WO2016017841A1 - Pipe lifespan management system associated with three dimensional displacement measurement apparatus - Google Patents
Pipe lifespan management system associated with three dimensional displacement measurement apparatus Download PDFInfo
- Publication number
- WO2016017841A1 WO2016017841A1 PCT/KR2014/007073 KR2014007073W WO2016017841A1 WO 2016017841 A1 WO2016017841 A1 WO 2016017841A1 KR 2014007073 W KR2014007073 W KR 2014007073W WO 2016017841 A1 WO2016017841 A1 WO 2016017841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- stress
- data
- dimensional displacement
- coefficient
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 45
- 238000005259 measurement Methods 0.000 title claims abstract description 15
- 230000035882 stress Effects 0.000 claims abstract description 46
- 230000008646 thermal stress Effects 0.000 claims abstract description 30
- 238000004364 calculation method Methods 0.000 claims abstract description 11
- 230000001186 cumulative effect Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 3
- 238000011835 investigation Methods 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004613 tight binding model Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/32—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/60—Investigating resistance of materials, e.g. refractory materials, to rapid heat changes
Definitions
- the present invention relates to a pipe life management system associated with a three-dimensional displacement measuring apparatus, and more particularly, to a system for managing the life of a pipe installed in a thermal power plant.
- Power generation pipe is connected to welding parts such as Y-piece, By-pass line, valve, etc. and carries high temperature and high pressure steam, so stress concentration is high. Exposed to abnormal displacement, creep, fatigue damage, etc., most of the pipe accidents occur in the offshore area.
- the diagnosis and management of the equipment through the evaluation of the damage and the life of the equipment are essential elements in the life extension of the equipment.
- FatiguePro a fatigue monitoring system for stress-based fatigue analysis, to prepare for continued operation of nuclear power plants, and in 1997, based on the window system Modifications were obtained from the Nuclear Regulatory Commission with the addition of the transient state factor, actual operating transient based fatigue analysis and fatigue crack growth assessment modules.
- FatiguePro is commercially available in 45 US, Taiwan 6, 3 Spain, and 1 Korea (Gring # 1) applications where the nuclear power plant is approved for continued operation.
- the present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to provide a pipe life management system that can significantly increase the effectiveness of pipe life management through accurate identification of fatigue damage and creep damage to pipe weaknesses It aims to provide.
- the thermal stress calculation unit for calculating the thermal stress over time at any point of the pipe measured by the three-dimensional displacement measuring device;
- a creep data calculator configured to calculate creep data based on a stress caused by a mechanical load;
- a coefficient of use data calculation unit for calculating a principal stress over time from a sum of thermal stress and stress due to mechanical load, and calculating cumulative coefficient of use data over time from the main stress;
- a pipe life prediction unit for predicting pipe life from cumulative usage coefficient data and creep data, and provides a pipe life management system in connection with three-dimensional displacement measurement.
- thermal stress is a stress due to a temperature gradient generated on the pipe wall surface with time.
- thermal stress is calculated by numerically integrating the stress according to the temperature gradient with time.
- the stress due to the mechanical load is the product of the operating pressure value and the moment value.
- the stress due to the mechanical load is the elastic maximum stress of the pipe installed in the thermal power plant when the thermal power plant is operating normally.
- the coefficient of use data calculation unit calculates the coefficient of use by counting the alternating cycle of the main stress over time, and accumulates the coefficient of use over time to calculate the accumulated coefficient of use data.
- FIG. 1 is a block diagram of a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention.
- FIG. 2 is a configuration diagram of the server of FIG. 1.
- FIG. 3 is a monitoring screen of a client terminal in a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention.
- Figure 4 is a schematic diagram for explaining the thermal stress over time at any point of the pipe according to an embodiment of the present invention.
- 5 is a schematic view for explaining the stress caused by the mechanical load.
- a pipe life management system using three-dimensional displacement measurement includes at least one three-dimensional displacement measuring apparatus 110, 120, and 130, a server 200, and at least one client terminal 310, 320, and 330. It includes.
- At least one three-dimensional displacement measuring device (110, 120, 130) is connected to each other by RS-232 communication, one of these three-dimensional displacement measuring device 130 is connected to the server 200 by RS-232 communication It is.
- FIG. 1 shows that the server 200 is connected to the third 3D displacement measuring apparatus 130 shown at the bottom, this is only an example, and the server 200 is connected to other 3D displacement measuring apparatuses 110 and 120. Can be connected.
- three three-dimensional displacement measuring apparatus (110, 120, 130) is shown in FIG. 1, this is only an example and the number is not limited to a specific number.
- the server 200 is connected to the first client terminal 310 and the second client terminal 320 through the switch 10 through TCP communication, and the third client terminal 330 through the intranet through TCP communication. Is connected to.
- the third client terminal 330 is a client terminal remotely connected to the server 200.
- the number of client terminals connected through the switch 10 and the client terminals connected through the intranet 30 are not limited to a specific number.
- the server 200 includes a thermal stress calculator 210, a mechanical stress database 220, a creep data calculator 230, a coefficient of use data calculator 240, and a pipe life predictor 250. Include.
- the thermal stress calculation unit 210 calculates thermal stress over time at any point of the pipe measured by the three-dimensional displacement measuring apparatus. Since the three-dimensional displacement measuring apparatus is known and disclosed in detail in Korean Patent Laid-Open Publication No. 2005-0023980 or 2005-0069222, detailed description thereof will be omitted here.
- the piping may be, for example, piping in a piping system such as main steam or reheat steam of a thermal power plant, but is not limited thereto.
- the screen shown in FIG. 3 may be viewed.
- blue, yellow, and red are main steam, hot reheat, and cold reheat lines of thermal power plants, respectively, and the device shown as No. is the position of the three-dimensional displacement measuring device.
- the thermal stress over time at any point in the pipe as shown in Figure 4 is calculated as in Equation 1.
- thermal stress is a stress according to the temperature gradient generated on the pipe wall with time, and is calculated by numerically integrating the stress according to the temperature gradient with time.
- Thermal stress varies with the convective heat transfer coefficient of the pipe.
- the mechanical stress database 220 calculates the stress due to the mechanical load at any point of the pipe measured by the three-dimensional displacement measuring apparatus.
- the stress due to the mechanical load is the maximum elastic stress of the pipe installed in the thermal power plant when the thermal power plant is in normal operation.
- the stress due to the mechanical load may be expressed as a product of the operating pressure value and the moment value of the thermal power plant or may be calculated as in Equation 2 with reference to FIG. 3.
- the creep data calculator 230 calculates creep data based on the stress caused by the mechanical load calculated in the mechanical stress database 220. Creep is a phenomenon in which an object deforms slowly over time under a constant deformation force. The higher the temperature and the higher the deformation force, the faster the deformation.
- the coefficient of use data calculation unit 240 calculates the main stress over time as shown in Equation 3 from the sum of the thermal stress calculated by the thermal stress calculator 210 and the mechanical load calculated by the mechanical stress database 220. From the main stress, the cumulative usage coefficient data is calculated over time. When calculating the cumulative use coefficient data, the use coefficient data calculation unit 240 calculates the use coefficient by counting the alternating cycle of the main stress over time, and calculates the accumulated use coefficient data by accumulating the use coefficient over time.
- the pipe life predicting unit 250 predicts the service life of the pipe from the cumulative use coefficient data calculated by the use coefficient data calculating unit 240 and the creep data calculated by the creep data calculating unit 230. In other words, it can be predicted that the greater the cumulative usage coefficient data or creep data, the shorter the life span. Cumulative usage coefficient data or creep data is stored in a database.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
The present invention relates to a pipe lifespan management system associated with a three-dimensional displacement measurement apparatus, which comprises: a thermal stress calculation unit for calculating thermal stress over a time at a predetermined point of a pipe measured through the three-dimensional displacement measurement apparatus; a mechanical stress database which includes data of the three-dimensional displacement measurement apparatus and calculates stress by a mechanical load at the measured predetermined point of the pipe; a creep data calculation unit for calculating creep data on the basis of the stress by the mechanical load; a use coefficient data calculation unit for calculating principal stress over a time from the stress by the thermal stress and the mechanical load and calculating accumulated use coefficient data over a time from the principal stress; and a pipe lifespan prediction unit for predicting a lifespan of the pipe from the accumulated use coefficient data and the creep data. The present invention can remarkably increase effectiveness of pipe lifespan management through accurate investigation of fatigue damage and creep damage with respect to a weakened point of the pipe, and manage a lifespan by considering the thermal stress and displacement in connection with displacement of the pipe changed by heat.
Description
본 발명은 3차원 변위측정장치에 연계된 배관 수명관리시스템에 관한 것으로, 특히 화력발전소에 설치된 배관의 수명을 관리하는 시스템에 관한 것이다.The present invention relates to a pipe life management system associated with a three-dimensional displacement measuring apparatus, and more particularly, to a system for managing the life of a pipe installed in a thermal power plant.
국내 화력발전소 중 30~40년 이상 가동해 온 노후화된 발전소의 증가로 이들을 위한 잔여수명 평가법이 중요하게 대두되고 있으나 대부분의 감시 및 진단을 위한 시스템은 발전기, 터빈, 보일러, 펌프 등의 설비로 국한되어 적용되고 있다.As the number of aging power plants in Korea has been operating for more than 30 to 40 years, the remaining life assessment method is important for them. However, most systems for monitoring and diagnosis are limited to facilities such as generators, turbines, boilers, and pumps. Has been applied.
발전소의 불시 정지를 초래하는 배관사고는 빈번하게 발생하고 있으나 발전기, 터빈, 보일러 등에 비해 수명관리를 위한 감시 및 진단을 위한 기술이 상대적으로 미비한 실정이다.Plumbing accidents that cause sudden stops of power plants occur frequently, but technology for monitoring and diagnosis for life management is relatively inadequate compared to generators, turbines, and boilers.
발전용 배관은 Y-piece, By-pass line, valve 등의 부품과 용접으로 연결되어 있고 고온 및 고압의 증기를 운반하므로 응력집중이 높다. 이상 변위, 크리프, 피로 손상 등에 노출되어 있어 배관사고 대부분이 해상부위에서 발생하고 있다.Power generation pipe is connected to welding parts such as Y-piece, By-pass line, valve, etc. and carries high temperature and high pressure steam, so stress concentration is high. Exposed to abnormal displacement, creep, fatigue damage, etc., most of the pipe accidents occur in the offshore area.
기존의 수명관리시스템은 설계데이터를 근거로 건설 당시의 대상위치만으로 설치부위가 한정되어 있어 배관의 총체적인 이상 변위와 크리프, 피로 등의 응력에 의한 손상확인이 제한적이다. 또한, 배관에 누적된 피로로 재료 내부의 구조적 변형을 초래하는 균열은 그에 따른 파손의 시기를 예측하기 어려우므로 경우에 따라서는 대형사고로 발전할 수도 있다.Existing life management system is limited to the installation site based on the design data only in the target position at the time of construction, so that damage confirmation due to stress such as total abnormal displacement, creep, and fatigue is limited. In addition, cracks that cause structural deformation inside the material due to fatigue accumulated in the pipe are difficult to predict when the resulting breakage may develop into a major accident in some cases.
설비의 신뢰성을 유지하고 장기간의 수명 및 주기 동안 안전운전을 수행하기 위해서는 설비의 손상 및 수명의 평가를 통한 설비의 진단 및 관리가 설비의 수명연장차원에서 필수적인 요소이다.In order to maintain the reliability of the equipment and to perform safe operation for a long life and cycle, the diagnosis and management of the equipment through the evaluation of the damage and the life of the equipment are essential elements in the life extension of the equipment.
본 발명과 관련된 종래기술로는 미국 SI(Structural Integrity Associates, Inc)에서 1988년 응력기반 피로해석용 피로감시시스템인 FatiguePro를 개발하여 원전의 계속운전에 대비하여 왔으며, 1997년에는 시스템을 Window 기반으로 수정하여 과도상태 자동계수, 실제 운전 과도상태 기반 피로해석 및 피로 균열 성장 평가 모듈을 추가하여 원자력 규제위원회(Nuclear Regulatory Commission)로부터 인허가를 취득하였다. FatiguePro는 원전의 계속운전 허가가 승인된 미국 45곳, 대만 6곳, 스페인 3곳, 한국 1곳(고리 1호기)에서 각각 상용화되고 있다.Conventional technology related to the present invention has been developed in the United States SI (Structural Integrity Associates, Inc) in 1988 to develop FatiguePro, a fatigue monitoring system for stress-based fatigue analysis, to prepare for continued operation of nuclear power plants, and in 1997, based on the window system Modifications were obtained from the Nuclear Regulatory Commission with the addition of the transient state factor, actual operating transient based fatigue analysis and fatigue crack growth assessment modules. FatiguePro is commercially available in 45 US, Taiwan 6, 3 Spain, and 1 Korea (Gring # 1) applications where the nuclear power plant is approved for continued operation.
이밖에도 미국 Westinghouse에서는 Westems, GE에서는 GEFMS, 프랑스 EDF에서는 Fatiguemeter, Framatom에서는 OTMS 그리고 독일 Siemens/KWU에서는 FAMOS를 개발하였다. 하지만, 국내에서는 배관 취약부에 대한 피로 및 크리프 손상의 정확한 규명을 위한 현장 실무자용 프로그램 개발연구는 시도된 적이 없으며, 일부 화력발전소에는 열응력 모니터링 시스템을 적용하고 있지만 배관 수명 관리측면에서의 실효성은 현저히 저하된다. 또한, 기존에 개발된 배관 수명 평가 시스템은 열에 의해 변하는 배관의 변위와는 연계가 되지 않는 시스템으로 미시적(열응력)/거시적(변위) 관점을 연계하여 모니터링하는 수명관리시스템과는 차이가 있다.Other developments include Westems in Westinghouse, GEFMS in GE, Fatiguemeter in EDF in France, OTMS in Framatom and FAMOS in Siemens / KWU in Germany. However, there have been no attempts to develop a program for field practitioners in order to accurately identify fatigue and creep damage to weak pipes in Korea. Although some thermal power plants use a thermal stress monitoring system, the effectiveness in terms of pipe life management is remarkable. Degrades. In addition, the previously developed pipe life assessment system is not related to the heat displacement of the pipe displacement, which is different from the life management system that monitors the microscopic (thermal stress) / macroscopic (displacement) perspective monitoring.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 배관 취약부에 대한 피로 손상 및 크리프 손상의 정확한 규명을 통해 배관 수명 관리의 실효성을 현저히 증가시킬 수 있는 배관 수명관리시스템을 제공하는 것을 목적으로 한다.The present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to provide a pipe life management system that can significantly increase the effectiveness of pipe life management through accurate identification of fatigue damage and creep damage to pipe weaknesses It aims to provide.
또한, 본 발명에 따르면, 열에 의해 변하는 배관의 3차원 변위와 열응력 및 변위를 고려한 배관 수명관리 모니터링 시스템을 제공하는 것을 목적으로 한다.In addition, according to the present invention, it is an object of the present invention to provide a pipe life management monitoring system in consideration of the three-dimensional displacement, heat stress and displacement of the pipe is changed by heat.
본 발명의 실시예에 따르면, 3차원 변위측정장치를 통해 측정된 배관의 임의 지점에서의 시간에 따른 열응력을 연산하는 열응력 연산부; 기계적 하중에 의한 응력을 기반으로 크리프 데이터를 산출하는 크리프 데이터 산출부; 열응력과 기계적 하중에 의한 응력의 합으로부터 시간에 따른 주응력을 연산하고, 주응력으로부터 시간에 따른 누적 사용계수 데이터를 산출하는 사용계수 데이터 산출부; 및 누적 사용계수 데이터와 크리프 데이터로부터 배관의 수명을 예측하는 배관 수명 예측부를 포함하고 3차원 변위측정을 연계하여 배관 수명관리시스템을 제공한다.According to an embodiment of the invention, the thermal stress calculation unit for calculating the thermal stress over time at any point of the pipe measured by the three-dimensional displacement measuring device; A creep data calculator configured to calculate creep data based on a stress caused by a mechanical load; A coefficient of use data calculation unit for calculating a principal stress over time from a sum of thermal stress and stress due to mechanical load, and calculating cumulative coefficient of use data over time from the main stress; And a pipe life prediction unit for predicting pipe life from cumulative usage coefficient data and creep data, and provides a pipe life management system in connection with three-dimensional displacement measurement.
여기서, 열응력은 시간에 따라 배관 벽면에 발생한 온도 구배에 따른 응력이다.Here, thermal stress is a stress due to a temperature gradient generated on the pipe wall surface with time.
또한, 열응력은 온도 구배에 따른 응력을 시간에 따라 수치 적분하여 연산된다.In addition, thermal stress is calculated by numerically integrating the stress according to the temperature gradient with time.
또한, 열응력은 배관의 대류 열전달 계수에 따라 변한다.In addition, the thermal stress varies with the convective heat transfer coefficient of the pipe.
또한, 기계적 하중에 의한 응력은 운전압력값과 모멘트값의 곱이다.In addition, the stress due to the mechanical load is the product of the operating pressure value and the moment value.
또한, 기계적 하중에 의한 응력은 화력발전소가 정상운전되는 경우 화력발전소에 설치된 배관의 탄성 최대 응력이다.In addition, the stress due to the mechanical load is the elastic maximum stress of the pipe installed in the thermal power plant when the thermal power plant is operating normally.
또한, 사용계수 데이터 산출부는 시간에 따른 주응력의 교번주기를 카운팅하여 사용계수를 연산하고, 시간에 따라 사용계수를 누적하여 누적 사용계수 데이터를 산출한다.In addition, the coefficient of use data calculation unit calculates the coefficient of use by counting the alternating cycle of the main stress over time, and accumulates the coefficient of use over time to calculate the accumulated coefficient of use data.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims are not to be interpreted in a conventional and dictionary sense, and the inventors may appropriately define the concept of terms in order to best describe their own invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따르면, 배관 취약부에 대한 피로 손상 및 크리프 손상의 정확한 규명을 통해 배관 수명 관리의 실효성을 현저히 증가시킬 수 있다.According to the present invention, it is possible to significantly increase the effectiveness of pipe life management through accurate identification of fatigue damage and creep damage to pipe weaknesses.
또한, 본 발명에 따르면, 열에 의해 변하는 배관의 변위를 고려하고 열응력 및 변위를 고려한 수명 관리가 가능하다.In addition, according to the present invention, it is possible to consider the displacement of the pipe that is changed by heat, and to manage the lifetime considering the thermal stress and displacement.
도 1은 본 발명의 일 실시예에 따른 3차원 변위측정을 이용한 배관 수명관리시스템의 구성도이다. 1 is a block diagram of a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention.
도 2는 도 1의 서버의 구성도이다. 2 is a configuration diagram of the server of FIG. 1.
도 3은 본 발명의 일 실시예에 따른 3차원 변위측정을 이용한 배관 수명관리시스템에서 클라이언트 단말기의 모니터링 화면이다.3 is a monitoring screen of a client terminal in a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 배관의 임의 지점에서 시간에 따른 열응력을 설명하기 위한 개략도이다.Figure 4 is a schematic diagram for explaining the thermal stress over time at any point of the pipe according to an embodiment of the present invention.
도 5는 기계적 하중에 의한 응력을 설명하기 위한 개략도이다.5 is a schematic view for explaining the stress caused by the mechanical load.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In the following description, detailed descriptions of related well-known techniques that may unnecessarily obscure the subject matter of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 3차원 변위측정을 이용한 배관 수명관리시스템의 구성도이다. 도 1을 참조하면, 3차원 변위측정을 이용한 배관 수명관리시스템은 적어도 하나의 3차원 변위측정장치(110, 120, 130), 서버(200) 및 적어도 하나의 클라이언트 단말기(310, 320, 330)를 포함한다.1 is a block diagram of a pipe life management system using a three-dimensional displacement measurement according to an embodiment of the present invention. Referring to FIG. 1, a pipe life management system using three-dimensional displacement measurement includes at least one three-dimensional displacement measuring apparatus 110, 120, and 130, a server 200, and at least one client terminal 310, 320, and 330. It includes.
적어도 하나의 3차원 변위측정장치(110, 120, 130)는 서로 RS-232 통신으로 연결되어 있고, 이 중 하나의 3차원 변위측정장치(130)에는 서버(200)가 RS-232 통신으로 연결되어 있다. 도 1에서는 맨 아래에 도시된 제3 3차원 변위측정장치(130)에 서버(200)가 연결된 것을 나타내고 있지만 이것은 일 예에 불과한 것으로 다른 3차원 변위측정장치(110, 120)에 서버(200)가 연결될 수 있다. 또한, 도 1에는 3대의 3차원 변위측정장치(110, 120, 130)를 도시하였지만 이것도 일 예에 불과한 것으로 그 대수는 특정한 대수로 한정되지 않는다.At least one three-dimensional displacement measuring device (110, 120, 130) is connected to each other by RS-232 communication, one of these three-dimensional displacement measuring device 130 is connected to the server 200 by RS-232 communication It is. Although FIG. 1 shows that the server 200 is connected to the third 3D displacement measuring apparatus 130 shown at the bottom, this is only an example, and the server 200 is connected to other 3D displacement measuring apparatuses 110 and 120. Can be connected. In addition, although three three-dimensional displacement measuring apparatus (110, 120, 130) is shown in FIG. 1, this is only an example and the number is not limited to a specific number.
서버(200)는 TCP 통신으로 스위치(10)를 통해 제1 클라이언트 단말기(310)와 제2 클라이언트 단말기(320)에 연결되어 있고, TCP 통신으로 인트라넷(intranet)을 통해 제3 클라이언트 단말기(330)에 연결되어 있다. 제3 클라이언트 단말기(330)는 서버(200)에 원격으로 연결된 클라이언트 단말기이다. 여기서, 스위치(10)를 통해 연결된 클라이언트 단말기 및 인트라넷(30)을 통해 연결된 클라이언트 단말기의 대수는 특정한 대수로 한정되지 않는다.The server 200 is connected to the first client terminal 310 and the second client terminal 320 through the switch 10 through TCP communication, and the third client terminal 330 through the intranet through TCP communication. Is connected to. The third client terminal 330 is a client terminal remotely connected to the server 200. Here, the number of client terminals connected through the switch 10 and the client terminals connected through the intranet 30 are not limited to a specific number.
도 2는 도 1의 서버의 구성도이다. 도 2를 참조하면, 서버(200)는 열응력 연산부(210), 기계적 응력 데이터베이스(220), 크리프 데이터 산출부(230), 사용계수 데이터 산출부(240), 배관 수명 예측부(250)를 포함한다.2 is a configuration diagram of the server of FIG. 1. Referring to FIG. 2, the server 200 includes a thermal stress calculator 210, a mechanical stress database 220, a creep data calculator 230, a coefficient of use data calculator 240, and a pipe life predictor 250. Include.
열응력 연산부(210)는 3차원 변위측정장치를 통해 측정된 배관의 임의 지점에서의 시간에 따른 열응력을 연산한다. 3차원 변위측정장치는 공지된 것으로 대한민국 공개특허 제2005-0023980호 또는 제2005-0069222호에 상세히 개시되어 있으므로, 여기에서는 상세한 설명은 생략한다. 배관은 일 예로 화력발전소의 주증기 또는 재열증기와 같은 배관계통의 배관일 수 있으며, 이에 한정되지는 않는다. 도 1에서 설명된 클라이언트 단말기에서 3차원 변위측정장치를 모니터링하는 경우 도 3과 같은 화면을 볼 수 있다. 도 3에서 파란색, 노란색, 빨간색은 각각 화력발전소의 Main steam, Hot reheat, Cold reheat Line이고 No.로 도시된 장치가 3차원 변위측정장치의 위치이다. 도 4에 도시된 바와 같은 배관의 임의 지점에서 시간에 따른 열응력은 수학식 1과 같이 연산된다.The thermal stress calculation unit 210 calculates thermal stress over time at any point of the pipe measured by the three-dimensional displacement measuring apparatus. Since the three-dimensional displacement measuring apparatus is known and disclosed in detail in Korean Patent Laid-Open Publication No. 2005-0023980 or 2005-0069222, detailed description thereof will be omitted here. The piping may be, for example, piping in a piping system such as main steam or reheat steam of a thermal power plant, but is not limited thereto. When the 3D displacement measuring apparatus is monitored by the client terminal described with reference to FIG. 1, the screen shown in FIG. 3 may be viewed. In FIG. 3, blue, yellow, and red are main steam, hot reheat, and cold reheat lines of thermal power plants, respectively, and the device shown as No. is the position of the three-dimensional displacement measuring device. The thermal stress over time at any point in the pipe as shown in Figure 4 is calculated as in Equation 1.
[수학식 1][Equation 1]
여기서, 는 배관의 임의 지점에서 시간 t에서의 열응력이고, 는 배관의 임의 지점에서 시간 t에서의 그린함수이며, 는 온도변수를 갖는 배관 유체부의 경계온도이다. 수학식 1을 참조하면, 열응력은 시간에 따라 배관 벽면에 발생한 온도 구배에 따른 응력이고, 온도 구배에 따른 응력을 시간에 따라 수치 적분하여 연산됨을 알 수 있다. 열응력은 배관의 대류 열전달 계수에 따라 변한다.here, Is the thermal stress at time t at any point in the pipe, Is the green function at time t at any point in the pipe, Is the temperature variable The boundary temperature of the pipe fluid portion having Referring to Equation 1, it can be seen that the thermal stress is a stress according to the temperature gradient generated on the pipe wall with time, and is calculated by numerically integrating the stress according to the temperature gradient with time. Thermal stress varies with the convective heat transfer coefficient of the pipe.
기계적 응력 데이터베이스(220)는 3차원 변위측정장치를 통해 측정된 배관의 임의 지점에서의 기계적 하중에 의한 응력을 연산한다. 기계적 하중에 의한 응력은 화력발전소가 정상운전되는 경우 화력발전소에 설치된 배관의 탄성 최대 응력이다. 기계적 하중에 의한 응력은 화력발전소의 운전압력값과 모멘트값의 곱으로 나타내거나 도 3을 참조하여 수학식 2와 같이 연산될 수도 있다.The mechanical stress database 220 calculates the stress due to the mechanical load at any point of the pipe measured by the three-dimensional displacement measuring apparatus. The stress due to the mechanical load is the maximum elastic stress of the pipe installed in the thermal power plant when the thermal power plant is in normal operation. The stress due to the mechanical load may be expressed as a product of the operating pressure value and the moment value of the thermal power plant or may be calculated as in Equation 2 with reference to FIG. 3.
[수학식 2][Equation 2]
여기서,는 배관의 임의 지점(A)에서 시간 t에서의 기계적 하중()에 의한 응력이고, 은 배관 반경() 방향의 임의 지점에서 시간 t에서의 기계적 하중이며,은 배관 내벽의 두께이다. 도 3에서 는 시간 t에서의 경계온도이다.here, Is the mechanical load at time t at any point (A) Stress due to Is the pipe radius ( Mechanical load at time t at any point in the Is the thickness of the inner wall of the pipe. In Figure 3 Is the boundary temperature at time t.
크리프 데이터 산출부(230)는 기계적 응력 데이터베이스(220)에서 연산된 기계적 하중에 의한 응력을 기반으로 크리프 데이터(creep data)를 산출한다. 크리프는 물체가 일정한 변형력 하에서 시간의 흐름에 따라 천천히 변형하는 현상으로서, 온도가 높고 변형력이 클수록 그 변형은 빠르다.The creep data calculator 230 calculates creep data based on the stress caused by the mechanical load calculated in the mechanical stress database 220. Creep is a phenomenon in which an object deforms slowly over time under a constant deformation force. The higher the temperature and the higher the deformation force, the faster the deformation.
사용계수 데이터 산출부(240)는 열응력 연산부(210)에서 연산된 열응력과 기계적 응력 데이터베이스(220)에서 연산된 기계적 하중에 의한 응력의 합으로부터 수학식 3과 같은 시간에 따른 주응력을 연산하고, 주응력으로부터 시간에 따른 누적 사용계수 데이터를 산출한다. 누적 사용계수 데이터 산출시 사용계수 데이터 산출부 (240)는 시간에 따른 주응력의 교번주기를 카운팅하여 사용계수를 연산하고, 시간에 따라 사용계수를 누적하여 누적 사용계수 데이터를 산출한다.The coefficient of use data calculation unit 240 calculates the main stress over time as shown in Equation 3 from the sum of the thermal stress calculated by the thermal stress calculator 210 and the mechanical load calculated by the mechanical stress database 220. From the main stress, the cumulative usage coefficient data is calculated over time. When calculating the cumulative use coefficient data, the use coefficient data calculation unit 240 calculates the use coefficient by counting the alternating cycle of the main stress over time, and calculates the accumulated use coefficient data by accumulating the use coefficient over time.
[수학식 3][Equation 3]
배관 수명 예측부(250)는 사용계수 데이터 산출부(240)에서 산출된 누적 사용계수 데이터와 크리프 데이터 산출부(230)에서 산출된 크리프 데이터로부터 배관의 수명을 예측한다. 즉, 누적 사용계수 데이터 또는 크리프 데이터가 클수록 수명이 적다는 것으로 예측할 수 있다. 누적 사용계수 데이터 또는 크리프 데이터는 데이터베이스화되어 저장된다.The pipe life predicting unit 250 predicts the service life of the pipe from the cumulative use coefficient data calculated by the use coefficient data calculating unit 240 and the creep data calculated by the creep data calculating unit 230. In other words, it can be predicted that the greater the cumulative usage coefficient data or creep data, the shorter the life span. Cumulative usage coefficient data or creep data is stored in a database.
본 발명의 3차원 변위측정장치와 연계한 배관 수명관리시스템을 통해 배관 취약부에 대한 피로 손상 및 크리프 손상의 정확한 규명으로 배관 수명 관리의 실효성을 현저히 증가시킬 수 있을 뿐만 아니라, 열에 의해 변하는 배관의 변위와 연계하여 열응력 및 변위를 고려한 수명 관리가 가능하게 된다.Through the pipe life management system linked with the three-dimensional displacement measuring device of the present invention, not only can the fatigue life and creep damage be accurately identified, but also the pipe life can be significantly increased. In connection with this, life management considering thermal stress and displacement becomes possible.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사항 내에서 당 분야의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, it is intended to describe the present invention in detail, and the present invention is not limited thereto, and modifications thereof may be made by those skilled in the art within the technical matters of the present invention. It is obvious that improvement is possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
**부호의 설명**** Description of the sign **
10 : 스위치10: switch
30 : 인트라넷30: intranet
110 : 제1 3차원 변위측정장치110: first three-dimensional displacement measuring device
120 : 제2 3차원 변위측정장치120: second three-dimensional displacement measuring device
130 : 제3 3차원 변위측정장치130: third 3D displacement measuring device
200 : 서버200: server
310 : 제1 클라이언트 단말기310: first client terminal
320 : 제2 클라이언트 단말기320: second client terminal
330 : 제3 클라이언트 단말기330: third client terminal
Claims (8)
- 3차원 변위측정장치와 연계된 배관의 임의 지점에서의 시간에 따른 열응력을 연산하는 열응력 연산부;A thermal stress calculator for calculating thermal stress over time at any point of a pipe associated with a three-dimensional displacement measuring apparatus;상기 기계적 하중에 의한 응력을 기반으로 크리프 데이터를 산출하는 크리프 데이터 산출부; A creep data calculator configured to calculate creep data based on the stress caused by the mechanical load;상기 열응력과 상기 기계적 하중에 의한 응력의 합으로부터 시간에 따른 주응력을 연산하고, 상기 주응력으로부터 시간에 따른 누적 사용계수 데이터를 산출하는 사용계수 데이터 산출부; 및A coefficient of use data calculation unit for calculating a principal stress with time from the sum of the thermal stress and the stress caused by the mechanical load, and calculating cumulative coefficient of use data with time from the principal stress; And상기 누적 사용계수 데이터와 상기 크리프 데이터로부터 상기 배관의 수명을 예측하는 배관 수명 예측부를 포함하는 것을 특징으로 하는 3차원 변위측정과 연계된 배관 수명관리시스템.And a pipe life predicting unit for predicting the service life of the pipe from the cumulative usage coefficient data and the creep data.
- 제1항에 있어서,The method of claim 1,상기 열응력은 시간에 따라 배관 벽면에 발생한 온도 구배에 따른 응력인 것을 특징으로 하는 3차원 변위측정과 연계된 배관 수명관리시스템.The thermal stress is a pipe life management system associated with the three-dimensional displacement measurement, characterized in that the stress due to the temperature gradient generated on the pipe wall over time.
- 제2항에 있어서,The method of claim 2,상기 열응력은 상기 온도 구배에 따른 응력을 시간에 따라 수치 적분하여 연산되는 것을 특징으로 하는 3차원 변위측정과 연계된 이용한 배관 수명관리시스템.The thermal stress is a pipe life management system used in conjunction with the three-dimensional displacement measurement, characterized in that it is calculated by numerically integrating the stress according to the temperature gradient over time.
- 제3항에 있어서,The method of claim 3,상기 열응력은 상기 배관의 대류 열전달 계수에 따라 변하는 것을 특징으로 하는 3차원 변위측정과 연계된 배관 수명관리시스템.The thermal stress is pipe life management system associated with the three-dimensional displacement measurement, characterized in that the change in the convection heat transfer coefficient of the pipe.
- 제1항에 있어서,The method of claim 1,상기 기계적 하중에 의한 응력은 운전압력값과 모멘트값의 곱인 것을 특징으로 하는 3차원 변위측정과 연계된 배관 수명관리시스템.The stress due to the mechanical load is a pipe life management system associated with the three-dimensional displacement measurement, characterized in that the product of the operating pressure value and the moment value.
- 제1항에 있어서,The method of claim 1,상기 기계적 하중에 의한 응력은 화력발전소가 정상운전되는 경우 상기 화력발전소에 설치된 배관의 탄성 최대 응력인 것을 특징으로 하는 3차원 변위측정과 연계된 배관 수명관리시스템.The stress caused by the mechanical load is the maximum elastic stress of the pipe installed in the thermal power plant when the thermal power plant is operating normally, pipe life management system associated with the three-dimensional displacement measurement.
- 제1항에 있어서,The method of claim 1,상기 사용계수 데이터 산출부는 시간에 따른 상기 주응력의 교번주기를 카운팅하여 사용계수를 연산하고, 시간에 따라 상기 사용계수를 누적하여 상기 누적 사용계수 데이터를 산출하는 것을 특징으로 하는 3차원 변위측정과 연계된 배관 수명관리시스템.The coefficient of use data calculation unit calculates the coefficient of use by counting the alternating period of the main stress over time, and accumulates the coefficient of use over time to calculate the cumulative use coefficient data, characterized in that linked to the three-dimensional displacement measurement Pipe life management system.
- 제1항에 있어서,The method of claim 1,상기 누적 사용계수 데이터가 제1 설정값보다 큰 경우 피로 손상이라고 판단하는 피로 손상 판단부;A fatigue damage determining unit determining that the damage is fatigue when the cumulative usage coefficient data is greater than a first set value;상기 크리프 데이터가 제2 설정값보다 큰 경우 크리프 손상이라고 판단하는 크리프 손상 판단부를 더 포함하는 것을 특징으로 하는 3차원 변위측정장치와 연계된 배관 수명관리시스템.And a creep damage determining unit for determining creep damage when the creep data is larger than a second set value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0098283 | 2014-07-31 | ||
KR1020140098283A KR20160015694A (en) | 2014-07-31 | 2014-07-31 | Pipe life management system related with three dimension displacement measurement system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016017841A1 true WO2016017841A1 (en) | 2016-02-04 |
Family
ID=55217731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/007073 WO2016017841A1 (en) | 2014-07-31 | 2014-07-31 | Pipe lifespan management system associated with three dimensional displacement measurement apparatus |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20160015694A (en) |
WO (1) | WO2016017841A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114252149A (en) * | 2022-02-25 | 2022-03-29 | 华电电力科学研究院有限公司 | Method for rapidly evaluating vibration damage and service life of high-low drainage pipeline of thermal power plant |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102581072B1 (en) * | 2016-09-26 | 2023-09-22 | 한국전력공사 | Method for evaluating life and risk degree of high temperature pipe |
KR102350323B1 (en) * | 2021-04-21 | 2022-01-12 | 케이.엘.이.에스 주식회사 | Pipe load monitoring system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001280599A (en) * | 2000-03-31 | 2001-10-10 | Hitachi Ltd | Service life prediction method for power generation plant piping |
JP2001305124A (en) * | 2000-04-19 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | Method for evaluating life of metallic material |
JP2003232719A (en) * | 2001-12-06 | 2003-08-22 | Babcock Hitachi Kk | Method and apparatus for monitoring creep damage in piping |
JP2007051954A (en) * | 2005-08-18 | 2007-03-01 | Toshiba Corp | Lifetime prediction system for plant piping, and its lifetime prediction method |
KR20100117546A (en) * | 2010-09-10 | 2010-11-03 | 주식회사백상 | Plant pipe life evaluation method based on operation history including creep and fatigue |
-
2014
- 2014-07-31 KR KR1020140098283A patent/KR20160015694A/en active Search and Examination
- 2014-07-31 WO PCT/KR2014/007073 patent/WO2016017841A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001280599A (en) * | 2000-03-31 | 2001-10-10 | Hitachi Ltd | Service life prediction method for power generation plant piping |
JP2001305124A (en) * | 2000-04-19 | 2001-10-31 | Mitsubishi Heavy Ind Ltd | Method for evaluating life of metallic material |
JP2003232719A (en) * | 2001-12-06 | 2003-08-22 | Babcock Hitachi Kk | Method and apparatus for monitoring creep damage in piping |
JP2007051954A (en) * | 2005-08-18 | 2007-03-01 | Toshiba Corp | Lifetime prediction system for plant piping, and its lifetime prediction method |
KR20100117546A (en) * | 2010-09-10 | 2010-11-03 | 주식회사백상 | Plant pipe life evaluation method based on operation history including creep and fatigue |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114252149A (en) * | 2022-02-25 | 2022-03-29 | 华电电力科学研究院有限公司 | Method for rapidly evaluating vibration damage and service life of high-low drainage pipeline of thermal power plant |
CN114252149B (en) * | 2022-02-25 | 2022-05-10 | 华电电力科学研究院有限公司 | Method for rapidly evaluating vibration damage and service life of high-low drainage pipeline of thermal power plant |
Also Published As
Publication number | Publication date |
---|---|
KR20160015694A (en) | 2016-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016017841A1 (en) | Pipe lifespan management system associated with three dimensional displacement measurement apparatus | |
WO2013035918A1 (en) | System for monitoring spent fuel storage tub in real time and method for same | |
CN107102240A (en) | A kind of system and method for being used to carry out optical fiber composite low-voltage cable fault diagnosis | |
CN110031126A (en) | Temperature monitoring system in a kind of electrochemical energy storage station prefabricated cabin based on distributed optical fiber temperature measurement | |
KR20110015258A (en) | Method and system for inspecting creep and thinned damage in heat exchanger steam tube | |
CN103884473B (en) | A kind of determination methods of leaking of water-cooling system | |
CN111964731A (en) | Pipe gallery monitoring and warning device and method | |
WO2019009462A1 (en) | System for monitoring state of spent-nuclear-fuel cask | |
WO2013125754A1 (en) | System and method for failure prediction for electric equipment | |
KR101353387B1 (en) | Communication tower-structure status monitoring system using displacement sensor | |
CN110832879B (en) | Remote state monitoring system and monitoring method | |
KR20150044449A (en) | Plant management support system | |
CN104575640A (en) | Spent fuel water tank liquid level and temperature measuring device | |
CN104733061A (en) | Device and method used for carrying out fatigue monitoring and fatigue evaluation | |
Anders et al. | Real Time Monitoring of Power Cables by Fibre Optic Technologies. Tests, Applications and Outlook | |
CN111668926B (en) | Method for monitoring service microenvironment of distribution network equipment ring network unit in hot and humid climate | |
Jones et al. | Condition monitoring system for TransGrid 330 kV power cable | |
Poyser et al. | On-line monitoring of power transformers | |
WO2022203294A1 (en) | Prediction method and systems of wind turbine load and life-time based on vibration data | |
CN216525630U (en) | Experimental device for research vacancy height is to oil bath fire heat feedback mechanism influence | |
JP2013140080A (en) | Instrument soundness determination device and method | |
WO2018124570A1 (en) | Asset management method for substation | |
WO2021085764A1 (en) | Device for measuring residual amounts in high-pressure container in which liquefied gas is stored, and high-pressure container management system in which same is mounted | |
RU2733057C1 (en) | Complex of containment monitoring system of power unit of nuclear power plant | |
WO2021261614A1 (en) | Method, program, and system for diagnosing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14898530 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14898530 Country of ref document: EP Kind code of ref document: A1 |