WO2016017580A1 - Three-dimensional space coordinate measurement device - Google Patents

Three-dimensional space coordinate measurement device Download PDF

Info

Publication number
WO2016017580A1
WO2016017580A1 PCT/JP2015/071245 JP2015071245W WO2016017580A1 WO 2016017580 A1 WO2016017580 A1 WO 2016017580A1 JP 2015071245 W JP2015071245 W JP 2015071245W WO 2016017580 A1 WO2016017580 A1 WO 2016017580A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission device
unit
coordinates
correction value
movement
Prior art date
Application number
PCT/JP2015/071245
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 杉原
純一 原田
Original Assignee
シナノケンシ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナノケンシ株式会社 filed Critical シナノケンシ株式会社
Publication of WO2016017580A1 publication Critical patent/WO2016017580A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Definitions

  • the present invention relates to a three-dimensional spatial coordinate measuring apparatus.
  • Patent Document 1 discloses a technique having a relatively high resolution for an on-vehicle radar.
  • the receiving unit is installed at a position away from the measurement object, and a three-dimensional spatial coordinate is measured by bringing a transmission device separate from the receiving unit into contact with the measurement object. It is being considered. Even in such a case, when there is an obstacle between the receiving unit and the transmission device, the obstacle obstructs a measurement wave such as electromagnetic waves and sound waves, and a blind spot that cannot be measured correctly occurs. There is a problem.
  • the present invention was made under such a background, and its purpose is to correctly measure a three-dimensional position even when a measurement wave is obstructed by an obstacle.
  • An object of the present invention is to provide a three-dimensional spatial coordinate measuring apparatus capable of
  • the present invention has a stationary body and a displacement body, and a physical action for coordinate measurement is transmitted from the stationary body to the displacement body, or from the displacement body to the stationary body. It is a three-dimensional spatial coordinate measuring apparatus that is fixed to specific coordinates in a three-dimensional spatial coordinate system in which measurement is performed, and the fixed specific coordinates can be changed by following a specific procedure.
  • the present invention is a transmission device that is a displacement body and transmits radio waves, a plurality of reception units that are stationary bodies and receive radio waves, light, or ultrasonic waves transmitted by the transmission device, and a plurality of reception units.
  • a plurality of receiving unit pairs each including at least two receiving units, and based on radio waves, light, or ultrasonic waves received by the receiving units included in the receiving unit pair, the first of the receiving unit pairs from the transmitting device.
  • a propagation path distance difference calculation unit for calculating a propagation path distance difference that is a difference between a distance from the receiving unit to a second receiving unit of the receiving unit pair and a plurality of receiving unit pairs.
  • the coordinates of the transmitting device that calculates the coordinates of the transmitting device based on the propagation path distance difference and the movement information that indicates that the movement has been performed when the receiving unit has moved. Measure the current position again and repeat Based on the movement correction value calculated by the movement correction value calculation unit and the movement correction value calculation unit that calculates the movement correction value from the coordinate change of the reception unit obtained by measurement, either before or after the movement of the reception unit And a movement correction unit that corrects the coordinates of the three-dimensional space coordinate measuring device.
  • the movement correction value calculation unit adds the movement correction value to the coordinates of the transmitter measured after the movement of the reception unit.
  • the movement correction value calculation unit may subtract the movement correction value from the coordinates of the transmission device measured before the movement of the reception unit.
  • the movement information is transmitted from the transmission device by pressing the switch means.
  • the transmission device and the movement correction value calculation unit are provided separately, and movement information is transferred to the movement correction value calculation unit by pressing a switch unit provided in the same housing as the movement correction value calculation unit. It may be transmitted.
  • the radio wave or light can be a sine wave with a beat signal superimposed on it.
  • the present invention it is possible to correctly measure a three-dimensional position in a three-dimensional spatial coordinate measuring apparatus even when a measurement wave is blocked by an obstacle.
  • FIG. 1 is an overall configuration diagram of a three-dimensional spatial coordinate measuring apparatus according to an embodiment of the present invention. It is a figure which shows the structural example of a transmission apparatus among the three-dimensional space coordinate measuring apparatuses of FIG. It is a figure which shows the example of the sweep of the electromagnetic wave transmitted from a transmitter. It is a principal block block diagram of the three-dimensional coordinate measuring apparatus of FIG. It is a figure which shows the image of the position specification of the transmitter by several receiving parts. It is a figure which shows arrangement
  • FIG. 1 is a flowchart illustrating an operation of the transmission device in FIG. 1.
  • 2 is a flowchart showing an operation of the receiving apparatus of FIG.
  • It is a figure which shows a mode that the dimension of a desk is measured by the three-dimensional space coordinate measuring apparatus of FIG. 1, and is a figure which shows the example in which an obstruction intervenes between a transmitter and a receiver.
  • It is a figure which shows a mode that a receiving part is moved in the measurement of FIG. It is a figure explaining the concept of the correction
  • a stationary object is one that is not moved during a series of measurement operations in the three-dimensional spatial coordinate measurement apparatus of the present invention.
  • a local coordinate system is temporarily assumed in the vicinity of the area where the stationary body is installed, and the relative values of the stationary body and the displacement body indicate what coordinate values the displacement body described later has in this local coordinate system. Acquiring based on the positional relationship is an outline of coordinate measurement.
  • the temporary local coordinate system is determined by the position and orientation of the stationary object.
  • the displacement body has a function of indicating a point where coordinate measurement is desired in the three-dimensional spatial coordinate measurement apparatus of the present invention. As described above, since a point that requires coordinate measurement is specified for the purpose of calculating a specific physical quantity, the measurer moves it by holding it in his hand.
  • the physical action means that the transmission is performed from the stationary body to the displacement body or, conversely, from the displacement body to the stationary body of the three-dimensional spatial coordinate measurement apparatus of the present invention, and is intended for coordinate measurement.
  • electromagnetic waves such as radio waves and light, ultrasonic waves, and the like are not necessary.
  • the relative positional relationship is known by the physical action between the stationary body and the displacement body.
  • the direction of transmission of physical action is either “stationary to displacement” or “displacement to stationary”, but it can also be used in both directions to improve the accuracy of coordinate measurement and increase the versatility of the equipment. It is.
  • Specific procedure means that when performing the above-mentioned series of measurement operations, if the point where coordinate measurement is attempted becomes a blind spot where measurement cannot be performed for some reason, the stationary object is moved. This is a process with a displacement body or a stationary body that is performed when the blind spot is resolved.
  • This movement causes the local coordinate system to become inconsistent before and after the movement of the stationary body, but the previous identification point is indicated by the displacement body, and in this state, “the same point as the identification point measured earlier is currently indicated.
  • the coordinate value measured before moving the stationary body is converted into the local coordinate system after moving the stationary body. Thereby, it is possible to avoid the inability to measure coordinates due to blind spots.
  • the procedure as in the above example is a “specific procedure”.
  • a three-dimensional spatial coordinate measuring apparatus 1 according to an embodiment of the present invention will be described with reference to the drawings.
  • the three-dimensional spatial coordinate measuring device 1 is simplified and referred to as a coordinate measuring device 1.
  • the coordinate measuring device 1 includes a transmission device 11 and a reception device 12.
  • a measurement person installs the receiving device 12 at a position away from the object to be measured and brings the transmitting device 11 into contact with the object to be measured, a predetermined radio wave is transmitted and received between the transmitting device 11 and the receiving device 12.
  • the three-dimensional space coordinates of the measurement object can be measured.
  • FIG. 2 shows an internal configuration example of the transmission device 11.
  • the transmission device 11 includes an antenna 21, a radio wave generation unit 22, a retransmission mode switch 23, interface units 24 and 26, a measurement switch 25, a control unit 27, and a memory 28.
  • the transmission device 11 transmits a predetermined radio wave when the measurement switch 25 is pressed by touching the measurement object or when the retransmission mode switch 23 is operated.
  • the antenna 21 radiates radio waves into space.
  • the radio wave generator 22 includes an oscillator, an amplifier, a frequency multiplier, a filter, a modulator, and the like (not shown), and generates a radio wave transmitted from the antenna 21.
  • the retransmission mode switch 23 is provided, for example, on the casing of the transmission device 11. When the retransmission mode switch 23 is pressed with, for example, a measurer's finger, a signal indicating that the retransmission mode switch 23 has been pressed is transmitted to the control unit 27 via the interface unit 24.
  • the measurement switch 25 is provided, for example, at the tip of the transmission device 11. When the measurement switch 25 is pressed by, for example, a measurer contacting the measurement object, a signal indicating that the measurement switch 25 is pressed is transmitted to the control unit 27 via the interface unit 26.
  • the control unit 27 performs various controls in the transmission device 11 by executing a predetermined processing program 28 a stored in the memory 28. For example, when the measurement switch 25 is pressed, the control unit 27 controls the radio wave generation unit 22 based on the sweep pattern information 28b shown in FIG. 3 stored in the memory 28 to sweep the sine wave. Transmit as radio waves. In this embodiment, sweeping is to change the frequency of a sine wave based on a certain pattern over time. In the present embodiment, it means that the frequency of a radio wave to be transmitted is changed with the elapse of time within a predetermined frequency range centering on the fundamental frequency.
  • the sweep pattern information 28b includes information indicating a transmission start time (timing), a sweep time, a transmission end time (timing), a fundamental frequency, and a frequency corresponding to the sweep time.
  • timing transmission start time
  • sweep time sweep time
  • transmission end time timing
  • fundamental frequency a fundamental frequency
  • frequency corresponding to the sweep time it is assumed that there are a plurality of sweep patterns in which the known fundamental frequency, sweep time, and sweep frequency width of the sweep sine wave are appropriately set, and the control unit 27 uses the plurality of sweep patterns. It may be possible to switch the sweep pattern.
  • sweep pattern switching means may be provided so that the sweep pattern can be switched by an external instruction.
  • an instruction from the outside RS-232C, I2C, USB (registered trademark) or the like is preferable for wired communication, and Bluetooth (registered trademark) or ZigBee (registered trademark) is preferable for wireless communication.
  • a sweep pattern changing means may be provided to change the sweep pattern itself so that the sweep pattern can be changed by an external instruction.
  • an instruction from the outside like the sweep pattern switching means, RS-232C, I2C, USB (registered trademark) or the like is preferable for wired communication, and Bluetooth (registered trademark) or ZigBee (registered trademark) is preferable for wireless communication.
  • the radio wave radiated from the antenna 21 is a sine wave
  • the sine wave that is swept around a specific frequency is referred to as a “swept sine wave”.
  • the coordinate means a coordinate in an orthogonal coordinate system in a three-dimensional (three-dimensional) space unless otherwise specified.
  • the control unit 27 controls the radio wave generation unit 22 to generate a signal indicating that and transmits the signal via the antenna 21.
  • the frequency is different from that of the signal for measuring the coordinate position, or the modulation is different even though the frequency is the same.
  • the receiving device 12 includes four reception units 31a to 31d, a propagation path distance difference calculation unit 32, a transmission device coordinate calculation unit 33, a transmission device coordinate storage unit 34, a movement correction value calculation unit 35, and a movement correction unit 36. Yes.
  • the receiving device 12 calculates the three-dimensional spatial coordinates of the measurement object based on the radio wave transmitted from the transmitting device 11. The position where the receiving device 12 is first placed becomes a reference point for coordinate position measurement. In the configuration of the transmission apparatus 11 illustrated in FIG. 4, the interface units 25 and 26, the control unit 5, and the memory 28 are not illustrated.
  • the receiving units 31a to 31d receive the radio waves transmitted by the transmission device 11, respectively.
  • the receiving units 31a to 31d have antennas 41a to 41d and receivers 42a to 42d, respectively.
  • the receiving unit 31, the antenna 41, and the receiver 42 are simply described. Called.
  • a pair of two receiving units 31 is referred to as a receiving unit pair. Since four receiving units 31a to 31d are provided, the receiving unit 31a and the receiving unit 31b, the receiving unit 31a and the receiving unit 31c, the receiving unit 31a and the receiving unit 31d, the receiving unit 31b and the receiving unit 31c, and the receiving unit 31b The receiving unit 31d, the receiving unit 31c, and the receiving unit 31d form a receiving unit pair. In this example, there are six receiving unit pairs.
  • receiving unit 31 In the example of FIG. 4, four receiving units 31a to 31d are provided, but a receiving unit 31 may be further provided.
  • the two receiving units 31 are used as a receiving unit pair, but three or more receiving units 31 can be used as one group (receiving unit group).
  • the propagation path distance difference calculation unit 32 has a difference in distance between each reception unit 31 and the transmission device 11, so that one reception unit constituting a reception unit pair for each reception unit pair. 31 and a propagation path distance difference, which is a difference between the distance between the transmission device 11 and the one reception unit 31 and the distance between the transmission device 11 and the other reception unit 31, based on the radio waves respectively received by the reception unit 31 and the other reception unit 31. To do. Details of the method of calculating the propagation path distance difference will be described later.
  • the transmission device coordinate calculation unit 33 calculates the coordinates of the transmission device 11 based on the propagation path distance difference calculated for the reception unit 31 using the position of the reception device 12 as a reference point for coordinate position measurement, and stores the transmission device coordinate storage. Stored in the unit 34.
  • the coordinates (curved surface on the three-dimensional coordinate system) at which the propagation path distance difference between the transmission device 11 and the two reception units 31 is a constant value are candidates for the coordinate solution of the transmission device 11.
  • the curved surface represented by the mesh in FIG. 6 is the propagation path distance difference (distance difference between TP and TQ) for the transmitter 11 and the two receivers 31a (P in the figure) and 31B (Q in the figure). Is a curved surface with a constant value.
  • the transmission device coordinate calculation unit 33 obtains the curved surface for the six combinations of the reception unit pairs, and calculates the point where they intersect as the position of the transmission device 11.
  • transmitter coordinate calculation unit 33 can appropriately switch and connect six reception unit pairs to one propagation path distance difference calculation unit 32 (FIG. 4).
  • a dedicated propagation path distance difference calculation unit 32 may be provided for each part pair, and all the calculation results may be connected to the transmitter coordinate calculation unit 33 at the same time.
  • the transmission device coordinate calculation unit 33 receives propagation path distance differences for the six reception unit pairs, and the known four reception units 31a (P), 31b (Q), 31c (R), and 31d (S). Based on the coordinates and the propagation path distance difference values for the six receiver pairs, the coordinates of the transmission device 11 (T) can be calculated using equations (18) to (32) described later.
  • FIG. 4 shows that the receiving unit pair including the receiving units 31a to 31d and the propagation path distance difference calculating unit 32 are integrated, the present invention is not limited to this.
  • the transmitter coordinate calculation unit 33 may be integrated with or separate from the reception unit pair and the propagation path distance difference calculation unit 32.
  • the movement correction value calculation unit 35 is calculated by the transmission device coordinate calculation unit 33 at a position immediately before the movement when the reception device 12 (reception unit 31) is moved when measuring the measurement object for the reason described later.
  • the movement correction value is calculated on the basis of the predetermined coordinates and the coordinates calculated by the transmitter coordinate calculation unit 33 at the position after the movement after receiving the radio wave again after the movement.
  • the movement correction unit 36 corrects the coordinates measured by the transmission device 11 after the movement of the reception unit 31 based on the movement correction value calculated by the movement correction value calculation unit 35. Thereby, it becomes possible to take consistency with the coordinates of the transmission device 11 measured before the movement of the reception unit 31.
  • the movement correction value is a three-dimensional position difference before and after the movement of the reception unit 31 and is added to the coordinates of the transmission device 11 measured after the movement of the reception unit 31. That is, processing for adjusting the position after movement to the coordinates before movement is performed.
  • the coordinates of the measurement points of the transmission apparatus 11 that have already been measured are corrected, and the coordinates of the transmission apparatus 11 that are measured after the movement of the reception apparatus 12 are moved. It shall not be corrected with the correction value.
  • the subsequent measurement results at the transmitter 11 can be used as they are.
  • the movement correction unit 36 corrects the coordinates of each measurement point of the transmitter 11 that has already been measured based on the measurement result of the movement correction value in the movement correction value calculation unit 35.
  • FIG. 7 shows a configuration corresponding to the receiving unit pair (receiving units 31 a and 31 b) among the configurations of the propagation path distance difference calculating unit 32. Since the other receiving unit pairs (receiving units 31c and 31d) are the same, the description thereof is omitted.
  • the propagation path distance difference calculation unit 32 corresponds to the reception unit pair (reception units 31a and 31b), and includes multiplexers 51a and 51b, power detectors 52a and 52b, low frequency amplifiers 53a and 53b, and an A / D converter 54a. , 54b, a beat frequency calculation unit 55, and a distance difference calculation unit 56.
  • the radio wave received by the receiving unit 31a and the radio wave received by the receiving unit 31b are combined by the multiplexer 51a to become a combined wave.
  • the intensity of the combined wave combined by the multiplexer 51a is detected by the power detector 52a.
  • the detection result of the power detector 52a is an envelope waveform of a composite wave, which is a low frequency analog signal.
  • the analog signal that is the envelope waveform of the synthesized wave is amplified by the low-frequency amplifier 53a.
  • the envelope waveform of the composite wave amplified by the low frequency amplifier 53 a is converted into a digital signal by the A / D converter 54 a and supplied to the beat frequency calculation unit 55.
  • the radio wave received by the receiving unit 31b and the radio wave received by the receiving unit 31a are combined in the multiplexer 51b with a phase delayed by 90 degrees from the combined wave of the combined wave in the multiplexer 51a.
  • the intensity of the combined wave combined by the multiplexer 51b is detected by the power detector 52b.
  • the detection result of the power detector 52b is an envelope waveform of a composite wave, which is a low frequency analog signal.
  • the analog signal that is the envelope waveform of the synthesized wave is amplified by the low-frequency amplifier 53b.
  • the envelope waveform of the synthesized wave amplified by the low frequency amplifier 53 b is converted into a digital signal by the A / D converter 54 b and supplied to the beat frequency calculation unit 55.
  • the beat frequency calculation unit 55 calculates a frequency analysis beat frequency by FFT (Fast Fourier Transform) based on the signal converted from the analog signal to the digital signal by the A / D converter 54a and the A / D converter 54b. It is possible to generate a beat signal from signals generated by the multiplexer 51a, the power detector 52a, the low frequency amplifier 53a, and the A / D converter 54a. In this example, however, FFT (Fast Fourier Transform) is used. ) To obtain the frequency of the beat signal, and in order to improve the accuracy of the FFT, a signal whose phase is shifted by 90 degrees is used.
  • FFT Fast Fourier Transform
  • the distance difference calculation unit 56 calculates the distance difference based on the beat frequency output from the beat frequency calculation unit 55. This distance difference calculation unit 56 obtains a propagation path distance difference by substituting the above-described beat signal frequency into Equation (1) described later. Note that the sweep time and sweep frequency width of the swept sine wave are known.
  • FIG. 8 shows, from above, examples of radio waves received by the receiver 31a, radio waves received by the receiver 31b, synthesized waves generated by the multiplexer 51a, and beat signals calculated by the beat frequency calculator 55. Show.
  • the radio waves transmitted from the transmission device 11 are received by the reception units 31a and 31b (FIG. 7). At this time, the “distance from the transmission device 11 to the reception unit 31a” and the “transmission device 11 to the reception unit 31b”. If there is a difference in “distance to”, a time difference will occur in the arrival of radio waves by the time obtained by dividing this distance difference by the speed of light.
  • the radio wave transmitted from the transmitter 11 is a swept sine wave. Accordingly, when the radio waves received by the receiving unit 31a and the receiving unit 31b are combined by the multiplexer 51a, the sweep is performed by an amount corresponding to the difference in time when the radio waves arrived at the receiving unit 31a and the receiving unit 31b.
  • the frequency of the beat signal is called the beat frequency.
  • the distance difference d which is the difference between the “distance between the transmitter 11 and the receiver 31a” and the “distance between the transmitter 11 and the receiver 31b”, can be determined if the beat frequency of the synthesized wave is known. This d is the propagation path distance difference.
  • a curved surface that is a distance difference d can be determined based on these coordinates. It is located somewhere on this curved surface.
  • a plurality of receiver pairs are used to calculate a distance difference to determine a plurality of curved surfaces, and a point where all the curved surfaces intersect is transmitted. This is the coordinates where the device 11 exists.
  • the origin of the three-dimensional coordinate system is set to an arbitrary point, the transmission device 11 is represented by T, the reception unit 31a is represented by Q, the reception unit 31b is represented by P, the reception unit 31c is represented by S, and the reception unit 31d is represented by R.
  • the coordinates of the transmitting device 11 existing in the coordinates are (x, y, z), and the three-dimensional coordinates of the respective receiving units 31a, 31b, 31c, 31d are ( ⁇ .x, ⁇ .y, ⁇ .z) (where P, Q, R, and S are included in ⁇ ), the expressions representing the distances between the transmitter 11 and the receiving units 31a, 31b, 31c, and 31d are the following expressions (2) to (2) to Equation (5) is obtained.
  • the difference in distance between the transmission device 11 and each receiving unit 31 is defined as follows using Equations (6) to (11).
  • the four receiving units 31 have combinations of six receiving unit pairs. Therefore, the following six relational expressions (12) to (17) can be derived between the six reception unit pairs and the transmission device 11.
  • TQP.d distance difference between TP and TQ
  • P and Q the coordinates at which the propagation path distance difference
  • Obtaining a point where a plurality of curved surfaces as described above intersect means obtaining an expression for each of xyz, which is the coordinates of the transmission device 11 (T), based on Expressions (2) to (17). “Coordinates of four receiving units 31a (P), 31b (Q), 31c (R), 31d (S)” and “propagation path distance difference for each of six receiving unit pairs” are substituted into the obtained formula. As a result, xyz is determined.
  • A1 to A3, B1 to B3, C1 to C3, and D1 to D3 are defined as formulas (18) to (29), and using this, the transmission apparatus Expressions (30) to (32) represent the coordinates xyz of 11 (T).
  • the coordinates of the receivers 31a (P), 31b (Q), 31c (R), 31d (S) are, for example, a triangular pyramid shape as shown in FIG. Although it is suitable, it is not limited to this.
  • the reason for sweeping the sine wave transmitted from the transmission device 11 will be described.
  • the radio wave transmitted from the transmitting device 11 reaches the receiving units 31a, 31b, 31c, and 31d of the receiving unit pair with a time difference. In simple terms, if this time difference is measured, it is theoretically possible to determine the propagation path distance difference by multiplying the measured time by the speed of light.
  • the propagation path distance difference does not exceed the linear distance of the receiving units 31a to 31d of the receiving unit pair.
  • the speed of light travels 1 m at about 3.3 nsec, it is necessary to measure the time difference in the nsec order range in order to measure the arrival time difference of the radio waves received by the receiving units 31a to 31d of the receiving unit pair. In order to realize this measurement, expensive parts are required, which is contrary to economic efficiency, and it is practically difficult to perform highly accurate measurement.
  • the measurement of the propagation path distance difference is changed from “highly difficult minute time measurement” to “low difficulty and relatively low frequency beat signal. Can be replaced by "frequency measurement”.
  • measurement of the propagation path distance difference can be realized with a simple apparatus configuration and technique as in the present embodiment.
  • the setting of the sweep time and sweep frequency width of the swept sine wave “the linear distance of the receiver pair”, “the range of the assumed distance from the transmitter 11 to the receiver 31” and “measurement” It becomes possible to perform coordinate measurement of the transmission device 11 in conformity with conditions such as “accuracy”.
  • the START condition in FIG. 9 is a condition that a power switch (not shown) of the transmission apparatus 11 is in an ON state. Note that the processing from START to END in the flowchart of FIG. 9 is processing for one cycle, and the processing is restarted if the START condition is satisfied when the processing for one cycle is completed (END). .
  • step S1 the control unit 27 determines whether or not the measurement switch 25 is ON (pressed). If it is determined in step S1 that the measurement switch 25 is ON, the process proceeds to step S2. On the other hand, if it is determined in step S1 that the measurement switch is not ON, the process repeats step S1.
  • step S2 the control unit 27 causes the radio wave generation unit 22 to generate a radio wave based on the sweep pattern information 28b and cause the antenna 21 to transmit the radio wave.
  • step S3 the process proceeds to step S3.
  • step S3 the control unit 27 determines whether or not the retransmission mode switch 23 is ON (pressed). If it is determined in step S3 that the retransmission mode switch 23 is ON, the process proceeds to step S4. On the other hand, if it is determined in step S3 that the retransmission mode switch is not ON, the process returns to step S1.
  • step S4 the control unit 27 causes the radio wave generation unit 22 to generate a radio wave for notification of retransmission, and transmits the radio wave for notification of retransmission from the antenna 21.
  • the process for one cycle is ended (END).
  • the START condition in FIG. 10 is that the power switch (not shown) of the receiving device 12 is in the ON state. Note that the processing from START to END in the flowchart of FIG. 10 is processing for one cycle, and processing is restarted if the START condition is satisfied when processing for one cycle is completed (END). .
  • step S ⁇ b> 10 the propagation path distance difference calculation unit 32 determines whether or not the radio wave from the transmission device 11 has been received. If it is determined in step S10 that the radio wave from the transmission device 11 has been received, the process proceeds to step S11. On the other hand, if it is determined in step S10 that the radio wave from the transmission device 11 is not received, the process repeats step S10.
  • step S11 the propagation path distance difference calculation unit 32 calculates the propagation path distance difference of the transmission device 11, and the process proceeds to step S12.
  • step S12 the transmission device coordinate calculation unit 33 calculates the coordinates of the transmission device 11, and the transmission device coordinate storage unit 34 stores the coordinates of the transmission device 11 calculated by the transmission device coordinate calculation unit 33. Proceed to step S13.
  • step S13 the movement correction value calculation unit 35 determines whether or not there is a retransmission notification. If it is determined in step S13 that there is a retransmission notification, the process proceeds to step S14. On the other hand, if it is determined in step S13 that there is no retransmission notification, the process returns to step S10.
  • step S14 the movement correction value calculation unit 35 reads the coordinates of the transmission device 11 calculated immediately before from the transmission device coordinate storage unit 34, and the process proceeds to step S15.
  • step S15 the movement correction value calculation unit 35 determines whether or not the transmission device coordinate calculation unit 33 has calculated the coordinates of the transmission device 11. If it is determined in step S15 that the coordinates of the transmission device 11 have been calculated, the process proceeds to step S16. On the other hand, if it determines with the coordinate of the transmitter 11 not being calculated in step S15, a process will repeat step S15.
  • step S16 the movement correction value calculation unit 35 calculates the difference between the coordinates of the transmission device 11 read from the transmission device coordinate storage unit 34 in step S14 and the coordinates of the transmission device 11 calculated by the transmission device coordinate calculation unit 33 in step S15. Is calculated as a movement correction value, and the process proceeds to step S17.
  • step S ⁇ b> 17 the movement correction value calculation unit 35 adds the movement correction value to the coordinates of the transmission device 11 after receiving the retransmission notification among the coordinate information of the transmission device 11 stored in the transmission device coordinate storage unit 34. The process to start is started.
  • FIG. 11 shows how the dimensions of the desk 90 are measured using the transmitter 11 and the receiver 12.
  • the transmission device 11 transmits radio waves from the reception device 12 (in FIG. 9).
  • the four receiving units 31a to 31d of the receiving device 12 receive radio waves (step S10 in FIG. 10).
  • the transmission device 11 first transmits a radio wave to the reception device 12 at the position P1 on the upper surface of the desk 90, whereby the reception device 12 has the position P1 calculated by the transmission device coordinate calculation unit 33.
  • Coordinate information is memorize
  • the measurer similarly transmits the radio wave at the position P2 on the upper surface of the desk 90 and the position P3 on the lower side of the desk 90, respectively, and the transmitter coordinate calculation unit 33 calculates the radio wave in the receiving apparatus 12.
  • the coordinate information of the position P2 and the position P3 is stored in the transmitter coordinate storage unit 34, respectively.
  • the radio waves reach the reception device 12 because the top plate of the desk 90 becomes an obstacle. do not do.
  • the radio wave reaches the receiving device 12
  • the reached radio wave is a radio wave reflected on the floor or wall after being reflected on the upper plate of the desk 90, and includes many measurement errors. It should be noted that the presence of an obstacle between the transmission device 11 and the reception device 12 can usually be recognized visually by a measurer who is measuring the dimensions of the desk 90.
  • the measurer performs the measurement by moving the position of the receiving device 12 as shown in FIG. In this moved position, the receiving device 12 can directly and satisfactorily receive the radio wave of the transmitting device 11 at the position P4 of the desk 90, and the receiving device 12 directly receives the radio wave of the transmitting device 11 at the position P3. A position that can be received well (no obstacles).
  • the measurer presses the retransmission mode switch 23 of the transmission device 11 (step S5 in FIG. 9). Then, the control unit 27 causes the radio wave generation unit 22 to generate a mode switching signal (step S6 in FIG. 9). The mode switching signal generated by the radio wave generator 22 is transmitted from the antenna 21. Then, the receiving device 12 receives the mode switching signal. At this time, the movement correction value calculation unit 35 determines that the mode switching signal has been received (corresponding to the case of Yes in step S13 in FIG. 10).
  • the mode switching signal is input to the movement correction value calculation unit 35. Then, the movement correction value calculation unit 35 reads the coordinates of the transmission device 11 calculated immediately before from the transmission device coordinate storage unit 34 (step S14 in FIG. 10).
  • the measurer transmits the radio wave of the transmission device 11 again from the position P3 measured immediately before operating the retransmission mode switch 23 in the ON state.
  • the movement correction value calculation unit 35 is in a state where it is determined whether or not the transmission device coordinate calculation unit 33 has calculated the coordinates of the transmission device 11 (step S15 in FIG. 10). For this reason, when a radio wave is received by the receiving unit 31 (in the case of Yes), the process proceeds to the next step S16, but if the radio wave is not received, the process of step S15 is repeated.
  • the movement correction value calculation unit 35 receives the coordinates of the same position P3, that is, the coordinate information output from the transmitter coordinate calculation unit 33 after receiving the mode switching signal, and before receiving the mode switching signal. A difference from the coordinate information measured and stored in the transmitter coordinate storage unit 34 is calculated, and the difference is set as a movement correction value (step S16 in FIG. 10). Then, the movement correction value calculation unit 35 outputs the calculated movement correction value to the movement correction unit 36.
  • the movement correction unit 36 adds the movement correction value calculated by the movement correction value calculation unit 35 to the coordinates of the transmission device 11 to be measured later (step S17 in FIG. 10). Thereby, the consistency of the coordinates of the transmission device 11 before and after the reception device 12 moves is taken.
  • the transmission device 11 transmits a radio wave to the reception device 12 at a position P4 below the desk 90, and the coordinate information of the position P4 is stored in the transmission device coordinate storage unit 34. Also at this time, the movement correction unit 36 adds the movement correction value to the coordinates of the transmission device 11 measured at the position P4.
  • the coordinate information of the transmitting device 11 stored in the transmitting device coordinate storage unit 34 can be corrected according to the movement.
  • FIG. 13 and FIG. 14 are diagrams showing the concept of correction of coordinate information by the movement correction unit 36.
  • the movement correction value ⁇ is obtained at the position P3
  • the movement correction value ⁇ is added to the actual measurement value in the subsequent measurement of the coordinates of the positions P4, P5, and P6.
  • the coordinate information is matched before and after the movement of the receiving device 12.
  • the movement correction value ⁇ is added to the coordinates obtained after the movement as shown in FIG. 13, but the position of the receiving unit 31 after the movement is used as a reference.
  • the movement correction value ⁇ is obtained at the position P3
  • the movement correction value ⁇ is subtracted from the coordinate information of the previous positions P1, P2, and P3.
  • the coordinate information is matched before and after the movement of the receiving device 12.
  • correction of the coordinate information shown in FIG. 13 or FIG. 14 may be performed during the measurement or after the measurement is completed.
  • the correction method shown in FIG. 14 may be performed after the measurement ends because the stored contents of the transmitter coordinate storage unit 34 are traced back to the past.
  • the coordinate measuring device 1 can measure the coordinates of the transmitting device 11 even if the measurer moves the receiving device 12 during the measurement. According to this, it is possible to measure coordinates while moving the receiving device 12 to an optimal position as viewed from the transmitting device 11. That is, the receiving unit 31 can receive the radio wave from the transmission device 11 directly and satisfactorily. For this reason, the receiving unit 31 does not need to be highly sensitive, and can be reduced in cost and size. Moreover, since the output required for the transmission apparatus 11 does not need to be large, the antenna of the transmission apparatus 11 can be reduced in size, and the radio wave generation unit 22 and the like can be reduced in cost. Furthermore, when receiving the radio wave transmitted from the transmission device 11, the reception unit 31 can directly receive the radio wave from the transmission device 11, so that the coordinate measurement accuracy can be improved without being affected by the reflected wave or the like. it can.
  • the mode switching signal is a radio wave transmitted from the antenna 21 via the radio wave generator 22.
  • the mode switching signal may be other signals.
  • the mode switching signal may be another method such as a method using infrared rays, a method using other light, or a region using radio waves but deviating from the frequency shown in FIG.
  • it is good also as a system which generates a mode switching signal by the receiver 12 side instead of the system which transmits a mode switching signal from the transmitter 11 side.
  • a mode switching signal may be generated by pressing a predetermined button provided on the receiving device 12.
  • the coordinate information of the transmission device 11 stored at the latest time stored in the transmission device coordinate storage unit 34 is read.
  • the coordinate information of the transmission device 11 read from the transmission device coordinate storage unit 34 at this time may be arbitrarily selected by the measurer.
  • the reception unit 31 selects and receives the swept sine wave transmitted from the transmission device 11 for each frequency band so that radio waves transmitted from the plurality of transmission devices 11 using different frequency bands can be distinguished and handled. May be possible.
  • radio waves are used as measurement waves.
  • the present invention can be similarly implemented by using light (light waves) or ultrasonic waves (sound waves).
  • light light waves
  • ultrasonic waves sound waves
  • light on which a beat signal with a low frequency is superimposed can be used as in the above example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

In order to accurately measure a three-dimensional location even when a measurement wave is obstructed by an obstacle, this three-dimensional coordinate measurement device 1 is provided with a transmission device 11 acting as a displacement body that transmits radio waves, and with a reception device 12 acting as a stationary body that receives said radio waves. The coordinates of the transmission device 11 are calculated, by means of propagation path distance difference, using a reception unit 31 having a plurality of reception unit pairs in the reception device 12, and when the reception device 12 has moved, a location for which coordinates have been ascertained is measured again on the basis of movement information, and the coordinates of the reception device 12 are corrected on the basis of the measured coordinate change.

Description

三次元空間座標測定装置Three-dimensional spatial coordinate measuring device
 本発明は、三次元空間座標測定装置に関する。 The present invention relates to a three-dimensional spatial coordinate measuring apparatus.
 モーションセンシング技術を用いて、空間座標を数値データとして、連続して取得することで、三次元空間座標の測定に利用する、という技術がある。かかる技術には、無線を用いたり、その他、音波、光、磁気式、機械式等、各種の方式があるが、その中には、たとえば特許文献1に開示のものがある。特許文献1では、車載用途のレーダ向けに比較的高い分解能を有する技術について開示されている。 There is a technology that uses motion sensing technology to continuously acquire spatial coordinates as numerical data and use them to measure three-dimensional spatial coordinates. Such techniques include various methods such as using radio waves, and other types such as sound wave, light, magnetic type, mechanical type, and the like. Patent Document 1 discloses a technique having a relatively high resolution for an on-vehicle radar.
特開2002-357656号公報JP 2002-357656 A
 しかしながら、特許文献1に開示の技術を用いて三次元空間座標の測定で利用しようとする場合、測定対象となる複数の対象点でレーダから送信される電磁波を確実に反射してレーダ受信部へ電磁波を戻さねばならない。そのため、測定すべき対象物と測定装置との間に障害物が存在し、その障害物によりレーダが遮断される場合には、対象物の三次元空間座標を測定することができなかった。 However, when using the technique disclosed in Patent Document 1 for measurement of three-dimensional spatial coordinates, the electromagnetic wave transmitted from the radar is reliably reflected at a plurality of target points to be measured to the radar receiver. The electromagnetic wave must be returned. Therefore, when there is an obstacle between the object to be measured and the measuring apparatus and the radar is blocked by the obstacle, the three-dimensional spatial coordinates of the object cannot be measured.
 一方、特許文献1の方式ではなく、受信部を測定対象物から離れた位置に設置し、受信部とは別体の送信装置を、測定対象物に接触させて、三次元空間座標を測定することが検討されている。このような場合でも、受信部と送信装置との間に、障害物が存在する場合には、その障害物によって、電磁波や音波等の測定波が遮られ、正しい測定ができない死角が発生する、という問題がある。 On the other hand, instead of the method of Patent Document 1, the receiving unit is installed at a position away from the measurement object, and a three-dimensional spatial coordinate is measured by bringing a transmission device separate from the receiving unit into contact with the measurement object. It is being considered. Even in such a case, when there is an obstacle between the receiving unit and the transmission device, the obstacle obstructs a measurement wave such as electromagnetic waves and sound waves, and a blind spot that cannot be measured correctly occurs. There is a problem.
 本発明は、このような背景の下に行われたものであって、その目的とするところは、障害物によって測定波が遮られる場合であっても、三次元的な位置を正しく測定することが可能な三次元空間座標測定装置を提供することを目的とする。 The present invention was made under such a background, and its purpose is to correctly measure a three-dimensional position even when a measurement wave is obstructed by an obstacle. An object of the present invention is to provide a three-dimensional spatial coordinate measuring apparatus capable of
 本発明は、静止体と変位体とを有しており、静止体から変位体へ、または変位体から静止体へ、座標測定を目的とする物理作用が伝達され、静止体は、一連の測定作業の間、測定が行われる三次元空間座標系における特定座標に固定され、特定の手順に従うことにより固定されている特定座標が変更可能である三次元空間座標測定装置である。 The present invention has a stationary body and a displacement body, and a physical action for coordinate measurement is transmitted from the stationary body to the displacement body, or from the displacement body to the stationary body. It is a three-dimensional spatial coordinate measuring apparatus that is fixed to specific coordinates in a three-dimensional spatial coordinate system in which measurement is performed, and the fixed specific coordinates can be changed by following a specific procedure.
 本発明は、更に具体的には、変位体であり電波を送信する送信装置と、静止体であり送信装置が送信した電波又は光又は超音波を受信する複数の受信部と、複数の受信部のうち、任意の少なくとも二つの受信部からなる受信部対を複数有し、受信部対に含まれる受信部で受信した電波又は光又は超音波に基づいて、送信装置から受信部対の第一の受信部までの距離と送信装置から受信部対の第二の受信部までの距離との差である伝播行路距離差を算出する伝播行路距離差算出部と、複数の受信部対についてそれぞれ算出された伝播行路距離差に基づいて送信装置の座標を算出する送信装置座標算出部と、受信部が移動したときに、その移動が行われたことを示す移動情報に基づいて、既に座標が判明している位置を再度計測し、その再度の計測により求められる受信部の座標変化から移動補正値を算出する移動補正値算出部と、移動補正値算出部により算出された移動補正値に基づいて、受信部の移動前または移動後のいずれかの座標を補正する移動補正部と、を有する三次元空間座標測定装置である。 More specifically, the present invention is a transmission device that is a displacement body and transmits radio waves, a plurality of reception units that are stationary bodies and receive radio waves, light, or ultrasonic waves transmitted by the transmission device, and a plurality of reception units. A plurality of receiving unit pairs each including at least two receiving units, and based on radio waves, light, or ultrasonic waves received by the receiving units included in the receiving unit pair, the first of the receiving unit pairs from the transmitting device. A propagation path distance difference calculation unit for calculating a propagation path distance difference that is a difference between a distance from the receiving unit to a second receiving unit of the receiving unit pair and a plurality of receiving unit pairs. The coordinates of the transmitting device that calculates the coordinates of the transmitting device based on the propagation path distance difference and the movement information that indicates that the movement has been performed when the receiving unit has moved. Measure the current position again and repeat Based on the movement correction value calculated by the movement correction value calculation unit and the movement correction value calculation unit that calculates the movement correction value from the coordinate change of the reception unit obtained by measurement, either before or after the movement of the reception unit And a movement correction unit that corrects the coordinates of the three-dimensional space coordinate measuring device.
 たとえば、移動補正値算出部は、受信部の移動後に測定された送信装置の座標に移動補正値を加算するようにする。あるいは、移動補正値算出部は、受信部の移動前に測定された送信装置の座標から移動補正値を減算するようにしてもよい。 For example, the movement correction value calculation unit adds the movement correction value to the coordinates of the transmitter measured after the movement of the reception unit. Alternatively, the movement correction value calculation unit may subtract the movement correction value from the coordinates of the transmission device measured before the movement of the reception unit.
 また、移動情報は、スイッチ手段の押下により送信装置から送信されるようにすることが好ましい。 Further, it is preferable that the movement information is transmitted from the transmission device by pressing the switch means.
 または、送信装置と移動補正値算出部とは別体に設けられていて、移動情報は、移動補正値算出部と同一の筐体に設けられているスイッチ手段の押下により移動補正値算出部に送信されるようにしてもよい。 Alternatively, the transmission device and the movement correction value calculation unit are provided separately, and movement information is transferred to the movement correction value calculation unit by pressing a switch unit provided in the same housing as the movement correction value calculation unit. It may be transmitted.
 また、電波あるいは光は、ビート信号が重畳された正弦波であることができる。 Also, the radio wave or light can be a sine wave with a beat signal superimposed on it.
 本発明によれば、三次元空間座標測定装置において、障害物によって測定波が遮られる場合であっても、三次元的な位置を正しく測定することが可能となる。 According to the present invention, it is possible to correctly measure a three-dimensional position in a three-dimensional spatial coordinate measuring apparatus even when a measurement wave is blocked by an obstacle.
本発明の実施の形態に係る三次元空間座標測定装置の全体構成図である。1 is an overall configuration diagram of a three-dimensional spatial coordinate measuring apparatus according to an embodiment of the present invention. 図1の三次元空間座標測定装置のうち送信装置の構成例を示す図である。It is a figure which shows the structural example of a transmission apparatus among the three-dimensional space coordinate measuring apparatuses of FIG. 送信装置から送信される電波の掃引の例を示す図である。It is a figure which shows the example of the sweep of the electromagnetic wave transmitted from a transmitter. 図1の三次元座標測定装置の要部ブロック構成図である。It is a principal block block diagram of the three-dimensional coordinate measuring apparatus of FIG. 複数の受信部による送信装置の位置特定のイメージを示す図である。It is a figure which shows the image of the position specification of the transmitter by several receiving parts. 式(12)を満たす曲面と受信部との配置を示す図である。It is a figure which shows arrangement | positioning of the curved surface and receiving part which satisfy | fill Formula (12). 図1の送信装置および受信部のうち主として伝播行路距離差算出部の具体的な構成例を示す図である。It is a figure which shows the specific structural example mainly of a propagation path distance difference calculation part among the transmission apparatuses and receiving parts of FIG. 受信部対で受信した電波、電波を合成した合成波およびビート信号を示す図である。It is a figure which shows the electromagnetic wave received by the receiving part pair, the synthetic wave which synthesize | combined the electromagnetic wave, and a beat signal. 図1の送信装置の動作を示すフローチャートである。3 is a flowchart illustrating an operation of the transmission device in FIG. 1. 図1の受信装置の動作を示すフローチャートである。2 is a flowchart showing an operation of the receiving apparatus of FIG. 図1の三次元空間座標測定装置により机の寸法を測定する様子を示す図であり送信装置と受信装置との間に障害物が介在する例を示す図である。It is a figure which shows a mode that the dimension of a desk is measured by the three-dimensional space coordinate measuring apparatus of FIG. 1, and is a figure which shows the example in which an obstruction intervenes between a transmitter and a receiver. 図11の測定において受信部を移動させて測定を行う様子を示す図である。It is a figure which shows a mode that a receiving part is moved in the measurement of FIG. 図7の移動補正部による座標情報の補正の概念を説明する図であり、受信装置の移動後の座標に補正値を加算する例を示す図である。It is a figure explaining the concept of the correction | amendment of coordinate information by the movement correction | amendment part of FIG. 7, and is a figure which shows the example which adds a correction value to the coordinate after the movement of a receiver. 図7の移動補正部による座標情報の補正の概念を説明する図であり、受信装置の移動前の座標から補正値を減算する例を示す図である。It is a figure explaining the concept of the correction | amendment of coordinate information by the movement correction part of FIG. 7, and is a figure which shows the example which subtracts a correction value from the coordinate before the movement of a receiver.
 本発明を詳細に説明する前に、本明細書内で使用する用語についてここで定義する。 Before describing the present invention in detail, terms used in this specification will be defined here.
 静止体とは、本発明の三次元空間座標測定装置のうち一連の測定動作の間は移動させずにおくものである。静止体を設置した領域附近に局地座標系を一時的に想定し、後述の変位体がこの局地座標系においてどのような座標値を持つかを、静止体と変位体との相対的な位置関係に基づいて取得する、というのが座標測定の概要である。一時的な局地座標系は静止体の位置と向きにより決定付けられる。 A stationary object is one that is not moved during a series of measurement operations in the three-dimensional spatial coordinate measurement apparatus of the present invention. A local coordinate system is temporarily assumed in the vicinity of the area where the stationary body is installed, and the relative values of the stationary body and the displacement body indicate what coordinate values the displacement body described later has in this local coordinate system. Acquiring based on the positional relationship is an outline of coordinate measurement. The temporary local coordinate system is determined by the position and orientation of the stationary object.
 たとえば、とある三角形の土地の面積を求めるような場合、この土地近傍に静止体を設置し、三角形の頂点3つについて座標測定を行い、この3つの座標値に基づいて面積を演算により求めることができる。このような一連の測定動作(例えば上述のような面積の算出)が完了する前に静止体を移動させてしまうと局地座標系が狂ってしまうので、通常は静止体は固定したままにしておく。 For example, when finding the area of a land of a certain triangle, install a stationary object near this land, measure the coordinates of the three vertices of the triangle, and calculate the area based on these three coordinate values. Can do. If the stationary object is moved before such a series of measurement operations (for example, the calculation of the area as described above) is completed, the local coordinate system will be distorted. deep.
 変位体とは、本発明の三次元空間座標測定装置のうち座標測定を行いたい点を指し示す機能を持つものである。上述の説明の通り、特定の物理量を算出する目的で座標測定が必要となる点を指定するので、測定者はこれを手に持つなどして移動させる。 The displacement body has a function of indicating a point where coordinate measurement is desired in the three-dimensional spatial coordinate measurement apparatus of the present invention. As described above, since a point that requires coordinate measurement is specified for the purpose of calculating a specific physical quantity, the measurer moves it by holding it in his hand.
 物理作用とは、本発明の三次元空間座標測定装置の静止体から変位体へ、または逆に変位体から静止体へ伝達が行われるものであり、座標測定を目的とするものである。具体的には、電波や光などの電磁波、超音波などであるが、特定のものである必要は無い。要するに、静止体と変位体の間には物理的な作用が働くことにより相対的な位置関係が判るということである。物理作用の伝達の方向は、「静止体から変位体」か「変位体から静止体」のどちらかであるが、座標測定の精度向上や機器の汎用性を高める上で両方向とすることも可能である。 The physical action means that the transmission is performed from the stationary body to the displacement body or, conversely, from the displacement body to the stationary body of the three-dimensional spatial coordinate measurement apparatus of the present invention, and is intended for coordinate measurement. Specifically, electromagnetic waves such as radio waves and light, ultrasonic waves, and the like are not necessary. In short, the relative positional relationship is known by the physical action between the stationary body and the displacement body. The direction of transmission of physical action is either “stationary to displacement” or “displacement to stationary”, but it can also be used in both directions to improve the accuracy of coordinate measurement and increase the versatility of the equipment. It is.
 「特定の手順」とは、上述の一連の測定動作を行っているとき、座標測定をしようとした点が何かしらの理由で測定が出来ない死角となってしまった場合に、静止体を移動することで死角を解消する際に行う変位体もしくは静止体での処理のことである。 “Specific procedure” means that when performing the above-mentioned series of measurement operations, if the point where coordinate measurement is attempted becomes a blind spot where measurement cannot be performed for some reason, the stationary object is moved. This is a process with a displacement body or a stationary body that is performed when the blind spot is resolved.
 たとえば、静止体を移動させる前に局地座標系での任意の点を「静止体移動用の識別用の点」として変位体に認識(=座標測定)させ、その後に静止体を移動させる。この移動により局地座標系は静止体の移動前後で整合しなくなるが、先の識別用の点を変位体で指し示し、この状態で「先程測定した識別用の点と同じ点を現在指し示している」旨の指示を変位体に出すことで、静止体移動前に測定した座標値を静止体移動後の局地座標系に変換する。これにより死角などによる座標測定不能を回避することができる。上述の例のような手続のことが「特定の手順」である。 For example, before moving the stationary body, an arbitrary point in the local coordinate system is recognized as a “identification point for moving the stationary body” by the displacement body (= coordinate measurement), and then the stationary body is moved. This movement causes the local coordinate system to become inconsistent before and after the movement of the stationary body, but the previous identification point is indicated by the displacement body, and in this state, “the same point as the identification point measured earlier is currently indicated. The coordinate value measured before moving the stationary body is converted into the local coordinate system after moving the stationary body. Thereby, it is possible to avoid the inability to measure coordinates due to blind spots. The procedure as in the above example is a “specific procedure”.
 本発明の実施の形態に係る三次元空間座標測定装置1について図面を参照しながら説明する。なお、以下では、三次元空間座標測定装置1を簡略化して座標測定装置1と記す。 A three-dimensional spatial coordinate measuring apparatus 1 according to an embodiment of the present invention will be described with reference to the drawings. Hereinafter, the three-dimensional spatial coordinate measuring device 1 is simplified and referred to as a coordinate measuring device 1.
<座標測定装置1の構成について>
 座標測定装置1は、図1に示すように、送信装置11と、受信装置12とを有している。測定者が受信装置12を測定対象物から離れた位置に設置し、送信装置11を測定対象物に接触させることで、送信装置11と受信装置12間において所定の電波が送受信されることによって、測定対象物の三次元空間座標を測定することができる。
<About the configuration of the coordinate measuring apparatus 1>
As shown in FIG. 1, the coordinate measuring device 1 includes a transmission device 11 and a reception device 12. When a measurement person installs the receiving device 12 at a position away from the object to be measured and brings the transmitting device 11 into contact with the object to be measured, a predetermined radio wave is transmitted and received between the transmitting device 11 and the receiving device 12. The three-dimensional space coordinates of the measurement object can be measured.
 図2は、送信装置11の内部の構成例を示している。送信装置11は、アンテナ21、電波生成部22、再送信モードスイッチ23、インターフェース部24,26、計測スイッチ25、制御部27、およびメモリ28を有している。送信装置11は、測定対象物に接触して計測スイッチ25が押下されたとき、または再送信モードスイッチ23が操作されたとき、所定の電波を送信する。 FIG. 2 shows an internal configuration example of the transmission device 11. The transmission device 11 includes an antenna 21, a radio wave generation unit 22, a retransmission mode switch 23, interface units 24 and 26, a measurement switch 25, a control unit 27, and a memory 28. The transmission device 11 transmits a predetermined radio wave when the measurement switch 25 is pressed by touching the measurement object or when the retransmission mode switch 23 is operated.
 アンテナ21は、電波を空間に放射する。電波生成部22は、図示しない発振器、増幅器、周波数逓倍器、フィルタ、変調器等を備え、アンテナ21から送信される電波を生成する。 The antenna 21 radiates radio waves into space. The radio wave generator 22 includes an oscillator, an amplifier, a frequency multiplier, a filter, a modulator, and the like (not shown), and generates a radio wave transmitted from the antenna 21.
 再送信モードスイッチ23は、たとえば送信装置11の筐体に設けられている。この再送信モードスイッチ23が、たとえば測定者の指で押下されると、インターフェース部24を介して、再送信モードスイッチ23が押下された旨を示す信号が、制御部27に送信される。 The retransmission mode switch 23 is provided, for example, on the casing of the transmission device 11. When the retransmission mode switch 23 is pressed with, for example, a measurer's finger, a signal indicating that the retransmission mode switch 23 has been pressed is transmitted to the control unit 27 via the interface unit 24.
 計測スイッチ25は、たとえば、送信装置11の先端部に設けられている。計測スイッチ25が、たとえば測定者が測定対象物に接触させることで押下されると、インターフェース部26を介して、計測スイッチ25が押下されたことを示す信号が、制御部27に送信される。 The measurement switch 25 is provided, for example, at the tip of the transmission device 11. When the measurement switch 25 is pressed by, for example, a measurer contacting the measurement object, a signal indicating that the measurement switch 25 is pressed is transmitted to the control unit 27 via the interface unit 26.
 制御部27は、メモリ28に記憶されている所定の処理プログラム28aを実行することで、送信装置11における各種の制御を行う。たとえば制御部27は、計測スイッチ25が押圧されたとき、メモリ28に記憶されている図3に示す掃引パターン情報28bに基づいて、電波生成部22を制御して、正弦波を掃引を施しながら電波として送信させる。本実施例において掃引とは、正弦波を時間の経過と共に一定のパターンに基づいて周波数を変化させることである。本実施例では基本周波数を中心にして予め定められた周波数幅の範囲内で時間の経過に伴って送信する電波の周波数を変化させることをいう。 The control unit 27 performs various controls in the transmission device 11 by executing a predetermined processing program 28 a stored in the memory 28. For example, when the measurement switch 25 is pressed, the control unit 27 controls the radio wave generation unit 22 based on the sweep pattern information 28b shown in FIG. 3 stored in the memory 28 to sweep the sine wave. Transmit as radio waves. In this embodiment, sweeping is to change the frequency of a sine wave based on a certain pattern over time. In the present embodiment, it means that the frequency of a radio wave to be transmitted is changed with the elapse of time within a predetermined frequency range centering on the fundamental frequency.
 掃引パターン情報28bには、発信開始時刻(タイミング)、掃引時間、発信終了時刻(タイミング)、基本周波数、掃引時間に応じた周波数を示す情報が含まれている。なお、掃引パターン情報28bでは、既知である掃引正弦波の基本周波数と掃引時間と掃引周波数幅とが適宜設定された掃引パターンが複数存在するものとし、制御部27は、その複数の掃引パターンから掃引パターンを切替えることを可能としてもよい。 The sweep pattern information 28b includes information indicating a transmission start time (timing), a sweep time, a transmission end time (timing), a fundamental frequency, and a frequency corresponding to the sweep time. In the sweep pattern information 28b, it is assumed that there are a plurality of sweep patterns in which the known fundamental frequency, sweep time, and sweep frequency width of the sweep sine wave are appropriately set, and the control unit 27 uses the plurality of sweep patterns. It may be possible to switch the sweep pattern.
 あるいは、掃引パターン切替手段(図示せず)を設けて外部からの指示で掃引パターンの切替えが可能としてもよい。外部からの指示としては、有線ではRS-232CやI2CやUSB(登録商標)などが、無線ではBluetooth(登録商標)やZigBee(登録商標)などが好適である。 Alternatively, sweep pattern switching means (not shown) may be provided so that the sweep pattern can be switched by an external instruction. As an instruction from the outside, RS-232C, I2C, USB (registered trademark) or the like is preferable for wired communication, and Bluetooth (registered trademark) or ZigBee (registered trademark) is preferable for wireless communication.
 さらには、掃引パターンそのものを変更するために掃引パターン変更手段(図示せず)を設けて外部からの指示で掃引パターンの変更が可能としてもよい。外部からの指示としては掃引パターン切替手段と同様に、有線ではRS-232CやI2CやUSB(登録商標)などが、無線ではBluetooth(登録商標)やZigBee(登録商標)などが好適である。 Furthermore, a sweep pattern changing means (not shown) may be provided to change the sweep pattern itself so that the sweep pattern can be changed by an external instruction. As an instruction from the outside, like the sweep pattern switching means, RS-232C, I2C, USB (registered trademark) or the like is preferable for wired communication, and Bluetooth (registered trademark) or ZigBee (registered trademark) is preferable for wireless communication.
 ここで、本実施の形態では、アンテナ21から放射された電波は、正弦波であり、この正弦波が特定周波数を中心として掃引が施されているものを「掃引正弦波」という。また、以下の説明においては、座標とは特に断りの無い限り立体(三次元)空間の直交座標系の座標を意味するものとする。 Here, in the present embodiment, the radio wave radiated from the antenna 21 is a sine wave, and the sine wave that is swept around a specific frequency is referred to as a “swept sine wave”. Further, in the following description, the coordinate means a coordinate in an orthogonal coordinate system in a three-dimensional (three-dimensional) space unless otherwise specified.
 制御部27は、また、再送信モードスイッチ23が押下されたとき、電波生成部22を制御して、その旨を示す信号を生成させて、アンテナ21を介して送信される。このとき生成される信号は、座標位置計測用の信号と区別するために、たとえば、座標位置計測用の信号とは周波数を異なるものとしたり、あるいは、周波数は同じでも変調を異なるものとする。 Further, when the re-transmission mode switch 23 is pressed, the control unit 27 controls the radio wave generation unit 22 to generate a signal indicating that and transmits the signal via the antenna 21. In order to distinguish the signal generated at this time from the signal for measuring the coordinate position, for example, the frequency is different from that of the signal for measuring the coordinate position, or the modulation is different even though the frequency is the same.
 次に、図4を参照して受信装置12について説明する。受信装置12は、4つの受信部31a~31d、伝播行路距離差算出部32、送信装置座標算出部33、送信装置座標記憶部34、移動補正値算出部35および移動補正部36を有している。受信装置12は、送信装置11から送信されてきた電波に基づいて、測定対象物の三次元空間座標を計算する。受信装置12が最初に置かれる位置が座標位置測定の基準点となる位置になる。なお、図4に示す送信装置11の構成では、インターフェース部25,26、制御部5、およびメモリ28の図示が省略されている。 Next, the receiving device 12 will be described with reference to FIG. The reception device 12 includes four reception units 31a to 31d, a propagation path distance difference calculation unit 32, a transmission device coordinate calculation unit 33, a transmission device coordinate storage unit 34, a movement correction value calculation unit 35, and a movement correction unit 36. Yes. The receiving device 12 calculates the three-dimensional spatial coordinates of the measurement object based on the radio wave transmitted from the transmitting device 11. The position where the receiving device 12 is first placed becomes a reference point for coordinate position measurement. In the configuration of the transmission apparatus 11 illustrated in FIG. 4, the interface units 25 and 26, the control unit 5, and the memory 28 are not illustrated.
 受信部31a~31dは、送信装置11が送信した電波をそれぞれ受信する。また、受信部31a~31dは、それぞれ、アンテナ41a~41dおよび受信器42a~42dを有する。以下の説明では、受信部31a~31d、アンテナ41a~41d、および受信器42a~42dをここに区別して説明する必要がない場合には、単に、受信部31、アンテナ41、および受信器42と称する。 The receiving units 31a to 31d receive the radio waves transmitted by the transmission device 11, respectively. The receiving units 31a to 31d have antennas 41a to 41d and receivers 42a to 42d, respectively. In the following description, when it is not necessary to distinguish between the receiving units 31a to 31d, the antennas 41a to 41d, and the receivers 42a to 42d, the receiving unit 31, the antenna 41, and the receiver 42 are simply described. Called.
 また、2つの受信部31の対を受信部対と称する。4つの受信部31a~31dが設けられているので、受信部31aと受信部31b、受信部31aと受信部31c、受信部31aと受信部31d、受信部31bと受信部31c、受信部31bと受信部31d、受信部31cと受信部31dが、受信部対となり、この例の場合、6つの受信部対が存在する。 Also, a pair of two receiving units 31 is referred to as a receiving unit pair. Since four receiving units 31a to 31d are provided, the receiving unit 31a and the receiving unit 31b, the receiving unit 31a and the receiving unit 31c, the receiving unit 31a and the receiving unit 31d, the receiving unit 31b and the receiving unit 31c, and the receiving unit 31b The receiving unit 31d, the receiving unit 31c, and the receiving unit 31d form a receiving unit pair. In this example, there are six receiving unit pairs.
 なお、図4の例で、4つの受信部31a~31dが設けられているが、受信部31をさらに設けることもできる。またここでは、2つの受信部31を受信部対とするが、3つ以上の受信部31を1つのまとまり(受信部群)とすることもできる。 In the example of FIG. 4, four receiving units 31a to 31d are provided, but a receiving unit 31 may be further provided. In addition, here, the two receiving units 31 are used as a receiving unit pair, but three or more receiving units 31 can be used as one group (receiving unit group).
 伝播行路距離差算出部32は、図5に示すように、各受信部31と送信装置11との距離に差が生じることから、受信部対毎に、受信部対を構成する一方の受信部31と他方の受信部31でそれぞれ受信した電波に基づいて、送信装置11と一方の受信部31の距離と送信装置11と他方の受信部31の距離との差である伝播行路距離差を算出する。なお、伝播行路距離差の算出方法の詳細については後述する。 As shown in FIG. 5, the propagation path distance difference calculation unit 32 has a difference in distance between each reception unit 31 and the transmission device 11, so that one reception unit constituting a reception unit pair for each reception unit pair. 31 and a propagation path distance difference, which is a difference between the distance between the transmission device 11 and the one reception unit 31 and the distance between the transmission device 11 and the other reception unit 31, based on the radio waves respectively received by the reception unit 31 and the other reception unit 31. To do. Details of the method of calculating the propagation path distance difference will be described later.
 送信装置座標算出部33は、受信装置12の位置を座標位置測定の基準点として、受信部31についてそれぞれ算出された伝播行路距離差に基づいて送信装置11の座標を算出し、送信装置座標記憶部34に記憶させる。 The transmission device coordinate calculation unit 33 calculates the coordinates of the transmission device 11 based on the propagation path distance difference calculated for the reception unit 31 using the position of the reception device 12 as a reference point for coordinate position measurement, and stores the transmission device coordinate storage. Stored in the unit 34.
 送信装置11の座標算出方法の概略(詳細は後述する)を説明する。送信装置11と2つの受信部31について伝播行路距離差が一定の値になる座標(三次元座標系上の曲面)は、送信装置11の座標の解の候補群となる。図6のメッシュで表現されている曲面は、送信装置11と2つの受信部31a(図中、P)と31B(図中、Q)について伝播行路距離差(TP間とTQ間の距離差)が一定の値になる曲面である。送信装置座標算出部33は、6つの組合せの受信部対についてこの曲面を求め、それらが交わる点を送信装置11の位置として算出する。なおこれは送信装置座標算出部33が1つの伝播行路距離差算出部32に対して6つの受信部対を適宜切替えて接続できるような構成であってもよいし(図4)、6つの受信部対それぞれに専用の伝播行路距離差算出部32を設けておいてその算出結果を全て同時に送信装置座標算出部33に接続しておいてもよい。 An outline (details will be described later) of the coordinate calculation method of the transmission device 11 will be described. The coordinates (curved surface on the three-dimensional coordinate system) at which the propagation path distance difference between the transmission device 11 and the two reception units 31 is a constant value are candidates for the coordinate solution of the transmission device 11. The curved surface represented by the mesh in FIG. 6 is the propagation path distance difference (distance difference between TP and TQ) for the transmitter 11 and the two receivers 31a (P in the figure) and 31B (Q in the figure). Is a curved surface with a constant value. The transmission device coordinate calculation unit 33 obtains the curved surface for the six combinations of the reception unit pairs, and calculates the point where they intersect as the position of the transmission device 11. Note that this may be configured such that the transmitter coordinate calculation unit 33 can appropriately switch and connect six reception unit pairs to one propagation path distance difference calculation unit 32 (FIG. 4). A dedicated propagation path distance difference calculation unit 32 may be provided for each part pair, and all the calculation results may be connected to the transmitter coordinate calculation unit 33 at the same time.
 送信装置座標算出部33には6つの受信部対についての伝播行路距離差が入力され、既知である4つの受信部31a(P),31b(Q),31c(R),31d(S)の座標と6つの受信部対についての伝播行路距離差値を元に、後述する式(18)~式(32)を用いて送信装置11(T)の座標を算出することができる。 The transmission device coordinate calculation unit 33 receives propagation path distance differences for the six reception unit pairs, and the known four reception units 31a (P), 31b (Q), 31c (R), and 31d (S). Based on the coordinates and the propagation path distance difference values for the six receiver pairs, the coordinates of the transmission device 11 (T) can be calculated using equations (18) to (32) described later.
 なお、図4では受信部31a~31dからなる受信部対と伝播行路距離差算出部32とが一体であることを示しているが、これに限定されない。また図に明示していないが送信装置座標算出部33は受信部対や伝播行路距離差算出部32とは互いに一体であっても別体であっても構わない。 Although FIG. 4 shows that the receiving unit pair including the receiving units 31a to 31d and the propagation path distance difference calculating unit 32 are integrated, the present invention is not limited to this. Although not shown in the figure, the transmitter coordinate calculation unit 33 may be integrated with or separate from the reception unit pair and the propagation path distance difference calculation unit 32.
 移動補正値算出部35は、後述する理由で、測定対象物を測定する際に受信装置12(受信部31)が移動されたとき、その移動直前の位置で送信装置座標算出部33により算出された所定の座標と、移動後に再度電波を受信して、その移動後の位置で送信装置座標算出部33により算出された座標とに基づいて、移動補正値を算出する。 The movement correction value calculation unit 35 is calculated by the transmission device coordinate calculation unit 33 at a position immediately before the movement when the reception device 12 (reception unit 31) is moved when measuring the measurement object for the reason described later. The movement correction value is calculated on the basis of the predetermined coordinates and the coordinates calculated by the transmitter coordinate calculation unit 33 at the position after the movement after receiving the radio wave again after the movement.
 移動補正部36は、移動補正値算出部35により算出された移動補正値に基づいて、受信部31の移動後に送信装置11で測定された座標を補正する。それにより、受信部31の移動前に測定された送信装置11の座標との整合性を取ることが可能となる。本実施の形態では、移動補正値は、受信部31の移動の前後の三次元の位置差であり、それを受信部31の移動後に測定された送信装置11の座標に加算している。すなわち移動後の位置を、移動前の座標に合わせる処理が行われる。 The movement correction unit 36 corrects the coordinates measured by the transmission device 11 after the movement of the reception unit 31 based on the movement correction value calculated by the movement correction value calculation unit 35. Thereby, it becomes possible to take consistency with the coordinates of the transmission device 11 measured before the movement of the reception unit 31. In the present embodiment, the movement correction value is a three-dimensional position difference before and after the movement of the reception unit 31 and is added to the coordinates of the transmission device 11 measured after the movement of the reception unit 31. That is, processing for adjusting the position after movement to the coordinates before movement is performed.
 なお、移動後に受信部31の基準位置となる座標を補正するようにしてもよい。この場合も、受信部31の移動後に測定された送信装置11の座標に移動補正値を加算するのと実質的には同じこととなる。 In addition, you may make it correct | amend the coordinate used as the reference | standard position of the receiving part 31 after a movement. Also in this case, it is substantially the same as adding the movement correction value to the coordinates of the transmission device 11 measured after the movement of the receiving unit 31.
 移動後に受信部31の基準位置となる座標を補正する場合、既に測定した送信装置11の各測定点の座標を補正して、受信装置12の移動後に測定された送信装置11の座標を、移動補正値で補正しないものとする。既に測定した送信装置11の各測定点の座標を補正する場合、その後の送信装置11での測定結果は、そのまま用いることができる。この場合、移動補正部36は、移動補正値算出部35での移動補正値の測定結果に基づいて、既に測定した送信装置11の各測定点の座標を補正する。 When correcting the coordinates that become the reference position of the receiving unit 31 after the movement, the coordinates of the measurement points of the transmission apparatus 11 that have already been measured are corrected, and the coordinates of the transmission apparatus 11 that are measured after the movement of the reception apparatus 12 are moved. It shall not be corrected with the correction value. When the coordinates of each measurement point of the transmitter 11 that has already been measured are corrected, the subsequent measurement results at the transmitter 11 can be used as they are. In this case, the movement correction unit 36 corrects the coordinates of each measurement point of the transmitter 11 that has already been measured based on the measurement result of the movement correction value in the movement correction value calculation unit 35.
<伝播行路距離差算出部32の構成の詳細について>
 図7を参照して、伝播行路距離差算出部32の構成について説明する。図7には、伝播行路距離差算出部32の構成のうち、受信部対(受信部31a,31b)に対応する構成が示されている。なお、他の受信部対(受信部31c,31d)についても同様なので説明は省略する。
<Details of Configuration of Propagation Route Distance Difference Calculation Unit 32>
The configuration of the propagation path distance difference calculation unit 32 will be described with reference to FIG. FIG. 7 shows a configuration corresponding to the receiving unit pair (receiving units 31 a and 31 b) among the configurations of the propagation path distance difference calculating unit 32. Since the other receiving unit pairs (receiving units 31c and 31d) are the same, the description thereof is omitted.
 伝播行路距離差算出部32は、受信部対(受信部31a,31b)に対応して、合波器51a,51b、パワーディテクタ52a,52b、低周波アンプ53a,53b、A/D変換器54a、54b、ビート周波数算出部55、および距離差算出部56を有する。 The propagation path distance difference calculation unit 32 corresponds to the reception unit pair ( reception units 31a and 31b), and includes multiplexers 51a and 51b, power detectors 52a and 52b, low frequency amplifiers 53a and 53b, and an A / D converter 54a. , 54b, a beat frequency calculation unit 55, and a distance difference calculation unit 56.
 受信部31aで受信した電波と受信部31bで受信した電波は、合波器51aで合波されて合成波となる。合波器51aで合波された合成波の強度がパワーディテクタ52aで検出される。パワーディテクタ52aの検出結果は、合成波の包絡線波形になり、これは低周波のアナログ信号である。この合成波の包絡線波形であるアナログ信号は、低周波アンプ53aで増幅される。低周波アンプ53aで増幅された合成波の包絡線波形は、A/D変換器54aでデジタル信号に変換され、ビート周波数算出部55に供給される。 The radio wave received by the receiving unit 31a and the radio wave received by the receiving unit 31b are combined by the multiplexer 51a to become a combined wave. The intensity of the combined wave combined by the multiplexer 51a is detected by the power detector 52a. The detection result of the power detector 52a is an envelope waveform of a composite wave, which is a low frequency analog signal. The analog signal that is the envelope waveform of the synthesized wave is amplified by the low-frequency amplifier 53a. The envelope waveform of the composite wave amplified by the low frequency amplifier 53 a is converted into a digital signal by the A / D converter 54 a and supplied to the beat frequency calculation unit 55.
 受信部31bで受信した電波と受信部31aで受信した電波は、合波器51bにおいて、合波器51aにおける合成波の合波より位相が90度遅れて合成される。合波器51bで合波された合成波の強度がパワーディテクタ52bで検出される。パワーディテクタ52bの検出結果は、合成波の包絡線波形になり、これは低周波のアナログ信号である。この合成波の包絡線波形であるアナログ信号は、低周波アンプ53bで増幅される。低周波アンプ53bで増幅された合成波の包絡線波形は、A/D変換器54bでデジタル信号に変換され、ビート周波数算出部55に供給される。 The radio wave received by the receiving unit 31b and the radio wave received by the receiving unit 31a are combined in the multiplexer 51b with a phase delayed by 90 degrees from the combined wave of the combined wave in the multiplexer 51a. The intensity of the combined wave combined by the multiplexer 51b is detected by the power detector 52b. The detection result of the power detector 52b is an envelope waveform of a composite wave, which is a low frequency analog signal. The analog signal that is the envelope waveform of the synthesized wave is amplified by the low-frequency amplifier 53b. The envelope waveform of the synthesized wave amplified by the low frequency amplifier 53 b is converted into a digital signal by the A / D converter 54 b and supplied to the beat frequency calculation unit 55.
 ビート周波数算出部55は、A/D変換器54aおよびA/D変換器54bでアナログ信号からデジタル信号に変換された信号に基づいて、FFT(高速フーリエ変換)による周波数解析ビート周波数を算出する。なお、合波器51a、パワーディテクタ52a、低周波アンプ53a、A/D変換器54aで生成された信号よりビート信号を生成することも可能であるが、この例の場合、FFT(高速フーリエ変換)による周波数解析を行ってビート信号の周波数を求めることから、そのFFTの精度を向上させるため、位相が90度ずれた信号を利用している。 The beat frequency calculation unit 55 calculates a frequency analysis beat frequency by FFT (Fast Fourier Transform) based on the signal converted from the analog signal to the digital signal by the A / D converter 54a and the A / D converter 54b. It is possible to generate a beat signal from signals generated by the multiplexer 51a, the power detector 52a, the low frequency amplifier 53a, and the A / D converter 54a. In this example, however, FFT (Fast Fourier Transform) is used. ) To obtain the frequency of the beat signal, and in order to improve the accuracy of the FFT, a signal whose phase is shifted by 90 degrees is used.
 距離差算出部56は、ビート周波数算出部55から出力されたビート周波数に基づいて距離差を算出する。この距離差算出部56は、上述のビート信号周波数を、後述する式(1)に代入することで伝播行路距離差を得る。なお、掃引正弦波の掃引時間と掃引周波数幅は既知である。 The distance difference calculation unit 56 calculates the distance difference based on the beat frequency output from the beat frequency calculation unit 55. This distance difference calculation unit 56 obtains a propagation path distance difference by substituting the above-described beat signal frequency into Equation (1) described later. Note that the sweep time and sweep frequency width of the swept sine wave are known.
 図8は、上から、受信部31aにより受信される電波、受信部31bにより受信される電波、合波器51aにより生成される合成波、ビート周波数算出部55により算出されたビート信号の例を示している。 FIG. 8 shows, from above, examples of radio waves received by the receiver 31a, radio waves received by the receiver 31b, synthesized waves generated by the multiplexer 51a, and beat signals calculated by the beat frequency calculator 55. Show.
 送信装置11から送信された電波は、受信部31a,31bにて受信されるが(図7)、このとき、「送信装置11から受信部31aへの距離」と「送信装置11から受信部31bへの距離」に差があると、この距離差を光速で除算して得られる時間分だけ電波の到達に時間差を生じることになる。ここで、送信装置11から送信される電波は掃引された正弦波である。したがって、受信部31aと受信部31bで受信した電波を合波器51aで合成すると、受信部31aと受信部31bへ電波が到達した時間の差に相当する分だけ掃引が行われており、その分の周波数がずれた掃引正弦波の合成となる。すなわち、合波器51a,51bで合成の結果、合成前の2波の周波数の差を周期として振幅が変動するビートが観測される。なおビート信号の周波数をビート周波数と呼ぶ。 The radio waves transmitted from the transmission device 11 are received by the reception units 31a and 31b (FIG. 7). At this time, the “distance from the transmission device 11 to the reception unit 31a” and the “transmission device 11 to the reception unit 31b”. If there is a difference in “distance to”, a time difference will occur in the arrival of radio waves by the time obtained by dividing this distance difference by the speed of light. Here, the radio wave transmitted from the transmitter 11 is a swept sine wave. Accordingly, when the radio waves received by the receiving unit 31a and the receiving unit 31b are combined by the multiplexer 51a, the sweep is performed by an amount corresponding to the difference in time when the radio waves arrived at the receiving unit 31a and the receiving unit 31b. This is a composite of a swept sine wave with a frequency offset of minutes. That is, as a result of the synthesis by the multiplexers 51a and 51b, a beat whose amplitude varies with the frequency difference between the two waves before synthesis as a period is observed. The frequency of the beat signal is called the beat frequency.
<送信装置11の座標算出方法の原理>
次に、送信装置座標算出部33における送信装置11の座標算出方法の原理について説明する。
Figure JPOXMLDOC01-appb-M000001
<Principle of Coordinate Calculation Method of Transmitter 11>
Next, the principle of the coordinate calculation method of the transmission device 11 in the transmission device coordinate calculation unit 33 will be described.
Figure JPOXMLDOC01-appb-M000001
 上記式(1)により、「送信装置11~受信部31aの距離」と「送信装置11~受信部31bの距離」との差である距離差dは合成波のビート周波数が判れば決定できる。このdのことを伝播行路距離差とする。 From the above equation (1), the distance difference d, which is the difference between the “distance between the transmitter 11 and the receiver 31a” and the “distance between the transmitter 11 and the receiver 31b”, can be determined if the beat frequency of the synthesized wave is known. This d is the propagation path distance difference.
 また、図5に示すような送信装置11、受信部31a、受信部31bの空間座標において、図6に示すように、この座標に基づいて距離差dである曲面が決定でき、送信装置11はこの曲面上のどこかに位置していることとなる。 In addition, in the spatial coordinates of the transmission device 11, the reception unit 31a, and the reception unit 31b as shown in FIG. 5, as shown in FIG. 6, a curved surface that is a distance difference d can be determined based on these coordinates. It is located somewhere on this curved surface.
 掃引正弦波を送信する送信装置11の空間座標を測定するためには、さらに複数の受信部対を用いて距離差を算出して複数の曲面を決定し、それら全ての曲面が交わる点が送信装置11の存在する座標であることになる。 In order to measure the spatial coordinates of the transmitter 11 that transmits a swept sine wave, a plurality of receiver pairs are used to calculate a distance difference to determine a plurality of curved surfaces, and a point where all the curved surfaces intersect is transmitted. This is the coordinates where the device 11 exists.
 以下に4つの受信部31a~31dによる送信装置11の座標測定方法の詳細を記す。 Details of the coordinate measuring method of the transmission device 11 by the four receiving units 31a to 31d are described below.
 三次元座標系の原点を任意の点に設定し、送信装置11をTで表し、受信部31aをQ、受信部31bをP、受信部31cをS、受信部31dをRで表し、未知の座標に存在している送信装置11の座標を(x,y,z)とし、また既知である各受信部31a,31b,31c,31dの三次元座標をそれぞれ(□.x,□.y,□.z)(□にはP、Q、R、Sが入る)としたとき、送信装置11と各受信部31a,31b,31c,31dとの距離を表す式は次の式(2)~式(5)の通りとなる。 The origin of the three-dimensional coordinate system is set to an arbitrary point, the transmission device 11 is represented by T, the reception unit 31a is represented by Q, the reception unit 31b is represented by P, the reception unit 31c is represented by S, and the reception unit 31d is represented by R. The coordinates of the transmitting device 11 existing in the coordinates are (x, y, z), and the three-dimensional coordinates of the respective receiving units 31a, 31b, 31c, 31d are (□ .x, □ .y, □ .z) (where P, Q, R, and S are included in □), the expressions representing the distances between the transmitter 11 and the receiving units 31a, 31b, 31c, and 31d are the following expressions (2) to (2) to Equation (5) is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、式(6)~式(11)により、送信装置11と各受信部31との距離の差を次のように定義する。 In addition, the difference in distance between the transmission device 11 and each receiving unit 31 is defined as follows using Equations (6) to (11).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 4つの受信部31には6つの受信部対の組合せが存在する。そのため、6つの受信部対と送信装置11との間に次の式(12)~式(17)の6つの関係式を導くことが出来る。 The four receiving units 31 have combinations of six receiving unit pairs. Therefore, the following six relational expressions (12) to (17) can be derived between the six reception unit pairs and the transmission device 11.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 参考までに、TQP.dについての式(12)を満たすxyzを三次元座標上にプロットしたものが図6のメッシュで表現されている曲面部である。このように送信装置11と2つの受信部31(この場合はPとQ)について伝播行路距離差(TQP.d:TP間とTQ間の距離差)が一定の値になる座標は、三次元座標系上では図6のメッシュによって表現されるような曲面となり、この曲面は送信装置11の座標の解の候補群である。前述の通り、送信装置11(T)はこのメッシュの曲面のどこかに位置していることになる。 For reference, TQP. The xyz satisfying the equation (12) for d is plotted on the three-dimensional coordinates to represent the curved surface portion represented by the mesh in FIG. In this way, the coordinates at which the propagation path distance difference (TQP.d: distance difference between TP and TQ) is constant for the transmitter 11 and the two receivers 31 (in this case, P and Q) are three-dimensional. On the coordinate system, a curved surface is represented by the mesh in FIG. 6, and this curved surface is a candidate group of coordinate solutions of the transmission device 11. As described above, the transmission device 11 (T) is located somewhere on the curved surface of the mesh.
 上記のような曲面が複数交わる点を求めるということは、送信装置11(T)の座標であるxyzそれぞれについての式を式(2)~式(17)に基づいて求めることである。得られた式に「4つの受信部31a(P),31b(Q)、31c(R)、31d(S)の座標」と「6つの受信部対それぞれについての伝播行路距離差」を代入することによってxyzが決定する。なお、式を表記する便宜のために、A1~A3、B1~B3、C1~C3、D1~D3というものを式(18)~式(29)のように定義し、これを用いて送信装置11(T)の座標xyzを表したものが式(30)~式(32)である。 Obtaining a point where a plurality of curved surfaces as described above intersect means obtaining an expression for each of xyz, which is the coordinates of the transmission device 11 (T), based on Expressions (2) to (17). “Coordinates of four receiving units 31a (P), 31b (Q), 31c (R), 31d (S)” and “propagation path distance difference for each of six receiving unit pairs” are substituted into the obtained formula. As a result, xyz is determined. For the convenience of expressing the formulas, A1 to A3, B1 to B3, C1 to C3, and D1 to D3 are defined as formulas (18) to (29), and using this, the transmission apparatus Expressions (30) to (32) represent the coordinates xyz of 11 (T).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このようにして、4つの受信部31a(P),31b(Q),31c(R),31d(S)の既知の座標と、6つの受信部対それぞれにおいて測定された伝播行路距離差と、を式(18)~式(32)に代入することで送信装置11(T)の座標が求まる。なお、受信部31a(P),31b(Q),31c(R),31d(S)の座標は、たとえば図6にあるような三角錐形状であると三次元座標系の座標を求める上で好適であるが、これに限定されない。 In this way, the known coordinates of the four receivers 31a (P), 31b (Q), 31c (R), 31d (S), the propagation path distance differences measured in each of the six receiver pairs, Is substituted into equations (18) to (32) to obtain the coordinates of the transmitter 11 (T). When the coordinates of the receivers 31a (P), 31b (Q), 31c (R), 31d (S) are, for example, a triangular pyramid shape as shown in FIG. Although it is suitable, it is not limited to this.
 なお、送信装置11から送信される正弦波を掃引させる理由について説明する。送信装置11より送信された電波が受信部対それぞれの受信部31a,31b,31c,31dに時間差をもって到達する。単純に考えるとこの時間差を計測すれば計測された時間に光速を乗じることで伝播行路距離差を求めることが理論上は可能である。 The reason for sweeping the sine wave transmitted from the transmission device 11 will be described. The radio wave transmitted from the transmitting device 11 reaches the receiving units 31a, 31b, 31c, and 31d of the receiving unit pair with a time difference. In simple terms, if this time difference is measured, it is theoretically possible to determine the propagation path distance difference by multiplying the measured time by the speed of light.
 しかしながら、同一の送信装置11より送信された電波を受信部対で受信する場合、伝播行路距離差は受信部対のそれぞれの受信部31a~31dの直線距離以上にはならない。しかしながら光速は1mを約3.3nsecで進むため、受信部対のそれぞれの受信部31a~31dで受信した電波の到達時間差を計測するためにはnsecオーダーのレンジで時間差を計測する必要が生じる。この計測を実現するためには高価な部品が必要となり経済性に反する上、高精度な計測を行うことは現実的に難易度が高い。 However, when the radio waves transmitted from the same transmitter 11 are received by the receiving unit pair, the propagation path distance difference does not exceed the linear distance of the receiving units 31a to 31d of the receiving unit pair. However, since the speed of light travels 1 m at about 3.3 nsec, it is necessary to measure the time difference in the nsec order range in order to measure the arrival time difference of the radio waves received by the receiving units 31a to 31d of the receiving unit pair. In order to realize this measurement, expensive parts are required, which is contrary to economic efficiency, and it is practically difficult to perform highly accurate measurement.
 それに対し、送信装置11より送信される電波を掃引正弦波とすることで、伝播行路距離差の測定を「難易度の高い微小時間測定」から「難易度の低い比較的低い周波数のビート信号の周波数測定」に置換えることができる。その結果として、本実施の形態のような簡便な装置構成と技術で伝播行路距離差の測定を実現可能となる。加えて、掃引正弦波の掃引時間と掃引周波数幅の設定を変更することによって、「受信部対の直線距離」や「送信装置11から受信部31までの想定される距離のレンジ」や「測定精度」などの条件に適合させて送信装置11の座標測定を行うことが可能となる。 On the other hand, by measuring the radio wave transmitted from the transmitter 11 as a swept sine wave, the measurement of the propagation path distance difference is changed from “highly difficult minute time measurement” to “low difficulty and relatively low frequency beat signal. Can be replaced by "frequency measurement". As a result, measurement of the propagation path distance difference can be realized with a simple apparatus configuration and technique as in the present embodiment. In addition, by changing the setting of the sweep time and sweep frequency width of the swept sine wave, “the linear distance of the receiver pair”, “the range of the assumed distance from the transmitter 11 to the receiver 31” and “measurement” It becomes possible to perform coordinate measurement of the transmission device 11 in conformity with conditions such as “accuracy”.
<座標測定装置1の測定方法について>
 次に、送信装置11の制御部27の動作を図9のフローチャートに示す。図9のSTARTの条件は、送信装置11の電源スイッチ(不図示)がON状態であるという条件である。なお、図9のフローチャートにおけるSTARTからENDまでの処理は1周期分の処理であり、1周期分の処理が終了(END)したときにSTARTの条件が満たされていれば処理は再度開始される。
<About the measuring method of the coordinate measuring apparatus 1>
Next, the operation of the control unit 27 of the transmission apparatus 11 is shown in the flowchart of FIG. The START condition in FIG. 9 is a condition that a power switch (not shown) of the transmission apparatus 11 is in an ON state. Note that the processing from START to END in the flowchart of FIG. 9 is processing for one cycle, and the processing is restarted if the START condition is satisfied when the processing for one cycle is completed (END). .
 ステップS1において、制御部27は、計測スイッチ25がON(押下)か否かを判定する。ステップS1において、計測スイッチ25がONであると判定されると、処理は、ステップS2に進む。一方、ステップS1において、計測スイッチがONでないと判定されると、処理は、ステップS1を繰り返す。 In step S1, the control unit 27 determines whether or not the measurement switch 25 is ON (pressed). If it is determined in step S1 that the measurement switch 25 is ON, the process proceeds to step S2. On the other hand, if it is determined in step S1 that the measurement switch is not ON, the process repeats step S1.
 ステップS2において、制御部27は、電波生成部22に掃引パターン情報28bに基づく電波を生成させ、アンテナ21から電波を送信させる。ステップS2の処理が完了すると、処理は、ステップS3に進む。 In step S2, the control unit 27 causes the radio wave generation unit 22 to generate a radio wave based on the sweep pattern information 28b and cause the antenna 21 to transmit the radio wave. When the process of step S2 is completed, the process proceeds to step S3.
 ステップS3において、制御部27は、再送信モードスイッチ23がON(押下)か否かを判定する。ステップS3において、再送信モードスイッチ23がONであると判定されると、処理は、ステップS4に進む。一方、ステップS3において、再送信モードスイッチがONでないと判定されると、処理は、ステップS1に戻る。 In step S3, the control unit 27 determines whether or not the retransmission mode switch 23 is ON (pressed). If it is determined in step S3 that the retransmission mode switch 23 is ON, the process proceeds to step S4. On the other hand, if it is determined in step S3 that the retransmission mode switch is not ON, the process returns to step S1.
 ステップS4において、制御部27は、電波生成部22に再送信通知のための電波を生成させ、アンテナ21から再送信通知のための電波を送信する。ステップS4の処理が完了すると、1周期分の処理を終了する(END)。 In step S4, the control unit 27 causes the radio wave generation unit 22 to generate a radio wave for notification of retransmission, and transmits the radio wave for notification of retransmission from the antenna 21. When the process of step S4 is completed, the process for one cycle is ended (END).
 次に、受信装置12の動作を図10のフローチャートに示す。図10のSTARTの条件は、受信装置12の電源スイッチ(不図示)がON状態であるという条件である。なお、図10のフローチャートにおけるSTARTからENDまでの処理は1周期分の処理であり、1周期分の処理が終了(END)したときにSTARTの条件が満たされていれば処理は再度開始される。 Next, the operation of the receiving device 12 is shown in the flowchart of FIG. The START condition in FIG. 10 is that the power switch (not shown) of the receiving device 12 is in the ON state. Note that the processing from START to END in the flowchart of FIG. 10 is processing for one cycle, and processing is restarted if the START condition is satisfied when processing for one cycle is completed (END). .
ステップS10において、伝播行路距離差算出部32は、送信装置11からの電波を受信したか否かを判定する。ステップS10において、送信装置11からの電波を受信したと判定されると、処理は、ステップS11に進む。一方、ステップS10において、送信装置11からの電波を受信していないと判定されると、処理は、ステップS10を繰り返す。 In step S <b> 10, the propagation path distance difference calculation unit 32 determines whether or not the radio wave from the transmission device 11 has been received. If it is determined in step S10 that the radio wave from the transmission device 11 has been received, the process proceeds to step S11. On the other hand, if it is determined in step S10 that the radio wave from the transmission device 11 is not received, the process repeats step S10.
 ステップS11において、伝播行路距離差算出部32は、送信装置11の伝播行路距離差を算出し、処理は、ステップS12に進む。 In step S11, the propagation path distance difference calculation unit 32 calculates the propagation path distance difference of the transmission device 11, and the process proceeds to step S12.
 ステップS12において、送信装置座標算出部33は、送信装置11の座標を算出し、送信装置座標記憶部34は、送信装置座標算出部33が算出した送信装置11の座標を記憶すると、処理は、ステップS13に進む。 In step S12, the transmission device coordinate calculation unit 33 calculates the coordinates of the transmission device 11, and the transmission device coordinate storage unit 34 stores the coordinates of the transmission device 11 calculated by the transmission device coordinate calculation unit 33. Proceed to step S13.
 ステップS13において、移動補正値算出部35は、再送信通知が有るか否かを判定する。ステップS13において、再送信通知が有ると判定されると、処理は、ステップS14に進む。一方、ステップS13において、再送信通知が無いと判定されると、処理は、ステップS10に戻る。 In step S13, the movement correction value calculation unit 35 determines whether or not there is a retransmission notification. If it is determined in step S13 that there is a retransmission notification, the process proceeds to step S14. On the other hand, if it is determined in step S13 that there is no retransmission notification, the process returns to step S10.
 ステップS14において、移動補正値算出部35は、直前に算出した送信装置11の座標を送信装置座標記憶部34から読み出し、処理は、ステップS15に進む。 In step S14, the movement correction value calculation unit 35 reads the coordinates of the transmission device 11 calculated immediately before from the transmission device coordinate storage unit 34, and the process proceeds to step S15.
 ステップS15において、移動補正値算出部35は、送信装置座標算出部33が送信装置11の座標を算出したか否かを判定する。ステップS15において、送信装置11の座標が算出されたと判定されると、処理は、ステップS16に進む。一方、ステップS15において、送信装置11の座標が算出されていないと判定されると、処理は、ステップS15を繰り返す。 In step S15, the movement correction value calculation unit 35 determines whether or not the transmission device coordinate calculation unit 33 has calculated the coordinates of the transmission device 11. If it is determined in step S15 that the coordinates of the transmission device 11 have been calculated, the process proceeds to step S16. On the other hand, if it determines with the coordinate of the transmitter 11 not being calculated in step S15, a process will repeat step S15.
 ステップS16において、移動補正値算出部35は、ステップS14で送信装置座標記憶部34から読み出した送信装置11の座標とステップS15で送信装置座標算出部33が算出した送信装置11の座標との差分を移動補正値として算出し、処理は、ステップS17に進む。 In step S16, the movement correction value calculation unit 35 calculates the difference between the coordinates of the transmission device 11 read from the transmission device coordinate storage unit 34 in step S14 and the coordinates of the transmission device 11 calculated by the transmission device coordinate calculation unit 33 in step S15. Is calculated as a movement correction value, and the process proceeds to step S17.
 ステップS17において、移動補正値算出部35は、送信装置座標記憶部34に記憶されている送信装置11の座標情報のうち再送信通知を受信した後の送信装置11の座標に移動補正値を加算する処理を開始する。 In step S <b> 17, the movement correction value calculation unit 35 adds the movement correction value to the coordinates of the transmission device 11 after receiving the retransmission notification among the coordinate information of the transmission device 11 stored in the transmission device coordinate storage unit 34. The process to start is started.
 次に、図11および図12を参照して座標測定装置1を用いた測定方法についてより具体的に説明する。 Next, the measurement method using the coordinate measuring apparatus 1 will be described more specifically with reference to FIGS. 11 and 12.
 図11は、机90の寸法を送信装置11および受信装置12を用いて測定する様子を示している。図11に示すように、測定者が送信装置11の計測スイッチ27が机90に当接させると(図9のステップS1)、送信装置11は、受信装置12から電波を送信し(図9のステップS2)、受信装置12の4つの受信部31a~31dが電波を受信する(図10のステップS10)。 FIG. 11 shows how the dimensions of the desk 90 are measured using the transmitter 11 and the receiver 12. As shown in FIG. 11, when the measurer causes the measurement switch 27 of the transmission device 11 to contact the desk 90 (step S1 in FIG. 9), the transmission device 11 transmits radio waves from the reception device 12 (in FIG. 9). In step S2), the four receiving units 31a to 31d of the receiving device 12 receive radio waves (step S10 in FIG. 10).
 図11の例では、送信装置11は最初に、机90の上面の位置P1で電波を受信装置12に送信し、それによって、受信装置12では、送信装置座標算出部33が算出した位置P1の座標情報を送信装置座標記憶部34に記憶する(図10のステップS12)。以下、測定者は、机90の上面の位置P2や机90の下部の位置P3でも、同様に、送信装置11がそれぞれ電波を送信し、受信装置12では、送信装置座標算出部33が算出したそれぞれ位置P2、位置P3の座標情報を送信装置座標記憶部34に記憶する。 In the example of FIG. 11, the transmission device 11 first transmits a radio wave to the reception device 12 at the position P1 on the upper surface of the desk 90, whereby the reception device 12 has the position P1 calculated by the transmission device coordinate calculation unit 33. Coordinate information is memorize | stored in the transmitter coordinate memory | storage part 34 (step S12 of FIG. 10). Thereafter, the measurer similarly transmits the radio wave at the position P2 on the upper surface of the desk 90 and the position P3 on the lower side of the desk 90, respectively, and the transmitter coordinate calculation unit 33 calculates the radio wave in the receiving apparatus 12. The coordinate information of the position P2 and the position P3 is stored in the transmitter coordinate storage unit 34, respectively.
 ところで、図11に示すように、机90の下部の位置P4では、送信装置11が電波を受信装置12に送信しようとしても、その電波は、机90の上板が障害となり受信装置12に到達しない。あるいは、電波は、受信装置12に到達するものの、その到達した電波は、机90の上板に反射した後、床面や壁面に反射した電波であり、測定誤差を多く含むものとなる。なお、送信装置11と受信装置12との間に障害物が介在することは、通常、机90の寸法を計測中の測定者が目視によって認識することができる。 Incidentally, as shown in FIG. 11, at the position P <b> 4 below the desk 90, even if the transmission device 11 tries to transmit radio waves to the reception device 12, the radio waves reach the reception device 12 because the top plate of the desk 90 becomes an obstacle. do not do. Alternatively, although the radio wave reaches the receiving device 12, the reached radio wave is a radio wave reflected on the floor or wall after being reflected on the upper plate of the desk 90, and includes many measurement errors. It should be noted that the presence of an obstacle between the transmission device 11 and the reception device 12 can usually be recognized visually by a measurer who is measuring the dimensions of the desk 90.
 そこで、測定者は、図12に示すように、受信装置12の位置を移動させる、という動作を行って測定を行う。この移動した位置は、机90の位置P4における送信装置11の電波を受信装置12が直接的かつ良好に受信することができると共に、位置P3でも送信装置11の電波を受信装置12が直接的かつ良好に受信することができる位置とする(障害物がない)。 Therefore, the measurer performs the measurement by moving the position of the receiving device 12 as shown in FIG. In this moved position, the receiving device 12 can directly and satisfactorily receive the radio wave of the transmitting device 11 at the position P4 of the desk 90, and the receiving device 12 directly receives the radio wave of the transmitting device 11 at the position P3. A position that can be received well (no obstacles).
 その移動の後に、測定者は、送信装置11の再送信モードスイッチ23を押下する(図9のステップS5)。すると、制御部27は、電波生成部22に、モード切替信号を生成させる(図9のステップS6)。電波生成部22で生成されたモード切替信号はアンテナ21から送信される。そして、受信装置12では、モード切替信号を受信する。このとき、移動補正値算出部35は、モード切替信号を受信したと判定する(図10のステップS13のYesの場合に対応)。 After the movement, the measurer presses the retransmission mode switch 23 of the transmission device 11 (step S5 in FIG. 9). Then, the control unit 27 causes the radio wave generation unit 22 to generate a mode switching signal (step S6 in FIG. 9). The mode switching signal generated by the radio wave generator 22 is transmitted from the antenna 21. Then, the receiving device 12 receives the mode switching signal. At this time, the movement correction value calculation unit 35 determines that the mode switching signal has been received (corresponding to the case of Yes in step S13 in FIG. 10).
 なお、図10において、移動補正値算出部35がモード切替信号を受信していないと判定した場合(Noの場合)、ステップS10の処理に戻る。 In FIG. 10, when it is determined that the movement correction value calculation unit 35 has not received the mode switching signal (in the case of No), the processing returns to step S10.
 そして、受信装置12では、モード切替信号が移動補正値算出部35に入力される。すると、移動補正値算出部35は、直前に算出した送信装置11の座標を送信装置座標記憶部34から読み出す(図10のステップS14)。 In the receiving device 12, the mode switching signal is input to the movement correction value calculation unit 35. Then, the movement correction value calculation unit 35 reads the coordinates of the transmission device 11 calculated immediately before from the transmission device coordinate storage unit 34 (step S14 in FIG. 10).
 次に、測定者は、再送信モードスイッチ23をON状態に操作する直前に計測した位置P3から再び送信装置11の電波を送信する。このとき、移動補正値算出部35は、送信装置座標算出部33が送信装置11の座標を算出したか否かを判定している状態となっている(図10のステップS15)。そのため、受信部31で電波が受信されると(Yesの場合)、次のステップS16に進むが、電波が受信されないと、ステップS15の処理を繰り返す。 Next, the measurer transmits the radio wave of the transmission device 11 again from the position P3 measured immediately before operating the retransmission mode switch 23 in the ON state. At this time, the movement correction value calculation unit 35 is in a state where it is determined whether or not the transmission device coordinate calculation unit 33 has calculated the coordinates of the transmission device 11 (step S15 in FIG. 10). For this reason, when a radio wave is received by the receiving unit 31 (in the case of Yes), the process proceeds to the next step S16, but if the radio wave is not received, the process of step S15 is repeated.
 電波が受信されると、移動補正値算出部35は、同じ位置P3の座標、すなわちモード切替信号を受け取った後に送信装置座標算出部33から出力される座標情報と、モード切替信号の受信前に測定されて送信装置座標記憶部34に記憶されている座標情報との差分を算出し、その差分を移動補正値とする(図10のステップS16)。そして、移動補正値算出部35は、算出した移動補正値を移動補正部36に出力する。 When the radio wave is received, the movement correction value calculation unit 35 receives the coordinates of the same position P3, that is, the coordinate information output from the transmitter coordinate calculation unit 33 after receiving the mode switching signal, and before receiving the mode switching signal. A difference from the coordinate information measured and stored in the transmitter coordinate storage unit 34 is calculated, and the difference is set as a movement correction value (step S16 in FIG. 10). Then, the movement correction value calculation unit 35 outputs the calculated movement correction value to the movement correction unit 36.
 そして、移動補正部36は、移動補正値算出部35が算出した移動補正値を以降計測する送信装置11の座標に加算する(図10のステップS17)。それにより、受信装置12が移動する前後の送信装置11の座標の整合性が取られる。 Then, the movement correction unit 36 adds the movement correction value calculated by the movement correction value calculation unit 35 to the coordinates of the transmission device 11 to be measured later (step S17 in FIG. 10). Thereby, the consistency of the coordinates of the transmission device 11 before and after the reception device 12 moves is taken.
 すなわち、図12に示す場合には、送信装置11は、机90の下部の位置P4で電波を受信装置12に送信し、その位置P4の座標情報が送信装置座標記憶部34に記憶される。このときも、移動補正部36は、位置P4で測定された送信装置11の座標に、移動補正値を加算している。 That is, in the case shown in FIG. 12, the transmission device 11 transmits a radio wave to the reception device 12 at a position P4 below the desk 90, and the coordinate information of the position P4 is stored in the transmission device coordinate storage unit 34. Also at this time, the movement correction unit 36 adds the movement correction value to the coordinates of the transmission device 11 measured at the position P4.
 このようにして、測定者が受信装置12の位置を移動した場合でも送信装置座標記憶部34に記憶した送信装置11の座標情報を移動に応じて補正することができる。 Thus, even when the measurer moves the position of the receiving device 12, the coordinate information of the transmitting device 11 stored in the transmitting device coordinate storage unit 34 can be corrected according to the movement.
 図13および図14は、移動補正部36による座標情報の補正の概念を示す図である。図13に示すように、位置P3で移動補正値αが求められると、それ以降の位置P4,P5,P6の座標の計測においては、実測値に移動補正値αが加算される。これにより受信装置12の移動の前後で座標情報の整合が取られる。 FIG. 13 and FIG. 14 are diagrams showing the concept of correction of coordinate information by the movement correction unit 36. As shown in FIG. 13, when the movement correction value α is obtained at the position P3, the movement correction value α is added to the actual measurement value in the subsequent measurement of the coordinates of the positions P4, P5, and P6. Thereby, the coordinate information is matched before and after the movement of the receiving device 12.
 移動後の位置を、移動前の座標に合わせる場合、図13に示したように移動補正値αが、移動後に求められた座標に加算されるが、移動後の受信部31の位置を基準とする場合、図14に示すように、位置P3で移動補正値αが求められると、それ以前の位置P1,P2,P3の座標情報から移動補正値αが減算される。これによっても受信装置12の移動の前後で座標情報の整合が取られる。 When the position after the movement is matched with the coordinates before the movement, the movement correction value α is added to the coordinates obtained after the movement as shown in FIG. 13, but the position of the receiving unit 31 after the movement is used as a reference. In this case, as shown in FIG. 14, when the movement correction value α is obtained at the position P3, the movement correction value α is subtracted from the coordinate information of the previous positions P1, P2, and P3. As a result, the coordinate information is matched before and after the movement of the receiving device 12.
 なお、図13または図14に示した座標情報の補正は、計測実施中に行ってもよいし、計測が終了してから行ってもよい。特に、図14に示した補正方法は、送信装置座標記憶部34の記憶内容を過去に遡るので、計測終了後に行うようにするとよい。 Note that the correction of the coordinate information shown in FIG. 13 or FIG. 14 may be performed during the measurement or after the measurement is completed. In particular, the correction method shown in FIG. 14 may be performed after the measurement ends because the stored contents of the transmitter coordinate storage unit 34 are traced back to the past.
 このようにして、座標測定装置1は、測定中に測定者が受信装置12を移動しても送信装置11の座標を測定することができる。これによれば、送信装置11からみて最適な位置に受信装置12を移動させながら座標の測定ができる。すなわち、受信部31は、送信装置11からの電波を直接的に良好に受信することができる。このため、受信部31は高感度である必要が無くなり低コスト化や小型化が可能となる。また、送信装置11に必要な出力も大きい必要が無くなるため、送信装置11のアンテナを小型化することが可能であり、電波生成部22なども低コスト化が可能となる。さらに、受信部31は、送信装置11から送信される電波を受信する際に、送信装置11からの電波を直接受信することができるので反射波などに影響されず座標の測定精度を高めることができる。 In this way, the coordinate measuring device 1 can measure the coordinates of the transmitting device 11 even if the measurer moves the receiving device 12 during the measurement. According to this, it is possible to measure coordinates while moving the receiving device 12 to an optimal position as viewed from the transmitting device 11. That is, the receiving unit 31 can receive the radio wave from the transmission device 11 directly and satisfactorily. For this reason, the receiving unit 31 does not need to be highly sensitive, and can be reduced in cost and size. Moreover, since the output required for the transmission apparatus 11 does not need to be large, the antenna of the transmission apparatus 11 can be reduced in size, and the radio wave generation unit 22 and the like can be reduced in cost. Furthermore, when receiving the radio wave transmitted from the transmission device 11, the reception unit 31 can directly receive the radio wave from the transmission device 11, so that the coordinate measurement accuracy can be improved without being affected by the reflected wave or the like. it can.
<変形例について>
 以上、本発明について好適な実施例を挙げて説明したが、本発明はこれらの実施例に限定されるものではなく、発明の要旨を逸脱しない限り多くの改変を施すことが可能であるのは勿論である。
<About modification>
The present invention has been described with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.
 上述の実施の形態では、モード切替信号は、電波生成部22を経てアンテナ21から送信される電波としている。しかしながら、モード切替信号は、それ以外の信号であっても良い。たとえば、モード切替信号は、赤外線を利用した方式、他の光を利用した方式、電波を利用しつつも図4の周波数から外れた領域等を始めとした、他の方式としても良い。また、送信装置11側からモード切替信号を送信する方式とはせずに、受信装置12側でモード切替信号を発生させる方式としても良い。たとえば、受信装置12を移動させる際に、その受信装置12に設けられている所定のボタンを押すことで、モード切替信号を生じさせるようにしてもよい。 In the above-described embodiment, the mode switching signal is a radio wave transmitted from the antenna 21 via the radio wave generator 22. However, the mode switching signal may be other signals. For example, the mode switching signal may be another method such as a method using infrared rays, a method using other light, or a region using radio waves but deviating from the frequency shown in FIG. Moreover, it is good also as a system which generates a mode switching signal by the receiver 12 side instead of the system which transmits a mode switching signal from the transmitter 11 side. For example, when the receiving device 12 is moved, a mode switching signal may be generated by pressing a predetermined button provided on the receiving device 12.
 上述の実施の形態では、再送信モードスイッチ23がON状態に操作された後、送信装置座標記憶部34に記憶されている直近の時刻に記憶された送信装置11の座標の情報を読み出すと説明したが、このとき送信装置座標記憶部34から読み出す送信装置11の座標の情報は、測定者が任意に選択できるようにしてもよい。 In the above-described embodiment, after the retransmission mode switch 23 is operated to the ON state, the coordinate information of the transmission device 11 stored at the latest time stored in the transmission device coordinate storage unit 34 is read. However, the coordinate information of the transmission device 11 read from the transmission device coordinate storage unit 34 at this time may be arbitrarily selected by the measurer.
 また、図1の構成では、送信装置11は1つのみ示されている。しかしながら、受信部31は、異なる周波数帯域を使用する複数の送信装置11より送信された電波を弁別して扱うことができるよう、送信装置11より送信された掃引正弦波を周波数帯域別に選択して受信が可能としてもよい。 Further, in the configuration of FIG. 1, only one transmitter 11 is shown. However, the reception unit 31 selects and receives the swept sine wave transmitted from the transmission device 11 for each frequency band so that radio waves transmitted from the plurality of transmission devices 11 using different frequency bands can be distinguished and handled. May be possible.
 上述の実施の形態では、測定用の波として、電波を用いる例で説明したが、光(光波)あるいは、超音波(音波)を用いても同様に実施できる。光の場合は、上述の例と同様に低い周波数のビート信号を重畳した光を用いることができる。 In the above-described embodiment, an example in which radio waves are used as measurement waves has been described. However, the present invention can be similarly implemented by using light (light waves) or ultrasonic waves (sound waves). In the case of light, light on which a beat signal with a low frequency is superimposed can be used as in the above example.
 上述の実施の形態では、三次元空間座標の測定について説明したが、これを二次元平面座標の測定においても利用することができる。この場合には、受信部対は1対あればよい。 In the above-described embodiment, the measurement of the three-dimensional spatial coordinates has been described. In this case, only one receiving unit pair is required.
1…座標測定装置、11…送信装置、12…受信装置、23…再送信モードスイッチ、25…計測スイッチ、31…受信部、32…伝播行路距離差算出部、33…送信装置座標算出部、35…移動補正値算出部、36…移動補正部 DESCRIPTION OF SYMBOLS 1 ... Coordinate measuring apparatus, 11 ... Transmission apparatus, 12 ... Reception apparatus, 23 ... Retransmission mode switch, 25 ... Measurement switch, 31 ... Reception part, 32 ... Propagation path distance difference calculation part, 33 ... Transmission apparatus coordinate calculation part, 35: Movement correction value calculation unit, 36: Movement correction unit

Claims (6)

  1.  静止体と変位体とを有する三次元空間座標測定装置において、
     前記静止体から前記変位体へ、または前記変位体から前記静止体へ、座標測定を目的とする物理作用が伝達され、
     前記静止体は、
     一連の測定作業の間、測定が行われる三次元空間座標系における特定座標に固定され、
     特定の手順に従うことにより前記固定されている特定座標を変更可能である、
    ことを特徴とする三次元空間座標測定装置。
    In a three-dimensional spatial coordinate measuring apparatus having a stationary body and a displacement body,
    A physical action for coordinate measurement is transmitted from the stationary body to the displacement body, or from the displacement body to the stationary body,
    The stationary body is
    During a series of measurement operations, it is fixed at a specific coordinate in the three-dimensional spatial coordinate system where the measurement is performed,
    The fixed specific coordinates can be changed by following a specific procedure.
    A three-dimensional spatial coordinate measuring device.
  2.  請求項1記載の三次元空間座標測定装置において、
     前記変位体であり、電波又は光又は超音波を送信する送信装置と、
     前記静止体であり、前記送信装置が送信した電波又は光又は超音波を受信する複数の受信部と、
     前記複数の受信部のうち、任意の少なくとも二つの受信部からなる受信部対を複数有し、前記受信部対に含まれる受信部で受信した電波又は光又は超音波に基づいて、前記送信装置から前記受信部対の第一の受信部までの距離と前記送信装置から前記受信部対の第二の受信部までの距離との差である伝播行路距離差を算出する伝播行路距離差算出部と、
     前記複数の受信部対についてそれぞれ算出された前記伝播行路距離差に基づいて前記送信装置の座標を算出する送信装置座標算出部と、
     前記受信部が移動したときに、その移動が行われたことを示す移動情報に基づいて、既に座標が判明している位置を再度計測し、その再度の計測により求められる前記受信部の座標変化から移動補正値を算出する移動補正値算出部と、
     前記移動補正値算出部により算出された移動補正値に基づいて、前記受信部の移動前または移動後のいずれかの座標を補正する移動補正部と、
     を有することを特徴とする三次元空間座標測定装置。
    In the three-dimensional space coordinate measuring device according to claim 1,
    A transmitter that is the displacement body and transmits radio waves, light, or ultrasonic waves;
    A plurality of receiving units that are the stationary body and receive radio waves, light, or ultrasonic waves transmitted by the transmission device;
    Among the plurality of receiving units, the transmitting device has a plurality of receiving unit pairs each including at least two receiving units, and based on radio waves, light, or ultrasonic waves received by the receiving unit included in the receiving unit pair A propagation path distance difference calculation unit that calculates a propagation path distance difference that is a difference between a distance from the receiving unit pair to the first receiving unit and a distance from the transmitting device to the second receiving unit of the receiving unit pair When,
    A transmission device coordinate calculation unit that calculates coordinates of the transmission device based on the propagation path distance difference calculated for each of the plurality of reception unit pairs;
    When the receiving unit moves, based on movement information indicating that the movement has been performed, the position where the coordinates are already known is measured again, and the coordinate change of the receiving unit obtained by the re-measurement A movement correction value calculation unit for calculating a movement correction value from
    Based on the movement correction value calculated by the movement correction value calculation unit, a movement correction unit that corrects any coordinates before or after the movement of the reception unit;
    A three-dimensional spatial coordinate measuring apparatus comprising:
  3.  請求項2記載の三次元空間座標測定装置において、
     前記移動補正値算出部は、前記受信部の移動後に測定された前記送信装置の座標に前記移動補正値を加算する、
     ことを特徴とする三次元座標測定装置。
    The three-dimensional spatial coordinate measuring device according to claim 2,
    The movement correction value calculation unit adds the movement correction value to the coordinates of the transmission device measured after movement of the reception unit,
    A three-dimensional coordinate measuring apparatus characterized by that.
  4.  請求項2記載の三次元空間座標測定装置において、
     前記移動補正値算出部は、前記受信部の移動前に測定された前記送信装置の座標から前記移動補正値を減算する、
     ことを特徴とする三次元座標測定装置。
    The three-dimensional spatial coordinate measuring device according to claim 2,
    The movement correction value calculation unit subtracts the movement correction value from the coordinates of the transmission device measured before the reception unit moves.
    A three-dimensional coordinate measuring apparatus characterized by that.
  5.  請求項2から4のいずれか1項に記載の三次元空間座標測定装置において、
     前記移動情報は、スイッチ手段の押下により前記送信装置から送信される、
     ことを特徴とする三次元座標測定装置。
    In the three-dimensional space coordinate measuring device of any one of Claim 2 to 4,
    The movement information is transmitted from the transmission device by pressing a switch means.
    A three-dimensional coordinate measuring apparatus characterized by that.
  6.  請求項2から5のいずれか1項に記載の三次元空間座標測定装置において、
     前記送信装置と前記移動補正値算出部とは別体に設けられていて、前記移動情報は、前記移動補正値算出部と同一の筐体に設けられているスイッチ手段の押下により前記移動補正値算出部に送信される、
     ことを特徴とする三次元座標測定装置。
    In the three-dimensional space coordinate measuring apparatus of any one of Claim 2 to 5,
    The transmission device and the movement correction value calculation unit are provided separately, and the movement information is obtained by pressing the switch means provided in the same housing as the movement correction value calculation unit. Sent to the calculator,
    A three-dimensional coordinate measuring apparatus characterized by that.
PCT/JP2015/071245 2014-07-31 2015-07-27 Three-dimensional space coordinate measurement device WO2016017580A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014156736 2014-07-31
JP2014-156736 2014-07-31
JP2015-147543 2015-07-27
JP2015147543A JP2016035453A (en) 2014-07-31 2015-07-27 Three-dimensional spatial coordinate measuring device

Publications (1)

Publication Number Publication Date
WO2016017580A1 true WO2016017580A1 (en) 2016-02-04

Family

ID=55217481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071245 WO2016017580A1 (en) 2014-07-31 2015-07-27 Three-dimensional space coordinate measurement device

Country Status (2)

Country Link
JP (1) JP2016035453A (en)
WO (1) WO2016017580A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060607A (en) * 2017-09-22 2019-04-18 株式会社オートネットワーク技術研究所 Receiving device, communication system, distance determination method and computer program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107579A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Recognizing device for position of running robot
JPH05341031A (en) * 1992-06-08 1993-12-24 Isao Murakami Position sensing device
JP2005292129A (en) * 2004-03-12 2005-10-20 National Institute Of Advanced Industrial & Technology Ultrasonic position measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107579A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Recognizing device for position of running robot
JPH05341031A (en) * 1992-06-08 1993-12-24 Isao Murakami Position sensing device
JP2005292129A (en) * 2004-03-12 2005-10-20 National Institute Of Advanced Industrial & Technology Ultrasonic position measuring device

Also Published As

Publication number Publication date
JP2016035453A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6032211B2 (en) Position measuring device
KR100904681B1 (en) Method and apparatus for transmitter locating using a single receiver
KR100779811B1 (en) Distance Measuring Device, Distance Measuring Method and Recording Medium for Distance Measuring Program
JP6806250B2 (en) Positioning device, position measuring method and program
JP2007093576A (en) Distance measuring device and method
EP2525238B1 (en) Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
JP5730008B2 (en) Underwater position detection system, ship-side receiver, and underwater position detection method
JP2009270863A (en) Bistatic radar system
KR101454827B1 (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
JP6190374B2 (en) Soft tissue cartilage interface detection method, soft tissue cartilage interface detection device, and soft tissue cartilage interface detection program
WO2016017580A1 (en) Three-dimensional space coordinate measurement device
JP2005321225A (en) Underwater sound source, sound positioning device and sound positioning system
CN103841897A (en) Signal processing device and method, recording medium, and program
JP5593062B2 (en) Measuring device, measuring system, and measuring method
JP2004138481A (en) Position measuring device and robot using it
RU2367974C2 (en) Method for detection of non-radial projection of moving target speed
RU2001109620A (en) METHOD FOR DETERMINING COORDINATES OF A RADIO EMISSION SOURCE AND A RADAR STATION FOR ITS IMPLEMENTATION
JP4741937B2 (en) Distance measuring system and distance measuring method
JPH11231039A (en) Multi-user underwater positioning device
JP5441611B2 (en) Radar equipment
WO2016182561A1 (en) Wireless position sensing using magnetic field of two transmitters
JP4461299B2 (en) Embedded depth measuring device
JP2016161362A (en) Wireless coordinate measurement device
JP2014169890A (en) Radio tag positioning system
JP2014115203A (en) Distance measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827132

Country of ref document: EP

Kind code of ref document: A1