JP2016161362A - Wireless coordinate measurement device - Google Patents

Wireless coordinate measurement device Download PDF

Info

Publication number
JP2016161362A
JP2016161362A JP2015039711A JP2015039711A JP2016161362A JP 2016161362 A JP2016161362 A JP 2016161362A JP 2015039711 A JP2015039711 A JP 2015039711A JP 2015039711 A JP2015039711 A JP 2015039711A JP 2016161362 A JP2016161362 A JP 2016161362A
Authority
JP
Japan
Prior art keywords
unit
receiving
transmitter
coordinates
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015039711A
Other languages
Japanese (ja)
Inventor
裕明 杉原
Hiroaki Sugihara
裕明 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2015039711A priority Critical patent/JP2016161362A/en
Publication of JP2016161362A publication Critical patent/JP2016161362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure spatial coordinates of a point of interest in a spatial coordinate system with an arbitrary origin using a simple device configuration and method.SOLUTION: A coordinate measurement device measures coordinates of a point of interest by; providing a radio wave transmitter at a point of interest; providing a plurality of receivers positioned at known coordinates to receive the radio wave transmitted by the transmitter; receiving the radio wave transmitted by the transmitter using receiver pairs, each consisting of an arbitrary pair of receivers selected from the plurality of receivers; computing a travel path distance difference, or a difference between a distance from the transmitter to a first receiver and a distance from the transmitter to a second receiver, for one receiver pair; similarly computing a travel path distance difference for each of a plurality of receiver pairs; and computing coordinates of the transmitter from the known coordinates of the plurality of receivers and the travel path distance differences of the receiver pairs.SELECTED DRAWING: Figure 1

Description

本発明は、任意の箇所を原点とする座標系において無線によって対象点の座標を測定する装置に関するものである。   The present invention relates to an apparatus for measuring the coordinates of a target point wirelessly in a coordinate system having an arbitrary point as an origin.

三次元座標を得る手段としては、光学式・超音波式・電波式・機械式・磁気式・GPS(グローバルポジショニングシステム)などの様々な方式がある。しかし、どの方式にも一長一短があり、安価で使いやすく且つ精度が良い方式が実用化されておらず、製品としても存在しない。 As means for obtaining the three-dimensional coordinates, there are various methods such as optical, ultrasonic, radio, mechanical, magnetic, and GPS (global positioning system). However, each system has advantages and disadvantages, and an inexpensive, easy-to-use and accurate system has not been put into practical use and does not exist as a product.

住宅などの建設業界の基礎工事測量分野では、測量対象点を反射プリズムが装着された指示器(ポールなど)で指し示し、本体内蔵のカメラから得られる画像を解析することでその反射プリズムを追尾しレーザー計測により得られる距離情報と内蔵された2軸のサーボモーターそれぞれから得られる角度情報から三次元座標を導出する製品がある。 In the field of basic surveying in the construction industry such as housing, the surveying point is pointed by an indicator (such as a pole) equipped with a reflecting prism, and the reflecting prism is tracked by analyzing the image obtained from the built-in camera. There are products that derive three-dimensional coordinates from distance information obtained by laser measurement and angle information obtained from each built-in two-axis servo motor.

しかしながら、同方式では、極めて高性能なエンコーダーが必要となるためコストが高額となってしまう。また、計測においては、上記の通りモーターを使って計測点指示器を追尾する必要があるので追尾可能な範囲内で指示器を移動せざるをえず使い勝手が悪い。加えて、複数箇所を複数人で同時計測することも不可能である。 However, this method requires a very high-performance encoder, which increases the cost. In measurement, it is necessary to track the measurement point indicator using the motor as described above, and thus the indicator must be moved within a trackable range, which is inconvenient. In addition, it is impossible to simultaneously measure a plurality of locations by a plurality of people.

そこで本願発明者はこれらの問題を解決すべく発明を成し、特願2012−227909(特開2014−081232)「無線による座標測定装置」を出願した。 Accordingly, the inventor of the present application has made an invention to solve these problems, and has applied for Japanese Patent Application No. 2012-227909 (Japanese Patent Application Laid-Open No. 2014-081232) “Wireless Coordinate Measuring Device”.

特開2014−081232号公報JP 2014/081232 A

特許文献1の技術は無線の掃引した正弦波を使用するものである。無線そのものは障害物の影響が軽微であり三次元座標測定を行う上では好適な手段の一つであるが、周波数掃引することによる使用周波数帯域の広範化が問題となる。座標測定精度は掃引周波数帯域幅によって大きく影響を受けるが、電波法などの規制により任意の周波数および帯域幅を選択することができない。
よって、無線の影響が無い電磁シールドされたフィールドなどで運用するなどの制限を設ける必要があり、汎用性が低下してしまう。
The technique of Patent Document 1 uses a wireless swept sine wave. The radio itself is less affected by obstacles and is one of the preferred means for performing three-dimensional coordinate measurement, but there is a problem of widening the frequency band used by sweeping the frequency. Coordinate measurement accuracy is greatly affected by the sweep frequency bandwidth, but an arbitrary frequency and bandwidth cannot be selected due to regulations such as the Radio Law.
Therefore, it is necessary to provide a restriction such as operation in an electromagnetically shielded field that is not affected by radio, and versatility is degraded.

そこで上述の諸問題を解決すべく本発明が成された。
本発明による座標測定装置は、
「無線波を送信する送信部と、
任意の空間座標系において既知の座標に配置され且つ送信部が送信した無線波を受信する複数の受信部と、
複数の受信部のうちの任意の二つの受信部からなる受信部対を複数有し、受信部対に含まれる受信部で受信した無線波に基づいて、送信部から受信部対の第一の受信部までの距離と送信部から受信部対の第二の受信部までの距離との差である伝播行路距離差を算出する伝播行路距離差算出部と、
複数の受信部の既知の座標と、複数の受信部対についてそれぞれ算出された伝播行路距離差と、に基づいて送信部の座標を算出する送信部座標算出部と、
を具備する」
ことを特徴としている。
Therefore, the present invention has been made to solve the above problems.
The coordinate measuring device according to the present invention is:
“A transmitter that transmits radio waves,
A plurality of receiving units that are arranged at known coordinates in an arbitrary spatial coordinate system and receive radio waves transmitted by the transmitting unit;
Based on the radio wave received by the receiving unit included in the receiving unit pair, a plurality of receiving unit pairs including any two receiving units of the plurality of receiving units, the first of the receiving unit pair from the transmitting unit A propagation path distance difference calculation unit that calculates a propagation path distance difference that is a difference between the distance to the reception unit and the distance from the transmission unit to the second reception unit of the reception unit pair;
A transmission unit coordinate calculation unit that calculates the coordinates of the transmission unit based on the known coordinates of the plurality of reception units and the propagation path distance difference calculated for each of the plurality of reception unit pairs;
With "
It is characterized by that.

また、本発明の座標測定装置の送信部は、
「送信部は複数の受信部とは別体に設けられている」
ことを特徴としている。
In addition, the transmission unit of the coordinate measuring device of the present invention,
“Transmitter is separate from multiple receivers”
It is characterized by that.

更に、本発明の座標測定装置は、
「無線波は既知周波数の正弦波であり、
送信部の側と複数の受信部の側とでそれぞれ異なる周波数の局部発振器を具備する」
ことを特徴としている。
Furthermore, the coordinate measuring apparatus of the present invention is
“Radio waves are sine waves of known frequency,
The transmitter unit and the receiver units have local oscillators with different frequencies. ''
It is characterized by that.

本発明により、単一周波数の正弦波のみで三次元座標測定が可能となる。 According to the present invention, three-dimensional coordinate measurement can be performed using only a single frequency sine wave.

詳細な説明の前に、本明細書内で共通の事項について説明する。
本発明において、送信部が送信する無線波は日本国電波法で定義するところの電波であり、座標とは特に断りの無い限り立体(三次元)空間の直交座標系の座標を意味するものとする。
Before the detailed description, common matters in the present specification will be described.
In the present invention, the radio wave transmitted by the transmitter is a radio wave defined by the Japanese Radio Law, and the coordinate means a coordinate in an orthogonal coordinate system in a three-dimensional (three-dimensional) space unless otherwise specified. To do.

本発明の概念を示す図である。It is a figure which shows the concept of this invention. 受信部の構造を示す図である。It is a figure which shows the structure of a receiving part. 受信部対で受信した無線波と局発との合成を示す図である。It is a figure which shows the synthesis | combination with the radio wave received by the receiving part pair, and a local oscillation.

図1は、本発明の基本的な概念を示している。
基準モジュールは、一連の座標測定を行う間は移動させないよう扱うものであり、仮想座標系の原点(もしくは特定の座標)と看做すことができる。基準モジュールには複数の受信部があり、図1では5つの受信アンテナとしてあるが、特にこれに限定されない。
仮想座標系は、仮に、左右水平方向をX軸、垂直方向をY軸、奥行水平方向をZ軸、としている。
計測モジュールは、座標を計測したい点を指し示す計測点指示部、無線波を送信する発信アンテナ、座標計測を行った結果を表示する計測結果表示部から構成される。使用者はこの計測モジュールを持って移動し、座標計測を行いたい点を測定点指示部で指し示すようにし、図示しない計測開始スイッチを押下することにより計測を開始するよう計測モジュールに指示する。(仮想座標系における)座標計測の結果は計測結果表示部に表示される。
FIG. 1 illustrates the basic concept of the present invention.
The reference module is handled so as not to move during a series of coordinate measurements, and can be regarded as the origin (or specific coordinates) of the virtual coordinate system. The reference module has a plurality of receiving units, and in FIG. 1 there are five receiving antennas, but this is not a limitation.
The virtual coordinate system assumes that the horizontal direction is the X axis, the vertical direction is the Y axis, and the depth horizontal direction is the Z axis.
The measurement module includes a measurement point indicating unit that indicates a point whose coordinates are to be measured, a transmission antenna that transmits a radio wave, and a measurement result display unit that displays a result of coordinate measurement. The user moves with this measurement module, points to the point to be coordinate-measured by the measurement point instruction unit, and instructs the measurement module to start measurement by pressing a measurement start switch (not shown). The result of coordinate measurement (in the virtual coordinate system) is displayed on the measurement result display unit.

図2は、基準モジュールの受信部の構造について示している。
まず、計測モジュールの発信アンテナより無線波が送信される。図2では、例として1GHzの正弦波としているが、もちろんこれに限定される理由は無い。また、自明ながら、計測モジュール内には図示していない1GHzの局部発振器を具備している。
基準モジュールには受信部が5つあり、それぞれ受信アンテナR1〜R5としている。
各受信アンテナR1〜R5では計測モジュールの発信アンテナより送信された無線波をそれぞれ受信する。
FIG. 2 shows the structure of the receiving part of the reference module.
First, a radio wave is transmitted from the transmission antenna of the measurement module. In FIG. 2, a 1 GHz sine wave is used as an example, but there is of course no reason limited to this. As is obvious, a 1 GHz local oscillator (not shown) is provided in the measurement module.
The reference module has five receiving units, which are the receiving antennas R1 to R5, respectively.
Each of the reception antennas R1 to R5 receives a radio wave transmitted from the transmission antenna of the measurement module.

基準モジュール内には1.00001GHz(=1GHz+10kHz)のクロック(局部発振器)を具備しており、この局部発振器が生成した正弦波信号を受信アンテナR1〜R5で受信した1GHz正弦波信号に対し各ミキサーにて混合する。尚、図中では局部発振器からミキサーまでの線路長が全て異なっているが、実際には各ミキサー全てに同じタイミングで信号が到達するよう回路を調整してある。
各ミキサーで混合された信号はA/D(アナログ−ディジタル)変換器を通してマイコンに読取られる。マイコンでは読み取った信号をデータとして処理する。
The reference module is provided with a clock (local oscillator) of 1.00001 GHz (= 1 GHz + 10 kHz), and each mixer for each 1 GHz sine wave signal received by the receiving antennas R1 to R5 of the sine wave signal generated by the local oscillator. Mix with. Although the line lengths from the local oscillator to the mixer are all different in the figure, the circuits are actually adjusted so that the signals reach all the mixers at the same timing.
A signal mixed by each mixer is read by a microcomputer through an A / D (analog-digital) converter. The microcomputer processes the read signal as data.

図3は、ミキサーで1GHzの正弦波と1.00001GHz(=1GHz+10kHz)の正弦波を混合した際の波形について示している。
周波数の近い2つの正弦波を混合すると、周波数差を周期として振幅は変動する信号(所謂「うねり」)となる。周波数差は10kHzなので、うねりの周波数は10kHzとなる。前述のマイコンは、この振幅変動の包絡線を検出し、その波形を解析する。
以下、前述の先行技術文献(特願2012−227909/特開2014−081232)に基づき、共通点については参照のみで扱い、異なる点を中心に説明する。
FIG. 3 shows a waveform when a sine wave of 1 GHz and a sine wave of 1.00001 GHz (= 1 GHz + 10 kHz) are mixed by a mixer.
When two sine waves having similar frequencies are mixed, a signal whose amplitude varies with a frequency difference as a period (so-called “swell”) is obtained. Since the frequency difference is 10 kHz, the swell frequency is 10 kHz. The aforementioned microcomputer detects the envelope of this amplitude variation and analyzes the waveform.
Hereinafter, based on the above-mentioned prior art document (Japanese Patent Application No. 2012-227909 / Japanese Patent Application Laid-Open No. 2014-081232), common points will be treated only by reference and different points will be mainly described.

先行技術の要旨は、4つの受信部対を想定し、受信部対の2つの受信部それぞれと送信部との距離の差を算出し、4つの受信部対の距離差を以って送信部の三次元座標を求める、というものである。
4つの受信部対を構成するためにコスト低減を踏まえて4つの受信部を三角錐状に配置する方式を採用したが、本発明ではより計測精度を高めるために5つの受信部を四角錐状に配置する方式とした。
まず、前述の通り、ミキサーで混合された信号は10kHzのうなりを持つものとなり、この信号の包絡線波形に対してマイコンでFFT(高速フーリエ変換)処理を施すことにより、包絡線の周波数とミキサーに混合した2つの信号の位相差を求めることができる。
The gist of the prior art is to assume four receiving unit pairs, calculate the difference in distance between each of the two receiving units of the receiving unit pair and the transmitting unit, and calculate the transmitting unit with the difference in distance between the four receiving unit pairs. The three-dimensional coordinates are obtained.
In order to configure four receiver units, a method of arranging four receiver units in a triangular pyramid shape was adopted in consideration of cost reduction, but in the present invention, five receiver units are arranged in a quadrangular pyramid shape in order to improve measurement accuracy. It was set as the method to arrange in.
First, as described above, the signal mixed by the mixer has a beat of 10 kHz. By applying FFT (Fast Fourier Transform) processing to the envelope waveform of this signal by a microcomputer, the frequency of the envelope and the mixer The phase difference between the two signals mixed together can be obtained.

この際、無線波の周波数をf、光速をc、ミキサーに混合する信号のうち基準となる信号の位相値をθ1、もう片方の信号の位相値をθn、発信アンテナとθ1の信号を受信するアンテナの距離をd1、発信アンテナとθnの信号を受信するアンテナの距離をdn、とした場合、距離差Dm=dn―d1は次の式で算出できる(m=1〜4となる)。
なお、以降の数式で多用する添え字nとmについては以下の通りである。
nは、複数の受信部(受信アンテナ)のうちの特定の1つを示す数字であり、本実施例では受信部が5つあるので、nは1〜5の範囲となる。
このうち、n=1の受信部を中心的に扱い、n=1以外の受信部(n=2〜5)との組み合わせで受信部対を構成することとする。すなわち、受信部をRnと表記すると、受信部対は「R1対R2」「R1対R3」「R1対R4」「R1対R5」の4つが存在することになる。受信部対のこれらの4通り組み合わせをmで示す。例えば「R1対R2」はm=1である。受信部が5つある場合、mは1〜4の範囲となる。mを用いた違う書き方をすると、受信部対「R1対R(m+1)」を示しているという意味でもある。
At this time, the frequency of the radio wave is f, the speed of light is c, the phase value of the reference signal among the signals mixed in the mixer is θ1, the phase value of the other signal is θn, and the signal of the transmitting antenna and θ1 is received. When the distance between the antennas is d1, and the distance between the transmitting antenna and the antenna that receives the θn signal is dn, the distance difference Dm = dn−d1 can be calculated by the following equation (m = 1 to 4).
The subscripts n and m frequently used in the following formulas are as follows.
n is a number indicating a specific one of a plurality of receiving units (receiving antennas). In the present embodiment, since there are five receiving units, n ranges from 1 to 5.
Of these, the receiving unit of n = 1 is mainly treated, and a receiving unit pair is configured by a combination with receiving units other than n = 1 (n = 2 to 5). In other words, when the receiving unit is expressed as Rn, there are four receiving unit pairs: “R1 pair R2”, “R1 pair R3”, “R1 pair R4”, and “R1 pair R5”. These four combinations of receiver pairs are denoted by m. For example, “R1 vs. R2” is m = 1. When there are five receiving units, m is in the range of 1-4. When written differently using m, it also means that the receiving unit pair “R1 vs. R (m + 1)” is shown.

このことより、無線波の周波数fと基準モジュール内の局部発振器の周波数(=ミキサーで混合した際のうねり周波数を決定する)が既知であれば、「発信アンテナと受信部対のうちの片方の受信部との距離」と「発信アンテナと受信部対のうちのもう片方の受信部との距離」の差Dがわかるのである。
他の受信部の信号との関係性についても同じことがいえるので、発信アンテナを基準として受信アンテナR1〜R5相互の距離差も同様に求まることになる。
From this, if the frequency f of the radio wave and the frequency of the local oscillator in the reference module (= determining the swell frequency when mixed by the mixer) are known, “one of the pair of the transmitting antenna and the receiving unit is determined. The difference D between the “distance from the receiving unit” and the “distance between the transmitting antenna and the other receiving unit of the receiving unit pair” is known.
Since the same can be said for the relationship with the signals of the other receiving units, the difference in distance between the receiving antennas R1 to R5 with respect to the transmitting antenna is obtained in the same way.

先行技術では4つの受信部で4つの受信部対を構成していたが、本発明では5つの受信部で4つの受信部対を構成するようにしたため、先行技術文献の式4に該当する部分は以下のようになる。 In the prior art, four receiving units are configured by four receiving units. However, in the present invention, four receiving unit pairs are configured by five receiving units, and therefore, a part corresponding to Equation 4 in the prior art document. Is as follows.

ここまでの内容に基づき、距離差Dmから発信アンテナの座標を求める方法を説明する。
発信アンテナlの座標をl(x,y,z)とする。
受信アンテナR1〜R5の座標は既知でありこれをRn(x,y,z)とする(n=1〜5)。
受信アンテナRnと発信アンテナlとの直線距離をdnとする(n=1〜5)。
d1とd2〜d4の差(距離差)をrmとする(m=1〜4)。
受信アンテナR1とRnの間に生じる既知の回路上の遅延要因を距離に換算したものをAm(m=1〜4)とする。
ミキサー出力波形をA/D変換しFFTを施して得られた位相値をθnとする(n=1〜5)。
Based on the contents so far, a method for obtaining the coordinates of the transmitting antenna from the distance difference Dm will be described.
Let the coordinates of the transmitting antenna l be l (x, y, z).
The coordinates of the receiving antennas R1 to R5 are known and are set to Rn (x, y, z) (n = 1 to 5).
Let dn be the linear distance between the receiving antenna Rn and the transmitting antenna l (n = 1 to 5).
The difference (distance difference) between d1 and d2 to d4 is rm (m = 1 to 4).
Am (m = 1 to 4) is obtained by converting a known delay factor on the circuit generated between the receiving antennas R1 and Rn into a distance.
A phase value obtained by subjecting the mixer output waveform to A / D conversion and FFT is θn (n = 1 to 5).

この時、
T1=D1−A1
T2=D2−A2
T3=D3−A3
T4=D4−A4
とすると、
中間変数としてC・X・Y・Zを以下のように定義できる。
At this time,
T1 = D1-A1
T2 = D2-A2
T3 = D3-A3
T4 = D4-A4
Then,
C, X, Y, and Z can be defined as intermediate variables as follows.

上述の中間変数を元に発信アンテナの座標l(x,y,z)は以下の式により求まる。 Based on the above-mentioned intermediate variables, the coordinates l (x, y, z) of the transmitting antenna are obtained by the following equations.

このようにして、5つの受信部の既知の座標と、各受信部より構成される受信部対それぞれにおいて測定された伝播行路距離差と、を数式に代入することで発信アンテナの座標を求めることが可能となる。 In this way, the coordinates of the transmitting antenna are obtained by substituting the known coordinates of the five receiving units and the propagation path distance difference measured in each pair of receiving units configured by each receiving unit into the mathematical formula. Is possible.

図1の計測モジュールにおいて、三次元座標測定の対象になるのは発信アンテナの存在する部位となるが、計測モジュール内に加速度センサーなどを設けて重力方向に対する姿勢を取得するようにすれば、発信アンテナから計測点指示部までの距離は既知であるので、計測点指示部の座標も算出することが可能となる。 In the measurement module of FIG. 1, the part where the transmission antenna is present is the target of the three-dimensional coordinate measurement. Since the distance from the antenna to the measurement point instruction unit is known, the coordinates of the measurement point instruction unit can also be calculated.

更に、計測は基準モジュール側で行うが、計測結果は計測モジュール側へ通信手段をもって通知しても良い。図2に示してある例ではBluetooth(登録商標)を用いて計測した結果を計測モジュールへ送信している。 Further, although the measurement is performed on the reference module side, the measurement result may be notified to the measurement module side by communication means. In the example shown in FIG. 2, the result of measurement using Bluetooth (registered trademark) is transmitted to the measurement module.

以上、本発明について好適な実施例を挙げて説明したが、本発明はこれらの実施例に限定されるものではなく、発明の精神を逸脱しない限り多くの改変を施すことが可能であるのは勿論である。 The present invention has been described with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.

量産可能な送信部および受信部を用いて特定箇所の座標測定を簡便に行うことができ、寸法測定や測量などの作業の効率を向上させるなどの効果を有している。 Coordinate measurement at a specific location can be easily performed using a transmitter and a receiver that can be mass-produced, and it has the effect of improving the efficiency of operations such as dimension measurement and surveying.

Claims (3)

無線波を送信する送信部と、
任意の空間座標系において既知の座標に配置され且つ前記送信部が送信した無線波を受信する複数の受信部と、
前記複数の受信部のうちの任意の二つの受信部からなる受信部対を複数有し、該受信部対に含まれる受信部で受信した無線波に基づいて、前記送信部から該受信部対の第一の受信部までの距離と前記送信部から該受信部対の第二の受信部までの距離との差である伝播行路距離差を算出する伝播行路距離差算出部と、
前記複数の受信部の既知の座標と、前記複数の受信部対についてそれぞれ算出された前記伝播行路距離差と、に基づいて前記送信部の座標を算出する送信部座標算出部と、
を具備することを特徴とする座標測定装置。
A transmitter for transmitting radio waves;
A plurality of receiving units arranged at known coordinates in an arbitrary spatial coordinate system and receiving radio waves transmitted by the transmitting unit;
A plurality of receiving unit pairs each including any two receiving units of the plurality of receiving units, and based on a radio wave received by the receiving unit included in the receiving unit pair, the transmitting unit to the receiving unit pair; A propagation path distance difference calculation unit for calculating a propagation path distance difference that is a difference between the distance from the first reception unit and the distance from the transmission unit to the second reception unit of the reception unit pair;
A transmitter coordinate calculator that calculates the coordinates of the transmitter based on the known coordinates of the plurality of receivers and the propagation path distance difference calculated for each of the plurality of receiver pairs;
A coordinate measuring apparatus comprising:
前記送信部は前記複数の受信部とは別体に設けられていることを特徴とする請求項1に記載の座標測定装置。 The coordinate measuring apparatus according to claim 1, wherein the transmitting unit is provided separately from the plurality of receiving units. 前記無線波は既知周波数の正弦波であり、前記送信部の側と前記複数の受信部の側とでそれぞれ異なる周波数の局部発振器を具備することを特徴とする請求項1または請求項2に記載の座標測定装置。 The radio wave is a sine wave having a known frequency, and includes local oscillators having different frequencies on the transmitter side and the plurality of receiver sides, respectively. Coordinate measuring device.
JP2015039711A 2015-02-28 2015-02-28 Wireless coordinate measurement device Pending JP2016161362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039711A JP2016161362A (en) 2015-02-28 2015-02-28 Wireless coordinate measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039711A JP2016161362A (en) 2015-02-28 2015-02-28 Wireless coordinate measurement device

Publications (1)

Publication Number Publication Date
JP2016161362A true JP2016161362A (en) 2016-09-05

Family

ID=56846638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039711A Pending JP2016161362A (en) 2015-02-28 2015-02-28 Wireless coordinate measurement device

Country Status (1)

Country Link
JP (1) JP2016161362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161455A (en) * 2018-02-11 2019-08-23 清华大学 The autonomous method for building up of positioning system and positioning system configuration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161455A (en) * 2018-02-11 2019-08-23 清华大学 The autonomous method for building up of positioning system and positioning system configuration
CN110161455B (en) * 2018-02-11 2021-07-13 清华大学 Positioning system and autonomous establishment method of positioning system configuration

Similar Documents

Publication Publication Date Title
RU2363010C2 (en) Method of determining coordinates of radio-frequency radiation source and device to this end
EP2902799B1 (en) Doppler radar test system
JP2007093576A (en) Distance measuring device and method
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
CN104062633A (en) Indoor positioning system and method based on ultrasonic waves
CN103969625A (en) Wireless positioning method
RU2003118800A (en) DIFFERENCE-LONG-DIMENSIONAL METHOD OF MOVING THE SOURCE OF RADIO-RADIATION AND IMPLEMENTING ITS DEVICE
JP2009031078A (en) Device and method for detection
US20090085582A1 (en) Microwave determination of location and speed of an object inside a pipe
RU2008126686A (en) DEVICE MEASUREMENT DEVICE
RU2649073C1 (en) Method for determining coordinates of the underwater object by the hydroacoustic system of underwater navigation with an alignment beacon
RU2562613C2 (en) Dichotomic multiplicative differential-relative method to detect coordinates of location of pulse radio radiation source
JP6207817B2 (en) Underwater position-related information acquisition system
CN108427111B (en) Radar ranging method and device
JP2016161362A (en) Wireless coordinate measurement device
CN107918129A (en) The method for sensing of ultrasonic sensor devices and ultrasonic sensor devices
JP2007192573A (en) Target positioning apparatus
RU2545068C1 (en) Measurement method of changes of heading angle of movement of source of sounding signals
CN103983947A (en) Wireless positioning system and method based on ultrasonic waves
US20220381926A1 (en) System and method for positioning and navigation of an object
RU2590932C1 (en) Hydroacoustic method of measuring depth of immersion of fixed object
JP2016161363A (en) Optical coordinate measurement device
RU2492504C1 (en) Method of determining non-radial projection of target velocity vector
JP5593062B2 (en) Measuring device, measuring system, and measuring method
JP6261831B1 (en) Positioning device and positioning method