리하여 선형 DNA가 되도록 한 표준 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브를 포함하는 표준
PCR 반응 용액을 준비하는 단계;
<32> (g) 상기 (e)단계의 PCR 반웅 용액 및 ( f )단계의 표준 PCR 반웅 용액을 각각
^주의ᅳ작은 ᅳ을 r op i ef y^ l「분ᅭ화지카
<33> (h) 상기 다수의 작은 방울 각각에서 PCR 반웅이 이루어지도록 PCR 반응을 수행하는 단계;
<34> ( i ) 각 미분화된 작은 방울의 전부 또는 일부에서 PCR 반응 여부를 측정하는 단계;
<35> (j ) PCR 반웅 용액과 표준 PCR 반응 용액에서의 PCR 반웅 여부의 측정값에서 돌연변이율 ¾ mutat ion)을 산출하는 단계;
<36> (k) 상기 돌연변이율이 높을수록 치료 반응성 (responsiveness)이 높을 것으 로 예측하는 예측치를 산출하는 단계를 포함하는 치료 반응성 예측치를 산출하는 방법을 제공한다.
<37>
<38> 본 발명의 다른 목적을 달성하기 위하여, 본 발명은
<39> (a) FFPE 시료에서 핵산을 분리하는 수단;
<40> (b) 핵산, 버퍼, 시약을 정해진 시간에 정해진 위치로 정해진 양으로 분해하 는 분배 수단;
<4i> ( c ) 시료를 다수의 작은 방울로 미분화시키는 수단
<42> (d) PCR 반응의 수행이 가능하며, 형광 신호 검출에 의한 형광값의 측정이 가능한 PCR수단;
<43> (e) 연산 처리장치 ; 및
<44> ( f ) 연산 처리장치에 의해서 실행되며, 상기 형광값을 역치값과 비교하여 돌 연변이율을 산출하며, 정해진 산식에 따라 치료 반웅성 예측치를 산출하는 컴퓨터 판독 가능한 매체를 포함하는 폐암 치료제 치료 반웅성 진단 장치를 제공한다.
<45>
<46> 다른 정의가 없는 한, 본 명세서에 사용된 모든 기술적 및 과학적 용어는 당 업자들에 의해 통상적으로 이해되는 동일한 의미를 가진다. 다음의 참고문헌은 본 발명의 명세서에 사용된 여러 용어들의 일반적인 정의를 갖는 기술 ( Ski l l )의 하나 를 제공한다: Singleton et al . , DICTIONARY OF MICROBIOLOGY AND MOLECULAR BI0L0TY (2th ed. 1994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walkered. , 1988); 및 Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY.
<47>
<48> 이하 본 발명의 내용을 보다 상세히 설명하기로 한다 .
<49>
<50> 본 발명은 폐암 환자의 치료 반응성의 진단에 필요한 정보를 제공하기 위하 여 , 환자의 시료로부터 하기 단계를 포함하는 치료 반웅성 예측치를 산출하는 방법 을 제공한다:
<5i> (a) 환자의 폐암 조직을 포함하는 포르말린 고정 파라핀 포매 (formal in- f ixed paraff in-embedded, FFPE) 시료에 파라핀 제거 및 세포용해용 버퍼를 처리하 는 단계 ;
<52> (b) 상기 ( a ) 단계의 시료에 단백질분해효소 (proteinase)를 처리하는 단계;
<53> (c) 상기 (b) 단계의 시료에서 단백질 또는 세포 잔해물 (debri s)을 제거하 는 단계 ;
<54> (d) 상기 (c) 단계의 시료에 RNA 분해효소를 처리하고 게놈 DNA를 수득하는 단계;
<55> (e) 상기 DNA, 게놈 DNA유전자 변이에 특이적인 프라이머 및 프로브를 포함 하는 PCR 반응 용액을 준비하는 단계 ;
<56> ( f ) 표준 물질 백터 (vector)를 제한효소를 처리하여 선형 DNA가 되도톡 한 표준 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브를 포함하는 표준
PCR 반응 용액을 준비하는 단계;
<57> (g) 상기 (e)단계의 PCR 반응 용액 및 (f )단계의 표준 PCR 반응 용액을 각각 다수의 작은 방을 (droplet )으로 미분화시키는 단계;
<58> (h) 상기 다수의 작은 방을 각각에서 PCR 반응이 이루어지도록 PCR 반옹을 수행하는 단계
<59> ( i ) 각 미분화된 작은 방울의 전부 또는 일부에서 PCR 반웅 여부를 측정하는 단계;
<60> (j ) PCR 반응 용액과 표준 PCR 반응 용액에서의 PCR 반응 여부의 측정값에서 돌연변이율 (¾ mutat ion)을 산출하는 단계;
<6i> (k) 상기 돌연변이율이 높을수록 치료 반응성 (responsiveness)이 높을 것으 로 예측하는 예측치를 산출하는 단계.
<62>
<63> 본 발명은 방법은 바람직하게는 자동화 또는 반자동화된 방법이다. 상기에서 자동화는 샘플 (시료)의 투입; 추출, 분리, 반응이 완료된 기재 (예를 들어, 류브, 플레이트)의 재배치 또는 이동; 시약, 버퍼의 스록 (stock)에의 투입, 보충; 장비 의 유지관리를 제외한 전부 또는 대부분 과정이 인간 이외의 수단 (예를 들어, 로
롯 y r ^可후^지¥ ᅳ
<64>
<65> 이하에서 각 단계에 대해서 상세히 설명한다.
<66> (a) 환자의 폐암 조직을 포함하는 포르말린 고정 파라핀 포매 (formal in- f ixed paraf f in-embedded, FFPE) 시료에 파라핀 제거 및 세포용해용 버퍼를 처리하 는 단계 .
<67> 생검 후 환자에게서 얻은 조직은 통상적으로 포르말린 (포름알데히드) 등에 의해서 고정화한다. 고정화한 생물학적 샘플은 일반적으로 탈수시키고, 파라핀 등 의 고체 지지체에 포매하며, 이렇게 제조된 시료를 FFPE 시료라고 한다. FFPE 시료 상의 핵산, 특히 DNA는 고정된 세포에 존재하고, 단편화 되어 있거나 포르말린에 의해 교차 결합되어 있으므로 파라핀을 제거하고 고정된 세포를 용해하여 DNA를 비 롯한 핵산을 세포 내에서 용출시킬 필요가 있다.
<68>
<69> 본 발명에 있어서 용어 "파라핀"은 형태학적, 면역조직화학적 및 효소조직화 학적인 해석을 포함하는 모든 해석에 있어서 사용되는 생체시료의 포매 매체를 포 괄적으로 말하는 것이다. 즉, 본 발명에 있어서의 파라핀은 석유계 파라핀 왁스 단 체 (單體)여도 되고, 당해 석유계 파라핀 왁스를 기제 (基齊 !1)로 하여, 포매 매체의 품질향상 등의 목적으로 첨가될 수 있는 모든 다른 성분을 포함한 것이어도 된다. 여기서, 석유계 파라핀 왁스는 석유에 유래하는 상온에서 고형인 탄화수소류의 흔 합물을 말한다.
<70> 본 발명에서는 바람직하게는 FFPE 처리된 폐암 환자의 검체를 회전식 미세롭
(rotary mi crotome)으로 5~10 μ ιη의 두께로 절단한 다음 FFPE 용 버퍼 (FFPE buffer , VERSANT t i ssue preparat ion reagents , Box 1, S i emens )를 흔합하고, 80°C에서 30 분간 인큐베이션 ( incubat ion)하였다.
<7i> FFPE 시료의 양의 조절 및 시약과의 접촉의 용이성을 위하여 마이크로롭 '
(microtome)을 사용하여 FFPE 시료를 절단할 수 있다. 절단 두께는 이에 한정되지 는 않으나, 5 내지 15 μ ηι가 바람직하다. 절단된 FFPE 시료는 DNA, 특히 게놈 DNA 추출용 tube에 넣고 추출과정을 진행한다.
<72>
<73> (b) 상기 (a) 단계의 시료에 단백질분해효소 (proteinase)를 처리하는 단계 에서는 단백질분해효소의 작용으로 시료 내의 단백질이 분해되어 단편화된다. 바람 직하게 본 발명에서 단백질분해효소는 단백질분해효소 K이다. 단백질분해효소 K
(proteinase K, EC 3.4.21.64)는 곰광이의 일종인 Engyodont ium album에서 발견된 단백질 분해효소로 세린 단백질분해효소의 한 종류이다. 단백질분해효소 K의 처리 는 바람직하게는 20 내지 40분, 45 내지 70 °C , 더 바람직하게는 25 내지 35분, 60 내지 65°C , 가장 바람직하게는 30분, 65°C의 조건으로 처리한다. 상기 처리 조건의 하한값 미만의 처리는 단백질 분해 효율이 떨어져 궁극적으로 DNA 분리 효율이 감 소되며, 상한값 초과의 처리는 분리 과정 중의 DNA의 분해로 DNA 분리 효율이 감소 하고, 전체적인 분리 시간이 증가되어 생산성이 떨어지게 된다.
<74>
<75> (c) 단계는 상기 (b) 단계의 시료에서 단백질 또는 세포 잔해물 (debr i s)을 제거하는 단계이다.
<76> 상기 (b ) 단계의 단백질분해효소의 처리로 단편화된 단백질과 분해되지 않은 세포 잔해물을 RNA , DNA 등의 핵산과 분리하여 제거한다. 제거 과정은 마그네틱 비 드와 결합시킨 다음 자기력을 부여하고, 침전되거나 한쪽으로 모이지 않은 상등액 을 수득하거나, 원심분리를 통해 침전물을 제거하고, 상등액만을 수득하는 과정에 의해서 수행될 수 있다.
<77>
<78> (d) 단계는 상기 (c) 단계의 시료에 RNA 분해효소를 처리하고 게놈 DNA를 수 득하는 단계이다.
<79> (c) 단계까지의 분리를 통해 DNA와 RNA를 포함하는 핵산의 분리가 이루어진 다. DNA 만을 분리하기 위하여 RNA분해효소를 처리한다.
<80>
<8i> (e) 단계는 상기 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브 를 포함하는 PCR 반응 용액을 준비하는 단계이다.
<82> 분리된 DNA는 PCR 반응을 위하여 프라이머 /프로브 세트 및 PCR 반웅을 위한 버퍼 등의 흔합물 (예를 들어, 상용의 PCR 프리믹스들)과 흔합된다. 프라이머 세트 는 대상이 되는 게놈 DNA 유전자의 변이 (돌연변이)를 특이적으로 증폭할 수 있다. PCR 프리믹스는 PCR 반웅을 위한 DNA 중합효소 (예를 들면, Tag polymerase) , PCR 반웅의 정량적 검출을 위한 염료 (예를 들면, 형광 염료), PCR 반응에 적합한 버 퍼, dNTP 등을 포함할 수 있다.
<83>
<84> ( f ) 단계는 표준 물질 백터 (vector )를 제한효소를 처리하여 선형 DNA가 되 도록 한 표준 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브를 포함하
는 표준 PCR 반웅 용액을 준비하는 단계이다.
<85> ( f ) 단계에서는 PCR 증폭을 위한 주형으로 ( e ) 단계에서의 게놈 DNA 대신 표 준 물질 백터를 사용하는 점을 제외하고는 상기 (e) 단계에 상웅한다. 표준 물질 백터에 처리하는 제한효소는 상기 백터가 선형화될 수 있다면 백터 내에 존재하는 제한효소 중 임의의 것을 선택할 수 있으며, 본 발명의 실시예의 경우 Clal을 사용 하였다.
<86>
<87> 본 발명에서의 검출 대상의 PCR 증폭 후의 수준은 대상 시료에 따라 전체적 으로 차이가 있을 수 있으므로 돌연변이에 특이적인 프라이머 /프로브에 의한 증폭 여부의 판별을 위한 기준이 필요하다. 표준 물질 백터는 이를 위한 것으로 게놈
DNA 유전자 변이를 포괄하는 100 내지 350 bp의 폴리뉴클레오티드가 통상의 백터에 형질전환된 것을 이용할 수 있다. 바람직하게는 본 발명의 표준 물질 백터는 EGFR 의 각각 exon에서 돌연변이가 일어난 구간, 즉 probe 위치를 가운데로 하여 약 300bp을 합성하여 pIDTSmart Amp 백터에 삽입하여 사용할 수 있다.
<88>
<89> 바람직하게는 본 발명의 표준 물질 백터는 EGFR의 각각 exon에서 돌연변이가 일어난 구간, 즉 probe 위치를 가운데로 하여 약 300bp의 DNA 단편을 포함하는 백 터일 수 있으며, 이는 대장균 등의 숙주세포에 형질전환하여 증폭, 추출 후 사용될 수 있다. 더 바람직하게는 본 발명의 표준 물질 백터는 액손 18의 경우, EGFR 유전 자 (genbank accession no . NG_007726) 의 1597이에서 160100번째 염기에서 100 내 지 350 bp의 폴리뉴클레오티드, 액손 19의 경우, EGFR 유전자의 160501에서 160900 번째 염기에서 100 내지 350 bp의 폴리뉴클레오티드, 액손 20의 경우, EGFR 유전자 의 167101에서 167500번째 염기에서 100 내지 350 bp의 폴리뉴클레오티드, 엑손 21 의 경우, EGFR 유전자의 177551에서 177930번째 염기에서 100 내지 350 bp의 폴리 뉴클레오티드 DNA 단편을 pIDTSmart Amp 백터에 삽입한 것일 수 있다.
<90>
<91> 본 발명에서 "프라이머"는 올리고뉴클레오타이드를 의미하는 것으로, 핵산쇄
(주형)에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건, 즉, 뉴클레오타이 드와 DNA 중합효소와 같은 중합제의 존재, 그리고 적합한 온도와 pH의 조건에서 합 성의 개시점으로 작용할 수 있다. 바람직하게는, 프라이머는 디옥시리보뉴클레오타 이드이며 단일쇄이다. 본 발명에서 이용되는 프라이머는 자연 (natural ly occurr ing) dNMP (즉, dAMP, dGMP, dCMP 및 dTMP) , 변형 뉴클레오타이드 또는 비-자
연 뉴클레오타이드를 포함할 수 있다. 또한, 프라이 ^머는 리보뉴클레오타이드로— ^ 함할 수 있다.
<92>
<93> 프라이머는, 중합제의 존재 하에서 연장 산물의 합성을 프라이밍시킬 수 있 을 정도로 층분히 길어야 한다. 프라이머의 적합한 길이는 다수의 요소, 예컨대, 은도, 응용분야 및 프라이머의 소스 (source)에 따라 결정되지만 전형적으로 15-30 뉴클레오타이드이다. 짧은 프라이머 분자는 주형과 층분히 안정된 흔성 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구한다. 용어 "어닐링" 또는 "프 라이밍' '은 주형 핵산에 올리고디옥시뉴클레오타이드 또는 핵산이 병치 (apposi t ion) 되는 것을 의미하며, 상기 병치는 중합효소가 뉴클레오타이드를 중합시켜 주형 핵 산 또는 그의 일부분에 상보적인 핵산 분자를 형성하게 한다.
<94>
<95> 본 발명에서 "프로브 "는 정량적 PCR에 이용되는 taqman probe의 일종으로 디 자인된 것이다. 바람직하게는 프로브에는 형광 물질 (HEX, VIC , FAM dye)를 부착하 였으며, 모든 프로브의 3 ' 쪽에는 뭔쳐 (quencher )로 TAMRA가 이용될 수 있다. TaqMan probe는 일반적으로 5 ' 말단을 형광 물질로, 3 ' 말단을 quencher 물질로 tagging한 ol igonucleot ide이며, TaqMan probe는 anneal ing step에서 template DNA 에 특이적으로 hybr idi zat ion하지만, probe의 3 ' 말단에 quencher가 있기 때문에 빛을 주어도 형광을 발하지 못하지만, 다음 과정인 extension step에서 Taq DNA polymerase가 가지고 있는 5 '→3 ' exonuc lease 활성에 의해, 주형에 hybridi zat ion 한 TaqMan probe가 분해되면 형광물질이 probe로부터 분리되어 quencher에 의한 억 제가 해제되고 형광을 발하게 되는 원리에 의해서 PCR 반응에 따른 형광이 정량적 으로 발하게 된다.
<96>
<97> 본 발명에서의 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브는 EGFR
(epidermal growth factor receptor ) 유전자의 돌연변이를 검출하기 위한 것일 수 있다. 바람직하게는 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브는 PCR 반웅 용액 및 표준 PCR 반웅 용액에 대해서 동일한 서열로 사용되며, 각각 독립적 으로 서열번호 1의 정방향 프라이머, 서열번호 2의 역방향 프라이머 및 서열번호 9 내지 13으로 이루어진 군에서 선택된 프로브의 폴리뉴클레오티드 세트, 서열번호 3 의 정방향 프라이머, 서열번호 4의 역방향 프라이머 및 서열번호 14 내지 42으로 이루어진 군에서 선택된 프로브의 폴리뉴클레오티드 세트, 서열번호 5의 정방향 프
퀵 δΐ·可",ᅳ 열 호 6의ᅳ역 v—향 -^
서 선택된 프로브의 폴리뉴클레오티드 세트, 서열번호 7의 정방향 프라이머, 서열 번호 8의 역방향 프라이머 및 서열번호 51 내지 54으로 이루어진 군에서 선택된 프 로브의 폴리뉴클레오티드 세트로 이루어진 군에서 선택된 하나 이상일 수 있다.
<98>
<99> (g) 단계는 상기 (e)단계의 PCR 반웅 용액 및 ( f )단계의 표준 PCR 반웅 용액 을 각각 다수의 작은 방울 (droplet )으로 미분화시키는 단계이다.
<ioo> PCR 반웅 전에 각각의 PCR 반응 용액을 다수의 작은 방울로 £개어 나누는 과정으로, 이와 같은 미분화 과정을 통해서 각각의 작은 방울이 이후의 PCR 반응이 수행되기 때문에 각각의 작은 방울에서의 타겟 DNA의 증폭 여부에 따라 양성 또는 음성으로 구분하고, 이를 프아송 분포를 통해 타겟 DNA의 카피수를 계산할 수 있기 때문에 기존의 방법과는 달리 표준곡선이 필요없는 장점이 있게 된다. 본 발명의 미분화된 작은 방울은 약 lnl정도의 크기일 수 있으며, PCR 반응 및 반응여부의 측 정의 편의상 10 , 000 내지 25 , 000개로 미분화될 수 있다.
<101>
<io2> (h) 단계는 상기 다수의 작은 방울 각각에서 PCR 반응이 이루어지도록 PCR 반웅을 수행하는 단계이다.
<103> 샘플 게놈 DNA또는 표준 물질 백터의 DNA를 주형으로 하여 PCR 반웅이 진행 된다. PCR 반응은 당업계에 공지된 방법에 따라 수행될 수 있으며, 일반적으로 프 리이머 /프로브 간 교차결합이 이루어지지 않는 조건에서 수행되어야 하나, 본 발명 의 방법에 의하면 표준 물질 백터 (vector)에 의한 기저값 설정이 가능하므로 다소 간의 교차결합은 허용되는 조건에서도 PCR 반웅이 가능하다. PCR 반응 조건은 예를 들어 95° C에서 10분간 효소 활성화 반웅과, 94° C에서 30초, 60° C에서 1분의 40 싸이클, 98° C에서 10초 및 4° C로의 cool ing과정을 통해 PCR이 수행될 수 있다.
<104>
<i05> ( i ) 단계는 각 미분화된 작은 방울의 전부 또는 일부에서 PCR 반응 여부를 측정하는 단계이다.
<i06> PCR 반응 여부의 측정은 당업계에 공지된 방법에 따라 수행될 수 있으나, 리 포터 형광 염료 및 /또는 퀀쳐 (quencher) 형광 염료로 표지된 프로브를 사용한 광 학적 정량 분석 시스템에 의해서 측정될 수 있으며, 바람직하게는 각 미분화된 작 은 방울 각각의 PCR 반응에 대한 형광값을 측정하는 것에 의해서 수행될 수 있다.
<107> 구체적으로 프로브에 FAM, HEX, VIC 형광염료 (형광물질) 또는 EvaGreen 형
광염료가 결합된 형태를 사용하였으므로 이들에 대한 형광을 측정하는 것에 의해서 수행될 수 있다. 이와 같은 과정은 상용의 검출장치 (예를 들어, biorad사의 Droplet Reader)에 의해서 수행될 수 있으며ᅳ 해당 장치내에서 각각의 샘플의 droplet 형광 신호를 각각 감지 및 posi t ive와 negat ive droplet의 수를 세어 자동 으로 분석까지 완료될 수 있다.
<108> 이 때 검출을 위해서 PCR 반웅 용액에 첨가되는 프로브 및 표준 PCR 반응 용 액에 첨가되는 프로브는 각각 상이한 형광물질과 결합되어 있을 수 있다.
<109>
<iio> (j ) 단계는 PCR 반응 용액과 표준 PCR 반응 용액에서의 PCR 반응 여부의 측 정값에서 돌연변이율 (% mutat ion)을 산출하는 단계이다.
<ui> 상기 돌연변이율 ( ) mutat ion)의 산출은 PCR 반응 용액과 표준 PCR 반웅 용 액에서의 PCR 반웅 여부의 측정값을 비교하여 표준 PCR 반응 용액에서의 측정값에 상웅하는 역치값 이상의 비율로 돌연변이율 (% mutat ion)을 산출할 수 있다.
<112>
<i i3> (k) 단계는 상기 돌연변이율이 높을수톡 치료 반응성 (responsiveness)이 높 을 것으로 예측하는 예측치를 산출하는 단계이다.
<1 14>
<Π5> 본 발명에서 치료 반응성은 폐암은 성장률이 치료제와 접촉하지 않은 그의 성장과 비교해서 치료제와 접촉한 결과로서 억제된다면 치료제에 대해서 "반응성 '' 이라고 정의할 수 있다. 폐암의 성장은 다양한 방식으로 측정될 수 있고, 예를 들 어, 종양의 크기 또는 그 종양 유형에 적합한 종양 마커의 발현이 측정될 수 있다. 아울러, 상기 "반웅성' '에는 유의미한 생존곡선상의 생존시기의 증가를 나타낼 수도 있다.
<116> 폐암은 성장률이 치료제와 접촉하지 않은 그의 성장과 비교해서 치료제와 접 촉한 결과로서 매우 낮은 정도로 억제되거나 억제되지 않는다면 치료제에 대해서 " 비반응성"이다. 위에서 언급된 바와 같이, 폐암의 성장은 다양한 방식으로 측정될 수 있고, 예를 들어, 종양의 크기 또는 그 종양 유형에 적합한 종양 마커의 발현이 측정될 수 있다. 비반응성의 척도는 환자의 삶의 질, 전이도 등을 비롯하여 종양 의 성장 크기를 넘는 추가의 기준을 이용해서 평가될 수 있다
<1 17> "
<Π 8> 폐암 치료제에 대한 치료 반응성으로 EGFR (epidermal growth factor receptor)의 저해제에 대한 치료 반응성일 수 있다.
<119>
<i20> EGFR은, 종양유전자 (oncogene)인 erbB 또는 ErbBl의 단백질 산물이다. erbB 또는 ErbBl은 수많은 암 발생에 있어 중요 인자로 알려진 원발암유전자 (protooncogenes)인 ERBB 군의 하나이다.
<121>
<122> 폐암 등의 상피세포암을 치료하기 위하여 다양한 EGFR 표적 약물이 개발되었 으며, 특히 제피티닙 (Gef i t inibKAstraZeneca UK Ltd., 상표명 " IRESSA" )와 엘로티 닙 (Er lot inibXGenentech, Inc . & OSI Pharmaceut icals , Inc . , 상표명 "TARCEVA" ) 이 대표적인 약물이다. 제피티닙과 엘로티닙은 퀴나졸린계 화합물로서, EGFR의 티 로신 키나제 활성을 저해하여 인산화를 억제함으로써 세포성장을 막는다.
<123>
<124> 본 발명에서 시료는 폐암 환자의 조직일 수 있다 . 바람직하게는 본 발명에서 시료는 폐암 환자의 폐암 조직일 수 있다. 상기 조직에는 일부 정상 세포도 포함되 어 있을 수 있으며, 바람직하게는 환자의 폐암세포를 포함하는 조직의 포르말린 고 정 파라핀 포매 (formal in-f ixed paraff in-embedded, FFPE) 시료일 수 있다.
<125>
<126> 한편 , 본 발명은
<i27> ( a ) FFPE 시료에서 핵산을 분리하는 수단;
<128> (b) 핵산, 버퍼, 시약을 정해진 시간에 정해진 위치로 정해진 양으로 분해하 는 분배 수단;
<129> ( C ) 시료를 다수의 작은 방울로 미분화시키는 수단
<130> ( d) PCR 반응의 수행이 가능하며, 형광 신호 검출에 의한 형광값의 축정이 가능한 PCR수단;
<i3i> (e) 연산 처리장치 ; 및
<132> ( f ) 연산 처리장치에 의해서 실행되며, 상기 형광값을 역치값과 비교하여 돌 연변이율을 산출하며, 정해진 산식에 따라 치료 반응성 예측치를 산출하는 컴퓨터 판독 가능한 매체를 포함하는 폐암 치료제 치료 반웅성 진단 장치를 제공한다.
<133>
<134> 본 발명의 장치에서 FFPE 시료에서 분리되는 핵산을 바람직하게는 게놈 DNA 이며, 더 바람직하게는 돌연변이를 보유하고 있을 것으로 추정되는 게놈 DNA이다.
<135>
<136> 본 발명의 장치는 자동화 또는 반자동화에 적합한 또는 자동화 /반자동화된
¾치ᅳ이다
<137>
<138> 참고로, 상기에서 언급한 뉴클레오티드 및 단백질 작업에는 다음의 문헌을 참조할 수 있다 (Maniatis et al . , Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, Cold Spring Harbor , N.Y. (1982); Sambrook et al . , Molecul r Cloning'. A Laboratory Manu l , 2d Ed. , Cold Spring Harbor Laboratory Press(1989); Deutscher, M. , Guide to Protein Purification Methods Enzymology, vol . 182. Academic Press. Inc. , San Diego, CA(1990); Ausubel et al . , Current Protocols of Molecular Biology, John Wiley and Sons (1997); Rupp and Locker , Lab Invest . 56: A67 (1987); De Andres et al . , BioTechniques 18: 42044 (1995); Held et al. , Genome Research 6:986—994 (1996); T.E. Godfrey et al . J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al . , Am. J. Pathol . 158: 419-29 (2001)).
<139>
【유리한 효과】
<140> 따라서, 본 발명의 시스템은 자동화된 과정으로 폐암 환자 예후의 치료제에 대한 반웅성 예측, 진단이 가능하므로 항암치료제의 투여 필요성 판단을 비롯하여 향후 치료의 방향에 대한 단서를 제시하는 목적으로 유용하게 사용할 수 있다.
<141>
【도면의 간단한 설명】
<142> 도 1은 pIDTSmart Amp 백터의 백터맵을 나타낸 것이다. ·
<143> 도 2는 본 발명의 방법 중 FFPE 시료에서의 분리과정을 플로우 차트로 나타 낸 것이다.
<144>
【발명의 실시를 위한 형태】
<145> 이하, 본 발명을 실시예에 의해 상세히 설명한다.
<146> 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실 시예에 한정되는 것은 아니다.
<147>
<148> <실시예 1>
<i49> FFPE 시료에서의 DNA의 분리
<i50> FFPE 처리된 폐암 환자의 검체 (크기 600mm2)를 시료로 이용하였다. FFPE 시
효를 회전식 미세톱 (rotary microtome)—으로 5~10μπι의 두께로 절단한 다음 FFPE^ 버퍼 (FFPE buffer, VERSANT tissue preparation reagents, Box 1, Siemens)를 흔합 하고, 80°C에서 30분간 인큐베이션 (incubation)하였다. 온도를 65°C로 낮추고, 단 백질분해효소 K (proteinase K, VERSANT tissue preparation reagents, Box 2, Siemens)를 흔합한 다음 30분간 인큐베이션 하였다. 마그네틱 비드 (magnetic beads , VERSANT tissue preparation reagents, Box 1, Siemens)를 흔합한 다음 65 °C에서 15분간 인큐베이션 하여 세포 잔해물 (cell debris)가 부착되도록 하고, 튜 브 하부에 자기력을 걸어 마그네틱 비드와 결합된 물질을 분리하고, 상부의 용액을 마그네틱 비드와 용해 버퍼 (lysis buffer, VERSANT tissue preparation reagents, Box 1, Siemens)가 미리 담겨 있는 새 튜브로 옮겼다. 이 때, 튜브 상부에 형성되 어 있는 파라핀 층은 새 튜브로 옮겨지지 않도록 한다.
<151>
<152> 마그네틱 비드에 핵산 분자가 결합되도록 실온에서 10분간 인큐베이션 하였 다. 튜브 하부에 자기력을 걸어 마그네틱 비드를 분리하고, 상등액올 제거한 다음 세척 버퍼 1, 2, 3(washing buffer 1, 2, 3, VERSANT tissue preparation reagents, Box 1, Siemens)로 세척하였다. 여기에 용출 버퍼 (elution buffer, VERSANT tissue preparation reagents, Box 1, Siemens)를 넣고, 70°C에서 10분간 인큐베이션 하여 핵산 분자가 용출되도록 하였다. 핵산 분자가 용출된 상등액을 따 로 새 튜브로 옮겨 마그네틱 비드를 제거한 다음 R ase (VERSANT tissue preparation reagents, Siemens)을 넣고 37°C에서 10분간 반응시켜 RNA를 제거하 여, DNA 만을 분리하였다. 분리된 DNA를 정량한 결과는 다음 표 1과 같다.
<153>
<154> 【표 1】
<155>
<156>
<157> <실시예 2>
<158> 표준 물질 백터의 제작
<159>
<i60> 디자인된 프라이머와 프로브를 검증하기 위해, 그리고 ddPCR 수행에 필요한 표준물질을 만들기 위해 표준 물질 백터 (mini-clone으로 명명)을 제작하였다.
irnFc l—one와ᅭ체작과청 ^ 저' lGFR≤] ' exon에서 돌연 ¾。1ᅩ가ᅳ 여 F ^ ,— probe 위치를 가운데로 하여 약 300bp을 합성하였다. 합성된 DNA 단편은 pIDTSmart Amp 백터의 universal link sequence 사이에 삽입하고 (도 1 참조), 제작된 clone 은 대장균 DH5a 세포에 형질전환 (transformation) 시켰다.
<161>
<162> circular form 또는 super—coiled form으로 존재하는 표준물질 백터를 선형 화시켜 ddPCR (droplet digital PCR) 시 효율을 극대화시키기 위하여 표준물질 백 터에 제한효소를 처리하였다. 표준물질 백터 (Miniclone DNA) Clal 제한효소를 37 도씨에서 30분간 반웅 후, 반응산물을 정량 후 -20°C에서 사용 전까지 보관하였다.
<실시예 3>
프라이머 /프로브 디자인 및 선발
폐암 관련 유전자인 EGFR의 바이오 마커를 개발하기 위해 cosmic번호
(http://cancer.sanger.ac.uk)를 기반으로 하여 돌연변이 위치를 확인하였다. 유전 자의 exon별 프라이머를 primer3 프로그램을 사용하여 EGFR-21을 제외한 나머지는 forward가 intron부분과 overlapping될 수 있도록 디자인하였다. 이 때, 프라이머 의 Tm값은 58~60°C로 하였으며 (^%는 40~60¾로 디자인하였다.
<167>
<168> 프로브는 조건을 충족하는 것들을 선별하여 taqman probe로 디자인하였다.
5?? wild type 프로로브에는 HEX/VIC reporter fluorescence를 부착하였으며, 5?? mutant probe에는 FAM dye를 부착하여 이후에 증폭 여부를 검출가능하도록 하였다. 모든 프로브의 3??쪽에는 quencher로 TAMRA를 사용하였다. EGFR exon 18, 19, 20, 21번에 각각 4, 31, 8, 4개의 프로브들을 디자인하여 합성하였다. 본 발명자들에 의해 디자인된 프로브는 allele specific을 갖고있으며 거의 모든 프로브들이 cosmic 번호를 가지고 있었다.
<169>
<174> 【표 3】
<175> WT: wildtype; mt: mutant (이하 표 4도 갈음) <176>
<177> 【표 4】
<178>
<179>
<180> <실시예 4>
<181> 기허가 제품과의 비교실험
<182>
<183> 식약처에서 기허가된 코바스 EGFR 유전자 변이 검사 (cobas EGFR mutat ion test ) 키트에 의한 방법과 본 발명에서의 방법과의 상관성 시험을 위해 민감도에
비해서 비교 분석 시험을 하였다.
<184>
<185> 돌연변이 빈도 (mutat ion frequency)를 각각 5%, 1%, 0.5%, 0. 1%, 0.05%,
0.02%, 0.01% 까지 7단계로 회석하여 조절된 샘플을 대상으로 코바스 EGFR 유전자 변이 검사 키트에 의한 방법과 본 발명에서의 방법에 의해서 동시에 측정하였다. 코바스 EGFR 유전자 변이 검사는 제조사의 지침에 따라서 수행하였다.
<186>
<187> 대상 시료는 3가지 경우로 나누어 각각 시험하였다. 첫째로, Hor i zon사의
FFPE 조직에서 추출한 DNA(exon 19 , delE746-A750(l) )과 Hor i zon사의 mutant genomic DNA을 이용하였다.
<188>
<189> 첫 번째로 Miniclone에 gDNA를 spiking한 templ ate를 이용하여 최소 돌연변 이 빈도를 측정한 결과, 코바스 EGFR 유전자 변이 검사의 최소 측정 결과는 0.5%에 서 5%인 반면 본 발명의 방법에 의하는 경우 0.02%에서 0. 1%에서도 검사가 가능함 을 확인하였으며, 특히 주목할 결과는 2239_2257>GT의 돌연변이 위치를 코바스 EGFR 유전자 변이 검사로는 측정할 수 없는 것이 본 발명의 방법에 의하는 경우 0.05 >의 민감도를 보여 기허가된 코바스 EGFR 유전자 변이 검사의 방법과 대비해서 동등성 이상의 결과를 가짐을 확인하였다.
<190>
<191> 【표 5】
<193> * ddPCR은 33ng gDNA(104 copies)를 template 로 사용함
4
<i94> ** Cobas EGFR mutat ion ki t는 50ng( 1.5x10 copies)를 template 로 사용함
<195>
<i96> 두 번째로 Horizon사의 FFPE 조직에서 추출한 DNA와 Horizon사의 mutant genomic DNA로 상관성 시험을 위해 민감도를 비교 분석한 결과, 코바스 EGFR 유전 자 변이 검사로 측정한 결과는 0.5%~5%값으로 측정되었으나 본 발명의 방법에 의하 는 경우 돌연변이 위치에 따라 최소 측정치가 0.02%~0.5%값으로 측정되었다. 이는 기허가 제품비교분석에서 최소 10배 이상의 민감도를 나타냄을 보여주는 것이다.
<197>
<198> 【표 6】
S. ddPCR. ased RUO Idt 2J- Cobas CD U|2분석
RedQtl/^: Hoi Ava tie, X: No tst
* ddPCR은 33ng gDNAClO4 copies)를 template로사용함
** Cobas EGFR mutation kit는 50ngCL5xK) copies)를 template로 사용함
<199>
<200>
【산업상 이용가능성】
<201> 이상 살펴본 바와 같이, 본 발명의 시스템은 자동화된 과정으로 폐암 환자 예후의 치료제에 대한 반응성 예측, 진단이 가능하므로 항암치료제의 투여 필요성 판단을 비롯하여 향후 치료의 방향에 대한 단서를 제시하는 목적으로 유용하게 사 용할 수 있다.
Claims
【 키 휘 ΐ
[청구항 1】
폐암 환자의 치료 반웅성의 진단에 필요한 정보를 제공하기 위하여, 환자의 시료로부터 하기 단계를 포함하는 치료 반웅성 예측치를 산출하는 방법 :
(a) 환자의 폐암 조직을 포함하는 포르말린 고정 파라핀 포매 (formal in- f ixed paraf f in-embedded, FFPE) 시료에 파라핀 제거 및 세포용해용 버퍼를 처리하 는 단계 ;
(b) 상기 (a) 단계의 시료에 단백질분해효소 (proteinase)를 처리하는 단계;
(c) 상기 (b) 단계의 시료에서 단백질 또는 세포 잔해물 (debr i s)을 제거하 는 단계 ;
(d) 상기 (c) 단계의 시료에 RNA 분해효소를 처리하고 게놈 DNA를 수득하는 단계;
(e) 상기 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브를 포함 하는 PCR 반응 용액을 준비하는 단계;
( f ) 표준 물질 백터 (vector)를 제한효소를 처리하여 선형 DNA가 되도록 한 표준 DNA, 게놈 DNA 유전자 변이에 특이적인 프라이머 및 프로브를 포함하는 표준 PCR 반웅 용액을 준비하는 단계;
(g) 상기 (e)단계의 PCR 반응 용액 및 ( f )단계의 표준 PCR 반응 용액을 각각 다수의 작은 방을 (droplet )으로 미분화시키는 단계;
(h) 상기 다수의 작은 방울 각각에서 PCR 반응이 이루어지도록 PCR 반웅을 수행하는 단계;
( i ) 각 미분화된 작은 방울의 전부 또는 일부에서 PCR 반응 여부를 측정하는 단계;
(j ) PCR 반응 용액과 표준 PCR 반웅 용액에서의 PCR 반응 여부의 측정값에서 돌연변이율 (¾ mutat ion)을 산출하는 단계;
(k) 상기 돌연변이율이 높을수톡 치료 반웅성 (responsiveness)이 높을 것으 로 예측하는 예측치를 산출하는 단계 .
【청구항 2】
제 1항에 있어서, 상기 치료 반응성은 EGFR (epidermal growth factor receptor )의 저해제에 대한 치료 반응성인 것을 특징으로 하는 방법.
【청구항 3T
제 2항에 있어서, 상기 EGFR 저해제는 엘로티닙 (er lot inib) 또는 제피티닙 (gef i t inib)인 것을 특징으로 하는 방법.
【청구항 4]
겨 U항에 있어서, 상기 게놈 DNA 유전자는 EGFR (epidermal growth factor receptor) 유전자인 것을 특징으로 하는 방법 .
【청구항 5]
제 1항에 있어서, 상기 게놈 DNA유전자 변이에 특이적인 프라이머 및 프로브 는 PCR 반웅 용액 및 표준 PCR 반응 용액에 대해서 동일한 서열로 사용되며, 각각 독립적으로 서열번호 1의 정방향 프라이머, 서열번호 2의 역방향 프라이머 및 서열 번호 9 내지 13으로 이루어진 군에서 선택된 프로브의 폴리뉴클레오티드 세트, 서 열번호 3의 정방향 프라이머, 서열번호 4의 역방향 프라이머 및 서열번호 14 내지 42으로 이루어진 군에서 선택된 프로브의 폴리뉴클레오티드 세트, 서열번호 5의 정 방향 프라이머, 서열번호 6의 역방향 프라이머 및 서열번호 43 내지 50으로 이루어 진 군에서 선택된 프로브의 폴리뉴클레오티드 세트, 서열번호 7의 정방향 프라이 머, 서열번호 8의 역방향 프라이머 및 서열번호 51 내지 54으로 이루어진 군에서 선택된 프로브의 폴리뉴클레오티드 세트로 이루어진 군에서 선택된 하나 이상인 것 을 특징으로 하는 방법 .
【청구항 6]
제 5항에 있어서, 상기 프로브는 형광물질과 결합되어 있는 것을 특징으로 하 는 방법 .
【청구항 7】
제 5항에 있어서, 상기 PCR 반웅 용액에 첨가되는 프로브 및 표준 PCR 반응 용액에 첨가되는 프로브는 각각 상이한 형광물질과 결합되어 있는 것을 특징으로 하는 방법 .
【청구항 8】
제 1항에 있어서, 상기 제한효소는 Clal인 것을 특징으로 하는 방법.
【청구항 9】
제 1항에 있어서, 상기 작은 방을은 10 ,000 내지 25, 000개로 미분화되는 것올 특징으로 하는 방법 .
【청구항 10]
제 1항에 있어서, 상기 PCR 반응 여부의 측정은 각 미분화된 작은 방울 각각 의 PCR 반응에 대한 형광값을 측정하는 것에 의해서 수행되는 것을 특징으로 하는 방법.
【청구항 11】
제 1항에 있어서, 상기 돌연변이율 (% mutat ion)의 산출은 PCR 반응 용액과 표준 PCR 반응 용액에서의 PCR 반웅 여부의 측정값을 비교하여 표준 PCR 반응 용액 에서의 측정값에 상응하는 역치값 이상의 비율로 돌연변이율 i mutat ion)을 산출 하는 것임을 특징으로 하는 방법.
【청구항 12]
제 1항에 있어서, 상기 방법은 자동화 또는 반자동화에 의해서 수행되는 것임 올 특징으로 하는 방법 .
【청구항 13】
(a) FFPE 시료에서 핵산을 분리하는 수단;
(b) 핵산, 버퍼, 시약을 정해진 시간에 정해진 위치로 정해진 양으로 분해하 는 분배 수단;
(c) 시료를 다수의 작은 방울로 미분화시키는 수단
(d) PCR 반웅의 수행이 가능하며, 형광 신호 검출에 의한 형광값의 측정이 가능한 PCR수단;
(e) 연산 처리장치 ; 및
(f ) 연산 처리장치에 의해서 실행되며, 상기 형광값을 역치값과 비교하여 돌 연변이율을 산출하며, 정해진 산식에 따라 치료 반웅성 예측치를 산출하는 컴퓨터 판독 가능한 매체를 포함하는 폐암 치료제 치료 반응성 진단 장치.
【청구항 14]
제 14항에 있어서, 상기 산은 게놈 DNA인 것을 특징으로 하는 장치 . 【청구항 15]
제 14항에 있어서, 상기 장치는 자동화 또는 반자동화에 의해서 수행되는 것 임을 특징으로 하는 장치 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140098969A KR101587939B1 (ko) | 2014-08-01 | 2014-08-01 | 폐암 치료제 치료 반응성 진단용 자동화 시스템 |
KR10-2014-0098969 | 2014-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016018114A1 true WO2016018114A1 (ko) | 2016-02-04 |
Family
ID=55217891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/008024 WO2016018114A1 (ko) | 2014-08-01 | 2015-07-31 | 폐암 치료제 치료 반응성 진단용 자동화 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101587939B1 (ko) |
WO (1) | WO2016018114A1 (ko) |
-
2014
- 2014-08-01 KR KR1020140098969A patent/KR101587939B1/ko active IP Right Grant
-
2015
- 2015-07-31 WO PCT/KR2015/008024 patent/WO2016018114A1/ko active Application Filing
Non-Patent Citations (5)
Also Published As
Publication number | Publication date |
---|---|
KR101587939B1 (ko) | 2016-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Janku et al. | BRAF mutation testing with a rapid, fully integrated molecular diagnostics system | |
EP2121988B1 (en) | Prostate cancer survival and recurrence | |
KR20140105836A (ko) | 다유전자 바이오마커의 확인 | |
WO2016056673A1 (en) | Algorithms for gene signature-based predictor of sensitivity to mdm2 inhibitors | |
JP2011525106A (ja) | 瀰漫性b大細胞型リンパ腫のマーカーおよびその使用方法 | |
CN113891943A (zh) | 通过毛细管电泳(ce)dna图谱对微卫星进行的比较分析 | |
Portier et al. | Quantitative assessment of mutant allele burden in solid tumors by semiconductor-based next-generation sequencing | |
US7615353B1 (en) | Tivozanib response prediction | |
US11261482B2 (en) | Composition for detecting epidermal cell growth factor receptor gene mutation, and kit comprising same | |
WO2014089055A1 (en) | Tivozanib response prediction | |
US20220162710A1 (en) | Composition for diagnosis or prognosis prediction of glioma, and method for providing information related thereto | |
KR101800366B1 (ko) | 혈장내 유리무세포 DNA(cfDNA)를 이용한 상피세포 성장인자 수용체 유전자 돌연변이 검출용 조성물 및 이를 포함하는 키트 | |
KR102600344B1 (ko) | Kras 유전자 돌연변이 검출용 조성물 및 이를 포함하는 키트 | |
KR20140125647A (ko) | 조기 유방암 예후 예측 진단용 자동화 시스템 | |
WO2016018114A1 (ko) | 폐암 치료제 치료 반응성 진단용 자동화 시스템 | |
WO2016018116A1 (ko) | 상피세포 성장인자 수용체 유전자 돌연변이 검출용 조성물 및 이를 포함하는 키트 | |
KR102353064B1 (ko) | Her2 복제수 변이 검출용 조성물 및 이를 포함하는 키트 | |
CA3099612C (en) | Method of cancer prognosis by assessing tumor variant diversity by means of establishing diversity indices | |
KR101504818B1 (ko) | 위암에 대한 예후 예측 시스템 | |
KR101850495B1 (ko) | 순환 종양 세포를 이용한 암 환자의 2차 치료용 치료제 반응성 진단 방법 | |
WO2016018115A1 (ko) | 순환 종양 세포를 이용한 암 환자의 2차 치료용 치료제 반응성 진단 방법 | |
Sorber et al. | P., A Comparison of CfDNA Isolation Kits: Isolation and Quantification of Cell-Free DNA in Plasma | |
CN105506140A (zh) | Ros1融合基因arms荧光定量pcr分型检测试剂盒 | |
Cornelis Bisschop et al. | Rapid BRAF Mutation Tests in Patients with Advanced Melanoma: Comparison of Immunohistochemistry, Droplet Digital Polymerase Chain Reaction and the Idylla Mutation Platform | |
Bisschop | Imaging and biomarkers to aid in treatment decisions in melanoma and rectal cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15828258 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15828258 Country of ref document: EP Kind code of ref document: A1 |