WO2016017861A1 - System and method for manufacturing three-dimensional metal plate using metal plates having different thicknesses - Google Patents

System and method for manufacturing three-dimensional metal plate using metal plates having different thicknesses Download PDF

Info

Publication number
WO2016017861A1
WO2016017861A1 PCT/KR2014/010894 KR2014010894W WO2016017861A1 WO 2016017861 A1 WO2016017861 A1 WO 2016017861A1 KR 2014010894 W KR2014010894 W KR 2014010894W WO 2016017861 A1 WO2016017861 A1 WO 2016017861A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
section
thickness
plate
metal plate
Prior art date
Application number
PCT/KR2014/010894
Other languages
French (fr)
Korean (ko)
Inventor
김기법
Original Assignee
김기법
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기법 filed Critical 김기법
Publication of WO2016017861A1 publication Critical patent/WO2016017861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding

Definitions

  • the present invention relates to the production of three-dimensional metal sheet using a metal plate of different thickness, and more particularly, three-dimensional to obtain a product of the desired three-dimensional shape by electrical resistance welding and cutting the metal plate of a variety of different thicknesses inclined It relates to a metal sheet production system and method.
  • the metal lamination system technology uses a cutting tool or melt sinters metal powder to produce a desired product (SLS, DED method), but the price of the metal powder is very high, and thus there is a limit in that the cost of the product increases.
  • the prior art melts the laser light source vertically, thereby lowering the dimensional accuracy due to the thickness between the layers, thereby limiting the application to the precision metal products.
  • the existing technologies have a problem in that the precision of the product shape and manufacturing time are long by stacking the metal in one thickness, and the manufacturing cost is high by using expensive metal powder.
  • the present invention is to solve the problems of the prior art as described above, the present invention is to obtain a cross-section having an inclination angle satisfying the accuracy of the three-dimensional CAD data of the product, the thickness of the cross-section is limited thickness (0.05 to 10 mm).
  • the cross section is obtained by determining the height (thickness) of the next section by the thickness or combined thickness of the used metal sheet, and the metal sheet having a limited thickness is prepared on a separate work table in accordance with the order of the obtained thickness. It is an object of the present invention to provide a three-dimensional metal sheet stacking system using metal sheets having different thicknesses, which can be repeatedly cut into a CNC machine to obtain desired three-dimensional metal products.
  • the present invention uses a conveying device (electrode with a vacuum adsorption plate device) and a separate workbench to transfer only in the Z-axis direction to ensure the accuracy of work in order to transport the prepared metal sheet to the workbench It is an object to provide a three-dimensional metal sheet lamination system using a sheet.
  • the calculation control unit 11 for extracting the angle data of the upper and lower cross-section of the metal plate of the contour form (thickness 0.05mm to 10mm) having an inclination angle;
  • An electrode device 10 provided with a vacuum suction plate 10-2 for transferring the prepared sheet material and the cut sheet material;
  • Numerical control device including electric resistance welding device for fixing the transferred metal sheet material by electric resistance welding using electrodes, cutting head 13b and laser oscillation device 13c capable of inclined cutting according to three-dimensional CAD data. (13);
  • working tables 12-1 and 12-2 for transporting the prepared metal sheet in the -z or + z direction, wherein the angle data includes a normal line connecting the upper and lower cross sections with a z-axis.
  • Angle (a) the upper end surface is characterized in that it is determined according to the height of the laminated metal plate and the three-dimensional CAD data.
  • the operation control unit retrieves the straight section and the curved section of the laminated section from the three-dimensional CAD data (cad data) corresponding to the metal structure in a manner of obtaining the thickness of the laminated section, and the straight section is a single thickness and plate of the metal sheet to be used.
  • the combination of thickness determines the stacking height in order of thickness, and the cross section is obtained.
  • the curved section is the curve of the stacked section and the slope line connecting the two sections to calculate the thickness that satisfies the tolerance. It is desirable to calculate the upper cross section by the thickness or the combined thickness of the plate.
  • the operation control unit obtains a point group satisfying the allowable error in the cross section, and the normal at an arbitrary point p1 connecting the upper cross section and the lower cross section to the x axis and the angle (b) of the upper cross section and the lower cross section. It is desirable to find the angle a formed by the z-axis of the normal connecting the outline.
  • the material is used in combination with a metal plate of various thicknesses having a thickness in the range of 0.05 to 10 mm, the thickness of less than 1 mm is used in one piece by pre-welding several sheets of metal sheet or the size of the product Therefore, it is preferable to cut in advance in the horizontal and vertical size, and then use it in a state arranged in the order calculated by the operation controller.
  • the three-dimensional metal sheet production system using the metal plate of the different thickness completes the transfer of a single sheet of metal sheet according to the transfer command to the workbench using an electrode device equipped with a vacuum suction plate
  • the numerical control device is a welding electrode Using electric resistance welding and homing, using a laser cutting headset to perform oblique cutting according to the cutting trajectory set by the three-dimensional CAD data, and homing and cutting the remaining metal sheet material through the electrode device provided with the vacuum suction plate. It is preferable to discharge to the outside, and after the new metal sheet is introduced into the workbench to control the work platform to be transferred to the z-axis by the thickness of the metal sheet or the combined thickness of the plate.
  • the numerical control device is preferably equipped with a separate cutting headset and the welding device to repeat the welding and cutting operations.
  • the three-dimensional metal sheet manufacturing system using metal sheets having different thicknesses may use a laser cutting headset or a tapered endmill that can adjust a spot size as a cutting headset.
  • the calculation control section is a laminated section of the three-dimensional CAD data (cad data) of the metal plate corresponding to the three-dimensional metal structure in advance to search the straight section and the curved section, the straight section is used
  • the cross section is obtained by determining the stacking height in order of the combination of the thickness of the metal sheet and the sheet thickness, and the curved section is a value that satisfies the allowable error ( ⁇ ) between the inclined line between the stacked sections and the curve of the cross section in the stacking direction.
  • the operation control unit is a second step of recording the determined thickness and order; It is determined whether the operation is completed (S11), and if it is not completed, repeats the first to second steps, and if it is completed, transfers a piece of metal plate material according to a transfer command using an electrode device provided with a vacuum suction plate.
  • Step 3 A fourth step in which the numerical control device performs a welding command on the metal sheet by using the electrode, and a fifth step of performing origin correction for using a cutting headset; A sixth step of performing cutting with respect to the welded and stacked metal sheet using a cutting headset; A seventh step of origin correction for using the welding headset again;
  • the operation control unit is adsorbed through the control of the transfer plate consisting of the electrode device with the vacuum adsorption plate is installed and the remaining metal plate material is discharged to the outside, after introducing the new metal plate material into the first working table (12-1)
  • the normal connecting the outline of the upper and lower sections is an angle (b) with the x-axis, and the normal connecting the outline of the upper and lower sections is the angle (a) with the z-axis, and the upper section is
  • the first to second steps may be repeated until a final cross section is obtained.
  • the production cost can be reduced to a breakthrough level (1/3 or less).
  • FIG. 1 is a view showing a three-dimensional metal sheet stacking system using a metal sheet having a different thickness according to an embodiment of the present invention.
  • FIG. 2A, 2B, and 2C show a working table, an electric resistance welding electrode device 10 equipped with a vacuum suction plate 10-2, a cutting headset, and a laser in a three-dimensional metal sheet stacking system using metal sheets of different thicknesses shown in FIG. It is a figure which shows the operation concept by this.
  • 3a, b, c, and d are views for explaining a concept of applying an optimal effective tilt angle to a 5-axis control laser light source in a three-dimensional metal sheet stacking system using metal sheets of different thicknesses in FIG. 1.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a core, a cavity, and a mechanical part of a metal mold in a three-dimensional metal sheet stacking system using metal sheets having different thicknesses according to an embodiment of the present invention.
  • FIG. 1 is a view showing a three-dimensional metal sheet lamination system using a metal plate of different thickness according to an embodiment of the present invention
  • Figures 2a, b, c is a three-dimensional metal using a metal plate of different thickness of Figure 1
  • FIG. 3A, b, c, and d are views showing the concept of working by thickness, a worktable for each thickness, a molten electrode device 10 having a vacuum suction plate 10-2, a cutting headset, and a laser.
  • FIG. 3 is a view for explaining a concept of applying an optimal effective tilt angle to a 5-axis control laser light source in a 3D metal sheet stacking system using metal sheets of different thicknesses.
  • the metal plate stacking manufacturing system includes an operation control unit 11, first and second work tables 12-1 and 12-2, and a vacuum suction plate 10-2.
  • the welding electrode device 10 in which (10-1) is formed, the cutting headset 13b, the laser oscillation device 13c, and the numerical control device 13 are included.
  • the calculation control unit 11 calculates, from the three-dimensional CAD data, which is a three-dimensional metal structure, cut section data, an angle, and a welding trajectory in the form of an inclined contour having an effective thickness that satisfies the tolerance ⁇ . Then, the metal sheet material 1 prepared on the first and second work tables 12-1. 12-2 is subjected to electrical resistance welding by the welding electrode device 10 provided with the vacuum suction plate 10-2, and the cutting headset 13b. By cutting the sheet into layers to obtain the desired three-dimensional metal products (machine parts, mold cores and cavities).
  • the first and second work benches 12-1 and 12-2 have a welding electrode device 10 provided with a vacuum suction plate 10-2 thereon, and the numerical control device 13 is operated by the calculation control unit 11.
  • the electric resistance welding electrode device 10 and the cutting headset 13b are controlled in accordance with the calculated data.
  • the numerical control device 13 performs a welding command for the metal plate 1 from the calculation control unit 11 by using the electrical resistance welding electrode device 10.
  • the numerical control device 13 performs an inclination cutting command for the welded metal sheet 1 using the cross section and the angle data input from the calculation control unit 11. That is, the numerical control device 13 includes a laser oscillation device 13c, a mechanical device equipped with a cutting headset 13b and an electric resistance welding device 10.
  • the operation control unit 11 completes the transfer of the sheet metal 1 to the first work table 12-1 according to the transfer command using the electrode device provided with the vacuum suction plate, and controls the numerical control device 13. Accordingly, after welding using the electric resistance welding apparatus 10, the welding electrode apparatus 10 is returned to the origin and cut using the cutting headset 13b, and the metal remaining after being cut after returning the cutting headset 13b to the origin. The plate 1 is lifted up through the control of the electrode device 10 and discharged to the outside.
  • the metal plate is preferably formed by coating a metal powder on the surface of the projection.
  • the welding is performed by the heat generated by the electrical resistance in the protrusions to melt.
  • the metal plate is a metal plate formed by forming a projection by coating the metal powder, the ratio of the metal powder and the plate is that the ratio of the average diameter (d) of the powder metal particles (t) and the thickness (t) of the metal plate is 1.2 ⁇ d / t ⁇ 2.5 desirable.
  • the operation control unit 11 controls the first work table 12-1 to be transferred to the -z axis by the thickness of the metal plate 1 or the combined thickness of the metal plate 1, and the second work table 12-2. Is controlled to be transferred to the + z axis by the thickness of the metal sheet 1 or the combined thickness of the metal sheet 1, and then the metal sheet on the upper portion of the second work table 12-b using the electrode device 10. (1) is controlled to flow into the first work table (12-1).
  • the calculation control unit generates a point group within the allowable error in the cross section curve obtained above.
  • the calculation control unit 11 calculates the cross-sectional data in the manner described above, and will be described in detail with reference to Figures 2 and 3 for the calculation of the angle data between the upper and lower cross-section.
  • the calculation control section 11 determines the stacking height by determining the stacking height in the order of the combination of the thickness of the metal sheet 1 and the sheet thickness being used in the order of the thickness of the metal sheet 1 to be used.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a core, a cavity, and a mechanical part of a metal mold in a three-dimensional metal sheet stacking system using metal sheets having different thicknesses according to an embodiment of the present invention.
  • the calculation control unit 11 calculates the thickness satisfying the tolerance and obtains the lower cross section by the thickness of the metal sheet 1 to be used or the combined thickness of the sheet having an approximation to this value.
  • the cross section is obtained in the same manner to obtain the upper cross section and the angle data (S1).
  • the calculation control unit 11 records the determined thickness and order (S2).
  • the operation control unit 11 executes the transfer according to the transfer command to the prepared metal sheet material (S3).
  • the numerical control device 13 performs a welding command to the metal plate 1 from the calculation control unit 13 using the welding electrode 10-1 provided with the vacuum suction plate 10-2 (S4).
  • the electrode device 10 provided with the vacuum suction plate 10-2 is homed (S5).
  • Cutting is performed on the welded and stacked metal sheet 1 using a laser (or a tapered endmill) (S6).
  • the operation control unit 11 is cut and the remaining metal sheet 1 is absorbed and discharged to the outside through the control of the electrode device 10, and then the first work bench is as thick as the metal sheet 1 to be used next. Transfer in the z direction (S8).
  • the second working table 12-2 is transferred in the + Z direction by the thickness of the metal plate to be used next (S9).
  • step S9 the operation control unit 11 determines whether all tasks have been completed (S12), and if not completed, returns to step S3 to repeat the process of steps S3 to S9 repeatedly. Perform.
  • the numerical control device 13 transfers the metal plate 1 to the work table 12 using the electrode device 10 provided with the vacuum suction plate 10-2, the numerical control device In (13), a welding command for the metal sheet material 1 is cut using the electrode device 10 provided with the vacuum adsorption plate, and the stacked metal sheet material is cut, and the remaining metal sheet material 1 contains the electrode provided with the vacuum absorption plate. Lift out and out, the new metal sheet 1 is introduced into the work table 12, and the work table 12 is repeatedly transferred to the z-axis by the thickness of the metal plate 1.

Abstract

The present invention relates to a three-dimensional metal plate stacking system that obtains a product having a desired three-dimensional shape by welding and obliquely cutting metal plates having various thicknesses by using a laser. The present invention provides a three-dimensional metal plate manufacturing system using metal plates having different thicknesses, comprising: an operation control unit (11) that extracts angle data of an upper section and a lower section that have a shape of a contour line having a tilt angle and have a thickness of 0.05 mm to 10 mm; an electrode device (10) equipped with a vacuum suction plate for transferring a prepared plate and the remnants thereof left after cutting; a numerical control device (13) that includes the electrode device (10) equipped with the vacuum suction plate that fixes transferred metal plates, which have the same thickness, by making the metal plates subjected to electric resistance welding using the electrode device (10) equipped with the vacuum suction plate, a cutting headset (13b) that performs inclined cutting according to a cut section having a tilt angle, and a laser oscillation device (13c); and working tables (12-1, 12-2) that transfer the prepared metal plate in the z-axis direction.

Description

서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템 및 방법3D metal plate manufacturing system and method using metal plate of different thickness
본 발명은 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작에 관한 것으로, 더욱 상세하게는 다양한 서로 다른 두께의 금속판재를 전기저항 용접하고, 경사 절단하여 원하는 3차원 형상의 제품을 얻는 3차원 금속판재 제작 시스템 및 방법에 관한 것이다.The present invention relates to the production of three-dimensional metal sheet using a metal plate of different thickness, and more particularly, three-dimensional to obtain a product of the desired three-dimensional shape by electrical resistance welding and cutting the metal plate of a variety of different thicknesses inclined It relates to a metal sheet production system and method.
종래의 금속 3D 프린터를 금속 적층 시스템 기술은 절삭 공구를 사용하거나 금속 분말을 용융 소결하여 원하는 제품을 제작하였으나(SLS, DED 방식) 금속분말의 가격이 매우 고가임으로 제품의 단가가 높아지는 한계점이 있다. In the conventional metal 3D printer, the metal lamination system technology uses a cutting tool or melt sinters metal powder to produce a desired product (SLS, DED method), but the price of the metal powder is very high, and thus there is a limit in that the cost of the product increases.
또한, 종래의 기술은 레이저 광원을 수직 용융 접착함으로써, 층간의 두께에 의한 치수 정밀도가 낮아져 정밀 금속 제품에 대한 적용에는 한계점이 있다.In addition, the prior art melts the laser light source vertically, thereby lowering the dimensional accuracy due to the thickness between the layers, thereby limiting the application to the precision metal products.
그리고 종래의 금속 적층 기술의 경우 단면 데이터 산출 방식은 수직 적층 되는 것을 전제로 하였기 때문에 치수 오차는 필연적이며, 오차를 줄이기 위해 적층 되는 두께를 얇게 하는 것으로 치수 정밀도를 보완하고 있지만 이러한 방식은 제작 시간이 증가하는 문제점이 있었다. In the case of conventional metal lamination technology, the dimensional error is inevitable because the section data calculation method is assumed to be vertically stacked. In order to reduce the error, the dimensional accuracy is compensated by thinning the laminated thickness. There was an increasing problem.
또한 기존의 기술들은 하나의 두께로 금속 적층 함으로써 제품 형상의 정밀도 및 제작 시간 이 오래 걸리는 문제점과 고가의 금속 분말을 사용함으로써 제작 단가가 비싸진다는 문제점이 있었다.In addition, the existing technologies have a problem in that the precision of the product shape and manufacturing time are long by stacking the metal in one thickness, and the manufacturing cost is high by using expensive metal powder.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명은 제품의 3차원 캐드 데이터를 정밀도를 만족하는 경사각을 갖는 단면을 구하는 방식으로, 단면의 두께는 제한된 두께(0.05 내지 10 mm)를 갖는 사용 금속판재의 두께 혹은 조합된 두께로 다음 단면의 높이(두께)로 정하여 단면을 구하고, 구해진 두께의 순서에 맞게 한정된 두께의 금속판재를 별도의 작업대에 준비하여 경사 절단헤드셋을 가진 레이저 CNC장치에 투입하여 절단하는 작업을 반복적으로 수행하여 원하는 3차원 금속 제품을 얻을 수 있는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템을 제공하는 것을 그 목적으로 한다.The present invention is to solve the problems of the prior art as described above, the present invention is to obtain a cross-section having an inclination angle satisfying the accuracy of the three-dimensional CAD data of the product, the thickness of the cross-section is limited thickness (0.05 to 10 mm The cross section is obtained by determining the height (thickness) of the next section by the thickness or combined thickness of the used metal sheet, and the metal sheet having a limited thickness is prepared on a separate work table in accordance with the order of the obtained thickness. It is an object of the present invention to provide a three-dimensional metal sheet stacking system using metal sheets having different thicknesses, which can be repeatedly cut into a CNC machine to obtain desired three-dimensional metal products.
또한 본 발명은 준비된 금속 판재를 작업대로 이송하기 위하여 이송장치(진공흡착판 장치가 부착된 전극)와 작업의 정밀도를 보장하기 위한 Z 축 방향으로만 이송하는 별도 의 작업대를 사용하여 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템을 제공하는 것을 그 목적으로 한다. In addition, the present invention uses a conveying device (electrode with a vacuum adsorption plate device) and a separate workbench to transfer only in the Z-axis direction to ensure the accuracy of work in order to transport the prepared metal sheet to the workbench It is an object to provide a three-dimensional metal sheet lamination system using a sheet.
그러나 본 발명의 목적은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the object of the present invention is not limited to the above-mentioned object, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
상기한 목적을 달성하기 위한 본 발명은, 경사각을 갖는 등고선 형태(두께 0.05mm 내지 10 mm)의 금속판재의 윗 단면과 아랫 단면의 각도 데이터를 추출하는 연산 제어부(11); 준비된 판재와 절단되고 남은 판재를 이송하기 위하여 진공 흡착판(10-2)이 장치된 전극 장치(10); 이송되어진 금속판재를 전극을 이용하여 전기저항 용접하여 고정시키는 전기저항 용접 장치와, 3차원 캐드 데이터에 따라 경사절단을 할 수 있는 절단 헤드셋(13b) 및 레이저 발진 장치(13c)를 포함한 수치 제어 장치(13); 및 준비된 금속판재를 -z 또는 +z 방향으로 이송시키는 작업대(12-1, 12-2)를 포함하여 구성되되, 상기 각도 데이터는 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 z축과 이루는 각(a)이고, 상기 윗단면은 적층된 금속판재의 높이 및 3차원 캐드 데이터에 따라 결정되는 것을 특징으로 한다.The present invention for achieving the above object, the calculation control unit 11 for extracting the angle data of the upper and lower cross-section of the metal plate of the contour form (thickness 0.05mm to 10mm) having an inclination angle; An electrode device 10 provided with a vacuum suction plate 10-2 for transferring the prepared sheet material and the cut sheet material; Numerical control device including electric resistance welding device for fixing the transferred metal sheet material by electric resistance welding using electrodes, cutting head 13b and laser oscillation device 13c capable of inclined cutting according to three-dimensional CAD data. (13); And working tables 12-1 and 12-2 for transporting the prepared metal sheet in the -z or + z direction, wherein the angle data includes a normal line connecting the upper and lower cross sections with a z-axis. Angle (a), the upper end surface is characterized in that it is determined according to the height of the laminated metal plate and the three-dimensional CAD data.
여기서 상기 연산제어부는 적층 단면의 두께를 구하는 방식으로 금속 구조물에 해당하는 3차원 캐드 데이터(cad data)로부터 적층 단면이 직선구간과 곡선 구간을 미리 검색하고 직선 구간은 사용될 금속판재의 단일 두께와 판재 두께의 조합이 두꺼운 순으로 적층 높이를 결정하여 단면을 구하며, 곡선 구간은 적층 단면의 커브와 두 단면을 잇는 경사선분으로 허용 오차를 만족하는 두께를 연산하여 이 값에 근사치를 갖는 사용할 금속판재의 두께나 판재의 조합 된 두께로 윗 단면을 구하는 방법으로 연산하는 것이 바람직하다.Here, the operation control unit retrieves the straight section and the curved section of the laminated section from the three-dimensional CAD data (cad data) corresponding to the metal structure in a manner of obtaining the thickness of the laminated section, and the straight section is a single thickness and plate of the metal sheet to be used. The combination of thickness determines the stacking height in order of thickness, and the cross section is obtained.The curved section is the curve of the stacked section and the slope line connecting the two sections to calculate the thickness that satisfies the tolerance. It is desirable to calculate the upper cross section by the thickness or the combined thickness of the plate.
그리고 상기 연산제어부는 단면 내의 허용 오차를 만족하는 점 군을 구하여 상기 윗단면과 아랫 단면의 외곽선을 잇는 임의의 점 p1에서의 법선이 x축과 이루는 각(b)과 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 z축과 이루는 각(a)을 구하는 것이 바람직하다.The operation control unit obtains a point group satisfying the allowable error in the cross section, and the normal at an arbitrary point p1 connecting the upper cross section and the lower cross section to the x axis and the angle (b) of the upper cross section and the lower cross section. It is desirable to find the angle a formed by the z-axis of the normal connecting the outline.
또한 상기 재료는 0.05 내지 10 mm범위의 두께를 갖는 여러 가지 두께의 금속판재를 조합하여 사용하며, 1 mm 이하의 두께는 여러 장의 금속판재를 미리 부분 용접하여 한 장으로 사용하거나, 제품의 크기에 따라 가로 세로 사이즈로 미리 절단 한후 상기 연산제어부에서 산출한 순서대로 배열된 상태로 사용는 것이 바람직하다.In addition, the material is used in combination with a metal plate of various thicknesses having a thickness in the range of 0.05 to 10 mm, the thickness of less than 1 mm is used in one piece by pre-welding several sheets of metal sheet or the size of the product Therefore, it is preferable to cut in advance in the horizontal and vertical size, and then use it in a state arranged in the order calculated by the operation controller.
또한 상기 진공 흡착판이 설치된 전극 장치에 의해 금속판재의 이송 및 절단 후의 잔여 판재를 배출하는 역할을 하는 것이 바람직하다.In addition, it is preferable to play a role of discharging the remaining plate material after the transfer and cutting of the metal plate material by the electrode device provided with the vacuum suction plate.
한편 상기 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템은 한 장의 금속판재를 진공 흡착판이 설치된 전극 장치를 사용하여 작업대로 이송 명령에 따라 이송을 완료하며, 상기 수치 제어장치는 용접 전극을 사용하여 전기저항 용접하고 원점 복귀하며, 레이저 절단 헤드셋을 사용하여 3차원 캐드 데이터에 의해 설정된 절단 궤적에 따라 경사 절단을 수행하고 원점 복귀하며 절단되고 남은 금속판재를 상기 진공 흡착판이 설치된 전극 장치를 통해 외부로 배출하며, 새로운 금속판재를 상기 작업대로 유입 후 작업대를 금속판재의 두께나 판재의 조합된 두께만큼 z축으로 이송되도록 제어하는 것이 바람직하다.On the other hand, the three-dimensional metal sheet production system using the metal plate of the different thickness completes the transfer of a single sheet of metal sheet according to the transfer command to the workbench using an electrode device equipped with a vacuum suction plate, the numerical control device is a welding electrode Using electric resistance welding and homing, using a laser cutting headset to perform oblique cutting according to the cutting trajectory set by the three-dimensional CAD data, and homing and cutting the remaining metal sheet material through the electrode device provided with the vacuum suction plate. It is preferable to discharge to the outside, and after the new metal sheet is introduced into the workbench to control the work platform to be transferred to the z-axis by the thickness of the metal sheet or the combined thickness of the plate.
여기서 상기 수치 제어장치는 상기 용접 장치와 별도의 절단 헤드셋을 장착 하여 용접과 절단작업을 반복 수행하는 것이 바람직하다.The numerical control device is preferably equipped with a separate cutting headset and the welding device to repeat the welding and cutting operations.
한편 상기 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템은 절단헤드셋으로써 스팟 사이즈(spot size)를 조절 할수 있는 레이저 절단 헤드셋 또는 경사각 절삭 엔드밀(tappered endmill)을 사용할 수 있다.Meanwhile, the three-dimensional metal sheet manufacturing system using metal sheets having different thicknesses may use a laser cutting headset or a tapered endmill that can adjust a spot size as a cutting headset.
상기한 목적을 달성하기 위한 본 발명은, 연산 제어부가 3차원 금속 구조물에 해당하는 금속판재의 3차원 캐드 데이터(cad data)의 적층 단면이 직선구간과 곡선 구간을 미리 검색하고, 직선 구간은 사용될 금속판재의 두께와 판재 두께의 조합이 두꺼운 순으로 적층 높이를 결정 하여 단면을 구하며, 곡선 구간은 적층 단면 사이의 경사선분과 적층 방향의 단면의 커브와의 허용 오차(δ)를 만족하는 값으로 적층 높이를 연산하고 그 값에 해당하는 근사치의 사용 금속판재의 두께로서 최종 윗단면의 높이를 정하고 아랫단면과 윗단면을 구하며 각도 데이터를 연산하는 제 1 단계; 상기 연산 제어부는 결정된 두께와 순서를 기록하는 제 2단계; 작업이 완료되었는지 판단하여(S11), 완료되지 않았다면 상기 제1 단계 내지 제2 단계를 반복하고, 완료되었다면 한 장의 금속판재를 진공흡착판이 설치된 전극장치를 이용하여 이송 명령에 따라 이송을 완료하는 제 3단계; 수치 제어 장치가 전극을 이용하여 금속판재에 대한 용접 명령을 수행하는 제 4단계, 절단 헤드셋을 사용하기 위해 원점 보정을 하는 제 5단계; 용접되어 적층되어진 금속판재에 대하여 절단 헤드셋을 이용하여 절단을 수행하는 제 6단계; 다시 용접 헤드셋을 사용하기 위한 원점 보정 하는 제 7단계; 상기 연산 제어부가 절단되고 남은 금속판재를 진공흡착판이설치된 전극 장치로 구성되는 이송판에 대한 제어를 통해 흡착하여 외부로 배출한 뒤, 새로운 금속판재를 제1작업대(12-1)로 유입 후 상기 제1작업대(12-1)를 금속판재의 두께나 판재의 조합된 두께만큼 -z축으로 이송하여 항상 일정한 높이에서 용접 및 절단할 수 있도록 제어하는 제 8단계를 포함하되, 상기 각도데이터는 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 x축과 이루는 각(b)과 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 z축과 이루는 각(a)이고, 상기 윗단면은 적층된 금속판재의 높이 및 3차원 캐드 데이터에 따라 결정되는 것을 특징으로 한다.According to the present invention for achieving the above object, the calculation control section is a laminated section of the three-dimensional CAD data (cad data) of the metal plate corresponding to the three-dimensional metal structure in advance to search the straight section and the curved section, the straight section is used The cross section is obtained by determining the stacking height in order of the combination of the thickness of the metal sheet and the sheet thickness, and the curved section is a value that satisfies the allowable error (δ) between the inclined line between the stacked sections and the curve of the cross section in the stacking direction. A first step of calculating a stacking height, determining a height of a final upper section as a thickness of an approximate used metal sheet material corresponding to the value, calculating a lower section and an upper section, and calculating angle data; The operation control unit is a second step of recording the determined thickness and order; It is determined whether the operation is completed (S11), and if it is not completed, repeats the first to second steps, and if it is completed, transfers a piece of metal plate material according to a transfer command using an electrode device provided with a vacuum suction plate. Step 3; A fourth step in which the numerical control device performs a welding command on the metal sheet by using the electrode, and a fifth step of performing origin correction for using a cutting headset; A sixth step of performing cutting with respect to the welded and stacked metal sheet using a cutting headset; A seventh step of origin correction for using the welding headset again; The operation control unit is adsorbed through the control of the transfer plate consisting of the electrode device with the vacuum adsorption plate is installed and the remaining metal plate material is discharged to the outside, after introducing the new metal plate material into the first working table (12-1) And an eighth step of controlling the first work bench 12-1 to be welded and cut at a constant height by transferring the thickness of the metal sheet or the combined thickness of the sheet to the -z axis, wherein the angle data is the The normal connecting the outline of the upper and lower sections is an angle (b) with the x-axis, and the normal connecting the outline of the upper and lower sections is the angle (a) with the z-axis, and the upper section is a laminated metal plate It is determined according to the height and the three-dimensional CAD data.
여기서 제1 단계 내지 제 2 단계는 최종 단면을 얻을 때 까지 반복 수행하는 것을 특징으로 한다.In this case, the first to second steps may be repeated until a final cross section is obtained.
본 발명에 의하면 다음과 같은 효과가 있다.According to the present invention has the following effects.
첫째, 금속 소재를 여러가지 두께의 금속판재를 사용함으로써 금속분말을 사용하는 시스템에 비하여 생산 단가를 획기적 수준(1/3 이하)으로 낮출 수 있는 효과를 제공한다. First, by using a metal plate of various thicknesses of the metal material, compared to the system using the metal powder, the production cost can be reduced to a breakthrough level (1/3 or less).
둘째, 작은 초점 크기의 레이저 광원을 사용하여 최적의 유효 경사각을 적용함으로써 작업 공정을 자동화할 수 있으며 제품의 치수 정밀도를 높일 수 있는 효과를 제공한다Second, by applying the optimum effective angle of inclination using a laser light source with a small focal size, it is possible to automate the work process and increase the dimensional accuracy of the product.
도 1은 본 발명의 실시예에 따른 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템을 나타내는 도면이다. 1 is a view showing a three-dimensional metal sheet stacking system using a metal sheet having a different thickness according to an embodiment of the present invention.
도 2a,b,c는 도 1의 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템에서 작업대, 진공흡착판(10-2)이 설치된 전기저항 용접 전극 장치(10), 절단 헤드셋 그리고 레이저에 의한 작업 개념을 나타내는 도면이다. 2A, 2B, and 2C show a working table, an electric resistance welding electrode device 10 equipped with a vacuum suction plate 10-2, a cutting headset, and a laser in a three-dimensional metal sheet stacking system using metal sheets of different thicknesses shown in FIG. It is a figure which shows the operation concept by this.
도 3a,b,c, d는 도 1의 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템에서 5축 제어 레이저 광원에 대한 최적의 유효 경사각을 적용 개념을 설명하기 위한 도면이다.3a, b, c, and d are views for explaining a concept of applying an optimal effective tilt angle to a 5-axis control laser light source in a three-dimensional metal sheet stacking system using metal sheets of different thicknesses in FIG. 1.
도 4는 본 발명의 실시예에 따른 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템의 금형의 코어와 케비티 및 기계부품 제작 방법을 설명하기 위한 흐름도이다. 4 is a flowchart illustrating a method of manufacturing a core, a cavity, and a mechanical part of a metal mold in a three-dimensional metal sheet stacking system using metal sheets having different thicknesses according to an embodiment of the present invention.
본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings a preferred embodiment of the present invention.
아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며 이 경우는 해당되는 발명의 설명부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 함을 밝혀두고자 한다. 또한 실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고, 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In addition, the terminology used in the present invention was selected as a general term that is widely used at present, but in certain cases, the term is arbitrarily selected by the applicant, and in this case, since the meaning is described in detail in the corresponding part of the present invention, a simple term It is to be understood that the present invention is to be understood as a meaning of terms rather than names. In addition, in describing the embodiments, descriptions of technical contents which are well known in the technical field to which the present invention belongs and are not directly related to the present invention will be omitted. This is to more clearly communicate without obscure the subject matter of the present invention by omitting unnecessary description.
도 1은 본 발명의 실시예에 따른 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템을 나타내는 도면이고, 도 2a,b,c 는 도 1의 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템에서 두께별 작업대, 진공 흡착판(10-2)이 설치된 용전 전극장치(10), 절단 헤드셋 그리고 레이저에 의한 작업 개념을 나타내는 도면이며, 도 3a, b, c, d은 도 1의 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템에서 5축 제어 레이저 광원에 대한 최적의 유효 경사각을 적용 개념을 설명하기 위한 도면이다.1 is a view showing a three-dimensional metal sheet lamination system using a metal plate of different thickness according to an embodiment of the present invention, Figures 2a, b, c is a three-dimensional metal using a metal plate of different thickness of Figure 1 FIG. 3A, b, c, and d are views showing the concept of working by thickness, a worktable for each thickness, a molten electrode device 10 having a vacuum suction plate 10-2, a cutting headset, and a laser. FIG. 3 is a view for explaining a concept of applying an optimal effective tilt angle to a 5-axis control laser light source in a 3D metal sheet stacking system using metal sheets of different thicknesses.
먼저, 도 1 및 도 2를 참조하면, 금속판재 적층 제작 시스템은 연산 제어부(11), 제1, 제2작업대(12-1, 12-2), 진공 흡착판(10-2)이 설치되고 전극(10-1)이 형성된 용접 전극 장치(10), 절단 헤드셋(13b), 레이저 발진장치(13c) 및 수치 제어 장치(13)를 포함한다.First, referring to FIGS. 1 and 2, the metal plate stacking manufacturing system includes an operation control unit 11, first and second work tables 12-1 and 12-2, and a vacuum suction plate 10-2. The welding electrode device 10 in which (10-1) is formed, the cutting headset 13b, the laser oscillation device 13c, and the numerical control device 13 are included.
여기서, 연산 제어부(11)는 3차원 금속 구조물인 3차원 캐드 데이터(cad data)로부터 허용오차(δ)를 만족하는 유효 적정 두께의 경사 등고선 형태의 절단 단면 데이터와 각도, 용접 궤적을 연산한다. 그리고 제1, 제2작업대(12-1. 12-2) 상에 준비된 금속판재(1)를 진공 흡착판(10-2)이 설치된 용접 전극 장치(10)로 전기저항 용접하고, 절단 헤드셋(13b)으로 절단하여 적층하도록 연산함으로서 원하는 3차원 입체 형상의 금속 제품(기계부품, 금형의 코어 및 캐비티)을 얻도록 한다.Here, the calculation control unit 11 calculates, from the three-dimensional CAD data, which is a three-dimensional metal structure, cut section data, an angle, and a welding trajectory in the form of an inclined contour having an effective thickness that satisfies the tolerance δ. Then, the metal sheet material 1 prepared on the first and second work tables 12-1. 12-2 is subjected to electrical resistance welding by the welding electrode device 10 provided with the vacuum suction plate 10-2, and the cutting headset 13b. By cutting the sheet into layers to obtain the desired three-dimensional metal products (machine parts, mold cores and cavities).
제1, 제2작업대(12-1,12-2)는 진공흡착판(10-2)이 설치된 용접 전극 장치(10)를 상부에 구비하며, 수치 제어 장치(13)는 연산 제어부(11)에서 연산한 데이터에 따라 전기저항 용접 전극 장치(10)와 절단 헤드셋(13b)를 제어한다.The first and second work benches 12-1 and 12-2 have a welding electrode device 10 provided with a vacuum suction plate 10-2 thereon, and the numerical control device 13 is operated by the calculation control unit 11. The electric resistance welding electrode device 10 and the cutting headset 13b are controlled in accordance with the calculated data.
보다 구체적으로 수치 제어 장치(13)에 대해서 살펴보면, 수치 제어 장치(13)는 연산 제어부(11)로부터 전기저항 용접 전극 장치(10)를 이용하여 금속판재(1)에 대한 용접 명령을 수행한다. More specifically, the numerical control device 13, the numerical control device 13 performs a welding command for the metal plate 1 from the calculation control unit 11 by using the electrical resistance welding electrode device 10.
또한, 수치 제어 장치(13)는 연산 제어부(11)로부터 입력된 단면과 각도 데이터를 이용하여 용접되어진 금속판재(1)에 대한 경사절단 명령을 수행한다. 즉, 수치 제어장치(13)는 레이저 발진장치(13c)와, 절단 헤드셋(13b) 및 전기저항 용접 장치(10)를 장착 한 기계장치를 포함한다. In addition, the numerical control device 13 performs an inclination cutting command for the welded metal sheet 1 using the cross section and the angle data input from the calculation control unit 11. That is, the numerical control device 13 includes a laser oscillation device 13c, a mechanical device equipped with a cutting headset 13b and an electric resistance welding device 10.
연산 제어부(11)는 한 장의 금속판재(1)를 진공 흡착판이 설치된 전극 장치를 이용하여 제1작업대(12-1)로 이송 명령에 따라 이송을 완료하며, 수치 제어 장치(13)의 제어에 따라 전기저항 용접 장치(10)를 사용하여 용접한 후 용접 전극 장치(10)를 원점으로 복귀시키고 절단 헤드셋(13b)을 사용하여 절단하고, 절단 헤드셋(13b)을 원점 복귀시킨 후에 절단되고 남은 금속판재(1)를 전극장치(10)에 대한 제어를 통해 들어올려 외부로 배출한다.The operation control unit 11 completes the transfer of the sheet metal 1 to the first work table 12-1 according to the transfer command using the electrode device provided with the vacuum suction plate, and controls the numerical control device 13. Accordingly, after welding using the electric resistance welding apparatus 10, the welding electrode apparatus 10 is returned to the origin and cut using the cutting headset 13b, and the metal remaining after being cut after returning the cutting headset 13b to the origin. The plate 1 is lifted up through the control of the electrode device 10 and discharged to the outside.
여기서 금속판재는 표면에 금속분말을 코팅하여 돌기가 형성됨이 바람직하다. 즉 전원을 인가하는 경우 상기 돌기에서 전기저항에 의한 열이 발생하여 용융됨으로써 용접이 수행된다. Here, the metal plate is preferably formed by coating a metal powder on the surface of the projection. In other words, when the power is applied, the welding is performed by the heat generated by the electrical resistance in the protrusions to melt.
또한 상기 금속판재는 금속분말을 코팅하여 돌기를 형성한 금속판재로서 금속분말과 판재의 비율은 분말 금속입자 평균경(d)과 금속판재의 두께(t)의 비가 1.2≤d/t≤2.5인 것이 바람직하다.In addition, the metal plate is a metal plate formed by forming a projection by coating the metal powder, the ratio of the metal powder and the plate is that the ratio of the average diameter (d) of the powder metal particles (t) and the thickness (t) of the metal plate is 1.2≤d / t≤2.5 desirable.
그리고 연산 제어부(11)는 제1작업대(12-1)를 금속판재(1)의 두께나 금속판재(1)의 조합된 두께 만큼 -z 축으로 이송되도록 제어하고 제2작업대(12-2)를 금속판재(1)의 두께나 금속판재(1)의 조합된 두께만큼 +z 축으로 이송되도록 제어한 후 전극 장치(10)를 사용하여 제2작업대(12-b)의 상부에 있는 금속판재(1)를 제1작업대(12-1)로 유입하도록 제어한다.In addition, the operation control unit 11 controls the first work table 12-1 to be transferred to the -z axis by the thickness of the metal plate 1 or the combined thickness of the metal plate 1, and the second work table 12-2. Is controlled to be transferred to the + z axis by the thickness of the metal sheet 1 or the combined thickness of the metal sheet 1, and then the metal sheet on the upper portion of the second work table 12-b using the electrode device 10. (1) is controlled to flow into the first work table (12-1).
또한, 연산 제어부는, 상기에서 구해진 단면 커브 내에서 허용 오차 내 의 점군을 생성 한다. 각도 데이터의 연산 제어부에 의한 연산시, y=f(x)의 그래프 위의 점 p1(x1, y1)에서 접선의 방정식을 (y-y1) = f'(x)×(x1-x1), 법선 방정식을 (y-y1)= -1/f'(x1)×(x-x1)으로 설정하고, 금속 판재의 임의의 점 p1(x1, y1)과 최단거리에 있는 금속 판재의 점 p2(x2, y2)와의 각도 계산식을 금속 판재의 두께 나 판재의 조합된 두께를 D1라고 하고 두 점 사이의 거리를 L1 라고 설정하고 각도 Q1을 구하고, 각도 Q2에 대해서 Q2 = arcsine(D1 / L1)으로 연산하는 것이 바람직하다.Further, the calculation control unit generates a point group within the allowable error in the cross section curve obtained above. In the calculation by the calculation control unit of the angle data, the equation of the tangent at the point p1 (x1, y1) on the graph of y = f (x) is (y-y1) = f '(x) × (x1-x1), Set the normal equation to (y-y1) = -1 / f '(x1) x (x-x1), and point p2 (the point of metal plate at the shortest distance to any point p1 (x1, y1) of the metal plate. x2, y2), calculate the angle of the metal plate or the combined thickness of the plate as D1, set the distance between the two points as L1, get the angle Q1, and for Q2 = arcsine (D1 / L1) It is preferable to calculate.
한편, 연산 제어부(11)는 상기에서 서술한 방식으로 단면 데이터를 연산하며, 윗단면과 아랫단면 사이의 각도 데이터 연산에 대해서 도 2 및 도 3을 참조하여 구체적으로 살펴보도록 한다. On the other hand, the calculation control unit 11 calculates the cross-sectional data in the manner described above, and will be described in detail with reference to Figures 2 and 3 for the calculation of the angle data between the upper and lower cross-section.
연산 제어부(11)는 윗 단면을 구하기 위해 적층 단면 이 직선 구간은 사용될 금속판재(1)의 두께와 판재 두께의 조합이 두꺼운 순으로 적층 높이를 결정하여 단면을 구하며 곡선 구간은 적층 단면 사이의 경사선분과 적층 방향 단면의 커브와의 허용 오차(δ)를 만족하는 값으로 적층 높이를 연산하고, (단면 높이 T와 허용 오차(δ)의 관계식은 T=허용오차(δ)×[sin(Q1+Q2)-sin(Q1)]/[1-sin(Q2/2)]로 구할 수 있다) 그 값에 해당하는 근사치의 사용 금속판재(1)의 두께(혹은 조합된 두께)로 실재 다음 적층 높이로 결정 하여 단면을 구하고, 단면 내의 임의의 p1점에서의 법선 벡터를 구하여 각도 b를 산출하고, 임의의 점 p1의 법선이 z축과 이루는 각도 b로서 산출한다.In order to obtain the upper cross section, the calculation control section 11 determines the stacking height by determining the stacking height in the order of the combination of the thickness of the metal sheet 1 and the sheet thickness being used in the order of the thickness of the metal sheet 1 to be used. The stacking height is calculated using a value that satisfies the tolerance (δ) between the line segment and the curve in the cross section of the stacking direction, and (The relational expression between the cross-sectional height T and the tolerance (δ) is T = tolerance (δ) × [sin (Q1). + Q2) -sin (Q1)] / [1-sin (Q2 / 2)]) Approximate value corresponding to the next layer of the metal sheet 1 (the combined thickness) The cross section is determined by the height, the normal vector at any p1 point in the cross section is calculated, and the angle b is calculated. The angle b is calculated as the angle b between the normal line at any point p1.
이에 따라 연산 제어부(11) 경사등고선 단면 내의 임의의 점(x1, y1)과 최단거리에 있는 금속판재(1)의 점 (x2, y2)와의 각도 계산식은 금속판재(1)의 두께 나 판재의 조합 된 두께를 D1라고 하고 두 점 사이의 거리를 L1 라고 하면 각도 Q는 Q = arcsine(D1 / L1)으로 연산할 수 있다. Accordingly, the angle calculation formula between the arbitrary point (x1, y1) in the cross section of the inclination contour of the calculation control unit 11 and the point (x2, y2) of the metal plate 1 at the shortest distance is determined by the thickness of the metal plate 1 or If the combined thickness is D1 and the distance between two points is L1, the angle Q can be calculated as Q = arcsine (D1 / L1).
도 4는 본 발명의 실시예에 따른 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 적층 시스템의 금형의 코어와 케비티 및 기계부품 제작 방법을 설명하기 위한 흐름도이다. 4 is a flowchart illustrating a method of manufacturing a core, a cavity, and a mechanical part of a metal mold in a three-dimensional metal sheet stacking system using metal sheets having different thicknesses according to an embodiment of the present invention.
도 1 내지 도 4를 참조하면, 연산 제어부(11)는 허용 오차를 만족 하는 두께를 연산하여 이 값에 근사치를 갖는 사용할 금속판재(1)의 두께나 판재의 조합된 두께로 아랫 단면을 구하고 윗 단면을 같은 방식 구하여 윗 단면과 각도 데이터를 구한다(S1).  1 to 4, the calculation control unit 11 calculates the thickness satisfying the tolerance and obtains the lower cross section by the thickness of the metal sheet 1 to be used or the combined thickness of the sheet having an approximation to this value. The cross section is obtained in the same manner to obtain the upper cross section and the angle data (S1).
연산 제어부(11)는 결정된 두께와 순서를 기록한다(S2).The calculation control unit 11 records the determined thickness and order (S2).
그다음 작업이 완료되었는가 판단한다(S11). 판단결과(S11) 작업이 완료되지 않았다면 S1 단계 내지 S2 단계를 반복한다.Then it is determined whether the operation is completed (S11). If the determination result S11 is not completed, steps S1 to S2 are repeated.
그러나 판단결과(S11) 작업이 완료되었다면 연산 제어부(11)는 준비된 금속판재를 작업대로 이송 명령에 따라 이송을 실행한다(S3).However, if the determination result (S11) operation is completed, the operation control unit 11 executes the transfer according to the transfer command to the prepared metal sheet material (S3).
수치 제어 장치(13)가 연산 제어부(13)로부터 진공 흡착판(10-2)이 설치된 용접 전극(10-1)을 이용하여 금속판재(1)에 대한 용접 명령을 수행한다(S4).The numerical control device 13 performs a welding command to the metal plate 1 from the calculation control unit 13 using the welding electrode 10-1 provided with the vacuum suction plate 10-2 (S4).
절단 헤드셋(13b)을 사용하기 위해 진공 흡착판(10-2)이 설치된 전극 장치(10)를 원점 복귀를 실행한다(S5).In order to use the cutting headset 13b, the electrode device 10 provided with the vacuum suction plate 10-2 is homed (S5).
용접되어 적층된 금속판재(1)에 대하여 레이저(또는 경사엔드밀 절삭 공구(tappered endmill))를 이용하여 절단을 수행한다(S6).Cutting is performed on the welded and stacked metal sheet 1 using a laser (or a tapered endmill) (S6).
다시 진공흡착판이 설치된 전극장치(10)를 사용을 하기 위한 원점 보정을 수행한다(S7)Performing the origin correction for using the electrode device 10, the vacuum suction plate is installed again (S7)
그 다음 연산 제어부(11)가 절단되고 남은 금속판재(1)를 전극 장치(10)에 대한 제어를 통해 흡착하여 외부로 배출한 뒤, 제1작업대를 다음 사용 될 금속판재(1) 두께만큼 -z 방향으로 이송시킨다(S8).After that, the operation control unit 11 is cut and the remaining metal sheet 1 is absorbed and discharged to the outside through the control of the electrode device 10, and then the first work bench is as thick as the metal sheet 1 to be used next. Transfer in the z direction (S8).
그리고 나서 제2작업대(12-2)를 다음 사용될 금속판재 두께만큼 +Z 방향으로 이송시킨다(S9).Then, the second working table 12-2 is transferred in the + Z direction by the thickness of the metal plate to be used next (S9).
단계(S9) 이후, 연산 제어부(11)는 모든 작업에 대한 완료 여부를 판단하여(S12), 완료되지 않은 경우 단계(S3)로 회귀하여 단계(S3) 내지 단계(S9)의 과정을 반복적으로 수행한다. After step S9, the operation control unit 11 determines whether all tasks have been completed (S12), and if not completed, returns to step S3 to repeat the process of steps S3 to S9 repeatedly. Perform.
즉, 단면 데이터와 각도 데이터 연산, 수치 제어장치(13)에서 금속판재(1)를 진공흡착판(10-2)이 설치된 전극 장치(10)를 이용하여 작업대(12)로 이송 명령, 수치 제어 장치(13)에서 진공흡착판이 설치된 전극 장치(10)을 이용하여 금속판재(1)에 대한 용접 명령, 적층 되어진 금속판재를 절단하며, 절단되고 남은 금속판재(1)를 진공흡착판이 설치된 전극이 들어올려 밖으로 배출, 새로운 금속판재(1)를 작업대(12)로 유입, 작업대(12)를 금속판재(1) 두께만큼 z축으로 이송 과정을 반복 수행한다.In other words, the cross-sectional data and the angle data calculation, the numerical control device 13 transfers the metal plate 1 to the work table 12 using the electrode device 10 provided with the vacuum suction plate 10-2, the numerical control device In (13), a welding command for the metal sheet material 1 is cut using the electrode device 10 provided with the vacuum adsorption plate, and the stacked metal sheet material is cut, and the remaining metal sheet material 1 contains the electrode provided with the vacuum absorption plate. Lift out and out, the new metal sheet 1 is introduced into the work table 12, and the work table 12 is repeatedly transferred to the z-axis by the thickness of the metal plate 1.
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.Although the present invention has been described with reference to the accompanying drawings, it is merely one example of various embodiments including the gist of the present invention, which can be easily implemented by those skilled in the art. It is clear that the present invention is not limited to the above-described embodiment only. Therefore, the protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent to the change, substitution, substitution, etc. within the scope not departing from the gist of the present invention shall be the right of the present invention. It will be included in the scope. In addition, some of the components of the drawings are intended to more clearly describe the configuration, and it is clear that the exaggerated or reduced size is provided.

Claims (11)

  1. 경사각을 갖는 등고선 형태의 금속판재의 윗 단면과 아랫 단면의 각도 데이터를 추출하는 연산 제어부(11);An arithmetic control unit 11 for extracting angle data of an upper cross section and a lower cross section of the contour-shaped metal sheet having an inclination angle;
    준비된 판재와 절단되고 남은 판재를 이송하는 진공 흡착판(10-2)이 설치된 전극 장치(10);An electrode device (10) provided with a vacuum suction plate (10-2) for transferring the prepared sheet material and the cut sheet material remaining;
    이송되어진 금속판재를 전기 저항 용접하여 고정시키는 진공흡착판이 설치된 용접 전극 장치(10)와, 3차원 캐드 데이터에 따라 경사 절단을 할 수 있는 절단 헤드셋(13b) 및 레이저 발진 장치(13c)를 포함한 수치 제어 장치(13); 및 Numerical value including a welding electrode device 10 provided with a vacuum suction plate for fixing the transferred metal sheet material by electric resistance welding, a cutting headset 13b and a laser oscillation device 13c capable of oblique cutting according to three-dimensional CAD data. Control device 13; And
    준비된 금속판재를 -z 또는 +z 방향으로 이송시키는 작업대(12-1, 12-1)을 포함하되, Including the work platform (12-1, 12-1) for transferring the prepared metal sheet in the -z or + z direction,
    상기 각도 데이터는 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 x축과 이루는 각(b)과 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 z축과 이루는 각(a)이고,The angle data is an angle (b) where the normal connecting the outline of the upper and lower cross sections form an x-axis, and an angle (a) the normal connecting the outline of the upper cross-section and the lower cross section forming a z-axis,
    상기 윗단면은 적층된 금속판재의 높이 및 3차원 캐드 데이터에 따라 결정되는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The upper end surface is a three-dimensional metal plate manufacturing system using a metal plate of different thicknesses, characterized in that determined according to the height of the laminated metal plate and the three-dimensional CAD data.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 연산제어부는 적층 단면의 두께를 구하는 방식으로 금속 구조물에 해당하는 3차원 캐드 데이터(cad data)로부터 적층 단면이 직선구간과 곡선 구간을 미리 검색하고 직선 구간은 사용될 금속판재의 가장 두꺼운 판재로 단일 두께와 판재 두께의 조합이 두꺼운 순으로 적층 높이를 결정하여 단면을 구하며, 곡선 구간은 적층 단면의 커브와 두 단면을 잇는 경사선분으로 허용 오차를 만족하는 두께를 연산하여 이 값에 근사치를 갖는 사용할 금속판재의 두께나 판재의 조합된 두께로 다음단면의 높이로 결정하여 윗 단면을 구하는 방법으로 연산하는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The operation control unit retrieves the straight section and the curved section of the laminated section in advance from the three-dimensional CAD data corresponding to the metal structure by obtaining the thickness of the laminated section, and the straight section is the thickest sheet of the metal sheet to be used. The combination of thickness and sheet thickness determines the stacking height in order of thickness, and the cross section is obtained.The curved section is the curve of the stacked section and the inclined line connecting the two cross sections. 3D metal plate production system using a metal plate of different thicknesses, characterized in that the calculation of the upper cross-section by determining the height of the next section by the thickness of the metal plate or the combined thickness of the plate.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 연산제어부는 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 x축과 이루는 각(b)과 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 z축과 이루는 각(a)를 구하는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The calculation control unit obtains an angle (b) where the normal connecting the outline of the upper cross section and the lower cross section forms an x-axis, and an angle (a) the normal connecting the outline of the upper cross section and the lower cross section forms a z-axis. Three-dimensional metal sheet production system using metal sheets of different thickness.
  4. 제1항에 있어서,The method of claim 1,
    상기 금속판재는 금속분말이 코팅되어 돌기가 형성되고 두께 0.05mm 내지 10 mm범위의 두께를 갖는 여러 가지 두께의 금속판재를 조합하여 사용하며, 1 mm 이하의 두께는 여러 장의 금속판재를 미리 부분 용접하여 한 장으로 사용하거나, 제품의 크기에 따라 가로 세로 사이즈로 미리 절단한 후 상기 연산제어부에서 산출한 순서대로 배열된 상태로 사용하는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템. The metal plate material is coated with metal powder to form protrusions and use a combination of metal plates of various thicknesses having a thickness in the range of 0.05 mm to 10 mm, the thickness of less than 1 mm in advance by partially welding a plurality of metal plates 3D metal plate fabrication using metal sheets of different thicknesses, characterized in that they are used in one sheet or in a state of cutting in a horizontal and vertical size according to the size of the product and arranged in the order calculated by the operation control unit. system.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 금속판재는 금속분말을 코팅하여 돌기를 형성한 금속판재로서 금속분말과 판재의 비율은 라미네이팅(laminating) 전의 금속입자 평균경(d)과 라미네이팅 후의 수직막 두께(t)의 비가 1.2≤d/t≤2.5인 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The metal sheet is a metal sheet coated with metal powder to form protrusions. The ratio of the metal powder and the sheet is 1.2 ≦ d / t in the ratio of the average particle diameter (d) of the metal particles before laminating and the thickness of the vertical film (t) after laminating. 3D metal plate production system using a metal plate of different thickness, characterized in that ≤2.5.
  6. 제1항에 있어서,The method of claim 1,
    상기 전극 장치(10)는 금속판재의 이송 및 절단 후의 잔여 판재를 배출하는 역할을 하는 진공흡착판이 설치된 전극 장치로 구성됨을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The electrode device 10 is a three-dimensional metal plate production system using a metal plate material having a different thickness, characterized in that consisting of an electrode device provided with a vacuum adsorption plate that serves to discharge the remaining plate material after the transfer and cutting of the metal plate material.
  7. 제1항에 있어서,The method of claim 1,
    상기 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템은,The three-dimensional metal sheet production system using the metal plate of the different thickness,
    한 장의 금속판재를 진공 흡착판이 설치된 전극 장치(10)를 이용하여 이송 명령에 따라 이송을 완료하며, 상기 수치 제어장치는 진공 흡착판이 설치된 전극 장치(10)을 사용하여 전기 저항 용접하고 원점 복귀하며, 상기 절단 헤드셋을 사용하여 3차원 캐드 데이터에 의해 설정된 절단 궤적에 따라 경사 절단을 수행하고 원점 복귀하며 절단되고 남은 금속판재를 상기 진공 흡착판 또는 자석판 중 하나로 구성되는 이송판을 통해 외부로 배출하며, 새로운 금속판재를 상기 작업대로 유입 후 작업대를 금속판재의 두께나 판재의 조합된 두께만큼 z축으로 이송되도록 제어하는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The transfer of a sheet of metal sheet material is completed according to a transfer command using an electrode device 10 provided with a vacuum suction plate, and the numerical controller uses the electrode device 10 provided with a vacuum suction plate for electric resistance welding and returns to the origin. Using the cutting headset, the inclined cutting is carried out according to the cutting trajectory set by the three-dimensional CAD data, and the home is returned to the outside through a transfer plate composed of one of the vacuum suction plate and the magnetic plate. 3D metal plate production system using a metal plate of different thicknesses, characterized in that for controlling the transfer to the z-axis by the thickness of the metal plate or the combined thickness of the plate after introducing a new metal plate to the workbench.
  8. 제1항에 있어서,The method of claim 1,
    상기 수치 제어장치는 상기 진공흡착판이 설치된 전극 장치(10)와 별도의 절단 헤드셋을 장착하여 용접과 절단작업을 반복 수행하는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.The numerical control device is a three-dimensional metal plate manufacturing system using a metal plate of different thicknesses, characterized in that the welding and cutting operations are repeated by mounting a separate cutting headset and the electrode device 10 is installed with the vacuum suction plate.
  9. 제1항에 있어서,The method of claim 1,
    상기 절단 헤드셋은, The cutting headset,
    스팟 사이즈(spot size)를 조절할 수 있는 절단 헤드셋 또는 경사각 절삭 엔드밀(tappered endmill)을 사용하는 절삭 헤드셋인 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템.A three-dimensional metal sheet manufacturing system using metal sheets of different thicknesses, characterized in that the cutting headset can adjust the spot size or the cutting headset using a tapered endmill.
  10. 연산 제어부가 3차원 금속 구조물에 해당하는 금속판재의 3차원 캐드 데이터(cad data)의 적층 단면이 직선구간과 곡선 구간을 미리 검색하고, 직선 구간은 사용될 금속판재의 두께와 판재 두께의 조합이 두꺼운 순으로 적층 높이를 결정하여 단면을 구하며, 곡선 구간은 적층 단면 사이의 경사선분과 적층 방향의 단면의 커브와의 허용 오차(δ)를 만족하는 값으로 적층 높이를 연산하고 그 값에 해당하는 근사치의 금속판재의 두께 또는 조합된 판재의 두께로 아랫단면과 윗단면을 구하여 각도 데이터를 연산하는 제 1 단계;The calculation control section searches the straight section and the curved section of the laminated section of the three-dimensional CAD data of the metal sheet corresponding to the three-dimensional metal structure in advance, and the linear section has a thick combination of the sheet metal thickness and the sheet thickness to be used. The stack height is determined in order to obtain the cross section, and the curved section calculates the stack height at a value that satisfies the tolerance (δ) between the inclined line between the stack sections and the curve of the cross section in the stacking direction and approximates the corresponding value. A first step of calculating angle data by obtaining a lower cross section and an upper cross section based on the thickness of the metal sheet or the thickness of the combined sheet;
    상기 연산 제어부는 결정된 두께와 순서를 기록하는 제 2 단계;The operation control unit is a second step of recording the determined thickness and order;
    작업이 완료되었는지 판단하여(S11), 완료되지 않았다면 상기 제1단계 내지 제2단계를 반복하고, 완료되었다면 한 장의 금속판재를 진공흡착판이 설치된 전극장치를 이용하여 이송 명령에 따라 이송을 완료하는 제 3단계; It is determined whether the operation is completed (S11), and if it is not completed, repeats the first to second steps, and if it is completed, transfers a sheet of metal plate material according to a transfer command using an electrode device provided with a vacuum suction plate. Step 3;
    수치 제어 장치가 진공흡착판이 설치된 전극 장치(10)를 이용하여 금속판재에 대한 용접 명령을 수행하는 제 4단계;A fourth step in which the numerical control device performs a welding command for the metal sheet using the electrode device 10 provided with the vacuum suction plate;
    절단 헤드셋을 사용하기 위해 원점 보정하는 제 5단계; A fifth step of origin correction for using the cutting headset;
    용접되어 적층되어진 금속판재에 대하여 절단 헤드셋을 이용하여 절단을 수행하는 제 6단계;A sixth step of performing cutting with respect to the welded and stacked metal sheet using a cutting headset;
    다시 용접 헤드셋을 사용을 하기 위한 원점 보정하는 제 7단계;A seventh step of correcting the origin for using the welding headset again;
    상기 연산 제어부가 절단되고 남은 금속판재를 진공흡착판에 대한 제어를 통해 흡착하여 외부로 배출한 뒤, 새로운 금속판재를 제1작업대(12-1)로 유입 후 상기 제1작업대(12-1)를 금속판재의 두께나 판재의 조합된 두께만큼 -z축으로 이송하여 항상 일정 높이에서 용접 및 절단할 수 있도록 제어하는 제 8단계; 및After the operation control unit cuts the remaining metal sheet through the control of the vacuum adsorption plate and discharges it to the outside, new metal sheet is introduced into the first working table 12-1, and then the first working table 12-1 is opened. An eighth step of controlling the metal sheet to be welded and cut at a predetermined height by transferring the thickness of the metal sheet or the combined thickness of the sheet to the -z axis; And
    제2작업대(12-2)를 다음 사용될 금속판재 두께만큼 +z 방향으로 이송시키는 제9단계;를 포함하되, And a ninth step of transferring the second working table 12-2 in the + z direction by the thickness of the metal plate to be used next.
    상기 각도데이터는 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 x축과 이루는 각(b)과 상기 윗단면과 아랫 단면의 외곽선을 잇는 법선이 z축과 이루는 각(a)이고,The angle data is an angle (b) between the normal line connecting the upper cross section and the lower cross section to the x-axis and an angle (a) between the normal line connecting the outline between the upper cross-section and the lower cross section to the z-axis,
    상기 윗단면은 적층된 금속판재의 높이 및 3차원 캐드 데이터에 따라 결정되는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 방법.The upper end surface is a three-dimensional metal plate manufacturing method using a metal plate of a different thickness, characterized in that determined according to the height of the laminated metal plate and the three-dimensional CAD data.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 제 1단계 내지 제 2단계는 최종 단면을 얻을 때까지 반복 수행하는 것을 특징으로 하는 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작방법.The first step to the second step is a three-dimensional metal plate manufacturing method using a metal plate of a different thickness, characterized in that it is repeatedly performed until a final cross section is obtained.
PCT/KR2014/010894 2014-07-31 2014-11-13 System and method for manufacturing three-dimensional metal plate using metal plates having different thicknesses WO2016017861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140098286A KR101503719B1 (en) 2014-07-31 2014-07-31 Method and system for manufacturing 3D metallic plate using metallic plate of different thickness
KR10-2014-0098286 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017861A1 true WO2016017861A1 (en) 2016-02-04

Family

ID=53027911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010894 WO2016017861A1 (en) 2014-07-31 2014-11-13 System and method for manufacturing three-dimensional metal plate using metal plates having different thicknesses

Country Status (2)

Country Link
KR (1) KR101503719B1 (en)
WO (1) WO2016017861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109352176A (en) * 2018-12-18 2019-02-19 江苏镭电嘉成激光科技有限公司 A kind of ultrahigh speed 3D printing technique of metal parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918328A (en) * 2022-04-22 2022-08-19 苏州市铁塔机械制造有限公司 Plastically formed double-layer rivet welding metal plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0151344B1 (en) * 1995-12-28 1998-10-15 김태구 Portable molding device
KR20000054896A (en) * 1999-02-01 2000-09-05 황해웅 Method and apparatus for making prototyping parts by seam welding
JP2002137028A (en) * 2000-10-27 2002-05-14 Hisao Yamazaki Manufacturing system for laminated mold
KR20030004638A (en) * 2001-07-06 2003-01-15 한국과학기술원 Transfer Type Variable Lamination Manufacturing by using Linear Heat Cutting System And Apparatus Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0151344B1 (en) * 1995-12-28 1998-10-15 김태구 Portable molding device
KR20000054896A (en) * 1999-02-01 2000-09-05 황해웅 Method and apparatus for making prototyping parts by seam welding
JP2002137028A (en) * 2000-10-27 2002-05-14 Hisao Yamazaki Manufacturing system for laminated mold
KR20030004638A (en) * 2001-07-06 2003-01-15 한국과학기술원 Transfer Type Variable Lamination Manufacturing by using Linear Heat Cutting System And Apparatus Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109352176A (en) * 2018-12-18 2019-02-19 江苏镭电嘉成激光科技有限公司 A kind of ultrahigh speed 3D printing technique of metal parts

Also Published As

Publication number Publication date
KR101503719B1 (en) 2015-03-24

Similar Documents

Publication Publication Date Title
WO2016106603A1 (en) Electron beam melting and laser milling composite 3d printing apparatus
CN106216862B (en) A kind of composite manufacturing method and device subtracting material based on electric arc increasing material and high energy beam current
CN107768563A (en) Battery automatic assembling device and its assemble method
WO2016017861A1 (en) System and method for manufacturing three-dimensional metal plate using metal plates having different thicknesses
WO2020153541A1 (en) Glass manufacturing method for manufacturing thin cover glass
CN104001915A (en) Equipment for manufacturing large-size metal part in high energy beam additive manufacturing mode and control method of equipment
CN106041930A (en) Machining system with workpiece position compensation function and control method
WO2016204475A1 (en) Method for manufacturing three-dimensional shape
CN108380879A (en) Using laser as the wire feed 3D printer and its Method of printing of heat source
WO2016106607A1 (en) Laser melting and laser milling composite 3d printing apparatus
CN106032064A (en) 3D printing post-treatment technology based on FDM technology
CN103785833A (en) Multi-sprayer three-dimensional (3D) printing device for aluminum alloy plates
CN111403791A (en) Soft package lithium battery trial production line in glove box environment and production process thereof
KR20000008099A (en) Boards stacking form rapid prototyping method for minimizing after process
CN208052600U (en) Laser cladding head with range finding function
US20230155458A1 (en) Rotor assembly method and system employing central multi-tasking robotic system
CN208303880U (en) Using laser as the wire feed 3D printer of heat source
Borelli Kinematic and dynamic analysis of a machine for additive manufacturing
CN206192280U (en) Lamination machine location detection platform
CN105436752B (en) A kind of large-scale synthesis type Intelligent welding robot integral type control system
CN209786169U (en) Full-automatic assembly production line for isolator and circulator
WO2009145595A2 (en) Method for repairing tire mold by utilizing cold spray process
CN114850499B (en) Novel clay-based composite material supporting and printing device and method for arc 3D printing
WO2010104287A2 (en) Method for manufacturing a graphite electrode for a base mold for forming an injection mold
KR20190036798A (en) Method for calculating metal powder supply rate of 3d printer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898391

Country of ref document: EP

Kind code of ref document: A1