JPH05341031A - Position sensing device - Google Patents

Position sensing device

Info

Publication number
JPH05341031A
JPH05341031A JP14775592A JP14775592A JPH05341031A JP H05341031 A JPH05341031 A JP H05341031A JP 14775592 A JP14775592 A JP 14775592A JP 14775592 A JP14775592 A JP 14775592A JP H05341031 A JPH05341031 A JP H05341031A
Authority
JP
Japan
Prior art keywords
unit
receiving
moving
transmitting
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14775592A
Other languages
Japanese (ja)
Inventor
Isao Murakami
功 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14775592A priority Critical patent/JPH05341031A/en
Publication of JPH05341031A publication Critical patent/JPH05341031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide a position sensing device which can make precise position sensing at a low cost by using not any particular mechanical driving part but a special ultrasonic sensor. CONSTITUTION:Either of a non-directional ultrasonic wave transmission part 7 and a signal reception part 8 is installed on the moving part 1 side while the other is located on the stationary part side, and on this side, transmission part and reception part are installed at least in two places apart from one another. A data processing part 4 determines the distance between the transmission part 7 and reception part 8 by receiving the ultrasonic wave from the transmission part 7 anal computes the position of the moving part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロボット等に使用され
る位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device used for a robot or the like.

【0002】[0002]

【従来の技術】ロボットや農業機械等においては、自律
走行システムの研究が進められており、その一技術とし
て、自己の位置を検出する位置検出装置が多数提案され
ている(例えば、米国特許第4,700,301 号明細書、「機
械化農業」1989年1 月号49〜50頁参照) 。
2. Description of the Related Art In robots, agricultural machines and the like, research on an autonomous traveling system is under way, and as one of the technologies, a number of position detecting devices for detecting the position of the self have been proposed (for example, US Pat. 4,700,301, "Mechanized Agriculture," January 1989, pages 49-50).

【0003】これらの位置検出装置は、レーザ光を用い
た光電センサにより位置を検出しようとするものであっ
た。また、一部には、超音波センサを用いたものも提案
されている( 例えば、「機械化農業」1989年9 月号158
頁参照) 。この超音波センサを用いたものは、超音波の
反射波を利用して、壁や障害物との相対距離を計測しな
がら移動するものであった。
These position detecting devices have been intended to detect the position by a photoelectric sensor using laser light. Some have proposed ultrasonic sensors (eg, “Mechanized Agriculture”, September 1989, 158).
Page). The one using this ultrasonic sensor moves while measuring the relative distance to a wall or an obstacle by using the reflected wave of the ultrasonic wave.

【0004】[0004]

【発明が解決しようとする課題】前記従来の光電センサ
を用いたものでは、投光部と受光部とを一箇所に設けて
それらを回転させて、投光部からの光を複数の反射部に
より反射させ、その反射光を受光部で受け、投光部から
見る反射部間角度を求めて自己の位置を算出するもので
あったので、投光部を回転させる機構及びその同期機構
が複雑になり、高価なものになると共に、機械的な移動
部分を有するので、精度的に高精度な位置検出が困難で
あった。
In the conventional photoelectric sensor, the light projecting section and the light receiving section are provided at one place and rotated so that the light from the light projecting section is reflected by a plurality of reflecting sections. The light receiving section receives the reflected light and calculates the position of itself by calculating the angle between the reflecting sections seen from the light projecting section, so the mechanism for rotating the light projecting section and its synchronizing mechanism are complicated. In addition to being expensive, it also has a mechanical moving part, which makes it difficult to detect the position with high accuracy.

【0005】また、超音波センサを用いたものでは、発
信部と受信部が一体的に設けられており、単に障害物を
検出するだけであり、絶対的な位置検出が出来ないもの
であった。そこで、本発明は、機械的な駆動部を有さ
ず、且つ、特別の超音波センサを用いることにより安価
で高精度な位置検出をすることができる位置検出装置を
提供することを目的とする。
Further, in the case of using the ultrasonic sensor, the transmitting portion and the receiving portion are integrally provided, so that they can only detect obstacles and cannot absolutely detect the position. .. Therefore, it is an object of the present invention to provide a position detecting device which does not have a mechanical drive unit and which is capable of inexpensive and highly accurate position detection by using a special ultrasonic sensor. ..

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明は次の手段を講じた。即ち、本発明の特徴と
するところは、無指向性の超音波発信部と受信部との
内、その何れか一方が移動部側に設けられ、他方が固定
部側に設けられており、該固定部側の発信部または受信
部は離れた位置に少なくとも2ヵ所設けられており、か
つ、前記発信部からの超音波を受信部で受信することに
より前記発信部と受信部との距離を求めて前記移動部の
位置を演算するデータ処理部が設けられている点にあ
る。
In order to achieve the above object, the present invention takes the following means. That is, the feature of the present invention is that, of the omnidirectional ultrasonic wave transmitting section and the receiving section, one of them is provided on the moving section side and the other is provided on the fixed section side. At least two transmitters or receivers on the fixed part side are provided at distant positions, and the ultrasonic wave from the transmitter is received by the receiver to obtain the distance between the transmitter and the receiver. A data processing unit for calculating the position of the moving unit is provided.

【0007】[0007]

【作用】本発明によれば、例えば、無指向性の超音波発
信部が、車両等の移動部に設けられ、無指向性の超音波
受信部が、所定の位置に固定的に設けられる。移動部は
移動しつつ発信部から超音波を発信する。この超音波は
固定部の受信部で受信される。発信部及び受信部は無指
向性なので、移動部が所定範囲内を移動する限りにおい
て、受信部は発信部からの超音波を受信することができ
る。
According to the present invention, for example, an omnidirectional ultrasonic wave transmitting section is provided in a moving section such as a vehicle, and an omnidirectional ultrasonic wave receiving section is fixedly provided at a predetermined position. The moving unit emits ultrasonic waves from the transmitting unit while moving. This ultrasonic wave is received by the receiving unit of the fixed unit. Since the transmitting unit and the receiving unit are omnidirectional, the receiving unit can receive the ultrasonic waves from the transmitting unit as long as the moving unit moves within the predetermined range.

【0008】このとき、データ処理部では、発信から受
信までの時間差を計測し、それに基づき発信部と受信部
間の距離を演算する。固定位置の受信部が2ヵ所に設け
られている場合は、各受信部間の距離は既知であり、且
つ、移動側の発信部と二つの受信部間の距離が前述の如
く演算されるので、移動部の平面位置が求められる。固
定位置の受信部を3ヵ所にすれば、移動部の空間位置が
求められる。
At this time, the data processing unit measures the time difference from transmission to reception and calculates the distance between the transmission unit and the reception unit based on the time difference. When two fixed-position receivers are provided, the distances between the receivers are known, and the distance between the transmitter on the moving side and the two receivers is calculated as described above. , The plane position of the moving part is obtained. If there are three fixed-position receiving parts, the spatial position of the moving part can be obtained.

【0009】尚、移動部側に受信部を設け、固定側に発
信部を設けても同様である。
The same applies when the receiving unit is provided on the moving unit side and the transmitting unit is provided on the fixed side.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1に示すものは、平面移動及び上下移動をするロ
ボットの自律走行システムに本発明の位置検出装置を適
用した構成図である。同図において、移動部1 に高周波
発信装置2 が設けられている。この発信装置2 からの高
周波を受信する受信装置3 が所定の位置に配置されてい
る。更に、前記発信装置2 及び受信装置3 からのデータ
により移動部1 の位置を求めるデータ処理部4 が設けら
れている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram in which the position detecting device of the present invention is applied to an autonomous traveling system of a robot that moves in a plane and moves up and down. In the figure, the moving unit 1 is provided with a high frequency transmitter 2. The receiving device 3 for receiving the high frequency from the transmitting device 2 is arranged at a predetermined position. Further, a data processing unit 4 for determining the position of the moving unit 1 based on the data from the transmitting device 2 and the receiving device 3 is provided.

【0011】前記移動部1 としては、工場内を移動する
搬送用車両、搬送ロボット、装置間のワークを移送する
トランスファーロボット、芝刈機等の農用車両等を例示
することができる。前記発信装置2 は、原発部5 と衝撃
波駆動部6 と発信部7 とから構成されている。
Examples of the moving unit 1 include a transfer vehicle moving in a factory, a transfer robot, a transfer robot transferring a work between devices, an agricultural vehicle such as a lawn mower, and the like. The transmission device 2 is composed of a primary power generation unit 5, a shock wave drive unit 6, and a transmission unit 7.

【0012】前記原発部5 は、図2(a)に示すよう
に、超音波発生の1サイクルを決めるものであり、同図
(b)に示すように該原発部5 のパルスの立ち上がりエ
ッヂにて、衝撃波駆動部6 を駆動する。これにより、衝
撃波駆動部6 は、衝撃パルスを発生する。そして、この
衝撃パルスは発信部7 に印加され、該発信部7 より衝撃
波(高周波)が発生する。
As shown in FIG. 2 (a), the primary part 5 determines one cycle of ultrasonic wave generation, and as shown in FIG. 2 (b), the rising edge of the pulse of the primary part 5 is used. Drive the shock wave drive unit 6. As a result, the shock wave drive unit 6 generates a shock pulse. Then, the shock pulse is applied to the transmitter 7, and a shock wave (high frequency) is generated from the transmitter 7.

【0013】前記発信部7 は、高周波を全方向に発信す
る無指向性のものであり、図3に示すように上方に向け
て超音波を発信することで、全方向に超音波を伝達する
ことができるものである。前記受信装置3 は、受信部8
と、受信波処理部9 とからなる。前記受信部8 は、3ヵ
所の固定位置に設けられている。3個の内の1つは、互
いに直交する直線の交点に位置し、他の2個は、その各
直線上に位置し、且つ、3個の受信部8 の高さは同一と
なるよう配置されている。
The transmitting unit 7 is an omnidirectional one that transmits high frequency waves in all directions, and transmits ultrasonic waves in all directions by transmitting ultrasonic waves upward as shown in FIG. Is something that can be done. The receiving device 3 includes a receiving unit 8
And a received wave processing unit 9. The receiving part 8 is provided at three fixed positions. One of the three is located at the intersection of straight lines that are orthogonal to each other, the other two are located on each of the straight lines, and the three receiving units 8 are arranged so that their heights are the same. Has been done.

【0014】前記受信部8 は、無指向性であり、前記発
信部7 の位置が変わっても所定の範囲においては受信可
能である。前記受信波処理部9 は、図2(c)に示すよ
うに、前記受信部8 で受信した高周波を電気信号に変換
するものである。前記データ処理部4 は、比較部10と、
距離検出論理部11と、カウンター部12と、演算部13と、
表示部14と、指令部15と、及び、クロック発生部16とを
有する。
The receiving section 8 is omnidirectional and can receive within a predetermined range even if the position of the transmitting section 7 changes. As shown in FIG. 2C, the received wave processing unit 9 converts the high frequency wave received by the receiving unit 8 into an electric signal. The data processing unit 4 includes a comparison unit 10 and
A distance detection logic unit 11, a counter unit 12, a calculation unit 13,
It has a display unit 14, a command unit 15, and a clock generation unit 16.

【0015】前記比較部10は、受信した波形が発信部7
からのものか、または、雑音かを区別するものであり、
受信波が正規のものであるとき、次の距離検出論理部11
に信号を発する。前記距離検出論理部11は、図2(d)
に示すように、前記原発部5 のパルス発生時にオンし、
比較部10からの正規受信信号によりオフする距離検出波
を発生させるものである。この距離検出論理部11と前記
原発部5 とは同期されていなければならないので、両部
は有線、無線、光電送等の遠隔伝達手段によって同期さ
れている。
The comparison unit 10 outputs the received waveform to the transmission unit 7
To distinguish from noise or
When the received wave is normal, the next distance detection logic unit 11
Signal to. The distance detection logic unit 11 is shown in FIG.
As shown in, it turns on when the pulse of the primary part 5 occurs,
The distance detection wave that is turned off is generated by the regular reception signal from the comparison unit 10. Since the distance detection logic unit 11 and the power generation unit 5 must be synchronized, both units are synchronized by remote transmission means such as wire, wireless or photoelectric transmission.

【0016】前記クロック発生部16では、カウンターパ
ルスが発生されており、このパルス信号は、図2(e)
に示すように、前記距離検出波発生のときだけカウンタ
ー部12に入力されるよう構成されている。前記カウンタ
ー部12では、カウンターパルス数を計測することによ
り、時間を求めて、発信部7 と各受信部8 間の距離を計
算する。
A counter pulse is generated in the clock generator 16, and this pulse signal is shown in FIG.
As shown in, the counter unit 12 is configured to be input only when the distance detection wave is generated. The counter unit 12 obtains time by measuring the number of counter pulses and calculates the distance between the transmitting unit 7 and each receiving unit 8.

【0017】前記演算部13では、図4に示すような演算
が行われる。即ち、図4において、点Oは発信部7 の位
置、点A,D,Eは各受信部8 の位置、点B,C,Fは
前記点A,D,Eからの垂線が同一水平面と交差する点
である。ここにおいて、各受信部8 の高さは同一とされ
その高さβと、各受信部8 間の距離α、γは既知であ
り、発信部7 と各受信部8 間の距離a,b,cは前記カ
ウンター部12で既に求められている。
The calculation unit 13 performs the calculation as shown in FIG. That is, in FIG. 4, the point O is the position of the transmitter 7, the points A, D, and E are the positions of the receivers 8, and the points B, C, and F are the same horizontal planes from the points A, D, and E. It is an intersection. Here, the heights of the receiving units 8 are the same, and the height β and the distances α and γ between the receiving units 8 are known, and the distances a, b, and b between the transmitting unit 7 and the receiving units 8 are known. c has already been obtained by the counter section 12.

【0018】そこで、点OよりAD線に垂線を引きその
長さをnとする。点OよりAF線に垂線を引きその長さ
をmとする。そして、点Oより各面までの距離をx,
y,zとすると、次の式が成立する。 x2 +y2 =n2 …… (1) z2 +y2 =m2 …… (2) x2 +y2 +z2 =b2 …… (3) 前記(1)(2)(3) 式より y2 =n2 +m2 −b2 ……(4) x2 =n2 −(n2 +m2 −b2 )=b2 −m2 ……(5) z2 =m2 −(n2 +m2 −b2 )=b2 −n2 ……(6) nは三辺a,b,γでの垂直線であるので、 n2 =b2 −{(γ2 +b2 −a2 )/2γ}2 ……(7) m2 =b2 −{(α2 +b2 −c2 )/2α}2 ……(8) (4)(8)式より y2 =b2 −{(γ2 +b2 −a2 )/2γ}2 −{(α2 +b2 −c2 )/2α}2 ……(9) (5)(8)式より、 x2 ={(α2 +b2 −c2 )/2α}2 ……(10) (6)(7)式より、 z2 ={(γ2 +b2 −a2 )/2γ}2 ……(11) 前記(9)(10)(11) 式により、発信部7 の位置x,y,z
が演算部13で演算される。この結果が表示部14に表示さ
れる。
Therefore, a perpendicular line is drawn from the point O to the AD line, and its length is set to n. A perpendicular line is drawn from the point O to the AF line, and its length is m. Then, the distance from the point O to each surface is x,
Given y and z, the following equation holds. x 2 + y 2 = n 2 (1) z 2 + y 2 = m 2 (2) x 2 + y 2 + z 2 = b 2 (3) From the formulas (1) (2) (3) above y 2 = n 2 + m 2 -b 2 ...... (4) x 2 = n 2 - (n 2 + m 2 -b 2) = b 2 -m 2 ...... (5) z 2 = m 2 - (n 2 + M 2 −b 2 ) = b 2 −n 2 (6) Since n is a vertical line on the three sides a, b and γ, n 2 = b 2 − {(γ 2 + b 2 −a 2 ). / 2γ} 2 (7) m 2 = b 2 -{(α 2 + b 2 -c 2 ) / 2α} 2 (8) From formulas (4) and (8), y 2 = b 2 -{( γ 2 + b 2 −a 2 ) / 2γ} 2 − {(α 2 + b 2 −c 2 ) / 2α} 2 (9) From equations (5) and (8), x 2 = {(α 2 + b 2 -C 2 ) / 2α} 2 (10) From equations (6) and (7), z 2 = {(γ 2 + b 2 −a 2 ) / 2γ} 2 (11) The above (9) (10 ) From the equation (11), the position x, y, z of the transmitter 7
Is calculated by the calculation unit 13. The result is displayed on the display unit 14.

【0019】更に、前記位置データに基づき、移動部1
が次に移動すべき方向を指令部15で求める。その結果が
有線、無線、光電送等の遠隔指令手段により移動部1 に
指令される。尚、前記実施例では、受信部8 を3ヵ所に
設けたものを示したが、本発明はこれに限定されるもの
ではなく、2ヵ所であってもよい。受信部が2ヵ所の場
合は、平面位置を検出することができる。
Further, based on the position data, the moving unit 1
The command unit 15 determines the direction to move next. The result is instructed to the moving section 1 by remote command means such as wired, wireless, or photoelectric transmission. In the above embodiment, the receiver 8 is provided at three places, but the present invention is not limited to this and may be provided at two places. When there are two receivers, the plane position can be detected.

【0020】また、本実施例では、発信部7 を移動側に
設け、受信部8 を固定側に設けたが、その逆であっても
よい。
Further, in the present embodiment, the transmitting section 7 is provided on the moving side and the receiving section 8 is provided on the fixed side, but the reverse is also possible.

【0021】[0021]

【発明の効果】本発明によれば、無指向性の超音波セン
サーを用いたので、移動部の位置を高精度に検出するこ
とができる。
According to the present invention, since the omnidirectional ultrasonic sensor is used, the position of the moving portion can be detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】発信部と受信部のタイミングチャートである。FIG. 2 is a timing chart of a transmitter and a receiver.

【図3】無指向性超音波の説明図である。FIG. 3 is an explanatory diagram of omnidirectional ultrasonic waves.

【図4】データ処理部の処理説明図である。FIG. 4 is an explanatory diagram of processing of a data processing unit.

【符号の説明】[Explanation of symbols]

1 移動部 4 データ処理部 7 発信部 8 受信部 1 Mobile unit 4 Data processing unit 7 Sending unit 8 Receiving unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無指向性の超音波発信部と受信部との
内、その何れか一方が移動部側に設けられ、他方が固定
部側に設けられており、該固定部側の発信部または受信
部は離れた位置に少なくとも2ヵ所設けられており、か
つ、 前記発信部からの超音波を受信部で受信することにより
前記発信部と受信部との距離を求めて前記移動部の位置
を演算するデータ処理部が設けられていることを特徴と
する位置検出装置。
1. An omnidirectional ultrasonic wave transmitting unit and a receiving unit, one of which is provided on a moving unit side and the other is provided on a fixed unit side, and the fixed unit side transmitting unit is provided. Alternatively, at least two receiving parts are provided at distant positions, and the ultrasonic wave from the transmitting part is received by the receiving part to obtain the distance between the transmitting part and the receiving part, and the position of the moving part. A position detecting device comprising a data processing unit for calculating
JP14775592A 1992-06-08 1992-06-08 Position sensing device Pending JPH05341031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14775592A JPH05341031A (en) 1992-06-08 1992-06-08 Position sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14775592A JPH05341031A (en) 1992-06-08 1992-06-08 Position sensing device

Publications (1)

Publication Number Publication Date
JPH05341031A true JPH05341031A (en) 1993-12-24

Family

ID=15437424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14775592A Pending JPH05341031A (en) 1992-06-08 1992-06-08 Position sensing device

Country Status (1)

Country Link
JP (1) JPH05341031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018670A1 (en) * 2003-12-22 2005-08-04 Lg Electronics Inc. Apparatus and method for detecting a position of a mobile robot
DE10331321B4 (en) * 2003-07-10 2006-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for three-dimensional object detection
DE10333012B4 (en) * 2003-03-07 2007-05-10 Pepperl + Fuchs Gmbh Ultrasonic triangulation system with at least one ultrasonic transmitter and method therefor
DE102011011932A1 (en) 2010-02-18 2012-03-15 Alois Rüschen Navigation system for e.g. position determination of security patrol robot, has ultrasound transmitting stations positioned in surface, where ultrasonic transmission range of station is partially overlapped with that of adjacent station
WO2016017580A1 (en) * 2014-07-31 2016-02-04 シナノケンシ株式会社 Three-dimensional space coordinate measurement device
JP2017106861A (en) * 2015-12-11 2017-06-15 三井造船株式会社 Wooden structure inspection system and wooden structure inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452582A (en) * 1990-06-21 1992-02-20 Nec Corp Vertical line-array buoy with three-dimensional position measuring function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452582A (en) * 1990-06-21 1992-02-20 Nec Corp Vertical line-array buoy with three-dimensional position measuring function

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333012B4 (en) * 2003-03-07 2007-05-10 Pepperl + Fuchs Gmbh Ultrasonic triangulation system with at least one ultrasonic transmitter and method therefor
DE10331321B4 (en) * 2003-07-10 2006-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for three-dimensional object detection
DE102004018670A1 (en) * 2003-12-22 2005-08-04 Lg Electronics Inc. Apparatus and method for detecting a position of a mobile robot
US7630792B2 (en) 2003-12-22 2009-12-08 Lg Electronics Inc. Apparatus and method for detecting position of mobile robot
DE102004018670B4 (en) * 2003-12-22 2011-06-16 LG Electronics Inc., Kangnam-gu Apparatus and method for detecting a position of a mobile robot
DE102011011932A1 (en) 2010-02-18 2012-03-15 Alois Rüschen Navigation system for e.g. position determination of security patrol robot, has ultrasound transmitting stations positioned in surface, where ultrasonic transmission range of station is partially overlapped with that of adjacent station
WO2016017580A1 (en) * 2014-07-31 2016-02-04 シナノケンシ株式会社 Three-dimensional space coordinate measurement device
JP2017106861A (en) * 2015-12-11 2017-06-15 三井造船株式会社 Wooden structure inspection system and wooden structure inspection method

Similar Documents

Publication Publication Date Title
US5652593A (en) Method and apparatus for guiding a machine
US5867800A (en) Method and device for sensing of obstacles for an autonomous device
KR100633160B1 (en) Robot system capable of recognizing position and direction using beacon
JP5634400B2 (en) Obstacle detection device and obstacle detection method
KR20000062430A (en) Method for determining the vertical distance between an object and a device with a variable position
Kuc Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification
CN201266322Y (en) Ultrasonic target positioning and tracking device
JP2000056006A (en) Position recognizing device for mobile
JPH07306042A (en) Method and device for forming peripheral map in cellular structure
JPWO2013024509A1 (en) Object detection device
JP3826805B2 (en) Collision prevention method for autonomous vehicles
Yata et al. A fast and accurate Sonar-ring Sensor for a Mobile Robot
EP3776129A1 (en) Time of flight sensor arrangement for robot navigation and methods of localization using same
CN109343079A (en) A kind of ranging barrier-avoiding method and obstacle avoidance apparatus
JPH05341031A (en) Position sensing device
CN105738905A (en) Indoor positioning system and method for reducing blind areas
JP3517520B2 (en) Safe driving support system and safe driving support method
CN205826857U (en) A kind of location equipment, locating base station, space positioning system
Casanova et al. Microcontroller based system for 2D localisation
JP2611822B2 (en) Ultrasonic guidance device
CN209765051U (en) Rotary scanning ultrasonic ranging device
JPH0587792B2 (en)
Yata et al. Use of amplitude of echo for environment recognition by mobile robots
CA2688119A1 (en) Methods and systems for controlling vehicles
CN205941897U (en) Reduce indoor positioning system of blind area

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950613