JP6207817B2 - Underwater position-related information acquisition system - Google Patents

Underwater position-related information acquisition system Download PDF

Info

Publication number
JP6207817B2
JP6207817B2 JP2012178124A JP2012178124A JP6207817B2 JP 6207817 B2 JP6207817 B2 JP 6207817B2 JP 2012178124 A JP2012178124 A JP 2012178124A JP 2012178124 A JP2012178124 A JP 2012178124A JP 6207817 B2 JP6207817 B2 JP 6207817B2
Authority
JP
Japan
Prior art keywords
transmitter
receiver
transmission waveform
time difference
transmitters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012178124A
Other languages
Japanese (ja)
Other versions
JP2014035328A (en
Inventor
逸人 近藤
逸人 近藤
鉄雄 福地
鉄雄 福地
一彦 似鳥
一彦 似鳥
正夫 五十嵐
正夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Marine Science and Technology NUC
Original Assignee
Tokyo University of Marine Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Marine Science and Technology NUC filed Critical Tokyo University of Marine Science and Technology NUC
Priority to JP2012178124A priority Critical patent/JP6207817B2/en
Publication of JP2014035328A publication Critical patent/JP2014035328A/en
Application granted granted Critical
Publication of JP6207817B2 publication Critical patent/JP6207817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、AUV(Autonomous Underwater Vehicle)等の水中航走体と、ドックや母船等の誘導目標との位置関係情報を、水中航走体側で取得する水中位置関係情報取得システムに関する。
The invention also relates to a underwater vehicles such as AUV (Autonomous Underwater Vehicle), the positional relationship information between the target for such dock or mother ship, underwater positional relationship information acquiring system that acquires in underwater run side.

水中航走体が誘導目標に自動的に接近できるためには、水中航走体と誘導目標との位置関係情報を水中航走体側で知ることが不可欠である。このような位置関係情報を求める手段としては光を含む電磁波を用いるものと音波を用いるものがある。前者の電磁波は、水中での伝搬損失が大きいため位置関係情報が得られる距離範囲はおおよそ数m以内に限られる。一方、後者の音波は、周波数に依存するものの電磁波と比して伝搬損失が小さいため位置関係情報の得られる範囲を数十mから数百mとすることが可能である。   In order for the underwater vehicle to automatically approach the guidance target, it is essential for the underwater vehicle to know the positional relationship information between the underwater vehicle and the guidance target. As means for obtaining such positional relationship information, there are those using electromagnetic waves including light and those using sound waves. Since the former electromagnetic wave has a large propagation loss in water, the distance range in which the positional relationship information can be obtained is limited to approximately several meters. On the other hand, the latter sound wave has a small propagation loss as compared with the electromagnetic wave although it depends on the frequency, and therefore the range in which the positional relationship information can be obtained can be several tens to several hundreds m.

ところで、音波の送信は光と比べ大きな電力を要する。また、位置関係情報を得るため水中航走体側から音波を送信するようにすれば、複数の水中航走体の同時誘導を想定した場合、水中航走体間で信号の干渉問題が生じ、それを避けようとすると自動誘導システムは極めて複雑なものとなる。従って、水中航走体における消費電力低減や、複数の水中航走体間の干渉問題回避によるシステム簡易化の面で、水中航走体側からは音波を送信しないようにすることが望ましい。   By the way, transmission of sound waves requires a larger amount of power than light. In addition, if sound waves are transmitted from the underwater vehicle in order to obtain positional relationship information, if simultaneous guidance of multiple underwater vehicles is assumed, there will be a signal interference problem between underwater vehicles. If you try to avoid it, the automatic guidance system becomes very complicated. Therefore, it is desirable not to transmit sound waves from the underwater vehicle in terms of reducing power consumption in the underwater vehicle and simplifying the system by avoiding interference problems between a plurality of underwater vehicles.

水中航走体側からは音波を送信しないで、すなわち水中航走体は音波を受信するだけで、所要の位置関係情報を得る方法としては、音源装置における音波の送信時刻と水中航走体における音波の受波時刻とに基づいて、複数の音源装置と水中航走体との距離をそれぞれ求め、水中航走体の位置を計測する技術が提案されている(例えば、特許文献1、2参照)。これらの方法では、音源装置側と水中航走体側とで同期をとったり、音源装置側と水中航走体側とに高精度の時計を設けたりして、音源装置と水中航走体とで時刻を高精度に合わせている。音源装置と水中航走体とで時刻を高精度に合わせるためには、定期的なメンテナンスが必要となり、維持コストが高価なものになってしまう。   As a method for obtaining the necessary positional relationship information without transmitting the sound wave from the underwater vehicle, that is, the underwater vehicle only receives the sound wave, the sound wave transmission time in the sound source device and the sound wave in the underwater vehicle Based on the received time, a technique has been proposed in which distances between a plurality of sound source devices and the underwater vehicle are respectively determined and the position of the underwater vehicle is measured (see, for example, Patent Documents 1 and 2). . In these methods, the sound source device side and the underwater vehicle body are synchronized, or high-accuracy clocks are provided on the sound source device side and the underwater vehicle body side so that the time is synchronized between the sound source device and the underwater vehicle body. Matched to high accuracy. In order to set the time accurately between the sound source device and the underwater vehicle, regular maintenance is required, and the maintenance cost becomes expensive.

そこで、音波を出す音源装置側と測位情報を得る水中航走体側とで同期をとることや測位情報を得る側で高精度の時計を必要としない方法として、パッシブレンジングによる方法が知られている(例えば、非特許文献1、2参照)。パッシブレンジングの原理は、測位情報を得る側に3個以上の受波器で構成される受波器配列を置き、当該受波器配列によって音源側からの音波を受信し、当該受波器間の音波到達時間差を求めることで、当該受波器配列と音源との相対位置関係情報を得るものである。当該パッシブレンジングで得られる位置関係情報の内容は用いる受波器配列の形状や当該配列を成す受波器個数で変化する。   Therefore, a method using passive ranging is known as a method that requires synchronization between the sound source device that emits sound waves and the underwater vehicle body that obtains positioning information and does not require a high-precision clock on the side that obtains positioning information. (For example, refer nonpatent literatures 1 and 2). The principle of passive ranging is that a receiver array composed of three or more receivers is placed on the side where positioning information is obtained, and sound waves from the sound source side are received by the receiver array, The relative positional relationship information between the receiver array and the sound source is obtained by obtaining the difference between the sound wave arrival times. The content of the positional relationship information obtained by the passive ranging varies depending on the shape of the receiver array used and the number of receivers forming the array.

特開平10−111352号公報JP-A-10-111352 特開2005−321225号公報JP 2005-321225 A

G. Clifford Carter, “Variance bounds for passively locating an acoustic source with a symmetric line array”, J. Acoust. Soc. Am.62(4), 922-927 (1977)G. Clifford Carter, “Variance bounds for passively locating an acoustic source with a symmetric line array”, J. Acoust. Soc. Am. 62 (4), 922-927 (1977) M. Meister & D. Neumeister, “ADVANCED RANGING SONAR : PASSIVE RANGE MEASUREMENT WITH LINE-ARRAYS”, Proceedings of UDT Europe 2006 (2006)M. Meister & D. Neumeister, “ADVANCED RANGING SONAR: PASSIVE RANGE MEASUREMENT WITH LINE-ARRAYS”, Proceedings of UDT Europe 2006 (2006)

しかしながら、従来のパッシブレンジングにより位置関係情報を求める場合、信号対雑音比や受波器配列における各受波器取り付け精度を考慮すれば、一般に、受波器配列長を測位最大距離の数%以上にとる必要がある。誘導目標(音源装置)と水中航走体間距離の最大値を例えば50mとすれば、とるべき受波器配列長(一般に基線長といわれる)は1〜2m程度となる。従って、水中航走体を小型化しようとすればするほど、このような基線長を有する受波器配列を水中航走体に装備することは困難になってしまうという問題点があった。   However, when obtaining positional relationship information by conventional passive ranging, the receiver array length is generally more than a few percent of the maximum positioning distance in consideration of the signal-to-noise ratio and the accuracy of mounting each receiver in the receiver array. It is necessary to take If the maximum value of the distance between the guidance target (sound source device) and the underwater vehicle is 50 m, for example, the receiver array length to be taken (generally referred to as the baseline length) is about 1 to 2 m. Therefore, there is a problem that it becomes more difficult to equip the underwater vehicle with a receiver array having such a baseline length as the size of the underwater vehicle is reduced.

本発明の目的は、上記問題点に鑑み、従来技術の問題を解決することができる水中位置関係情報取得システムを提供することにある。
SUMMARY OF THE INVENTION In view of the above problems is to provide a water positional relationship information acquiring system that can solve the problems of the prior art.

本発明の水中位置関係情報取得システムは、誘導目標に設置された送信側装置から送波された音響信号を、水中航走体に設置された受信側装置で受波することで、前記誘導目標に対する前記水中航走体の位置関係情報を取得する水中位置関係情報取得システムであって、前記送信側装置は、前記誘導目標に分散して配列され、前記音響信号を同時に送波する3個以上の送波器と、3個以上の前記送波器から前記音響信号として送波される送信波形を互いに異なる波形で生成させる送信波形生成手段とを具備し、前記受信側装置は、3個以上の前記送波器から前記音響信号としてそれぞれ送波された前記送信波形を受波する受波器と、前記受波器によって受波された前記送信波形に基づいて、前記送信波形を送波した前記送波器を特定する送波器特定手段と、該送波器特定手段によって特定された前記送波器と前記受波器によって前記送信波形が受波されたタイミングとに基づいて、3個以上の前記送波器から前記受波器への前記送信波形の到達時間差を算出する到達時間差算出手段と、前記送波器の配列情報が記憶されている送信情報記憶手段と、該送信情報記憶手段に記憶されている前記配列情報と前記到達時間差算出手段によって算出された前記到達時間差とに基づいて、前記誘導目標に対する位置関係情報を算出する位置関係情報算出手段とを具備し、前記位置関係情報算出手段は、前記水中航走体の深度を補完情報として用いて、Z軸が鉛直軸方向と一致する直交座表系(X,Y,Z)における水平面の前記位置関係情報を、下記式(1)、(2)及び(3)を用いて算出することを特徴とする。

Figure 0006207817
(式中、rは、第1の前記送波器と前記受波器とを結ぶ直線のスラントレンジ、Cは、前記音響信号の伝搬速度をそれぞれ示す。また、第1〜3の前記送波器、のそれぞれの座標を(0,0,0)、(−D ,0,0)及び(D ,0,0)とする。さらに、第1の前記送波器からの送信波形が前記受波器に到達する時刻t を基準にし、τ 01 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差、τ 02 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差、τ 03 は、時刻t と第3の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差をそれぞれ示す。)
Figure 0006207817
(式中、θxは、X座標軸に関する第1の前記送波器と前記受波器とを結ぶ直線の方向余弦角を示す。)
Figure 0006207817
(式中、Z は、前記水中航走体のZ成分、P は、前記水中航走体の位置ベクトルをそれぞれ示す。)
また、本発明の水中位置関係情報取得システムは、誘導目標に設置された送信側装置から送波された音響信号を、水中航走体に設置された受信側装置で受波することで、前記誘導目標に対する前記水中航走体の位置関係情報を取得する水中位置関係情報取得システムであって、前記送信側装置は、前記誘導目標に分散して配列され、前記音響信号を同時に送波する3個以上の送波器と、3個以上の前記送波器から前記音響信号として送波される送信波形を互いに異なる波形で生成させる送信波形生成手段とを具備し、前記受信側装置は、3個以上の前記送波器から前記音響信号としてそれぞれ送波された前記送信波形を受波する、分散して配列された3個以上の受波器と、前記受波器によって受波された前記送信波形に基づいて、前記送信波形を送波した前記送波器を特定する送波器特定手段と、該送波器特定手段によって特定された前記送波器と前記受波器によって前記送信波形が受波されたタイミングとに基づいて、3個以上の前記送波器から前記受波器への前記送信波形の到達時間差を算出する到達時間差算出手段と、前記送波器の配列情報が記憶されている送信情報記憶手段と、該送信情報記憶手段に記憶されている前記配列情報と前記到達時間差算出手段によって算出された前記到達時間差とに基づいて、前記誘導目標に対する位置関係情報を算出する位置関係情報算出手段とを具備し、前記到達時間差算出手段は、3個以上の前記送波器のうちの少なくとも1つから3個以上の前記受波器への前記送信波形の到達時間差を算出し、前記位置関係情報算出手段は、前記受波器の配列に設定された局所座標系(X’,Y’,Z’)で見た前記位置関係情報を下記式(4)及び(5)と下記式(6)もしくは(7)とを用いて算出することを特徴とする。
Figure 0006207817
(式中、rは、第1の前記送波器と前記受波器とを結ぶ直線のスラントレンジ、Cは、前記音響信号の伝搬速度をそれぞれ示す。また、第1〜3の前記送波器、のそれぞれの座標を(0,0,0)、(−D ,0,0)及び(D ,0,0)とする。さらに、第1の前記送波器からの送信波形が前記受波器に到達する時刻t を基準にし、τ 01 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差、τ 02 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差をそれぞれ示す。)
Figure 0006207817
(式中、第1〜3の前記受波器のそれぞれの座標を(0,0,0)、(0,d ,0)および(0,0,d )とする。また、第1の前記送波器からの送信波形が第1の前記受波器に到達する時刻t を基準にし、ξ01'は、時刻t と第1の前記送波器からの送信波形が第2の前記受波器に到達する時刻との到達時間差、ξ02'は、時刻t0と第1の前記送波器からの送信波形が第3の前記受波器に到達する時刻との到達時間差をそれぞれ示す。さらに、θ y’ は、Y’座標軸に関する第1の前記送波器と第1の前記受波器とを結ぶ直線の方向余弦角、θ z’ は、Z’座標軸に関する第1の前記送波器と第1の前記受波器とを結ぶ直線の方向余弦角をそれぞれ示す)
Figure 0006207817
(式中、P ’は、第1の前記送波器の位置ベクトルを示す。)
Figure 0006207817
さらに、本発明の水中位置関係情報取得システムにおいて、前記位置関係情報算出手段は、前記受波器の配列の地球座標系に対する向きの情報を補完情報として用いて前記位置関係情報を算出するようにしても良い。 The underwater positional relationship information acquisition system of the present invention receives the acoustic signal transmitted from the transmission-side device installed in the guidance target by the reception-side device installed in the underwater vehicle, thereby the guidance target. An underwater positional relationship information acquisition system for acquiring positional relationship information of the underwater vehicle with respect to the transmission side device, wherein the transmission side devices are arranged in a distributed manner on the guidance target and transmit the acoustic signals simultaneously. And transmission waveform generating means for generating transmission waveforms transmitted as acoustic signals from three or more of the transmitters in different waveforms, and the receiving-side device includes three or more Receiving the transmission waveform respectively transmitted as the acoustic signal from the transmitter, and transmitting the transmission waveform based on the transmission waveform received by the receiver Wave transmission that identifies the transmitter Based on the specifying means, and the transmitter specified by the transmitter specifying means and the timing at which the transmission waveform is received by the receiver, the reception from three or more transmitters Arrival time difference calculating means for calculating the arrival time difference of the transmission waveform to the transmitter, transmission information storage means for storing the arrangement information of the transmitter, and the arrangement information stored in the transmission information storage means Positional relation information calculation means for calculating positional relation information with respect to the guidance target based on the arrival time difference calculated by the arrival time difference calculation means, and the positional relation information calculation means includes the underwater vehicle. As the complementary information, the positional relationship information of the horizontal plane in the orthogonal coordinate system (X, Y, Z) in which the Z axis coincides with the vertical axis direction is expressed by the following equations (1), (2) and (3 ) calculated using the And wherein the Rukoto.
Figure 0006207817
(Where r is a linear slant range connecting the first transmitter and the receiver, and C is the propagation speed of the acoustic signal. Also, the first to third transmitters The coordinates of the transmitter are (0, 0, 0), (−D 1 , 0, 0) and (D 2 , 0, 0), and the transmission waveform from the first transmitter is With reference to the time t 0 when reaching the receiver , τ 01 is the arrival time difference between the time t 0 and the time when the transmission waveform from the second transmitter reaches the receiver, and τ 02 is , the arrival time difference at time t 0 and the time at which the transmission wave from the second of said transmitters to reach the receiving transducer, tau 03, the time t 0 and the transmission waveform from the third of said transmitters The difference in arrival time with the time to reach the receiver is shown.)
Figure 0006207817
(In the equation, θx represents the direction cosine angle of a straight line connecting the first transmitter and the receiver with respect to the X coordinate axis.)
Figure 0006207817
( Wherein , Z d is the Z component of the underwater vehicle and P v is the position vector of the underwater vehicle.)
Further, the underwater positional relationship information acquisition system of the present invention receives the acoustic signal transmitted from the transmission side device installed in the guidance target by the reception side device installed in the underwater vehicle, An underwater positional relationship information acquisition system for acquiring positional relationship information of the underwater vehicle with respect to a guidance target, wherein the transmitting side device is arranged in a distributed manner on the guidance target and simultaneously transmits the acoustic signal 3 Including at least three transmitters and transmission waveform generating means for generating transmission waveforms transmitted as acoustic signals from the three or more transmitters with different waveforms, and the receiving-side device includes: Three or more receivers arranged in a dispersed manner for receiving the transmission waveforms respectively transmitted as the acoustic signals from two or more transmitters, and the receivers received by the receivers Based on the transmission waveform, the transmission wave Based on a transmitter specifying means for specifying the transmitter that has transmitted the signal, a timing at which the transmission waveform is received by the transmitter specified by the transmitter specifying means, and the receiver An arrival time difference calculating means for calculating an arrival time difference of the transmission waveform from three or more of the transmitters to the receiver, and a transmission information storage means in which arrangement information of the transmitters is stored, Positional relation information calculating means for calculating positional relation information for the guidance target based on the arrangement information stored in the transmission information storage means and the arrival time difference calculated by the arrival time difference calculating means. The arrival time difference calculating means calculates the arrival time difference of the transmission waveform from at least one of the three or more transmitters to three or more of the receivers, and the positional relationship information calculating means is , Receiving Vessel arranged to set the local coordinate system (X ', Y', Z ') using said positional relationship information the following expression seen in (4) and (5) and the following formula (6) or (7) It is characterized by calculating.
Figure 0006207817
(Where r is a linear slant range connecting the first transmitter and the receiver, and C is the propagation speed of the acoustic signal. Also, the first to third transmitters The coordinates of the transmitter are (0, 0, 0), (−D 1 , 0, 0) and (D 2 , 0, 0), and the transmission waveform from the first transmitter is With reference to the time t 0 when reaching the receiver , τ 01 is the arrival time difference between the time t 0 and the time when the transmission waveform from the second transmitter reaches the receiver, and τ 02 is The time difference between the time t 0 and the time when the transmission waveform from the second transmitter arrives at the receiver is shown.)
Figure 0006207817
(In the formula, the coordinates of the first to third receivers are (0, 0, 0), (0, d 1 , 0) and (0, 0, d 2 ). Referring to time t 0 when the transmission waveform from the transmitter reaches the first receiver , ξ01 ′ indicates that the transmission waveform from time t 0 and the first transmitter is the second The arrival time difference from the time to reach the receiver, ξ02 ′ represents the arrival time difference between the time t0 and the time at which the transmission waveform from the first transmitter reaches the third receiver. Furthermore, θ y ′ is the direction cosine angle of a straight line connecting the first transmitter and the first receiver with respect to the Y ′ coordinate axis, and θ z ′ is the first transmitter with respect to the Z ′ coordinate axis. The direction cosine angle of the straight line connecting the wave device and the first wave receiver is shown)
Figure 0006207817
( Where P T ′ indicates the position vector of the first transmitter)
Figure 0006207817
Furthermore, in the underwater positional relationship information acquisition system according to the present invention, the positional relationship information calculation means calculates the positional relationship information using information on the orientation of the array of the receivers with respect to the earth coordinate system as complementary information. May be.

本発明によれば、音源装置側と水中航走体側とで同期をとることなく、且つ長い基線長の配列物を水中航走体側に装備する必要もなく、音源装置側から送波された送信波形に基づいて水中航走体側で位置関係情報を求めることができるという効果を奏する。   According to the present invention, the transmission transmitted from the sound source device side without synchronization between the sound source device side and the underwater vehicle body, and without the need to equip the underwater vehicle body with an array with a long baseline length. Based on the waveform, the positional relationship information can be obtained on the underwater vehicle body side.

本発明に係る水中位置関係情報取得システムの第1の実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of 1st Embodiment of the underwater positional relationship information acquisition system which concerns on this invention. 図1に示す送波器及び受波器の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the transmitter shown in FIG. 1, and a receiver. 本発明に係る水中位置関係情報取得システムの第2の実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of 2nd Embodiment of the underwater positional relationship information acquisition system which concerns on this invention. 図3に示す送波器及び受波器の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the transmitter shown in FIG. 3, and a receiver. 本発明に係る水中位置関係情報取得システムの第3の実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of 3rd Embodiment of the underwater positional relationship information acquisition system which concerns on this invention. 図5に示す送波器及び受波器の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the transmitter shown in FIG. 5, and a receiver. 本発明に係る水中位置関係情報取得システムの第4の実施の形態における送波器及び受波器の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the transmitter and receiver in 4th Embodiment of the underwater positional relationship information acquisition system which concerns on this invention.

次に、本発明の実施の形態を、図面を参照して具体的に説明する。   Next, embodiments of the present invention will be specifically described with reference to the drawings.

(第1の実施の形態)
第1の実施の形態の水中位置関係情報取得システムは、図1を参照すると、誘導目標1に設定された送信側装置10と、水中航走体2に設置された受信側装置20とで構成されている。なお、水中航走体2は、AUV(Autonomous Underwater Vehicle)等の自律型無人潜水機であり、誘導目標1は、水中航走体2が帰還するドックや母船等の基地である。
(First embodiment)
Referring to FIG. 1, the underwater positional relationship information acquisition system according to the first embodiment includes a transmission-side device 10 set as a guidance target 1 and a reception-side device 20 installed in the underwater vehicle 2. Has been. The underwater vehicle 2 is an autonomous unmanned submersible such as an AUV (Autonomous Underwater Vehicle), and the guidance target 1 is a base such as a dock or mother ship to which the underwater vehicle 2 returns.

送信側装置10は、送信波形記憶部11と、送信波形生成部12と、送信波形処理部13〜13、送波器14〜14とを備え、送波器14〜14から音響信号を同時に送信する。 The transmission-side apparatus 10 includes a transmission waveform storage unit 11, a transmission waveform generation unit 12, a transmission waveform processing unit 13 0 to 13 3 , and transmitters 14 0 to 14 3, and transmitters 14 0 to 14 3. Simultaneously transmit acoustic signals.

送信波形記憶部11は、フラッシュメモリ等の記憶手段であり、送波器14〜14から送信する送信波形がそれぞれ記憶されている。送波器14〜14から送信するそれぞれの送信波形は、互いに異なる波形であり、例えば、M系列信号やGold系列信号等の互いに相関性の低い信号である。 The transmission waveform storage unit 11 is a storage unit such as a flash memory, and stores transmission waveforms transmitted from the transmitters 14 0 to 14 3 . The transmission waveforms transmitted from the transmitters 14 0 to 14 3 are different from each other, for example, signals having low correlation with each other, such as an M-sequence signal and a Gold sequence signal.

送信波形生成部12は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたマイクロコンピューター等の情報処理部である。ROMには送信波形生成部12の動作制御を行うための制御プログラムが記憶されている。CPUは、ROMに記憶されている制御プログラムを読み出し、制御プログラムをRAMに展開させることで、送信波形生成部12として機能する。   The transmission waveform generation unit 12 is an information processing unit such as a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The ROM stores a control program for controlling the operation of the transmission waveform generator 12. The CPU functions as the transmission waveform generation unit 12 by reading the control program stored in the ROM and developing the control program in the RAM.

送信波形生成部12は、送信波形記憶部11に記憶されている送信波形に基づいて送波器14〜14から送信する互いに相関性の低い送信波形をそれぞれ生成し、生成した送信波形を送信波形処理部13〜13にそれぞれ同時に出力する。 Based on the transmission waveform stored in the transmission waveform storage unit 11, the transmission waveform generation unit 12 generates transmission waveforms having low correlation with each other, which are transmitted from the transmitters 14 0 to 14 3 , and generates the generated transmission waveforms. each output at the same time to the transmission waveform processing section 13 0-13 3.

送信波形処理部13〜13は、入力された送信波形に対してD/A変換や増幅等の信号処理を施し、信号処理を施した送信波形を送波器14〜14にそれぞれ出力する。 Transmitting the waveform processing section 13 0-13 3 performs signal processing such as D / A conversion and amplification on the inputted transmitted waveform, respectively the transmission waveform subjected to signal processing to transmitters 14 0-14 3 Output.

送波器14〜14は、入力された送信波形を音響信号に変換する水中音響トランスデューサであり、送信波形処理部13〜13からそれぞれ入力された送信波形を音響信号に変換し水中に送出する。これにより、送波器14〜14から互いに相関性の低い送信波形が音響信号として同時に送出されることになる。 Transmitters 14 0-14 3 is a hydroacoustic transducer for converting an input transmission waveform to an acoustic signal, converts the transmission waveform input from each transmission waveform processing section 13 0-13 3 into an acoustic signal in water To send. As a result, transmission waveforms having low correlation with each other are simultaneously transmitted as acoustic signals from the transmitters 14 0 to 14 3 .

送波器14〜14は、図2を参照すると、水平面に分散して配列されており、送波器14と送波器14とを結ぶ線分上に送波器14が配列されている。送波器14を直交座表系(X,Y,Z)の原点とし、送波器14〜送波器14が配列されている直線をX軸とすると、X軸と直交するY軸上に送波器14が配列されている。従って、送波器14〜14のそれぞれの座標は、(0,0,0)、(−D,0,0)、(D,0,0)および(0,D,0)で表すことができる。 Transmitters 14 0-14 3, referring to FIG. 2, are arranged distributed in a horizontal plane, the wave transmitter 14 0 on a line connecting the wave transmitter 14 1 and wave transmitter 14 2 It is arranged. Transmitters 14 0 to orthogonal coordinates were system (X, Y, Z) as the origin of a straight line wave transmitter 14 0 - wave transmitter 14 3 are arranged when the X-axis, Y perpendicular to the X axis transmitters 14 3 is arranged on the axis. Accordingly, the coordinates of the transmitters 14 0 to 14 3 are (0, 0, 0), (−D 1 , 0, 0), (D 2 , 0, 0) and (0, D 3 , 0). ).

受信側装置20は、図1を参照すると、受波器21と、受波信号処理部22と、送信情報記憶部23と、送波器特定部24と、到達時間差算出部25と、位置ベクトル算出部26とを備えている。   Referring to FIG. 1, the receiving-side device 20 includes a receiver 21, a received signal processing unit 22, a transmission information storage unit 23, a transmitter specifying unit 24, an arrival time difference calculating unit 25, a position vector, And a calculation unit 26.

受波器21は、送波器14〜14から送出された音響信号を受波する水中マイクロフォンであり、受波した音響信号を電気信号である受波信号に変換して出力する。図2を参照すると、直交座表系(X,Y,Z)の原点である送波器14から送出された音響信号は、送波器14と受波器21とを結ぶ直線rを伝搬して受波器21に到達する。同様に、送波器14から送出された音響信号は、送波器14と受波器21とを結ぶ直線rを、送波器14から送出された音響信号は、送波器14と受波器21とを結ぶ直線rを、送波器14から送出された音響信号は、送波器14と受波器21とを結ぶ直線rをそれぞれ伝搬して受波器21に到達する。 The receiver 21 is an underwater microphone that receives the acoustic signals sent from the transmitters 14 0 to 14 3 , converts the received acoustic signals into received signals that are electrical signals, and outputs the signals. Referring to FIG. 2, the orthogonal coordinates were system (X, Y, Z) acoustic signal transmitted from the wave transmitter 14 0 is the origin of the linearly r 0 connecting the wave transmitter 14 0 and receivers 21 To reach the receiver 21. Similarly, the acoustic signal transmitted from the wave transmitter 14 1, the acoustic signal a linear r 1, sent from the transmitters 14 2 connecting the wave transmitter 14 1 and receivers 21, transmitters receiving a line r 2 connecting the 14 2 and the wave receiver 21, the acoustic signal transmitted from the wave transmitter 14 3 propagates through the straight line r 3 connecting the wave transmitter 14 3 and wave receiver 21, respectively The wave 21 is reached.

受波信号処理部22は、受波器21から出力された受波信号に対して、増幅、直交検波A/D変換等の信号処理を行い、信号処理を施した受波信号を送波器特定部24に出力する。   The received signal processing unit 22 performs signal processing such as amplification and quadrature detection A / D conversion on the received signal output from the receiver 21, and transmits the received signal subjected to signal processing to the transmitter. The data is output to the specifying unit 24.

送信情報記憶部23は、フラッシュメモリ等の記憶手段であり、送波器14〜14から送信されるそれぞれの送信波形と、送波器14〜14の配列情報(送波器14を直交座表系(X,Y,Z)の原点とした場合の送波器14〜14のそれぞれの座標)とが記憶されている。 Transmission information storage unit 23 is a storage device such as a flash memory, transmitters 14 0 and respective transmit waveform to be transmitted from -14 3, transmitters 14 0 to 14 3 of the sequence information (wave transmitter 14 And the coordinates of the transmitters 14 0 to 14 3 when 0 is the origin of the orthogonal coordinate system (X, Y, Z).

送波器特定部24、到達時間差算出部25及び位置ベクトル算出部26は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたマイクロコンピューター等の情報処理部である。ROMには送波器特定部24、到達時間差算出部25及び位置ベクトル算出部26の動作制御を行うための制御プログラムが記憶されている。CPUは、ROMに記憶されている制御プログラムを読み出し、制御プログラムをRAMに展開させることで、送波器特定部24、到達時間差算出部25及び位置ベクトル算出部26としてそれぞれ機能する。   The transmitter specifying unit 24, the arrival time difference calculating unit 25, and the position vector calculating unit 26 are information processing such as a microcomputer provided with a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like. Part. The ROM stores a control program for controlling operations of the transmitter specifying unit 24, the arrival time difference calculating unit 25, and the position vector calculating unit 26. The CPU functions as the transmitter identifying unit 24, the arrival time difference calculating unit 25, and the position vector calculating unit 26 by reading the control program stored in the ROM and developing the control program in the RAM.

送波器特定部24は、入力された受波信号と送信情報記憶部23に記憶されている送波器14〜14の送信波形との相関を求めることで、入力された受波信号を送出した送波器14〜14をそれぞれ特定し、送波器14〜14から送信されたそれぞれの送信波形が受波されたそれぞれのタイミングを時刻t〜tとして到達時間差算出部25にそれぞれ出力する。 The transmitter identifying unit 24 obtains the correlation between the input received signal and the transmission waveforms of the transmitters 14 0 to 14 3 stored in the transmission information storage unit 23, thereby inputting the received received signal. Transmitters 14 0 to 14 3 which have transmitted the respective signals, and the timings at which the respective transmission waveforms transmitted from the transmitters 14 0 to 14 3 are received are time t 0 to t 3 , and the arrival time difference Each is output to the calculation unit 25.

到達時間差算出部25は、送波器特定部24から入力された時刻t〜tに基づき、
送波器14からの送信波形が受波器21に到達する時刻tを基準にし、時刻tと送波器14からの送信波形が受波器21に到達する時刻tとの到達時間差τ01と、時刻tと送波器14からの送信波形が受波器21に到達する時刻tとの到達時間差τ02と、時刻tと送波器14からの送信波形が受波器21に到達する時刻tとの到達時間差τ03とを算出し、算出した到達時間差τ01、到達時間差τ02及び到達時間差τ03を位置ベクトル算出部26に出力する。
The arrival time difference calculation unit 25 is based on the times t 0 to t 3 input from the transmitter specifying unit 24.
The time t 0 the transmission waveform from the wave transmitter 14 0 reaches the wave receiver 21 on the basis, transmission waveform from the wave transmitter 14 1 and time t 0 is the time t 1 to reach the receivers 21 transmitting the arrival time difference tau 01, the arrival time difference tau 02 between the time t 2 when the transmission waveform from the wave transmitter 14 2 and time t 0 reaches the wave receiver 21, at time t 0 and the wave transmitter 14 3 The arrival time difference τ 03 from the time t 3 when the waveform reaches the receiver 21 is calculated, and the calculated arrival time difference τ 01 , arrival time difference τ 02 and arrival time difference τ 03 are output to the position vector calculation unit 26.

位置ベクトル算出部26は、入力された到達時間差τ01、到達時間差τ02及び到達時τ03と、送信情報記憶部23に記憶されている送波器14〜14の配列情報とに基づいて、直交座表系(X,Y,Z)で見た航走体2の位置ベクトル(厳密に言えば、受波器21の位置ベクトル)を算出する。 The position vector calculation unit 26 is based on the input arrival time difference τ 01 , arrival time difference τ 02 and arrival time τ 03, and the array information of the transmitters 14 0 to 14 3 stored in the transmission information storage unit 23. Thus, the position vector of the traveling body 2 as viewed in the orthogonal coordinate system (X, Y, Z) (strictly speaking, the position vector of the receiver 21) is calculated.

位置ベクトル算出部26による直交座表系(X,Y,Z)で見た受波器21の位置ベクトルの算出動作について詳細に説明する。
送波器14と受波器21とを結ぶ直線rを、誘導目標1と航走体2を結ぶスラントレンジrとし、音響信号(音波)の伝搬速度をCとすると、スラントレンジrは、入力された到達時間差τ01、到達時間差τ02及び到達時間差τ03と、送信情報記憶部23に記憶されている送波器14〜14の配列情報とを用いて、位置ベクトル算出部26において次式で求めることができる。
The operation of calculating the position vector of the receiver 21 as viewed in the orthogonal coordinate system (X, Y, Z) by the position vector calculation unit 26 will be described in detail.
The straight line r 0 connecting the wave transmitter 14 0 and wave receiver 21, and induced target 1 and slant range r connecting the domestic Hashikarada 2, when the propagation speed of the acoustic signal (sound waves) is C, slant range r is Using the input arrival time difference τ 01 , arrival time difference τ 02 and arrival time difference τ 03, and the array information of the transmitters 14 0 to 14 3 stored in the transmission information storage unit 23, a position vector calculation unit 26, the following equation can be obtained.

Figure 0006207817
Figure 0006207817

また、X座標軸に関する直線rの方向余弦角をθ、およびY座標軸に関する直線rの方向余弦角をθとそれぞれすると、それぞれの方向余弦cosθ及びcosθは、位置ベクトル算出部26において次式で求めることができる。 Further, if the direction cosine angle of the straight line r 0 with respect to the X coordinate axis is θ x , and the direction cosine angle of the straight line r 0 with respect to the Y coordinate axis is θ y , the direction cosine cos θ x and cos θ y are the position vector calculation unit 26. Can be obtained by the following equation.

Figure 0006207817
Figure 0006207817

従って、直交座表系(X,Y,Z)で見た水中航走体2の位置ベクトル(厳密に言えば、受波器21の位置ベクトル)をP=[x,y,zとすると、水中航走体2の位置ベクトルPは、位置ベクトル算出部26において次式で求めることができる。なお、[]のtは転置を表す。 Therefore, the position vector of the underwater vehicle 2 as viewed in the orthogonal coordinate system (X, Y, Z) (strictly speaking, the position vector of the receiver 21) is expressed as P v = [x v , y v , z v ] t , the position vector Pv of the underwater vehicle 2 can be obtained by the position vector calculation unit 26 using the following equation. [] T in t represents transposition.

Figure 0006207817
Figure 0006207817

ところで、[数10]式で示されるように、送波器14〜14の配列を第1の実施の形態のようにした場合、Z成分の符号判別に関して曖昧さが生じる。しかし、例えば、送波器14〜14の配列の後方(本実施例の場合は−Z方向)からの音波を遮断するような遮音措置等を講ずればこのような曖昧さをなくすることができ、その場合には、位置ベクトル算出部26において、水中航走体2の位置ベクトルPを曖昧さなく、次式で求めることができる。 By the way, as shown by the [Equation 10 ], when the arrangement of the transmitters 14 0 to 14 3 is set as in the first embodiment, ambiguity arises regarding the code determination of the Z component. However, for example, such ambiguity is eliminated by taking a sound insulation measure or the like that blocks sound waves from the rear of the arrangement of the transmitters 14 0 to 14 3 (in the present embodiment, the −Z direction). In this case, the position vector calculation unit 26 can obtain the position vector Pv of the underwater vehicle 2 without ambiguity by the following equation.

Figure 0006207817
Figure 0006207817

以下、他の実施の形態においても、特段の断りがない限り、符号の曖昧さを解消する措置が講じられているものと想定し、水中航走体2の位置ベクトルPはZ成分の符号の曖昧さなく求められるものとする。 Hereinafter, in other embodiments as well, unless otherwise noted, it is assumed that measures are taken to eliminate the ambiguity of the sign, and the position vector Pv of the underwater vehicle 2 is the sign of the Z component. It should be requested without ambiguity.

(第2の実施の形態)
第2の実施の形態の水中位置関係情報取得システムは、図3及び図4を参照すると、誘導目標1に設定された送信側装置10aと、水中航走体2に設置された受信側装置20aとで構成されている。
(Second Embodiment)
The underwater positional relationship information acquisition system according to the second embodiment, referring to FIGS. 3 and 4, includes a transmission side device 10 a set to the guidance target 1 and a reception side device 20 a installed in the underwater vehicle 2. It consists of and.

送信側装置10aは、第1の実施の形態の送信側装置10の構成から送波器14を除いた構成であり、送波器14〜14から互いに相関性の低い送信波形を音響信号として同時に送出する。 Transmitting device 10a has a configuration excluding the transmitters 14 3 from the configuration of the transmitting side apparatus 10 of the first embodiment, the acoustic low transmission waveform correlation with each other from the wave transmitter 14 0-14 2 Simultaneously send as a signal.

受信側装置20aは、第1の実施の形態の受信側装置20の構成に加えて、受波器21の近傍に配置された深度計27を備えている。図4に示すzは、直交座表系(X,Y,Z)における水中航走体2のZ成分である。送波器14〜14が水平面に配列されており、直交座表系(X,Y,Z)のZ軸が鉛直軸方向と一致する場合には、水中航走体2のZ成分zは、送波器14と受波器21との深度差となる。従って、送信情報記憶部23に送波器14〜14の配列情報として送波器14の深度が記憶されていると、深度計27によって計測された深度に基づいて、水中航走体2のZ成分zが求められる。 The receiving device 20a includes a depth meter 27 disposed in the vicinity of the receiver 21 in addition to the configuration of the receiving device 20 of the first embodiment. Z d shown in FIG. 4 is a Z component of the underwater vehicle 2 in the orthogonal coordinate system (X, Y, Z). When the transmitters 14 0 to 14 2 are arranged in a horizontal plane and the Z axis of the orthogonal coordinate system (X, Y, Z) coincides with the vertical axis direction, the Z component z of the underwater vehicle 2 d is a depth difference between the wave transmitter 14 0 and receivers 21. Therefore, the depth of the transmitters 14 0 is stored as the sequence information of transmitters 14 0-14 2 in the transmission information storage unit 23, based on the depth measured by the depth meter 27, underwater vehicles A Z component z d of 2 is obtained.

図4に示すように、直交座表系(X,Y,Z)のX軸上に並んだ3個の送波器14〜14から送出される送信波形のみでは、スラントレンジrと方向余弦cosθとが求まるだけであるが、深度計27によって計測された深度に基づいて水中航走体2のZ成分zを求めることができるため、水中航走体2の位置ベクトルPは、Y成分の符号の曖昧さを伴うものの、位置ベクトル算出部26において次式で求めることができる。 As shown in FIG. 4, the slant range r and direction are determined only by the transmission waveforms transmitted from the three transmitters 14 0 to 14 2 arranged on the X axis of the orthogonal coordinate system (X, Y, Z). Although only the cosine cos θ x is obtained, since the Z component z d of the underwater vehicle 2 can be obtained based on the depth measured by the depth meter 27, the position vector P v of the underwater vehicle 2 is Although there is ambiguity in the sign of the Y component, the position vector calculation unit 26 can obtain the following equation.

Figure 0006207817
Figure 0006207817

(第3の実施の形態)
第3の実施の形態の水中位置関係情報取得システムは、図5及び図6を参照すると、第2の実施の形態と同一構成の送信側装置10aと、水中航走体2に設置された受信側装置20bとで構成されている。
(Third embodiment)
With reference to FIGS. 5 and 6, the underwater positional relationship information acquisition system according to the third embodiment is configured to receive the transmission side device 10 a having the same configuration as that of the second embodiment and the underwater vehicle 2. It is comprised with the side apparatus 20b.

受信側装置20bは、受波器21〜21からなるUSBL(Ultra Short BaseLine)受波器配列の受波器アレイと、受波信号処理部22〜22と、送信情報記憶部23aと、送波器特定部24aと、到達時間差算出部25aと、位置ベクトル算出部26aと、水中航走体2のヘディングの方向、ロール角及びピッチ角を測る方位姿勢センサ28とを備えている。 Receiving device 20b includes a wave receiver array USBL (Ultra Short BaseLine) receivers array of receivers 21 0-21 2, the received signal processing section 22 0-22 2, transmission information storage unit 23a A transmitter specifying unit 24a, an arrival time difference calculating unit 25a, a position vector calculating unit 26a, and an azimuth and orientation sensor 28 for measuring the heading direction, roll angle, and pitch angle of the underwater vehicle 2. .

USBL受波器配列は、3つの受波器21〜21がL字型に配列されたものである。図6に示すように、受波器21を直交座表系(X’,Y’,Z’)の原点とし、X’軸を水中航走体2の船軸とすると、受波器21〜21は、Y’−Z’平面に配列され、受波器21は、Y’軸上に、受波器21は、Z’軸上にそれぞれ配列されている。これにより、送波器14から送出された音響信号は、送波器14と受波器21とを結ぶ直線rを伝搬して受波器21に到達すると共に、送波器14と受波器21とを結ぶ直線r01を伝搬して受波器21に到達し、さらに、送波器14と受波器21とを結ぶ直線r02を伝搬して受波器21に到達する。なお、受波器21〜21のそれぞれの座標は、(0,0,0)、(0,d,0)および(0,0,d)で表すことができ、この座標は、送信情報記憶部23aに受波器配列情報として記憶されている。 USBL receivers sequences are those three receivers 21 0-21 2 are arranged in an L shape. As shown in FIG. 6, the receivers 21 0 orthogonal coordinates were based (X ', Y', Z ') as the origin of, X' when the shaft and ship shaft of underwater vehicle 2, receivers 21 1 to 21 2 'are arranged in a plane, receiving transducer 21 1, Y'Y'-Z on the shaft, the wave receiver 21 2 are respectively arranged on axis Z '. Thus, with the acoustic signal transmitted from the wave transmitter 14 0 is propagated through the straight line r 0 connecting the wave transmitter 14 0 and wave receiver 21 0 reaches the receiving transducer 21 0, the wave transmitter 14 0 and connecting the receivers 21 1 propagates straight r 01 reaches the receiving transducer 21 1, further propagates through the straight line r 02 connecting the wave transmitter 14 0 and receivers 21 2 reach the receivers 21 2. The coordinates of the receivers 21 0 to 21 2 can be represented by (0, 0, 0), (0, d 1 , 0) and (0, 0, d 2 ). The receiver information is stored in the transmission information storage unit 23a.

受波器21〜21によって受波された音響信号は、受波信号に変換され、それぞれ受波信号処理部22〜22によって信号処理が施され、送波器特定部24aに入力される。 The acoustic signals received by the receivers 21 0 to 21 2 are converted into received signals, subjected to signal processing by the received signal processing units 22 0 to 22 2 , and input to the transmitter specifying unit 24 a. Is done.

送波器特定部24aは、先の実施の形態における送波器特定部24の機能に加え、送波器14から送信された送信波形が受波器21及び受波器21よって受波されたそれぞれの時刻t1'〜t2'を到達時間差算出部25aにそれぞれ出力する。 Transmitters identifying unit 24a, in addition to the wave transmitter function specification unit 24 in the above embodiment, the wave transmitter 14 0 wave receiver is transmitted waveform transmitted from the 21 1 and receivers 21 2 Therefore receiving The waved times t 1 ′ to t 2 ′ are respectively output to the arrival time difference calculation unit 25a.

到達時間差算出部25aは、先の実施の形態における到達時間差算出部25の機能に加え、送波器特定部24から入力された時刻t1'〜t2'に基づき、送波器14からの送信波形が受波器21に到達する時刻tを基準にし、時刻tと送波器14からの送信波形が受波器21に到達する時刻t1'との到達時間差ξ01'と、時刻tと送波器14からの送信波形が受波器21に到達する時刻t2'との到達時間差ξ02'とを算出し、到達時間差ξ01'及び到達時間差ξ02'を位置ベクトル算出部26に出力する。 Arrival time difference calculating portion 25a, in addition to the function of the arrival time difference calculating portion 25 in the above embodiment, based on the time t 1 '~t 2' received from the transmitting device identification unit 24, the wave transmitter 14 0 to the time t 0 the transmission waveform reaches the receiving transducer 21 0 to the reference time t 0 and the arrival time difference between the time t 1 'the transmission waveform from the wave transmitter 14 0 reaches the receiving transducer 21 1 xi] 01 'calculates the arrival time difference xi] 01' arrival time difference xi] 02 with 'a, times t 0 and the transmission waveform from the wave transmitter 14 0 the time t 2 to reach the receivers 21 2' and the arrival time difference ξ 02 ′ is output to the position vector calculator 26.

位置ベクトル算出部26bは、先の実施の形態における位置ベクトル算出部26の機能に加え、入力された到達時間差ξ01'及び到達時間差ξ02'と、送信情報記憶部23aに記憶されている受波器21〜21の配列情報とに基づいて、直交座表系(X’,Y’,Z’)で見た誘導目標1の位置ベクトル(厳密に言えば、送波器14の位置ベクトル)を算出する。 In addition to the function of the position vector calculation unit 26 in the previous embodiment, the position vector calculation unit 26b receives the input arrival time difference ξ 01 ′ and arrival time difference ξ 02 ′ and the reception information stored in the transmission information storage unit 23a. based on the sequence information of the multiplexer 21 0-21 2, orthogonal coordinates were based (X ', Y', Z ') speaking induced target 1 of the position vector (strictly seen in, the transmitters 14 0 Position vector).

位置ベクトル算出部26bによる直交座表系(X’,Y’,Z’)で見た送波器14の位置ベクトルの算出動作について詳細に説明する。
Y’座標軸に関する直線rの方向余弦角をθy’、およびZ’座標軸に関する直線rの方向余弦角をθz’とそれぞれすると、それぞれの方向余弦cosθy’及びcosθz’は、位置ベクトル算出部26において次式で求めることができる。
Orthogonal coordinates were based by the position vector calculating unit 26b (X ', Y', Z ') will be described in detail the operation of calculating the position vector of the transmitters 14 0 seen in.
When the direction cosine angle of the straight line r 0 with respect to the Y ′ coordinate axis is θ y ′ and the direction cosine angle of the straight line r 0 with respect to the Z ′ coordinate axis is θ z ′ , the respective direction cosines cos θ y ′ and cos θ z ′ are positions. In the vector calculation part 26, it can obtain | require by following Formula.

Figure 0006207817
Figure 0006207817

従って、直交座表系(X’,Y’,Z’)で見た誘導目標1の位置ベクトル(厳密に言えば、送波器14の位置ベクトル)をP’=[x’,y’,z’]とすると、送波器14の位置ベクトルP’は、位置ベクトル算出部26aにおいて次式で求めることができる。なお、rは、[数8]式で求めたスラントレンジである。 Therefore, the orthogonal coordinates were based (X ', Y', Z ') at a position vector (strictly speaking, the position vector of the transmitters 14 0) of the target level 1 viewed P T' = [x T ' , y T ', z T' When] t, the position vector P T of transmitters 14 0 'can be determined by the following equation in the position vector calculating section 26a. Note that r is a slant range obtained by the formula [ 8 ].

Figure 0006207817
Figure 0006207817

ところで、[数14]式で示されるように、受波器21〜21の配列を第3の実施の形態のようにした場合、X’成分の符号判別に関して曖昧さが生じる。しかし、例えば、受波器21〜21の配列の後方(本実施例の場合は−X’方向)からの音波を遮断するような遮音措置等を講ずればこのような曖昧さをなくすることができ、その場合には、位置ベクトル算出部26aにおいて、送波器14の位置ベクトルP’を曖昧さなく、次式で求めることができる。 By the way, as shown in the equation [ 14 ], when the arrangement of the receivers 21 0 to 21 2 is the same as that of the third embodiment, ambiguity arises regarding the code determination of the X ′ component. However, for example, rather than the rear (in the case of this embodiment -X 'direction) such ambiguity if Kozure sound insulation measures such as blocking the sound waves from the array of receivers 21 0-21 2 it can be, in that case, the position vector calculating unit 26a, unambiguously position vector P T 'of transmitters 14 0 can be obtained by the following equation.

Figure 0006207817
Figure 0006207817

以下、第3の実施の形態においては、特段の断りがない限り、符号の曖昧さを解消する措置が講じられているものと想定し、送波器14の位置ベクトルP’はX’成分の符号の曖昧さなく求められるものとする。 Hereinafter, in the third embodiment, unless otherwise mentioned, it assumes that measures to eliminate the ambiguity of the code have been taken, the position vector P T of transmitters 14 0 'X' It is assumed that the component code is obtained without ambiguity.

ここで、送波器14〜14が配列されている直交座表系(X,Y,Z)のいわゆる地球座標系に対する回転角が水中航走体2(位置ベクトル算出部26a)側において既知であると仮定する。すなわち、原点を送波器14に置き、経度軸をx座標軸、鉛直をz軸とする座標系を(x,y,z)とし、当該座標系に対する直交座表系(X,Y,Z)の回転(ロール角α、ピッチ角β及びヨー角γ)が水中航走体2(位置ベクトル算出部26a)側において既知である。また、方位姿勢センサ28によって水中航走体2のヘディングの方向と、ロール角、ピッチ角を測定され、受波器21〜21が配列されている直交座表系(X’,Y’,Z’)のいわゆる地球座標系に対する回転角が水中航走体2(位置ベクトル算出部26a)側において既知であると仮定する。すなわち、原点を受波器21に置き、経度軸をx座標軸、鉛直をz軸とする座標系を(x’,y’,z’)とし、当該座標系に対する直交座表系(X’,Y’,Z’)の回転(ロール角α、ピッチ角β及びヨー角γ)が水中航走体2(位置ベクトル算出部26a)側において既知である。さらに、いずれの場合も、軸が上向きに傾く角度をピッチの正、軸が下向きに傾く角度をロールの正および軸が地軸から時計回りに回転する角度をヨーの正であるとする。そうすると、直交座表系(X,Y,Z)でみた水中航走体2(受波器21)の位置ベクトルは、位置ベクトル算出部26aにおいて次式で求めることができる。 Here, the rotation angle of the orthogonal coordinate system (X, Y, Z) in which the transmitters 14 0 to 14 2 are arranged with respect to the so-called earth coordinate system is on the underwater vehicle 2 (position vector calculation unit 26a) side. Assume that it is known. In other words, place the origin wave transmitter 14 0, longitude axis x-coordinate axis, the coordinate system with the z axis vertical to the (x, y, z), orthogonal coordinates were based for the coordinate system (X, Y, Z ) Rotation (roll angle α T , pitch angle β T and yaw angle γ T ) is known on the underwater vehicle 2 (position vector calculation unit 26a) side. Further, the direction of the underwater vehicle 2 heading by azimuth orientation sensor 28, roll angle, the measured pitch angle, the wave receiver 21 0-21 orthogonal coordinates were system 2 are arranged (X ', Y' , Z ′) is assumed to be known on the underwater vehicle 2 (position vector calculation unit 26a) side with respect to the so-called earth coordinate system. In other words, place the origin receivers 21 0, longitude axis x-coordinate axis, the coordinate system with the z-axis a vertical (x ', y', z ') and to the orthogonal coordinates were based for the coordinate system (X' , Y ′, Z ′) (roll angle α V , pitch angle β V and yaw angle γ V ) are known on the underwater vehicle 2 (position vector calculation unit 26a) side. Furthermore, in any case, it is assumed that the angle at which the axis is inclined upward is positive for the pitch, the angle at which the axis is inclined downward is positive for the roll, and the angle at which the axis rotates clockwise from the ground axis is positive for yaw. Then, the position vector of the underwater vehicle 2 (receiver 21 0 ) viewed in the orthogonal coordinate system (X, Y, Z) can be obtained by the following expression in the position vector calculation unit 26a.

Figure 0006207817
Figure 0006207817

ただし、[数16]式においてΛα(x),Λβ(x),Λγ(x)はそれぞれロール、ピッチおよびヨーに関する以下で示されるような変換行列であり、Λ−1 α(x)=Λα(−x),Λ−1 β(x)=Λβ(−x)及びΛ−1 γ(x)=Λγ(−x)の関係が成り立つ。 However, in [Expression 16] where Λ α (x), Λ β (x), Λ γ (x) are each roll transformation matrix as shown below with respect to the pitch and yaw, lambda -1 alpha (x ) = Λ α (−x), Λ −1 β (x) = Λ β (−x) and Λ −1 γ (x) = Λ γ (−x).

Figure 0006207817
Figure 0006207817

以上のように、第3の実施の形態によれば、送波器14〜14の向きが任意、すなわち、ドック等の誘導目標1が任意の向きであったとしても、送波器14〜14が配列されている直交座表系(X,Y,Z)で見た水中航走体2(受波器21)の位置を、水中航走体2側において算出することができる。なお、第2の実施の形態で示したような送波器14〜14の配列であっても、送波器配列を本実施例のようにした場合でも、位置ベクトルPのY成分が求まる。 As described above, according to the third embodiment, the wave transmitter 14 0-14 2 orientation is arbitrary, that is, even if the induced target 1 of the dock or the like is an arbitrary orientation, transmitters 14 0-14 2 orthogonal coordinates were system are arranged (X, Y, Z) the position of the underwater vehicle 2 viewed in (wave receiver 21 0), be calculated in the underwater vehicle 2 side it can. Incidentally, even a sequence of wave transmitter 14 0-14 2 as shown in the second embodiment, even when the wave transmitter array as in this embodiment, Y components of the position vector P v Is obtained.

(第4の実施の形態)
第4の実施の形態の水中位置関係情報取得システムは、第1の実施の形態に、第3の実施の形態の機能を付加したシステムであり、図7に示すように、誘導目標1には、4個の送波器14〜14が、水中航走体2には、USBL受波器配列の3つの受波器21〜21がそれぞれ備えられている。
(Fourth embodiment)
The underwater positional relationship information acquisition system of the fourth embodiment is a system in which the function of the third embodiment is added to the first embodiment, and as shown in FIG. Four transmitters 14 0 to 14 3 are provided, and the underwater vehicle 2 is provided with three receivers 21 0 to 21 2 in a USBL receiver array.

第4の実施の形態では、位置ベクトル算出部26において、水中航走体2の位置ベクトルPを[数11]式で求めることができる。 In the fourth embodiment, the position vector calculation unit 26 can obtain the position vector Pv of the underwater vehicle 2 by the formula [ 11 ].

ここで、送波器14〜14は、第3の実施の形態のロール角α、ピッチ角β及びヨー角γに加えて、例えばヨーに関して新たにγTAの回転が生ずるものとする。そうすると以下の式が成り立つ。 Here, the transmitters 14 0 to 14 3 are, in addition to the roll angle α V , pitch angle β V and yaw angle γ V of the third embodiment, for example, a new rotation of γ TA with respect to yaw. And Then, the following formula is established.

Figure 0006207817
Figure 0006207817

なお、この場合のP は、当該ベクトルのx成分およびy成分をrcosθ、をrcosθで置き換えることはできず、P は以下の式で表される。 In this case, P V ˜ cannot replace the x component and y component of the vector with r cos θ x and r cos θ y , and P V ˜ is expressed by the following equation.

Figure 0006207817
Figure 0006207817

この[数19]式から関係式が得られる。 A relational expression is obtained from this [Equation 19 ].

Figure 0006207817
Figure 0006207817

従って、水中航走体2において[数20]式にヒットするような角度γTAを求めるならば、水中航走体2(位置ベクトル算出部26a)側において、送波器14〜14の地軸に対する新たな回転角γTAを知ることができる。新たな回転角度がロールのαTAである場合又はピッチのβTAである場合も同様となる。第4の実施の形態によれば、ドック等の誘導目標1が船舶などに取り付けられ、ヨー等が時間とともに変化するような場合でも、ドック等の誘導目標1からの通信手段を要することなく、当該ドック等の誘導目標1の向きを水中航走体2(位置ベクトル算出部26a)側において算出することができる。
Accordingly, the underwater vehicle 2 if determining the angle gamma TA as to hit on the formula [20] wherein the underwater vehicle 2 (the position vector calculating section 26a) side, the wave transmitter 14 0-14 3 it is possible to know the new rotation angle gamma TA for the earth's axis. The same applies when the new rotation angle is α TA of the roll or β TA of the pitch. According to the fourth embodiment, even when the guidance target 1 such as a dock is attached to a ship or the like and the yaw or the like changes with time, communication means from the guidance target 1 such as a dock is not required, The direction of the guidance target 1 such as the dock can be calculated on the underwater vehicle 2 (position vector calculation unit 26a) side.

以上説明したように、第1及び第2の実施の形態によれば、従来のパッシブレンジングの1個の音源(送波器)と3個以上の受波器という組み合わせを、3個以上の送波器14〜14からなる送波器配列と、1個の受波器21に置き換える、「逆パッシブレンジング」の構成を備えている。これにより、水中航走体2側から音波を送信する必要がないことに加え、長い基線長の配列物を水中航走体2側に装備する必要もなくなるという利点がある。さらに、各送波器14〜14から送信される音響信号の受波器21への到達時間差を求めることにより、送波器14〜14の配列から見た受波器の相対位置関係情報を水中航走体2側で得る構成になっているため、3個以上の送波器14〜14からは、水中航走体2側時計とは非同期に送波することができる。 As described above, according to the first and second embodiments, a combination of one sound source (transmitter) and three or more receivers of conventional passive ranging is combined with three or more transmitters. It has a “reverse passive ranging” configuration in which a transmitter array composed of the wave devices 14 0 to 14 3 and one receiver 21 are replaced. Accordingly, there is an advantage that it is not necessary to transmit sound waves from the underwater vehicle 2 side, and it is not necessary to equip the underwater vehicle 2 side with an array having a long baseline length. Furthermore, the relative position of the receiver as seen from the arrangement of the transmitters 14 0 to 14 3 is obtained by obtaining the arrival time difference of the acoustic signals transmitted from the transmitters 14 0 to 14 3 to the receiver 21. designed to reduce the obtaining relationship information in underwater vehicle 2 side, from the three or more transmitters 14 0-14 3 may be transmitting asynchronously with underwater vehicle 2 side clock .

さらに、第3及び第4の本実施の形態によれば、受波器21〜21からなる受波器配列を用い、送波器配列の少なくとも1つの送波器からの信号を受波器配列で受信して当該各受波器間の到達時間差を求めることにより、水中航走体2側において当該送波器と受波器配列間を結ぶ直線が当該受波器配列に置かれた座標系の直交する座標軸の2つ以上に対する方向余弦を求めるように構成されている。これにより、受波器配列の座標系に対する方向余弦を得ることができ、水中航走体2の誘導制御にとってより有効な新たな位置関係情報を水中航走体2側で得ることができる。 Furthermore, according to the third and fourth embodiment, using the receivers array of receivers 21 0-21 2, reception signals from at least one transmitting unit of transmitters sequence A straight line connecting the transmitter and the receiver array is placed on the receiver array on the underwater vehicle 2 side by obtaining the difference in arrival time between the receivers by receiving the receiver array. A direction cosine for two or more orthogonal coordinate axes of the coordinate system is obtained. Thereby, the direction cosine with respect to the coordinate system of the receiver array can be obtained, and new positional relationship information more effective for the guidance control of the underwater vehicle 2 can be obtained on the underwater vehicle 2 side.

さらに、第2の実施の形態によれば、水中航走体2の深度を補完情報として用いることで、送波器個数を3とした直線配列の送波器配列の場合でも、3次元位置関係情報を曖昧さなく得られるという利点がある。   Furthermore, according to the second embodiment, by using the depth of the underwater vehicle 2 as complementary information, even in the case of a transmitter array of a linear array in which the number of transmitters is 3, a three-dimensional positional relationship There is an advantage that information can be obtained without ambiguity.

さらに、第4の実施の形態によれば、水中航走体2に自身の地軸に対するヘディング方向と自身の姿勢角とを測る方位姿勢センサを取り付けることによって、送波器配列の向き(送波器配列を取り付けたドックなどの誘導目標1の向き)を水中航走体2側で知ることができる。従って、送波器配列が船舶などに取り付けられ、その向きが時間とともに変化する場合でも、当該向きを水中航走体2側において、通信手段を用いなくても知ることができるという利点がある。   Furthermore, according to the fourth embodiment, the orientation of the transmitter array (transmitter) is attached to the underwater vehicle 2 by attaching an orientation posture sensor that measures the heading direction with respect to its own ground axis and its posture angle. The direction of the guidance target 1 such as a dock with an array attached) can be known on the underwater vehicle 2 side. Therefore, even when the transmitter array is attached to a ship or the like and the direction thereof changes with time, there is an advantage that the direction can be known on the underwater vehicle 2 side without using communication means.

さらに、第1乃至第4の本実施の形態によれば、水中航走体2側から音波を送信することはない逆パッシブレンジングと水中航走体2側の受波器配列による方向測定によるものであるから、誘導対象の航走体が複数となっても誘導システムに付加的機能は不要であり、水中航走体2の群誘導などへの適用も容易であるという利点を有する。   Further, according to the first to fourth embodiments, the reverse passive ranging that does not transmit sound waves from the underwater vehicle 2 side and the direction measurement by the receiver array on the underwater vehicle 2 side are used. Therefore, even if there are a plurality of navigation bodies to be guided, an additional function is not necessary for the guidance system, and there is an advantage that application to group guidance of the underwater vehicle 2 is easy.

なお、本発明が上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。また、上記構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等にすることができる。なお、各図において、同一構成要素には同一符号を付している。   Note that the present invention is not limited to the above-described embodiments, and it is obvious that the embodiments can be appropriately changed within the scope of the technical idea of the present invention. In addition, the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment, and can be set to a suitable number, position, shape, and the like in practicing the present invention. In each figure, the same numerals are given to the same component.

1 誘導目標
2 水中航走体
10、10a 送信側装置
11 送信波形記憶部
12 送信波形生成部
13〜13 送信波形処理部
14〜14 送波器
20、20a、20b 受信側装置
21、21〜21 受波器
22、22〜22 受波信号処理部
23、23a 送信情報記憶部
24、24a 送波器特定部
25、25a 到達時間差算出部
26、26a 位置ベクトル算出部
27 深度計
28 方位姿勢センサ
1 induced target 2 underwater vehicle 10,10a transmitting device 11 transmits waveform storage unit 12 transmits the waveform generator 13 0-13 3 transmission waveform processing section 14 0-14 3 transmitters 20, 20a, 20b receiving device 21 , 21 0 to 21 2 Receiver 22, 22 0 to 22 2 Received signal processing unit 23, 23a Transmission information storage unit 24, 24a Transmitter identification unit 25, 25a Arrival time difference calculation unit 26, 26a Position vector calculation unit 27 Depth meter 28 Azimuth and orientation sensor

Claims (3)

誘導目標に設置された送信側装置から送波された音響信号を、水中航走体に設置された受信側装置で受波することで、前記誘導目標に対する前記水中航走体の位置関係情報を取得する水中位置関係情報取得システムであって、
前記送信側装置は、
前記誘導目標に分散して配列され、前記音響信号を同時に送波する3個以上の送波器と、
3個以上の前記送波器から前記音響信号として送波される送信波形を互いに異なる波形で生成させる送信波形生成手段とを具備し、
前記受信側装置は、
3個以上の前記送波器から前記音響信号としてそれぞれ送波された前記送信波形を受波する受波器と、
前記受波器によって受波された前記送信波形に基づいて、前記送信波形を送波した前記送波器を特定する送波器特定手段と、
該送波器特定手段によって特定された前記送波器と前記受波器によって前記送信波形が受波されたタイミングとに基づいて、3個以上の前記送波器から前記受波器への前記送信波形の到達時間差を算出する到達時間差算出手段と、
前記送波器の配列情報が記憶されている送信情報記憶手段と、
該送信情報記憶手段に記憶されている前記配列情報と前記到達時間差算出手段によって算出された前記到達時間差とに基づいて、前記誘導目標に対する位置関係情報を算出する位置関係情報算出手段とを具備し、
前記位置関係情報算出手段は、前記水中航走体の深度を補完情報として用いて、Z軸が鉛直軸方向と一致する直交座表系(X,Y,Z)における水平面の前記位置関係情報を、下記式(1)、(2)及び(3)を用いて算出することを特徴とする水中位置関係情報取得システム。
Figure 0006207817
(式中、rは、第1の前記送波器と前記受波器とを結ぶ直線のスラントレンジ、Cは、前記音響信号の伝搬速度をそれぞれ示す。また、第1〜3の前記送波器のそれぞれの座標を(0,0,0)、(−D ,0,0)及び(D ,0,0)とする。さらに、第1の前記送波器からの送信波形が前記受波器に到達する時刻t を基準にし、τ 01 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差、τ 02 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差をそれぞれ示す。)
Figure 0006207817
(式中、θ は、X座標軸に関する第1の前記送波器と前記受波器とを結ぶ直線の方向余弦角を示す。)
Figure 0006207817
(式中、Z は、前記水中航走体のZ成分、P は、前記水中航走体の位置ベクトルをそれぞれ示す。)
By receiving the acoustic signal transmitted from the transmitting device installed in the guidance target by the receiving device installed in the underwater vehicle, the positional relationship information of the underwater vehicle with respect to the guidance target is obtained. An underwater position-related information acquisition system for acquiring,
The transmitting device is:
Three or more transmitters arranged in a distributed manner on the guidance target and transmitting the acoustic signals simultaneously;
Transmission waveform generating means for generating transmission waveforms transmitted as acoustic signals from three or more of the transmitters in different waveforms, and
The receiving side device
A receiver for receiving the transmission waveform respectively transmitted as the acoustic signal from three or more transmitters;
Based on the transmission waveform received by the receiver, transmitter specifying means for specifying the transmitter that has transmitted the transmission waveform;
Based on the transmitter specified by the transmitter specifying means and the timing at which the transmission waveform is received by the receiver, the three or more transmitters to the receiver are used. Arrival time difference calculating means for calculating the arrival time difference of the transmission waveform;
Transmission information storage means in which arrangement information of the transmitter is stored;
Positional relation information calculating means for calculating positional relation information for the guidance target based on the arrangement information stored in the transmission information storage means and the arrival time difference calculated by the arrival time difference calculating means. ,
The positional relationship information calculating means uses the depth of the underwater vehicle as supplementary information, and calculates the positional relationship information of the horizontal plane in the orthogonal coordinate system (X, Y, Z) in which the Z axis coincides with the vertical axis direction. The underwater positional relationship information acquisition system characterized by calculating using the following formulas (1), (2) and (3) .
Figure 0006207817
(Where r is a linear slant range connecting the first transmitter and the receiver, and C is the propagation speed of the acoustic signal. Also, the first to third transmitters The coordinates of the transmitter are (0, 0, 0), (−D 1 , 0, 0) and (D 2 , 0, 0), and the transmission waveform from the first transmitter is With reference to the time t 0 arriving at the receiver , τ 01 is the arrival time difference between the time t 0 and the time when the transmission waveform from the second transmitter reaches the receiver, and τ 02 is The time difference between the time t 0 and the time when the transmission waveform from the second transmitter reaches the receiver is shown.)
Figure 0006207817
(In the formula, θ x represents the direction cosine angle of a straight line connecting the first transmitter and the receiver with respect to the X coordinate axis.)
Figure 0006207817
( Wherein , Z d is the Z component of the underwater vehicle and P v is the position vector of the underwater vehicle.)
誘導目標に設置された送信側装置から送波された音響信号を、水中航走体に設置された受信側装置で受波することで、前記誘導目標に対する前記水中航走体の位置関係情報を取得する水中位置関係情報取得システムであって、
前記送信側装置は、
前記誘導目標に分散して配列され、前記音響信号を同時に送波する3個以上の送波器と、
3個以上の前記送波器から前記音響信号として送波される送信波形を互いに異なる波形で生成させる送信波形生成手段とを具備し、
前記受信側装置は、
3個以上の前記送波器から前記音響信号としてそれぞれ送波された前記送信波形を受波する、分散して配列された3個以上の受波器と、
前記受波器によって受波された前記送信波形に基づいて、前記送信波形を送波した前記送波器を特定する送波器特定手段と、
該送波器特定手段によって特定された前記送波器と前記受波器によって前記送信波形が受波されたタイミングとに基づいて、3個以上の前記送波器から前記受波器への前記送信波形の到達時間差を算出する到達時間差算出手段と、
前記送波器の配列情報が記憶されている送信情報記憶手段と、
該送信情報記憶手段に記憶されている前記配列情報と前記到達時間差算出手段によって算出された前記到達時間差とに基づいて、前記誘導目標に対する位置関係情報を算出する位置関係情報算出手段とを具備し、
前記到達時間差算出手段は、3個以上の前記送波器のうちの少なくとも1つから3個以上の前記受波器への前記送信波形の到達時間差を算出し、
前記位置関係情報算出手段は、前記受波器の配列に設定された局所座標系(X’,Y’,Z’)で見た前記位置関係情報を下記式(4)及び(5)と下記式(6)もしくは(7)とを用いて算出することを特徴とする水中位置関係情報取得システム。
Figure 0006207817
(式中、rは、第1の前記送波器と前記受波器とを結ぶ直線のスラントレンジ、Cは、前記音響信号の伝搬速度をそれぞれ示す。また、第1〜3の前記送波器、のそれぞれの座標を(0,0,0)、(−D ,0,0)及び(D ,0,0)とする。さらに、第1の前記送波器からの送信波形が前記受波器に到達する時刻t を基準にし、τ 01 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差、τ 02 は、時刻t と第2の前記送波器からの送信波形が前記受波器に到達する時刻との到達時間差をそれぞれ示す。)
Figure 0006207817
(式中、第1〜3の前記受波器のそれぞれの座標を(0,0,0)、(0,d ,0)および(0,0,d )とする。また、第1の前記送波器からの送信波形が第1の前記受波器に到達する時刻t を基準にし、ξ01'は、時刻t と第1の前記送波器からの送信波形が第2の前記受波器に到達する時刻との到達時間差、ξ02'は、時刻t0と第1の前記送波器からの送信波形が第3の前記受波器に到達する時刻との到達時間差をそれぞれ示す。さらに、θ y’ は、Y’座標軸に関する第1の前記送波器と第1の前記受波器とを結ぶ直線の方向余弦角、θ z’ は、Z’座標軸に関する第1の前記送波器と第1の前記受波器とを結ぶ直線の方向余弦角をそれぞれ示す)
Figure 0006207817
(式中、P ’は、第1の前記送波器の位置ベクトルを示す。)
Figure 0006207817
By receiving the acoustic signal transmitted from the transmitting device installed in the guidance target by the receiving device installed in the underwater vehicle, the positional relationship information of the underwater vehicle with respect to the guidance target is obtained. An underwater position-related information acquisition system for acquiring,
The transmitting device is:
Three or more transmitters arranged in a distributed manner on the guidance target and transmitting the acoustic signals simultaneously;
Transmission waveform generating means for generating transmission waveforms transmitted as acoustic signals from three or more of the transmitters in different waveforms, and
The receiving side device
To reception the transmitting by said transmitted waveform respectively as the acoustic signal from three or more of said wave transmitter, and three or more receivers arranged distributed manner,
Based on the transmission waveform received by the receiver, transmitter specifying means for specifying the transmitter that has transmitted the transmission waveform;
Based on the transmitter specified by the transmitter specifying means and the timing at which the transmission waveform is received by the receiver, the three or more transmitters to the receiver are used. Arrival time difference calculating means for calculating the arrival time difference of the transmission waveform;
Transmission information storage means in which arrangement information of the transmitter is stored;
Positional relation information calculating means for calculating positional relation information for the guidance target based on the arrangement information stored in the transmission information storage means and the arrival time difference calculated by the arrival time difference calculating means. ,
The arrival time difference calculating means calculates an arrival time difference of the transmission waveform from at least one of the three or more transmitters to three or more of the receivers,
The positional relationship information calculation means uses the following equations (4) and (5) and the following positional relationship information as viewed in the local coordinate system (X ′, Y ′, Z ′) set in the receiver array. An underwater positional relationship information acquisition system characterized in that the calculation is performed using Expression (6) or (7) .
Figure 0006207817
(Where r is a linear slant range connecting the first transmitter and the receiver, and C is the propagation speed of the acoustic signal. Also, the first to third transmitters The coordinates of the transmitter are (0, 0, 0), (−D 1 , 0, 0) and (D 2 , 0, 0), and the transmission waveform from the first transmitter is With reference to the time t 0 when reaching the receiver , τ 01 is the arrival time difference between the time t 0 and the time when the transmission waveform from the second transmitter reaches the receiver, and τ 02 is The time difference between the time t 0 and the time when the transmission waveform from the second transmitter arrives at the receiver is shown.)
Figure 0006207817
(In the formula, the coordinates of the first to third receivers are (0, 0, 0), (0, d 1 , 0) and (0, 0, d 2 ). Referring to time t 0 when the transmission waveform from the transmitter reaches the first receiver , ξ01 ′ indicates that the transmission waveform from time t 0 and the first transmitter is the second The arrival time difference from the time to reach the receiver, ξ02 ′ represents the arrival time difference between the time t0 and the time at which the transmission waveform from the first transmitter reaches the third receiver. Furthermore, θ y ′ is the direction cosine angle of a straight line connecting the first transmitter and the first receiver with respect to the Y ′ coordinate axis, and θ z ′ is the first transmitter with respect to the Z ′ coordinate axis. The direction cosine angle of the straight line connecting the wave device and the first wave receiver is shown)
Figure 0006207817
( Where P T ′ indicates the position vector of the first transmitter)
Figure 0006207817
前記位置関係情報算出手段は、前記受波器の配列の地球座標系に対する向きの情報を補完情報として用いて前記位置関係情報を算出することを特徴とする請求項2記載の水中位置関係情報取得システム。   The underwater positional relationship information acquisition according to claim 2, wherein the positional relationship information calculation unit calculates the positional relationship information using information on the orientation of the array of the receivers with respect to the earth coordinate system as complementary information. system.
JP2012178124A 2012-08-10 2012-08-10 Underwater position-related information acquisition system Expired - Fee Related JP6207817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178124A JP6207817B2 (en) 2012-08-10 2012-08-10 Underwater position-related information acquisition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178124A JP6207817B2 (en) 2012-08-10 2012-08-10 Underwater position-related information acquisition system

Publications (2)

Publication Number Publication Date
JP2014035328A JP2014035328A (en) 2014-02-24
JP6207817B2 true JP6207817B2 (en) 2017-10-04

Family

ID=50284364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178124A Expired - Fee Related JP6207817B2 (en) 2012-08-10 2012-08-10 Underwater position-related information acquisition system

Country Status (1)

Country Link
JP (1) JP6207817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945326B1 (en) * 2018-11-20 2019-02-01 한국해양과학기술원 Method of transmission signal generation for multiple input multiple output sonar

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275472B2 (en) * 2018-02-05 2023-05-18 株式会社Ihi Velocity measurement system
BR112021008529A2 (en) * 2018-11-01 2021-08-03 Onesubsea Ip Uk Limited system and method for locating an unmanned submarine vehicle
CN110989637B (en) * 2019-12-04 2023-12-19 上海迈波科技有限公司 Docking guiding method for underwater vehicle
CN116106880B (en) * 2023-04-13 2023-06-30 北京理工大学 Underwater sound source ranging method and device based on attention mechanism and multi-scale fusion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478558U (en) * 1977-11-14 1979-06-04
JPS5581785U (en) * 1978-11-30 1980-06-05
JPS5746171A (en) * 1980-09-05 1982-03-16 Hitachi Ltd System for measuring underwater position
JPH0712933A (en) * 1993-06-25 1995-01-17 Mitsubishi Heavy Ind Ltd Underwater acoustic beacon for guiding submarine
JPH09145821A (en) * 1995-11-20 1997-06-06 Akihide Sakitani Underwater object position measuring device
JP2001337157A (en) * 2000-05-26 2001-12-07 Toyo System Kk Local positioning system using ultrasonic wave
JP2002250766A (en) * 2001-02-22 2002-09-06 Nec Corp Method and system for underwater towed body position measurement
JP2005321225A (en) * 2004-05-06 2005-11-17 Oki Electric Ind Co Ltd Underwater sound source, sound positioning device and sound positioning system
JP3981962B2 (en) * 2005-12-09 2007-09-26 独立行政法人海洋研究開発機構 Underwater moving body angle measuring device and underwater moving body angle measuring method
JP4968827B2 (en) * 2006-11-24 2012-07-04 国立大学法人東京海洋大学 Underwater positioning system and underwater positioning method
JP2009139264A (en) * 2007-12-07 2009-06-25 Synthesize Ltd Three-dimensional position determination system, and three-dimensional position determination method
WO2011084483A2 (en) * 2009-12-16 2011-07-14 Shb Instruments, Inc. Underwater acoustic navigation systems and methods
JP5730008B2 (en) * 2010-12-27 2015-06-03 株式会社BiVaホールディングス Underwater position detection system, ship-side receiver, and underwater position detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945326B1 (en) * 2018-11-20 2019-02-01 한국해양과학기술원 Method of transmission signal generation for multiple input multiple output sonar

Also Published As

Publication number Publication date
JP2014035328A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
US9372255B2 (en) Determining a position of a submersible vehicle within a body of water
CN102636785B (en) Submarine target three-dimensional positioning method
US20090287414A1 (en) System and process for the precise positioning of subsea units
CN102262226B (en) Underwater positioning method based on differential technology
CN101644759B (en) Submarine object-locating system based on dualistic structure and locating method
US20070025185A1 (en) Underwater geopositioning methods and apparatus
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
KR100906362B1 (en) Underwater Navigation System for a Platoon of Multiple Unmanned Underwater Vehicles Using Range Measurements on Two Reference Stations and Inertial Sensors
JP6207817B2 (en) Underwater position-related information acquisition system
JP2002162459A (en) Positioning device of underwater moving body
CN105004413A (en) Acoustic propagation path comprehensive speed measuring method and apparatus for underwater target positioning
CN102081170A (en) Submarine cable secondary positioning method based on integrated positioning of acoustic long baseline and ultrashort baseline
Morgado et al. Design and experimental evaluation of an integrated USBL/INS system for AUVs
JP2018204970A (en) Underwater acoustic positioning system and method
CN104197939A (en) Multi-reference-point under-water vehicle combination navigation method based on underwater information network
CN105022032A (en) Long baseline navigation positioning system absolute array measurement distance measurement correction method
CN113156413A (en) Seabed reference calibration method based on double-pass acoustic path
US7362655B1 (en) Time-synchronous acoustic signal ranging system and method
CN112147578B (en) High-precision deep water transmitting array and multi-element vertical receiving array element positioning system and method
RU2691217C1 (en) Method of positioning underwater objects
RU2529207C1 (en) Navigation system for towed underwater vehicle
CN113218372B (en) Calibration system and method for position of seabed datum point
CN111735436A (en) Submarine topography data verification method based on more than 3 pieces of uniformly distributed multi-beam data
RU2463624C1 (en) Hydroacoustic navigation system
JP5777049B2 (en) Wave measuring method and wave measuring system using ultrasonic waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6207817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees