WO2016017841A1 - Système de gestion de durée de vie de tuyau associé à un appareil de mesure de déplacement tridimensionnel - Google Patents

Système de gestion de durée de vie de tuyau associé à un appareil de mesure de déplacement tridimensionnel Download PDF

Info

Publication number
WO2016017841A1
WO2016017841A1 PCT/KR2014/007073 KR2014007073W WO2016017841A1 WO 2016017841 A1 WO2016017841 A1 WO 2016017841A1 KR 2014007073 W KR2014007073 W KR 2014007073W WO 2016017841 A1 WO2016017841 A1 WO 2016017841A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
stress
data
dimensional displacement
coefficient
Prior art date
Application number
PCT/KR2014/007073
Other languages
English (en)
Korean (ko)
Inventor
조선영
전현익
하승우
김화수
황원식
Original Assignee
케이.엘.이.에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이.엘.이.에스 주식회사 filed Critical 케이.엘.이.에스 주식회사
Publication of WO2016017841A1 publication Critical patent/WO2016017841A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/60Investigating resistance of materials, e.g. refractory materials, to rapid heat changes

Definitions

  • the present invention relates to a pipe life management system associated with a three-dimensional displacement measuring apparatus, and more particularly, to a system for managing the life of a pipe installed in a thermal power plant.
  • Power generation pipe is connected to welding parts such as Y-piece, By-pass line, valve, etc. and carries high temperature and high pressure steam, so stress concentration is high. Exposed to abnormal displacement, creep, fatigue damage, etc., most of the pipe accidents occur in the offshore area.
  • the diagnosis and management of the equipment through the evaluation of the damage and the life of the equipment are essential elements in the life extension of the equipment.
  • FatiguePro a fatigue monitoring system for stress-based fatigue analysis, to prepare for continued operation of nuclear power plants, and in 1997, based on the window system Modifications were obtained from the Nuclear Regulatory Commission with the addition of the transient state factor, actual operating transient based fatigue analysis and fatigue crack growth assessment modules.
  • FatiguePro is commercially available in 45 US, Taiwan 6, 3 Spain, and 1 Korea (Gring # 1) applications where the nuclear power plant is approved for continued operation.
  • the present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to provide a pipe life management system that can significantly increase the effectiveness of pipe life management through accurate identification of fatigue damage and creep damage to pipe weaknesses It aims to provide.
  • the thermal stress calculation unit for calculating the thermal stress over time at any point of the pipe measured by the three-dimensional displacement measuring device;
  • a creep data calculator configured to calculate creep data based on a stress caused by a mechanical load;
  • a coefficient of use data calculation unit for calculating a principal stress over time from a sum of thermal stress and stress due to mechanical load, and calculating cumulative coefficient of use data over time from the main stress;
  • a pipe life prediction unit for predicting pipe life from cumulative usage coefficient data and creep data, and provides a pipe life management system in connection with three-dimensional displacement measurement.
  • thermal stress is a stress due to a temperature gradient generated on the pipe wall surface with time.
  • thermal stress is calculated by numerically integrating the stress according to the temperature gradient with time.
  • the stress due to the mechanical load is the product of the operating pressure value and the moment value.
  • the stress due to the mechanical load is the elastic maximum stress of the pipe installed in the thermal power plant when the thermal power plant is operating normally.
  • the coefficient of use data calculation unit calculates the coefficient of use by counting the alternating cycle of the main stress over time, and accumulates the coefficient of use over time to calculate the accumulated coefficient of use data.
  • FIG. 1 is a block diagram of a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the server of FIG. 1.
  • FIG. 3 is a monitoring screen of a client terminal in a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram for explaining the thermal stress over time at any point of the pipe according to an embodiment of the present invention.
  • 5 is a schematic view for explaining the stress caused by the mechanical load.
  • a pipe life management system using three-dimensional displacement measurement includes at least one three-dimensional displacement measuring apparatus 110, 120, and 130, a server 200, and at least one client terminal 310, 320, and 330. It includes.
  • At least one three-dimensional displacement measuring device (110, 120, 130) is connected to each other by RS-232 communication, one of these three-dimensional displacement measuring device 130 is connected to the server 200 by RS-232 communication It is.
  • FIG. 1 shows that the server 200 is connected to the third 3D displacement measuring apparatus 130 shown at the bottom, this is only an example, and the server 200 is connected to other 3D displacement measuring apparatuses 110 and 120. Can be connected.
  • three three-dimensional displacement measuring apparatus (110, 120, 130) is shown in FIG. 1, this is only an example and the number is not limited to a specific number.
  • the server 200 is connected to the first client terminal 310 and the second client terminal 320 through the switch 10 through TCP communication, and the third client terminal 330 through the intranet through TCP communication. Is connected to.
  • the third client terminal 330 is a client terminal remotely connected to the server 200.
  • the number of client terminals connected through the switch 10 and the client terminals connected through the intranet 30 are not limited to a specific number.
  • the server 200 includes a thermal stress calculator 210, a mechanical stress database 220, a creep data calculator 230, a coefficient of use data calculator 240, and a pipe life predictor 250. Include.
  • the thermal stress calculation unit 210 calculates thermal stress over time at any point of the pipe measured by the three-dimensional displacement measuring apparatus. Since the three-dimensional displacement measuring apparatus is known and disclosed in detail in Korean Patent Laid-Open Publication No. 2005-0023980 or 2005-0069222, detailed description thereof will be omitted here.
  • the piping may be, for example, piping in a piping system such as main steam or reheat steam of a thermal power plant, but is not limited thereto.
  • the screen shown in FIG. 3 may be viewed.
  • blue, yellow, and red are main steam, hot reheat, and cold reheat lines of thermal power plants, respectively, and the device shown as No. is the position of the three-dimensional displacement measuring device.
  • the thermal stress over time at any point in the pipe as shown in Figure 4 is calculated as in Equation 1.
  • thermal stress is a stress according to the temperature gradient generated on the pipe wall with time, and is calculated by numerically integrating the stress according to the temperature gradient with time.
  • Thermal stress varies with the convective heat transfer coefficient of the pipe.
  • the mechanical stress database 220 calculates the stress due to the mechanical load at any point of the pipe measured by the three-dimensional displacement measuring apparatus.
  • the stress due to the mechanical load is the maximum elastic stress of the pipe installed in the thermal power plant when the thermal power plant is in normal operation.
  • the stress due to the mechanical load may be expressed as a product of the operating pressure value and the moment value of the thermal power plant or may be calculated as in Equation 2 with reference to FIG. 3.
  • the creep data calculator 230 calculates creep data based on the stress caused by the mechanical load calculated in the mechanical stress database 220. Creep is a phenomenon in which an object deforms slowly over time under a constant deformation force. The higher the temperature and the higher the deformation force, the faster the deformation.
  • the coefficient of use data calculation unit 240 calculates the main stress over time as shown in Equation 3 from the sum of the thermal stress calculated by the thermal stress calculator 210 and the mechanical load calculated by the mechanical stress database 220. From the main stress, the cumulative usage coefficient data is calculated over time. When calculating the cumulative use coefficient data, the use coefficient data calculation unit 240 calculates the use coefficient by counting the alternating cycle of the main stress over time, and calculates the accumulated use coefficient data by accumulating the use coefficient over time.
  • the pipe life predicting unit 250 predicts the service life of the pipe from the cumulative use coefficient data calculated by the use coefficient data calculating unit 240 and the creep data calculated by the creep data calculating unit 230. In other words, it can be predicted that the greater the cumulative usage coefficient data or creep data, the shorter the life span. Cumulative usage coefficient data or creep data is stored in a database.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

La présente invention concerne un système de gestion de la durée de vie d'un tuyau associé à un appareil de mesure de déplacement tridimensionnel, qui comprend: une unité de calcul de contrainte thermique pour calculer la contrainte thermique sur un temps au niveau d'un point prédéterminé d'un tuyau mesuré par l'appareil de mesure de déplacement tridimensionnel; une base de données de contraintes mécaniques qui comprend des données de l'appareil de mesure de déplacement tridimensionnel et calcule des contraintes dues à une charge mécanique au niveau du point prédéterminé mesuré du tuyau; une unité de calcul de données de fluage pour calculer des données de fluage sur la base de la contrainte exercée par la charge mécanique; une unité de calcul des données de coefficient d'utilisation pour calculer une contrainte principale sur un temps donné à partir de la contrainte exercée par la contrainte thermique et la charge mécanique, et calculer des données de coefficient d'utilisation cumulé sur un temps à partir de la contrainte principale; et une unité de prédiction de durée de vie de tuyau destinée à prédire une durée de vie du tuyau à partir du coefficient d'utilisation cumulé de données et des données au fluage. La présente invention permet d'accroître remarquablement l'efficacité de gestion de durée de vie d'un tuyau grâce à une recherche précise des dommages dus à la fatigue et des dommages dus au fluage par rapport à un point affaibli du tuyau, et de gérer une durée de vie en tenant compte de la contrainte thermique et du déplacement en liaison avec le déplacement du tuyau modifié par la chaleur.
PCT/KR2014/007073 2014-07-31 2014-07-31 Système de gestion de durée de vie de tuyau associé à un appareil de mesure de déplacement tridimensionnel WO2016017841A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0098283 2014-07-31
KR1020140098283A KR20160015694A (ko) 2014-07-31 2014-07-31 3차원 변위측정장치에 연계된 배관 수명관리시스템

Publications (1)

Publication Number Publication Date
WO2016017841A1 true WO2016017841A1 (fr) 2016-02-04

Family

ID=55217731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007073 WO2016017841A1 (fr) 2014-07-31 2014-07-31 Système de gestion de durée de vie de tuyau associé à un appareil de mesure de déplacement tridimensionnel

Country Status (2)

Country Link
KR (1) KR20160015694A (fr)
WO (1) WO2016017841A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252149A (zh) * 2022-02-25 2022-03-29 华电电力科学研究院有限公司 火电厂高低加疏放水管道振动损伤及寿命快速评估方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581072B1 (ko) * 2016-09-26 2023-09-22 한국전력공사 고온 배관의 수명 및 위험도 평가 방법
KR102350323B1 (ko) * 2021-04-21 2022-01-12 케이.엘.이.에스 주식회사 배관 하중 모니터링 시스템 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280599A (ja) * 2000-03-31 2001-10-10 Hitachi Ltd 発電プラント配管の寿命予測方法
JP2001305124A (ja) * 2000-04-19 2001-10-31 Mitsubishi Heavy Ind Ltd 金属材料の寿命評価方法
JP2003232719A (ja) * 2001-12-06 2003-08-22 Babcock Hitachi Kk 配管のクリープ損傷監視方法と装置
JP2007051954A (ja) * 2005-08-18 2007-03-01 Toshiba Corp プラント配管の寿命予測装置およびその寿命予測方法
KR20100117546A (ko) * 2010-09-10 2010-11-03 주식회사백상 크립피로등 운전환경이 반영되어 응력/변형율 기반으로 재평가된 고온고압배관 및 지지시스템의 신뢰성 평가 및 회복방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280599A (ja) * 2000-03-31 2001-10-10 Hitachi Ltd 発電プラント配管の寿命予測方法
JP2001305124A (ja) * 2000-04-19 2001-10-31 Mitsubishi Heavy Ind Ltd 金属材料の寿命評価方法
JP2003232719A (ja) * 2001-12-06 2003-08-22 Babcock Hitachi Kk 配管のクリープ損傷監視方法と装置
JP2007051954A (ja) * 2005-08-18 2007-03-01 Toshiba Corp プラント配管の寿命予測装置およびその寿命予測方法
KR20100117546A (ko) * 2010-09-10 2010-11-03 주식회사백상 크립피로등 운전환경이 반영되어 응력/변형율 기반으로 재평가된 고온고압배관 및 지지시스템의 신뢰성 평가 및 회복방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252149A (zh) * 2022-02-25 2022-03-29 华电电力科学研究院有限公司 火电厂高低加疏放水管道振动损伤及寿命快速评估方法
CN114252149B (zh) * 2022-02-25 2022-05-10 华电电力科学研究院有限公司 火电厂高低加疏放水管道振动损伤及寿命快速评估方法

Also Published As

Publication number Publication date
KR20160015694A (ko) 2016-02-15

Similar Documents

Publication Publication Date Title
CN108922123B (zh) 一种矿山边坡滑移稳定性监测预警方法
WO2016017841A1 (fr) Système de gestion de durée de vie de tuyau associé à un appareil de mesure de déplacement tridimensionnel
CN103926510A (zh) 一种电缆护层电流及载流量在线监测和故障诊断定位方法
WO2021075842A1 (fr) Procédé de maintenance prédictive d'équipement au moyen d'une carte de distribution
WO2013035918A1 (fr) Système pour surveiller une cuve de stockage de combustibles épuisés en temps réel et son procédé
KR101797078B1 (ko) 원자로노심보호계통 유지보수 시뮬레이션 장치 및 시스템
CN111964731A (zh) 一种管廊监测与告警装置及方法
CN110031126A (zh) 一种基于分布式光纤测温的电化学储能站预制舱内温度监控系统
KR20110015258A (ko) 열교환 증기 튜브의 크리프 및 감육 손상을 감시하기 위한 방법 및 시스템
CN103884473B (zh) 一种水冷系统的漏水判断方法
WO2019009462A1 (fr) Système de surveillance d'état de château de plomb pour combustible nucléaire épuisé
CN106932337B (zh) 多光纤光栅钢筋腐蚀传感器系统的数据处理方法
KR101353387B1 (ko) 변위센서를 이용한 통신 구조물 안전상태 감시 시스템
WO2015170904A1 (fr) Système de diagnostic à distance et procédé pour module photovoltaïque
CN104575640A (zh) 一种乏燃料水池液位及温度测量装置
CN104733061A (zh) 用于进行疲劳监测和疲劳评估的装置和方法
Anders et al. Real Time Monitoring of Power Cables by Fibre Optic Technologies. Tests, Applications and Outlook
CN111668926B (zh) 一种配网设备环网单元湿热气候服役微环境监测方法
Jones et al. Condition monitoring system for TransGrid 330 kV power cable
Poyser et al. On-line monitoring of power transformers
KR100553410B1 (ko) 배관의 3축 변위 계측장치 및 모니터링 시스템
JP2013140080A (ja) 計器健全性判定装置及び方法
WO2021085764A1 (fr) Dispositif de mesure de quantités résiduelles dans un récipient haute pression stockant un gaz liquéfié, et système de gestion de récipient haute pression dans lequel celui-ci est monté
RU2733057C1 (ru) Комплекс системы контроля защитной оболочки энергоблока атомной электростанции
Anoop et al. Thermal stress monitoring and pre-fault detection system in power transformers using fibre optic technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898530

Country of ref document: EP

Kind code of ref document: A1